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Preface

Rare event simulation has attracted a great deal of attention since the first devel-
opment of Monte Carlo techniques on computers, at Los Alamos during the
production of the first nuclear bomb. It has found numerous applications in fields
such as physics, biology, telecommunications, transporting systems, and insur-
ance risk analysis. Despite the amount of work on the topic in the last sixty years,
there are still domains needing to be explored because of new applications. A
typical illustration is the area of telecommunications, where, with the advent of
the Internet, light-tailed processes traditionally used in queuing networks now
have to be replaced by heavy-tailed ones, and new developments of rare event
simulation theory are required.

Surprisingly, we found that not much was written on the subject, in fact
only one book was devoted to it, with a special focus on large-deviations the-
ory. The idea of writing this book therefore started from a collaborative project
managed in France by Institut National de Recherche en Informatique et Automa-
tique (INRIA) in 2005–2006 (see http://www.irisa.fr/armor/Rare/), with groups
of researchers from INRIA, the University of Nice, the CWI in the Netherlands,
Bamberg University in Germany, and the University of Montréal in Canada. In
order to cover the broad range of applications in greater depth, we decided to
request contributions from authors who were not members of the project. This
book is the result of that effort.

As editors, we would like to thank the contributors for their effort in writing
the chapters of this book. We are also grateful to John Wiley & Sons staff
members, in particular Susan Barclay and Heather Kay, for their assistance and
patience.

Gerardo Rubino and Bruno Tuffin
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Introduction to rare event
simulation
Gerardo Rubino and Bruno Tuffin

This monograph deals with the analysis by simulation of ‘rare situations’ in sys-
tems of quite different types, that is, situations that happen very infrequently, but
important enough to justify their study. A rare event is an event occurring with
a very small probability, the definition of ‘small’ depending on the application
domain. These events are of interest in many areas. Typical examples come, for
instance, from transportation systems, where catastrophic failures must be rare
enough. For instance, a representative specification for civil aircraft is that the
probability of failure must be less than, say, 10−9 during an ‘average-length’
flight (a flight of about 8 hours). Transportation systems are called critical in
the dependability area because of the existence of these types of failures, that
is, failures that can lead to loss of human life if they occur. Aircraft, trains,
subways, all these systems belong to this class. The case of cars is less clear,
mainly because the probability of a catastrophic failure is, in many contexts, much
higher. Security systems in nuclear plants are also examples of critical systems.
Nowadays we also call critical other systems where catastrophic failures may
lead to significant loss of money rather than human lives (banking information
systems, for example). In telecommunications, modern networks often offer very
high speed links. Since information travels in small units or messages (packets in
the Internet world, cells in asynchronous transfer mode infrastructures, etc.), the
saturation of the memory of a node in the network, even during a small amount
of time, may induce a huge amount of losses (in most cases, any unit arriving at

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-77269-0



2 INTRODUCTION

a saturated node is lost). For this reason, the designer wants the overflow of such
a buffer to be a rare event, with probabilities of the order of 10−9. Equivalently,
the probability of ruin is a central issue for the overall wealth of an insurance
company: the (time) evolution of the reserves of the company is represented
by a stochastic process, with initial value R0; the reserves may decrease due to
incoming claims, but also have a linear positive drift thanks to the premiums paid
by customers. A critical issue is to estimate the probability of ruin, that is, the
probability of the reserve process reaching zero. In biological systems, molec-
ular reactions may occur on different time scales, and reactions with extremely
small occurrence rates are therefore rare events. As a consequence, this stiffness
requires the introduction of specific techniques to solve the embedded differential
equations.

This chapter introduces the general area of rare event simulation, recalls the
basic background elements necessary to understand the technical content of the
following chapters, and gives an overview of the contents of those chapters.

1.1 Basics in Monte Carlo

Solving scientific problems often requires the computation of sums or integrals,
or the solution of equations. Direct computations, also called analytic techniques,
become quickly useless due to their stringent requirements in terms of complexity
and/or assumptions on the model. In that case, approximation techniques can
sometimes be used. On the other hand, standard numerical analysis procedures
also require assumptions (even if less stringent) on the model, and suffer from
inefficiency as soon as the mathematical dimension of the problem increases.
A typical illustration is when using quadrature rules for numerical integration.
Considering, for instance, the trapezoidal rule with n points in dimension s, the
speed of convergence to the exact value is usually O(n−2/s), therefore slow
when s is large. The number of points necessary to reach a given precision
increases exponentially with the dimension. To cope with those problems, we
can use Monte Carlo simulation techniques, which are statistical approximation
techniques, instead of the above mentioned deterministic ones.

Let us start with the basic concepts behind Monte Carlo techniques. Suppose
that the probability γ of some event A is to be estimated. A model of the system
is simulated n times (we say that we build an n-sample of the model) and at each
realization we record whether A happens or not. In the simplest (and most usual)
case, the n samples are independent (stochastically speaking) of each other. If
Xi is the (Bernoulli) random variable Xi = (A occurs in the nth sample) (i.e.,
Xi = 1 if A occurs in sample i, 0 if not), we estimate γ by γ̂ = (X1 + · · · +
Xn)/n. Observe that E(Xi) = γ and Var(Xi) = γ (1 − γ ) which we denote by σ 2

(for basic results on probability theory and to verify, for instance, typical results
on Bernoulli random variables, the reader can consult textbooks such as [6]).

How far will the given estimator γ̂ be from the actual value γ ? To answer this
question, we can apply the central limit theorem, which says that X1 + · · · + Xn
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is approximately normal (if n is ‘large enough’) [6]. Let us scale things first:
E(X1 + · · · + Xn) = nγ and Var(X1 + · · · + Xn) = nσ 2, so the random variable
Z = [nσ 2]−1/2(X1 + · · · + Xn − nγ ) has mean 0 and variance 1. The central
limit theorem says that as n → ∞, the distribution of Z tends to the standard
normal distribution N (0, 1), whose cdf is �(x) = (2π)−1/2

∫ x

−∞ exp(−u2/2)du.
We then assume that n is large enough so that Z ≈ N (0, 1) in distribution.
This means, for instance, that P(−z ≤ Z ≤ z) = 2�(z) − 1 (using �(−z) = 1 −
�(z)), which is equivalent to writing

P

((
γ̂ − zσ√

n
, γ̂ + zσ√

n

)
� γ

)
≈ 2�(z) − 1.

The random interval I = (γ̂ ∓ zσn−1/2) is called a confidence interval for γ ,
with level 2�(z) − 1. We typically consider, for instance, z = 1.96 because
2�(1.96) − 1 = 0.95 (or z = 2.56, for which 2�(2.56) − 1 = 0.99). The preced-
ing observations lead to P(γ ∈ (γ̂ ∓ 1.96σn−1/2)) ≈ 0.95. In general, for a con-
fidence interval with level α, 0 < α < 1, we take (γ̂ ∓ �−1((1 + α)/2)σn−1/2).

From the practical point of view, we build our n-sample (i.e., we perform our
n system simulations), we estimate γ by γ̂ and, since σ 2 is unknown, we estimate
it using σ̂ 2 = nγ̂ (1 − γ̂ )/(n − 1). The reason for dividing by n − 1 and not by
n is to have an unbiased estimator (which means E(̂σ 2) = σ 2, as E(γ̂ ) = γ ),
although from the practical point of view this is not relevant, since n will be
usually large enough. Finally, the result of our estimation work will take the
form I = (γ̂ ∓ 1.96σ̂ n−1/2), which says that ‘γ is, with high probability (our
confidence level ), inside this interval’–and by ‘high’ we mean 0.95.

The speed of convergence is measured by the size of the confidence interval,
that is, 2zσn−1/2. This decreases as the inverse square root of the sample size,
independently of the mathematical dimension s of the problem, and therefore
faster than standard numerical techniques, even for small values of s.

Now, suppose that A is a rare event, that is to say, that γ 
 1. For very small
numbers, the absolute error (given by the size of the confidence interval, or by
half this size) is not of sufficient interest: the accuracy of the simulation process
is captured by the relative error instead, that is, the absolute error divided by
the actual value: RE = zn−1/2σ/γ . This leads immediately to the main problem
with rare events, because if γ 
 1, then

RE = z

√
γ (1 − γ )√

nγ
≈ z√

n
√

γ
� 1

(unless n is ‘huge’ enough). To illustrate this, let us assume that we want a rela-
tive error less than 10%, and that γ = 10−9. The constraint RE ≤ 0.1 translates
into n ≥ 3.84 × 1011. In words, this means that we need a few hundred billion
experiments to get a modest 10% relative error in the answer. If the system being
simulated is complex enough, this will be impossible, and something different
must be done in order to provide the required estimation. More formally, if we
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want to assess a fixed RE but the event probability goes to zero, we need to
increase the sample size as

n = z

RE2γ
,

that is, in inverse proportion to γ . Such issues are related to robustness proper-
ties of the estimators with respect to rarity. The questions are: is it possible to
define sampling strategies such that the sample size for getting a fixed RE does
not increase when γ decreases? Can we define stronger or weaker definitions
of robustness? These problems are addressed in Chapter 4. This monograph is
devoted to the description of different techniques, some of them general, some
specific to particular domains, that enable us to face this problem.

Another issue is the reliability of the confidence interval produced. One needs
to pay attention to whether or not the coverage of the interval actually matches
the theoretical one as γ → 0. This has to be studied in general, but is especially
true when the variance is estimated since this estimation is often even more
sensitive to the rarity than the estimation of the mean itself. This topic is also
considered in Chapter 4. Note that in the simple case discussed in this section
of estimating the probability of a rare event with n independent samples, the
random variable nγ̂ is binomial with parameters n and γ . In this case, there
exist specific confidence interval constructions that can replace the one obtained
by using the central limit theorem (see for instance [7], typical examples being
the Wilson score interval or the Clopper–Pearson interval) with the advantage
of yielding a more reliable confidence interval, but not solving the robustness
issue: the relative error still grows to infinity as γ tends to zero. This illustrates
also the difference between the two notions of robustness and reliability.

On the other hand, in some situations the estimators are built from a sequence
of correlated samples. For our purposes here, these variations do not change the
basic ideas, summarized in the fact that estimating γ needs specific efforts, in
general depending on the problem at hand, and that this is due to the same
essential fact, γ 
 1.

1.2 Importance sampling

Importance sampling (IS) is probably the most popular approach in rare event
analysis. The general setting is as follows. For the sake of greater generality
than in the previous section, assume that the system is represented by some
random variable X, and that the target is the expectation γ of some function ψ

of X: γ = E(ψ(X)), where γ 
 1. In the previous case, X = (A), the indicator
function of some (rare) event A, and ψ is the identity function. Assume that X

is a real random variable having a density, denoted by f , and let us denote by
σ 2 the variance of ψ(X), assumed to be finite. The standard estimator of γ is
γ̂ = (ψ(X1) + · · · + ψ(Xn))/n, where X1, . . . , Xn are n independent copies of
X sampled from f .
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IS consists in sampling X from a different density f̃ (we say that we perform
a change of measure), with the only condition that f̃ (x) > 0 if ψ(x)f (x) > 0 (to
keep the estimator unbiased). Write γ = Ef (ψ(X)) to underline the density we
are considering for X. Obviously, in general, γ = Ef̃ (ψ(X)). Then, from

γ =
∫

ψ(x)f (x)dx =
∫

ψ(x)
f (x)

f̃ (x)
f̃ (x)dx,

we can write γ = Ef̃ (ψ(X)L(X)) where function L is defined by
L(x) = f (x)/f̃ (x) on the set {x : ψ(x)f (x) > 0} (where f̃ is also strictly
positive), and by L(x) = 0 otherwise. L is called the likelihood ratio. If we
sample n copies of X using density f̃ , and we average the values obtained for
function ψL, then we obtain a new unbiased estimator of γ , which we can call
here γ̃ . That is, γ̃ = (ψ(X1)L(X1) + · · · + ψ(Xn)L(Xn))/n, where X1, . . . , Xn

are independent copies of X having density f̃ . The 95% confidence interval
associated with this estimator has the same form as before, (γ̃ ∓ 1.96σ̃ n−1/2),
where σ̃ 2 is the standard estimator of Varf̃ (ψ(X)L(X))/n,

σ̃ 2 = 1

n − 1

n∑
i=1

ψ2(Xi)L
2(Xi) − n

n − 1
γ̃ 2 (here, Xis sampled from f̃ ).

We will now see that a good IS scheme corresponds to a density f̃ such that
f̃ � f in the appropriate part of the real line. For instance, if ψ(X) = (X ∈ A),
then a good new density f̃ is such that f̃ � f on A. Another typical situation
is when γ small because when |ψ | is large, f is very small. Then, we must look
for some new density f̃ which is not small when |ψ | � 1.

Let us, for instance, compare the width of the confidence intervals constructed
with the crude and the IS estimators, in the case of ψ(X) = (X ∈ A). For
this purpose, we will compare the corresponding exact variances (assuming the
associated estimators will be close enough to them). We have

Var(γ̃ ) = 1

n
Varf̃ ( (X ∈ A)L(X))

= 1

n

[
Ef̃

(
(X ∈ A)L2(X)

) − γ 2
]


 1

n

[
Ef̃ ( (X ∈ A)L(X)) − γ 2

]

= 1

n

[∫
(X ∈ A)

f (x)

f̃ (x)
f̃ (x)dx − γ 2

]

= 1

n

[∫
(X ∈ A)f (x)dx − γ 2

]
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= 1

n

[
Ef ( (X ∈ A)) − γ 2]

= 1

n
Varf (ψ(X))

= Var(γ̂ ).

This is the basic idea behind the IS method. Selecting a good change of measure
can be difficult, but such a density can be found in many cases, leading to
significant improvements in the efficiency of the methods. Chapter 2 analyzes
this in detail. See also Chapters 4 and 5.

A relevant comment here is the following. Consider the case of ψ > 0. If the
change of measure is precisely f̃ (x) = f (x)ψ(x)/γ , we have L(x) = γ/ψ(x)

when f (x) > 0, and thus

Var(γ̃ ) = 1

n
Varf̃ (L(X)ψ(X)) = 1

n
Varf̃ [γ ] = 0.

This means that there is an optimal change of measure leading to a zero-variance
estimator. The simulation becomes a kind of ‘pseudo-simulation’ leading to the
exact value in only one sample (unbiased estimator with variance equal to zero).
The bad news is that to make this change of measure, we need the value of γ ,
which was the target. But this observation leads to two remarks: first, there is a
perfect change of measure, which suggests that there are other good and even
very good densities out there waiting to be found; second, exploring in greater
depth the optimal change of measure leading to the best possible estimator, in
the case of specific families of problems, new IS schemes appear, having nice
properties. This is also explored in Chapter 2.

Consider again the problem of estimating some rare event probability
γ = 10−9 with relative error less than δ = 0.1. As we saw above, with the crude
estimator, we have RE ≈ 1.96/

√
nγ < δ leading to n> 1.962/(γ δ2) ≈ 384

billion samples. In the case of the IS estimator using density f̃ , RE is

1.96
√

Varf̃ (L(X)ψ(X))/(γ
√

n). This means that we need

n>
1.962Varf̃ (L(X)ψ(X))

γ 2δ2

samples. Assuming that the computation cost in both techniques is similar (often
true, though not always), the reduction factor in the effort necessary to reach the
desired accuracy with the given confidence (the number of samples necessary)
is thus approximately equal to γ/Varf̃ (L(X)ψ(X)) and it will be important if
Varf̃ (L(X)ψ(X)) 
 γ , that is, if Ef̃ (L2(X)ψ2(X)) 
 γ . A good change of
measure will be then one for which this second moment is much less than γ .

To fix the ideas and better understand the difficulties, assume that the system
is a discrete-time Markov chain Y such as the one depicted in Figure 1.1, with
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0 1 2 3

a c

b d

1 1

Figure 1.1 A small discrete-time Markov chain Y . We assume that 0 < a, b,

c, d < 1. The aim is to compute γ = P(Y (∞) = 3 | Y (0) = 1). In this simple
example, γ = ac/(1 − ad).

state space S (in the example, S = {0, 1, 2, 3}). The chain starts in state 1, and
we wish to evaluate the probability that it gets absorbed by state 3 (see relation
(6.2) in Chapter 6 for an example of where this is useful). Needless to say, this
computation is elementary here, and we can easily obtain the answer analytically:
γ = ac/(1 − ad). For instance, when a and c are small, the event ‘Y (∞) = 3’
is rare.

To put this problem in the previous setting, observe that it can be stated in
the following manner. Let us call P the set of all possible paths in Y starting at
state 1:

P = {π = (y0, y1, . . . , yK) ∈ SK+1, K ≥ 1,

with y0 = 1, yK = 0 or 3, and yi ∈ {0, 3} if 1 ≤ i < K}.

We can now construct a new random variable 	 defined on P , to formalize the
idea of a random path of Y , having distribution

P(	 = π = (y0, y1, . . . , yK)) = p(π) = Py0,y1Py1,y2 · · ·PyK−1yK
,

where Pu,v is the transition probability from state u to state v in chain Y .
Finally, consider the real function ψ on P defined by ψ(1, y1, . . . , yK) = (yK =
3). We are now in the context of the previous presentation about IS: γ =
P(Y (∞) = 3) = Ep(ψ(	)). The crude estimator of γ is then γ̂ = (ψ(	1) +
· · · + ψ(	n))/n where the independently and identically distributed (i.i.d.) 	i

are sampled using p (i.e., using the transition probability matrix P ).
Assume now that we change the dynamics of the chain, that is, the tran-

sition probabilities, from P to P̃ in the following way. For any two states u

and v, if Pu,v = 0 then P̃u,v = 0 as well, but when Pu,v > 0, P̃u,v takes some
other strictly positive value, for the moment arbitrary (but note that this con-
dition is not necessary in general to get an unbiased estimator, it suffices that
P̃u,v > 0 if transition from u to v is on a path for which ψ has a non-null
value; see Chapter 2). If we denote by p̃ the new distribution of a random path
(p̃(y0, y1, . . . , yK) = P̃y0,y1P̃y1,y2 · · · P̃yK−1yK

), we can write

γ =
∑
π∈P

ψ(π)p(π) =
∑
π∈P

ψ(π)L(π)p̃(π),
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where L(π) = p(π)/p̃(π) for all paths π such that ψ(π) = 1 (observe that in
this example, p and p̃ are positive on the whole space P).

This is the general setting of IS. What we have seen is that in order to
obtain a new estimator with much smaller variance than the crude one, we need
to choose some new dynamics P̃ such that the corresponding distribution p̃

satisfies p̃(π) � p(π) on all paths π such that ψ(π) = 1, that is, on all paths
that end at state 3.

Let us call Ps the set of successful paths, that is, the set of those paths
in P ending with state 3 (in other words, Ps = ψ−1(1)). The analyst directly
acts on the dynamics of the models, that is, on P̃ (imagine we are dealing
with a huge Markov chain and not just with this simple four-state one), so the
changes on p̃ are indirect. The first idea that probably comes in mind in order
to increase the probability of the paths in Ps is to change a into some a′ >a

and/or c into some c′ > c. The problem is that this intuitively correct decision
will not necessarily make all successful paths more probable under p̃ than under
p, and finer analysis is needed. So, even in such a trivial example, IS design is
not immediate. For instance, consider a = c = 1

4 and suppose that we decide to
make the event of interest (Y (∞) = 3) more frequent by changing a to ã = 1

2
and c to c̃ = 3

4 . Observe that Ps = {πk, k ≥ 1} where πk = (1, (2, 1)k, 2, 3) (the
notation (2, 1)k meaning that the sequence (2, 1) is repeated k times, k ≥ 0). We
have

p(πk) = (ad)kac =
(

1

4
× 3

4

)k

× 1

4
× 1

4
, p̃(πk) =

(
1

2
× 1

4

)k

× 1

2
× 3

4
.

It can then be verified that p̃(πk)> p(πk) for k = 0, 1, 2, 3, 4 but that, for
k ≥ 5, p̃(πk) < p(πk). We see that even in such a simple model, finding
an appropriate change of measure can be non-trivial. This is of course
developed in Chapter 2, devoted to the IS method, and the reader can
also look at Chapter 6, where the particular case of Markov models for
dependability analysis is studied, and where the problem of finding appropriate
changes of measures is discussed in contexts similar to that of the previous
example.

Before leaving this example, consider the following IS scheme. Change a to
ã = 1 and c to c̃ = 1 − ad . We can verify that L(πk) = ac/(1 − ad) = γ for all
k, which means that this is the optimal change of measure, the one leading to a
zero-variance estimator. This topic is explored in Chapter 2.

1.3 Splitting techniques

Splitting is based on a completely different idea than importance sampling. Sup-
pose that the system is represented by some stochastic process X living in the
state space S. Important examples of rare event analysis are when the target
is γ = P(X ∈ A), X assumed to be in equilibrium, or γ = P(τA < τ0), where
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τ0 = inf{t > 0 : X(t) = 0, X(t−) = 0} and τA = inf{t > 0 : X(t) ∈ A}, where
A is some subset of S rarely visited by X.

A representative version of the splitting technique (the fixed-splitting version)
involves considering a sequence of K embedded subsets of states A1 ⊃ A2 ⊃
· · · ⊃ AK = A, with the initial state 0 ∈ A1. The idea is that reaching A1 from 0
or Ak from Ak−1 is not rare. Then, starting the simulation from state 0, when (if)
the trajectory reaches A1 at some state s1, then n1 copies of X are constructed
(X is split), all starting at s1 but evolving independently. The same behavior is
repeated when some of these versions of X reach A2, splitting any path reaching
A2 into n2 copies, the same for A3, etc., until (hopefully) reaching A = AK from
AK−1. For this reason, the Ak are sometimes called levels in these methods. When
a path reaches A, either it stops, if we are analyzing P(τA < τ0), or it continues
its evolution, if the target is πA. In words, the stochastic dynamics of X is kept
untouched (no change of measure), but by making several copies of the ‘good’
trajectories (those reaching Ak+1 from Ak), we increase the chances of visiting
the rare set A. Of course, we must decide what to do with the trajectories that
remain far from A, for instance those coming back to Ak−1 having been born after
a split when a trajectory entered Ak from Ak−1. The different specific splitting
methods differ depending on whether we evaluate a probability of the form πA

or of the form P(τA < τ0) (or other possible targets such as transient metrics,
for example), in the way they deal with ‘bad’ trajectories (whether they discard
them and how), and in the specific form of the estimators used. They all share
the splitting idea just described.

To be more specific, suppose that the aim is to estimate γ = P(τA < τ0) 
 1,
and that we construct our sequence of levels A1, A2, . . . , AK . If τAi

= inf{t > 0 :
X(t) ∈ Ai}, denote pi = P(τAi

< τ0|τAi−1 < τ0), for i = 2, 3, . . . , K , and p1 =
P(τA1 < τ0). We see that γ = p1p2 · · · pK . In order to be able to observe many
hits on the rare set A, we need these conditional probabilities to be not too small.
Assume that a trajectory entering Ai from ‘above’, that is, from Ai−1, is split
into ni copies, where the sequence n0, n1, . . . , nK−1 is fixed (at the beginning,
n0 independent copies starting at state 0 begin their evolution). All trajectories
are killed either when reaching A or when arriving back at 0. A trajectory that
makes a move from some level Aj to Aj−1, calling A0 the complement to the
set A1, is not split anymore.

Let H be the total number of hits on the set A. Then, the random variable

γ̃ = H

n0n1 · · ·nK−1

is an unbiased estimator of γ (this can be checked by taking conditional expec-
tations of this last expression). The computation of the variance of γ̃ is more
involved. To simplify things in this short introduction, let us assume that the
evolutions of the paths at each level are i.i.d., that is, have the same distribution.
This happens, for instance, if X is a Markov process and the transitions from
Aj−1 to Aj enter the latter by the same state. Then, after some algebra, direct
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calculations give the following expression for the variance of the estimator:

Var(γ̃ ) = γ 2
K∑

k=1

1 − pk

p1n0 · · · pknk−1
.

The relative error obtained would be, as usual, proportional to the square root of
this variance. An important point must be emphasized here. In order to increase
the probability of reaching A many times, a first idea that may come to mind
is to use many levels (thus taking K large) and to make many copies at each
splitting step (thus taking ni large). But then, the global cost would increase
significantly, in particular due to all the ‘bad’ paths that do not lead to a hit. This
means that the analysis of the efficiency of a splitting procedure, or a comparison
study, needs to make specific assumptions on the underlying cost model adopted.
In other words, just looking at the variance of the estimator will not be enough
(these issues are discussed in depth in Chapter 3).

Returning to our variance, the analysis of the asymptotic behavior of γ̃ when
the number of sets K increases, and using the concepts of efficiency (recalled in
Chapter 4), we conclude that the best situation is to have pini−1 = 1 (ignoring
the fact that ni is an integer). To get an intuition for this, observe that when
rarity increases, we will need more levels (otherwise, going from one level to
the next can also become a rare event). In that case, if pini−1 > 1 the number
of paths will increase (stochastically) without bound, while if pini−1 < 1 we
will have an extinction phenomenon (as in branching processes, from which
many of the results for the splitting methods are derived). The variance becomes
Var(γ̃ ) = γ 2 ∑K

k=1(1 − pk), and we can look for the minimum of this function
of the pi under the constraint p1 · · · pK = γ , using Lagrange multipliers for
instance, obtaining that it is reached when pi = p = γ 1/K . The variance now
becomes Var(γ̃ ) = γ 2K(1 − γ 1/K) → − ln(γ ) as K → ∞. Since p = γ 1/K →
1 as K → ∞, we have a relative freedom to choose a moderate value of K

depending on our effective implementation.
Some remarks are necessary at this point. First, the fact that ni is an integer,

and that the asymptotic analysis suggests ni = 1/pi , needs to take some deci-
sion: rounding, randomizing things, etc. Second, as stated before, the cost model
must be carefully taken into account here. Third, there are other variants of the
same idea, leading to different expressions for the variance. For instance, in the
fixed-effort model, we decide beforehand the number bj of paths that will leave
in each Aj . This leads to a different expression for the variance of the estimator,
always in the i.i.d. context (namely, Var(γ̃ ) = γ 2 ∑K

k=1(1 − pk)/(bk−1pk)). Last,
a supplementary remark here. If the recommendation is to try to obtain equal con-
ditional probabilities pk , this is not necessarily easy to implement. Process X may
be a complex Markov chain and the subset Aj may itself be complex enough,
such that there are many possible ways of reaching it from Aj−1. Then, tuning
the parameters of the splitting method in order to follow the general guidelines
emerging from a theoretical analysis is not an easy task. All these issues are
discussed in Chapter 3.
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1.4 About the book

This book is therefore specifically devoted to techniques for rare event simulation.
A reader wishing to learn more about Monte Carlo simulation concepts in general
is advised to consult [1, 3]. For other references on our main topic, we note that
there exists another book on rare event simulation, by J.A. Bucklew [2], but that
it focuses on importance sampling and its relation to large-deviations theory, in
greater depth than in the present broader study. States of the art, published as
papers or book chapters can otherwise be found in [4, 5].

This book consists of two parts, the first devoted to theory, the second to
applications. Part I is composed of three chapters. In Chapter 2, an important
principle for rare event simulation, the importance sampling family of methods,
is described. These techniques were briefly introduced in Section 1.2 above. The
idea is to simulate another model, different from the initial one, where the event
of interest is not a rare one anymore. An unbiased estimator can be recovered
by changing the random variable considered. Related material can be found in
Chapters 4–7.

Chapter 3 is devoted to the other large class of methods, splitting techniques,
where the idea is to keep the initial probabilistic structure in the model (no change
of measure as in importance sampling), but to make clones/copies of the object
being simulated when we are getting closer to the rare event. This procedure
increases the chances of reaching the event, but a careful design of the method
has to be performed when defining the number of splits/clones as well as when to
split, to avoid an explosion in the number of objects considered and to properly
reduce the variance. This family was introduced in Section 1.3 above. Related
material will be found in Chapters 9 and 10.

The last chapter in Part I is Chapter 4, where the quality of the estimators of
rare objects is discussed. The quality of an estimator of a very small probability
or expectation has different aspects. One is the robustness of the method, which
basically refers to its accuracy as the event of interest becomes rarer and rarer.
Another important aspect is coverage, which refers to the validity, or reliabil-
ity, of the confidence intervals, again as rarity increases. In both cases, these
properties must construct a family of versions of the initial model where rarity
can somehow be controlled, in general by a single parameter. The cost of the
estimation technique is another factor that can play a crucial role in the global
quality. The chapter reviews the notions of robustness and then focuses on one
specific aspect of quality, the fact that in a rare event situation there may be
an important difference between the theoretical properties of the estimators used
and the effective behavior of their implementations, in relation to the notion of
reliability of the confidence intervals produced. The chapter basically discusses
some ideas about the problem of the diagnostics of the fact that the simulation
is not working properly.

Part II is devoted to applications and is composed of seven chapters. Chapter
5 concerns models described in terms of queuing systems. One of the main
areas of application of these models is telecommunications, where queues are a
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natural representation of the nodes in a communication network. There are spe-
cific domains where queues and networks of queues are very important modeling
tools, such as teletraffic engineering, Internet-based applications, and call center
design. Rarity can take different forms in this context. The typical example is
the saturation of a buffer, that is, the fact that the number of units in a queue
or a set of queues reaches some high value B. This is also an example of a
parameter (the B threshold) that allows us to control rarity in the model, as men-
tioned in the previous paragraph: the higher the threshold, the rarer the event.
Chapter 5 presents a nice description of the application of the theory of large
deviations in probability to the design of a good importance sampling scheme.
It additionally highlights the fact that large deviations are related to queues with
so-called light-tailed (i.e., exponentially decreasing distribution tails) inputs, but
also presents how to deal to deal with heavy-tailed processes that have become
frequent in the Internet for instance. It then focuses on the techniques specific
to Jackson queuing networks, that is, open networks of queues connected by
Bernoulli probabilistic switches.

Chapter 6 is devoted to Monte Carlo methods for evaluating the probability
of rare events and related metrics, when they are defined on the large family
of Markov models mainly used for dependability analysis. Typical dependability
metrics are the reliability at some point in time t of the system, its availability at
t , the statistical properties of the random variable “interval availability on [0, t]”
(such as its distribution), the mean time to failure, etc. For instance, in a highly
dependable system, the mean time to failure may be a very large number, and its
estimation has the same problem as the estimation of a very small probability. In
this chapter, methods able to estimate this number by analyzing the probability
of an associated rare event are discussed. We stress that both steady-state and
transient dependability metrics are discussed.

Chapter 7 is the only one where the models are static, which means that we do
not have a stochastic process evolving with time, on top of which the rare events
are defined. Here, the system is considered at a fixed point in time (possibly at
∞). The main area representative of this type of models is that of dependability,
where the system may have a huge number of states, but where the state space
is decomposed into two classes, those states where the whole system works, and
its complement where the system is not operational. The rare event is the event
‘the system is down’. The static property plus the usual type of models in this
area lead to some specificities, but the general approaches are still valid. The
chapter reviews the main applications of these models and the most important
simulation techniques available to deal with the rare event case in this context.

Chapter 8 has a slightly different focus. It deals with the relationships between
rare event simulation and randomized approximation algorithms for counting.
Indeed, there exist theoretical tools and efficiency measurement properties devel-
oped in counting problems which have a natural counterpart in rare event simu-
lation. The aim of the chapter is therefore to review the methods and properties
of algorithms for counting, in order to highlight this correspondence and new
tools which can be useful for rare event simulation.
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Chapter 9 is driven by an application of rare event simulation to the problem
of safety verification in air traffic operations, in order to avoid catastrophic events
such as collisions. The chapter makes use of splitting techniques to solve the
problem. More precisely, it uses the ideas developed within the framework of
the interacting particle system (IPS) algorithm to simulate a large-scale controlled
stochastic hybrid system and illustrates the validity of the approach in specific
scenarios.

Chapter 10 is about Monte Carlo (nuclear) particle transport simulation, prob-
ably the first application of Monte Carlo methods since the advent of computers,
but it has a special focus on a critical and special application, shielding. The
chapter explains the theoretical developments implemented in MCNP, the code
developed at Los Alamos National Laboratory since the Second World War to
simulate the operation of nuclear weapons. This code is now used worldwide for
particle transport and interactions in the main research laboratories, radiotherapy
centers and hospitals.

Chapter 11 describes efficient Monte Carlo techniques for simulating bio-
logical systems. The models presented are systems of differential equations
representing biochemical reactions but where different reactions can occur at
different time scales. In this situation, the reactions occurring at lower rates
become rare events, and rare event techniques can be applied to obtain efficient
simulations.
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Importance sampling in rare
event simulation
Pierre L’Ecuyer, Michel Mandjes and Bruno Tuffin

2.1 Introduction

As described in Chapter 1, crude (also called standard, or naive) Monte Carlo
simulation is inefficient for simulating rare events. Recall that crude Monte Carlo
involves considering a sample of n independent copies of the random variable or
process at hand, and estimating the probability of a rare event by the proportion
of times the rare event occurred over that sample. The resulting estimator can be
considered useless when the probability of occurrence, γ , is very small, unless
n is much larger than 1/γ . Indeed, if for instance γ = 10−9, a frequent target in
rare event applications, this would require on average a sample of size n = 109

to observe just a single occurrence of the event, and much more if we expect
a reliable estimation of the mean and variance to obtain a sufficiently narrow
confidence interval.

Importance sampling (IS) has emerged in the literature as a powerful tool to
reduce the variance of an estimator, which, in the case of rare event estimation,
also means increasing the occurrence of the rare event. The generic idea of IS
is to change the probability laws of the system under study to sample more
frequently the events that are more ‘important’ for the simulation. Of course,
using a new distribution results in a biased estimator if no correction is applied.
Therefore the simulation output needs to be translated in terms of the original

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-77269-0
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measure; this is done by multiplication with a so-called likelihood ratio. IS has
received substantial theoretical attention; see inter alia [13, 12, 26] and, in the
rare event context, [15] or the more up-to-date tutorial [16].

IS is one of the most widely used variance reduction technique in general,
and for rare event estimation in particular. Typical and specific applications will
be more extensively described in Part II of this book. The goal of this chapter is
to give an overview of the technical framework and the main underlying ideas.
It is organized as follows.

Section 2.2 reviews the very basic notions of IS. It describes what the ideal
(zero-variance) estimator looks like, and why it is, except in situations where
simulation is not needed, infeasible to implement it exactly. That section also
provides illustrative examples and outlines some properties leading to a good
IS estimator, the main message being that the zero-variance estimator has to be
approximated as closely as possible.

In Section 2.3 the focus is on application of IS in the context of a Markov
chain model. Since every discrete-event simulation model can be seen as a
Markov chain (albeit over a high-dimensional state space), this setting is very
general. We show how to define a zero-variance change of probabilities in that
context. It is noted that, in general, the zero-variance change of probabilities
must depend on the state of the chain. We compare this type of change of
probabilities with a more restricted class of IS called state-independent , in
which the probabilities are changed independently of the current state of the
chain. This type of state-independent IS originates mainly from asymptotic
approximations based on large-deviations theory [3, 15, 25], and has been
developed in applications areas such as queuing and finance [10, 15, 16, 19].
However, in many situations, any good IS scheme must be state-dependent
[3] (as state-independent IS leads to estimators with large, or even infinite,
variance). Note that in computational physics (the application area from
which it originates) and in reliability, IS has traditionally been state-dependent
[5, 14, 16].

Finally, Section 2.4 describes various methods used to approximate the
zero-variance (i.e., optimal) change of measure. Some just use intuitive
approximations, whereas others are based on the asymptotic behavior of the
system when the events of interest become rarer and rarer (this includes methods
based on large-deviations theory, and other techniques as well). Another
option is to use adaptive techniques that learn (and use) approximations of the
zero-variance change of measure, or optimal parameter values within a class of
parameterized IS strategies: the results of completed runs can be used as inputs
of strategies for the next runs, but those IS strategies can also be updated at
each step of a given run [16, 22].

The accuracy assessment of the resulting confidence interval, and the robust-
ness properties of the estimator with respect to rarity, are the focus of the next
chapter. To avoid overlap, we keep our discussion of those aspects to a minimum
here.
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2.2 Static problems

We wish to compute the expected value of a random variable X = h(Y ), E[h(Y )],
where Y is assumed to be a random variable with density f (with respect to the
Lebesgue measure) in the d-dimensional real space R

d . (In our examples, we
will have d = 1.) Then the crude Monte Carlo method estimates

E[h(Y )] =
∫

h(y)f (y)dy by
1

n

n∑
i=1

h(Yi),

where Y1, . . . , Yn are independently and identically distributed copies of Y , and
the integral is over R

d .
IS, on the other hand, samples Y from another density f̃ rather than f . Of

course, the same estimator 1
n

∑n
i=1 h(Yi) then becomes biased in general, but we

can recover an unbiased estimator by weighting the simulation output as follows.
Assuming that f̃ (y) > 0 whenever h(y)f (y) �= 0,

E[h(X)] =
∫

h(y)f (y)dy =
∫

h(y)
f (y)

f̃ (y)
f̃ (y)dy

=
∫

h(y)L(y)f̃ (y)dy = Ẽ[h(Y )L(Y )],

where L(y) = f (y)/f̃ (y) is the likelihood ratio of the density f (·) with respect
to the density f̃ (·), and Ẽ[·] is the expectation under density f̃ . An unbiased
estimator of E[h(Y )] is then

1

n

n∑
i=1

h(Yi)L(Yi), (2.1)

where Y1, . . . , Yn are independently and identically distributed random variables
sampled from f̃ .

The case where Y has a discrete distribution can be handled analogously;
it suffices to replace the densities by probability functions and the integrals by
sums. That is, if P[Y = yk] = pk for k ∈ N, then IS would sample n copies of
Y , say Y1, . . . , Yn, using probabilities p̃k instead of pk , for k ∈ N, where p̃k > 0
whenever pkh(yk) �= 0. An unbiased IS estimator of E[h(Y )] is again (2.1), but
with L(yk) = pk/p̃k . Indeed,

Ẽ[h(Y )L(Y )] =
∑
k∈N

h(yk)
pk

p̃k

p̃k =
∑
k∈N

h(yk)pk = E[h(Y )].

In full generality, if Y obeys some probability law (or measure) P, and IS
replaces P by another probability measure P̃, we must multiply the original
estimator by the likelihood ratio (or Radon--Nikodým derivative) L = dP/dP̃.
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Clearly, the above procedure leaves us a huge amount of freedom: any alter-
native P̃ yields an unbiased estimator (as long as the above-mentioned regularity
conditions are fulfilled). Therefore, the next question is: based on what principle
should we choose the IS measure P̃? The aim is to find a change of measure
for which the IS estimator has small variance, preferably much smaller than for
the original estimator, and is also easy (and not much more costly) to compute
(in that it should be easy to generate variates from the new probability law). We
denote these two variances by

σ̃ 2(h(Y )L(Y )) = Ẽ[(h(Y )L(Y ))2] − (E[h(Y )])2

and
σ 2(h(Y )) = E[(h(Y ))2] − (E[h(Y )])2,

respectively. Under the assumptions that the IS estimator has a normal distribution
(which is often a good approximation–but not always), a confidence interval at
level 1 − α for E[h(Y )] is given by[

1

n

n∑
i=1

h(Yi)L(Yi) − zα/2
σ̃ (h(Y )L(Y ))√

n
,

1

n

n∑
i=1

h(Yi)L(Yi)

+zα/2
σ̃ (h(Y )L(Y ))√

n

]

where zα/2 = �−1(1 − α/2) and � is the standard normal distribution function.
For fixed α and n, the width of the confidence interval is proportional to the
standard deviation (the square root of the variance). So reducing the variance
by a factor K improves the accuracy by reducing the width of the confidence
interval by a factor

√
K . The same effect is achieved if we multiply n by a factor

K , but this requires (roughly) K times more work.
In the rare event context, one usually simulates until the relative accuracy

of the estimator, defined as the ratio of the confidence-interval half-width and
the quantity γ to be estimated, is below a certain threshold. For this, we need
σ̃ 2(h(Y )L(Y ))/n approximately proportional to γ 2. Thus, the number of samples
needed is proportional to the variance of the estimator. In the case where γ is a
small probability and h(Y ) is an indicator function, without IS, σ̃ 2(h(Y )L(Y )) =
σ 2(h(Y )) = γ (1 − γ ) ≈ γ , so the required n is roughly inversely proportional
to γ and often becomes excessively large when γ is very small.

The optimal change of measure is to select the new probability law P̃ so that

L(Y ) = dP

dP̃
= E[|h(Y )|]

|h(Y )| ,

which means f̃ (y) = f (y)|h(y)|/E[|h(Y )|] in the continuous case, and p̃k =
pk|h(yk)|/E[|h(Y )|] in the discrete case. Indeed, for any alternative IS measure
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P
′ leading to the likelihood ratio L′ and expectation E

′, we have

Ẽ[(h(Y )L(Y ))2] = (E[|h(Y )|])2 = (E′[|h(Y )|L′(Y )])2 ≤ E
′[(h(Y )L′(Y ))2].

In the special case where h ≥ 0, the optimal change of measure gives
Ẽ[(h(Y )L(Y ))2] = (E[h(Y )])2, that is, σ̃ 2(h(Y )L(Y )) = 0. Thus, IS provides
a zero-variance estimator . We call the corresponding change from P to P̃

the zero-variance change of measure. In many typical rare event settings, one
indeed has h ≥ 0; for example, this is obviously the case when the focus is on
estimating the probability of a rare event (h is then an indicator function).

All of this is nice in theory, but in practice there is an obvious crucial
drawback: implementing the optimal change of measure requires knowledge of
E[|h(Y )|], the quantity that we wanted to compute; if we knew it, no simulation
would be needed! But the expression for the zero-variance measure provides a
hint on the general form of a ‘good’ IS measure, that is, a change of measure
that leads to substantial variance reduction. As a rough general guideline, it says
that L(y) should be small when |h(y)| is large.

In particular, if there is a constant κ ≤ 1 such that L(y) ≤ κ for all y such
that h(y) �= 0, then

Ẽ[(h(Y )L(Y ))2] ≤ κẼ[(h(Y ))2L(Y )] = κE[(h(Y )2], (2.2)

so the second moment is guaranteed to be reduced at least by the factor κ . If h

is also an indicator function, say h(y) = 1A(y) for some set A, and E[h(Y )] =
P[A] = γ , then we have

σ̃ 2(1A(Y )L(Y )) = Ẽ[(1A(Y )L(Y ))2] − γ 2 ≤ κ2 − γ 2.

This implies that we always have κ ≥ γ , but, evidently, we want to have κ as
close as possible to γ .

In theoretical analysis of rare event simulation, it is customary to parame-
terize the model by a rarity parameter ε > 0 so that the important events occur
(in the original model) with a probability that converges to 0 when ε → 0. In
that context, an IS estimator based on a change of measure that may depend
on ε is said to have bounded relative variance (or bounded relative error) if
σ̃ 2(h(Y )L(Y ))/E

2[h(Y )] is bounded uniformly in ε. This important property
means that estimating E[h(Y )] with a given relative accuracy can be achieved
with a bounded number of replications even if ε → 0.

In the special case where h(y) = 1A(y) and γ = P[A], if we can find a
constant κ ′ such that L(y) ≤ κ ′γ when y ∈ A, then

σ̃ 2(1A(Y )L(Y )) ≤ (κ ′γ )2 − γ 2 = γ 2((κ ′)2 − 1),

which means that we have bounded relative variance: the relative variance
remains bounded by (κ ′)2 − 1 no matter how rare the event A is. This type of
property will be studied in more detail in Chapter 4.
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Example 1. To illustrate the ideas and the difficulty of finding a good IS distribu-
tion, we first consider a very simple example for which a closed-form expression
is known. Suppose that the failure time of a system follows an exponential
distribution with rate λ and that we wish to compute the probability γ that
the system fails before T . We can write h(y) = 1A(y) where A = [0, T ], and
we know that γ = E[1A(Y )] = 1 − e−λT . This quantity is small (i.e., A is a
rare event) when λT is close to 0. The zero-variance IS here involves sam-
pling Y from the same exponential density, but truncated to the interval [0, T ]:
f̃ (y) = λe−λy/(1 − e−λT ) for 0 ≤ y ≤ T .

But suppose that we insist on sampling from an exponential density with a
different rate λ̃ instead of truncating the distribution. The second moment of that
IS estimator will be

Ẽ[(1A(Y )L(Y ))2] =
∫ T

0

(
λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy = λ2

λ̃(2λ − λ̃)
(1 − e−(2λ−λ̃)T ).

Figure 2.1 displays the variance ratio σ̃ 2(1A(Y )L(Y ))/σ 2(1A(Y )) as a function
of λ̃, for T = 1 and λ = 0.1. The variance is minimized with λ̃ ≈ 1.63, that is,
with a 16-fold increase in the failure rate, and its minimal value is about 5.3%
of the value with λ̃ = λ. If we increase λ̃ too much, then the variance increases
again. With λ̃ > 6.01 (approximately), it becomes larger than with λ̃ = λ. This
is due to the fact that for very large values of λ̃, the likelihood ratio takes huge
values when Y is smaller than T but close to T .

Suppose now that A = [T ,∞) instead, that is, γ = P[Y ≥ T ]. The
zero-variance density is exponential with rate λ, truncated to [T ,∞). If we use
an exponential with rate λ̃ instead, the second moment of the IS estimator is

λ̃
λ  =  0 .1 1 2 3 4 5 6 7

variance ratio

0

0.5

1

1.5

2

Figure 2.1 Variance ratio (IS vs non-IS) as a function of λ̃ for Example 1 with
λ = 0.1 and A = [0, 1].
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Figure 2.2 Variance ratio as a function of λ̃ for Example 1 with λ = 1 and
A = [3,∞).

finite if and only if 0 < λ̃ < 2λ, and is

Ẽ[(1A(Y )L(Y ))2] =
∫ ∞

T

(
λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy = λ2

λ̃(2λ − λ̃)
e−(2λ−λ̃)T .

In this case, the variance is minimized for λ̃ = λ + 1/T − (λ2 + 1/T 2)1/2 < λ.
When λ̃ > 2λ, the variance is infinite because the squared likelihood ratio grows
exponentially with y at a faster rate than the exponential rate of decrease of
the density. Figure 2.2 shows the variance ratio (IS vs non-IS) as a function
of λ̃, for T = 3 and λ = 1. We see that the minimal variance is attained with
λ̃ ≈ λ/4.

Another interesting situation is if A = [0, T1] ∪ [T2, ∞) where
0 < T1 < T2 < ∞. The zero-variance density is again exponential trun-
cated to A, which is now split in two pieces. If we just change λ to λ̃, then the
variance associated with the first (second) piece increases if λ̃ < λ (λ̃ > λ). So
one of the two variance components increases, regardless of how we choose λ̃.
One way of handling this difficulty is to use a mixture of exponentials: take
λ̃1 < λ with probability p1 and λ̃2 > λ with probability p2 = 1 − p1. We now
have three parameters to optimize: λ̃1, λ̃2, and p1.

Example 2. Now let X be binomially distributed with parameters (n, p), and
suppose we wish to estimate γ = P[X ≥ na] for some constant a > 0, where
na is assumed to be an integer. Again, the zero-variance IS samples from this
binomial distribution truncated to [na,∞). But if we restrict ourselves to the
class of non-truncated binomial changes of measure, say with parameters (n, p̃),
following the same line of reasoning as in Example 1, we want to find the p̃ that
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Figure 2.3 Variance ratio of IS vs non-IS estimators, as a function of p̃, for
Example 2 with n = 20, p = 1/4, and A = [15, ∞).

minimizes the second moment

n∑
i=na

(
n

i

)(
p2

p̃

)i (
(1 − p)2

1 − p̃

)n−i

.

Figure 2.3 shows the variance ratio as a function of p̃, for a = 3/4, p = 1/4, and
n = 20. It shows that the best choice of p̃ lies around a. If a > p is fixed and
n → ∞, then large-deviations theory tells us that γ decreases exponentially with
n and that the optimal p̃ (asymptotically) is p̃ = a. The intuitive interpretation is
that when a > p, conditional on the event {X/n ≥ a}, most of the density of X/n

is concentrated very close to a when n is large. By selecting p̃ = a, IS mimics this
conditional density. We also see from the plot that the variance ratio is a very flat
function of p̃ in a large neighborhood of a; the ratio is approximately 1.2 × 10−5

from 0.72 to 0.78, and is still 5.0 × 10−5 at 0.58 and 0.88. On the other hand,
the IS variance blows up quickly when p̃ approaches 1 or goes below p.

2.3 Markov chains

Having dealt in the previous section with the case of a general random variable,
we focus here on the specific case where this random variable is a function of
the sample path of a Markov chain. We introduce IS in this context, both for
discrete-time and continuous-time chains, as well as the form of the corresponding
zero-variance change of measure. Approximation algorithms for this change of
measure are discussed in the next section.
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2.3.1 Discrete-time Markov chains

Consider now a discrete-time Markov chain (DTMC), say {Yj , j ≥ 0}, with dis-
crete state space Y (possibly infinite and high-dimensional). The chain evolves
up to a stopping time τ defined as the first time the chain hits a given set of
states, 
 ⊂ Y ; that is, τ = inf{j ≥ 0 : Yj ∈ 
}. We assume that E[τ ] < ∞. The
chain has a transition probability matrix whose elements are P(y, z) = P[Yj = z |
Yj−1 = y] for all y, z ∈ Y , and the initial probabilities are π0(y) = P[Y0 = y]
for all y ∈ Y . We consider the random variable X = h(Y0, . . . , Yτ ), where h

is a given function of the trajectory of the chain, with values in [0, ∞). Let
γ (y) = Ey[X] denote the expected value of X when Y0 = y, and define γ =
E[X] = ∑

y∈Y π0(y)γ (y), the expected value of X for the initial distribution π0.
Our discussion could be generalized to broader classes of state spaces. For a

continuous state space Y , the transition probabilities would have to be replaced
by a probability transition kernel and the sums by integrals, and we would need
some technical measurability assumptions. Any discrete-event simulation model
for which we wish to estimate the expectation of some random variable X =
h(Y0, . . . , Yτ ) as above can fit into this framework. For simplicity, we stick to a
discrete state space.

The basic idea of IS here is to replace the probabilities of sample paths
(y0, . . . , yn),

P[(Y0, . . . , Yτ ) = (y0, . . . , yn)] = π0(y0)

n∏
j=1

P(yj−1, yj ),

where n = min{j ≥ 0 : yj ∈ 
}, by new probabilities P̃[(Y0, . . . , Yτ ) =
(y0, . . . , yn)] such that Ẽ[τ ] < ∞ and P̃[·] > 0 whenever P[·]h(·) > 0. This is
extremely general.

To be more practical, we might wish to restrict ourselves to changes of mea-
sure under which {Yj , j ≥ 0} remains a DTMC with the same state space Y . That
is, we replace the transition probabilities P(y, z) by new transition probabilities
P̃ (y, z) and the initial probabilities π0(y) by π̃0(y). The new probabilities must
be chosen so that any sample path having a positive contribution to γ must still
have a positive probability, and Ẽ[τ ] < ∞. The likelihood ratio becomes

L(Y0, . . . , Yτ ) = π0(Y0)

π̃0(Y0)

τ∏
j=1

P(Yj−1, Yj )

P̃ (Yj−1, Yj )

and we have
γ = Ẽ[XL(Y0, . . . , Yτ )].

A question that comes to mind is whether there is a zero-variance change of
measure in this setting. What is it?
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To answer this question, following [5, 17, 18, 20], we restrict ourselves to
the case where the cost X is additive:

X =
τ∑

j=1

c(Yj−1, Yj ) (2.3)

for some function c : Y × Y → [0, ∞). Note that in this case, we can multiply
the term c(Yj−1, Yj ) by the likelihood ratio only up to step j . This gives the
estimator

X̃ =
τ∑

i=1

c(Yi−1, Yi)

i∏
j=1

P(Yj−1, Yj )

P̃ (Yj−1, Yj )
.

We now show that in this setting, if we take P̃ (y, z) proportional to

P(y, z)[c(y, z) + γ (z)]

for each y ∈ Y , then we have zero variance. (Without the additivity assumption
(2.3), to get zero variance, the probabilities for the next state must depend in
general on the entire history of the chain.) Suppose that

P̃ (y, z) = P(y, z)(c(y, z) + γ (z))∑
w∈Y P(y, w)(c(y, w) + γ (w))

= P(y, z)(c(y, z) + γ (z))

γ (y)
, (2.4)

where the denominator acts as a normalization constant (the probabilities add up
to 1 from the first equality; the second equality results from conditioning with
respect to a one-step transition). Then

X̃ =
τ∑

i=1

c(Yi−1, Yi)

i∏
j=1

P(Yj−1, Yj )

P̃ (Yj−1, Yj )

=
τ∑

i=1

c(Yi−1, Yi)

i∏
j=1

P(Yj−1, Yj )γ (Yj−1)

P (Yj−1, Yj )(c(Yj−1, Yj ) + γ (Yj ))

=
τ∑

i=1

c(Yi−1, Yi)

i∏
j=1

γ (Yj−1)

c(Yj−1, Yj ) + γ (Yj )

= γ (Y0)

by induction on the value taken by τ , using the fact that γ (Yτ ) = 0. In other
words, the estimator is a constant, so it has zero variance.

Another way to show this property is by looking at the variance and using
the classical decomposition

σ̃ 2[X|Y0] = σ̃ 2[Ẽ[X|Y0, Y1]|Y0] + Ẽ[σ̃ 2[X|Y0, Y1]|Y0]. (2.5)
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Define v(y) = σ̃ 2[X̃|Y0 = y]. Then

v(Y0) = σ̃ 2[Ẽ[X̃ | Y1]|Y0] + Ẽ[σ̃ 2[X̃ | Y1]|Y0]

= σ̃ 2[(c(Y0, Y1) + γ (Y1))L(Y0, Y1)|Y0] + Ẽ[L2(Y0, Y1)v(Y1)|Y0]

= Ẽ[(c(Y0, Y1)+γ (Y1))
2L2(Y0, Y1)|Y0]−γ 2(Y0) + Ẽ[L2(Y0, Y1)v(Y1)|Y0]

= Ẽ[((c(Y0, Y1) + γ (Y1))
2 + v(Y1))L

2(Y0, Y1)|Y0] − γ 2(Y0).

From the change of measure, we have

Ẽ[(c(Y0, Y1) + γ (Y1))
2L2(Y0, Y1)|Y0] = γ 2(Y0),

leading to

v(Y0) = Ẽ[((c(Y0, Y1) + γ (Y1))
2 + v(Y1))L

2(Y0, Y1)|Y0] − γ 2(Y0)

= Ẽ[v(Y1)L
2(Y0, Y1)|Y0].

Applying induction, we again obtain

v(Y0) = Ẽ

⎡
⎣v(Yτ )

τ∏
j=1

L(Yi−1, Yi)

⎤
⎦ = 0

because v(Yτ ) = 0.
The change of measure (2.4) is actually the unique Markov chain implemen-

tation of the zero-variance change of measure. To see that, suppose we are in
state Yj = y �∈ 
. Since

v(y) ≥ σ̃ 2[Ẽ[X̃ | Y1]|Y0 = y]

= σ̃ 2[(c(y, Y1) + γ (Y1))P (y, Y1)/P̃ (y, Y1) | Y0 = y],

zero-variance implies that (c(y, Y1) + γ (Y1))P (y, Y1)/P̃ (y, Y1) = Ky for some
constant Ky that does not depend on Y1. But since the probabilities P̃ (y, Y1)

must sum to 1 for any fixed y, the constant Ky must take the value γ (y)

as in (2.4). The same argument can be repeated at each step of the Markov
chain.

It is important to emphasize that in (2.4) the probabilities are changed in a
way that depends in general on the current state of the chain.

Again, knowing the zero-variance IS measure requires knowledge of γ (y) for
all y –that is, of the values we are trying to estimate. In practice, we can try to
approximate the zero-variance IS by replacing γ by an accurate proxy, and using
this approximation in (2.4) [1, 4, 5, 17]. Some methods restrict themselves to a
parametric class of IS distributions and try to optimize the parameters, instead of
trying to approximate the zero-variance IS. We will return to this in Section 2.4.
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Example 3. Consider a Markov chain with state space {0, 1, . . . , B}, for
which P(y, y + 1) = py and P(y, y − 1) = 1 − py , for y = 1, . . . , B − 1, and
P(0, 1) = P(B, B − 1) = 1. Note that a birth-and-death process with bounded
state space has an embedded DTMC of this form. We take 
 = {0, B} and
define γ (y) = P[Yτ = B | Y0 = y]. This function γ satisfies the recurrence
equations

γ (y) = pyγ (y + 1) + (1 − py)γ (y − 1)

for y = 1, . . . , B − 1, with the boundary conditions γ (0) = 0 and γ (B) = 1.
This gives rise to a linear system of equations that is easy to solve. In the case
where py = p < 1 for y = 1, . . . , B − 1, this is known as the gambler’s ruin
problem, and γ (y) is given by the explicit formula γ (y) = (1 − ρ−y)/(1 − ρ−B)

if ρ = p/(1 − p) �= 1/2, and γ (y) = y/B if ρ = 1/2.
Suppose, however, for the sake of illustration, that we wish to estimate γ (1)

by simulation with IS. The zero-variance change of measure in this case replaces
each py , for 1 ≤ y < B, by

p̃y = pyγ (y + 1)

γ (y)
= pyγ (y + 1)

pyγ (y + 1) + (1 − py)γ (y − 1)
.

Since γ (0) = 0, this gives p̃1 = 1, which means that this change of measure cuts
the link that returns to 0, so it brings us to B with probability 1. For the special
case where py = p for y = 1, . . . , B − 1, by plugging the formula for γ (y) into
the expression for p̃y , we find that the zero-variance probabilities are

p̃y = 1 − ρ−y−1

1 − ρ−y
p.

Note that all the terms 1 − ρ−B have canceled out, so the new probabilities p̃y do
not depend on B. On the other hand, they depend on y even though the original
probabilities p did not depend on y.

One application that fits this framework is an M/M/1 queue with arrival
rate λ and service rate μ > λ. Let ρ = λ/μ and p = λ/(λ + μ). Then γ (y)

represents the probability that the number of customers in the system reaches
level B before the system empties, given that there are currently y customers.

2.3.2 Continuous-time Markov chains

We now examine how the previous framework applies to continuous-time Markov
chains (CTMC). Following [13], let Y = {Y (t), t ≥ 0} be a CTMC evolving
in Y up to some stopping time T = inf{t ≥ 0 : Y (t) ∈ 
}, where 
 ⊂ Y . The
initial distribution is π0 and the jump rate from y to z, for z �= y, is ay,z. Let
ay = ∑

z �=y ay,z be the departure rate from y. The aim is to estimate E[X], where
X = h(Y ) is a function of the entire sample path of the CTMC up to its stopping
time T . A sample path for this chain is determined uniquely by the sequence
(Y0, V0, Y1, V1, . . . , Yτ , Vτ ) where Yj is the j th visited state of the chain, Vj the
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time spent in that state, and τ is the index of the jump that corresponds to the
stopping time (the first jump that hits 
). Therefore h(Y ) can be re-expressed as
h∗(Y0, V0, Y1, V1, . . . , Yn, Vn), and a sample path (y0, v0, y1, v1, . . . , yn, vn) has
density (or likelihood)

p(y0, v0, . . . , yn, vn) =
n−1∏
j=0

ayj ,yj+1

ayj

n∏
j=0

ayj
exp[−ayj

vj ]

=
n−1∏
j=0

ayj ,yj+1 exp

⎡
⎣−

n∑
j=0

ayj
vj

⎤
⎦ ,

each term ayj ,yj+1/ayj
being the probability of moving from yj to yj+1 and

ayj
exp[−ayj

vj ] the density for leaving yj after a sojourn time vj . Then we
have

E[X]=
∑

y0,...,yn

∫ ∞

0
· · ·

∫ ∞

0
h∗(y0, v0, . . . , yn, vn)p(y0, v0, . . . , yn, vn)dv0 · · · dvn.

Suppose that the cost function has the form

X = h(Y ) =
τ∑

j=1

c′(Yj−1, Vj−1, Yj )

where c′ : Y × [0, ∞) × Y → [0, ∞). In this case, a standard technique that
always reduces the variance, and often reduces the computations as well, is to
replace the estimator X by

Xcmc = E[X | Y0, . . . , Yτ ] =
τ∑

j=1

c(Yj−1, Yj ),

where c(Yj−1, Yj ) = E[c′(Yj−1, Vj−1, Yj ) | Yj−1, Yj ] [9]. In other words, we
would never generate the sojourn times. We are now back in our previous DTMC
setting and the zero-variance transition probabilities are given again by (2.4).

Consider now the case of a fixed time horizon T , which therefore no longer
has the form T = inf{t ≥ 0 : Y (t) ∈ 
}. We then have two options: either we
again reformulate the process as a DTMC, or retain a CTMC formulation. In
the first case, we can redefine the state as (Yj , Rj ) at step j , where Rj is the
remaining clock time (until we reach time T ), as in [6]. Then the zero-variance
scheme is the same as for the DTMC setting if we replace the state Yj there by
(Yj , Rj ), and if we redefine 
. We then have a non-denumerable state space, so
the sums must be replaced by combinations of sums and integrals. In this context
of a finite time horizon, effective IS schemes will typically use non-exponential
(often far from exponential) sojourn time distributions. This means that we will
no longer have a CTMC under IS. Assume now that we want to stick with a



30 IMPORTANCE SAMPLING

CTMC formulation, and that we restrict ourselves to choosing a Markovian IS
measure with new initial distribution π̃0 and new generator Ã such that π̃0(y) > 0
(or ãy,z > 0) whenever π0(y) > 0 (or ay,z > 0). Let τ be the index j of the first
jump to a state Yj = Y (tj ) at time tj such that tj ≥ T . Then, similarly to the
discrete-time case, it can be shown that, provided τ is a stopping time with finite
expectation under (π̃0, Ã),

E[X] = Ẽ[XLτ ],

with Lτ the likelihood ratio given by

Lτ = π0(Y0)

π̃0(Y0)

τ−1∏
j=0

aYj ,Yj+1

ãYj ,Yj+1

exp

⎡
⎣ τ∑

j=0

(ãYj
− aYj

)Vj

⎤
⎦ .

In the above formula, we can also replace the likelihood aYτ−1,Yτ exp[−aYτ−1Vτ−1]
of the last occurrence time Vτ by the probability that this event occurs after the
remaining time T − ∑τ−1

j=0 Vj , which is exp[−aYτ−1(T − ∑τ−1
j=0 Vj )], the same

being done for the IS measure: instead of considering the exact occurrence time
after time T , we consider its expected value given that it happens after T . This
reduces the variance of the estimator, because it replaces it by its conditional
expectation.

2.3.3 State-independent vs state-dependent changes of measure

In the context of simulating a Markov chain, we often distinguish two types of
IS strategies:

• state-independent IS, where the change of measure does not depend on the
current state of the Markov chain;

• state-dependent IS where, at each step of the Markov chain, a new IS
change of measure is used that takes into account the current state of the
Markov chain. In the case where the state of the chain must contain the
current simulation time (e.g., if the simulation stops at a fixed clock time
in the model), then the change of measure will generally depend on the
current time.

Example 4. In Example 3, even though the birth-and-death process had original
transition probabilities p and 1 − p that did not depend on the current state y,
the zero-variance probabilities p̃y did depend on y (although not on B). These
probabilities satisfy the equations

p̃y(1 − p̃y−1) = p(1 − p)

for y ≥ 2, with boundary condition p̃1 = 1. For p < 1/2, we have 1 − p <

p̃y < p̃y−1 < 1 for all y > 2, and p̃y → 1 − p when y → ∞. That is, the opti-
mal change of measure is very close to simply permuting p and 1 − p, that
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is, taking p̃ = 1 − p > 1/2. For the M/M/1 queue, this means exchanging the
arrival rate and the service rate, which gives an unstable queue (i.e., the event
under consideration is not rare anymore). This simple permutation is an example
of a state-independent change of measure; it does not depend on the current state
y.

With p̃ = 1 − p, the likelihood ratio associated with any sample path that
reaches level B before returning to 0 is ρB−1, so, when estimating γ (1), the sec-
ond moment is reduced at least by that factor, as shown by Inequality (2.2) This
reduction can be quite substantial. Moreover, the probability γ̃ (1) of reaching B

under the new measure must satisfy γ̃ (1)ρB−1 = γ (1), which implies that

γ̃ (1) = γ (1)ρ1−B = 1 − ρ

1 − ρB
.

Then the relative variance is

γ̃ (1)ρ2B−2

γ 2(1)
− 1 = 1 − ρB

1 − ρ
− 1 ≈ ρ

1 − ρ

when B is large. We have the remarkable result that the number of runs needed to
achieve a predefined precision remains bounded in B, that is, we have bounded
relative error as B → ∞, even with a state-independent change of measure.

Example 5. Suppose now that our birth-and-death process evolves over the set
of non-negative integers and let γ (y) be the probability that the process ever
reaches 0 if it starts at y > 0. This γ (y) can be seen as the probability of ruin
if we start with y euros in hand and win (lose) one euro with probability p

(1 − p) at each step. For p ≤ 1/2, γ (y) = 1, so we assume that p > 1/2. In
this case, we have that γ (1) = (1 − p) + pγ (2) = (1 − p) + γ 2(1). For j ≥ 2,
γ (j + 1) = γ (1)γ (j) because the probability of reaching 0 from j + 1 is the
probability of eventually reaching j from j + 1, which equals γ (1), multiplied
by the probability of reaching 0 from j . From this, we see that γ (1) = (1 −
p)/p. Still from γ (j + 1) = γ (1)γ (j), we find easily that the zero-variance
probabilities are p̃j = 1 − p for all j ≥ 1. In this case, the zero-variance change
of measure is state-independent.

Example 6. We return to Example 2, where we wish to estimate γ = P[X ≥ na],
for X binomially distributed with parameters (n, p), and for some constant
a >p. If we view X as a sum of n independent Bernoulli random variables and
define Yj and the partial sum of the first j variables, then X = Yn and we have
a Markov chain {Yj , j ≥ 0}. We observed in Example 2 that when we restricted
ourselves to a state-independent change of measure that replaced p by p̃ for
this Markov chain, the variance was approximately minimized by taking p̃ = a.
In fact, this choice turns out to be optimal asymptotically when n → ∞ [24].
But even this optimal choice fails to provide a bounded relative error. That is,
a state-independent change of p cannot provide a bounded relative error in this
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case. The only way of getting a bounded relative error is via state-dependent IS.
However, when p is replaced by p̃ = a, the relative error increases only very
slowly when n → ∞: the second moment decreases exponentially at the same
exponential rate as the square of the first moment. When this property holds, the
estimator is said to have logarithmic efficiency . In this example, it holds for no
other value of p̃. All these results have been proved in a more general setting
by Sadowsky [24].

2.4 Algorithms

A general conclusion from the previous section is that to accurately approximate
the zero variance IS estimator, a key ingredient is a good approximation of the
function γ (·). In fact, there are several ways of finding a good IS strategy. Most
of the good methods can be classified into two large families: those that try to
directly approximate the zero-variance change of measure via an approximation
of the function γ (·), and those that restrict a priori the change of measure to
a parametric class, and then try to optimize the parameters. In both cases, the
choice can be made either via simple heuristics, or via a known asymptotic
approximation for γ (y), or by adaptive methods that learn (statistically) either
the function γ (·) or the vector or parameters that minimizes the variance. In the
remainder of this section, we briefly discuss these various approaches.

In the scientific literature, IS has often been applied in a very heuristic way,
without making any explicit attempt to approximate the zero-variance change
of measure. One heuristic idea is simply to change the probabilities so that the
system is pushed in the direction of the rare event, by looking at what could
increase its occurrence. However, Example 1 shows very well how pushing too
much can have the opposite effect; in fact, it can easily lead to an infinite variance.
Changes of measure that may appear promising a priori can eventually lead to a
variance increase. In situations where the rare event can be reached in more than
one direction, pushing in one of those directions may easily inflate the variance
by reducing the probability or density of paths that lead to the rare event via
other directions. The last part of Example 1 illustrates a simplified case of this.
Other illustrations can be found in [2, 3, 11], for example. Generally speaking,
good heuristics should be based on a reasonable understanding of the shape of
γ (·) and/or the way the likelihood ratio will behave under IS. We give examples
of these types of heuristics in the next subsection.

2.4.1 Heuristic approaches

Here, the idea is to use a heuristic approximation of γ (·) in the change of measure
(2.4).

Example 7. We return to Example 3, with py = p. Our aim is to estimate γ (1).
Instead of looking at the case where B is large, we focus on the case where p
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is small, p → 0 for fixed B. This could be seen as a (simplified) dependability
model where each transition from y to y + 1 represents a component failure, each
transition from y to y − 1 corresponds to a repair, and B is the minimal number
of failed components for the whole system to be in a state of failure. If p � 1,
each failure transition (except the first) is rare and we have γ (1) � 1 as well.
Instead of just blindly increasing the failure probabilities, we can try to mimic
the zero-variance probabilities (2.4) by replacing γ (·) in this expression by an
approximation, with c(y, z) = 0, γ (0) = 0 and γ (B) = 1. Which approximation
γ̂ (y) could we use instead of γ (y)? Based on the asymptotic estimate γ (y) =
pB−y + o(pB−y), taking γ̂ (y) = pB−y for all y ∈ {1, . . . , B − 1}, with γ̂ (0) = 0
and γ̂ (B) = 1, looks like a good option. This gives

P̃ (y, y + 1) = pB−y

pB−y + (1 − p)pB−y+1
= 1

1 + (1 − p)p

for y = 2, . . . , B − 2. Repairs then become rare while failures are no longer rare.
We can extend the previous example to a multidimensional state space, which

may correspond to the situation where there are different types of components,
and a certain subset of the combinations on the numbers of failed components of
each type corresponds to the failure state of the system. Several IS heuristics have
been proposed for this type of setting [16] and some of them are examined in
Chapter 6. One heuristic suggested in [20] approximates γ (y) by considering the
probability of the most likely path to failure. In numerical examples, it provides
a drastic variance reduction with respect to previously known IS heuristics.

2.4.2 Learning the function γ (·)
Various techniques that try to approximate the function γ (·), often by adaptive
learning, and plug the approximation (2.4), have been developed in the litera-
ture [16]. Old proposals of this type can be found in the computational physics
literature, for example; see the references in [5]. We outline examples of such
techniques taken from recent publications.

One simple type of approach, called adaptive Monte Carlo in [8, 17], proceeds
iteratively as follows. At step i, it replaces the exact (unknown) value γ (x) in
(2.4) by a guess γ (i)(x), and it uses the probabilities

P̃ (i)(y, z) = P(y, z)(c(y, z) + γ (i)(z))∑
w∈Y P(y, w)(c(y, w) + γ (i)(w))

(2.6)

in ni independent simulation replications, to obtain a new estimation γ (i+1)(y)

of γ (y), from which a new transition matrix P̃ (i+1) is defined. These iterations
could go on until we feel that the probabilities have converged to reasonably
good estimates.

A second type of approach is to try to approximate the function γ (·) stochas-
tically. The adaptive stochastic approximation method proposed in [1] for the
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simulation of discrete-time finite-state Markov chains falls in that category. One
starts with a given distribution for the initial state y0 of the chain, an initial
transition matrix P̃ (0) (which may be the original transition matrix of the chain),
and an initial guess γ (0)(·) of the value function γ (·). The method simulates a
single sample path as follows. At each step n, given the current state yn of the
chain, if yn �∈ 
, we use the current transition matrix P̃ (n) to generate the next
state yn+1, we update the estimate of γ (yn) by

γ (n+1)(yn) = (1 − an(yn))γ
(n)(yn)

+an(yn)

[
c(yn, yn+1) + γ (n)(yn+1)

P (yn, yn+1)

P̃ (n)(yn, yn+1)

]
,

where {an(y), n ≥ 0} is a sequence of step sizes such that
∑∞

n=1 an(y) = ∞ and∑∞
n=1 a2

n(y) < ∞ for each state y, and we update the probability of the current
transition by

P̃ (n+1)(yn, yn+1) = max

(
P(yn, yn+1)

c(yn, yn+1) + γ (n+1)(yn+1)

γ (n+1)(yn)
, δ

)

where δ > 0 is a constant whose role is to ensure that the likelihood ratio remains
bounded (to rule out the possibility that it takes huge values). For the other states,
we take γ (n+1)(y) = γ (n)(y) and P̃ (n+1)(y, z) = P (n)(y, z). We then normalize
via

P (n+1)(yn, y) = P̃ (n+1)(yn, y)∑
z∈Y P̃ (n+1)(yn, z)

for all y ∈ Y . When yn ∈ 
, that is, if the stopping time is reached at step n,
yn+1 is generated again from the initial distribution, the transition matrix and
the estimate of γ (·) are kept unchanged, and the simulation is resumed. In [1],
batching techniques are used to obtain a confidence interval.

Experiments reported in [1] show that these methods can be quite effec-
tive when the state space has small cardinality. However, since they require
the approximation γ (n)(y) to be stored for each state y, their direct implemen-
tation quickly becomes impractical as the number of states increases (e.g., for
continuous state spaces or for multidimensional state spaces such as those of
Example 7).

In the case of large state spaces, one must rely on interpolation or approxima-
tion instead of trying to estimate γ (y) directly at each state y. One way of doing
this is by selecting a set of k predefined basis functions γ1(y), . . . , γk(y), and
searching for a good approximation of γ (·) within the class of linear combina-
tions of the form γ̂ (y) = ∑k

j=1 αjγj (y), where the weights (α1, . . . , αk) can be
learned or estimated in various ways, for instance by stochastic approximation.
It therefore involves a parametric approach, where the parameter is the vector of
weights.



IMPORTANCE SAMPLING 35

2.4.3 Optimizing within a parametric class

Most practical and effective IS strategies in the case of large state spaces restrict
themselves to a parametric class of IS measures, either explicitly or implic-
itly, and try to estimate the parameter vector that minimizes the variance. More
specifically, we consider a family of measures {P̃θ , θ ∈ �}, which may represent
a family of densities f̃θ , or a family of probability vectors p̃θ for a discrete dis-
tribution, or the probability measure associated with the transition matrix P̃θ or
the transition kernel of a Markov chain. Then, we look for a θ that minimizes the
variance of the IS estimator under P̃θ , or some other measure of distance to the
zero-variance measure, over the set �. Of course, a key issue is a clever selection
of this parametric class, so that it includes good IS strategies within the class.
The value of θ can be selected either via a separate prior analysis, for example
based on asymptotically valid approximations, or can be learned adaptively. We
briefly discuss these two possibilities in what follows.

Non-adaptive parameter selection

Examples 2 and 6 illustrate the popular idea of fixing θ based on an asymptotic
analysis. The parametric family there is the class of binomial distributions with
parameters (n, p̃). We have θ = p̃. Large-deviations theory shows that twisting
the binomial parameter p to p̃ = a is asymptotically optimal [24]. This choice
works quite well in practice for this type of example. On the other hand, we
also saw that it cannot provide a bounded relative variance. Several additional
examples illustrating the use of large-deviations theory to select a good change
of measure can be found in [3, 15, 16], for example.

Adaptive learning of the best parameters

The value of θ that minimizes the variance can be learned adaptively in vari-
ous ways. For example, the adaptive stochastic approximation method described
earlier can be adapted to optimize θ stochastically. Another type of approach
is based on sample average approximation: write the variance or the second
moment as a mathematical expectation that depends on θ , replace the expecta-
tion by a sample average function of θ obtained by simulation, and optimize this
sample function with respect to θ . These simulations are performed under an IS
measure P̃ that may differ from P and does not have to belong to the selected
family. The optimizer θ̂∗ is used in a second stage to estimate the quantity of
interest using IS.

A more general way of formulating this optimization problem is to
replace the variance by some other measure of distance between P̃θ and the
optimal (zero-variance) change of measure P̃

∗, which is known to satisfy
dP̃

∗ = (|X|/E[|X|])dP when we wish to estimate γ = E[X]. Again, there are
many ways of measuring this distance and some are more convenient than
others.
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Rubinstein [23] proposed and motivated the use of the Kullback--Leibler (or
cross-entropy) ‘distance’, defined by

D(P̃∗, P̃θ ) = Ẽ
∗
[

log
dP̃

∗

dP̃θ

]

(this is not a true distance, because it is not symmetric and does not satisfy the
triangle inequality, but this causes no problem), and called the resulting technique
the cross-entropy (CE) method [7, 22, 23]. Easy manipulations lead to

D(P̃∗, P̃θ ) = E

[ |X|
E[|X|] log

( |X|
E[|X|]dP

)]
− 1

E[|X|]E
[|X| log dP̃θ

]
.

Since only the last expectation depends on θ , minimizing the above expression
is equivalent to solving

max
θ∈�

E
[|X| log dP̃θ

] = max
θ∈�

Ẽ

[
dP

dP̃
|X| log dP̃θ

]
. (2.7)

The CE method basically solves the optimization problem on the right-hand side
of (2.7) by sample average approximation, replacing the expectation Ẽ in (2.7)
by a sample average over simulations performed under P̃.

How should we select P̃? In the case of rare events, it is often difficult to
find a priori a distribution P̃ under which the optimizer of the sample average
approximation does not have too much variance and is sufficiently reliable. For
this reason the CE method is usually applied in an iterative manner, starting
with a model under which the rare events are not so rare, and increasing the
rarity at each step. We start with some θ0 ∈ � and a random variable X0 whose
expectation is easier to estimate than X, and having the same shape. At step
i ≥ 0, ni independent simulations are performed using IS with parameter θi ,
to approximate the solution of (2.7) with P̃ replaced by P̃θi

and X replaced
by Xi , where Xi becomes closer to X as i increases, and eventually becomes
identical when i = i0, for some finite i0. In Example 3, for instance, we could
have Xi = 1Yτ =Bi

with Bi = a + ib for some fixed positive integers a and b such
that B = a + i0b for some i0. The solution of the corresponding sample average
problem is

θi+1 = arg max
θ∈�

1

ni

ni∑
j=1

|Xi(ωi,j )| log(dP̃θ (ωi,j ))
dP

dP̃θi

(ωi,j ), (2.8)

where ωi,j represents the j th sample at step i. This θi+1 is used for IS at the
next step.

A quick glance at (2.8) shows that the specific choice of the Kullback–Leibler
distance is convenient for the case where P̃θ is from an exponential family,
because the log and the exponential cancel, simplifying the solution to (2.8)
considerably.
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In some specific contexts, the parametric family can be a very rich set of IS
measures. For example, in the case of a DTMC over a finite state space, one
can define the parametric family as the set of all transition probability matrices
over that state space [21]. In this case, CE serves as a technique to approximate
the zero-variance change of measure, but at the higher cost of storing an entire
transition matrix instead of just the vector γ (·).
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3

Splitting techniques

Pierre L’Ecuyer, François Le Gland, Pascal Lezaud
and Bruno Tuffin

3.1 Introduction

As already explained in previous chapters, rare event simulation requires acceler-
ation techniques to speed up the occurrence of the rare events under consideration,
otherwise it may take unacceptably large sample sizes to get enough positive real-
izations, or even a single one, on average. On the other hand, accelerating too
much can be counterproductive and even lead to a variance explosion and/or
an increase in the computation time. Therefore, an appropriate balance must be
achieved, and this is not always easy. This difficulty was highlighted in the pre-
vious chapter when discussing the importance sampling (IS) technique, the idea
of which is to change the probability laws driving the model in order to make the
events of interest more likely, and to correct the bias by multiplying the estimator
by the appropriate likelihood ratio.

In this chapter, we review an alternative technique called splitting, which
accelerates the rate of occurrence of the rare events of interest. Here, we do
not change the probability laws driving the model. Instead, we use a selection
mechanism to favor the trajectories deemed likely to lead to those rare events.
The main idea is to decompose the paths to the rare events of interest into shorter
subpaths whose probability is not so small, encourage the realizations that take
these subpaths (leading to the events of interest) by giving them a chance to
reproduce (a bit like in selective evolution), and discourage the realizations that

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-77269-0



40 SPLITTING TECHNIQUES

go in the wrong direction by killing them with some positive probability. The
subpaths are usually delimited by levels, much like the level curves on a map.
Starting from a given level, the realizations of the process (which we also call
trajectories or chains or particles) that do not reach the next level will not reach
the rare event, but those that do are split (cloned) into multiple copies when they
reach the next level, and each copy pursues its evolution from then on. This
creates an artificial drift toward the rare event by favoring the trajectories that
go in the right direction. In the end, an unbiased estimator can be recovered by
multiplying the contribution of each trajectory by the appropriate weight. The
procedure just described is known as multilevel splitting.

If we assume, for instance, that we are simulating a stochastic process (usually
a Markov chain) and that the rare event of interest occurs when we reach a given
subset of states before coming back to the initial state, then the levels can be
defined by a decreasing (embedded) sequence of state sets that all contain the
rare set of interest. In general, these levels are defined via an importance function
whose aim is to represent how close a state is from this rare set. Several strategies
have been designed to determine the levels, to decide the number of splits at each
level, and to handle the trajectories that tend to go in the wrong direction (away
from the rare event of interest). The amount of splitting when reaching a new
level is an important issue; with too much splitting, the population of chains will
explode, while with too little splitting, too few trajectories are likely to reach the
rare event.

There is also the possibility of doing away with the levels, by following
a strategy that can either split the trajectory or kill it at any given step. One
applies splitting (sometimes with some probability) if the weighted importance
function is significantly larger at the current (new) state than at the previous state,
and we apply Russian roulette (we kill the chain with some probability), when
the weighted importance function becomes smaller. Russian roulette can also be
viewed as splitting the chain into zero copies. The expected number of clones
after the split (which is less than 1 in the case of Russian roulette) is usually
taken as the ratio of the importance function value at the new state to that at the
old state [13, 22].

The most important difficulty in general is to find an appropriate importance
function. This function defines the levels (or the amount of splitting if we get
rid of levels), and a poor choice can easily lead to bad results. In this sense, its
role is analogous to the importance measure whose choice is critical in IS (see
the previous chapter).

One important advantage of splitting compared with IS is that there is no
need to modify the probability laws that drive the system. This means (among
other things) that the computer program that implements the simulation model
can just be a black box, as long as it is possible to make copies (clones) of the
model, and to maintain weights and obtain the current value of the importance
function for each of those copies. It is also interesting to observe that for splitting
implementations where all chains always have the same weight at any given
level, the empirical distribution of the states of the chains when they hit a given
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level provides an unbiased estimate of the theoretical entrance distribution of
the chain at that level (the distribution of the state when it hits that level for
the first time) under the original probabilities. With splitting implementations
where chains may have different weights, and with IS, this is true only for the
weighted (and rescaled) empirical distributions, where each observation keeps
its weight when we define the distribution. There are also situations where it
is simpler and easier to construct a good importance function for splitting than
for IS, because IS can be more sensitive to the behavior of the importance
function near the boundaries of the state space, as explained in [9, 12] (see also
Section 3.2.3).

One limitation of splitting with respect to IS is the requirement to decom-
pose the state space into subsets (or layers) determined by the levels of some
importance function, such that the probability of reaching the next level starting
from the current one is not so small. When such a decomposition can be found,
splitting can be efficiently applied. However, there are situations where the most
probable paths that lead to the rare event have very few steps (or transitions),
and where rarity comes from the fact that each of these steps has a very low
probability. For example, in a reliability setting, suppose that the rare event is
a system failure and that the most likely way that this failure occurs is by a
failure of two components of the same type, which happens from two transitions
of the Markov chain, where each transition has a very small probability. In such
a situation, splitting cannot be effectively applied, at least not directly. It would
require a trick to separate the rare transitions into several phases. IS, on the other
hand, can handle this easily by increasing the probability of occurrence of these
rare transitions. It is also important to recognize that in the case of large models
(such as a large queuing system with many state variables), the state-cloning
operations can easily induce a significant overhead in CPU time.

This chapter is organized as follows. Section 3.2 describes the general prin-
ciples of splitting techniques and the main versions (or implementations) found
in the literature. Section 3.3 provides an asymptotic analysis of the method in a
simplified setting that involves assuming that reaching the next level from the
current one can be modeled by a Bernoulli random variable independent of the
current state (given that we have just reached the current level). This is equivalent
to assuming that there is a single entrance state at each level. We then discuss
how much we should split and how many levels we should define to minimize the
variance, or its work-normalized version (the variance multiplied by the expected
computing time), in an asymptotic setting. In Section 3.4 we provide an anal-
ysis based on interacting particle systems, following the general framework of
[10]. This permits us to obtain a central limit theorem in a general setting, in an
asymptotic regime where the number of initial trajectories (or particles) increases
to infinity. While previous results focused on a specific case of splitting where
the number of trajectories at each level is fixed, we additionally provide ver-
sions of the central limit theorem for other splitting implementations. Section 3.5
applies different versions of the splitting technique to a simple example of a tan-
dem queue, used earlier by several authors. It illustrates the effectiveness of the
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method, and also the difficulties and the critical issue of finding an appropriate
importance function.

Note that both IS and splitting techniques were introduced and investigated
with the Monte Carlo method as early as in the mid 1940s in Los Alamos [21,
22, 29]. The main relevant issues, such as an analysis of the optimal splitting
strategies and the definition of the importance function, were already identified
at that time.

3.2 Principles and implementations

3.2.1 Mathematical setting

Assume that the dynamics of the system under consideration is described by
a strong Markov process X = {X(t), t ≥ 0} with state space E, where the time
index t can be either continuous (on the real line) or discrete (on the non-negative
integers t = 0, 1, 2, . . .). In the continuous-time case, we assume that all the
trajectories are right-continuous with left-hand limits (càdlàg). Let B ⊂ E be
some closed critical region which the system could enter with a positive but very
small probability, for example 10−10 or less. Our objective is to compute the
probability of the critical event,

γ = P[TB ≤ T ], where TB = inf{t ≥ 0 : X(t) ∈ B}

denotes the entrance time into the critical region B, and where T is an almost
surely finite stopping time.

Note that this can always be transformed into a model where the stopping
time T is defined as the first hitting time of some set � by the process X, that is,

T = inf{t ≥ 0 : X(t) ∈ �}.

For this, it suffices to put enough information in the state of the Markov process
X so that T and every statistic that we want to compute are measurable with
respect to the filtration generated by X up to time T . From now on, we assume
that T is a stopping time of that form. As an important special case, this covers
the situation where T is a deterministic finite time horizon: it suffices to include
either the current clock time, or the time that remains on the clock before the
time horizon is reached, in the definition of the state X(t). For example, if we are
interested in the probability that some Markov process {Y (t), t ≥ 0} hits some
set C before some deterministic time t1, then we can define X(t) = (t, Y (t)) for
all t , B = (0, t1) × C, and � = B ∪ ([t1, ∞) × E). Here, TB is the first time Y

hits C if this happens before time t1, TB = ∞ otherwise, and T = min(t1, TB).
Alternatively, it may be more convenient to define X(t) = (t1 − t, Y (t)), where
t1 − t is the time that remains on the clock before reaching the horizon t1, B is
the same as before, and � = B ∪ ((−∞, 0] × E). For situations of this type, we
will assume (when necessary) that the state X(t) always contains the clock time
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t , and that the sets B and � depend on the time horizon t1. More generally, we
could also have one or more clocks with random time-varying speeds.

Our results could be generalized to situations where the objective is to com-
pute the entrance distribution in the critical region, or the probability distribution
of critical trajectories, that is,

E[φ(X(TB)) | TB ≤ T ] or E[f (X(t), 0 ≤ t ≤ TB) | TB ≤ T ],

respectively, for some measurable functions φ and f. For simplicity, we focus
our development here on the problem of estimating γ, which suffices to illustrate
the main issues and tools.

The fundamental idea of splitting is based on the assumption that there exist
some identifiable intermediate subsets of states that are visited much more often
than the rare set B, and that must be crossed by sample paths on their way
to B. In splitting, the step-by-step evolution of the system follows the original
probability measure. Entering the intermediate states, usually characterized by
crossing a threshold determined by a control parameter, triggers the splitting
of the trajectory. This control is generally defined via a so-called importance
function h [16] which should satisfy B = {x ∈ E : h(x) ≥ L} for some level L.

Multilevel splitting uses an increasing sequence of values L0 ≤ . . . ≤ Lk ≤
. . . ≤ Ln with Ln = L, and defines the decreasing sequence of sets

E ⊃ B0 ⊃ . . . ⊃ Bk ⊃ . . . ⊃ Bn = B,

with
Bk = {x ∈ E : h(x) ≥ Lk},

for any k = 0, 1, . . . , n. Note that in the case of a deterministic time horizon,
h(x) will usually depend on the current time, which is contained in the state x.
Similarly, we can define the entrance time

Tk = inf{t ≥ 0 : X(t) ∈ Bk}
into the intermediate region Bk, and the event Ak = {Tk ≤ T }, for
k = 0, 1, . . . , n. Again, these events form a decreasing sequence

A0 ⊃ . . . ⊃ Ak ⊃ . . . ⊃ An = {TB ≤ T },
and the product formula

P[TB ≤ T ] = P(An) = P(An ∩ . . . ∩ Ak ∩ . . . ∩ A0)

= P(An | An−1) · · · P(Ak | Ak−1) · · · P(A1 | A0) P(A0) (3.1)

clearly holds, where ideally each conditional probability on the right-hand side
of (3.1) is ‘not small’. The idea is to estimate each of these conditional prob-
abilities somehow separately, although not completely independently, according
to a branching splitting technique.
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Suppose for now that all the chains have the same weight at any given
level. A population of N0 independent trajectories of the Markov process is
created (their initial states can be either deterministic or generated independently
from some initial distribution), and each trajectory is simulated until it enters
the first intermediate region B0 or until time T is reached, whichever occurs
first. Let R0 be the number of trajectories that have managed to enter the first
intermediate region B0 before time T . The fraction p̂0 = R0/N0 is an unbiased
estimate of P(A0) = P[T0 ≤ T ]. At the next stage, N1 replicas (or offspring) of
these R0 successful trajectories are created, so as to maintain a sufficiently large
population; this is done by cloning some states if N1 > R0 or choosing them
randomly otherwise. Each new trajectory is simulated until it enters the second
intermediate region B1 or until time T is reached, whichever occurs first. Again,
the fraction p̂1 = R1/N1 of the R1 successful trajectories that have managed to
enter the second intermediate region B1 before time T is a natural estimate of
P(A1 | A0) = P[T1 ≤ T | T0 ≤ T ]. The procedure is repeated again until the last
step, in which each trajectory is simulated until it enters the last (and critical)
region Bn = B or until time T is reached, whichever occurs first. The fraction
of the successful trajectories that have managed to enter the last (and critical)
region Bn = B before time T is a natural estimate of P(An | An−1) = P[Tn ≤
T | Tn−1 ≤ T ]. In other words, the probability of the rare event is estimated
as the product of estimates of the transition probabilities from one intermediate
region to the next intermediate region, where the transition probability at level k is
estimated as the fraction p̂k = Rk/Nk of the number Rk of successful trajectories
that have managed to enter the next intermediate region before time T over the
number Nk of trials. If Rk = 0 at any given stage k, we define p̂k′ = 0 for all
k′ > k.

It is worth noting that the resulting estimator is unbiased, although the suc-
cessive estimates are dependent because the result at level k + 1 depends on
the entrance states in region Bk [15, 26]. Indeed, by induction, assuming that
E[p̂0 · · · p̂k−1] = p1 · · · pk−1 with pk = P(Ak | Ak−1), we have

E[p̂0 · · · p̂k] = E[p̂0 · · · p̂k−1E[p̂k | N0, . . . , Nk−1, R0, . . . , Rk−1]]

= E[p̂0 · · · p̂k−1(Nk−1pk)/Nk−1] (3.2)

= p0 · · · pk = γ.

All the implementations described below are also unbiased [27].
The entrance distribution to Bk is the probability distribution μk of X(Tk),

the first entrance state into Bk, conditional on Tk ≤ T . An important observation
is that each of the Rk trajectories that hits Bk before T hits it for the first time
at a state having distribution μk. Using the same conditioning argument as in
(3.2), one can see that for any measurable set C ⊆ Bk, the proportion of these
Rk trajectories that hit Bk for the first time in C is a random variable (actually
a ratio of two random variables) with expectation μk(C). That is, the empirical
distribution μ̂N

k of these Rk entrance states into Bk is an unbiased estimator of
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μk . Then the Nk+1 states obtained after the splitting are essentially a bootstrap
sample from this empirical distribution. However, the Rk entrance states into
Bk are not independent (in fact, they can be strongly dependent in some cases,
especially when k is large), and this complicates the convergence analysis of this
empirical distribution. We will return to this in Section 3.4. We recognize that
the empirical distribution is undefined when Rk = 0. This is rarely a problem in
practice and we neglect this possibility here.

In a more general setting where the chains can have different weights, we
also define the weight of a trajectory as follows. A starting trajectory has weight
1. Each time it is split, its weight is divided by the number of offspring (or
its expected value when this number is random). As a consequence, the above
estimator of γ is just the sum of weights of the successful trajectories, divided
by the number of trajectories that were originally started. If Russian roulette is
applied, the weights can also increase when a chain survives the roulette. In that
case, an unbiased estimator of γ is the sum of (final) weights of the chains that
reach B at time TB ≤ T , and an unbiased estimator of the entrance distribution
to Bk is the weighted empirical distribution of the states of the chains that hit
Bk , at the first step when they hit it.

3.2.2 Implementations

There are many different ways of implementing the splitting idea. First, various
types of strategies can be used to determine the number of retrials (i.e., clones)
of a chain at each level, including the following:

• In a fixed-splitting implementation, each trajectory that has managed to
reach the intermediate region Bk−1 before time T receives the same deter-
ministic number Ok−1 of offspring. Then, Nk = Rk−1Ok−1 is a random
variable. One advantage is that this can be implemented in a depth-first
fashion, recursively: at level k, each chain is simulated until min(T , Tk).
If Ak occurs, each clone is completely simulated by looking at all its off-
spring, before going to the next clone. Thus, it suffices to store a single
entrance state at each level.

• In a fixed-effort implementation, a fixed and predetermined number Nk

of offspring are allocated to the collection of successful trajectories that
have managed to reach the intermediate region Bk−1 before time T . To
determine the starting point of the offspring, all the entrance states must
be known, which means that the algorithm must be applied sequentially,
level by level. Several strategies are then possible to assign the offspring
to a successful trajectory. In the random assignment , the Nk starting states
are selected at random, with replacement, from the Rk−1 available states.
In the fixed assignment , each successful trajectory is split approximately
the same number of times, resulting in a smaller variance [1]. This is
applied by first assigning �Nk/Rk−1 offspring (or splits) to each state, and
then assigning the remaining Nk mod Rk−1 offspring to distinct trajectories
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chosen at random (without replacement), so these chosen trajectories would
have �Nk/Rk−1 + 1 offspring assigned to them [25, 26].

• In a fixed success implementation [24], a different perspective is consid-
ered. The idea is to create and simulate sufficiently many offspring, from
time Tk−1 onward, so that a fixed and predetermined number Hk of trajec-
tories actually manage to reach the intermediate region Bk before time T .
The issue here is to control the computational effort, because the number
Nk of replicas needed to achieve exactly Hk successes is random. On the
positive side, this implementation sorts out the extinction problem auto-
matically, by construction, that is, the simulation will always run until it
reaches the rare event a sufficient number of times. On the other hand, the
computing effort may have a large variance.

• In a fixed probability of success implementation proposed in [8], the level
sets are constructed recursively such that the probability of reaching one
level from the previous level is approximately q, where q a fixed constant
such that 0 < q < 1. In this variant, assuming E[T ] < ∞, each of the N =
N0 chains is simulated until it reaches the recurrent set �. Let us denote
by Xi(·) the trajectory of the ith chain, T i its stopping time, and SN,i =
sup0≤t≤T i h(Xi(t)) the maximum value of the importance function over its
entire trajectory. Sort in increasing order the values (SN,1, . . . , SN,N), to
obtain SN,(1) ≤ . . . ≤ SN,(N). The K = �Nq chains yielding the largest
values SN,(N−K+1), . . . , SN,(N) are kept, and in order to maintain a popu-
lation of N chains, N − K new trajectories are simulated with initial state
the state at which the value SN,(N−K) was recorded, and until they reach �.
Combining the maximum value of the importance function of these N − K

new trajectories with the K values recorded previously, we obtain a new
sample of N values that we sort again in increasing order. We repeat the
procedure while SN,(N−K) ≤ L, that is, while at least N − K chains have
not reached B. The number n of iterations of the algorithm, and the number
R of chains reaching B when the algorithm stops, are random variables,
and the estimator of the probability of the rare event is (K/N)n(R/N).
This estimator is biased but consistent. It also achieves the same asymp-
totic variance as N → ∞ as the fixed-effort algorithm, with a probability
q of going from any given level to the next.

Another important issue, from a practical viewpoint, is the computational
effort required at each level. If T is the return time to a given set A of ‘initial’
states, for example, then the average time before either reaching the next level
or going back to A is likely to increase significantly when k increases. Several
techniques can be designed to alleviate this problem. A simple heuristic is to
pick a positive integer β and just kill (truncate) the chains that go down by β

levels or more below the current level Lk−1, based on the idea that they are
very unlikely to come up again and reach level k. This reduces the computation
time, but on the other hand introduces a bias. One way to deal with this bias
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is to apply the Russian roulette principle [22] and modify the weight of the
chain accordingly. Several versions of this are proposed in [25, 26], including
the following (where we also select a positive integer β and assume that the
chain tries to reach level k):

• Probabilistic truncation applies Russian roulette each time a trajectory
crosses a level k − 1 − j downward, for any j ≥ β. We select real num-
bers rk−1,j ∈ [1, ∞) for j = β, . . . , k − 1. Whenever a chain crosses level
k − 1 − j downward from level k − 1, for j ≥ β, it is killed with proba-
bility 1 − 1/rk−1,j . If it survives, its weight is multiplied by rk−1,j . When
a chain of weight w > 1 reaches level k, it is cloned into w − 1 addi-
tional copies and each copy is given weight 1 (if w is not an integer, we
make �w additional copies with probability δ = w − �w and �w − 1
additional copies with probability 1 − δ). The latter is done to reduce the
variance introduced by the weights.

• Periodic truncation [26] reduces the variability due to the Russian roulette
in probabilistic truncation by adopting a more systematic selection of the
chains that we retain. Otherwise it works similarly to probabilistic trunca-
tion and also uses positive integers rk−1,j . It also uses a random integer
Dk−1,j generated uniformly in {1, . . . , rk−1,j }, for each k and j ≥ β. When
a chain crosses a level k − 1 − j downward, if it is the (irk−1,j + Dk−1,j )th
chain that does that for some integer i, it is retained and its weight is
multiplied by rk−1,j , otherwise it is killed.

• Tag-based truncation [26] fixes beforehand the level at which a chain would
be killed. Each chain is tagged to level k − 1 − j with probability qk−1,j =
(rk−1,j − 1)/(rk−1,β · · · rk−1,j ) for j = β, . . . , k − 1, and it is killed if it
reaches that level. With the remaining probability, it is never killed. By
properly choosing integers rk−1,j , the proportion of chains tagged to level
Lk−1−j can be exactly qk−1,j , while the probability of receiving a given
tag is the same for all chains.

To get rid of the weights, which carry additional variance, we can let the
chain resplit when it crosses some levels upward after having gone down and
having its weight increased. The idea is to keep the weights close to 1. The above
truncation schemes can be adapted to fit that framework.

One of the best-known versions of splitting is the RESTART method [31–33].
Here, when a chain hits a level upward, fixed splitting is used (i.e., the chain
is split by a fixed factor), but one of the copies is tagged as the original for
that level. Truncation is used to reduce the work: when a non-original copy hits
its creation level downward, it is killed. Only the original chain continues its
path (to avoid starvation). The weight of the original chain accounts (in some
sense) for those that are killed, to keep the estimator unbiased. This rule applies
recursively, and the method is implemented in a depth-first fashion as follows:
whenever there is a split, all the copies are simulated completely, one after the
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other, then simulation continues for the original chain. The gain in work reduction
is counterbalanced by the loss in terms of a higher variance in the number of
chains, and a stronger positive correlation between the chains due to resplits [15].

In the discrete-time situation, another implementation does not make use of
levels, but applies splitting and Russian roulette at each step of the simulation
[3, 5, 13, 28]. The number of splits and the killing probabilities are determined
in terms of the importance function h. Define α = α(x, y) = h(y)/h(x) to be
the ratio of importance values for a transition from x to y. If α ≥ 1, the chain is
split into C copies where E[C] = α, whereas if α < 1 it is killed with probability
1 − α (this is Russian roulette). A weight is again associated with each chain to
keep the estimator unbiased: whenever a chain of weight w is split into C copies,
the weight of all the copies is set to w/E[C]. When Russian roulette is applied,
the weight of a surviving chain is multiplied by 1/(1 − α).

Yet another version, again in the discrete-time situation, mixes splitting and
Russian roulette with IS. The weight of a chain is redefined as the weight due to
splitting and Russian roulette (as above) times the likelihood ratio accumulated
so far (see the previous chapter on IS). To reduce the variance of the weights,
the idea of weight windows was introduced in [2], and further studied in [4, 14,
27]. The goal is to keep the weights of chain inside a given predefined win-
dow, with the aim of reducing the variance. This is done by controlling the
weighted importance of each chain, defined as the product of its weight w and
the value of the importance function h(x) at its current state, so that it remains
close to γ = P[TB ≤ T ] for the trajectories for which TB ≤ T . If these win-
dows are selected correctly (this requires a good prior approximation of γ ), the
main source of variance will then be the random number of chains that reach
B [4]. To proceed, we select three real numbers 0 < amin < a < amax. When-
ever the weighted importance ω = wh(x) of a chain falls below amin, Russian
roulette is applied, killing the chain with probability 1 − ω/a. If the chain sur-
vives, its weight is set (increased) to a/h(x). If the weighted importance ω rises
above amax, we split the chain into c = �ω/amax� copies and give (decreased)
weight w/c to each copy. If a = (amin + amax)/2 ≈ P[TB ≤ T ], this number has
expectation N0 (approximately), the initial number of chains.

3.2.3 Major issues to address

Having described the general principles and some known versions of splitting,
we now discuss several key issues that need to be addressed for an efficient
implementation of splitting.

First, how should the importance function h be defined? This is definitely the
most important and most difficult question to address. For multilevel splitting,
in the simple case where the state space is one-dimensional and included in R,
the final time is an almost surely finite stopping time, and the critical region has
the form B = [b, ∞), then all strictly increasing functions h are equivalent if
we assume that we have the freedom to select the levels (it suffices to move
the levels to obtain the same subsets Bk). So we can just take h(x) = x, for
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instance. Otherwise, especially if the state space is multidimensional, the question
is much more complicated. Indeed, the importance function is a one-dimensional
projection of the state space. Under simplifying assumptions, it is shown in [16]
and below that ideally, to minimize the residual variance of the estimator from the
current stage onward, the probability of reaching the next level should be the same
at each possible entrance state to the current level. This is equivalent to having
h(x) proportional to P[TB ≤ T | X(0) = x]. But if we knew these probabilities,
we would know the exact solution and there would be no need for simulation. In
this sense, this is a similar issue to that of the optimal (zero-variance) change of
measure in IS. The idea is then to use an approximation of P[TB ≤ T | X(0) = x]
or an adaptive (learning) technique. One way to learn the importance function was
proposed in [4]: the state space is partitioned in a finite number of regions and the
importance function h is assumed to be constant in each region. The ‘average’
value of P[TB ≤ T | X(0) = x] in each region is estimated by the fraction of
chains that reach B among those that have entered this region. These estimates
are combined to define the importance function for further simulations, which
are used in turn to improve the estimates, and so on. We will see in Section 3.5,
on a simple tandem queue, that the choice of the importance function is really a
critical issue; an intuitively appealing (but otherwise poor) selection can lead to
high inefficiency.

It is important to emphasize that the above analysis considers only the vari-
ance and not the computing time (the work). If we take the work into account
(which we should normally do) then taking h(x) proportional to P[TB ≤ T |
X(0) = x] is not necessarily optimal, because the expected work to reach B may
depend substantially on the current state x.

In a rare event setting, it is important to understand how a proposed impor-
tance function would behave asymptotically as a function of the rare event
probability γ when γ → 0, that is, in a rare event asymptotic regime. This
type of analysis is pursued in [9], in a framework where γ is assumed to be well
approximated by a large-deviation limit, for which the rate of decay is described
by the solution of the Hamilton–Jacobi–Bellman (HJB) nonlinear partial differ-
ential equations associated with some control problem. The authors show that a
good importance function must be a viscosity subsolution of the HJB equations,
multiplied by an appropriate scalar selected so that the probability of reaching
a given level k from the previous level k − 1 is 1/Ok−1 when Lk = k − 1. In
the context of fixed splitting, this condition is necessary and sufficient for the
expected total number of particles not to grow exponentially with − log γ . More-
over, if the subsolution also has its maximal possible value at a certain point,
then the splitting scheme is asymptotically optimal, in the sense that the relative
variance grows slower than exponentially in − log γ .

Second, how should the number of offspring be chosen? In fixed splitting,
the question is how to select the number Ok of offspring at each level. If we do
not split enough, reaching the next level (and the rare event) becomes unlikely.
On the other hand, if we split too much, the number of trajectories will explode
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exponentially with the number of levels, which will result in computational prob-
lems. A compromise has to be found. In the next subsection, we investigate this
issue in a simplified setting. In fixed-effort splitting, no explosion is possible,
as a fixed total number Nk of offspring are allocated at level k to the collection
of successful trajectories that have managed to reach Bk. Nonetheless, deciding
how many offspring to create, as well as the number of successful trajectories in
the case of a fixed-performance implementation, are important issues.

Finally, given the importance function h, how many intermediate regions
should be introduced and how should the increasing sequence of thresholds be
defined? The next subsection investigates this point. However, the precise optimal
strategy depends on the implementation considered. There is also the option to
learn the levels, as is done in the fixed-probability-of-success method of [8].

3.3 Analysis in a simplified setting:
a coin-flipping model

Suppose we have already selected an importance function and one of the splitting
implementations discussed in the previous section. For a given total computation
budget, we would like to find the number and the locations of the thresholds,
or equivalently the numbers n, p0, . . . , pn, that minimize the variance of the
estimator. We are also interested in convergence results for the variance and
the work-normalized variance, under various asymptotic regimes, such as when
N → ∞ while n and p0, . . . , pn are fixed, or when γ → 0 and n → ∞. Here
we study these questions and provide partial answers under a very simplified
(but tractable) model, for the fixed-effort and fixed-splitting strategies. The main
focus is on the asymptotic behavior when N → ∞. Our simplified setting is a
coin-flipping model uniquely characterized by the initial probability p0 = P(A0)

(i.e., the occurrence of the event A0 depends only on the outcome of a {0, 1}
Bernoulli trial with parameter p0), and by the transition probabilities pk = P(Ak |
Ak−1) (i.e., the occurrence of Ak, conditional on Ak−1, depends only on the
outcome of a {0, 1} Bernoulli trial with parameter pk), for k = 1, . . . , n. This
model is equivalent to assuming that there is only a single entrance state at each
level.

For the work-normalized analysis, we need to make some assumptions on
how much work it takes, on average, to run a trajectory from a given level k − 1
until it reaches either the next level or the set A = � \ B (i.e., the stopping time
T without reaching B). If there is a natural drift toward A, it appears reasonable
to assume that the chains will reach A in O(1) expected time, independently of
n, if A and B (and therefore γ ) are fixed. If we use truncation and/or Russian
roulette, we still have O(1) expected time. Then the total expected work for
all stages is proportional to

∑n
k=0 E[Nk]. This is the assumption we will make

everywhere in this section, unless stated otherwise. If E[Nk] = N for all k, then
this sum is N(n + 1). For simplicity, we will further assume that the constant of
proportionality (in the O(1) expected time mentioned above) is 1.
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In a different asymptotic regime, where γ → 0 and n → ∞ jointly, and if
truncation and/or Russian roulette are not applied, the average time to reach A

should increase when γ → 0, typically as O(− ln γ ), in which case the total
work will be proportional to (− ln γ )(n + 1)

∑n
k=0 Nk. If we further assume that

p0, . . . , pn are all equal to a fixed constant p, then γ = p(n+1), so − ln γ =
−(n + 1) ln p and the total work is proportional to (− ln p)(n + 1)2 ∑n

k=0 Nk. As
it turns out, the extra linear factor (n + 1) has a negligible role in the asymptotic
behavior [18, 20, 26].

3.3.1 Fixed effort

Several analytical studies have been performed for the fixed-effort model. In
[25], an asymptotic analysis is performed for the case where Nk = N and pk =
p = γ 1/(n+1) for all k, in the simplified setting adopted here. In this setting,
R0, R1, . . . , Rn are independent binomial random variables with parameters n

and p. Then we have [15, 25, 26]:

Var(p̂0 · · · p̂n) =
n∏

k=0

E(p̂2
k ) − γ 2

= (p2 + p(1 − p)/N)n+1 − p2(n+1)

= (n + 1)p2n+1(1 − p)

N
+ n(n + 1)p2n(1 − p)2

2N2

+ · · · + (p(1 − p))n+1

Nn+1
.

If we assume that N � n(1 − p)/p, the first term

(n + 1)p2n+1(1 − p)/N ≈ (n + 1)γ 2−1/(n+1)/N

dominates this variance expression. Given that the expected work is N(n + 1), the
work-normalized variance is proportional to [(n + 1)γ 2−1/(n+1)/N ]N(n + 1) =
(n + 1)2γ 2−1/(n+1), asymptotically, when N → ∞. Minimizing with respect to
n yields a minimum value at n + 1 = − 1

2 ln γ , which corresponds to p = e−2. If
we assume that the constant of proportionality is 1, as we said earlier, then the
resulting work-normalized relative variance is (ln γ )2e2/4.

For the asymptotic regime where γ → 0 while p and N are fixed (so n →
∞), the first term no longer dominates the variance expression, because the
assumption N � n(1 − p)/p is no longer valid. In this case, the relative error
and its work-normalized version both increase to infinity at a logarithmic rate
[26].

3.3.2 Fixed splitting

In a fixed-splitting setting, the algorithm is equivalent to a simple Galton–Watson
branching process, where each successful trial for which the event Ak occurs
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receives the same (deterministic) number Ok of offspring, for k = 0, . . . , n − 1.
Each pk is estimated by p̂k = Rk/Nk . An unbiased estimator of γ = P(An) =
p0 p1 · · ·pn is then given by

p̂0 · · · p̂n = R0

N0

R1

N1
· · · Rn

Nn

= Rn

N0 O0 · · · On−1
= γ

Rn

Nmn

,

where N = N0 and mk = mk−1Ok−1pk = p0O0p1 · · · pk−1Ok−1pk for
k = 1, . . . , n, with m0 = p0 by definition. The second equality in the display
follows from the relation Nk = Rk−1Ok−1, which holds for k = 1, . . . , n, and
means that the probability of the rare event is equivalently estimated as the
fraction of the number Rn of successful trials, for which the rare event An

occurs, over the maximum possible number of trials, N0O0 · · · On−1.
The relative variance of this estimator is

Var(p̂0 · · · p̂n)

γ 2
= 1

N

n∑
k=0

1 − pk

mk

.

Moreover, by the strong law of large numbers, Rk/N → mk almost surely for
any k = 0, 1, . . . , n when N → ∞, and in particular p̂0 · · · p̂n → γ almost surely
when N → ∞. We also have the central limit theorem

√
N

(
p̂0 · · · p̂n

γ
− 1

)
�⇒ N

(
0,

n∑
k=0

1 − pk

mk

)

in distribution as N → ∞, where N (μ, σ 2) denotes a normal random variable
with mean μ and variance σ 2.

The performance analysis below follows [23]. Under our assumptions, the
total work is approximately C = ∑n

k=0 Nk , which satisfies

C

N
=

n∑
k=0

Nk

N
=

n∑
k=0

Nk

Rk

Rk

N
→

n∑
k=0

mk

pk

,

almost surely when N → ∞.
Suppose that we are allowed a fixed expected total computing budget c, that

is, we have the constraint E[C] ≤ c. What is the optimal way of selecting N , n,
p0, . . . , pn and O0, . . . , On−1, to minimize the variance given this fixed budget?
Assuming that we use all the budget and that N is large enough so that we can
approximate C/N by its almost sure limit as N → ∞, and neglecting the fact that
n and the Ok must be integers, this optimization problem can be formulated as:

min
1

N

n∑
k=0

1 − pk

mk

subject to N

n∑
k=0

mk

pk

= c.
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Solving this in terms of N and O0, . . . , On−1, with the other variables fixed,
yields

N = c
(1/p0 − 1)1/2∑n
k=0(1/pk − 1)1/2

and Ok =
(

pk+1(1 − pk+1)

pk(1 − pk)

)1/2 1

pk+1
,

for k = 0, . . . , n − 1. This gives the relative variance

Var(p̂0 · · · p̂n)

γ 2
= 1

c

(
n∑

k=0

(1/pk − 1)1/2

)2

.

Next, minimizing with respect to p0, p1, . . . , pn for a given n gives that the
transition probabilities should all be equal to the same value, pk = p = γ 1/(n+1)

for all k. This implies that the branching rates should all be the same, Ok = O =
1/p, which corresponds to the critical regime of the Galton–Watson branching
process, for which Op = 1. It also implies that the initial population size should
be equal to N = c/(n + 1). In this optimal case, the work-normalized relative
variance becomes

c
Var(p̂0 · · · p̂n)

γ 2
= (n + 1)2(γ −1/(n+1) − 1) = (n + 1)2 (1 − p)

p
.

Finally, minimizing with respect to n gives

n = − ln γ

ln(1 + u∗)
− 1 ≈ −0.6275 ln γ − 1,

where u∗ ≈ 3.9214 is the unique positive minimum of the mapping
u �→ u/(ln(1 + u))2. Thus, the transition probabilities should all be equal to
p = 1/(1 + u∗). The resulting work-normalized variance is

c
Var(p̂0 · · · p̂n)

γ 2
= u∗(ln γ )2

(ln(1 + u∗))2
≈ 1.5449(ln γ )2,

which is slightly smaller than the value (ln γ )2e2/4 ≈ 1.8473(ln γ )2 obtained in
the fixed-effort case.

Consider now an asymptotic regime where pk = p is fixed and n → ∞,
so that γ = pn+1 → 0. Suppose that Ok = 1/p, that is, Nk+1 = Rk/p, for k =
0, . . . , n − 1. Then the relative variance

Var(p̂0 · · · p̂n)

γ 2
= 1

N

(n + 1)(1 − p)

p

is unbounded when n → ∞.
However, the asymptotic logarithmic relative variance (see Chapter 4) is

lim
n→∞

ln[Var(p̂0 · · · p̂n)/γ
2]

ln γ
= lim

n→∞
ln[1 + (1/N)(n + 1)(1 − p)/p]

(n + 1) ln p
= 0,
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which means that the splitting estimator is asymptotically efficient under the
assumptions made. Asymptotic results of this type were shown in [18, 20] in a
more general setting where the probability transition matrix for the first-entrance
state at level k, given the first-entrance state at level k − 1, converges to a matrix
with spectral radius ρ < 1, which implies that pk → ρ when k → ∞. In [20],
the authors also show that in their setting, the multilevel splitting estimator is
also work-normalized asymptotically efficient if and only if Ok = 1/ρ for all k.
This result holds if the expected computing time at level k is proportional to Nk,
and it still holds if this expected time increases polynomially in k.

It is important to emphasize that for practical applications, γ and p are
unknown, so the condition Ok = 1/p (exactly) for all k cannot really be satisfied.
Then, the population of chains is likely to either decrease too much and perhaps
extinguish (so no chain will reach B) or explode (so the amount of work will
also explode). This suggests that when γ is very small, fixed splitting is likely
to lead to a large relative variance of the estimator and also a huge variance in
the computing costs. For this reason, the more robust fixed-effort approach is
usually preferable.

3.4 Analysis and central limit theorem in a more
general setting

We will now relax the ‘coin-flipping’ assumption of the previous section, so that
the probability of hitting the next level Lk+1 may now depend on the entrance
state into the current set Bk. This is certainly more realistic. For example, there
are situations where we might enter Bk and Bk+1 simultaneously, in which case
this probability is 1.

We study the performance of some of the splitting implementations introduced
in Section 3.2.2 in the framework of multilevel Feynman–Kac distributions and
their approximation in terms of interacting particle systems [6, 7, 10, 11]. We
state a central limit theorem and provide expressions for the asymptotic vari-
ance for the various implementations, in the large-sample asymptotic regime in
which γ is fixed and N = N0 → ∞ (assuming that this implies E[Nk] → ∞
for all k). This provides some insight into the issues raised in Section 3.2.3.
The results are stated here without proof; most of the proofs can be found in
the references cited above. We emphasize that this analysis is not for a rare
event asymptotic regime, for which γ → 0; for this, we refer the reader to [9,
20]. For simplicity, throughout this section, we make the assumption that, at any
level, all the chains have the same weight (so no Russian roulette is allowed, for
example).

3.4.1 Empirical entrance distributions

As we pointed out earlier, splitting can be used to estimate expectations of more
general functions of the sample paths than just the probability γ . In particular,
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we argued in Section 3.2.1 that when all the particles have the same weight, the
entrance distribution at any level does not depend on the choice of importance
function, is the same as for the original chain, and can be estimated without bias
by the empirical entrance distribution at that level, which we shall denote by μ̂N

k .
This empirical distribution is already available at no extra cost when running the
simulation.

More specifically, recall that Nk particles are simulated in stage k, and Rk of
them hit Bk at the end of that stage. Let {ξ i

k, i = 1, . . . , Nk} be the states of the
Nk chains at the end of stage k, and let Ik = {i : ξ i

k ∈ Bk} be the subset of those
states that have successfully hit Bk by their stopping time T . Note that Ik has
cardinality Rk . We have

μ̂N
k = 1

Rk

∑
i∈Ik

δξ i
k
, (3.3)

where δx represents the Dirac mass at x.

Proposition 1. For any measurable set C ⊆ Bk, E[μ̂N
k (C)] = μk(C). This

implies that for any measurable function φ,

E[E[φ(X(Tk)) | Tk ≤ T ]] = E

⎡
⎣ 1

Rk

∑
i∈Ik

φ(ξ i
k)

⎤
⎦ .

3.4.2 Large-sample asymptotics

We saw that the empirical entrance distribution μ̂N
k provides an unbiased estimate

of μk, but what about the convergence (and speed of convergence) of μ̂N
k to μk

when N → ∞? The next proposition answers this question by providing a central
limit theorem, which can be proved using the technology developed in [10].

Proposition 2. Let φ : E → R be a bounded and continuous function and 0 ≤
k ≤ n. Then there is a constant vk(φ), which depends on φ and on the splitting
implementation, such that

√
N

⎛
⎝ 1

Rk

∑
i∈Ik

φ(ξ i
k) − E[φ(X(Tk)) | Tk ≤ T ]

⎞
⎠ �⇒ N (0, vk(φ)),

in distribution when N → ∞, where N (0, σ 2) is a normal random variable with
mean 0 and variance σ 2. The result also extends to unbounded functions φ under
appropriate uniform integrability conditions.

We also have a central limit theorem for the probability of reaching level k

before T . When k = n, this gives a central limit theorem for the estimator of γ ,
the probability of the rare event.
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Proposition 3. For 0 ≤ k ≤ n, there is a constant Vk that depends on the splitting
implementation, such that

√
N

(
p̂0 · · · p̂k

p0 · · ·pk

− 1

)
�⇒ N (0, Vk)

in distribution when N → ∞.

By combining these two propositions, we also obtain a central limit result for
the unconditional average cost, when a cost is incurred when we hit Bk:

√
N

p0 · · ·pk

⎛
⎝ p̂0 · · · p̂k

Rk

∑
i∈Ik

φ(ξ i
k) − E[φ(X(min(T , Tk)))]

⎞
⎠ �⇒ N (0, vk(φ)),

in distribution when N → ∞, if we assume that φ(x) = 0 when x �∈ Bk. By
taking φ(x) equal to the indicator that x ∈ Bk, and vk(φ) = Vk, we recover the
result of the second proposition.

An intuitive argument to justify these central limit theorems is that although
the particles have dependent trajectories to a certain extent, the amount of depen-
dence remains bounded, in some sense, when N → ∞. The idea (roughly) is that
the trajectories that start from the same initial state in stage 0 have some depen-
dence, but those that start from different initial states are essentially independent
(in fixed splitting they are totally independent whereas in fixed effort they are
almost independent when N is large). When N → ∞ while everything else is
fixed, the number of initial states giving rise to one or more successful trajectories
eventually increases approximately linearly with N , while the average number
of successful trajectories per successful initial state converges to a constant. So
the amount of independence increases (asymptotically) linearly with N , and this
explains why these central limit theorems hold.

In what follows, we derive expressions for the asymptotic variance Vn, for
selected splitting implementations. Straightforward modifications can provide
expressions for Vk, for 0 ≤ k < n. One may also rightfully argue that instead of
normalizing by

√
N in the central limit theorem, we should normalize by

√
CN

where CN = ∑n
k=0 Nk, the total number of particle levels simulated, which could

be seen as the total amount of computation work if we assume that simulating
one particle for one level represents one unit of work. This makes sense if we
assume that the expected work is the same at each level. If CN/N → C in proba-
bility as N → ∞, which is typically the case (in particular, CN/N = C = n + 1
exactly in the fixed-effort implementations), then using Slutsty’s lemma yields√

CN (p̂0 · · · p̂n/γ − 1) �⇒ N (0, CVn)

in distribution as N → ∞. So normalizing by CN instead of N only changes the
variance by the constant factor C.
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Define the function hB by

hB(x) = P[TB ≤ T | X(t) = x],

for x ∈ E. This function turns out to be an optimal choice of importance function
when we wish to estimate γ . We also define

νk = Var[hB(X(Tk)) | Tk ≤ T ]

E2[hB(X(Tk)) | Tk ≤ T ]
=

∫
E

h2
B(x)dμk(x)(∫

E
hB(x)dμk(x)

)2
− 1,

the relative variance of the random variable hB(X(Tk)) conditional on Tk ≤ T

(i.e., when X(Tk) is generated from μk). These νk depend only on the original
model, and not on the splitting implementation.

In the fixed-splitting implementation, we have

Vn =
n∑

k=0

1 − pk

mk

+
n−1∑
k=0

νk

mk

(
1 − 1

Ok

)
,

where mk is defined recursively by m0 = p0 and mk = mk−1Ok−1pk for
k = 1, . . . , n. This coincides for n = 1 with equation (2.21) in [15]. We also
have

CN

N
=

n∑
k=0

Nk

N
−→ C =

n∑
k=0

mk

pk

,

in probability as N → ∞.
In the fixed-effort implementation with random assignment using multinomial

resampling , it is shown in [7] that

Vn =
n∑

k=0

(
1

pk

− 1

)
+

n−1∑
k=0

νk

pk

.

In the fixed-effort implementation with fixed assignment using residual resam-
pling , if 1/pk is not an integer, for any k = 0, 1, . . . , n, then

Vn =
n∑

k=0

(
1

pk

− 1

)
+

n−1∑
k=0

νk

pk

(1 − pk(1 − rk)) .

If 1
2 < pk < 1 then rk = 1 − pk and it is shown in [7] that

Vn =
n∑

k=0

(
1

pk

− 1

)
+

n−1∑
k=0

νk

pk

(1 − p2
k).
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In each of the three cases considered above, the asymptotic variance splits
as the sum of two terms, a first term that depends on the transition probabilities
only, that is, indirectly on the thresholds only, and a second term that depends
on the entrance distributions also, that is, indirectly on the importance function
h that defines the shape of the intermediate regions. If for any given k the
function hB is constant on the support of the entrance distribution μk, then
νk = 0 and the second term vanishes, so only the first term remains and we
obtain

CVn =
(

n∑
k=0

mk

pk

)
n∑

k=0

1 − pk

mk

and CVn = (n + 1)

n∑
k=0

1 − pk

pk

,

in the fixed-splitting case and in the (two different implementations of the)
fixed-effort case, respectively. Note that if the continuous-time Markov chain
has almost surely continuous trajectories, then the support of the entrance dis-
tribution μk is {x ∈ E : h(x) = Lk}, and a sufficient condition for νk = 0 is to
take h = hB as importance function. In this special case, the model reduces to
the coin-flipping model already studied in Section 3.3.

3.5 A numerical illustration

The example described in this section is simple, but it has been widely used,
because it provides a good illustration of the impact of the choice of importance
function [20, 15]. We consider an open tandem Jackson queuing network with
two queues. The arrival rate at the first queue is λ = 1 and the mean service time
is ρi = 1/μi at queue i, for i = 1, 2. The corresponding discrete-time Markov
chain is given by X = {Xj, j ≥ 0}, where Xj = (X1,j , X2,j ) is the number of
customers in each of the two queues immediately after the j th event, where
an event is an arrival or a service completion at a given queue. Our aim is to
estimate the probability of reaching B = {(x1, x2) : x2 ≥ L}, the set of states for
which the second queue has length at least L, before reaching A = {(0, 0)}. The
final stopping time is T = min(TA, TB).

To illustrate the impact and difficulty of the choice of the importance function
h, some choices are compared in [25, 26] for the case where ρ1 < ρ2, and in
[19, 17, 16] for ρ1 > ρ2. Consider the three choices

h1(x1, x2) = x2,

h2(x1, x2) = (x2 + min(0, x2 + x1 − L))/2,

h3(x1, x2) = x2 + min(x1, L − x2 − 1) × (1 − x2/L).

The function h1 is the simplest choice and is motivated (naively) by the fact
that the set B is defined in terms of x2 only. The second choice h2 counts L

minus half the minimal number of steps required to reach B from the current
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state, because we need at least L − min(0, x2 + x1 − L) arrivals at the first queue
and L − x2 transfers to the second queue. The function h3 is inspired by [30],
where h(x1, x2) = x2 + x1 is used when ρ1 < ρ2. This h was modified as follows.
We have h3(x) = x1 + x2 when x1 + x2 ≤ L − 1 and h3(x) = L when x2 ≥ L.
In between, when L − x1 − 1 ≤ x2 ≤ L, we interpolate linearly in x2 for any
fixed x1.

In [25, 26], the authors compare these functions in the fixed-effort case, with
several truncation implementations. For a numerical example with ρ1 = 1/4,
ρ2 = 1/2, and L = 30, for instance, they estimate the constants Vn and CVn

defined in the previous section, and find that they are much higher for h1 than
for h2 and h3. Using h3 yields just slightly better results than h2. The truncation
and resplit increases the variance slightly, but it also decreases the computation
time, and overall it improves the work-normalized variance CVn roughly by a
factor of 3. Detailed results can be found in [26].

When ρ1 > ρ2, the first queue is the bottleneck of the system, and the most
likely sample paths to B are those where the first queue builds up first, and then
there is a transfer of customers from the first to the second queue. But h1 does not
favor these types of paths. Instead, it favors the paths where x1 remains small,
because the customers in the first queue are transfered quickly to the second
queue. As a result, splitting with h1 can give a variance that is even larger than
with standard Monte Carlo in this case [19]. This problem can be solved by a
better choice of h [33].

Variants of this example with B = {(x1, x2) : x1 + x2 ≥ L} and B =
{(x1, x2) : min(x1, x2) ≥ L} are examined in [9], where the authors design
importance functions by finding subsolutions to the HJB equations associated
with a control problem. These importance functions perform extremely well
when γ is very small.
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4

Robustness properties and
confidence interval reliability
issues
Peter W. Glynn, Gerardo Rubino and Bruno Tuffin

4.1 Introduction

In this chapter, we discuss the robustness and reliability of the estimators of
the probability of a rare event (or, more generally, of the expectation of some
function of rare events) with respect to rarity: is the estimator accurate as rarity
increases? (recall that accuracy, when estimating small probabilities, focuses on
relative rather than absolute errors). And what about the reliability (i.e., the
coverage) of the associated confidence interval?

If we parameterize the model with a (small) real ε such that the probability
of the rare event considered decreases to zero as ε → 0, we need to control the
quality of the estimator as rarity increases, with respect to accuracy and coverage.
An estimator will be said to be robust (in different senses defined hereafter) if its
quality (i.e., the gap with respect to the true value) is not significantly affected
when ε → 0. Similarly, an estimator is always accompanied with a confidence
interval. A reliable estimator is then an estimator for which the confidence inter-
val coverage does not deteriorate as ε → 0. Those two notions are different: one
focuses on the error itself, the other on quality of the error estimation.

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-77269-0
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To better illustrate this, let us start with the standard or crude estimator
of the probability of a rare event. Let ε be this probability and (Xi)1≤i≤n be
independently and identically distributed random variables such that Xi = 1 if
the rare event occurs at the ith trial and 0 otherwise. The standard estimator of
ε is γ̂ STD

n = n−1 ∑n
i=1 Xi . The sum

∑n
i=1 Xi is a binomial random variable with

variance nε(1 − ε), and the resulting confidence interval for ε, centered at γ̂ STD
n ,

at confidence level 1 − α, is[
γ̂ STD

n − z1−α/2

√
ε(1 − ε)√

n
, γ̂ STD

n + z1−α/2

√
ε(1 − ε)√

n

]

where z1−α/2 = �−1(1 − α/2) and � is the standard normal cumulative distribu-
tion function. The relative half-width RE of the confidence interval is therefore
z1−α/2

√
1 − ε/

√
nε. For a fixed sample size n, this means that, as ε → 0, the

relative error of the estimation goes to infinity. Therefore, the accuracy of the
estimator deteriorates as ε → 0. The absolute error given by the confidence inter-
val half-width zα/2

√
ε(1 − ε)/

√
n tends to 0 with ε, but at the much smaller rate√

ε than ε, so it does not give a good idea of the order of magnitude of the
probability of interest. In other words, in order to get a fixed relative half-width
RE = δ of the confidence interval as ε → 0, one would have to increase the
sample size (which usually means the simulation computating time) as

n = (z1−α/2)
2 1 − ε

δ2ε
,

that is, in inverse proportion to ε. The aim of rare event simulation is to con-
struct estimators for which the relative error is kept under control as the event
probability decreases to zero. Such estimators are said to be robust , and families
of robusness properties will be discussed in this chapter.

But looking only at the (theoretical) relative error, or some of its closely
related notions introduced below, may be hazardous, or may only provide partial
views of the possible problems. When evaluating γ using some unbiased estima-
tor γ̂n = n−1 ∑n

i=1 Xi , where the Xi are independently and identically (generally)
distributed random variables with mean μ and variance σ 2, not only is E(γ̂n) = γ

unknown in practice, but so is its variance Var(γ̂n) = σ 2
n = σ 2/n. Generally σ 2

is estimated by the unbiased σ̂ 2
n :

σ 2 ≈ σ̂ 2
n = 1

n − 1

n∑
i=1

(Xi − γ̂n)
2.

This estimator is at least as sensitive to rarity as γ̂n itself.
Returning to the crude estimation of a probability ε by the average of

Bernoulli random variables γ̂ STD
n , if n is much smaller than 1/ε, the rare event

will most likely not be observed (on average, an occurrence appears after 1/ε

replications), leading to a confidence interval (0, 0) because γ̂n = σ̂ 2
n = 0. With

the (very unlikely) assumption that we end up with exactly one occurrence
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of the rare event, γ̂n = 1/n overestimates the event, and the variance is also
overestimated by σ̂ 2

n = 1/n. We then get a large confidence interval, with a
very high coverage in this (very unlikely) case. This highlights not only the
problem of robustness of the estimator, but also the problem of the reliability ,
meaning the error in terms of coverage, of the confidence interval produced.
As stated before, the two notions are different: robustness is about the actual
error with respect to the true value, while reliability is about the coverage of the
confidence interval, both as the probability of the rare event goes to zero.

Note that for binomial random variables, such as the one we were looking
at, we know how to generate a more reliable confidence interval even for small
probabilities ε. For instance, the Wilson score interval gives an interval⎛

⎜⎝ γ̂ STD
n + 1

2n
z2

1−α/2 ± z1−α/2

√
γ̂ STD
n (1−γ̂ STD

n )

n
+ z2

1−α/2

4n2

1 + 1
n
z2

1−α/2

⎞
⎟⎠

(but note that there exist other interval constructions; see [11] for a description
and some comparisons). This interval is known to yield a better reliability, but is
very conservative for fixed n as ε decreases. The relative half-width of the con-
fidence interval, on the other hand, is still growing to infinity as ε tends to zero.

This chapter investigates the robustness properties and reliability issues in
rare event simulation. Section 4.2 quickly reviews the known robustness prop-
erties in the literature, including bounded relative error (also called bounded
relative variance), and logarithmic efficiency (also called asymptotic optimality).
Section 4.3 discusses the efficiency of an estimator when computation time is
taken into account. Section 4.4 discusses the related notion of reliability of the
corresponding confidence interval. We start by illustrating in Section 4.4.1 that
bad rare event estimations are not always checked by looking at intervals of the
form (0, 0), but can be much more difficult to detect. We then present two relia-
bility measures. Section 4.5 summarizes the chapter by setting out some practical
rules for detecting the presence of problems associated with the reliability of the
observed confidence interval. Section 4.6 concludes the chapter.

4.2 Classical asymptotic robustness properties

This section describes the basic asymptotic robustness properties that can be
found in the literature. For a recent survey, the reader is advised to look at [7],
where more definitions are covered and discussed in detail.

As noted before, if we want to investigate the robustness properties of esti-
mators with respect to rarity, it is very useful to parameterize the model. Let
γ = γ (ε) be the expectation (or probability if we restrict ourselves to integrating
indicator functions) we are trying to estimate, parameterized by ε and such that
γ (ε) → 0 as ε → 0. In this way the event can be arbitrarily small by playing
with the value of ε, which allows the behavior of the estimator to be captured
as rarity increases.
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Consider an unbiased estimator γ̂n of γ , built from a sample having size
n. The bounded relative error (BRE) is defined in [14]. It basically states that
the relative half-width confidence interval already studied above is bounded uni-
formly in ε, for a fixed sample size n. This asserts that the relative error is not
sensitive to the rarity of the event and is then the typical desirable property.

Definition 1. Let σ 2
n denote the variance of the estimator γ̂n, σn = √

σ 2
n and

let zδ denote the 1 − δ/2 quantile of the standard normal distribution (zδ =
�−1(1 − δ/2) where � is the standard normal cumulative distribution). Recall
that the relative error RE associated with γ̂n is defined by the half-width confi-
dence interval

RE = zδ

σn

γ
. (4.1)

We say that we have a bounded relative error if RE remains bounded as ε → 0
(i.e., uniformly in ε).

This property has been extensively studied and is often seen as the key prop-
erty to verify [6, 8].

The aforementioned crude estimator is a typical illustration of one not veri-
fying BRE. Additionally, increasing the occurrence of the rare event might not
be sufficient. On the other hand, some estimators do possess the BRE property.
Those two assertions are verified by the next two examples.

Consider the following example taken from [16], which can be seen as a
simple case of the Markovian dependability models described in Chapter 6.

Example 1. A system consists of two types of components with two components
of each type. Failure rates are o(ε) for some parameter ε, and the transition
probabilities of the embedded discrete-time Markov chain are as described in
Figure 4.1, where (i, j) denotes the state with i (j ) operational components of
type 1 (2). The states where the system is down are shaded gray. We see that the
system is functioning as soon as there is at least one component of each class
that is operational.

Associated with each transition we put the first term of the development of
the corresponding probability in powers of ε. We want to estimate the probability
γ that, starting from (2, 2), we reach a down state before returning to (2, 2).

Given the target γ , we can simplify the model by collapsing or aggregating
the failed states into a single one which we make absorbing. The resulting chain
is shown in Figure 4.2.

Since γ � 1 because ε � 1 (we will see that γ ≈ 2ε2), we use the impor-
tance sampling (IS) method, and specifically the failure biasing scheme (see
Section 6.3.2), with transition probabilities described in Figure 4.3. Basically,
for each functioning state different from the initial (2, 2), we increase the prob-
ability of failure to the constant q and use individual probabilities proportional
to the original ones. The parameter q is chosen between 1/2 and 1, for instance,
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Figure 4.1 The evolution of a four-component system with two classes of compo-
nents, subject to failures and repairs. The scheme shows the canonically embedded
discrete-time Markov chain, where we give the simplest equivalents of the transi-
tion probabilities as ε → 0.
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Figure 4.2 The result of aggregating the failed states in previous chain into a
single absorbing one.
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Figure 4.3 The result of changing the measure according to the failure biasing
scheme with parameter q, again indicating the equivalents of the transition prob-
abilities.

q = 0.8. The idea is, more generally, to enforce the transition probability asso-
ciated with a failure to some �(1) value, instead of o(1).

As seen in Chapter 1, the probability γ is given by

γ =
∑

π∈PF

p(π),

where PF is the set of all paths starting at (2,2), ending at a down state, and not
visiting either (2,2) or a failed state in between, and p(π) is the probability of
path π under the original measure.

In this simple chain, there are six elementary paths in PF (an elementary path
is a path not visiting the same state more than once): π1 = ((2, 2), (2, 1), (0));
π2 = ((2, 2), (2, 1), (1, 1), (0)); π3 = ((2, 2), (2, 1), (1, 1), (1, 2), (0))′ π4 =
((2, 2), (1, 2), (0)); π5 = ((2, 2), (1, 2), (1, 1), (0)); π6 = ((2, 2), (1, 2), (1, 1),

(2, 1), (0)). Their corresponding probabilities are p(π1) ≈ ε2, p(π2) ≈ ε2,
p(π3) ≈ ε3/2, p(π4) ≈ ε3, p(π5) ≈ ε4, p(π6) ≈ ε5/2.

Observe that any other path include cycles that always strictly increase the
order of the path probability in ε. This means that there are only a finite number
of paths having the same order k in ε for any k, and thus, that γ = 2ε2 + o(ε2)

because of the two dominant paths π1 and π2 [14].
Let us now consider the IS scheme. To explore its performance, we must

evaluate the variance of the IS estimator γ̂ IS
n . For this purpose, denoting by 


a generic random path and by p̃(π) the probability of path π under the new
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measure, we write

Var(γ̂ IS
n ) = 1

n

{
Ẽ[L2(
)1(
 ∈ PF )] − γ 2} = 1

n

⎡
⎣ ∑

π∈PF

p2(π)

p̃(π)
− γ 2

⎤
⎦ ,

where Ẽ denotes the expectation with respect to the IS measure. Looking at the
probability of the six paths under the IS measure, the dominant term in this sum
comes from π1; it is in ε3, and we get

Var(γ̂ IS
n ) = ε3

nq
+ o(ε3).

The relative error of the IS estimator is RE = 1.96
√

Var(γ̂ IS
n )/(γ̂ IS

n

√
n). We see

that RE is proportional to 1/
√

ε and thus goes to infinity as ε → 0.

Example 2. Consider a system failing according to an exponential distribution
with rate λ. We wish to compute the probability γ that the system fails before
ε. For such a trivial problem, we know that γ = 1 − e−λε. Assume that we want
to estimate this number using IS, and that we still sample from an exponential
density, but with a different rate λ̃. Our IS estimator is the random variable
X = 1[0,T ]L with L the likelihood ratio. The second moment of this estimator is

Ẽ[X2] =
∫ ε

0

(
λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy = λ2

λ̃(2λ − λ̃)
(1 − e−(2λ−λ̃)ε).

The relative error zδσ/γ is bounded if and only if Ẽ[X2]/γ 2 is bounded as
ε → 0. It can easily be seen that, if λ̃ = 1/ε,

Ẽ[X2]

γ 2
= λ2(1 − e−(2λ−λ̃)ε)

λ̃(2λ − λ̃)(1 − e−λε)2
−→ e − 1 as ε → 0.

So, RE remains bounded as ε → 0.

BRE has often been found difficult to verify in practice. For this reason,
people often use logarithmic efficiency, also called asymptotic optimality.

Definition 2. An unbiased estimator γ̂n of γ is said to be logarithmic efficient
with respect to rarity parameter ε if

lim
ε→0

ln E[γ̂ 2
n ]

ln γ
= 2.

Note that the quantity under limit is always positive and less than or equal
to 2. This is because Var(γ̂n) ≥ 0, so E[γ̂ 2

n ] ≥ γ 2 and then ln E[γ̂ 2
n ] ≥ 2 ln γ .
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Basically, this property means that the second moment and the square of the
mean go to zero at the same exponential rate. Asymptotic optimality has been
widely used in queuing applications, for the IS class of simulation methods (see
Chapter 5).

It can be proved that asymptotic optimality is a necessary but not sufficient
condition for BRE. Indeed, if the relative error corresponding to estimator γ̂n

of γ is bounded, then there is some κ > 0 such that E[γ̂ 2] ≤ κ2γ 2, that is,
ln E[γ̂ 2

n ] ≤ ln κ2 + 2 ln γ, leading to limε→0 ln E[γ̂ 2
n ]/ ln γ ≥ 2. Since this ratio

is always less than 2, we get the limit 2.
On the other hand, there are plenty of examples for which logarithmic effi-

ciency is verified and not BRE, just by having the same exponential decreasing
rate for the second moment and square expectation, but with an additional
(polynomial) multiplicative component for the second moment, vanishing for
logarithmic efficiency, but not for relative error. Other more practical examples,
from queuing analysis and large-deviations theory, can be found in [12]. A sim-
pler basic example is provided in [7], just by looking at an estimator for which
γ = e−η/ε with η > 0, but for which the variance is Q(1/ε)e−2η/ε with Q a
polynomial.

Extensions of logarithmic efficiency and BRE were introduced in [7] to higher
moments than just the second, to make sure that they are well estimated too. For
example, this also allows the variance of the empirical variance to be controlled.
A preliminary work on this was [17], where BRE for the empirical variance was
studied. In Section 4.4, we further investigate the asymptotic coverage of the
confidence interval as ε → 0.

4.3 Efficiency (or work-normalized variance) analysis

Throughout the above analysis, we have been looking at estimators for which the
(relative) variance is as small as possible for a fixed sample size. On the other
hand, this improved precision might be attained at the cost of employing a more
complex algorithm, which can lead to increased computation time. This variation
might also depend on the rarity parameter ε. Similarly, some methods can have
an average computation cost decreasing with ε. This trade-off between accuracy
and computational complexity has therefore to be taken into account with when
analyzing rare event simulators.

The principle is then to combine variance and computation time. In [5], the
efficiency is defined as being inversely proportional to the product of the sampling
variance and the amount of labor required to obtain this estimate. Formally:

Definition 3. The efficiency of an estimator γ̂n based on a sample of size n, with
variance σ 2

n and obtained, on average, in a computation time tn, is 1/(σ 2
n tn).

If the estimate is obtained from n independent replications each of variance
σ 2 and with sampling average time t , then σ 2

n = σ 2/n and tn/n → t as n → ∞.
Thus, if n � 1, the efficiency of γ̂ is approximately 1/(σ 2t). This means that σ 2

n tn
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can be also seen as a work-normalized variance. It also allows two estimators to be
compared for a given computation budget c: if t and t ′ are the mean times required
to generate one independent replication of X and X′ when computing γ̂n and γ̂ ′

n′ ,
the number of replications will be respectively n = c/t and n′ = c/t ′. Thus the
best estimator is γ̂n if σ 2(X)t < σ 2(X′)t ′, that is, if its efficiency is larger.

This definition is generalized in [4] by looking more precisely at the variance
obtained with a budget c, taking into account the random generation time.

Based on this principle, the so-called bounded relative efficiency has been
defined in [2]:

Definition 4. Let γ̂n be an estimator of γ built using n replications and σ 2
n its

variance. Let tn be the average simulation time to get those n replications. The
relative efficiency of γ̂n is given by

REff = γ 2

σ 2
n tn

.

We will say that γ̂n has bounded relative efficiency with respect to rarity parameter
ε, if there exists a constant d > 0 such that REff is minored by d for all ε.

This basically means that the normalized relative variance σ 2
n tn/γ

2 is
upper-bounded whatever the rarity, and is therefore a work-normalized version
of the bounded relative error property.

In [2], an illustration of the need for such a definition is provided for the
reliability analysis of a network (see Chapter 7 below), where the relative error
is unbounded but the method is still efficient as ε → 0, just due to the fact that
the average computation time per run decreases to 0 at a proper rate. Sufficient
conditions for this are also provided.

Similarly, the work-normalized logarithmic efficiency was defined in [3] to
deal with the efficiency of splitting estimators.

Definition 5. The unbiased estimator γ̂n of γ has work-normalized logarithmic
efficiency if

lim
ε→0

ln tn + ln E[γ̂ 2
n ]

ln γ
= 2.

Note nonetheless that those definitions of relative efficiency and
work-normalized logarithmic efficiency are good for comparing the relative mer-
its of two estimators, but are far from perfect definitions. Indeed, there are some
flaws in the above definitions. Computing times are usually random, so looking
at a fixed computing budget c might be misleading: the number of replications is
roughly c/t , but we would need this number to be uniformly bounded to make
sure that we can bound the error whatever ε. At least, it would be of interest
to consider the second moment of the computation time in the definition. This
would lead to what could be the valid definition of work-normalized relative
error, that is, the relative error for a computing budget c is bounded as ε → 0.
The above definitions, even if informative, are unfortunately more restrictive.
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4.4 Another key issue: confidence interval
coverage/reliability

Hitherto we have been dealing with the relative error uniformly in ε (or its weaker
work-normalized version), but always based on the idea that the coverage of the
confidence interval produced by the central limit theorem is always valid. Making
sure that the coverage of the confidence interval is uniformly bounded in ε is of
interest too.

Similarly, we have highlighted that, because it is the estimated (rather than
the exact) variance that is actually used in the confidence interval computation,
we may end up with the simple case of an interval (0, 0) because no occurrence
of the rare event is detected, but in any case, as illustrated by Section 4.4.1, with
an interval for which relative error seems bounded while it is not, and which does
not include the exact value. This unpleasant observation highlights the need to
design diagnostic procedures in order to point out if we are in this situation and is
the focus of Section 4.5. But first, Section 4.4.2 looks at a property asserting the
confidence interval coverage validity, while Section 4.4.3 reviews the coverage
function representing the actual coverage in terms of the nominal.

4.4.1 Reliability issue of the observed confidence interval

Consider again the illustrative Example 1, with γ estimated by means of γ̂ IS
n ,

where we fix the number n of samples, n = 104, using the same pseudo-random
number generator, and varying ε from 10−2 down to 0. Table 4.1 gives, for
different values of ε, 2ε2 (the equivalent of γ ), γ̂ IS

n , the IS estimator, and the
95% confidence interval obtained, together with the estimated variance σ̂n. The
estimated value becomes bad as ε → 0: observe that γ̂ IS

n seems to be close to
the expected value for ε ≥ 2 × 10−4, and that the confidence interval seems
suitable too, but, between 2 × 10−4 and 1 × 10−4, as ε decays, the results are far
from expectations and 2ε2 is not included in the confidence interval anymore.
Actually, in this estimation, some paths important for the estimation of γ and of

Table 4.1 Equivalent 2ε2 of γ , IS estimation γ̂ IS
n of γ , confidence interval

and estimated relative error for Example 1 using the failure biasing scheme
with q = 0.8, for a fixed sample size n = 104 and different values of ε

ε 2ε2 γ̂ IS
n Confidence Interval Est. RE

1e-02 2e-04 2.03e-04 (1.811e-04, 2.249e-04) 1.08e-01
1e-03 2e-06 2.37e-06 (1.561e-06, 3.186e-06) 3.42e-01
2e-04 8e-08 6.48e-08 (1.579e-08, 1.138e-07) 7.56e-01
1e-04 2e-08 9.95e-09 (9.801e-09, 1.010e-08) 1.48e-02
1e-06 2e-12 9.95e-13 (9.798e-13, 1.009e-12) 1.48e-02
1e-08 2e-16 9.95e-17 (9.798e-17, 1.009e-16) 1.48e-02
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Var(γ̂ IS
n ) (paths whose probability is �(ε2) under the original measure) are still

rare under the IS measure, leading to wrong estimations.
Let us look at this in some detail. Assume that n is fixed and ε → 0. At

some point, ε will be so small that transitions in �(ε) (see Figure 4.3) are not
sampled anymore (probabilistically speaking). Everything happens as if we were
working on the model depicted in Figure 4.4. Let us denote by P ′

F the subset of
PF whose paths belong to this last chain. The expectation of our estimator will
now be, on average,

γ̂ ′
n =

∑
π∈P ′

F

p(π) ≈ ε2

and, concerning the variance, we will get, also on average,

1

n

⎡
⎣ ∑

π∈P ′
F

p2(π)

p̃(π)
− (γ̂ ′

n)
2

⎤
⎦ ≈ 1 − q2

nq2
ε4.

This leads to a (mean) observed RE given by

RE ≈ 1.96
√

1 − q2

q
√

n
,

which is independent of ε. The reader can check that these formulas are coherent
with the numerical values observed for ε ≤ 10−4. So, this is a case where we
know that the relative error of the IS technique used is not bounded when rarity
increases, but where we numerically observe exactly the contrary. These problems
are much harder to detect than the (0, 0) interval case.
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Figure 4.4 Model effectively ‘seen’ by the IS simulator when transitions in �(ε)

are not observed during n trajectories of the chain.



74 ROBUSTNESS AND CONFIDENCE INTERVAL RELIABILITY

The question therefore is: what is the validity of the proposed confidence
interval? The techniques presented in previous chapters (IS and splitting) consist
of different ways to speed up the rare event occurrence, but dealing with the
confidence interval coverage might still be an issue.

Consider now the classical M/M/1/B model, where we wish to evaluate
γ = P(reaching B before 0 | N(0) = 1) (this is Example 3 in Chapter 2), N(t)

being the number of customers at time t . More formally:

Example 3. Consider the discrete-time absorbing Markov chain X given in
Figure 4.5 and define γ = P(X(∞) = B | X(0) = 1). Observe that this is equal
to P(reaching B before 0 | N(0) = 1) in the M/M/1/B queue with arrival rate
λ and service rate μ, if p = λ/(λ + μ).

This is an elementary example in probability theory, and we know the answer:
γ = (r−1 − 1)/(r−B − 1) if r = μ/λ = (1 − p)/p �= 1 (if λ = μ, that is, if p =
1/2, then γ = 1/B). Suppose that we want to estimate γ using the standard
simulator. In this example, rarity comes from the combination of values of the
parameters p and B, the latter controlling the size of the model, a different
situation than in previous example. A typical line of analysis here involves fixing
p, varying B, and controlling rarity through ε = 1/B.

For instance, suppose that p = 0.4 and B = 40. The probability p is not very
small, but combined with the size of the chain, we get γ ≈ 4.5 × 10−8. Suppose
we try an IS scheme by simply changing the probability p into some p̃ > 1/2, for
instance, p̃ = 0.9, and that we simulate n = 105 paths of the chain. A standard
implementation of this gave the approximate estimate 6.5 × 10−10 and estimated
RE ≈ 40%. Without knowing the exact value, it is difficult to detect that there is
a problem. If we refer to the previous ideas, we can imagine the user increasing
B (i.e., increasing rarity), and looking at the behavior of the relative error. In
Table 4.2 we provide some numerical results obtained by keeping everything
fixed except B, which we increase.

The user may think that the RE looks bounded (while being pretty large), but
observe that the exact value is never included in the observed confidence interval.
We can suspect the same problem as before, even if the numerical behavior is
not exactly the same. Looking again at the case of B = 40, it seems reasonable
to try increasing the sample size. Keeping everything fixed except the sample
size n = 106, we get an estimate of 1.62 × 10−9 with a relative error ≈ 39%.
Again, we can suspect the same phenomenon as for the previous example.

0 1 2 3 B–1 B

p p p

1–p 1–p 1–p

1 1

. . . . . .

Figure 4.5 Discrete-time Markov chain X associated with the M/M/1/B model,
used to compute γ = P(X(∞) = B | X(0) = 1).
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Table 4.2 Estimating γ in the M/M/1/B model,
with p = 0.4, using n = 105 samples and the failure
biasing change of measure with p̃ = 0.9, for different
values of the buffer size B. The table gives the exact
value of γ , its IS estimate and the estimated RE

B γ γ̂ IS Est. RE

40 4.52e-08 6.50e-10 40%
50 7.84e-10 2.46e-12 80%
60 1.36e-11 2.34e-14 120%
70 2.36e-13 1.11e-17 45%

100 1.23e-18 2.21e-24 102%

We observe that in the family of IS methods where the new measure is
state-independent (see Chapter 2), the best change of measure for this queue is
known: it involves swapping the arrival and the service rate, or equivalently,
using p̃ = 1 − p in discrete time [9]. If we do so, we can check that things go
smoothly, and that the estimators behave correctly (no anomaly in the behavior
of the RE, nor on the observed likelihood ratio).

The aim of the rest this chapter is to discuss the following questions. How
can we define a good estimator? Can it be good whatever the rarity? Can we
detect in practice whether an estimate is good or not?

4.4.2 Normal approximation

In [15, 16], the bounded normal approximation (BNA) property is defined, assert-
ing that the Gaussian approximation on which the confidence interval, and thus
the confidence interval coverage, is based remains uniformly bounded as ε tends
to 0. It finds its roots in the Berry–Esseen theorem which states that if � is the
third absolute moment of each of the n independently and identically distributed
copies Xi of random variable X (with σ 2 its variance), � the standard normal dis-
tribution, γ̂n = n−1 ∑n

i=1 Xi , σ̂ 2
n = n−1 ∑n

i=1(Xi − γ̂n)
2 and Fn the distribution

of the centered and normalized sum (γ̂n − γ )/σ̂n, then there exists an absolute
constant a > 0 such that, for each x and n,

|Fn(x) − �(x)| ≤ a�

σ 3
√

n
.

Definition 6. We say that γ̂n satisfies the bounded normal approximation property
if �/σ 3 remains bounded as ε → 0.

When this property is satisfied, only a fixed number of iterations are required
to obtain a confidence interval having a fixed error no matter the level of rarity.

We could also look at a stricter condition, by making sure that the variance
satisfies BRE. This is a stricter condition than BNA because it means looking at
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the fourth moment divided by the square of the variance, and, from the Jensen
inequality, BRE for the variance implies BNA [17].

In [15], an example is given where BRE is satisfied, but not BNA, so the cov-
erage of the confidence interval is not validated. BRE is therefore not sufficient
alone to guarantee the robustness of a rare event estimator.

Note that BNA is a sufficient condition for coverage certification, and not
a necessary one [15]. For instance, there exist more general versions of the
Berry–Esseen bound (see [10]) for which the moment of order 2 + δ is used (with
δ > 0) instead of the third moment, being then less restrictive. Note nonetheless
that this is at the expense of the convergence rate to the Gaussian distribution,
O(n−δ/2) instead of O(n−1/2). A generalized version of BNA property could
then be as follows:

Definition 7. We say that γ̂n satisfies bounded normal approximation if there
exists δ > 0 such that E[|X − γ |2+δ]/σ 2+δ remains bounded as ε → 0.

4.4.3 Coverage function

In order to more directly investigate the actual coverage of confidence intervals
for small values of ε when the number of replications is fixed, we can look at
the so-called coverage function defined by L.W. Schruben in [13]. Define

R(η, X) =
(

γ̂n − cη

σ̂n√
n
, γ̂n + cη

σ̂n√
n

)

as the confidence interval at confidence level η obtained using data

X = (Xi)1≤i≤n

(i.e., cη = �−1((1 + η)/2)). Under normality assumptions, it is easy to show that
P[γ ∈ R(η, X)] = η. Now define the random variable

η∗ = inf{η ∈ [0, 1] : γ ∈ R(η, X)}.
η∗ should be uniformly distributed, that is,

Fη∗(η) = P[η∗ ≤ η] = η.

Not satisfying normal assumptions leads to two potential sources of error:

• Fη∗(η) < η may lead to wrong conclusions (lower coverage),

• while if Fη∗(η) >η the method is not efficient because a smaller sample
size could have been used to get the desired coverage.
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In order to investigate the actual coverage function, one can consider independent
blocks of data X = (Xi)1≤i≤n, producing independent realizations of η∗, from
which its empirical distribution can be deduced. Reproducing it for different
values of ε and looking at deviations from the uniform distribution illustrates the
robustness of the estimator. This will be helpful below when discussing possible
diagnostic-oriented approaches.

4.5 Diagnostics ideas

This section discusses the issue of detecting potential problems associated with
the reliability of rare event confidence intervals. We will review three ideas to deal
with these problems from a diagnostic point of view. First, we will see that using
the fact that the expectation of the likelihood ratio equals unity in an importance
sampling situation, a relevant idea a priori, is actually not of value when dealing
with rare events. Second, we look at the possible numerical anomalies that can
occur when looking at the behavior of the relative error as the system becomes
rarer. A last diagnostic possibility is to make use of the covering function, that
is, to look at how far the empirical coverage function is from the uniform.

4.5.1 Checking the value of the expected likelihood ratio

How should a test concerning the reliability of the confidence interval be con-
structed? A first thought would be to look at properties of the likelihood ratio
when dealing with IS. Consider the expected value of a random variable X under
probability measure P. IS generates an unbiased estimator by using an IS mea-
sure P̃ with dP̃ �= 0 when XdP �= 0. Indeed, we then have Ẽ[XL] = E[X] = γ

with L = dP/dP̃ the likelihood ratio (see Chapter 2). We can then easily see
that, with the more stringent condition that dP̃ �= 0 when dP �= 0, the expected
value of the likelihood ratio is exactly 1. We will assume that this condition is
satisfied for the remainder of this subsection, but remark that it is not true in
general since we can construct unbiased IS estimates of γ for which dP̃ = 0
when X = 0, such as the zero-variance change of measure.

This observation on the expected value of L could be thought to be a basis for
designing a diagnostic: at the same time as we perform the computations needed
to construct γ̂ IS

n and the associated confidence interval, we do the same for esti-
mating Ẽ[L]. If the confidence interval obtained does not contain the exact value
1 under the condition that dP̃ �= 0 when dP �= 0, one has to exercise caution.

Why does this diagnostic not work in general? Let X be the the indicator
function of a rare set A, that is, γ = E[ (A)] = Ẽ[L (A)]. Then, defining Ac as
the complementary set of A and from the expected value of the likelihood ratio,
we get

1 = Ẽ[L (A)] + Ẽ[L (Ac)] = γ + Ẽ[L (Ac)].
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In order to use a test based on Ẽ[L] = 1, the variance of L has to be small enough
so that we do not encounter the aforementioned problems where its variance is
underestimated because the second moment has large values with small proba-
bility (so that those cases are not reached for a small to moderate sample size
n) under P̃, and small vales with high probability. Therefore, Ṽar[L (Ac)]/n has
to be small. This is unfortunately not the case in general because the IS scheme
is designed to have a small variance for random variable L (A), not for L. We
indeed have L � 1, very small on A to be as close as possible to the value of
γ for reducing the variance of the estimator, but L � 1 is likely to happen at
some values in Ac.

The next example illustrates this problem of a properly designed IS scheme
for which such a test is not going to work well.

Example 4. Consider a random walk Sn = X1 + · · · + Xn on the integers or
on the reals, starting from 0, where the Xi are independently and identically
distributed with cumulative distribution function F . We wish to estimate the
probability γ of reaching a level b > 0 before a level −k < 0. It is assumed that
the random walk has a negative drift, meaning that the probability of going up,
Xi > 0, is smaller that that of going down, Xi < 0, leading to a small value of γ .
A class of IS measures, called exponential twisting , makes use of large deviations
(see Chapter 5 for more details on the application of large-deviations theory to
random walks). The exponentially twisted IS measure involves replacing dF by

dF̃ = eθx

M(θ)
dF (x)

with M(θ) = E[eθX1 ], the moment generation function of the Xi . It is known that
there exists a θ∗ for which M(θ∗) = 1, and that this IS scheme yields logarithmic
efficiency. Let us now investigate more closely the behavior of the likelihood
ratio. On the paths for which b is reached before −k, we have L ≈ e−θ∗b, while
L ≈ eθ∗k on paths for which −k is reached before, with probability of the order
of e−θ∗k.

Now, if the sample size n � eθ∗k, we will therefore end up with an estimation
of Ẽ[L] ≈ e−θ∗b because −k is unlikely to be reached, with a small sample
variance too. Worse, to get an estimate around 1 as expected, we need n � eθ∗k,
which can take a longer time if k >b than in the case of crude Monte Carlo, for
which n has to be larger than eθ∗b on the average.

Another interesting remark arises from looking at Example 1. In that case,
estimating the expected value of the likelihood ratio always provides a confi-
dence interval for this expectation that includes 1. For instance, using the same
numerical values as in Table 4.1, varying ε in the same way, we get for the
mean likelihood ratio under the IS measure almost the same confidence interval
(0.99, 1.07). A test is therefore not able to detect the difficulty of estimating γ

for that kind of example. It is actually the opposite problem than in previous
example: it does not provide a warning even if it should, while for the random
walk example, it provides an irrelevant warning.
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4.5.2 Observed relative error behavior

In Section 4.4.1 we discussed the fact that, in some cases, the simulation tech-
nique can degrade when rarity increases, but the numerical values coming from
the simulation run hides this phenomenon, leading the user to accept incorrect
results. We illustrated this by means of an example where rarity is parameterized
by ε, and where in spite of the fact that RE is unbounded as ε → 0, we will
necessarily observe that RE suddenly becomes essentially constant, that is, inde-
pendent of ε. Of course, this is not a systematic fact appearing in these contexts,
but it simply underlines the necessity of being careful if we observe this type of
behavior.

Specifically, as a diagnostic rule, the idea is to simulate (with small sample
sizes) the network for different values of ε larger than in the original problem, that
is, to simulate much less rare events, with a small and fixed sample size, before
running the ‘real’ simulation if things seem to go well. What is the incorrect
behavior we try to detect? We look to see whether the estimated relative variance
seems first to increase, then suddenly drops and stays fixed. This is due to the fact
that important events (or paths, depending on the context) in terms of contribution
to the variance (and to the estimation itself), are not sampled anymore. This
trend of regular growth and sudden drop is likely to be a good hint of rare event
problems.

An illustration of this was provided by Example 1, Table 4.1. If we use a
sample size n = 1000, ten times smaller than that used in Table 4.1, we observe
the same phenomenon, always coherent with the formulas given in Section 4.4.1.
We observed the same behavior with different configurations.

This type of phenomenon does not appear in the case of the M/M/1/B model
presented in Example 3. Increasing B (see Table 4.2), we observe fluctuations of
the relative error, but no trend similar to that exhibited before. The diagnostic can
hardly be conclusive in this model, as it was in the first example. This illustrates
that the tests of the section are traditional rejection tests.

Let us now consider another example [1]:

Example 5. Consider the discrete-time Markov chain X given in Figure 4.6 and
define γ = E(K−1 ∑K

k=1 1(X(k) = 1) | X(0) = 1).

0 1

a

b

1–a 1–b

Figure 4.6 A two-state Markov chain. We look at the average fraction of interval
{1, 2, . . . , K} where the chain is in state 1, starting at state 0 at time 0.
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The exact value of γ is

γ = a

a + b

[
1 − (1 − a − b)

1 − (1 − a − b)K

K(a + b)

]
.

Assume nevertheless that we use IS to estimate γ and let us consider the cases
where

P =
(

0.99 0.01
0.1 0.9

)
, P̃ =

(
0.4 0.6
0.5 0.5

)
.

We look for the value of γ when K = 30. We know that the exact answer is
γ ≈ 6.713−2, and, of course, this is easy to estimate with the crude estimator.
We used the proposed IS scheme for n = 105 samples, changing the seed of the
pseudo-random number generator. We got the results shown in Table 4.3. We
can observe here that over these six runs, the relative error fluctuates without a
clear trend, but in five of the six cases, the exact value is outside the confidence
interval (the case where the exact value is in the confidence interval is for seed).

If we increase the value of K , increasing the possible number of paths, we
get the results given in Table 4.4. The RE exhibits no trend again, but we know
that the estimations are horribly bad, and that the exact value is never inside the
obtained confidence intervals.

In conclusion, for this test, involving checking the behavior of the relative
error as a function of rarity, for small sample sizes, we observe good results when
rarity is associated with transitions and the state space has a fixed topology, and
no clear indications when rarity comes from the increasing length of good paths,
as in the M/M/1/B case.

Table 4.3 Estimating γ (whose value is 6.713−2) in the two-state Markov
chain of Example 5, with a = 0.01, b = 0.1, ã = 0.6, b̃ = 0.5, K = 30, for
different seeds (using drand48( ) under Unix), for n = 105 samples

seed 314159 31415 3141 314 31 3

γ̂ IS
n 1.949e-04 1.583e-04 1.282e-04 2.405e-01 6.089e-05 1.021e-04

RE 9.636e-01 8.637e-01 1.667e00 1.958e00 1.263e00 9.686e-01

Table 4.4 Estimating γ in the two-state Markov chain of
Example 5, with a = 0.01, b = 0.1, ã = 0.6, b̃ = 0.5, for
different values of K , using n = 105 samples and the same
seed (272, with drand48( ) under Unix)

K 30 50 70 90

γ 6.713e-02 7.624e-02 8.040e-02 8.274e-02
γ̂ IS

n 4.099e-05 1.748e-10 4.104e-14 2.554e-23
RE 8.723e-01 1.189e00 1.937e00 1.433e00
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4.5.3 Diagnostic based on the coverage function

A last diagnostic possibility is to make use of Schruben’s coverage function. The
algorithm can be described as follows, as hinted in the description of the coverage
function. Befored starting to run the (real) simulation, consider smaller sample
sizes n and k values of ε, the rarity parameter, {εj ; 1 ≤ j ≤ k} with ε1 > · · · >εk .
For each value εj , m independent blocks of data X = (Xi(ε))1≤i≤n are then used,
giving independent realizations of η∗. From those m realizations, the empirical
distribution of η∗ can be obtained and compared with the uniform distribution.
Then one can see if there is a trend: if the empirical distribution gets farther from
the uniform as εj decreases, the current estimator can be considered as non-robust
(unreliable), and a better one should be chosen. Otherwise, the estimator is not
rejected by the test.

An important remark is that, in order to apply this diagnostic, the exact
value (or at least an equivalent as ε → 0) has to be known for computing η∗.
As a consequence, the diagnostic can only be used for small instances of the
problem. For example, when estimating the probability in an M/M/1 queue
that the occupancy exceeds a value B (with B large), the exact value can be
estimated for smaller values of B, and a trend can be derived. The same applies
when dealing with a Markov chain on a small state space, but looking at long
simulation times T (such as in Example 5 above), by looking at smaller values of
T . The case of large Markov chains where rarity comes from rare transitions is
more difficult. But one can try to construct a smaller instance of the model, with
similar topology or properties (we do not care about the result being the same)
and for which the exact value is known, and look to see whether the coverage
function does not deviate as critical transition probabilities decrease. Our three
examples describe those three situations and are detailed now.

Figure 4.7 displays the coverage function for the M/M/1 queue, looking at
the probability that B is reached before returning to 0. This is done for sample
sizes n = 1000 and repeated k = 500 times in order to get the empricial distribu-
tion function (smoothed thanks to interpolation). In the numerical experiments,
p = 0.3 and we chose p̃ = 0.5 (not the optimal value, but to illustrate the behav-
ior). It can be seen that as B increases, the coverage function gets worse and
worse, so the estimator is not good here.

Look now at the case of the 2 × 2 matrix of Example 5, with transition
matrices

P =
(

0.2 0.8
0.2 0.8

)
, P̃ =

(
0.5 0.5
0.5 0.5

)
.

Again, we take n = 1000 and k = 500. From Figure 4.8, it can be checked that as
the length K of the simulation path increases, the coverage function gets worse
and worse, illustrating the bad estimation.

We close our numerical illustrations with Example 1. Figure 4.9 displays
the empirical coverage function for different values of ε, still with n = 1000
and k = 500. Again, as ε decreases, the coverage function gets farther from the
uniform, denoting an undesirable behavior.
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Figure 4.7 Coverage function for the simulation of the M/M/1 queue when look-
ing at the probability of exceeding threshold B.
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Figure 4.8 Coverage function for the simulation of a two-state Markov chain, as
the length K of simulation increases.
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Figure 4.9 Coverage function for Example 1 and various values of ε.

4.6 Conclusions

We discussed the robustness properties (i.e., relative error behavior as the prob-
ability of the event goes to zero) we must require an estimator to satisfy when
dealing with rare events in a simulation. Together with an overview of these
properties and their relations, this chapter also underlined less known problems
the practitioner may encounter in this area, concerning the reliability of the con-
fidence interval. The typical situation is a numerical evaluation that can be taken
as correctly done, while actually the output of the simulation procedure is com-
pletely off target. One of the aims of this chapter is to discuss possible ways of
coping with this situation, and to suggest lines of research to derive rules that
can be used as diagnostic methods mainly leading to a ‘warning’ signal along
the lines of ‘the results of the simulation are suspicious, take care’. But what
if such a signal is received? The best advice is to try a different method, or a
different parameterization of the technique used.

We concentrated our examples on importance sampling procedures, since this
is the most used technique for rare event analysis, and also because it is the one
most studied. Observe that the problems underlined here are related to rarity, not
just to importance sampling. Also, the rules for detecting problems proposed in
this chapter are valid for acceleration methods other than IS-based ones (except
obviously for the use of the expected likelihood ratio).
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5

Rare event simulation
for queues

José Blanchet and Michel Mandjes

This chapter describes state-of-the-art techniques in rare event simulation for
queuing systems, the rare events under consideration being overflow probabilities,
probabilities of extremely long delays, etc. We first consider a number of generic
examples (and counterexamples) that are very useful in the queuing context.
Then we systematically assess importance sampling for the cases of light-tailed
input (where large-deviations arguments play a crucial role) and heavy-tailed
input (where the change of measure is typically state-dependent). Other issues
dealt with are: results under the many-sources scaling, estimation of the tail of
the sojourn time distribution for processor-sharing queues, tandem and intree
networks, and loss networks.

5.1 Introduction

In the theory of rare event simulation, queuing networks play a pivotal role.
Queues are arguably the most widely used concept in applied probability, owing
to their generic structure – there are applications in inventory, logistics, supply
chains, communications networking, call centers, etc., while related models are
heavily used in risk and insurance theory.

The estimation of rare event probabilities has become a topic of great impor-
tance in queuing theory. The main motivation for studying these rare events lies

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-77269-0
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in the fact that the events under consideration relate to situations whose occur-
rence can be extremely costly for companies or (network) operators to face.
Typical examples are: the claims an insurance company is faced with exceed
its capital, extremely long delays in call centers that frustrate customers, or a
performance collapse in a communication network. The common aspect in these
examples is that the rare event under consideration can be rephrased as the event
that the workload in an appropriately chosen queuing system exceeds a given
high threshold, say B.

Rare events can be analyzed in various ways. When the underlying model
is Markovian, numerical solution techniques can be used to compute the rare
event probability of interest, say the overflow probability π(B). The drawback
of this approach is that this can be rather time-consuming, as the state space of
the Markov chain tends to be large. Also, solution techniques of this type just
give a numerical output, and do not provide any insight into the impact of the
system parameters (such as the arrival rate, service rate, or service requirements)
on π(B). This motivates the search for asymptotics , that is, (explicit) functions
ϕ(·) such that π(B)/ϕ(B) → 1 as B → ∞. These asymptotics can be derived in
several ways, for instance by applying large-deviations theory [30]. A problem,
however, is that we often lack error bounds; in other words, we do not know a
priori from what B on the approximation π(B) ≈ ϕ(B) is accurate. This explains
why one often resorts to a simulation-based analysis. An important complication
is that, using naive simulation, the event under consideration occurs infrequently;
consequently, it is time-consuming to obtain reliable estimates. Therefore, tech-
niques have had to be developed to speed up the simulation. The present chapter
is about simulation techniques for estimating small overflow probabilities. We
remark that excellent textbook treatments of this subject are by Asmussen and
Glynn [7, Ch. VI] and Bucklew [21, Ch. 11].

The most frequently used technique is importance sampling (IS); see Ham-
mersley and Handscomb [41] for an early article, and also Hopmans and Kleijnen
[44] and Bratley, Fox, and Schrage [19]. In IS one simulates the model under
an alternative probability measure, and translates the simulation output back to
the original measure by multiplying with a so-called likelihood ratio (in this
chapter often abbreviated to just ‘likelihood’). Crucial is the choice of the alter-
native measure, or, more particularly, one would like to find the measure that
provides us with minimum variance. The systematic use of large-deviations the-
ory, in the design of efficient IS algorithms for rare event estimation, started
with an influential paper by Siegmund [70] in the 1970s. In many situations [25,
43, 68] this approach led to the identification of a new measure that is optimal
according to some specified criterion. Large-deviations arguments also underlie
the powerful heuristics of Parekh and Walrand [63], focusing on the estimation
of the buffer overflow probability in rather general queuing networks. In the
1990s, however, substantial attention was paid to the limitations of this family of
results: counterexamples by Glasserman et al. [38, 39] indicated that in specific
important cases, the large-deviations based measure performs badly, and can even
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lead to infinite variance. Various approaches were proposed to circumvent these
difficulties.

Another important aspect is that the above large-deviations based framework
predominantly relates to queues with light-tailed input, which (roughly) means
that π(B) decays exponentially in B. The rare event of buffer overflow is due to
many subsequent ‘slightly rare’ events (‘conspiracy’). In many important queu-
ing systems, however, overflow occurs in a fundamentally different way, namely,
because of a single rare event (‘catastrophe’). This is for instance the case in
the classical M/G/1 queue with subexponential service requirements (includ-
ing the Pareto distribution, as well as a subclass of the Weibull distribution);
as a consequence π(B) decays subexponentially as well, for instance as Bα or
exp(−√

B). As a result of this crucially different behavior, new rare event sim-
ulation techniques have had to be developed for these queues with heavy-tailed
input.

On an abstract level, this chapter focuses on the estimation of a probability pn

that goes to 0 as the ‘rarity parameter’ n goes to ∞. We mainly focus on applying
IS: as described earlier in this monograph, one samples from a distribution Q,
different from the actual distribution P, and weights the simulation output by
the likelihood L, to be interpreted as a Radon–Nikodým derivative dP/dQ to
recover unbiasedness. A fundamental equality is that for any Q, provided that
mild regularity conditions hold, in obvious notation,

pn = E
Q

n (LI),

where I is the indicator function of the event of interest, and the subscript
n is added to emphasize the dependence on the rarity parameter. The number
of runs needed to obtain an estimate with predefined accuracy (defined as the
width of the confidence interval, divided by the estimate) is in general roughly
proportional to the variance of the outcome of a single experiment. As a conse-
quence, the quality of the estimator is strongly determined by E

Q

n (L2I ); recall
that VarQn (LI) = E

Q

n (L2I ) − p2
n. These considerations have led to the following

optimality criterion.

Definition 1. An alternative measure Q is said to be asymptotically optimal with
respect to scaling parameter n if

lim
n→∞

log E
Q

n (L2I )

log E
Q

n (LI)
= 2.

Observe that, because of Jensen’s inequality, the above limit is always less
than or equal to 2; hence it remains to prove that it is also larger than or equal
to 2.

In the light-tailed setting, it is often possible to prove that

lim
n→∞

1

n
log E

Q

n (LI) = lim
n→∞

1

n
log pn = −ϑ�,
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for some ϑ� > 0. Then it remains to prove that

lim
n→∞

1

n
log E

Q

n (L2I ) ≤ −2ϑ�.

If this is indeed true, then asymptotic optimality means, in this light-tailed setting,
that the number of runs required grows at most subexponentially in n. A stronger
notion of optimality is given in the following definition; for more background
on such optimality notions, see [7, p. 159].

Definition 2. An alternative measure Q is said to have bounded relative error
with respect to scaling parameter n if

lim sup
n→∞

VarQ

n (LI)

p2
n

< ∞.

Needless to say that the survey we present in this chapter is far from complete.
The larger part of the chapter is on the light-tailed regime, in line with the
literature of, say, the last 25 years. It is noted, however, that attention has recently
shifted to the heavy-tailed regime. Also, we hardly pay attention to the use of
cross-entropy techniques for identifying suitable IS measures, as this issue is
taken care of by other chapters in the book. Finally, we mention that we do not
address the use of splitting techniques, see for instance [7, Section V.5], and an
interesting novel paper [29].

This chapter is organized as follows. In Section 5.2 we highlight a num-
ber of standard problems (namely that of a sample mean of independently and
identically distributed (i.i.d.) random variables attaining a rare value, and that
of a random walk with negative drift exceeding a large threshold) for which
a (large-deviations based) change of measure was found that is asymptotically
optimal. However, we also show that if the problem is changed slightly, such
an alternative measure may perform badly; a few remedies are described. In
Section 5.3 we apply the theory of Section 5.2 to queues with light-tailed input.
Often we are able to explicitly bound the likelihood, conditional on the fact that
the event of interest does indeed occur, which leads to explicit bounds on the
variance of the estimator. Section 5.4 focuses on queues with heavy-tailed input.
These have to be handled in a completely different manner; they are essentially
based on the idea that the rare event happens due to a single random variable
attaining an extreme value. Section 5.5 does not consider rarity because of a
large buffer threshold that is supposed to be exceeded, but rather rarity because
of the number of inputs growing large (and the system parameters scaled accord-
ingly). Then, even if the input is heavy-tailed, we have exponential decay, such
that the techniques of Section 5.2 can be applied again. The chapter concludes
with a section on networks of queues: we briefly discuss fluid networks, Jackson
networks, and loss networks.
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5.2 Heuristics and caveats

In this section we consider a number of generic rare event estimation problems
that play a crucial role in the setting of queuing networks. The last subsection
points out that the underlying heuristics should be handled with care.

5.2.1 Sample means

A classical problem in probability concerns the distribution of sample means .
With (Xm)m∈N being a sequence of i.i.d. random variables, the nth partial sum
is defined as Sn := ∑n

m=1 Xm, and the sample average is given by Sn/n. Due
to laws of large numbers, we have that, under rather mild conditions, Sn/n →
μ := EX1 almost surely, as n → ∞. Also, the deviations in the neighborhood of
the mean are described by the central limit theorem: this says that, as n → ∞,
(Sn − nμ)/(

√
nVarX1) converges to N (0, 1). But what can be said about tail

probabilities of the type

pn(a) := P

(
Sn

n
≥ a

)
,

for some a > μ? It is clear that this probability goes to zero for large n, but can
we estimate it? We assume throughout that we are in the ‘light-tailed regime’,
that is, the increments Xm are such that their moment generating function (mgf)
M(ϑ) := E exp(ϑX1) exists in a neighborhood of the origin (and hence all
moments are finite).

A key result in this respect relates to an asymptotically exact asymptotic
relation for pn(a). Using a change of measure, we can determine the asymptotics
of pn(a) as follows. First consider the elementary formula,

P(A) =
∫

A

L(ω)dQ(ω), with L(ω) := dP

dQ
(ω),

provided that the Radon–Nikodým derivative is well defined. This entails that
pn(A) = E

Q

n (LI), where Q is some alternative probability measure, L is the
relative likelihood of P with respect to Q, and I is the indicator function of the
event {Sn/n ≥ a}. The idea is to choose Q such that the event under consideration
is not rare anymore, that is, we select a Q such that E

QX1 = a. Also, we choose
Q such that our alternative model is still a random walk, but the increments are
‘exponentially twisted’. More precisely: if f (·) is the density of the Xm under
P, then the density under Q belongs to the family

fϑ(x) = f (x) · eϑx

M(ϑ)
.

It is readily verified that, in order to make sure that E
QX1 = a, we should take

ϑ := ϑ(a), with M ′(ϑ(a))/M(ϑ(a)) = a (which we assume to exist); one can
prove that a > μ entails that ϑ(a) > 0.
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Suppose that this change of measure is performed. Then we obtain

pn(a) = E
Q

n (LI) = E
Q

n

((
M(ϑ(a))

eϑ(a)X1
· · · M(ϑ(a))

eϑ(a)Xn

)
× I

)

= (M(ϑ(a)))nE
Q

n

(
e−ϑ(a)Sn × I

)
,

where we have added the subscript n to stress dependence on n. Interestingly, we
find the following corollary: as on {I = 1} we have that Sn ≥ na, this identity
directly yields the celebrated Chernoff bound pn(a) ≤ (M(ϑ(a)) · e−ϑ(a)a)n, or,
equivalently,

pn(a) ≤ e−nI (a),

where I (a) := supϑ(ϑa − log M(ϑ)) = ϑ(a)a − log M(ϑ(a)) is the Legendre–
Fenchel transform of log M(ϑ). Let us now further analyze E

Q

n

(
e−ϑ(a)Sn × I

)
.

Notice that under the measure Q the event {Sn/n ≥ a} is not rare anymore; we
are therefore essentially in a central limit theorem setting. In other words, one
may approximate the distribution of Sn under Q by a N (na, nv) random variable,
where

v := VarQ(X1) = d2

dϑ2
log M(ϑ)

∣∣∣∣
ϑ=ϑ(a)

.

We thus obtain the following expression (n large) for E
Q

n

(
e−ϑ(a)Sn × I

)
:∫ ∞

na

e−ϑ(a)xdQ(Sn ≤ x) ≈
∫ ∞

na

e−ϑ(a)x · 1√
2πnv

exp

(
− (x − na)2

2nv

)
dx

(i)=
∫ ∞

0
e−nϑ(a)a · e−nϑ(a)z

√
v

(
n
√

v√
2πnv

)
e− 1

2 nz2
dz

= e−nϑ(a)a

(√
n

2π

)
· e 1

2 nϑ2(a)v

∫ ∞

0
e− 1

2 n(ϑ(a)
√

v+z)2
dz

(ii)= e−nϑ(a)a

(√
n

2π

)
· e 1

2 nϑ2(a)v

∫ ∞

ϑ(a)
√

nv

e− 1
2 w2 1√

n
dw

(iii)≈ e−nϑ(a)a

√
2πnvϑ(a)

.

where (i) is due to the transformation x = n(a + z
√

v), (ii) due to w =√
n(ϑ(a)

√
v + z), whereas (iii) relies on x · exp( 1

2x2)
∫∞
x

exp(− 1
2y2)dy → 1

for x → ∞ [71]. The above reasoning leads to the following result, first found
by Bahadur and Rao [10].

Proposition 1. pn(a)/p̄n(a) → 1 as n → ∞, with

p̄n(a) := e−nI (a) 1√
2πvnϑ(a)

.
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The only non-rigorous step in the above derivation (i.e., approximating the
distribution of Sn by N (na, nv)) can be made formal by using Berry-Esseen
bounds, see [30, Section 3.7].

Thus we have found an asymptotically correct expression for pn(a), but,
lacking precise error bounds, it is of course questionable whether the approxima-
tion p̄n(a) is any good. Moreover, one might be interested in higher degrees of
accuracy. For that reason, we may opt to estimate pn(a) by simulation. We may
do so by performing IS with the Xm exponentially twisted with parameter ϑ(a).

The variance of the estimator is proportional to VarQn (LI) = E
Q

n (L2I ) − p2
n(a).

With a reasoning analogous to the above

E
Q

n (L2I )

e−2nI (a)/(2
√

2πvnϑ(a))
→ 1 as n → ∞,

and as p2
n(a) is roughly of the form exp(−2nI (a))/n (i.e., decaying faster than

E
Q

n (L2I )), we have that VarQn (LI) is asymptotically equal to E
Q

n (L2I ). It also
means that the number of experiments needed to obtain an estimate with prede-
fined precision (in the sense that the ratio between the width of the confidence
interval and the estimate should be below a given number) is roughly propor-
tional to

√
n, where it would have been roughly proportional to

√
ne−nI (a) under

the original measure–hence, a substantial variance reduction is achieved. (As an
aside we mention that, bearing in mind that the length of each run is proportional
in n, we obtain that under Q the simulation effort grows as n

√
n, for a given

relative error.)

Proposition 2. Let Q correspond to the Xm sampled from the exponentially
twisted distribution with parameter ϑ(a). Then Q is asymptotically optimal for
estimating pn(a), as n → ∞.

Remark 1. With the Bahadur–Rao result it follows immediately that it makes
sense to perform IS with the ϑ(a)-twisted distribution. To see this, recall that it
is optimal to mimic as much as possible the zero-variance estimator. Now realize
that, for an m ∈ {1, . . . , n},

lim
n→∞ P(Xm = x | Sn ≥ na) = f (x) lim

n→∞
P(Sn−1 ≥ na − x)

P(Sn ≥ na)

= f (x)
limn→∞(e−nI (a)

√
2πnϑ(a))

exp
(−(n − 1)I

(
na−x
n−1

))√
2π(n − 1)ϑ

(
na−x
n−1

)
= f (x)eI (a)+(x−a)I ′(a) = f (x) · eϑ(a)x

M(ϑ(a))
,

where the equality I ′(a) = ϑ(a) is used (see [20, Ch. IV, Exercise 5]).
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5.2.2 Supremum of a random walk

A second relevant example again concerns a random walk (Sn)n∈N with Sn :=∑n
m=1 Xm. Assuming EX1 < 0, we consider the estimation of the rare event

probability

qb := P

(
sup
n∈N

Sn ≥ b

)
,

for b large. Again it is assumed that the Xm correspond to a light-tailed distribu-
tion; in particular, we assume the existence of a ϑ� > 0 solving log M(ϑ�) = 0.

Suppose that the measure Q corresponds to an exponential twist with parameter
ϑ�. As before, we have the following fundamental equality, with N(b) := inf{n :
Sn ≥ b}:

qb = E
Q

b (LI), where L := e−ϑ�SN(b) , I := 1{N(b)<∞}.

It is readily verified that E
QX1 = M ′(ϑ�) > 0 so that N(b) < ∞ with (under

Q) probability 1; hence qb = E
Q

b (e−ϑ�SN(b) ). We immediately conclude that qb ≤
e−ϑ�b. Also, with SN(b) − b converging under Q to some non-negative random
variable Z [3], assuming M ′(ϑ�) < ∞,

lim
b→∞

qb/q̄b = 1, with q̄b = e−ϑ�b
E

Qe−ϑ�Z.

It is also easily checked that VarQb (LI) behaves as e−2ϑ�bVarQ(e−ϑ�Z), so that
in this case the number of runs needed to obtain a predefined precision (asymp-
totically) does not grow with b. We obtain the following result (cf. [70]).

Proposition 3. Let Q correspond to the Xm sampled from the exponentially
twisted distribution with parameter ϑ�. Then Q has bounded relative error for
estimating qb, as b → ∞.

Remark 2. As before, we can argue that the exponential twist is a natural choice,
as it mimics the zero-variance change of measure. To see this, observe that, for
an m ∈ {1, . . . , N(b)},

lim
b→∞

P

(
Xm = x

∣∣∣∣ sup
n∈N

Sn ≥ b

)
≈ f (x) lim

b→∞
qb−x

qb

= f (x)eϑ�x.

There is an alternative, partly heuristic though intuitively appealing, approach
to find good IS distributions. This relies on the theory of large deviations , and
in particular the concept of ‘cost’ that a random variable behaves as its expo-
nentially twisted version. In the context of the random walk, this cost function
is the Legendre–Fenchel transform I (·) that was introduced in Section 5.2.1:
the cost incurred for the increments Xm behaving as their exponentially twisted
counterpart (with parameter ϑ(a), such that the twisted mean is a) during T time
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units is T I (a). Hence, in order to find the most likely (‘cheapest’) way for the
random walk to reach level b, we have to solve the variational problem [49]

b · min
a > 0

I (a)

a
;

realize that b/a is (approximately) the time the change of measure should be
active. This minimization shows that there is an interesting trade-off: if a is
relatively small (just slightly larger than 0), then the cost per unit of time is
relatively low, but the rare behavior has to be maintained over a long period of
time; if, on the other hand, a is large, then it is extremely rare behavior, but
the time required is small. The slope of the most likely path, say a�, finds the
optimal trade-off between these two extremes. Interestingly, I (a�)/a� equals ϑ�;
to see this, note that, as follows from differentiation with respect to a, a� solves
I ′(a)a = I (a), or, again using I ′(a) = ϑ(a), log M(ϑ(a)) = 0.

A commonly used heuristic is to devise IS algorithms such that under the
new measure Q an exponentially twisted version of the underlying process is
used, where the twisting is such that on average the most likely path is followed.

5.2.3 Caveats

The above two examples suggest that knowledge of the most likely way the
rare event is reached is sufficient to come up with an efficient IS procedure.
One must be very careful, however. Below we will give an example where, at
first glance, one would not expect any difference with the first class of models
introduced above, but where there is in fact asymptotic optimality only under
some additional condition (cf. [39]).

Suppose we wish to estimate

pn(a, b) := P

(
Sn

n
≥ a or

Sn

n
≤ b

)
,

for b < EX1 < a. Assume without loss of generality that I (a) < I (b),
so the ‘most likely point’ in (−∞, b] ∪ [a,∞) is a, in that we have that
pn(a)/pn(a, b) → 1 as n → ∞. In light of the above-mentioned large-deviations
heuristic, it may seem to make sense to twist with ϑ(a). The question is: what
are the variance properties of the resulting estimator? To this end, we have to
analyze

E
Q

n (L2I ) = (EQ

n (e−2ϑ(a)Sn1{Sn≥na}) + E
Q

n (e−2ϑ(a)Sn1{Sn≤nb})
)× (M(ϑ(a)))2n.

We restrict ourselves to the exponential terms (in n); the polynomial terms (such
as 1/

√
n) do not have any impact here, as can be seen immediately. Relying on

the arguments used in our proof of the Bahadur–Rao result, it is found that

lim
n→∞

1

n
log
(
E

Q

n (e−2ϑ(a)Sn1{Sn≥na}) × (M(ϑ(a)))2n
) = −2I (a),
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as might be expected. The second term is more difficult to handle, though. First
observe that the overshoot over level nb (or, more precisely, the undershoot
below level nb) will be modest, and therefore

lim
n→∞

1

n
log
(
E

Q

n (e−2ϑ(a)Sn1{Sn≤nb}) × (M(ϑ(a)))2n
)

= −2ϑ(a)b + lim
n→∞

1

n
log Q

(
Sn

n
≤ b

)
+ 2 log M(ϑ(a)).

To find the decay rate of Q(Sn/n ≤ b), let J (·) be the Legendre–Fenchel trans-
form under Q, that is

J (b) = sup
ϑ

(
ϑb − log E

QeϑX1
)

= sup
ϑ

(ϑb − log M(ϑ + ϑ(a)) + log M(ϑ(a)))

= −ϑ(a)b + sup
ϑ

((ϑ + ϑ(a))b − log M(ϑ + ϑ(a))) + log M(ϑ(a))

= −ϑ(a)b + I (b) + log M(ϑ(a)).

We obtain that

lim
n→∞

1

n
log
(
E

Q

n (e−2ϑ(a)Sn1{Sn≤nb}) × (M(ϑ(a)))2n
)

= −ϑ(a)b − I (b) + log M(ϑ(a)).

Above we saw that, in order for the number of runs to grow subexponentially
in n, VarQn (LI) should decrease (on an exponential scale) as fast as p2

n(a, b). In
other words, we have this behavior if 2I (a) ≤ ϑ(a)b + I (b) − log M(ϑ(a)), or

I (a) + ϑ(a)a ≤ I (b) + ϑ(a)b.

The first question is whether under all circumstances, that is, for all b < EX1 < a,
this condition is met. This is clearly not the case. To study this more carefully, fix
a, and find b for which the condition is satisfied. Observe that (i) the condition
is met with equality at b = a; (ii) I (b) + ϑ(a)b goes to ∞ for b → −∞; (iii)
the equation is not met at b = μ, as ϑ(a)(a − b) > 0 and I (μ) = 0; and (iv)
I (b) + ϑ(a)b is convex (as any Legendre–Fenchel transform I (·) is convex), so
there are at most two points at which the condition is met with equality. Conclude
that there is precisely one other intersection, attained for some b� < EX1. For
all b ≤ b�, the number of runs needed grows subexponentially.

Example 1. Let the Xm be i.i.d. samples from an exponential distribution with
mean 1. We wish to estimate pn(2, b) for some b < 1. We have that θ(a) =
1 − 1/a and I (a) = a − 1 − log a. The inequality to be verified is therefore

3 − log 2 ≤ 3

2
b − log b, or log b ≤ 3

2
b − 3 + log 2.
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A standard numerical search procedure yields that the condition is fulfilled when
0 < b < 0.119.

Heuristically put, the problem of twisting with ϑ(a) is the following. Even
in IS, we may have that Sn ≤ nb, and if this happens the associated likelihood
is huge. When b is smaller than the threshold b� this happens so rarely that
the performance of the estimator is still good, but for b ∈ (b�, μ) the variance
blows up. In particular, in the latter case the number of runs needed to achieve a
certain predefined precision is still exponential. For related examples, and more
underlying theory, see [24, 38, 67, 68].

The phenomenon encountered in this setting plays a role in many situations.
It shows that knowledge of the most likely way the rare event is reached is not
sufficient for finding a fast IS algorithm. Essentially three remedies have been
proposed:

• Partitioning . In the example above we can split the rare event of interest:

pn(a, b) := P

(
Sn

n
≥ a

)
+ P

(
Sn

n
≤ b

)
.

Both halves of the split can be efficiently simulated by using the procedure
described in Section 5.2.1. This partitioning technique works when the rare
event can be split into a finite number of subevents [18, 32].

• Adaptive change of measure (or state-dependent change of measure). The
main problem arising in the above example is that the rare event can be
reached through a path that is ‘far away’ from the most likely path, leading
to a large likelihood. This effect can be avoided by updating the change
of measure during the simulation run. Consider the example mentioned
above. First X1 is sampled from an exponentially twisted distribution with
parameter ϑ1 := ϑ(a) (recall our assumption that I (a) < I (b)). Suppose
that X1 had value x1; then in fact

∑n
m=2 Xm should be larger than na − x1

or smaller than nb − x1. If x1 + (n − 1)μ ≥ na or x1 + (n − 1)μ ≤ nb

then even ‘average behavior’ would lead to the rare event, and we draw
X2 from the original distribution. If not, then we sample X2 using the twist
ϑ2 := ϑ((na − x1)/(n − 1)) if

I

(
na − x1

n − 1

)
< I

(
nb − x1

n − 1

)

(i.e., it is ‘easier’ for Sn to reach [na,∞) than (−∞, nb]); otherwise we use
the twist ϑ2 := ϑ((nb − x1)/(n − 1)). The sampling procedure continues
along these lines: X3 is drawn using knowledge of x1 and x2, etc. In
other words, during the simulation run the most likely point of entering
(−∞, nb] ∪ [na,∞) may switch from na to nb. In this way the likelihood
is better controlled, thus leading to a procedure with substantially better
performance properties [35].
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• Random change of measure. In this approach, we flip a coin, and the out-
come decides from which twisted distribution we should sample. Let p be
strictly between 0 and 1, and let our measure Q be such that we use with
probability p (or 1 − p) exponential twisting with parameter ϑ(a) > 0 (or
ϑ(b) < 0). The likelihood equals

L = (peϑ(a)SnM(ϑ(a))n + (1 − p)eϑ(b)SnM(ϑ(b))n
)−1

.

Now it is readily verified that

E
Q

n (L2I ) ≤ E
Q

n

((
1{Sn≥na}

peϑ(a)SnM(ϑ(a))

)2

+
(

1{Sn≤nb}
(1 − p)eϑ(b)SnM(ϑ(b))

)2
)

.

It is immediate that the previous display is majorized by

1

p2
e−2nI (a) + 1

(1 − p)2
e−2nI (b),

which has decay rate −2I (a), so that the procedure is indeed asymptoti-
cally optimal. This random twist method was proposed by Sadowsky and
Bucklew [68].

5.3 Queues: the light-tailed case

In this section we will show how the ideas presented in Section 5.2.2 can be
used to sample large-deviations probabilities in queuing systems with light-tailed
input. We start by addressing this issue for rare events related to long delays
or a large workload; then we shift our attention to probabilities related to the
number of customers in the queue. We conclude by treating a number of special
subjects: queuing systems with Markov-modulated input, and queues operating
under service disciplines that are more sophisticated than just first-in-first-out
(such as processor sharing).

5.3.1 Long delays, large workload

Consider the class of so-called GI/G/1 queues: customers arrive according to
some arrival process (with i.i.d. interarrival times (Am)m∈N, distributed as some
random variable A with mgf α(ϑ) := E exp(ϑA)) at some service resource; let
them bring along i.i.d. service requirements (Bm)m∈N distributed as some random
variable B with mgf β(ϑ) := E exp(ϑB), and let the system be emptied at a
constant rate of, say, 1. We assume that the input is light-tailed, that is, there is
a ϑ > 0 such that β(ϑ) < ∞.

It is well known that waiting time Dn of the nth customer, not including the
service time, has the same distribution as Mn := supm=0,...,n Sm, where Sm :=∑m

k=1 Xk and Xk := Bk−1 − Ak−1, and in particular, the steady-state waiting time
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D is distributed as M∞ = supm∈N
Sm; here it is tacitly assumed that EX1 < 0.

Importantly, this means that, in order to estimate the probability that D > x, we
can use the algorithm presented in Section 5.2.2; ϑ� is the positive solution to
the equation α(−ϑ)β(ϑ) = 1.

Example 2. Consider the M/M/1 queue with exponential interarrival times (of
mean 1/λ) and exponential service times (of mean 1/μ), where � := λ/μ <

1). It is easily computed that ϑ� = μ − λ > 0. The twisted distribution of the
increments Xm has moment generating function(

λ

λ + ϑ + ϑ�

/
λ

λ + ϑ�

)
×
(

μ

μ − (ϑ + ϑ�)

/
μ

μ − ϑ�

)
= μ

μ + ϑ
· λ

λ − ϑ
.

This means that in IS one simulates the interarrival times from an exp(μ) dis-
tribution and the service requirements from an exp(λ) distribution, that is, the
roles of λ and μ are interchanged. This, inherently unstable, queuing system has
apparently optimal variance reduction properties.

The tail probabilities of the steady-state workload W can be simulated simi-
larly. With A(s, t) denoting the amount of work generated in the interval [s, t),
Reich’s formula states that W has the same distribution as supt≥0(A(−t, 0) − t).

As opposed to processes of the type Sn, this is not a discrete-time random walk,
but such a process can be embedded. To this end, let us restrict ourselves for
convenience’ sake to the class of M/G/1 queues. Then, with Tn the epoch of
the nth arrival after 0 (use reversibility!),

sup
t≥0

(A(−t, 0) − t)
D= sup

n∈N

(A(0, Tn) − Tn)
D= sup

n∈N

n∑
m=1

Xm,

with Xm := Bm − (Tm − Tm−1). The equation M(ϑ�) = 1 becomes λ(β(ϑ�) −
1) = ϑ�. Then the procedure described above can be applied.

5.3.2 Large number of customers

We saw above that efficient simulation of long delays on one hand, and a large
workload on the other hand, can be done with the same change of measure.
Interestingly, to achieve a large number of customers this change of measure
performs excellently, too. In the setting of a GI/G/1 queue operating under
the first-come-first-serve discipline, denote by ζ(K) the probability that within a
busy period the number of customers exceeds K ; later we extend the analysis to
the steady-state probability π(K) of having K or more customers in the system.
In [54] it was proven that

lim
K→∞

1

K
log ζ(K) = lim

K→∞
1

K
log π(K) = − log β(ϑ�).



100 QUEUES

We now show that the importance sampling algorithm proposed above does
indeed lead to a subexponential number of runs needed to obtain an estimate
with predefined precision. To this end, define

T := inf

{
n :

n∑
m=1

Ai >

n∑
m=1

Bi

}
, T (K) := inf

{
n>K :

n∑
m=1

Ai <

n−K∑
m=1

Bi

}
.

Clearly, ζ(K) = P(T (K) < T ). Also, ζ(K) ≤ E
Q(L | I = 1), with I being the

indicator function of {T (K) < T ). Consider L on {I = 1}. Let C be the number
of customers whose service has started before the overflow; observe that we have
scheduled T (K) − 1 interarrival times. Hence

L =
T (K)−1∏

m=1

(
eϑ�Amα(−ϑ�)

) C∏
m=1

(
e−ϑ�Bmβ(ϑ�)

)
,

which can be simplified to

exp

(
ϑ�

T (K)−1∑
m=1

Am − ϑ�

C∑
m=1

Bm

)
× (β(ϑ�))C−T (K)+1.

The difference between the number of customers who entered the system and
those who have been served (the backlog) exceeds (at an overflow) K, so
C cannot be larger than T (K) − K . Apart from that, we have

∑T (K)−1
m=1 Ai <∑C

m=1 Bm. We conclude that, under Q,

LI ≤ (β(ϑ�))1−K.

This also yields E
Q

K(L2I ) ≤ (β(ϑ�))2−2K. An immediate consequence is the fol-
lowing.

Proposition 4. Let Q correspond to the Am (Bm) sampled from the exponentially
twisted distribution with parameter −ϑ� (ϑ�). Then Q is asymptotically optimal
for estimating ζ(K), as K → ∞.

Recall that π(K) denotes the steady-state probability that there are more than
K customers in the queue. Using renewal arguments, it is clear that π(K) equals
the ratio of the mean number of customers seeing K or more customers upon
arrival during a busy cycle, say EN(K), and the mean number of customers
arriving during a busy cycle, say EN . The denominator does not involve a rare
event, and its estimation is therefore standard. The numerator, however, corre-
sponds to a rare event, particularly for K large. Observe that one cannot estimate
EN(K) by sampling under Q (as defined above) all the time, as there is a positive
probability that under Q the busy cycle does not end. This has led to the idea of
‘measure-specific dynamic importance sampling’ [40]. This concept means that
one simulates the queue under Q (and updates the likelihood) until either the



QUEUES 101

busy cycle has ended or the number of customers has exceeded K . In the latter
case one ‘turns off’ the IS: the remainder of the busy cycle is simulated under the
original measure P (the fact that the system is stable entails that the busy cycle
will end under P); evidently, in this second part of the busy cycle the likelihood
is not updated.

As an aside, we mention that this type of IS can be used very well to esti-
mate the probability that, in the context of a GI/G/1 queue, the length of the
busy period, say P , exceeds some large value x. Let us, for convenience’ sake,
restrict ourselves to the M/G/1 queue; the arrival rate of jobs is λ. Using the
large-deviations heuristics introduced in Section 5.2.2 one can guess a good alter-
native measure Q, as follows. The heuristic indicates that the optimal path is such
that one generates traffic at a constant rate for a while. If one generates traffic
at a rate a during a time interval of length s, and with μ denoting the drift
λ EB − 1, the decay rate ϑ� solves the variational problem mina〉0 I (a)s, where
s is such that as + μ(x − s) = 0 (because then the busy period does indeed end
at x; hence s = −μx/(a − μ)). Here I (a) is the Legendre–Fenchel transform
corresponding to the (net) amount of work generated in one unit of time; it is
readily verified that the corresponding mgf equals

M(ϑ) = e−ϑ

∞∑
k=0

e−λ λk

k!
(β(ϑ))k = exp(−ϑ − λ + λβ(ϑ)).

We thus find that the decay rate should equal

(−μ) · x · inf
a≥0

I (a)

a − μ

(recall that −μ is a positive number). It can be checked that the optimum is
attained for a� = 0 (this follows immediately from the convexity of I (·) and
I (μ) = 0); in other words, the optimal path is such that the queue is ‘almost
empty’ all the time between 0 and x. It can be checked that twisting the dis-
tribution of the interarrival times with −ϑ(a�) and the distribution of the job
sizes with ϑ(a�) (which is a change of measure that converts the model into
a system with load 1; check!) indeed yields an asymptotically optimal proce-
dure. Details are omitted here, but see also Section 5.3.4 on sojourn times in the
processor-sharing queue.

5.3.3 Queues with Markov-modulated input

The GI/G/1 queues described above do not readily lend themselves to modeling
queues with correlated input. A model that does incorporate this feature is the
queue with so-called Markov-modulated fluid input. The simplest model of this
kind is as follows. Consider an irreducible continuous-time Markov process X(·),
living on a finite state space {1, . . . , d}, with generator matrix  = (λij )

d
i,j=1

and π denoting its (unique) steady-state distribution. Then traffic is generated
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at a constant rate ri ≥ 0 if the Markov process is in state i, and this traffic is
transmitted into a queue. The queue is emptied at a constant service rate C; to
ensure stability it is assumed that the mean input rate is smaller than the service
rate:

∑d
i=1 πiri < C.

There are algorithms for finding the steady-state buffer content distribution
of this system [2, 50], but these involve the solution of an eigensystem and, in
addition, a linear system. As the corresponding numerical computations can be
time-consuming and error-prone (particularly the linear system), one may want
to resort to estimating overflow probabilities relying on IS.

First recall that the steady-state workload is distributed as supt≥0(A(−t, 0) −
Ct), with

A(s, t) =
∫ t

s

rX(u)du,

or supt≥0 Ā(−t, 0), with Ā(s, t) := A(s, t) − C · (t − s). We are interested in

γ (B) := P

(
sup
t≥0

Ā(−t, 0) ≥ B

)
.

As the process is assumed to be in steady state at time 0, we can let it start in
state i with probability πi . To get a good idea of a suitable change of measure, let
us first consider the values of A(−t, 0) at the epochs when the Markov process
(started at time 0 in state i, but looking backwards in time) enters this state i again.
With Tm the epoch of the mth such visit, we let Xm denote Ā(Tm, Tm−1). These
increments Xm are i.i.d.; the theory of Section 5.2.2 suggests that we have to solve
the equation E exp(ϑX1) = 1. As we are looking backwards in time, we have
to work with the time-reversed generator ̄ = (λ̄ij )

d
i,j=1, where λ̄ij := λjiπj /πi

for i �= j (and λ̄ii = λii ; verify that this does lead to a proper generator matrix!).
In general, we cannot find a closed-form expression for E exp(ϑX1), but we can
write, with λi := −λii ,

EeϑX1 =
∑

j �=i λ̄ij xj

λi − (ri − C)ϑ

where xj = xj (ϑ) is the mgf of the net amount of fluid generated starting in
state j until absorption in state i. Also, bearing in mind that, as we want to find
ϑ�, we can a priori impose that xi = 1,

xj = λ̄j i +∑k �=i,k �=j λ̄jkxk

λj − (rj − C)ϑ
.

Now we have to find the ϑ� such that E exp(ϑ�X1) = 1. It is readily verified
that the above equations can be rewritten as follows: with xi ≡ 1, we get for
j = 1, . . . , d ,

−(ri − C)ϑ�xj =
d∑

k=1

λ̄jkxk.
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With R := diag{r}, and assuming that ri �= C for all i = 1, . . . , d, this set of
equations can be rewritten as the eigensystem

−ϑ�x = (R − CI)−1̄x.

Since the xj represent mgfs, it is immediate that they are positive; this could also
be seen by using the Perron–Frobenius theorem. It is also clear that the value of
ϑ� does not depend on the specific state i.

Now that we know how to find the twist parameter ϑ�, we can study the
following change of measure. Let Q correspond to a Markov-modulated fluid
process in which the generator M = (μij )

d
i,j=1 is used rather than ̄, where

μij := λ̄ij xj /xi . Then

μi := −μii =
∑
j �=i

μij =
∑
j �=i

λ̄ij

xj

xi

= λi − (ri − C)ϑ�

(where it is noted that the last equation has the intuitive explanation that, under
this new measure, the process spends per visit more time in states i with ri > C

and less time in states with ri < C; it can even be verified that under Q the drift
becomes positive). Now consider the likelihood L of a path, generated under Q,
that is such that supt≥0 Ā(−t, 0) > B. Let Jm be the state of the Markov process
after the mth jump, Tm the time spent there, and N the number of jumps until
the process exceeds B. Then it is easily verified that the likelihood is given by

L = λ̄I0I1 · · · λ̄JN−1JN

μI0I1 · · ·μJN−1JN

· λJN

μJN

· exp

(
−

N∑
m=0

(λ̄Jm − μJm)Tm

)

= xJ0

xJN

λJN

μJN

· exp

(
−

N∑
m=0

(λ̄Jm − μJm)Tm

)

≤ k exp

(
−

N∑
m=0

(λ̄Jm − μJm)Tm

)
,

where

k := max
i,j

xi

xj

λj

μj

< ∞;

notice that our specific choice for Q is such that the likelihood has a nice and
manageable form, as almost all xi-terms vanish (cf. [9, 57]). Observe that on
{I = 1} (i.e., in overflow cycles) we have that L ≤ k exp(−ϑ�B), so that γ (B) ≤
k exp(−ϑ�B). In fact, it can be proven that (1/B) log γ (B) → −ϑ� as B → ∞,
so that asymptotic optimality directly follows.

Proposition 5. Let Q correspond to the X(·) generated under the transition rates
μij . Then Q is asymptotically optimal for estimating γ (B), as B → ∞.
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Also in this context large-deviations heuristics can be used to find the change
of measure Q. The cost per unit of time of behaving as the exponentially twisted
version (such that the ‘new’ input rate becomes a) is

I (a) = sup
ϑ

(ϑa − N(ϑ)), where N(ϑ) := lim
t→∞

1

t
log eϑA(t);

interestingly N(ϑ) can be alternatively characterized as ϑC(ϑ), with C(ϑ) being
the largest (real) eigenvalue of R + /ϑ [49]. Then the ‘optimal slope’ a� fol-
lows from minimizing I (a)/(a − C) over all a > C (and, in addition, ϑ� =
I (a�)/(a� − C)). As shown in [57], yet another way of characterizing the decay
rate as a variational problem is by using the concept of relative entropy of M with
respect to ̄. Informally, by analogy with the i.i.d. case, the cost of X(·) behaving
as a Markov process with generator matrix M for one unit of time, with � being
the invariant measure of M , is given by a form of Kullback–Leibler distance:

I (M | ̄) :=
d∑

i=1

�i

∑
j �=i

μij log
μij

λ̄ij

+
d∑

i=1

�i(μii − λ̄ii ).

To find the rates μij that should be used in the IS, one has to minimize

b · I (M | ̄)∑d
i=1 �iri − C

over all generator matrices M such that
∑d

i=1 �iri > C. It can be verified that
this leads to the same change of measure Q as derived above.

5.3.4 Sojourn times in processor-sharing queues

In the previous subsection, the rare event under consideration related to the
queue attaining an unusually high level, in terms of either workload or the
number of customers. Importance sampling, however, can also be used to ana-
lyze the efficacy of scheduling disciplines that are more sophisticated than just
first-come-first-serve. Let us, for example, consider the estimation of tail probabil-
ities of the sojourn times in a queue that is operating under the processor-sharing
discipline; for ease of exposition we look specifically at the case of Poisson input,
that is, the M/G/1-PS queue.

Let jobs arrive according to a Poisson process with rate λ, and let the jobs
be independently and identically distributed as a random variable B with mgf
β(ϑ) (again assumed to exist for some positive ϑ); also � := λβ ′(0) < 1. It has
been proven [59] that the probability that an arbitrary sojourn time exceeds x,
say δ(x), obeys, under weak conditions on the tail of the job-size distribution,

lim
x→∞

1

x
log δ(x) = −ϑ� − λ + λβ(ϑ�),

where ϑ� solves λβ ′(ϑ�) = 1. Interestingly, this decay rate coincides with the
decay rate of the probability that a busy period exceeds x. In view of this, it
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makes sense to consider IS under the measure Q, in which λ is replaced by
λ� := λβ(ϑ�), and that the jobs have mgf β(ϑ + ϑ�)/β(ϑ�) rather than β(ϑ);
notice here that the load under Q equals

�Q := λ�
E

QB = λβ(ϑ�) · β ′(ϑ�)

β(ϑ�)
= 1.

The sojourn time of a ‘tagged’ job (say that it arrives at time 0, seeing the
system in equilibrium) exceeding x, is the result of three factors:

(i) the jobs already present at time zero (both their number, say Q0, and their
residual sizes, say B̄1, . . . , B̄Q0 ; it is a well-known result that under the
original distribution Q0 has a geometric distribution with success probability
�, whereas the B̄i have the so-called residual life distribution of the Bi);

(ii) the size B0 of the tagged job itself;

(iii) the jobs arriving between 0 and x.

Suppose that we indeed change the arrival rate and distribution of the jobs arriving
in (0, x) as described above, and that we twist the distribution of Q0 with ϑQ0 ,
the residual jobs present at time 0 with ϑB̄ , and the tagged job with ϑB0 . With
W :=∑Q0

n=1 B̄n denoting the workload at time 0, it can be seen that the likelihood
L is given by L1L2L3, where L1 is the contribution due to the jobs present at
time 0, L2 due to the tagged jobs, and L3 due to the job arriving at time 0:

L1 :=
(
e−ϑQ0 EeϑQ0Q0

)
·
(
e−ϑB̄W

EeϑB̄ B̄
)

,

L2 := e
−ϑB0 β(ϑB0),

L3 :=
(

e(λ�−λ)x

(
λ

λ�

)N(x)
)(

e−ϑ�A(x)
(
β(ϑ�)

)N(x)
)

= e(λ�−λ)x−ϑ�A(x),

where A(x) (N(x)) is the amount of work (number of customers) arriving in
(0, x).

The comparison with the busy period asymptotics suggests that we may take
ϑQ0 = ϑB̄ = ϑB0 = 0. Using the inequality W + B0 + A(x) > x under {I = 1}
(a necessary condition is that the busy period has not ended), it is not hard to
see that then

E
Q(L2I ) ≤ e−2(λ−λ�)x−2ϑ�A(x)

E
Qe2ϑ�(B0+W)

= e−2(λ−λ�)x−2ϑ�A(x)β(2ϑ�)EQe2ϑ�W,

but neither β(2ϑ�) nor E
Qe2ϑ�W is necessarily finite. So, interestingly, one needs

to twist Q0, the B̄n, and B0. Consider, for instance, the choice ϑQ0 = log β(ϑ�)

and ϑB̄ = ϑB0 = ϑ�; then, on {I = 1}, for some finite constant k,

L ≤ ke−(λ−λ�)x−ϑ�A(x),
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so that we have asymptotic optimality. For instance in the M/M/1 case (with
mean job size μ−1), we have that λ� = √

λμ, that the jobs arriving in (0, x) are
also exponentially distributed with mean (

√
λμ)−1, so that the system has load

1; in addition, however, it turns out that we need to sample both the B̄n and B0

from an exponential distribution with mean (
√

λμ)−1, and Q0 from a geometric
distribution with success probability

√
� rather than �.

5.4 Queues: the heavy-tailed case

As indicated in Section 5.1, in queues with heavy-tailed input overflow is often
essentially due to a single rare event, and, as a consequence, the algorithms pre-
sented in the previous section do not apply. In this section we review algorithms
that have been designed for heavy-tailed queues. The first subsection is devoted
to so-called ‘conditional Monte Carlo estimators’, whereas the second subsection
focuses on IS-based procedures.

Let us start by gathering together some useful definitions related to
heavy-tailed systems; a general reference in this respect is [36]. A non-negative
random variable X is said to be subexponential if, for two independent copies
X1 and X2 of X, we have P (X1 + X2 >x) ∼ 2P (X >x) as x → ∞, where
f (x) ∼ g(x) means f (x)/g(x) → 1 as x → ∞.

An important special subclass of subexponential random variables is given by
those whose right tail is regularly varying . A random variable X, with tail dis-
tribution F (x) := P (X >x) = 1 − F (x), has a regularly varying right tail with
index α > 0 if F (βx) /F (x) → β−α as x → ∞ for all β > 0. In addition to
regularly varying distributions, the class of subexponential distributions includes
Weibull distributions with ‘shape parameter’ γ ∈ (0, 1); the latter distributions
are roughly such that F (x) ∼ c exp (−βxγ ) for c, β > 0, as x → ∞. Other
popular special cases are log-normal, log-gamma, and t-distributions (where it is
noted that the last two models are particular cases of regular variation).

The subexponential property provides insight into how large deviations tend
to occur in heavy-tailed models. In particular, suppose that Sm = X1 + . . . +
Xm where the Xi are i.i.d. non-negative subexponential random variables. It
follows by induction and simple manipulations that P (Sm > x) ∼ mF (x) ∼
P
(
max1≤j≤m Xj >x

)
as x → ∞. As a consequence we have the following

property.

Proposition 6. As b → ∞,

P

(
max

1≤j≤m
Xj > b

∣∣∣∣ Sm >b

)
−→ 1.

The previous proposition illustrates the so-called ‘catastrophe’ principle,
which, as mentioned in Section 5.1, governs the extreme behavior of heavy-tailed
systems. Informally, in this setting it says that large deviations are caused by
extremes in just a single component: the sum is large because one increment



QUEUES 107

is large. In previous sections we saw that a convenient change of measure
for IS is suggested by studying the asymptotic conditional distribution of the
underlying process given the rare event of interest. Now, consider applying the
idea behind such conditional description to a simple example. Suppose that we
are interested in estimating P (Sm > b) efficiently as b → ∞. Proposition 6
indicates that an asymptotic conditional description of the Xj , j = 1, . . . , m,
given Sm > b, assigns zero mass to sample paths for which all the random
variables are less than b. As a consequence, the natural asymptotic description of
Xj given Sm > b is singular with respect to the nominal (original) distribution
and therefore, contrary to the light-tailed case, a direct importance sampling
approach is not feasible. This feature was observed by Asmussen et al. [6], who
provide an extended discussion of the difficulties that are inherent in the design
of efficient simulation estimators for heavy-tailed systems.

Throughout the rest of the section we shall provide a concise overview of the
techniques that are applicable to rare event simulation for heavy-tailed models.
We shall focus on analyzing the waiting time in the M/G/1 queue; extensions
are briefly discussed at the end of this section. The Pollaczek–Khinchine rep-
resentation (see [4, p. 237] yields that the steady-state waiting time, D, in the
M/G/1 queue with load � can be written as a random geometric sum. More
precisely, let M be a geometric random variable with success parameter 1 − �,
that is, P(M = m) = (1 − �)�m, and let Xj , j = 1, 2, . . . , be a sequence of i.i.d.
positive random variables independent of M such that

P (X1 > x) =
∫ ∞

x

P (B > s)

EB
ds,

where B represents, as before, a generic service time. Then we have

P (D > b) = P (SM > b) .

Consequently, if X1 is subexponential (which is the case if B is), then
P(D > b) ∼ EM · P(X1 > b) as b → ∞ (see [36]). The development of
efficient simulation estimators for the tail of D has traditionally focused (as
we will do here) on estimating P (Sm > b) efficiently as b → ∞ (for fixed m).
The reason is that, in this heavy-tailed setting, the event {SM > b} is essentially
caused by extreme behavior of the increments Xj , and not so much by ‘unusual
behavior’ of the geometric random variable M .

5.4.1 Conditional Monte Carlo estimators

As indicated before, developing efficient IS estimators for the tail of Sm is not
straightforward. An alternative idea is based on ‘conditional Monte Carlo’, and
was first studied by Asmussen and Binswanger [5]; see also [6]. Note that we
evidently have direct access to the distribution of X(m) := max1≤j≤m Xj . Using
the catastrophe principle, it seems appropriate to estimate P (Sm > b) by condi-
tioning on the first m − 1 order statistics X(1), . . . , X(m−1) (i.e., integrating out
the most relevant contribution, namely X(m)). Based on this idea, [5] provided
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the following result which is the first instance of a provably efficient estimator
in a heavy-tailed setting. Throughout the rest of the section we use the notation
x ∨ y := max (x, y).

Proposition 7. Assume that X1 has a density and a regularly varying right tail
with index α > 0. Define S(m−1) := X(1) + . . . + X(m−1) and set

Z0 (b) := P
(
Sm >b | X(1), . . . , X(m−1)

) = F
((

b − S(m−1)

) ∨ X(m−1)

)
F
(
X(m−1)

) .

Then Z0 (b) is an asymptotically optimal estimator for P (Sm > b) as b → ∞.

Proof. We here sketch the proof of the result; for more details, see the Appendix
to [6]. Note that, with E(X; E) := E(X · 1{E}),

E
(
Z0 (b)2) = E

(
Z0 (b)2 ;X(m−1) ≤ b/2

)+ E
(
Z0 (b)2 ; X(m−1) > b/2

)
.

Observe that

E
(
Z0 (b)2 ;X(m−1) > b/2

) ≤ P
(
X(m−1) > b/2

)
,

where the right-hand side is O(F (b)2), that is, roughly proportional to b−2α , as
b → ∞, as two (out of m) components have to be larger than b/2.

Now, let us denote the density of X1 by f (·). It is evident from

P(X(m−1) ≤ x) = m(F(x))m−1F(x) + (F (x))m

that the density of X(m−1), which we denote by f(m−1) (·), satisfies

f(m−1) (x) = m(m − 1) F (x)m−2 F (x) f (x) .

In addition,

E

(
Z0 (b)2 ;X(m−1) ≤ b

2

)
=
∫ b/m

0
E
(
Z0 (b)2 ;X(m−1) ∈ dx

)

+
∫ b/2

b/m

E
(
Z0 (b)2 ;X(m−1) ∈ dx

)
.

Consider the first of these integrals. Observe that on the event X(m−1) < b/m we
have that S(m−1) < (m − 1) b/m and therefore∫ b/m

0
E
(
Z0 (b)2 ; X(m−1) ∈ dx

) ≤
∫ b/m

0

m2F (b/m)2 f (x)

F (x)
dx

= [−m2F (b/m)2 · log F(x)
]b/m

0

= O
(
F (b)2 log b

)
.

The second integral (i.e., the one ranging from b/m to b/2) is handled as indicated
above. Asymptotic optimality then follows as a result of the previous estimates,
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in conjunction with the fact that the probability of interest essentially vanishes
as F(b). �

Regular variation has been used extensively in the previous result, so it may
not be surprising that the estimator Z0 (b) fails to be asymptotically optimal for
other subexponential distributions (e.g., Weibull). Improved Monte Carlo esti-
mators have been recently proposed by Asmussen and Kroese [8]. In particular,
they observe that in order to reduce uncertainty, one can also consider the index
corresponding to the largest jump and note that

P (Sm > b) =
m∑

j=1

E
(
P
(
Sm > x, X(m) = Xj

∣∣X1, . . . , Xj−1, Xj+1, . . . , Xm

))
= m · E

(
P
(
Sm > x, X(m) = Xm

∣∣X1, . . . , Xm−1
))

.

Therefore, a natural conditional Monte Carlo estimator that one can consider is

Z1 (b) := m · P
(
Sm > x, X(m) = Xm

∣∣X1, . . . , Xm−1
)

= m · F ((b − Sm−1) ∨ max(Xj : j ≤ m − 1)
)
.

In [8] the following result is proven (the analysis is similar to that given in the
proof of Proposition 7 and therefore the details are omitted).

Proposition 8. If X1 has a density and a regularly varying tail, then the estimator
Z1 (b) for P (Sm > b) has bounded relative error as b → ∞. In addition, if X1

has Weibull-type tails with index γ ∈ (0, 0.58), then Z1 (b) is an asymptotically
optimal estimator for P (Sm >b) as b → ∞.

The previous proposition indicates that Z1 (b) can only be guaranteed to
be efficient if γ is sufficiently small. In the design of efficient estimators in
the heavy-tailed setting it often occurs that models with less heavy tails than,
say, regularly varying tend to require more and more information of all the
components (not only the largest one); for γ ↑ 1 it will resemble the case in
which the Xj are exponentially distributed, in that all components matter. It is
partly due to this feature that the majority of the efficient estimators developed
for heavy-tailed systems assume special characteristics (such as regular variation
or Weibull-type tails). Notable exceptions are the algorithms presented in [12,
15], which apply to general subexponential distributions. Additional conditional
Monte Carlo algorithms have been proposed for the transient distribution of an
M/G/1 queue in [66]; the proposed estimator is proved to have bounded relative
error for regularly varying input.

5.4.2 Importance sampling estimators

As mentioned before, [6] discusses the difficulties of applying IS to heavy-tailed
problems – the main problems are summarized by the singularity issue indicated
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above. Nevertheless, [6] also studies ideas that give rise to provably efficient
algorithms. For instance, it is noted that if the Xj have a density and regularly
varying tails with index α > 0, then an asymptotically optimal importance sam-
pling scheme for estimating P (Sm > b) is obtained by sampling the Xj in an
i.i.d. fashion according to the tail distribution P̃

(
Xj > x

) = 1/ log (e + x) for
x ≥ 0. Asymptotic optimality of this estimator easily follows by applying Kara-
mata’s theorem (see [7, p. 176]). This IS selection biases the increments to induce
very heavy-tailed distributions and therefore ‘oversamples’ paths for which sev-
eral (i.e., not only the maximum) components contribute to the occurrence of
the rare event. However, this procedure, although asymptotically optimal, does
not seem to perform well in practice [7, p. 176].

Another IS approach was suggested by Juneja and Shahabuddin [46], and is
based on applying exponential tilting type ideas via the hazard rate corresponding
to the Xj . A basic observation behind this hazard rate tilting approach is the
fact that if the Xj have a positive density, then P

(
Xj > t

) = exp (− (t)),
where  (t) := ∫ t

0 λ (s) ds and λ (·) is the hazard rate of Xj . In particular, if
T is exponentially distributed with mean 1, then −1 (T ) is a copy of Xj and
therefore, for appropriate θ , we can define hazard rate tilting densities fθ (·) via

fθ (x) = exp (θ (x)) f (x)

E exp
(
θ
(
Xj

)) = exp (θ (x)) f (x) (1 − θ) .

The corresponding hazard-rate IS estimator for P (Sm > b) takes the form

Z2 (b) :=
exp

(
−∑m

j=1 θ
(
Xj

))
(1 − θ)m

· 1{Sm > b}.

Using Eθ (·) to denote the expectation operator assuming that the Xj are i.i.d.
with density fθ (·), we obtain

Eθ

(
Z2 (b)2) = (1 − θ)−2m

Eθ

⎛
⎝exp

⎛
⎝−2

m∑
j=1

θ
(
Xj

)⎞⎠ ; Sm >b

⎞
⎠ .

Assuming that  (·) is a concave function (as is the case for Pareto and Weibull
random variables), we obtain that if Sm > b then

m∑
j=1


(
Xj

) ≥ 

⎛
⎝ m∑

j=1

Xj

⎞
⎠ = (Sm) ≥  (b) (5.1)

and therefore, if θ ≥ 0, we obtain

Eθ

(
Z2 (b)2) ≤ (1 − θ)−2m exp (−2θ (b)) .

Taking θ = 1 − η/ (b) for some η > 0 yields the following result.
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Proposition 9. If the Xj , j = 1, . . . , m, have a concave cumulative hazard rate
function  (·), then Z2 (b) is an asymptotically optimal estimator for P (Sm >b)

as b → ∞.

The previous hazard rate tilting strategy has been improved for the case
in which the number of increments follows a geometric distribution (as is the
case in the M/G/1 setting; see the remarks above). Such approaches involve
suitable translation of the function  (·) applied when tilting. This adjustment
allows us to apply the concavity argument given in (5.1) at a more convenient
location relative to the rare event {Sm > b} (see [47] and references therein).
The idea of hazard-rate tilting has inspired further study in the field as it tries
to develop rare event simulation methodology through a structure that resembles
that of light-tailed input systems (via exponential twisting; see Section 5.3).
Nevertheless, virtually all estimators that take advantage of this idea utilize the
random walk structure substantially and some sort of subadditivity argument on
 (·), as we did in (5.1).

We conclude this subsection with the discussion of recent state-dependent IS
algorithms. Dupuis et al. [33] proposed a change of measure based on mixture
densities that captures the ‘catastrophic’ behavior typical in heavy-tailed large
deviations. A modification to the mixture in [33], analyzed in [14], in the more
general context of a G/G/1 queue, can be described as follows. Given that
Sk−1 = s for 1 ≤ k < m, then the next increment is sampled according to the
density

fk (x| s) = pk (s) f (x)

F (a (b − s))
1{x > a(b−s)} + (1 − pk (s)) f (x)

F (a (b − s))
1{x≤a(b−s)}, (5.2)

where pk (s) ∈ (0, 1) is selected appropriately and a ∈ (0, 1). If k = m (i.e.,
Sm−1 = s), then the increment is sampled according to the law of X1 given
that X1 > b − s. Dupuis et al. [33] obtained a limiting control problem that
allows optimal selection of the pk . Bounded relative error of their estimator is
obtained using a weak-convergence analysis. The parameter a ∈ (0, 1) is impor-
tant in order to incorporate the contribution of sample paths for which more than
one large jump is required to achieve the rare event.

An improved proof technique introduced by Blanchet et al. [14], based on
Lyapunov inequalities, simplifies the analysis in [33] and can be used to design
efficient simulation estimators in more general multidimensional settings; see
also [16]. In [12] it is noted that if one can find positive functions gk (s), for
k = 1, . . . , m, such that

gk−1 (s) ≥ E

(
gk (s + Xk)

f (Xk)

fk (Xk | s)

)
(5.3)

and gm (s) = 1{s > b}, then g0 (0) ≥ Ẽ0Z3 (b)2, where P̃0 (·) denotes the probabil-
ity measure induced by the changes of measure explained in (5.2) given S0 = 0
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and

Z3 (b) := f (X1)

f1 (X1| S0)
× f (X2)

f2 (X2| S1)
× · · · × f (Xm)

fm (Xm| Sm−1)
.

The solution to inequality (5.3) can be considered as a Lyapunov function.
Blanchet et al. [14] describe, in the context of the G/G/1 queue, how to select the
gk (s) approximately of order O(P2(Sm−k > b − s)) in order to achieve bounded
relative error. Using Proposition 6 it is then natural to propose as a candidate
Lyapunov function

gk (s) = min
(
1, ckF (a (b − s))2)

for some constants ck > 0. The parameter a ∈ (0, 1) does not change the asymp-
totic behavior of gk as b → ∞, but is introduced for mathematical convenience.
The parameters pk (s) and ck are selected to satisfy inequality (5.3) which is
equivalent to showing that J1 + J2 ≤ 1, where

J1 := E (gk (s + X) ;X > a (b − s)) F (a (b − s))

gk−1 (s) pk (s)
,

J2 := E (gk (s + X) ;X ≤ a (b − s)) F (a (b − s))

gk−1 (s) (1 − pk (s))
.

Note that J1 ≤ F (a (b − s))2 / (gk−1 (s) pk (s)). Since each of the increments
can cause the rare event, we let pk := 1/(m − k). If gk−1 (s) < 1, then conclude
that

J1 ≤ F (a (b − s))2

ck−1F (a (b − s))2 pk

≤ 1

ck−1pk

.

On the other hand, we have that

J2 ≤ E
(
gk (s) + g′

k (s + ξ)X; X ≤ a (b − s)
)
F (a (b − s))

(1 − pk) gk−1 (s)

where ξ ∈ (0, a (b − s)). Therefore, we obtain (assuming the existence of a
regularly varying density f (·)) that if gk−1 (s) < 1, then it is possible to find
κ ∈ (0, ∞) such that

J2 ≤ ck

ck−1 (1 − pk)
+ κck

ck−1 (b − s + 1) (1 − pk)
.

The previous bound requires that EX1 < ∞ and also that a ∈ (0, 1) in order
to facilitate a suitable dominated convergence argument. Note that if we select
pk := 1/ (m − k) and ck := c (m − k), then we obtain that

J1 + J2 ≤ 1

c (1 + 1/ (m − k))
+ 1

1 − 1/ (m − k)2

(
1 + κ

b − s + 1

)
.
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Clearly, the previous quantity can be set to be smaller than 1 by choosing c > 0
large enough and gk (s) < 1 (which implies that b − s > 0 is sufficiently large).
The algorithm then proceeds by applying the importance sampler (5.2) for the
kth increment only if gk (s) < 1 and sample from the nominal distribution if
gk (s) = 1. The previous analysis yields the following result.

Proposition 10. If X1 is regularly varying with a density and EX1 < ∞, then the
estimator Z3 (b) for P (Sm > b) satisfies

Ẽ0Z3 (b) ≤ min
(
cmF (b)2 , 1

)
,

and therefore it has bounded relative error, as b → ∞.

As a final remark we mention that the use of Lyapunov inequalities seems to
be the method of choice for heavy-tailed settings as it is the only approach which
has been extended to more general settings, including heavy-tailed multi-server
queues [13], multidimensional regularly varying random walks [16], random
walks with subexponential increments [12], and large-deviations probabilities
that involve path-dependent events [17].

5.5 Queues under the many-sources scaling

As we saw in the previous section, the presence of heavy tails is a serious
complication that forces us to use relatively advanced IS schemes (as opposed to
the rather straightforward exponential twists that can be applied for light tails).

One important remark needs to be made: the above complication particularly
relates to the large buffer regime, that is, the regime in which rarity is due to
the large threshold that needs to be exceeded. There are, however, other asymp-
totic regimes that are interesting to consider, one of them being the so-called
many-sources regime. In this regime n i.i.d. sources feed into a queuing resource
that is emptied at a constant rate nc. The probability pn that the steady-state
buffer content, say Qn, exceeds level nb decreases as a function of n. More
specifically, pn decays, under mild conditions, exponentially in n, even when the
individual sources have heavy-tailed and/or long-range dependent characteristics.
As a consequence, in this asymptotic regime, elements of the theory for light tails
become applicable again. In this section we demonstrate a number of effective
IS procedures.

We restrict ourselves to the discrete-time case. A particularly useful result,
due to Likhanov and Mazumdar [53], is the following. Consider n sources with
stationary increments, and let Ai(j1, j2), for natural numbers j1, j2 such that j1 <

j2, be the traffic generated by the ith source, in slots j1 + 1, . . . , j2; we denote by
A(·, ·) a generic source. Because of the stationary increments A(j1 + k, j2 + k)

has the same distribution as A(j1, j2) for any k ∈ Z. We abbreviate A(j) :=
A(0, j). We assume that Mk(ϑ) := E exp(ϑA(k)) < ∞ for some positive ϑ. With
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Ik := supϑ(ϑ(b + ck) − log Mk(ϑ)), it is shown in [53] that, under the (mild)
condition that lim infk→∞ Ik/ log k > 0, pn decays exponentially:

lim
n→∞

1

n
log pn = − inf

k∈N

Ik.

Let k� be the infimizer in the right-hand side of the previous display (assumed
to be unique), and ϑ(k) be the optimizing ϑ in the definition of Ik.

In this section we will specialize to two different (and rather generic) classes
of sources: Gaussian sources and on–off sources . As is readily verified, both are
reversible in time, and hence pn can be rewritten as

P

(
∃k ∈ N :

n∑
i=1

Ai(k) ≥ nb + nck

)
.

For Gaussian sources, Ai(k) has a normal distribution with mean μk (where
μ < c can be set to 0 without loss of generality) and variance v(k); for example,
in the case of fractional Brownian motion v(k) = k2H , with H ∈ (0, 1)] denoting
the so-called Hurst parameter [72].

On–off sources generate traffic at a constant rate, say 1, when on, and are
silent when off. The on-periods are distributed as a random variable A with finite
mean μA, whereas the off-periods are distributed as S with mean S; clearly the
system is stable when π := EA/(EA + ES) < c. At time 0 any source is in its
on-state with probability π , and off with probability 1 − π . When we observe
that it is on at time 0, the remaining on-time A� has the well-known residual
distribution P(A� = k) = (EA)−1

P(A ≥ k); the residual off-time is distributed
likewise.

A conceptual difficulty with this framework is that we should monitor the
process

∑n
i=1 Ai(k) for all k ∈ N in order to see whether overflow has been

reached or not. If one allows, however, a (controlled) error of at most ε, that is,

P

(
∃k ∈ {T + 1, T + 2, . . .} :

n∑
i=1

Ai(k) ≥ nb + nck

)/
pn < ε, (5.4)

then one can approximate pn by pT
n := P(supk∈{1,...,T }

∑n
i=1 Ai(k) ≥ nb + nck).

In [18, 32] it is shown how to find such a T ; for later purposes we mention here
that T = o(n). It is clear that T ≥ k�, interpreting k� as the epoch with the most
probability mass.

Interestingly, the most likely path to overflow (cf. Section 5.2.2) can also
be explicitly determined, and, as before, this may give us a handle on devising
asymptotically optimal algorithms. Without giving the precise definition of ‘most
likely path’ here, we mention that Wischik [73] showed that this path equals

f (j) = EA(j)eϑ(k�)A(k�)

Eeϑ(k�)A(k�)
,
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where f (j) corresponds to the amount of work generated by a single source dur-
ing the slots 1, . . . , j ; notice that indeed f (k�) = b + ck�. It is not clear a priori,
though, how to find a measure Q such that the sources on average follow this path
f . For on–off sources such a change of measure is rather involved, and given
explicitly in [18]. For Gaussian sources [32] the distribution of A(1), . . . , A(T )

under the new measure Q is again multivariate normal, with the mean per source
(evidently) equal to f (1), . . . , f (T ), whereas the covariance between A(j1) and
A(j2) (without loss of generality assuming j1 ≤ j2) remains , as under the original
measure,

�(j1, j2) := Cov(A(j1), A(j2)) = 1

2
(v(j2) + v(j1) − v(j2 − j1)) .

Notice that we now see an example of a ‘non-constant’ (i.e., state-independent)
change of measure, as the most likely path to overflow does not correspond
(necessarily) to a straight line; see [25] for an early reference that uses this idea.

The above alternative measure Q requires a procedure to sample from a mul-
tivariate normal distribution. As we assume Gaussian processes with stationary
increments, this multivariate normal distribution has a special form (the corre-
lation between two slots only depends on the distance between these two slots,
rather than their positions). Due to this property, traces of fixed length, say T ,
can be sampled relatively fast [26]; in the special case of fractional Brownian
motion, the effort required to sample a trace of length T is roughly proportional
to T log T . For more reflections on these methods, see [32]. Interesting (and fast,
but not exact) algorithms are given in [62, 64].

Under the above change of measure, it is readily verified that if the first
time that

∑n
i=1 Ai(k) exceeds nb + nck is exactly at k�, then the likelihood is

bounded by exp(−nIk�) [18, 32], suggesting that this procedure may be asymptot-
ically optimal. If the first exceedance, however, takes place at a different epoch,
this bound does not (always) apply, and hence this change of measure is not
(necessarily) asymptotically optimal.

Now note that the problem described above in fact falls in the setting of
Section 5.2.3: the target set is a (finite) union of events (T rather than 2); we can
decompose pT

n as
∑T

j=1 pT
n,j , with pT

n,j the probability that at epoch j overflow
occurs for the first time:

pT
n,j := P

(
∀k ∈ {1, . . . , j − 1} :

n∑
i=1

Ai(k) < nb + nck;
n∑

i=1

Ai(j) ≥ nb+ncj

)
;

the corresponding events are disjoint. In this way we can use the partitioning
method described in Section 5.2.3 to obtain an efficient IS procedure. We then
estimate the pT

n,j separately, for j = 1, . . . , T , but, recalling that T grows (for
a fixed error ε in (5.4)) sublinearly in n, the procedure remains asymptotically
optimal. A similar optimality result can also be achieved by performing an adap-
tive twist (see [32, 35]). A third approach yielding asymptotic optimality is by
the random twist method proposed by Sadowsky and Bucklew [68].



116 QUEUES

We conclude this section with a few biographical notes. For overviews on
methods to generate Gaussian traces (and in particular fractional Brownian
motion), see [31, 62]. Some related results on fast simulation of queues with
Gaussian input have been reported in [60, 45]. Michna [60] focuses on fractional
Brownian motion input under the large-buffer scaling, but does not consider
asymptotic efficiency of his simulation scheme (in fact, one may check that
his estimator is asymptotically inefficient). Huang et al. [45] also work in
the large-buffer asymptotic regime, and present a constant-mean change of
measure; this consequently does not correspond to the (curved) most likely
path, and is therefore asymptotically inefficient in the many-sources regime. We
also mention an interesting work [11] which uses recent insights into certain
Gaussian martingales, and a novel ‘bridge’ approach [37].

5.6 Networks

In this section we focus on the extension of the theory to networks of queues. An
important conclusion is that networks with fixed service rates should be handled
substantially differently from those with random service times. First we consider
a class of fluid queues with constant service rate, so-called intree networks, and
indicate that an asymptotically optimal IS procedure can be found by applying
rather straightforward heuristics. In situations with random service times, such as
Jackson networks, these heuristics do not apply, and more sophisticated methods
have to be used instead.

5.6.1 Fluid networks

In the light-tailed setting, the results for a single queue have been extended to
a rather broad class of networks, so-called intree networks (see [22, 23]). These
are acyclic networks of queues (each having a constant service rate), fed by fluid
input, of which the output goes either to one next queue, or leaves the system;
a typical example is a tandem system with Markov-modulated fluid input (see
Section 5.3.3).

Let us for convenience’ sake restrict ourselves to considering the event of
buffer overflow in the second queue of a two-node tandem queue, where the
service rate of the first (second) queue is C1 (C2). Evidently we should assume
C1 > C2, because otherwise the first queue remains empty all the time. As stated
above, we consider light-tailed input, but let us for the moment restrict ourselves
even more, and suppose that the input is Markov fluid with parameters  =
(λij )

d
i,j=1 and r = (r1, . . . , rd). We identified in Section 5.3.3 a function I (a)

that represented the cost per unit of time when generating traffic at a rate of
roughly a per unit of time.

A crucial observation is that it does not make sense to use a rate a that is
bigger than C1: this is ‘more expensive’ than transmitting at C1 and does not
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help to fill the second queue. Using this idea, the decay rate should read

inf
C2≤a≤C1

I (a)

a − C2
;

realize that 1/(a − C2) can be thought of as the time the alternative measure is
active. As before, the optimizing a, say a�, corresponds to an exponential twist
of the Markov fluid source. The heuristics are then as follows. If a� ∈ (C2, C1)

the first queue is essentially transparent, as, in order to cause overflow in the
second queue, the first queue hardly plays a role in shaping the traffic stream. If,
on the other hand, a� = C1 the output rate of the first queue is ‘throttled’, that is,
there is a significant shaping effect of the first queue. The resulting importance
sampling scheme is asymptotically optimal [22, 23].

The above ideas can be made rigorous by using sample-path large deviations,
as developed in [22]. The class of source models considered there is significantly
broader than just Markov fluid. The dichotomy, with a regime in which the first
queue is ‘transparent’ and a regime in which the first queue really ‘shapes’ the
traffic, was also found in several other studies (see, for instance, [55, 58]). The
fact that the network is intree is crucial; see [65] for structural results on networks
in which traffic streams are allowed to split.

5.6.2 Jackson networks

Let us now focus on networks with random service times, to see whether the
theory of the previous subsection carries over. To be able to draw the parallel with
Section 5.6.1, let us focus on the M/M/1 tandem queue: jobs arrive according
to a Poisson process of rate λ, and have a service time in the first (second) queue
that is exponentially distributed with mean μ−1

1 (μ−1
2 ). In this case it is known

that that the decay rate of overflow in the second queue is, in obvious notation,

lim
K→∞

1

K
log P(Q2 > K) = − log �2 = − log

(
λ

μ2

)
,

that is, independent of μ1.

To find a good alternative measure Q, it is tempting to use the heuristic of
Section 5.6.1. The ‘cost’ of a Poisson process with rate λ behaving like a Poisson
process with rate λ̄ is [69, pp. 14, 20]

Iλ(λ̄) := λ − λ̄ + λ̄ log
λ̄

λ

which can be interpreted as a Kullback–Leibler distance. Parallelling the argu-
ment used above for intree networks, we would have to solve the variational
problem

inf
Iλ(λ̄) + Iμ1(μ̄1) + Iμ2(μ̄2)

min{λ̄, μ̄1} − μ̄2
, (5.5)
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over λ̄, μ̄1, μ̄2 such that min{λ̄, μ̄1} < μ̄2; observe that under the new parame-
ters the output rate of the first queue is essentially min{λ̄, μ̄1}. If μ2 ≤ μ1 this
optimization program indeed gives the right result. We then find that λ̄ = μ2 and
μ̄2 = λ. Under these new parameters the first queue remains stable, so that jobs
leave the first queue according to a Poisson process of rate μ2. In other words,
we are essentially in the setting of Example 2, where the arrival rate and service
rate were interchanged.

If, however, μ1 < μ2, then interchanging λ and μ2 leads to a situation where
jobs leave the first queue at a rate μ1. In fact, the above optimization program
always yields a value larger than the correct value, − log �2. The reason for this
is that the most likely path to overflow in the second queue is not a straight line!
More precisely, in order for the second queue to exceed K (see [1, 61]), the first
queue builds up to, roughly, level K · (μ1 − μ2)/(μ1 − λ) (by interchanging λ

and μ1), and after that, the first queue drains while the second builds up (by
cyclically interchanging λ, μ1, and μ2), thus indeed yielding cost K · (− log �2).

State-independent IS distributions, for instance those proposed by Parekh
and Walrand [63] for estimating the probability that the total network population
exceeds K , do not guarantee asymptotic optimality, as further investigated in [27,
38]. Proposals for state-dependent schemes, and proofs of asymptotic optimality,
are provided in, for example, [34]. Good state-dependent IS distributions can also
be found by applying cross-entropy techniques [28].

5.6.3 Loss networks

A classical model in communications engineering is the Erlang loss model : calls
arrive at a link according to a Poisson process of rate λ, the link can accommodate
at most C calls at the same time, and the call holding times constitute a sequence
of i.i.d. non-negative random variables with mean 1/μ. With ν := λ/μ denoting
the offered load, the stationary probability π(k) of having k ∈ {0, . . . , C} calls
in the system is given by the truncated Poisson distribution:

π(k) = νk/k!∑C
�=1(ν

�/�!)
;

importantly, this distribution is insensitive, that is, it depends on the call holding
time distribution only through its mean.

Loss networks can be considered as the extension of the Erlang loss model to
a setting in which there are multiple types of calls, and in which these calls use
circuits on multiple links simultaneously. Suppose that the set of links is given
by J , and the set of call types by R. Each call type is characterized by an arrival
rate λr and mean holding time 1/μr . With Cj denoting the capacity of link j ,
and Ajr the number of trunks required by a type r call on a type j link, it is
clear that the state space is

S :=
{

�k :
∑
r∈R

Ajrkr ≤ Cj , for all j ∈ J
}

.



QUEUES 119

It turns out that the theory for the single link and single class carries over:
the distribution of the number of calls is again truncated Poisson [48]: with
νr := λr/μr ,

π(�k) =
∏

r∈R(νkr
r /kr !)∑

��∈S
∏

r∈R(ν
�r
r /�r !)

=
∏

r∈R((e−νr νkr
r )/kr !)∑

��∈S
∏

r∈R((e−νr ν
�r
r )/�r !)

In particular, the probability β(r) of a call of type r being blocked can be
expressed in terms of the π(�k) :

β(r) =
∑
k∈Sr

π(�k) =
∑

�k∈Sr

∏
s∈R((e−νs νks

s )/ks!)∑
��∈S
∏

s∈R((e−νs ν
�s
s )/�s!)

,

where

Sr :=
{

�k :
∑
s∈R

Ajsks + Ajr >Cj , for some j ∈ J
}

.

Despite the availability of these explicit formulae, numerical evaluation
of the blocking probabilities is cumbersome; in particular, the evaluation of
the normalizing constant (i.e., the numerator in the previous display) can be
time-consuming. An idea could be to resort to simulation. To this end, [42]
proposed an acceptance–rejection method: one samples from a multivariate
Poisson distribution with mean �ν (and independent marginal distributions), and
estimates β(r) by the fraction of the samples in S that is also in Sr . If ν ∈ S ,
then the denominator does not correspond to a rare event, so that one has
relatively many ‘useful’ samples; the numerator, however, does correspond to
a rare event, so that just a small fraction of the useful samples will fall in Sr ,
and hence it will take a long time to obtain a sufficiently precise estimate. If,
on the other hand, �ν �∈ S , then even the estimation of the denominator will be
time-consuming, so that in this case too the acceptance–rejection technique will
be slow.

In light of the above reasoning, it seems natural to sample under another
Poisson distribution. To find a good candidate, a scaling is applied: the arrival
rates λr were replaced by nλr , and the link capacities Cj by nCj . It was shown
[56] that the type r blocking probability, which now depends on n, decays expo-
nentially:

lim
n→∞

1

n
log β(r)

n = − inf
�x∈S̄r

∑
s∈R

(
xs log

xs

νs

− xs + νs

)

+ inf
�y∈S̄

∑
s∈R

(
ys log

ys

νs

− ys + νs

)
,
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where

S̄ :=
⎧⎨
⎩�y :

∑
s∈R

Ajsys ≤ Cj , for all j ∈ J

⎫⎬
⎭ ,

S̄r :=
⎧⎨
⎩�x :

∑
s∈R

Ajsxs = Cj , for some j ∈ J with Ajr > 0

⎫⎬
⎭ .

With �x� and �y� denoting the optimizers in the above infima, [56] proposes
to estimate the numerator and the denominator of the blocking probability
separately, the numerator (denominator) by applying IS with a Poisson
distribution with mean �x� (�y�).

Observe that x� can be interpreted as the most likely blocking state, and the
j� (with Aj�r > 0) for which

∑
s∈R Aj�sxs = Cj� the most likely blocked link

(when considering type r calls). It is readily verified that the above IS distribution
behaves nicely when blocking indeed occurs at link j�; if it occurs at another
link the likelihood may explode (cf. Section 5.2.3). The remedies mentioned in
Section 5.2.3 can be used to overcome this problem; see, for instance, [51] for
reflections on the use of the random twist approach of [68] (which is asymptot-
ically optimal). A more advanced decomposition, leading to a very efficient IS
distribution, was studied in [52].
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Markovian models for
dependability analysis

Gerardo Rubino and Bruno Tuffin

6.1 Introduction

This chapter deals with dependability models originating, for instance, in com-
puter science or networking systems. The basic modeling assumption is to con-
sider a multicomponent system (i.e., a multidimensional model) such that each
component is subject to failure and possibly to repair. The global system is
then considered to be down (typically a rare event in most applications of
interest) when it is in some subset of states such that given components are
themselves down. The principal dependability measures we are interested in are
the mean time to failure (MTTF), representing the average time to reach the
set of failed states starting from a given point; the unavailability at a given
time t , that is, the probability that at time t the model is in one of its failed
states; the steady-state unavailability; and the unreliability at time t , which is
the probability that the model enters the subset of failed states at or before
t . These are not the only dependability measures of interest. There are many
others, such as the interval availability at t , a random variable defined as the
fraction of [0, t] during which the system is in an operational state. In the
chapter, we will discuss only methods designed to evaluate the main metrics
in the area.

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
©    2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-77269-0
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The applications are numerous. Dependability analysis (which inherits from
the classical theory an older concept of reliability analysis) is a critical issue in
telecommunications, computer science, and manufacturing, among other fields,
[13]. For instance, catastrophic failures in transport systems or in nuclear power
plants could lead to human losses. Similarly, the failure of a computer or a
network (telecommunication, electricity, etc.) may lead to important monetary
losses. These systems are thus designed in such a way that these undesirable
events with serious consequences happen rarely (i.e., have very small probabil-
ities). The ability to numerically evaluate the risks associated with their use is
therefore a major concern.

Example 1. A typical example is that of a large computing system. This type
of model, originally from [11], has been used in most of the papers focusing on
highly reliable Markovian systems. Our example consists of two sets of proces-
sors, each with two sets of disk controllers and six clusters of disks with four
disks per cluster. Data are replicated in each cluster so that one disk can fail
without affecting the system. Figure 6.1 describes the system. Failure propaga-
tions are possible, as will be seen later. There are two failure modes for each
component. The system is considered as operational if all data are accessible
from each processor type. This translates as follows: at least one processor, one
controller in each set, and three out of four disks in each cluster are operational.

Disk Cluster 1

A B
Processors

Disk Controllers

Disk Cluster 3 Disk Cluster 4 Disk Cluster 6

Figure 6.1 Block diagram for Example 15.

These finite Markovian models can in theory be analyzed by means of a rich set
of efficient numerical procedures. Moreover, in some cases these techniques are
basically insensitive to the rarity phenomenon. In practice things are different:
the power of these representations that can capture quite accurately the behavior
of complex systems leads very often to huge state spaces, rendering numeri-
cal approaches impracticable. Simulation is then the only possible evaluation
tool, but the rarity problem becomes the bottleneck of the solution process. The
same happens obviously if the model is not Markovian, for instance, if it is a
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semi-Markov process. The theory is much less rich in this case, and simulation
is almost always the method of choice. We will briefly consider this case at the
end of the chapter.

Another issue is the fact that some transitions, namely failures, are much rarer
than repairs. From a modeling assumption point of view, we will introduce a rarity
parameter ε, such that transition rates are decreasing with ε, while repair rates
do not depend on it. Then the smaller ε is, the less likely the general system will
fail. As extensively explained in previous chapters, standard (naive) simulation
is inefficient because the event of interest, the failure of the system, is rare, and
special procedures have to be implemented. Splitting and importance sampling
(IS) are again the tools at hand. Note that, here, splitting is not relevant when
ε → 0. Indeed, observe that for the type of model we are looking at, it is each
individual failure which is rare, and the number of transitions required to reach
a failed state is therefore small (otherwise, the probability of the event would
be meaningless). Splitting can therefore hardly be efficiently applied because it
does not change the probabilities of individual transitions; it would be necessary
to decompose each (rare) component failure in sub-events to make those events
less rare themselves, which would be cumbersome. We will then focus on IS.

The chapter reviews the main results and techniques obtained in the domain
mainly for steady-state but also for transient analysis [3, 5, 7, 9–11, 14, 17, 18,
21, 23, 25, 27, 36, 39–43], in the case of Markovian modeling. We also briefly
deal with the non-Markovian case [15, 30, 32–35, 38,], and with sensitivity
analysis [26, 29].

The chapter is organized as follows. Section 6.2 describes the mathematical
model and its rare event parameterization. Section 6.3 looks at the estimation
of steady-state measures, unavailability and the MTTF;1 it shows how they can
be estimated and describes the known IS schemes for obtaining an efficient
simulation. Robustness properties, as described in Chapter 4 of this book, are
also discussed. Section 6.4 looks in the same way at transient measures, such
as the reliability at a given time. Section 6.5 gives a short introduction to and
references on sensitivity analysis and non-Markovian models.

The following notation is used throughout the chapter. For a function f :
(0, ∞) → R, we say that f (ε) = o(εd) if f (ε)/εd → 0 as ε → 0; f (ε) = O(εd)

if |f (ε)| ≤ c1ε
d for some constant c1 > 0 for all ε sufficiently small; f (ε) =

O(εd) if |f (ε)| ≥ c2ε
d for some constant c2 > 0 for all ε sufficiently small; and

f (ε) = �(εd) if f (ε) = O(εd) and f (ε) = O(εd).

6.2 Model

We consider a highly reliable Markovian system with c types of components, ni

components of type i, for i = 1, . . . , c, and n = ∑c
i=1 ni components in total.

Each component is either in a failed state or in an operational state. The model is

1 Even if this is rather a transient measure, we will see that we express it in a way that requires
the estimation of steady-state quantities; the reason is that the time horizon is not finite in this case.
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given by a continuous-time Markov chain (CTMC) (Y (t))t≥0 defined over some
state space S . In the simplest version, a state Y (t) = y ∈ S is represented by a
vector y = (y(1), . . . , y(c)), where y(i) is the number of failed components of type
i. But the definition of a state can be more general: we can have several failure
modes, and different classes of repairer with different scheduling or priority
policies. More information may then be required to fully define a state. In the
simplest case, the (finite) state space S is of cardinality (n1 + 1) · · · (nc + 1),
therefore increasing exponentially with the number of component types. It is
partitioned into two subsets U and D, where U is the set of operational states,
and D the set of failed states. U and D are such that from y ∈ U (D), any repair
(failure) still leads to a state in U (D). We also define 0 ∈ U , the state in which
all the components are operational.

We assume that the times to failure and times to repair of the individual com-
ponents are independent exponential random variables. The rates are λi(y) = o(1)

for type i component failures when the current state is y, and μ(x, y) = �(1)

for repairs from a state x to a state y, grouped repairs being possible, as well
as deferred repairs, even if this case is more complicated and will only be
briefly considered here. Repairs do not depend asymptotically on ε when ε → 0,
meaning that they are not rare. The fact that λi(y) decreases to zero with ε illus-
trates how rare failures can be. In most of the literature, as introduced in [39],
λi(y) = ai(y)εbi (y), where ai(y) and bi(y) are strictly positive values indepen-
dent of ε. To deal with full generality, there may be some failure propagation,
such that from state x, there is a probability pi(x, y) (which may depend on ε)
that the failure of a type i component directly drives the system to state y, in
which there could be additional component failures. The global failure rate from
x to y is

λ(x, y) =
c∑

i=1

λi(x)pi(x, y) = o(1).

It is useful to define � as the set of pairs (x, y) ∈ S2 for which a transition from
x to y is possible, that is, such that λ(x, y) > 0 or μ(x, y) > 0.

Note that when the performance measure of interest does not depend on the
jump times of the CTMC (Y (t))t≥0, it is relevant to rather simulate its canonically
embedded discrete-time Markov chain (DTMC) (Xj )j≥0, defined by Xj = Y (ξj )

for j = 0, 1, 2, . . . , where ξ0 = 0 and 0 < ξ1 < ξ2 < . . . are the jump times of
the CTMC. Its transition probability matrix P is

P(x, y) = P[Xj = y | Xj−1 = x] = λ(x, y)

q(x)

if the transition from x to y corresponds to a failure, and

P(x, y) = μ(x, y)

q(x)



MARKOVIAN MODELS FOR DEPENDABILITY ANALYSIS 129

if it corresponds to a repair, where

q(x) =
∑
z∈S

(λ(x, z) + μ(x, z))

is the total jump rate out of x, for all x, y in S . By simulating the embedded
DTMC instead of its counterpart CTMC, we reduce the variance of the estimator.
Indeed, less randomness is included in the model since random jump times are
replaced by their expected values (see also [16] for insights on this point); the
randomness is now only in defining the sequences of states forming the paths
observed during the simulation.

In our analysis, we will assume that the Markov chain is irreducible, that for
each state x ∈ S �= 0 there exists a repair transition (meaning that a repairer is
always working if a component is down), and that, if there is a direct transition
from 0 to z ∈ D, then P(0, z) = o(1) (otherwise, reaching the failure set is not a
rare event).

6.3 Steady-state analysis

6.3.1 Performance measures and simulation

In this section, we deal with the estimation of steady-state measures. In a reli-
ability setting, two main measures of interest are the MTTF, representing the
mean time to reach a failed state, and the steady-state unavailability, which is
the steady-state probability of being in a failed state. How might we simulate
those metrics? We then come to the classical steady-state output analysis of
Monte Carlo simulation (see [2]): estimating the variance in order to get a valid
confidence interval is a key issue. In this context regenerative simulation is an
appropriate technique. Indeed, note first that, from a renewal argument [20], for
any asymptotic measure of the form

r = lim
t→∞ E(f (Y (t)))

we have

r = E
[∫ τx

0 f (Ys)ds
]

E [τx]
, (6.1)

for a real function f , where E[·] is the expectation under the probability distri-
bution P and τx is the return time (with finite expectation) to x given that we
started in x. In our simulation context, assuming that we start from state 0, the
stopping time τ0 will be used.

Following a similar principle, if τM = min(τD, τ0),

MTTF = E[τD] = E[τM ]

P[τD < τ0]
(6.2)
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because, starting from 0,

MTTF = E[τM ] + E[MTTF − τM |τ0 < τD]P[τ0 < τD]

= E[τM ] + E[MTTF − τM |Y (τ0) = 0]P[τ0 < τD]

= E[τM ] + E[MTTF][1 − P(τD < τ0]).

Using the discrete-time version, let T0 and TD be respectively the correspond-
ing return time to 0 and time when D is reached. Sojourn times in given states
are then constant, equal to mean values (1/q(i) for state i ∈ S), so that (6.1) is
written

r =
P

[∑T0−1
k=0 f1(Xk)

]
P

[∑T0−1
k=0 (1/q(Xk))

]
where, for all i ∈ S , f1(i) = f (i)/q(i) (with f (x) = 1D when estimating the
unreliability), and

MTTF =
E

[∑min(T0,TD)−1
k=0 (1/q(Xk))

]
E

[
1(TD<T0)

] . (6.3)

We then simulate regenerative cycles, the ith being Ci = (
X

T
(i)
0

, . . . ,

X
T

(i+1)
0 −1

)
, where T

(i)
0 is ith return to 0 and T

(0)
0 = 0.

Estimators of the unavailability u and of the MTTF are

ûn =
∑n

i=1 F1(Ci)∑I
i=1 Q(Ci)

(6.4)

M̂TTFn =
∑n

i=1 G(Ci)∑n
i=1 H(Ci)

(6.5)

with F1(Ci) the sum of expected sojourn times in states of D over cycle Ci , Q(Ci)

the sum of expected sojourn times in all states over Ci , G(Ci) the same sum
but up to reaching D or returning to 0, and H(Ci) = 1(TD<T0)(Ci) the indicator
function that D was reached before coming to 0 over cycle Ci .

From now on, we derive the results only for the MTTF, but the same can
easily be done for the unavailability. How can we get a confidence interval for
the estimation? We apply the central limit theorem to the independent random
variables G(Ci) − MTTF × H(Ci), with expectation zero and variance

σ 2 = σ 2(G) − 2MTTF Cov(G, H) + (MTTF)2σ 2(H)

(here G and H denote the generic random variable defined over a cycle, and
σ 2(·) and Cov(· , ·) are the variance and covariance under P); we then have

1
n

∑n
i=1(G(Ci) − MTTF H(Ci))

σ/
√

n
→ N (0, 1),
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where N (0, 1) is the standard normal distribution, when the number n of cycles
tends to infinity. In other words, just by dividing both the numerator and denom-
inator by H̄n = n−1 ∑n

i=1 H(Ci),

√
n(M̂TTF − MTTF)

σ/H̄n

→ N (0, 1),

when the number n of cycles tends to infinity.
A Monte Carlo standard estimation of the MTTF will be inefficient because

the denominator is the probability of a rare event (it will be the numerator if we
deal with the unavailability). IS is a relevant way to cope with that problem. The
first class of IS strategies is called dynamic importance sampling (DIS). We will
not redefine IS here; for a more precise description, see Chapter 2. Basically,
we replace the transition matrix P by another one P̃ (with corresponding
probability measure P̃ and expectation Ẽ). If the likelihood ratio over a
cycle is

L(x0, . . . , xT ) = P{(X0, . . . , XT ) = (x0, . . . , xn)}
P̃{(X0, . . . , XT ) = (x0, . . . , xn)}

=
∏T −1

i=0 P(xi , xi+1)∏T −1
i=0 P̃(xi , xi+1)

,

provided T has finite expectation under P̃, then for any random variable Z defined
over paths,

E[Z] = Ẽ[ZL].

A new estimator of the MTTF is then

M̂TTF =
∑n

i=1 G(Ci)Li∑n
i=1 H(Ci)Li

where Li is the likelihood associated with the ith cycle.
Another method, measure-specific dynamic importance sampling (MSDIS),

giving better results, was introduced in [11]. This involves simulating indepen-
dently the numerator and denominator of (6.3), using different IS measures P̃1 for
the numerator and P̃2 for the denominator. Indeed, the functions being different,
reducing the variance for one does not necessary mean the same for the other.
Of the total of n cycles, ξn are used to estimate the numerator, and (1 − ξ)n for
the denominator. A new estimator is then

M̂TTF =
∑ξn

i=1 G(C
(1)
i )L

(1)
i /(ξn)∑(1−ξ)n

i=1 H(C
(2)
i )L

(2)
i /((1 − ξ)n)

where the C
(1)
i and L

(1)
i (C(2)

i and L
(2)
i ) are the cycles and likelihood ratios

corresponding to IS measure P̃1 (P̃2).
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We then have the following result, using independent cycles (thus, the covari-
ance term does not exist anymore): if

H̄(1−ξ)n = 1

(1 − ξ)n

(1−ξ)n∑
i=1

H(C
(2)
i )L

(2)
i

is an estimator of EP2(HL(2)), and if

σ̃ 2 = σ̃ 2
1 (GL(1)) + (MTTF)2σ̃ 2

2 (HL(2))

where σ̃ 2
i (·) is for the variance using P̃i as the underlying probability measure,

then √
n(M̂TTF − MTTF)

σ/H̄(1−ξ)n

→ N (0, 1).

6.3.2 Importance sampling simulation schemes
and robustness properties

Many IS simulation schemes have been proposed in the literature. The basic
principle is to increase the occurrence of failures. We review such schemes here,
dividing them into three categories: first the basic schemes first; then those using
some topological information; and finally those directly trying to approach the
zero-variance change of measure. In each case, we will discuss the robustness
properties as ε → 0. The properties the literature has looked at are bounded
relative error (BRE) and bounded normal approximation (BNA). Recall that BRE
means that the relative variance remains bounded as ε → 0, so that the relative
precision of the confidence interval is insensitive to the rarity of the event, and
BNA is a sufficient condition to assert that the coverage of the confidence interval
will remain valid whatever the rarity. For more precise definitions, see Chapter 4
devoted to robustness properties. Those properties have been discussed at great
length for highly reliable Markovian systems [27, 39, 41, 42]. Looking at all
sample paths, necessary and sufficient conditions have been obtained. Basically,
it is not sufficient that the most likely paths to failure are not rare (i.e., their
probability is �(1)) under the IS measure; other paths should not be too rare
either (but not necessarily �(1)). A string of properties has also been shown in
[41, 42]: BNA implies that paths contributing the most to the variance are �(1)

under IS measure, meaning that the variance is asymptotically properly estimated
(Chapter 4 illustrates the problems that could occur otherwise), implying BRE,
implying in turn that most likely paths to failure are �(1) under IS measure. For
all those implications, the reverse assertion is not true in general; counterexamples
have been highlighted in [42].

In what follows, since in our model transitions are either failures or repairs,
we denote by F the set of failures and by R the set of repairs. If x �= 0,
we also denote Fx = {y : (x, y) ∈ F} and Rx = {y : (x, y) ∈ R}, and let fx =



MARKOVIAN MODELS FOR DEPENDABILITY ANALYSIS 133∑
y∈Fx

P(x, y) and rx = ∑
y∈Rx

P(x, y) be the failure and repair probabilities
from state x.

Basic schemes

The first proposal, called failure biasing (FB), first appeared in [23]. It simply
increases the probability of the failure transitions to a fixed value α ∈ (0, 1);
typically, 0.5 ≤ α ≤ 0.9. Then the probability of getting a failure is no longer
o(1). The transition probabilities are changed as follows:

• ∀x ∈ U, x �= 0, (x, y) ∈ F : P̃(x, y) = α
P(x, y)

fx

;

• ∀x ∈ U, x �= 0, (x, y) ∈ R : P̃(x, y) = (1 − α)
P(x, y)

rx

.

The P(0, ·)s are not modified (since only a failure can happen from 0). Observe
that the total probability of failure from x is now equal to α. From states in
D, the probabilities are not changed. Similarly, as soon as D has been reached,
we switch back to P. It was shown in [39] that, even if BRE is not satisfied in
general by FB, it is the case for so-called balanced systems , that is, systems for
which, from every state x, each failure transition has a probability of the same
order of magnitude in terms of ε. But some (important) paths are still too rare
when using FB, because one of its failure transitions in a given state can still
have probability o(1) due to a less rare failure under the initial law and which
does not lead to ‘interesting’ states.

Based on this, balanced failure biasing (BFB) was suggested [39]; here, for
the subset of failure transitions, the conditional individual probabilities, taken
proportionally to the initial ones in FB, are replaced by uniform ones. Formally,

• ∀x ∈ U, (x, y) ∈ F : P̃(x, y) = α
1

Card(Fx)
;

• ∀x ∈ U, x �= 0, (x, y) ∈ R : P̃(x, y) = (1 − α)
P(x, y)

rx

.

From 0, we just use α = 1. It is then shown in [39] that this scheme satisfies
BRE, and in [41] that BNA is also satisfied.

Inverse failure biasing (IFB) [36] is based on the efficient simulation of the
M/M/1 queue, involving switching arrival and service rates. P̃ is then chosen
as follows:

• If x = 0, ∀y : P(0, y) > 0, P̃(0, y) = 1

Card(F0)
.

• ∀x ∈ U, x �= 0 ∀y : (x, y) ∈ F, P̃(x, y) = rx

Card(Fx)
,

and if (x, y) ∈ R, P̃(x, y) = fx

Card(Rx)
.
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The probability of having a repair is then o(1). Very efficient when most likely
paths to failure involve only failures, it performs poorly when those paths involve
some repairs [5] (because those paths are o(1) under IFB).

In [3], simple balanced likelihood ratio methods are introduced to increase
the frequency of component failures, but keeping bounded at the same time
the likelihood ratios associated with regenerative cycles. The idea is to define
stacks, initialized to empty sets, corresponding to failures with a given order of
magnitude in terms of ε. Throughout the simulation of a cycle, likelihood ratios
for a component failure are put on top of the corresponding stack, and this value
is taken back (and removed) from the stack when there is a component repair
which has a failure with the same order of magnitude, in order to cancel the
current likelihood ratio. As a consequence, BRE is satisfied. See [3] for more
details and a complete description.

In the above IS estimators, the variance comes from the variations of the
likelihood ratio (disregarding the fact that we either do or do not hit the rare set).
In [21] it is highlighted that reducing the variance of that likelihood ratio can
increase the efficiency of the IS estimator if its does not significantly reduce the
probability of the rare event, and if it does not require much more work. Such a
variance reduction can be obtained using weight windows. Indeed, the likelihood
ratio can be viewed as a weight that the simulated chain has accumulated so far.
For each state the current weight multiplied by the expected remaining likelihood
ratio must be equal to the value of interest. Given some estimation of the expected
likelihood ratio from any state, we can decide at each step of the simulation
to apply splitting to chains with excessive weights (therefore decreasing those
weights), or to apply ‘Russian roulette’ (increasing the weight if the chain is not
killed), if the weight is not included in a window. Another version simulates a
fixed number of chains in parallel. The weight windows algorithm is then applied
just to keep the number of chains constant, and each weight as close as possible
to the expected value. It has been noted in [21] that the savings can be large, but
the estimator can also be very poor if the weight windows are wrongly selected.
The difficulty is to get a good approximation of the expected likelihood ratio
from any state. As a rough approximation, the most likely path, or direct paths,
can be considered.

Some refinements were proposed in [17, 18] for the case where we have
deferred (or grouped) repairs; that is, when there are states other than 0 for
which only failures are possible. This induces high probability cycles for which
the above methods can lead to very large and even infinite variances. In [17, 18]
the probabilities along those cycles are not reduced too much.

How do these IS schemes perform in practice? For space reasons, we limit
ourselves to studying Example 1 with BFB and IFB. For an extensive numeri-
cal study, depending on the topology, the reader may consult [5]. Assume that
failure rates of processors, controllers and disks are 5 × 10−6, 2 × 10−6, and
2 × 10−6 respectively, leading to γ = E

[
1(TD < T0)

] ≈ 5.55 × 10−6, the difficult
component in the estimation of the MTTF. This is not too rare, but allows us to
compare with standard simulation (a rarer event would indeed yield a confidence
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interval (0, 0) because the rare event is unlikely to occur even once). We compare
the results for n = 107 independent replications. Crude Monte Carlo yields a
confidence interval (4.28015 × 10−6, 6.71985 × 10−6), for an empirical variance
with value 5.5000 × 10−6. On the other hand, BFB yields a confidence interval
(5.50120 × 10−6, 5.58070 × 10−6) and an empirical variance 5.8397 × 10−10,
which is an improvement by a factor of about ten thousand. IFB is even more
efficient due to the fact that only direct paths to failure are important here; it
yields a confidence interval (5.53473 × 10−6, 5.55203 × 10−6), and an empirical
variance of 2.7681 × 10−10.

Using topological information

The above sampling schemes use only information that is ‘local’ (with respect
to the mathematical model), about direct transitions being failures or repairs. On
the other hand, more general topological information could be used, detecting
how far we are from the set of failed states.

A first technique, probably the simplest, called selective failure biasing , also
called Bias2 failure biasing [11], is a refinement of FB. The only difference is
that from any x ∈ U , the set of failure transitions is separated into two subsets:
the set of failure transitions corresponding to component types having already
at least one failed component of this type, for which a conditional probability
is set to α1; and the set of transitions that fails types of components that are
always functioning (with conditional probability 1 − α1). If the first (second) set
is empty, then α1 = 0 (α1 = 1). In each subset, individual probabilities are (still)
taken proportional to the initial ones. The intuition is that pushing more failures
of component types already having failed components should get the chain closer
to the set of failed states.

Using a similar approach, a selective failure biasing for ‘series-like’ systems
(SFBS) can be designed [5]. Assume that the system’s structure is close to the sit-
uation where the system is functioning if and only if, for each type k component,
the number of operational components is greater than or equal to some thresh-
old lk. A reasonable way to improve selective failure biasing is to make more
probable the failures of class-k components when the number of components
remaining operational, nk − xk if the state is x, is closer to the threshold lk . The
set to which a probability α1 is assigned in state x is then the set of transitions
including type k component failures such that (nk − xk) − lk is minimum.

Still in [5], another version, called selective failure biasing for ‘parallel-like’
systems , behaves in a similar way but is designed to deal with systems working
as sets of lk-out-of-Nk modules in parallel, 1 ≤ k ≤ K . From x ∈ U , a component
type k is said to be critical if its number of operational components is larger
than lk . A transition (x, y) is said to be critical if yk > xk for some critical type
k. The method proceeds like SFBS: using in the same way two parameters α and
α1, the principle is to accelerate the critical transitions first, then the non-critical
ones, by means of the respective weights αβ and α(1 − β). Again, in each subset,
individual probabilities are taken proportionally to the original ones.
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Distance-based selected failure biasing (DSFB) [5, 7] was created to deal
with systems involving a more general structure, with failure propagation, and
with less generic properties. It therefore requires more information about the
system, that is, some work to learn the topology of the model. From current state
x, we first need to compute for each y such that (x, y) ∈ � the distance d(y)

to D defined as d(y) = minz∈D

∑
k (yk − zk) , which might be computationally

demanding for general failure sets, but could also be very easy to evaluate for
some specific models. The set of failure transitions (to which a probability α

is still assigned) is decomposed into the set of failure transitions with the �th
smallest distance to D, which receives the conditional probability α1(1 − α1)

�−1,
except the last one which has conditional probability (1 − α1)

�. Again, in each
subset, individual probabilities are taken proportionally to the original ones.

None of the above methods satisfy BRE in general, even it is proved to be
the case for balanced systems [5]. For this reason, balanced versions of those
IS schemes have been considered in [5, 41], by taking in each subset of failure
transitions uniform probabilities instead of probabilities proportional to the initial
ones. That way, BRE and even the stronger BNA property are satisfied.

Structural information is also used in [3] to improve the efficiency of the sim-
ple balanced likelihood ratio, putting more probability on short paths to failure.
Looking at the Markov chain as a graph, it identifies from the current state x

transitions that are on mincuts, and put a high conditional probability on that set
of transitions. Different stacks are then defined, depending on whether transitions
are on mincuts or not. The same observations as for the DSFB technique are rel-
evant here: the way the model is specified and the regularities in the chain’s
structure are critical to the applicability of the method.

Trying to approach the zero-variance change of measure

All the aforementioned IS proposals are designed to reach the set of failed states
faster than with a standard simulation, but none directly investigates how the
zero-variance change of measure can be approached, or how far the algorithm is
from it. The zero-variance change of measure is extensively studied in Chapter 2.
To try to be specific, we only deal here with the estimation of γ = P[TD < T0],
the denominator and critical quantity in the estimation of the MTTF.

Define γ (x) = P[TD < T0|X0 = x]. It is then straightforward to see that the
(Markov chain) zero-variance change of measure is given by (see Chapter 2)

P̃(x, y) = P(x, y)γ (y)∑
z P(x, z)γ (z)

(6.6)

(with γ (z) replaced by 0 on the right-hand side if z = 0). Implementing this
change of measure involves he knowledge of the values γ (z) for all z, that is,
even more than what we are looking for (the number γ (0)), but it might be of
interest to replace γ (x) by an approximation in (6.6) in order to be close to the
zero-variance estimator. The learning algorithms of [1, 19] require storage of an
estimation of γ (x) for each x, updated in the course of the simulation. This is
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realistic if the model is small, but not relevant when we address most interesting
models, having at least very large state spaces. Similarly, in [37], the whole IS
matrix P̃ is learned using the cross-entropy technique (again see Chapter 2), which
requires the storage of even more information. For this reason, a suggestion for
obtaining an approximation of the zero-variance estimator at no cost in terms of
storage and computation (and as a consequence which resists a state space size
increase) is to use a rough (once and for all) guess of function γ (x). In [22], γ (x)

is replaced by the probability of the most likely path to failure (an underestimate),
a problem equivalent to computing the shortest path from a state to a set of states
in a graph (this could add some computational burden depending on the structure
of the set of failed states, as observed before for procedures such as DSFB or
the one in [3]). This way, the method is difficult to use in situations where the
distance to the set of failed states is difficult, costly or simply impossible to
evaluate. For Example 1, using the same parameters as when testing BFB and
IFB, the method yields a confidence interval (5.54579 × 10−6, 5.54595 × 10−6)

and an impressive variance reduction, the empirical variance being 2.5407 ×
10−15, which is two hundred thousand times smaller than for BFB and IFB. This
is due to the very small value of ε, and therefore the very good approximation
of γ (x).

6.4 Transient analysis

6.4.1 Performance metrics and simulation

Steady-state performance metrics and (independent of a finite time horizon) the
MTTF are not the the only measures of interest in dependability. In some sit-
uations we need to know what happens over a time interval [0, t]. This can be
captured, for instance, by the unreliability at t (the probability of reaching D
before t), or by the expected interval unavailability on the interval (the propor-
tion of time within [0, t] the system spends in D). We will investigate two cases
here: first, when the time horizon t does not depend on ε (i.e., t = �(1)); then,
the case where t is O(ε−1), that is, t increases as the rarity parameter goes to
zero. The case where it is o(1) is a special case of �(1), provided repair rates
can also be arbitrarily small, just by multiplying (rescaling) all transition rates
by t and looking at the performance measure on the time interval [0, 1].

How do we simulate such a process? In contrast to steady-state measures
which only require us to simulate the embedded DTMC, here we need to take
the distribution of holding times into account. We therefore simulate the CTMC.
A standard simulation generates n trajectories of the CTMC on [0, t]. It progres-
sively gererates the successive states of the chain from the embedded DTMC
(using transition matrix P), and the holding time in each state, up to time t .
From the n trajectories, the average value of the point estimates (depending on
the performance measure we are looking at) gives the estimator, and the sample
variance (and, as a consequence, a confidence interval) can easily be constructed.
Here again, since the event of interest is rare, specific procedures need to be
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applied. For instance, if t is fixed, just obtaining the first failure event before t

is a rare event.

6.4.2 Importance sampling simulation schemes and robustness
properties for small time horizons

The main technique in the case where the time horizon is small (i.e., �(1)) is
‘forcing+BFB’ [23, 31, 38]. Forcing means that the probability distribution for
the time until the first failure from the initial state 0 is replaced by the distribution
conditional on that failure happening before the time horizon. We therefore force
that transition to happen before t . When that transition has happened, the holding
times are not changed; they still follow their initial distributions. Observe that
if a repairer is active in each of those states and the repair rates are �(1), then
no rarity is involved in the holding times. However, a new probability matrix P̃,
based on the BFB procedure, is used for choosing the sequence of successive
states. Note that any of the other biasing schemes could be applied in place
of BFB, but a balanced scheme is preferable (see below). In this situation, the
likelihood ratio is actually the ratio of the holding time densities mutiplied by the
likelihood ratio for the embedded DTMC. It has been proved for the unreliability
in [31], and for the expected interval unavailability in [38], that forcing+BFB
(or forcing + any other balanced scheme) yields BRE for small time horizons.

In [8], a general expression for the zero-variance change of measure applied
to the estimation of the unreliability in this transient case is proposed. Denote
the time limit by T and define γ (x, t) as the probability of reaching the set of
failed states before T if the CTMC is in state x and there remain t units of time
(i.e., the current time is T − t). The zero-variance density of going from x to x′,
given that the remaining time was t when reaching x, and time to go to x′ is δ,
is given by

g0(x
′, t − δ | x, t) = γ (x′, t − δ)

γ (x, t)
P(x, x′)q(x)e−q(x)δ .

Note that it is no longer exponential. Still in [8], an approximation is developed
via a power series, replacing γ (x, t) by the probability of reaching D in [0, t]
with direct paths to failure. It is shown that this approximation can provide a
BRE when the rarity parameter goes to zero.

In [6] another approach is followed to estimate the same unreliability-at-t
metric. The specific property of the model that is exploited here is that it cap-
tures the behavior of a network, which means that the function specifying when
the system is operational is based on the properties of the graph correspond-
ing to the network connections. More specifically, assume the network (system)
is operational if and only if there is at least a path connecting the sender of
messages and the receiver with all its links working. The basic idea is close to
forcing. It consists in writing the reliability at t by conditioning on the event ‘at
least one component in a path set fails before t’. This changes the distributions
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of the times to failure of the components in the selected path. The same idea can
be followed using a set of disjoint paths between the node sending data and the
node receiving it (or, in a more general setting, when more than two nodes are
exchanging information, replacing paths by trees). Very large variance reductions
and efficiency indexes can be obtained in this way for this type of system. See
[6] for details.

6.4.3 Importance sampling simulation schemes and robustness
properties for large time horizons

Assume that the failure rate of a type i component is λiε
ri and define r0 as

the minimum of the ri , i = 1, . . . , c. Also let r be such that γ = P[τD < τ0] =
�(εr). The unreliability and interval unavailability are both �(εr0+r ). Now let
t be such that t = �(ε−rt ) for some strictly positive rt . This models arbitrarily
large horizon times depending on the rarity parameter at the same time as transi-
tion rates. In [31, 38], it is proved that if rt ≤ r0 (i.e., if the probability of reaching
D is smaller than getting the first failure before t), forcing+BFB still yields BRE.
On the other hand, it is not the case anymore for rt > r0, because the variance of
the likelihood ratio increases exponentially fast in the number of transitions of the
Markov chain. Another simulation scheme is required in that case. An alternative
for obtaining robust estimations is to use upper and lower bounds of the unrelia-
bility, as explored in [31], or in [38] for the interval unavailability. Those bounds
use the property that the number of regenerative cycles between returns to 0 until
the first system failure follows a geometric distribution with success probability
γ . The time to first failure is then approximated by an exponential distribution
with rate γ/E[τ0]. For specific (long) formulas, see [31, 38]. The basic idea is
to replace the estimation of the measure of interest by upper and lower bounds
requiring the estimation of measures for which the number of simulated events
is not a critical issue. For instance, a simple upper bound of the time interval
unavailability is E[D]q(0), where D is the random amount of time during which
the system is down. Then it is shown that the relative error of the bound , defined
as the difference between the upper and the lower bounds divided by twice the
measure of interest, tends to zero when ε → 0, this if and only if rt > r0.

Note that, to the best of our knowledge, no zero-variance-based estimator has
been developed yet in this context. This thus remains an open question.

6.5 Other issues

This section is devoted to the issues of sensitivity analysis and non-Markovian
simulation, which space considerations prevent us from developing in much
depth.

Sensitivity analysis is an important issue for an architecture designer. It
helps identify those parts of the system into which she should direct her efforts
to improve the overall system dependability. Sensitivity analysis is done by
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computing derivatives of the metric considered in terms of the parameters
we can play with. With full generality, assuming the performance measure is
α(t, θ) = E[V (t, θ)] for some random variable V , for a time horizon t (t = ∞
for steady-state measures) and θ the parameter value of interest, and denoting
by Pθ is the probability measure with that parameter value, let us write

α(t, θ) =
∫

V (t, θ)dPθ =
∫

V (t, θ)
dPθ

dPθ0

dPθ0 = Eθ0 [V (t, θ)L(t, θ)],

with L(t, θ) = dPθ /dPθ0 the likelihood ratio. Under mild conditions,

d

dθ
α(t, θ) = Eθ0

[
d

dθ
(V (t, θ)L(t, θ))

]
.

Specific conditions for this to hold, and the performance of the biasing techniques
for this estimation, when θ is the repair or failure rate of a component type,
are discussed in [26, 27, 29, 30]. It can be shown that, in many situations, the
numbers α(t, θ) and dα(t, θ)/dθ have the same logarithmic asymptotics as rarity
increases, for fixed θ . This means that efficient techniques for the estimation of
α can in general be extended to the estimation of its sensitivities. See [4] for
this, and [24, 28] for other related results.

In the case where the process is not driven by a Markov chain because failures
or repairs are not exponentially distributed, there are two options. We can simulate
the generalized semi-Markov process representing the global state of the system;
this basically involves extending the state space by including the remaining clock
for each non-exponential distribution. The augmented state then defines a CTMC
where again failures can be accelerated [33, 38]. Another possibility is to use
the uniformization procedure [15, 32, 34, 35]. To give a specific example of a
possible approach in this context, IS schemes such as the ones described in this
chapter for Markovian models can be designed by replacing the failure rate λi

of a type i component, in the Markovian case, by the hazard function associated
with class i. Recall that if fi(t) and Fi(t) are respectively the density and cdf
of the time to failure of a class-i component at time t , then the corresponding
hazard function value is hi(t) = fi(t)/[1 − Fi(t)]. The interpretation is that the
probability of observing a failure for such a component between t and t + dt ,
given that the component is working at time t , is ≈ hi(t)dt (equal to λidt in the
Markovian case). Under some assumptions about the hazard functions of these
distributions (and the corresponding ones for the repair transitions), it is possible
to follow approaches similar to the methods designed in a Markovian setting.
See [12] and the references therein for details.
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Rare event analysis
by Monte Carlo techniques
in static models

Héctor Cancela, Mohamed El Khadiri
and Gerardo Rubino

This chapter discusses Monte Carlo techniques for rare event simulation in the
case of static models , that is, models in which time is not an explicit vari-
able. The main example and the one that will be used in the chapter is the
network reliability analysis problem, where the models are graphs with probabil-
ities associated with their components (with arcs or edges, and/or with nodes).
Other typical names in this domain are fault trees, block diagrams, etc. All
these models are in general solved using combinatorial techniques, but only
for quite small sizes, because their analysis is extremely costly in terms of
computational resources. The only methods able to deal with models having
arbitrary size are Monte Carlo techniques, but there the main difficulty is with
the rare event case, the focus of this chapter. In many areas (e.g., telecommunica-
tions, transportation systems, energy productions plants), either the components
are very reliable or redundancy schemes are adopted, resulting in extremely
reliable systems. This means that a system’s failure is (or should be) a rare
event.
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7.1 Introduction

The most commonly discussed example in the area of static models in depend-
ability analysis is the network reliability problem. This concerns the evaluation
of reliability metrics of large classes of multicomponent systems. We will denote
by E the set of components in the system (which will shortly be represented by
the set of edges of the undirected graph modeling the system). In general, the
structure of such a system is represented by a binary function � of |E | binary
variables. The usual convention for the state of a component or for the whole
system is that 1 represents the operational state (the device, component or system
is operational or up) and 0 represents the failed or down state. A state vector or
system configuration is a vector �x = (x1, . . . , x|E |) where xi is a possible state, 0
or 1, of the ith component (i.e., �x is an element of [0, 1]|E |). With this notation,
�(�x) = 1 if the system is up when the configuration is �x, and 0 otherwise.

We may have different structure functions associated with the same system,
each addressing a specific aspect of interest that must be evaluated (see below).
Frequently (but not always) structure functions are coherent , corresponding to
systems satisfying the following properties: (i) when all the components are down
(up), the system is down (up); (ii) if the system is up (down) and we change the
state of a component from 0 to 1 (from 1 to 0), the system remains up (down);
(iii) all the components are relevant (a component i is irrelevant if the state of
the system does not depend on the state of i). Formally, let us denote by �0 (by
�1) a state vector having all its entries equal to 0 (equal to 1). We also denote by
�x ≤ �y the relation xi ≤ yi for all i, by �x < �y the fact that �x ≤ �y with, for some j ,
xj < yj , and by (�x, 0i ) (by (�x, 1i)) the state vector constructed from �x by setting
xi to 0 (to 1). Then, � is coherent if and only if (i) �(�0) = 0, �(�1) = 1; (ii) if
�x < �y then �(�x) ≤ �(�y); and (iii) for each component i there exists some state
vector �x such that �(�x, 0i ) �= �(�x, 1i ) (and thus, due to (ii), �(�x, 0i ) = 0 and
�(�x, 1i ) = 1).

After specifying the function �, which defines how the system provides
the service for which it was designed, a probabilistic structure must be added
to take the failure processes into account. The usual framework is to assume
that the state of the ith component is a random binary (Bernoulli) variable Xi

with expectation E(Xi) = ri , and that the |E | random variables X1, . . . , X|E | are
independent. The numbers ri = P(Xi = 1) (called the elementary reliabilities)
are input data. Sometimes we will also use the notation qi for the unreliability
of link i, that is, qi = 1 − ri . The output parameter is the reliability R of the
system, defined by

R = P(�( �X) = 1) = E(�( �X)) (7.1)

where �X = (X1, . . . , X|E |), or its unreliability Q = 1 − R. Observe that this is
a static problem, that is, time is not explicitly used in the analysis. When time
relations are considered, the context changes and the general framework in which
the analysis is usually done is the theory of stochastic processes and, in particular,
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of Markov processes (see Chapter 2). For an exposition concerning the general
theory (including dynamic models), see [6], [7] or [32].

The structure function can be specified by providing a table describing the
mapping from [0, 1]|E | into [0, 1], a sort of exhaustive description, or, on the other
side of the spectrum, by a program (or algorithm), which usually is a compact
way of giving the function. An intermediate option is to define it by giving a
stochastic graph , sometimes called a network in this context. These models are
very useful, in particular, for communication network analysis. We will adopt
them here as referencesystems. The lines of the communication network are
modeled by the edges (or by the arcs in the directed case) of the graph, and the
vertices represent the nodes. The basic model in this class (and in this chapter)
is an undirected graph (lines are assumed to be bidirectional) with perfect nodes
(corresponding to the situation where the reliability of a node is much higher than
the reliability of a line), assumed to be connected and without loops. The state
of line i at some instant of interest is a binary random variable Xi . The structure
function � is then specified by means of some property of the graph. To be more
specific, let us denote by G = (V, E) the graph where V is the set of vertices and
E is the set of edges. The set E ′ of operational lines at the fixed instant considered
defines a random subgraph G = (V, E ′) of G. The reliability of the system is then
the probability that G has some graph property. For instance, if we are interested
in the fact that all the nodes can communicate with each other and we want to
quantify the ability of the network to support this, the corresponding metric, called
all-terminal reliability, is the probability that G is connected. Another important
case is when the user is interested only in the communications between two
particular nodes, usually called source and terminal . Denoting these nodes by s

and t , the associated metric is the so-called two-terminal or source-to-terminal
reliability, defined as the probability that there exists in G at least one path
between s and t (that is, a path in G having all its lines operational in G). This
last case of graphs having an ‘entry’ point s and an ‘exit’ point t (the terminology
is used even if the graph is undirected), has a broad field of applications since it
is a general tool describing the structure of a system, its block diagram , not only
in the communications area. For instance, it is widely used in circuit analysis or
more generally in the description of electrical systems. The previous considered
metrics are particular cases of the K-terminal reliability in which a subset K of
nodes is defined and the associated measure is the probability that all the nodes
in K can communicate, that is, the probability that the nodes of K belong to the
same connected component of G. A large proportion of the research effort in the
network reliability area has been done on the evaluation (exact or approximate)
of this measure and the two particular cases described before (the all-terminal
and two-terminal ones).

These problems (and several other related reliability problems) have received
considerable attention from the research community (see [46, 18, 4, 55] for refer-
ences) mainly because of the general applicability of these models, in particular
in the communication network area, and because of the fact that in the gen-
eral case the computation of these metrics is in the #P-complete class [59, 3],
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a family of NP-hard problems not known to be in NP. A #P-complete problem
is equivalent to counting the number of solutions to an NP-complete one (see
Chapter 8 for connections between counting problems and rare event simulation).
This implies that a #P-complete problem is at least as hard as an NP-complete
one. This last fact justifies the continued effort to find faster solution methods.
Concerning network reliability, even if we limit the models to very particular
classes, the problems remain #P-complete. For instance, this is the case if we
consider the two-terminal reliability evaluation on a planar graph with vertex
degree at most equal to 3.

It must be stated that all known exact techniques available to evaluate R

are unable to deal with a network having, say, 100 elements (except, of course,
in the case of particular types of topologies). For instance, in [51], the effec-
tive threshold is placed around 50 components. Our own experience confirms
this figure. In [55] the different approaches that can be followed to evaluate
these metrics numerically (exact combinatorial methods and bounding proce-
dures, together with reduction techniques that allow the size of the models to be
reduced) are discussed, and some examples illustrate the limits of the different
possible techniques (including simulation). Let us observe that in the commu-
nication networks area, usual model sizes are often very large. For instance, in
[33] the authors report on computational results analyzing (in a deterministic
context) the topology of real fiber optic telephone networks. They give the sizes
of seven networks provided by Bell Communications Research, ranging from 36
nodes and 65 edges to 116 nodes and 173 edges. They also say that in this type
of communication system, the number of nodes in practical implementations is
not larger than, say, 200. In [34], the same authors report on a realistic model
of the link connections in the global communication system of a ship, having
494 nodes and 1096 edges. Monte Carlo algorithms appear, then, to be the only
way to obtain (probabilistic) answers to reliability questions for networks having,
for instance, more than 100 components. But, of course, specific techniques for
dealing with the rare event case must be applied. This is the topic of this chapter.

The crude Monte Carlo technique in this context involves sampling the system
configuration N times, that is, generating independent samples �X(1), . . . , �X(N) of
�X and estimating the unknown parameter R by the unbiased estimator

R̂ = 1

N

N∑
n=1

�( �X(n)).

The evaluation of �(�x) for a given configuration �x takes the form of a graph
exploration. For instance, in the source-to-terminal case, a depth first search
procedure is typically implemented to check if source and terminal are connected
in the graph resulting from the initial model when all lines corresponding to the
zeros in �x have been deleted.

The case of interest here is that of R ≈ 1, and so, Q = 1 − R ≈ 0. The rare
event is ‘�( �X) = 0’, and the methods used to deal with it are the subject of the
rest of the chapter. After a discussion in Section 7.2 of the many applications in
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this area through a literature review, Section 7.3 describes the main ideas used so
far in order to analyze network reliability, focusing on the rare event situation. In
Section 7.4 a specific approach is presented in more detail. Section 7.5 presents
some numerical examples of the behavior of these techniques. Section 7.6 con-
cludes the chapter.

7.2 Network reliability applications

There is a wide field of applications of network reliability techniques. We find
these problems in evaluations of electrical power networks, transportation sys-
tems (especially urban transportation systems; see [56]), interconnection networks
(i.e., networks connecting processors, memory and other devices inside a multi-
processor computer), fault-tolerant computer architectures, etc. As already stated,
a central area of application is in the evaluation of communication systems. The
usefulness of ‘connectivity’ measures such as those ones presented above is clear,
for instance, in packet switching communication networks using dynamic routing
which allows rerouting of data in the event of the failure of a link. It must be
said that many modern packet switching networks are rather dense and that the
reliability measures considered tend to be close to unity. The computation of the
unreliability of the system systematically corresponds then to the evaluation of
the probability of a rare event. In this section, we give some examples of applica-
tions in different contexts, such as the design of telecommunication networks and
other systems [5, 20–25, 43, 44, 47, 50, 57], the design and evaluation of mobile
ad hoc networks and of tactical radio networks (specially in military contexts)
[19], the evaluation of transport networks, and the assessment of the reliability
of road networks with respect to seismic hazards and other disasters [35, 45, 49,
61]. The aim of this section is to underline the wide range of application of these
problems, and thus, of the methods proposed to solve them. Once again, let us
recall that in most of the cases, the events of interest are rare.

The design of the topology of telecommunication and computer networks is
one of the settings where the application of reliability models is more direct. As
such, there are a number of papers which tackle different variants of this prob-
lem, which in general involves deciding which components (links, and sometimes
nodes) to include in the network so that the communication among terminals
is reliable and the cost is as low as possible. Such network design problems
are in general NP-hard, so that most literature includes the use of combinato-
rial optimization heuristics (most often genetic algorithms) to find approximate
solutions.

One of the first papers on applying genetic algorithms to solve reliable
network design problems was published by Kumar et al. [43]. These authors
tackled three different network design problems: maximization of reliability under
a diameter constraint, maximization of diameter under a degree constraint, and
maximization of average distance under a degree constraint. The solution method
applied was based on a genetic algorithm, which solved very small instances of
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these problems (graphs up to 9 nodes), attaining optimal solutions. Even if the
network size considered was very small, this work showed that genetic algorithms
could be designed to tackle reliable network design problems.

Dengiz et al. [22, 23] study two variants of reliable network design: maxi-
mization of the all-terminal network reliability metric given a cost constraint,
and minimization of the cost, given a reliability constraint. The node set is
fixed, and the problem involves choosing which links to install. The problem
is solved using an evolutionary approach, based on genetic algorithms plus a
local search heuristic. Reliability is estimated using a specific heuristic, upper
bounds, and Monte Carlo simulation. The authors evaluated their algorithm and
an exact, branch-and-bound based alternative, using 79 randomly generated small
test problems (with 6–20 nodes), and the results showed that both algorithms
found the optimal solutions, and that the genetic algorithm was computationally
the most efficient. Deeter and Smith [20, 21] also discussed the design of net-
works considering all-terminal reliability. These authors consider minimizing the
network cost given a reliability constraint. In their setting, the nodes are given,
and it is possible to choose which links to employ, and different ‘link options’,
each having different reliability and cost values. A genetic algorithm is used
to select the links and the level of link connection; Monte Carlo simulation is
used to compute estimates of the network reliability. Experiments with different
topologies showed the effectiveness of the approach in identifying low-cost solu-
tions meeting the reliability requirements. Other more recent work by the same
authors includes [1] and the genetic algorithm by Altiparmak et al. [2]. Other
authors, such as Lin and Gen [44], have also studied the same all-terminal reli-
ability network design problem and proposed alternative optimization methods
resulting in improved performance.

Barán and Laufer [5] proposed a parallel asynchronous team algorithm applied
to the reliable network design problem, where the nodes and links are fixed, but
it is possible to choose (at a cost) a given reliability value for each link. This
is a hybrid technique that combines different algorithms interacting to solve the
same global problem. Two approaches were used to estimate network reliability
in this paper: an upper bound of all the candidates included in the population is
efficiently calculated, and after that, a Monte Carlo simulation is used to get good
approximations of the all-terminal reliability. The empirical results show good
values for medium-size networks. Duarte and Barán [24] addressed a multiob-
jective version of the previous problem, using a parallel asynchronous version of
a genetic algorithm to search for optimal topologies for a network. The parallel
version outperforms the sequential one, considering standard metrics in the mul-
tiobjective domain (where the solution is not just a topology, but a set of Pareto
efficient ones). Later, Duarte et al. [25] published a comparison of several paral-
lel multiobjective evolutionary algorithms for solving the same reliable network
design problem.

Taboada et al. [57, 58] also look at multiobjective system reliability design
problems, where it is necessary to decide the level of redundancy to allocate
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at each stage, and reliability, cost and weight are objective functions. In these
papers different methodologies are explored: in [57], to help the decision maker
make a selection, a pseudo-ranking scheme and clustering techniques to reduce
the size of the Pareto optimal set are presented; in [58] a multiple objective
genetic algorithm for solving the problem is given.

Marseguerra et al. [47] used a stochastic model for network reliability, con-
sidering a function of imperfectly known reliability parameters of network com-
ponents. The problem to solve is again a multiobjective one, the aim being to find
the network topologies that maximize the network reliability and minimize the
variance of this estimation (taking into account the imperfectly known reliability
parameters). The decision variable is the type and the redundancy level of com-
ponents to be allocated within a fixed network topology, where each component
has an associated reliability probability distribution. The optimization method is
based on genetic algorithms, and a Monte Carlo evaluation algorithm is used to
incorporate the uncertainty in the reliability values; the repeated evaluations of
the good individuals are accumulated, to enhance the significance of the estima-
tions. The numerical examples consider only very small networks (with 7 and 8
links), and allow the Pareto optimal solutions obtained to be examined and the
differences in the configurations to be easily identified.

Premprayoon and Wardkein [50] tackle another variant of the reliable network
design problem, where it is possible to define for each pair of nodes whether they
will be connected by a link, whose characteristics (cost and reliability) can also
be chosen from a given set. The objective is to minimize network cost subject to a
requirement of attaining at least a given reliability level. The authors compare an
ant colony optimization method, a tabu search method and a local search method;
the network reliability evaluation is done by backtracking (as only very small
network topologies are studied). The best computational results are obtained by
the ant colony optimization.

Cook and Ramirez-Marquez [19] study mobile ad hoc wireless networks, in
particular in a military context. These networks have their own characteristics,
which this work describes, and a proposal is presented on how to adapt the clas-
sical analysis of network reliability to this new context. The methods proposed
rely on considering the effect of node mobility and the continuous changes in
the network’s connectivity. Wakabayashi [61] also studies highway network reli-
ability, taking normal and abnormal periods into account. The motivation of this
work is to detect the critical link in the network, whose improvement will lead
to reliability improvement for the larger network. This paper presents a compar-
ative study between using a probability importance index (Birnbaum’s structural
importance) and a criticality importance based on network reliability measures,
which address some problems in Birnbaum’s index.

Li [45] proposes to employ an accessible node rate index based on
two-terminal reliability to evaluate the anti-disaster level of a city road network.
In particular, this author evaluates the connectedness to the start points of
emergency vehicles, and provides a method of accessing such accessibility
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to individual residences in a real city by using GIS. Nojima [49] employs
network reliability models to represent the risks on road networks caused by
seismic activity. The performance measure of interest is defined as the system
flow capacity of road networks subject to failure. In this paper, a variance
reduction technique for Monte Carlo simulation is presented to perform efficient
reliability analysis in terms of the system flow capacity. This method is used to
define performance-based prioritization order; this results in a road prioritization
strategy according to various levels of vulnerability and system requirement.
Günnec and Salman [35] propose to assess the post-disaster performance
of a road network under most likely disaster scenarios for the purpose of
both strengthening the components of the network and planning post-disaster
logistical activities. In this paper, the authors seek to measure the reliability
and the expected post-disaster performance of a network under disaster risk.
In particular, they evaluate the reliability of connection between different pairs
of origin–destination nodes in the network, in terms of expected weighted
sum of shortest travel time/distance between the origin–destination pairs. The
estimation of this measure is done by Monte Carlo sampling.

7.3 Variance reduction techniques

Many generic variance reduction techniques have been proposed in order to
improve the performance of Monte Carlo simulations, especially for the rare
event case. Importance sampling is probably the most common, but we also find
techniques based on antithetic variates, control variables, stratified sampling, etc.
These techniques can be also applied to network reliability evaluation, with vary-
ing degrees of success. Nevertheless, the special characteristics of this problem
provide the opportunity to develop more specialized variance reduction methods,
sometimes inspired by the classical ones and sometimes completely original,
which provide improved performance. As many methods have been proposed, it
is not possible to describe each of them in detail. In this section, we will briefly
present the main ideas which have appeared in the literature, and we will refer-
ence the publications which fall in the same broad categories. We also give an
assessment of the most promising approaches.

7.3.1 Sampling techniques based on bounds

This family of methods can be interpreted as a hybrid of classical importance
sampling with control variates. Its first application to network reliability problems
was presented by Van Slyke and Frank [60], and later by Kumamoto et al. [41]
and Fishman [31]. It can be applied to any reliability evaluation problem where
there are two functions �L and �U which provide lower and upper bounds on
the system structure function �. These functions must possess the following
properties:

• �L(�x) ≤ �(�x) ≤ �U(�x) for any state vector �x.
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• For k = 1, . . . , |E | and for any value assignment x̃(k) = (̃x1, . . . , x̃k) of the
first k components of the state vector �x, the values

RL
k (̃x(k)) ≡ P(�L( �X) = 1 |X1 = x̃1, . . . , Xk = x̃k)

and
RU

k (x̃(k)) ≡ P(�U( �X) = 1 | X1 = x̃1, . . . , Xk = x̃k)

can be computed in polynomial time.

The numbers RL
0 and RU

0 are defined by RL
0 = P(�L( �X) = 1) and RU

0 =
P(�U( �X) = 1). For the bound-based sampling, we define the remaining state
space

W = {�x : �L(�x) = 0, �U(�x) = 1}

from where the samples will be chosen proportionally to their probability in
the original state space. From the estimator obtained there and the previous
information, we construct an estimator of the system reliability. The variance
reduction attained is directly proportional to the fraction of the total probability
that is included in the subspace W .

We now give a more detailed description of the sampling routine M for the
bound based sampling:

Input: network G, terminal set K, �L and �U

Output: an estimator of R (K-terminal reliability)

Procedure M :
Sample X̃; result: x̃ = (x̃1, . . . , x̃|E |)
Compute R = RL

0 + �(x̃)
(
RU

0 − RL
0

)
Return R

The sample X̃ = (X̃1, . . . , X̃|E |) is chosen by sampling succesively, for
l = 1, . . . , |E |, the state X̃l of link l following the Bernoulli distribution with
parameter

r̃l = P(Xl = 1 |X1 = x̃1, . . . , Xl−1 = x̃l−1 and �U( �X) = 1, �L( �X) = 0)

=
[

RU
l (x̃(l−1)) − RL

l (x̃(l−1))

RU
l−1(x̃

(l−1)) − RL
l−1(x̃

(l−1))

]
rl .

The variance of each sample of the methods of this family is

Var = R(RU
0 − R) − RL

0 (RU
0 − R)

= R(1 − R) − (1 − RU
0 )R − RL

0 (RU
0 − R),
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which is lower than the crude Monte Carlo one (R(1 − R)). The difference will
depend on the tightness of bounds �L and �U . The execution time performance
depends on the computational complexity of the evaluation of these bounds.

In [28] a variant of this family is proposed for the case where all links have
the same elementary reliability. The method is based on the efficient computation
of a lower bound on the network reliability, in turn based on the evaluation of
a subset of states with number of failed links less than the cardinality of the
smallest minimal cutset of the network, and it does not employ any upper bound.
The variance reduction obtained with this method is of order 1/�1 − RL

0 	, for
a computation cost per sample similar to the crude Monte Carlo method. The
authors classify their method within the antithetic variates based family.

7.3.2 Dagger sampling and other related techniques

Dagger sampling was proposed by Kumamoto et al. [42] and can be seen as an
extension of the antithetic variates technique. The main idea behind this sampling
method is the generation of sample blocks of size L such that within each block
the random variables are chosen in order to induce negative correlations between
the individual samples. The size of the blocks, L, is fixed in such a way that
for each edge l the sequence of L replications can be partitioned into exactly
Nl sub-blocks of size L/Nl , where Nl = �1/ql	. For each of these sub-blocks, a
single position is randomly chosen; this position corresponds to a sample where
link l will fail. In this way, the failure pattern is such that the sampled failure
frequency for each link of the network is proportional to the link unreliability
value. After all random variables have been sampled, the method checks every
replication within the block, checking in each case whether the resulting network
is connected or not, in order to obtain an estimate of R.

In this method, a single invocation of M corresponds to L crude Monte Carlo
samples; this must be taken into account when comparing the computational
complexity of the algorithms.

Input: network G, terminal set K
Output: an estimator of R (K-terminal reliability)

Initialization I:
Compute the integer vector (Nl : l ∈ E): Nl = �1/ql	.
Choose the sample number: L = lcm{Nl : l ∈ E}.

Procedure M:
For each link l

For each sub-block of replications of size L/Nl ,
Sample random state vectors �X(j) in this sub-block:
Choose randomly a replication from the sub-block:

Sample U uniformly on [0,1]; result: u; set
k = �u/ql�
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Link l is failed in that replication:
X

(j)

l = 1, ∀j �= k; X
(k)
l = 0, if k ≤ L/Nl .

endFor
endFor
Initialize T = 0.
For i from 1 to L

Count replications corresponding to an operational state
of the network:

T = T + �( �X(i)).
endFor
Return R = T /L.

The complexity analysis of this algorithm, given in [30], shows that the
execution time per sample has worst-case complexity O(|E |), as in the case of
crude Monte Carlo. Nevertheless, as the number of random variables that are
needed in the dagger method is much smaller than in the crude Monte Carlo,
there may be a large gain in execution time, which is an important advantage of
the method compared to the crude procedure.

The variance reduction obtained by the dagger method is based on the induced
negative correlation among the samples which belong to the same sub-block for
some link of the network, and is relatively small, approaching 0 when the link
reliability is near 1. El Khadiri and Rubino [27] discuss some problems of the
dagger method, which happen in particular when value L is too large. As it is
necessary to generate and save into memory L states of the network, memory
requirements grow linearly with L. The authors show that the block size L may
be chosen arbitrarily, and they propose an alternative method, inspired by the
dagger and applying a generalization of the standard antithetic approach. This
new method obtains better results, both because L can be chosen arbitrarily,
and because the sampling algorithm used incorporates some features in order to
improve its efficiency. The algorithm employs mechanisms similar to those used
in discrete event simulation, employing a list with the incumbent failure instants
for each link, and finding which is the first replication including at least one
failure. This implementation yields important gains in execution time and also
results in minimal memory complexity (which depends linearly on the network
size and is independent of L).

When all links have the same reliability p, the generalized antithetic algorithm
has sample complexity O(α|E |), where

α = max(1/L, 1 − p).

This represents an improvement over the crude method which grows with the
block size L, up to a bound given by the inverse of the link reliabilities (in the
worst case, p = 0.5, we have that the maximum gain that can be attained is a
factor of 2, corresponding to setting L = 2).
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7.3.3 Graph evolution models

The techniques described in this subsection, instead of using the static network
reliability model, employ alternative timed models where the states of the links
are assumed to change over time. These models correspond to Markov pro-
cesses, whose properties can then be exploited to obtain efficient estimators of
the classical reliability.

Easton and Wong [26] proposed the sequential construction and sequential
destruction methods, which complement the previous idea with the use of an
ordering of the network links. In the sequential construction method, all links
are considered as being in a state of failure at an initial instant, and then they
are successively repaired, one by one following the ordering chosen, until the
network reaches an operative state. The reliability estimator can be interpreted
as a function of the expectation of how much time is needed for the network
to reach an operative state. The sequential destruction method is similar, but
all links are considered to be operating at the initial time and are successively
put into a failure state. These techniques can be classified as hybrids between
stratified sampling and importance sampling procedures.

The sample space for the sequential construction method consists of pairs
(x̃, π̃ ) where x̃ is a state vector or configuration and π̃ = (π̃1, . . . , π̃|E |) is a
permutation of the link indexes in E . There exists an index k such that

x̃π̃1 = . . . = x̃π̃k
= 1, x̃π̃k+1 = . . . = x̃π̃|E | = 0.

If we choose a vector x̃ following the system state probabilities (i.e, with the same
distribution as �X) and we choose a permutation π̃ independently and uniformly
over all the compatible permutations, then the probability of observing a given
pair (x̃, π̃) is

ρ(x̃, π̃ ) = P( �X = x̃)

k!(|E | − k)!
= 1

|E |!C
|E |
k P( �X = x̃),

where k is the number of working links in x̃. The sequential construction method
samples π̃ , and considers simultaneously the set Pπ̃ of all possible pairs (x̃, π̃)

such that x̃ is consistent with π̃ following the previous criterion. The reliabil-
ity estimator R is then the conditional probability of operation of the system
given Pπ̃ , corresponding to the quotient of the sum of the probabilities of the
pairs (x̃, π̃) ∈ Pπ̃ such that �(x̃) = 1 divided by the probability of Pπ̃ . We give
below a more detailed description of the algorithm M for generating a sequential
construction sample (no initialization is needed):

Input: network G, terminal set K
Output: an estimator of R (K-terminal reliability)

Procedure M :
Sample π̃ = (π̃1, . . . , π̃|E |)
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For k = 1, . . . , |E | (Define x̃(k))
x̃

(k)
π̃1

= . . . = x̃
(k)
π̃k

= 1, x̃
(k)
π̃k+1

= . . . = x̃
(k)
π̃|E | = 0

endFor
Determine first r ∈ 0, . . . , |E |

such that �(x̃(r)) = 1
Compute

R =
∑|E |

k=0 �(x̃(k))ρ(x̃(k),π̃)∑|E |
k=0 ρ(x̃(k),π̃)

=
∑|E |

k=r C
|E |
k P( �X=x̃(k))∑|E |

k=0 C
|E |
k

P( �X=x̃(k))

Return R.

It is possible to show that the estimator obtained by this method has smaller
variance than the one corresponding to a crude Monte Carlo sample. Much effort
is needed to compute the first index r , this depending on the effort needed to
compute �(x̃(k)), as it is necessary to determine when the network becomes
operational as the links are repaired one by one. In the worst case, and using
a depth first search for computing �, the complexity is O(|E | max(|V|, |E |)).
Nevertheless, for the case of the two-terminal metric, it is possible to determine
the value of r with a computation cost similar to a single computation of �, so that
this method obtains a single sample at a cost similar to that of the crude method.

As already mentioned, the sequential destruction method is very similar; in
the case of very low-reliability systems, it may exhibit better performance in
computation terms, as the value of r would be determined in fewer iterations
than needed by the sequential construction method.

Other methods based in graph evolution models have been published in [29].
In particular, three methods are discussed in that work: destruction processes ,
construction processes , and merge processes . All the methods rely on construct-
ing a Markov chain ( �Y (t)) such that at time t = 1 we have that P(�( �Y (1)) =
1) = P(�( �X) = 1), so that computing the expectation of �( �Y (1)) also gives
the reliability R. Then the algorithm samples a permutation of the order at
which links go up (in a creation or merge process) or down (in a destruc-
tion process), it identifies the critical link (that which causes the system to
change from a down to an up state, or vice versa), and it computes (using
a convolution of exponential random variables) the exact conditional probabil-
ity that at time 1 the critical link will have changed its state. In the case of
merge processes, they improve on previous ideas identifying irrelevant links
and partitions of the subjacent network. In these methods, the sample com-
plexity is higher, of order O(|E |2), but the variance is much smaller than the
one obtained by the sequential construction method. An important result is
that, for fixed E , the merge processes method has coefficient of variation uni-
formly bounded for all values of links’ reliabilities. Another related work is
[36], which gives a hybrid variant of crude Monte Carlo and graph evolution
models, completed with the use of importance sampling to further speed up the
simulations.

More recently, Hui et al. [37] have applied cross-entropy techniques to
improve the performance of crude Monte Carlo and graph evolution methods,
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in particular creation processes and merge processes. The main idea is to apply
an importance sampling scheme, changing the underlying network reliability
parameters, and to use cross-entropy to search for an optimal change of measure.
Their results show that cross-entropy does indeed give better accuracy; the
improvement over crude Monte Carlo is quite large. In the case of construction
and merge process based Monte Carlo, the application of cross-entropy results
in much more modest improvements. Similar results have been obtained by
Murray and Cancela [48], who compared the behavior of these methods (and
of a generalized antithetic method) when evaluating the diameter constrained
reliability of a network, a variant of the classical model taking into account a
bound on path length.

A quite different approach to exploit the Markov process modeling a creation
process of the network has been employed by Cancela et al. [15]. This work
applies the well-know splitting technique (see Chapter 3), much employed for
rare event simulation in the context of stochastic processes, to the stochastic
process starting from an empty network and creating (or putting into operational
states) the links one by one, taking independent exponential distributions for these
times. As already mentioned, the state of this system at time t = 1 has the same
distribution as the state of the static network model; in a highly reliable network,
the network almost always becomes operational before time 1, and the rare event
is to observe �( �Y (1)) = 0. The splitting strategy developed in [15] involves
taking a number of intermediate time thresholds, and splitting such trajectories
of process ( �Y (t)) that at these thresholds still satisfy �( �Y (t)) = 0. The results
show that this method is very robust and can achieve better performance than
that of Hui et al. [37].

Finally, let us also mention [38], where the author proposes to directly esti-
mate the reliability ranking of some edge relocated networks without estimating
their reliabilities and compare the proposed approach to the traditional approach
using the merge process estimation algorithm. Another recent related paper is
[40], which is concerned with network planning. Here, the objective is to maxi-
mize network’s reliability, subject to a fixed budget. The authors show how the
cross-entropy method can easily be modified to tackle the noise introduced by
the use of network reliability estimators in the objective function instead of exact
evaluations.

7.3.4 Coverage method

The coverage method was proposed by Karp and Luby [39]. It can be seen as a
hybrid variant of importance sampling and stratified sampling, and employs the
list of the minimal cuts of the system to improve the crude sampling procedure.
The main idea is to embed the set F of network failure events within a universal
weighted space (U, w), where w is a non-negative weighting function in U ,
satisfying the following criteria:

• w(F) = P(F ) = Q.
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• w(U) can be efficiently computed (in polynomial time). Moreover, it is
possible to efficiently sample values in U with probability proportional to
the weights of the elements of the set.

• It can be efficiently decided whether an element of U belongs to F .

• w(U)/w(F ) is bounded above by a value M for all the instances in the
problem class considered.

• w(C) is the total weight of the elements of U with second component equal
to C.

If we take a sample from U , and we obtain the estimator Q̂ multiplying the
proportion of elements of this sample that are included in F by w(U), then Q̂ is
an unbiased estimator of Q.

Let C be the set of the K-mincuts of network G. We define the univer-
sal weighted sample space U composed of the pairs (�x, C) where �x is a state
vector of the network, C ∈ C is a cut, and xl = 0 for all links l belonging to
C. This way every system failure state �x will appear in U as many times as
the number of failed mincuts in �x; in order to embed F in U it is neces-
sary to assign to each �x a single cut C ∈ C. To do this we choose a node
s ∈ K , then we find the set N of all nodes reachable from s following paths
formed by operational links, and we select C ≡ C(�x) the set of links from N to
V − N . The elements of F appear then in U as pairs (�x, C) such that C = C(�x),
and it can be decided in linear time if an element from U belongs to F just
by verifying the condition C = C(�x). The weighting function w is given by
w(�x, C) = P( �X = �x).

We give now pseudo-code for the initialization and sampling routines for the
coverage method:

Input: network G, terminal set K, list of mincuts C
Output: an estimator of R (K-terminal reliability)

Initialization I:
For each C ∈ C

Compute w(C) =
∏
l∈C

ql

endFor
Compute w(U) =

∑
C∈C

w(C)

Procedure M:
Sample ( �X, C) from U with distribution w:
Sample a cut C with probability w(C)/w(U)

Construct �X:
∀l ∈ C, Xl = 0
∀l �∈ C, Xl = 1 with probability pl,

Xl = 0 otherwise.
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If C = C( �X)

R = 1 − w(U)

Else
R = 1

endIf
Return R.

This method can obtain good variance reduction levels, but has the drawback
of depending on the previous calculation and storage of the list of all mincuts
of the network considered. As the size of this list grows exponentially with the
size of the network, the requirements of time and space can quickly make its
application impractical. Also, there are some exact methods that compute the
reliability in time polynomial in the number of mincuts of the network [52],
further reducing the attractiveness of the approach.

7.3.5 State space partitioning and conditioning methods

A number of methods are based on sampling within the space of the state vec-
tors of the network, using techniques related to partitioning this space and/or to
conditionally sampling within it.

One of these is the total hazard method. Random hazard variables, and in
particular the total hazard ones, have been employed in different contexts to
simulate stochastic models [53]. Ross [54] developed a total hazard estimation
to compute the reliability R.

Let C1 be a K-mincut. The first hazard, h1, is the probability that all the
components in C1 are failed (implying that the network is not K-connected); so,

h1 =
∏
i∈C1

qi.

The total hazard method involves simulating the state of all the links belonging to
C1. If all the links are failed, the procedure ends. If at least one link is operational,
we fix the states of the simulated links, and we look for a new mincut C2 in the
modified network. From this new cut we compute the second hazard, h2, given
by

h2 =
∏
i∈C2

qi.

Then we simulate the state of the links belonging to C2 and the previous process
is repeated, generating new networks until all the components of a mincut are
failed or until a trivial network is reached, with no mincuts (all the links’ states
have been fixed). For r hazards, the total hazard is given by

H(G) =
r∑

i=1

hi,
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and it is an unbiased estimator of Q. The implementation suggested in [53]
employs the list of all mincuts of the system under consideration, and it updates
it as the states of the links are fixed; the mincut is chosen at each step in order
to result in the maximum risk.

Inputs: network G, set K, list of K-mincuts of G
Output: an estimate for R

Initialization I:
H = 0.

Procedure M:
Select a K-mincut C.
Simulate the state of the links in C

Repeat until all the links in the selected mincut are failed
Update the list of mincuts of network G.
Compute the hazard: h = ∏

i∈C qi .
Accumulate in H : H = H + h.
Select a K-mincut C.
Simulate the state of the links in C.

endRepeat
Return R = 1 − H .

The variance reduction that can be obtained with this method depends strongly
on how the K-mincut C is chosen. A heuristic with good behavior is to select
at each step the mincut with the highest associated hazard. This implies a sig-
nificant computational overhead, as it must be implemented as a search in the
list of mincuts (whose size is exponential in the size of the graph), or employ-
ing a maximal flow algorithm at each iteration of the method. The analysis of
the computational complexity of generating a sample strongly depends on this
step. With the computationally less costly choice for the mincut selection, the
computational complexity per sample is of order O(|E |).

In [9], Cancela and El Khadiri highlighted that there are some cases where the
total hazard estimator is less efficient than crude Monte Carlo. They proposed a
modification leading to a more precise estimator whose variance is always lower
than that of the crude Monte Carlo method.

7.4 The RVR sampling principle

Another family of related methods are the recursive variance reduction (RVR)
ones. These methods, first proposed in [8], have been extensively discussed and
adapted to different contexts [10–14, 16, 17]. RVR methods combine different
ideas to obtain good performance estimators. On one hand, they employ either
one or more cutsets, pathsets, or both, of the network of interest, in order to
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partition the state vector space into subsets depending on the operational/failed
status of the links belonging to the chosen sets. Some of the elements of this
partition correspond to network configurations known in advance (corresponding
to either a failed or an operational network). Then the rest of the state vector space
is explored by recursively sampling one of the subsets in the partition, which
corresponds to a subnetwork of the original one, including some particular links
failed and others operational; once this subnetwork has been randomly chosen,
an RVR method recursively searches for new cutsets and/or pathsets, and restarts
the whole process.

In this section we provide some details about the RVR approach. For the
presentation of the RVR principle, we consider the two-terminal problem where
we look at the unreliability between two given nodes s and t in G, the version
using series–parallel simplification for reducing the size of the network and a
selected cut for transforming a network reliability problem into a smaller one
and then recursively until the network has unreliability equal to 0 or to 1. This
estimator was proposed in [11].

If s and t are not connected in G, we define Z(G) = 1. Otherwise, let us
denote by sp-red(G) the result of making all possible series–parallel reductions
in G. As these reductions preserve the unreliability, we set Z(G) = Z(sp-red(G)).
Let γ be an st-cut in sp-red(G), γ = {l1, l2, . . . , lH } where l1, l2, . . . are the links
in the cut. Let Lh be the event ‘link lh is down’. If � is the set of all possi-
ble configurations in the model, consider the partition � = (E0, E1, . . . , EH )

where

E0 = L1L2 · · ·LH = all links in γ are down,
E1 = Lc

1 = at least one link in γ is up, and the first such link is l1,
E2 = L1L

c
2 = at least one link in γ is up, and the first such link is l2,

E3 = L1L2L
c
3 = at least one link in γ is up, and the first such link is l3,

· · ·
EH = L1L2 · · ·Lc

H = at least one link in γ is up, and the first such link is lH .

We have P(E0) = q1 · · · qH , where qh = P(Lh) = 1 − rh, and P(Eh) =
q1q2 · · · qh−1rh for h = 1, 2, . . . , H . To simplify the notation, call πh the
product πh = q1q2 · · · qh for h = 1, 2, . . . , H , π0 = 1. We have P(E0) = πH

and P(Eh) = πh−1rh for h = 1, 2, . . . , H .
Let I be the random variable ‘index in γ of the first link up’, with I = 0 if

all links in π are down. We have P(I = h) = P(Eh). Now define the random
variable V on {1, 2, . . . , H } by

P(V = h) = P(I = h | I �= 0) = πh−1rh

1 − πH

.

Last, for h = 1, 2, . . . , H , denote by Gh = sp-red(G) |Eh the network obtained
from sp-red(G) by deleting links l1, l2, . . . , lh−1 and contracting link lh. We are
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now ready to give the estimator proposed in [11]:

Z(G) = πH + (1 − πH)

H∑
h=1

(V = h)Z(Gh).

Let us denote by v a sample from the distribution of V . Then a sample Z(k)(G)

of Z(G) can be deduced from a sample Z(k)(Gv) of Z(Gv) by

Z(k)(G) = πH + (1 − pH)Z(k)(Gv).

If s and t are merged into a final single node, the unreliability of Gv is equal to
0 and then Z(k)(G) = πH + (1 − pH) × 0 = πH . If s and t are not connected,
the unreliability of Gv is equal to 1 and then Z(k)(G) = πH + (1 − pH) × 1 = 1.
Otherwise, we have found an st-cut in Gv and we proceed again as before. The
main interest of this procedure is that Gv is smaller than G, and sometimes much
smaller, because of the series–parallel simplifications, deletions and contractions
performed.

A function which returns a trial of Z(G) can be summarized as follows:

TRIAL-RVR(G,K)

1. Check end recursion condition:
If |K| = 1 return(0)
If G is not K-connected return(1)

2. Construct sp-red(G) by applying series–parallel reductions to G
3. Find a K-cut π in sp-red(G): π = {l1, . . . , lH }
4. Compute the probability πH that all links in π are down
5. Compute the probability mass function distribution of the

random variable V

6. Generate a trial v of V

7. Construct the network Gv = sp-red((G − l1 − l2 − . . . − lv−1) ∗ lv)

8. Recursive step: return(πH + (1 − πH) × Trial-RVR(Gv, Kv)).

The memory space complexity of the function TRIAL-RVR(G,K) is
of order O(|E |(|E | + |V|)) and time complexity is, in the worst case, of
order O(|E |(|K|2|E ||V|2)). The worst case corresponds to a version using a
maximal flow procedure in order to select a K-cut π at step 3 of the above
algorithm.

By calling the function TRIAL-RVR(G, K) N times, we obtain N indepen-
dent trials Z(k)(G) of Z(G), 1 ≤ k ≤ N . The sample mean Ẑ(G) of these trials
leads to an estimate of Q = 1 − R and the variance is estimated by

V̂RV R = 1

N(N − 1)

N∑
k=1

(
Ẑ(G) − Z(k)(G)

)2
.
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In [12] it is shown how the computational complexity of the RVR method
can be improved by generating the N samples simultaneously, thus avoiding
replicating a large part of the computations, and [13] discusses the sensitivity
of the RVR’s accuracy to the strategy of choosing cuts. Instead of using cuts to
recursively change the original problem into a smaller one, the method in [10]
exploits paths and that in [14] exploits both paths and cuts leading to a more
interesting behavior than for versions based on only paths or cuts.

7.5 Numerical results and conclusions

To the best of our knowledge, the CE-MP method [37] which uses the
cross-entropy technique to further improve the performance of the merge process
method [29] and the RVR technique which exploits series–parallel reductions
and a minimum cost st-cut strategy [13], where each link l has value − ln(ql),
are the most suitable procedures published in the literature to compute network
reliability in a rare event context. In this section we present some numerical
illustrations of these methods.

For the examples, we consider highly reliable grid topologies G3 and G6 (see
Figure 7.1), where links are assigned equal unreliability q = 10−3 or q = 10−6 as
in [37] and K is the set of the four corner nodes. For those networks exact values
of Q = 1 − R are tabulated in column 3 of Table 7.1. Each exact unreliability
Q is used in the computation of the relative error parameter which helps to
appreciate the quality of the estimates produced by the two estimators considered.
Tables 7.2 and 7.3 show that both methods lead to small relative errors and the
RVR method offers the most accurate estimates.

In the general case, we do not know the exact values. Then, the best estimator
in terms of accuracy is the one with smallest variance for a fixed sample size
N , leading to smallest lengths of confidence intervals. Column 6 of Table 7.3
shows that the RVR method significantly reduces the variance with respect to
the CE-MP method, and the best gains are obtained for highly reliable cases.

To illustrate the behavior of the RVR method on dense networks, let us now
consider the evaluation of complete topologies for which we calculate the exact

k rows

k columns

Figure 7.1 Gk: the grid network topology. The four corner nodes are the
terminals.
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Table 7.1 Exact unreliabilities of grid networks (see
Figure 7.1) used for numerical illustrations [37]

Network Common link unreliability q Q

G3 10−3 4.01199 × 10−6

G3 10−6 4.00001 × 10−12

G6 10−3 4.00800 × 10−6

G6 10−6 4.00001 × 10−12

Table 7.2 Performance of the MP-CE method for the evaluation of G3 and
G6. Terminals are the four corner nodes and N = 106

Network q Estimate of Q [37] RE (%) Variance[37]

G3 10−3 4.01172 × 10−6 6.73 × 10−3 1.84515 × 10−17

G3 10−6 3.99876 × 10−12 3.12 × 10−2 1.85116 × 10−29

G6 10−3 4.00239 × 10−6 1.40 × 10−1 3.74067 × 10−17

G6 10−6 3.99869 × 10−12 3.30 × 10−1 3.75850 × 10−29

Table 7.3 Performance of the RVR method for the evaluation of G3 and G6.
Terminals are the four corner nodes and N = 106

Network q Estimate of Q RE (%) Variance VCE−MP /VRV R

G3 10−3 4.01208 × 10−6 2.16 × 10−3 3.01610 × 10−18 6.12 × 100

G3 10−6 3.99992 × 10−12 2.31 × 10−3 1.00018 × 10−35 1.85 × 106

G6 10−3 4.00803 × 10−6 7.49 × 10−4 4.02467 × 10−21 9.29 × 103

G6 10−6 4.00001 × 10−12 5.00 × 10−5 3.99998 × 10−36 9.40 × 106

values of Q by a Maple program; see column 2 of Table 7.4. We consider
a sample size N = 10 for each network. The estimates obtained by the RVR
method are given in column 3, and associated relative errors and variances are
in column 4 and 5 respectively. In column 6 we give the variance gains when
the RVR method is compared to the crude Monte Carlo. The latter’s variance
is equal to Q(1 − Q)/N . We can see that relative errors are acceptable for all
cases considered even if the sample size is small (N = 10) and substantial gains
in variance are obtained in all cases. In particular, the improvement of RVR over
crude Monte Carlo increases with the rarity of the event considered.

7.6 Conclusions

As the reader can appreciate, the literature on this topic is considerable, and the
number of ideas that have been explored so far to deal with rare events in the
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Table 7.4 Performance of the RVR method for the evaluation of complete
networks. K = V , the common link unreliability q = 0.55 and the sample size
N is equal to 10

Network Q Estimate RE (%) Variance VCMC/VRV R

C10 4.58481 × 10−2 4.67262 × 10−2 1.92 6.57617 × 10−6 6.65 × 102

C20 2.33295 × 10−4 2.32376 × 10−4 0.394 2.07036 × 10−11 1.13 × 106

C30 8.86419 × 10−7 8.74893 × 10−7 1.30 4.59076 × 10−16 1.93 × 108

C40 2.99368 × 10−9 3.00302 × 10−9 0.312 1.07423 × 10−2 2.79 × 1011

C50 9.47855 × 10−12 9.58856 × 10−12 1.16 1.84357 × 10−26 5.14 × 1013

network reliability family of metrics is large. One reason for this is probably the
fact that the cost of the exact computation of these metrics is extremely high.

In the chapter, we underlined the quality of some of the methods that have
been presented, and we can say that the development of algorithms in the area is
such that good perfomance can now be achieved. Most of the methods combine,
on the one hand, the application of some general probabilistic properties, and,
on the other, the exploitation of the particular structure of the network reliability
evaluation problem, in order to reach an efficient solution. The ideas based on
putting the problem in terms of a dynamic auxiliary model, and the methods that
operate recursively on the network while using polynomial reduction techniques
appear to be the most promising ones. In both cases, even though results are
available on the complexity of the procedures as a function of some graph prop-
erties, and on their theoretical efficiencies, considerable research effort is still
needed to better understand their behavior.
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Rare event simulation and
counting problems

José Blanchet and Daniel Rudoy

8.1 Introduction

Randomized approximation algorithms for counting problems have been the sub-
ject of many papers and monographs in theoretical computer science (see [13, 15,
25, 26]). At the same time, rare event simulation methodology has a long history
of development within the applied probability and operations research commu-
nities. In this chapter, we offer a primer on the subject of approximate counting
using rare event simulation techniques, thereby connecting two distinct points of
view. The use of rare event simulation techniques for counting is very recent (see
[5, 22]) and we hope that this chapter will motivate researchers in the rare event
simulation community to consider the types of problems that we will discuss.

Our focus, consequently, is on the theoretical properties of randomized
approximation algorithms for counting and their connections to rare event
simulation. Even though powerful heuristic algorithms based on rare event
simulation ideas already exist and enjoy empirical success, their efficiency is
not yet rigorously understood [22, 23]. The key to our development is that not
only has the machinery for measuring efficiency in counting problems been
developed in theoretical computer science, but also these concepts have a natural
correspondence to well-known notions of efficiency in rare event simulation.
Therefore, it should be relatively easy for researchers in both communities
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to quickly get familiar with this correspondence which we hope to elucidate
throughout this chapter.

Counting problems are important from both the applied and theoretical points
of view. As an illustration, consider a canonical example of counting the number
of bipartite graphs with a given degree sequence. Since the adjacency matrix
of each graph has prescribed row and column sums, the counting problem is
equivalent to that of counting the number of binary contingency tables with
fixed row and column sums. In some cases, as illustrated in the detailed data
analysis performed in [8] in the context of biological data for competitive species,
statisticians are concerned with the problem of testing the null hypothesis that
a given table, generated from some collected data, is consistent with a typical
sample obtained uniformly from the space of tables that satisfy the row and
column sums. In other words, we wish to see if the column and row sums are
sufficient statistics for the distribution of zeros and ones inside the table.

One way to test such a hypothesis is to simulate many independent realizations
of tables that are sampled uniformly over the space of all tables with the specified
column and row sums and then to see if a statistic computed from the data
lies in the tails of the histogram obtained from the simulated samples. If this
happens then one would reject the null hypothesis. The statistical motivation is
basically to estimate the expectation of an object whose law is determined by the
uniform distribution of the space of tables with given column and row sums, not
necessarily to count the number of tables. However, these problems are intimately
related because, as we will show, a fast counting procedure often provides an
efficient way to estimate expectations via importance sampling (IS). Many other
statistically motivated counting problems present a real challenge when designing
efficient algorithms for hypothesis testing including, for instance, general n-ary
contingency tables and multidimensional contingency tables (e.g., the so-called
two- or three-way tables).

Counting is an instance of the more general problem of computing nor-
malizing constants of a discrete probability distribution. This problem arises in
science (e.g., computing the free energy of a Gibbs distribution) and engineering
(e.g., computing the normalizing constant in the steady-state distribution of large
so-called Erlang loss networks); other engineering applications are described in
[1]. We believe that the rare event simulation techniques that we describe here can
be applied to more general problems involving computing normalizing constants.

From a theoretical perspective, counting problems are very interesting from
the point of view of complexity theory and as such have attracted much atten-
tion from the theoretical computer science community. It is now widely believed
that no exact polynomial-time algorithm can be developed for most counting
problems and, therefore, it is of interest to develop polynomial-time approxima-
tion algorithms that provide accurate estimates with high confidence. The most
common technique used in the design of approximate counting methods is the
Markov chain Monte Carlo (MCMC) method based on a splitting-type represen-
tation, writing the quantity of interest as a telescoping product of ratios, each
of which can be estimated by running a fast-mixing Markov chain. IS, on the
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other hand, has not yet been fully explored as a viable method for many counting
problems.

In contrast to the MCMC method, which in some cases has been shown
to apply to rather general input sequences (e.g., [4, 15]), IS may require
regularity conditions (e.g., when counting the number of graphs with given
row and column sums, requiring the maximum degree to grow slowly relative
to the sum of the degrees) to deliver a provably efficient estimator (see [4]
for counterexamples). Nevertheless, under appropriate constraints, IS has been
rigorously shown to deliver the fastest algorithms for counting bipartite and
simple graphs (see [1, 5]). These two papers, written independently, appear
to be the first to rigorously justify the excellent empirical performance of two
particular IS estimators [8]. In this setting, there are a number of theoretical
properties of IS-based counting algorithms that remain unexplored. It is not
known, for example, if counting problems (such as counting bipartite graphs)
belong to some interesting complexity class under the regularity constraints
necessary for IS to work (which are themselves still not fully characterized).

The rest of this is organized as follows. In Section 8.2 we provide a
complexity-theoretic treatment of counting problems, thereby motivating the
need for approximation algorithms. Subsequently, we present two notions
of measuring efficiency of such approximation schemes and show their
correspondence. In Section 8.3 we elucidate the relationship between counting
and sampling problems and point out the roles played by MCMC and IS.
In Section 8.4 we provide a rigorous analysis of an IS-based approximation
algorithm for counting the number of binary contingency tables with prescribed
row and column sums. We conclude the chapter, in Section 8.5, by discussing
how to arrive at novel approximate counting schemes by combining IS together
with the splitting-type decomposition common in MCMC approaches.

8.2 Background material

We are interested in studying approximation algorithms for counting problems
and gaining a rigorous understanding of their efficiency. At the most basic level,
we are interested in characterizing the space complexity (how much memory
is utilized) and the time complexity (number of arithmetic operations) of each
algorithm. In this section we show that the evaluation of efficiency in these
terms has been a common ingredient in analyses of algorithms appearing both
in the theoretical computer science and the rare event simulation literatures. We
begin by discussing coarse notions of the complexity of counting together with
examples of a number of counting problems.

8.2.1 Complexity theory and counting

A cornerstone of the analysis of algorithms is the quantification of their complex-
ity as a function of the input problem size. Thus, once a suitable encoding for
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a problem is found, the space- and time-complexity of an associated algorithm
is then reported as a function of the size of this representation. This approach
necessitates a generic procedure to quantify the size of inputs uniformly across
a great variety of problems. This can be done by encoding every problem as a
binary string. In particular, let �∗ = {0, 1}∗ denote the set of all binary strings
of arbitrary length over which problem instances together with their solutions
may be encoded and define a binary relation R ⊆ �∗ × �∗. This relation maps
problems encoded by some x ∈ �∗ to the set of possible solutions:

R(x) = {y ∈ �∗|(x, y) ∈ R}.
To illustrate the above with an example, suppose we wish to find a Hamil-

tonian path (i.e., a path that visits each vertex exactly once) in some graph G.
Then G, or equivalently its adjacency matrix A, is encoded into a binary string x

whose length |x| is a function of the number of edges in the graph or the number
of ones in A. The string y would be the encoding of some Hamiltonian path (if
it exists) and the relation R represents the algorithm used to find y given x. In
this setting, quantifying efficiency boils down to analyzing the complexity of R

in terms of |x| and |y|. One important set of relations correspond to problems
whose solutions are ‘easy’ to check.

Definition 1. p-relation.
Let R ⊆ �∗ × �∗ be a relation. We say that R is a p-relation if the following two
conditions hold:

• There exists a polynomial p such that, for all x, y ∈ �∗,

(x, y) ∈ R → |y| ≤ p(x).

• The predicate (x, y) ∈ R can be tested in polynomial time p(|x| + |y|).

Now let x ∈ �∗ and take some p-relation R. The question of whether or not
R(x) is the empty set corresponds to the complexity class NP, which is the class
of problems for which solutions y can be verified in time polynomial in |x| + |y|.
On the other hand, problems for which a solution y may be found and verified
in polynomial time correspond the class P. Our interest, however, is not in the
decision problem, but in associated counting problems which are members of the
so-called #P (pronounced sharp-P) complexity class.

Definition 2. The class #P.
The class #P is the set of counting problems associated with a p-relation. Specifi-
cally, β : �∗ → {0, 1, 2, . . .} belongs to #P if and only if there exists a p-relation
R such that

β(x) = |{y|(x, y) ∈ R}|.

Here the function β counts the number of solutions to a problem instance.
Continuing with our example, one might be interested in counting all Hamiltonian
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paths in some graph, rather than merely checking if one exists. Surely, problems
in #P must be at least as difficult as their decision counterparts because counting
the total number of solutions will determine if the solution set is non-empty. As a
result, many of the counting problems encountered in practice can be shown to be
NP-hard (problems that are at least as hard as any NP problem although possibly
even harder!), NP-complete (problems that are in NP and are also NP-hard, so
these are the hardest NP problems) or even #P-complete. The latter problems are
the ‘hardest’ counting problems because their solution would imply that a solution
for all other #P problems can be found with no more than a polynomial factor
difference in complexity. We now proceed to make these definitions concrete
through a number of examples.

• The first counting problem that was shown to be #P-complete is that of
counting the number of perfect matchings in a bipartite graph [26]. A
matching on G = (V , E) is a set E′ ⊂ E of pairwise non-adjacent edges
and is called a perfect matching when every vertex is incident to an edge
in E′. This is equivalent to computing the permanent of the associated
0–1 incidence matrix A where A(i, j) = 1 if (vi, vj ) ∈ E. This counting
problem is known to be NP-hard, but it is interesting to note that the
decision problem of checking whether or not G has at least one perfect
matching is solvable in polynomial time.

• The decision counterpart of the #3-SAT problem was the first problem
shown to be NP-complete. Its counting counterpart is one of the few prob-
lems that has been considered in the simulation community through the
application of adaptive IS as described in [22]. At present, however, no
rigorous analysis has been provided for this approach.

• A well-known counting problem is counting the number of directed graphs
that are compatible with a given degree sequence. If we were to think of the
underlying graphs in terms of their incidence matrices, then the prescribed
degree sequences are nothing more than constraints on the row and column
sums. In other words, this problem is equivalent to that of counting the
number of binary contingency tables with fixed row and column sums.

• Another famous #P-hard problem is approximating the volume of a convex
body. It turns out that methods used for solving counting problems (i.e.,
MCMC) have also been successfully applied to this problem [17]. More-
over, we believe that rare event simulation techniques can also be used to
address this problem–forming a basis for one line of current research.

• Many other examples can be found in the theoretical computer science lit-
erature, for example, counting the number of self-avoiding random walks,
which is a problem believed to be #P-complete and is particularly interest-
ing because it is not ‘self-reducible’ like the approximate counting problems
that are addressed using the MCMC approach. Other problems such as
counting the number of k-colorings and others are described in the survey
[14], and the monograph [13].
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8.2.2 Approximation algorithms and efficiency

In light of the aforementioned complexity results, it is unlikely that exact solutions
can be found for many counting problems of practical interest. This has motivated
the development of efficient approximation algorithms for counting problems
together with the theoretical tools required not just to quantify the approximation
error, but to do so as a function of computational complexity. In other words, we
seek approximation schemes which use the smallest amount of computation both
in space and time in order to achieve a desired relative precision ε with 1 − δ

confidence. This notion can be and has been formalized both in the theoretical
computer science and rare event simulation communities. It is the purpose of this
section to explain these formalisms and show their correspondence precisely.

Most of the successful approximation algorithms known for #P problems,
with the notable exception of correlation-decay-based methods [11, 28], are ran-
domized schemes. Suppose we are interested in a counting problem β : �∗ → N .
In other words, we get a problem instance x (e.g., a particular bipartite graph)
and are interested in estimating the output of β(x) using some estimator β̂(x).
Analysis of the behavior of such an estimator rests on the following definition
(cf. [21, p. 254]).

Definition 3. Fully-Polynomial Randomized Approximation Scheme (FPRAS).
A randomized approximation scheme is a randomized algorithm such that when
given a problem instance x together with error and confidence parameters 0 <

ε, δ < 1, the output β̂(x) has the following property for all x:

Pr[(1 − ε)β(x) ≤ β̂(x) ≤ (1 + ε)β(x)] ≥ 1 − δ

If the algorithm runs in time polynomial in |x|, ε−1, and log(1/δ), then it is
referred to as a fully polynomial randomized approximation scheme (FPRAS).

Here the quantity |x| is a measure of the size of the problem instance whose
particular form is informed by the precise asymptotic regime that we may wish to
study. For example, when working with binary contingency tables it is convenient
to think of |x| as a function of d , the number of ones in the table (i.e., |x| =
O(d log d)). This allows us to study the efficiency of the approximation scheme
asymptotically in d (i.e., as the size of the problem grows large). In particular,
we adopt the notation β̂d to underscore the fact that we are interested in studying
the behavior of the estimators as a function of the input size. Given a specific
counting problem, we suppress the explicit dependence on the encoding x and
consider the family of estimators {β̂d : d ≥ 1} indexed implicitly as a function of
|x| through the parameter d . Note that some authors do not stress the dependence
of order log(1/δ) and instead appear to be satisfied with a dependence of order
O(1/δ) in their definition (cf. [13, pp. 25–27]).

We now turn our attention to concepts of efficiency that often appear in
the rare event simulation literature. In this setting, it is common to work with a
family of estimators

{
β̂d,k : d ≥ 1

}
. Here, the explicit dependence on the problem
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encoding is also suppressed and k denotes the number of independently and
identically distributed (i.i.d.) replications of β̂d required to produce β̂d,k by means
of a sample average. Of interest are estimators β̂d,k , with the property that for a
given 0 < ε, δ < 1, k is the number of replications k so that

∣∣β̂d,k − βd

∣∣ ≤ βdε

with probability (1 − δ). If β̂d,k has this property, we say that β̂d,k has ε-relative
precision with 1 − δ confidence.

There a number of notions of efficiency that are often used to quantify the
performance of these estimators as it relates to their variance. Here we consider
two such notions, namely strong and exponential efficiency, and show that the
latter (which also implies the former) is intimately connected to the notion of an
FPRAS. We begin with a formal definition of strong efficiency.

Definition 4. Strong efficiency.
Let

{
β̂d : d ≥ 1

}
be a family of estimators with ε-relative precision and 1 − δ

confidence and let σ 2
d = Var(β̂d) denote the underlying variance. This family of

estimators is said to be strongly efficient if the corresponding coefficient of vari-
ation, cvd � σd/βd , is uniformly bounded for d ≥ 0.

One can interpret strong efficiency as a measure of computational complexity
in terms of the number of i.i.d. replications required. This number can be easily
obtained via Chebyshev’s inequality as follows:

P
(∣∣β̂d,k − βd

∣∣ ≥ εβd

) ≤ σ 2
d

kε2β2
d

.

Therefore k ≥ ε−2δ−1 (σd/βd)
2 replications are required to produce an estima-

tor that achieves ε-relative precision with 1 − δ confidence. The computational
complexity of the estimator depends not only on the number of required repli-
cations k, but also on the cost associated with generating each one, which
we denote by κ(d) since it depends on size of the input. We aim to have
κ(d) = O(dp) for some p ∈ (0, ∞). Hence, in the presence of strong efficiency,
setting k = O(ε−1δ−1) implies that computing β̂d,k requires O(κ(d)ε−2δ−1)

operations in order to achieve ε-relative precision with 1 − δ confidence. Accord-
ing to Definition 3, an FPRAS corresponds to a stronger notion of efficiency that
we shall call exponential efficiency since the computational complexity of an
FPRAS is polynomial in d, 1/ε, and log(1/δ), rather than in d, 1/ε, and 1/δ.

Definition 5. Exponential efficiency.
We say that the family of estimators

(
β̂d : d ≥ 1

)
is exponentially efficient for

estimating βd if there exists θ>0 such that

ψ (θ) � sup
d≥1

log E exp
(
θβ̂d/βd

)
< ∞.

We will relate exponential efficiency to an FPRAS using the following uni-
form version of Chernoff’s bound, proved in [5], instead of the Chebyshev
inequality.
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Lemma 1. Suppose that the family of estimators
(
β̂d : d ≥ 1

)
is exponentially

efficient for estimating βd . Then for ε>0 we have

P
(∣∣β̂d,k − βd

∣∣ ≥ εβd

) ≤ 2 exp (−k min(I (ε) , I (−ε)) , (8.1)

where I (ε) = supθ (θ(1 + ε) − ψ(θ)) and ψ(θ) is the cumulant generating func-
tion. Moreover, I (ε), I (−ε)>0 and I (ε) ≥ ρε2 for some ρ>0.

An immediate consequence of the previous results is that if the family (β̂d :
d ≥ 1) is exponentially efficient and κ(d) operations are required to generate a
single replication, then β̂d,k requires O(κ(d)ε−2 log(δ−1)) operations to achieve
ε-relative precision with 1 − δ confidence. If κ(d) grows polynomially in the size
of the problem d , then the estimator β̂d,k is also an FPRAS. We have therefore
established the correspondence among the different notions of efficiency that
appear in the literature.

8.3 Approximate counting, sampling and Markov
chain Monte Carlo

In this section, we describe the relationship between approximate sampling and
approximate counting. It has been rigorously established in [16] that the ability to
exactly or approximately sample from the space of problem solutions we wish to
count enables the construction of an FPRAS for the counting problem. Here, we
first discuss how an approximate sampler may be used to construct an FPRAS for
counting in the context of the well-studied example of matchings. In Section 8.4,
we will show another reduction for the binary contingency tables problem. Then
we discuss how the MCMC method has been employed to design good samplers
and underscore that IS methods can also be used for this purpose.

8.3.1 From approximate sampling to approximate counting

To show how to use an approximate sampling algorithm to construct an FPRAS,
we begin with a rigorous complexity-theoretic definition of an approximate
sampler.

Definition 6. Fully Polynomial Approximate Uniform Sampler (FPAUS).
Given an instance x ∈ �∗, let � denote the set of all solutions to x and let π

denote the uniform distribution over �. An almost uniform sampler takes as input
an instance x and an error tolerance ε and outputs a sample Z ∼ μ from a
distribution μ such that

‖μ − π‖T V � max
A⊂�

|μ(A) − π(A)| < ε.

If the number of steps taken by the sampler is polynomial in |x| and in log(ε−1)

then the sampler is called a fully polynomial almost uniform sampler (FPAUS).
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It is interesting to note that the complexity of an FPRAS must be polynomial
in 1/ε whereas an FPAUS must be polynomial only in log(1/ε). This is because
the error in an FPAUS is propagated, as we shall see, through the product of
ratios.

We now show a canonical example of how to convert an FPAUS to an FPRAS
for the particular problem of counting matchings; our exposition closely follows
the presentation in [27]. We begin by assuming that an exact, not approximate,
sampler is available. We then generalize the argument to the approximate sam-
pling case via the incorporation of the appropriate error probabilities (an alterna-
tive approach via Chebyshev’s inequality can be found in [13]). Let G = (V , E)

be a graph and denote by M(G) the set of matchings of G. Furthermore, suppose
that we have an algorithm A that can generate matchings uniformly at random
from M(G) in time polynomial in |V | = m. We show how to use A to construct
an FPRAS for estimating |M(G)|.

We begin by constructing a sequence of graphs G0, . . . ,Gm recursively by
setting G0 = G and iteratively removing one edge at a time, so that Gi =
(V , Ei−1\ei), until we reach the empty graph Gm. The edge selected for removal
is randomly selected. This allows us to restate the problem as a telescoping
product:

|M(G)| = |M(G0)|
|M(G1)|

|M(G1)|
|M(G2)| · · · |M(Gm−1)|

|M(Gm)| |M(Gm)| =
m−1∏
i=0

1

pi

, (8.2)

where pi = |M(Gi+1)|
|M(Gi )| and |M(Gm)| = 1 since Gm is the empty graph. Notice that

by construction Gi+1 is a subgraph of Gi and, therefore, M(Gi+1) ⊆ M(Gi),
which implies that 0 < pi ≤ 1. Equation (8.2) is closely related to the splitting
technique (see Chapter 3).

We design an FPRAS by using the exact sampler A to estimate each pi to
within a relative precision of ε/m with confidence 1 − δ/m in turn as follows. We
generate N matchings uniformly at random from M(Gi) and count how many
of these are also matchings in M(Gi+1). Now, let Zij be a 0–1 random variable
that denotes whether or not the j th matching produced by A is in M(Gi+1).
Then we have that p̂i = N−1 ∑N

j=1 Zij is an estimator of pi and quantifying
the error in this estimate allows us to evaluate the efficiency of the resultant
approximate scheme for estimating |M(G)|. Observe that

|M(Gi)\M(Gi+1)| ≤ |M(Gi+1)| ,
since we can associate each matching M ∈ M(Gi) with M\ei+1 ∈ M(Gi+1).
Coupled with the fact that M(Gi+1) ⊂ M(Gi), this implies that pi > 1/2. By
Chernoff’s inequality, setting N = O

(
(3m/ε)2 log (2m/δ)

)
yields

Pr
(
|pi − p̂i |> ε

m

)
≤ δ

m
.
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Since the output of the overall approximation scheme is

|M̂(G)| =
m−1∏
i=0

1

p̂i

,

the associated error, using the bound just developed, is given by

Pr(|M̂(G)| /∈ (1 ± ε) |M(G)|) ≤ δ.

Suppose that the exact sampler A runs in time p(|G|) polynomial in the size
of the graph |G|. Clearly, we have obtained an FPRAS since the complexity of
the overall procedure is O(m3p(m) log(mδ−1)ε−2). This illustrates how to reduce
exact sampling to approximate counting in the case of matchings. Now, suppose
that instead of an exact sampler A, we have access to an FPAUS that takes time
p(m, 1/η) to output a sample that is η-close in total variation to the target distri-
bution. Then the previous estimates are easily adapted. Let Z̃ij be a 0-1 random
variable with mean p̃i , that denotes whether or not the ith matching produced by
A is in M(Gi+1) so that |pi − p̃i | ≤ η. If we set η = ε/12m, then by applying,
once more, Chernoff’s inequality we obtain, for N = O((m/ε)2 log(2m/δ)),

Pr
(
|qi − p̃i |> ε

12m

)
≤ δ

m
.

Then for all 1 ≤ i ≤ m, we have that, with confidence 1 − δ, pi(1 − ε/6m) ≤
qi ≤ pi(1 + ε/6m). Since (1 − ε/6m)m ≥ (1 − ε) and (1 + ε/6m)m ≤ (1 + ε),
we again see that

Pr(|M̂(G)| /∈ (1 ± ε) |M(G)|) ≤ δ.

Thus, we have shown that in the case of counting matchings, one can reduce
approximate sampling to approximate counting so that the complexity of the
resultant FPRAS is O(m3p(m, 1/η) log(mδ−1)ε−2). The essence of this reduction
is to use the FPAUS to approximate each of the m factors in (8.2) to within ε/m

with confidence 1 − δ/m. The proof relies on the fact that the number of samples
to achieve this is not too great. Generalizing, it is essential that the ratios are poly-
nomially bounded in the size of the input. The way to achieve this in a general
setting is to relate the problem at hand to solutions of smaller instances. This sub-
structure is a crucial ingredient that, while not always easy to find, is required for
the reduction of counting to sampling and has been formalized as self-reducibility
in [16] where the authors prove that for any self-reducible relations an FPAUS
may be converted to an FPRAS for the associated counting problem.

The remaining ingredient in designing an FPRAS that has not yet been dis-
cussed is how to obtain an FPAUS for the problem at hand. The key observation
is that in some cases both MCMC and IS can form the basis of a viable solu-
tion to this problem. The MCMC method is widely used in theoretical computer
science for the design of approximately uniform samplers. The basic approach
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is to define a Markov chain on the space of all solutions (which is discrete, but
often exponentially large) with a uniform stationary distribution. If it can then
be proven that the chain has a geometric rate of convergence, with a rate that
degrades slowly with the input size (i.e., it is rapidly mixing), then approximately
uniform samples from the set of solutions can be obtained using a polynomial
number of steps. Consequently, much effort has been made to develop bounds
on convergence rates of chains in this setting; methods based on both coupling
[10, 19], and spectral analysis [9, 24, 25] have been explored. On the other hand,
there has been little work on the design of FPRASs using IS methods. We believe
that the techniques that are well known in the rare event simulation community
can be brought to bear on this issue, as we discuss next.

8.4 Illustrating counting strategies

In this section we discuss how IS may be used to construct exponentially effi-
cient estimators for counting problems. In particular, we consider the problem
of counting the number of bipartite graphs with a given degree sequence using
state-dependent importance samplers. Recall that the adjacency matrix A of any
bipartite graph can be thought of as binary contingency table with specified row
and column sums. Let {r1, . . . , rm} and {c1, . . . , cn} be non-negative integers rep-
resenting the row and column sums, also referred to as margins, of A respectively.
Furthermore, let d = ∑

cj = ∑
ri be the total number of ones inside of A. We

are interested in computing M (r, c), the number of binary contingency tables
with given column and row sums, where c = (c1, . . . , cn) and r = (r1, . . . , rm).
Equivalently, we are interested in counting the number of solutions to the fol-
lowing system of equations, where each xi,j ∈ {0, 1}:

n∑
j=1

xi,j = ri for 1 ≤ i ≤ m,

m∑
i=1

xi,j = cj for 1 ≤ j ≤ n.

We study the efficiency of the IS algorithm first presented in [8], though
under a more restrictive set of assumptions than in [5] for clarity. Specifically,
we wish to understand the efficiency of the family of underlying estimators
asymptotically in m and n (and therefore in d). Moreover, we shall assume that
there exists κ ∈ (0, ∞) such that maxj≤n,i≤m{cj , ri} ≤ κ for all n,m ≥ 1. After
describing the algorithm in depth, we show that in this setting, the family of
estimators is exponentially efficient (thereby yielding an FPRAS). We conclude
by discussing how to blend IS together with MCMC for counting problems.

8.4.1 Importance sampling for counting binary
contingency tables

The core idea behind the IS strategy for counting binary contingency tables
presented in [8] is to construct a sample X = (X1, . . . , Xn) from the uniform
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distribution on the set of all tables satisfying the row and columns sums, by
sequentially assigning the values of each column Xk . The columns are assigned
starting from the one with the largest margin Xk0 (i.e., k0 = arg maxj cj ) down
to the one with the smallest margin Xkn (i.e., kn = arg minj cj ) in a ‘convenient’
way.

In order to be more precise, we reformulate the algorithm of [8] in a way that
will allow us to relate counting binary contingency tables to a certain rare event
estimation problem. Let X1, X2, . . . , Xn be a sequence of independent binary
vectors living in {0, 1}m, so that the distribution of Xk is uniform over the space

Ck = {(x1, x2, . . . , xm) : xi ∈ (0, 1) , x1 + · · · + xm = ck}.
Next, we define S0 = r where (r = (r1, . . . , rm)) and set Sk+1 = Sk − Xk+1

for 0 ≤ k ≤ n − 1. Given σ = (σ1, . . . , σm) and ρ = (ρ1, . . . , ρn−k), we write
Pσ ,ρ (·) to denote the probability measure corresponding to (Sk, Sk+1, . . . , Sn)

given that Sk = σ and ρj = cj+k for 1 ≤ j ≤ n − k. The Markov transition
kernel associated with the Sk is given by

Kk−1 (σ , σ + z) = I (z1 + · · · + zm = ck)

(
m

ck

)−1

,

where z = (z1, . . . , zm) ∈ {0, 1}m. Also observe that

M (r, c) = Pr,c (Sn = 0) ×
(

m

c1

)
× · · · ×

(
m

cn

)
.

Thus, our problem is equivalent to efficiently estimating the probability that
Pr,c (Sn = 0) as m, n ↗ ∞ (and so as d ↗ ∞), which is equivalent to obtaining
a sample X that satisfies all the row and column sums.

The strategy of [8] is based on the application of state-dependent IS by
assigning the components of the Xk in a way that helps to induce the occurrence
of the event {Sn = 0}. Their biasing strategy is based on the so-called conditional
Poisson distribution [7] defined as follows.

Definition 7. Conditional Poisson distribution.
Let (Z1, . . . , Zm) be independent Bernoulli random variables with parameters

(p1, . . . , pm). The joint distribution of (Z1, . . . , Zm) given that SZ = Z1 + · · · +
Zm = a is called the conditional Poisson distribution and is given by

P (Z1 = z1, . . . , Zm = zm) = 1

w

m∏
j=1

γ
zj

j ,

where γj = pj/(1 − pj ) and the normalizing constant w can be computed as

w =
∑

(z1,...,zm)

m∏
j=1

γ
zj

j I (z1 + · · · + zm = a) .
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It is important to note that in [7] the conditional Poisson distribution is moti-
vated as the zero-variance IS distribution of a related problem. It turns out that
if we require only the first column sum to be c1, but do not place any restric-
tions on the rest of the columns and require the row sums to be (r1, r2, . . . , rm),
then X1 has the conditional Poisson distribution. Several methods for efficiently
sampling according to the conditional Poisson distribution are described in [7].
The recursive procedure adopted in [8] is known as the drafting method which
is a sequential procedure that allows to sample c units without replacement from
the set Am = {1, 2, . . . , m}; the i-th unit has a probability proportional to wi .
Let Ak, 0 ≤ k ≤ c, be the set of selected units after k draws, so that A0 = � and
Ac is the final sample to be obtained. At the kth step (with 1 ≤ k ≤ c), a unit
j ∈ Ac

k−1 is selected into the sample with probability:

p
(
j, Ac

k−1

) = w̃
(
c − k,Ac

k−1\ {j}) wj

(c − k + 1) w̃
(
c − k + 1, Ac

k−1

) ,

where

w̃ (i, A) =
∑

C⊆A,card(C)=i

(∏
i∈C

wi

)
,

w̃ (0, A) = 1 for all A ⊆ Am and w̃ (i, A) = 0 for i > card (A). The computation
of the w̃ (i, A)’s is performed using the recursion:

w̃ (i, A) = w̃ (i, A\{j}) + w̃ (i − 1, A\{j})wj .

For instance, to compute w̃ (c,Am) we apply the recursion

w̃
(
i, Aj

) = w̃
(
i, Aj\{j}) + w̃

(
i − 1, Aj\{j})wj

for 1 ≤ i ≤ c and i ≤ j ≤ m. It follows that computing w̃ (c, Am) takes O (cm)

operations. Evaluating p (j, Am) = p
(
j, Ac

0

)
then takes O

(
cm2

)
operations.

Each of the p
(
j, Ac

k

)
’s can be evaluated similarly, however, it is more

convenient to use Lemma 1 of [7], which states that:

p
(
j, Ac

k

) = wikp
(
j, Ac

k−1

) − wjp
(
j, Ac

k−1

)
(c − k)(wik − wj)p

(
ik, A

c
k−1

) ,

for1 ≤ k ≤ c − 1 and j ∈ Ac
k, where ik is the element selected in the kth iteration

of the drafting procedure. Therefore, we conclude that using the drafting method
it takes O

(
cm2

)
operations to generate a sample from (1.3).

Using the drafting method, an IS strategy is introduced in [8] that biases Xk

according to an appropriate conditional Poisson distribution, thereby inducing
the assignment of ones in rows with high margins. In particular, we propose
choosing γj (k) = σj + θk−1σ

2
j /dk−1 where dk−1 = σ1 + · · · + σm and a = ck.
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The values of the θk will be selected in such a way as to improve the complexity
of the overall estimator. The transition kernel corresponding to this sampling
strategy is given by

K̃k−1 (σ , σ + z) = I (z1 + · · · + zm = ck)

wk−1 (σ )

m∏
j=1

(
σj + θk−1

dk−1
σ 2

j

)zj

.

Therefore, the corresponding IS estimator is

βm,n =
n∏

j=1

Kj−1
(
Sj−1, Sj

)
K̃j−1

(
Sj−1, Sj

)I (Sn = 0) .

8.4.2 Analysis of efficiency

In order to analyze the efficiency of the estimator βm,n as m, n ↗ ∞, we first
provide an asymptotic estimate for M(r, c). Such an approximation is not difficult
to develop, especially under the assumption of bounded row and column sums
as in our context. To begin, consider a set of m cells of type A and n cells of
type B where the j th cell of type A contains rj tokens and the ith cell of type
B contains ci tokens for a total of 2d = ∑

ci + ∑
rj tokens. Now, suppose that

both types of tokens are labeled from 1 to d and consider a set of pairings of the
form {(a1, b1), . . . , (ad, bd)} where the aj and bi correspond to tokens of type
A and B, respectively. Since the order of the pairs is not important there are a
total of d! such pairings. Two pairs, say (aj1 , bj1) and (aj2 , bj2) are said to be
parallel if aj1 and aj2 belong to the same cell and the same occurs for bj1 and
bj2 . Consider a pairing sampled uniformly at random (among the d! possibilities)
and let N be the number of parallel pairs in the sample; then it follows (since
the tokens are labeled within each cell) that

d!P (N = 0) = r1! · · · rm!c1! · · · cn!M(r, c).

Therefore,

M(r, c) = d!P (N = 0)

r1! · · · rm!c1! · · · cn!
,

A formal Poisson approximation P(N = 0) ≈ exp(−E(N)) allows us to estimate
M(r, c). In particular, it is not difficult to see that

E(N) = 2

d (d − 1)

n∑
j=1

(
cj

2

) m∑
i=1

(
ri

2

)
.

Therefore we obtain

M(r, c) ≈ d! exp(−α(r, c))
r!c!

, (8.3)
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where r! = r1! · · · rm!, c! = c1! · · · cn! and

α(r, c) = 2

d2

n∑
j=1

(
cj

2

) m∑
i=1

(
ri

2

)
.

Approximation (8.3) can be rigorously justified under our assumptions of
bounded row and column sums [2]. We record these observations in the following
result. See [5, 12, 20] for additional extensions.

Theorem 1. Assume that supm,n≥1 maxj≤n,i≤m{cj , ri} ≤ κ < ∞. Then as d ↗
∞,

M(r, c) = d! exp(−α(r, c))
r!c!

(1 + o(1)).

Now we return to showing the exponential efficiency of the estimator βm,n as
d ↗ ∞. The idea is to show that there exists a constant κ1 ∈ (0, ∞) such that

βm,n ≤ κ1Pr,c (Sn = 0) .

For 0 ≤ k ≤ n − 1, given Sk = σ and ρ = (ck+1, . . . , cn) with ρj = cj+k, let us
define

β (σ , ρ) =
n∏

j=k+1

Kj−1
(
Sj−1, Sj

)
K̃j−1

(
Sj−1, Sj

)
and set

v (σ , ρ) = dk! exp (−α (σ , ρ))

σ !ρ!

(
m

ρ1

)−1

· · ·
(

m

ρn−k

)−1

,

where dk = σ1 + · · · + σm. Now let σ̃ = Sk+1, ρ̃ = (ck+2, . . . , cn) and note
that

β (σ , ρ)

v (σ , ρ)
= β (σ̃ , ρ̃)

v (σ̃ , ρ̃)
× Kk (σ , σ̃ )

K̃k (σ , σ̃ )
× v (σ̃ , ρ̃)

v (σ , ρ)
= β (σ̃ , ρ̃)

v (σ̃ , ρ̃)
× Kk (σ , σ̃ )

K̃k (σ , σ̃ )

× (dk − ck+1)!σ !ck+1!

dk!σ̃ !

(
m

ck+1

)
× exp (α (σ , ρ) − α (σ̃ , ρ̃)) .

We write σ − σ̃ = z = (z1, . . . , zm) (with z1 + · · · + zm = ck+1) and note
that

Kk (σ , σ̃ )

K̃k (σ , σ̃ )

(dk − ck)!σ !ck!

dk!σ̃ !

(
m

ck

)
(8.4)

= wk (σ )

m∏
j=1

(
1 + σjθk/dk

)−zj × d
−ck+1
k ck+1!(

1 − d−1
k

)
· . . . ·

(
1 − (ck+1 − 1) d−1

k

) .
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Observe that

ck+1−1∏
j=1

(
1 − j

dk

)−1

= exp

(
ck+1 (ck+1 − 1)

2dk

+ O

(
1

d2
k

))
,

and therefore, the expression in (8.4) is bounded by

wk (σ )
ck+1!

d
ck+1
k

exp

(
− θk

dk

ck+1 + ck+1 (ck+1 − 1)

2dk

+ O

(
1

d2
k

))
. (8.5)

The next proposition provides an estimate for wk (σ ).

Proposition 1. There exists a constant κ2 ∈ (0, ∞) such that:

wk (σ ) = d
ck+1
k

ck+1!

⎛
⎝1 + θk

d2
k

m∑
j=1

σ 2
j

⎞
⎠

ck+1

exp

⎛
⎝−

(
ck+1

2

) m∑
j=1

σ 2
j

d2
k

⎞
⎠ × exp

(
κ2

θk

d2
k

)
.

Proof. We give a sketch of the proof of this result. Let J1, . . . , Jck+1 be i.i.d.
random variables such that

P (J = j) = σj

(
1 + σjθk

dk

)
1

η

where η = ∑m
j=1 σj

(
1 + σjθk/dk

) = dk(1 + θk

∑m
j=1 σ 2

j /d2
k ). Let Ii,j = 1 when

Ji = Jj and set N = ∑
i<j Ii,j . Then, we have that

wk (σ ) = 1

ck+1!
ηck+1P (N = 0) = 1

ck+1!
ηck+1 exp

(
−E(N) + O

(
1

d2
k

))
.

This Poisson-based approximation, which can be rigorously justified using the
inclusion–exclusion principle, is the only missing piece in the proof of this
proposition. Note that

E(N) =
(

ck+1

2

) m∑
j=1

σ 2
j

(
1 + σjθk/dk

)2

d2
k

(
1 + θk

∑m
j=1 σ 2

j /d2
k

)2
=

(
ck+1

2

) m∑
j=1

σ 2
j

d2
k

+ O

(
θk

d2
k

)
.

On the other hand, we have that

ηck+1 = d
ck+1
k

⎛
⎝1 + θk

d2
k

m∑
j=1

σ 2
j

⎞
⎠

ck+1

.

Therefore,

wk (σ ) = d
ck+1
k

ck+1!

⎛
⎝1 + θk

d2
k

m∑
j=1

σ 2
j

⎞
⎠

ck+1

exp

⎛
⎝−

(
ck+1

2

) m∑
j=1

σ 2
j

d2
k

⎞
⎠ exp

(
O

(
θk

d2
k

))
.
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�Using the proposition above together with the upper bound in (8.5), we obtain
the following estimate of the right-hand side of (8.4):

β(σ , ρ)

v(σ , ρ)
≤ β (σ̃ , ρ̃)

v (σ̃ , ρ̃)

m∏
j=1

(
1 + σjθk

dk

)−zj

exp

(
ck+1 (ck+1 − 1)

2dk

)
(8.6)

× exp

⎛
⎝ θk

d2
k

m∑
j=1

σ 2
j −

(
ck+1

2

) m∑
j=1

σ 2
j

d2
k

+ O

(
θk

d2
k

)⎞
⎠

× exp (α (σ , ρ) − α (σ̃ , ρ̃)) .

Finally, to bound the difference α(σ , ρ) − α(σ̃ , ρ̃), note that it equals

α(σ , ρ) − α(σ̃ , ρ̃) = 2χk

∑
σjzj − 2χkck+1 − 2χk

ck+1

dk

∑
σj

(
σj − 1

)

+ χk

c2
k+1

∑
σj

(
σj − 1

)
d2

k

+ ck+1 (ck+1 − 1)
∑

σj

(
σj − 1

)
2d2

k

,

where χk = ∑n
j=k+2 cj

(
cj − 1

)
/(2 (dk − ck+1)

2) = O (1/dk). We can now pro-
vide a convenient expression for θk by observing that if we select θk = 2dkχk

we obtain that

α (σ , ρ) − α (σ̃ , ρ̃) = θk

dk

∑
σjzj − θk

dk

ck+1 − θkck+1

d2
k

∑
σj

(
σj − 1

)

+ ck+1 (ck+1 − 1)
∑

σj

(
σj − 1

)
2d2

k

+ O

(
θk

d2
k

)
.

Combining the terms in the previous expression into (8.6) and grouping the terms
that do not depend on θk directly yields

ck+1 (ck+1 − 1)

2dk

−
(

ck+1

2

)∑ σ 2
j

d2
k

+ ck+1 (ck+1 − 1)
∑

σj

(
σj − 1

)
2d2

k

=
(

ck+1

2

)
1

dk

−
(

ck+1

2

)
1

d2
k

∑
σj =

(
ck+1

2

)
1

dk

−
(

ck+1

2

)
1

dk

= 0.

On the other hand,

− θk

dk

ck+1 − θkck+1

d2
k

∑
σj

(
σj − 1

) + θk

d2
k

∑
σ 2

j

= −θkck+1

d2
k

∑
σ 2

j + θk

d2
k

∑
σ 2

j ≤ 0.
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Therefore, we conclude that

β (σ , ρ)

v (σ , ρ)
≤ β (σ̃ , ρ̃)

v (σ̃ , ρ̃)

m∏
j=1

(
1 + σjθk

dk

)−zj

exp

(
θk

dk

∑
σjzj + O

(
θk

d2
k

))

= β (σ̃ , ρ̃)

v (σ̃ , ρ̃)

m∏
j=1

(
1 + σjθk

dk

)−zj m∏
j=1

(
1 + σjθk

dk

)zj

exp

(
O

(
θk

d2
k

))

= β (σ̃ , ρ̃)

v (σ̃ , ρ̃)
exp

(
O

(
θk

d2
k

))
.

This analysis yields the following result.

Theorem 2. Suppose that maxj≤n,i≤m cj , ri ≤ κ , then there exists a deterministic
constant κ∗ ∈ (0, ∞) such that:

βm,n

Pr,c (Sn = 0)
≤ κ∗.

As a consequence, the estimator βm,n is exponentially efficient and since O
(
d2

)
operations are required to generate a copy of βm,n and the corresponding IS
algorithm is an FPRAS.

Proof. The result follows by noting that the θk remain uniformly bounded as
n,m ↗ ∞ and since dk ≥ 1/k there must exist a constant κ̃ ∈ (0, ∞) such that

βn,m

v (r, c)
= β (r, c)

v (r, c)
≤ exp

⎛
⎝ n∑

j=1

κ̃

j 2

⎞
⎠ .

The conclusion of the theorem then follows by noting that the kth increment
requires O (ckm + n) operations to be generated (the term ckm comes from the
conditional Poisson sampling and n arises in the computation of θk). �

The previous result can be extended to degree sequences that satisfy certain
growth conditions [5]. It is important to note that the selection of θk = 2χkdk

seems crucial in order to guarantee that the resultant importance estimator is
exponentially efficient. On the other hand, the excellent numerical performance
reported in [8] corresponds to the selection θk = 1. The selection of θk = 2χkdk

can be motivated from another perspective. Indeed, as has been discussed in pre-
vious chapters, note that the zero-variance change of measure, which corresponds
to sampling the Sk conditional on the event Sn = 0, is Markovian and can be
described by the transition kernel

K∗
k−1 (σ , σ + z) =

(
m

ck

)−1

I (z1 + · · · + zm = ck)
u (σ + z, ρ̃)

u (σ , ρ)
,
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where Sk = σ , ρ = (ck+1, . . . , cn), ρ̃ = (ck+2, . . . , cn) and u (σ , ρ) =
Pσ ,ρ (Sn−k = 0). As a consequence, given that u (σ , ρ) ≈ v (σ , ρ) it seems
natural to mimic the zero-variance change of measure directly using v (·) by
means of the Markov transition kernel

K̃k−1 (σ , σ + z) =
(

m

ck

)−1

I (z1 + · · · + zm = ck)
v (σ + z, ρ̃)

w (σ ,ρ)
,

where w (σ , ρ) = Eσ ,ρ (v (σ + Xk+1, ρ̃)) is the normalizing constant that makes
K̃k−1 a well-defined Markov transition kernel. It turns out that generating incre-
ments according to K̃k−1 corresponds to a strategy based on sampling the Xk

by means of a conditional Poisson distribution with γj (k) = σj exp
(
2χkσj

) ≈
σj

(
1 + θkσj /dk

)
(where Sk = σ ), therefore our selection of θk, thereby moti-

vating our choice of θk directly. The analysis of an IS strategy based on K̃k−1

is studied in [5]. A similar approximation procedure is also discussed briefly
in [8]. They mention that numerical experiments were also performed with the
selection γj (k) = σj exp

(
2χkσj

)
and report very similar empirical performance

of algorithms corresponding to this selection and that based on θk = 1.
Another example of a successful IS strategy for counting is given in [1] in

the context of counting simple graphs. This problem is equivalent to counting
the number of symmetric binary tables with given margins and with zeros on
the main diagonal. It turns out that one can also pose this counting problem as a
rare event estimation problem involving a suitably defined random walk as in our
previous example. In [1] a change of measure is proposed that also can be shown
to be exponentially efficient. An alternative approach, based on approximating
the zero-variance change of measure (as previously discussed) is studied in [6].

8.5 Blending importance sampling and
Markov chain Monte Carlo

It turns out that the machinery developed to analyze the efficiency of the
importance sampler in Section 8.4.1 can be used together with the splitting
decomposition (analogous to equation (8.2)) to arrive at an FPRAS based on an
MCMC approach. Consider any set of m-dimensional binary columns {z1, . . . ,

zn} which satisfy their associated column and row sums (i.e.,
∑m

j=1 zk,j = ck

and
∑n

k=1 zk,j = rj ). Let s0 = r, sk = sk−1 − zk for 1 ≤ k ≤ n, and set ρk =
(ck+1, . . . , cn) (where ρn is the empty vector). Then by letting M

(
sn, ρn

) = 1,
we obtain the decomposition

1

M
(
s0, ρ0

) = M
(
s1, ρ1

)
M

(
s0, ρ0

) × M
(
s2, ρ2

)
M

(
s1, ρ1

) × · · · × M
(
sn,ρn

)
M

(
sn−1,ρn−1

) . (8.7)

The ratio M
(
sk, ρk

)
/M

(
sk−1, ρk−1

)
is the probability that a table drawn

uniformly from the set of tables satisfying the column and row sums ρk−1 and
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sk−1, respectively, also satisfies the columns and row sums ρk and sk induced
by the removal of its first column. Assuming bounded row and column sums
(as m,n ↗ ∞), it is easy to verify using Theorem 1 that there exist constants
c∗ ∈ (0,∞) and θ > 0 such that

pk = M
(
sk, ρk

)
M

(
sk−1, ρk−1

) ≥ θd−c∗
. (8.8)

Thus, an FPRAS can be developed along similar lines to the matchings
example in Section 8.3. However, note that the lower bound on each ratio is
not uniform in k and θd−c∗

decreases to zero as m, n, and therefore k, grow.
Nevertheless, since the convergence to zero is polynomial, we still obtain a
polynomial running time. In particular, if we have access to an exact sam-
pler for generating binary contingency tables then, using Chernoff’s inequality
as in Section 8.3, we obtain that N = O

(
n log (2n/δ) dc∗

ε−2
)

i.i.d. Bernoulli
replicates, Z1, . . . , ZN , with parameter pk, are required in order to obtain an
estimator p̂k := N−1 ∑N

j=1 Zj satisfying P (|p̂k − pk| >ε/n) ≤ δ/n. Then if
the exact sampler runs in polynomial time, κ(d), the overall complexity is
O(n2κ (d) log (2n/δ) dc∗

ε−2).
It is important to note that MCMC method has already been applied to

this problem based upon direct analysis of the mixing rate of the underly-
ing chain. Using conductance estimates, for example, it is shown in [18] how
to obtain an almost uniform sampler (FPAUS) in O

(
n12 log (1/ε)

)
operations

assuming bounded degree sequences (see their Corollary 4.2 combined with
Theorem 2.1), which yields an O

(
n14dc∗

ε−2 log (n/δ)
)

FPRAS. An even faster
FPAUS, applicable to general degree sequences, whose complexity is (roughly)
O

(
d3 (nm)2 max ci, rj

)
operations is provided in [3]. As a final remark, we note

that the reduction based on the splitting formula (8.7) and, consequently, the
analysis for the IS-based MCMC method may not be the best possible. It is con-
ceivable that a better selection of the sequence s0, . . . , sn−1 might yield improved
estimates for the lower bounds (8.8) together with a tighter analysis of the running
time of the associated counting algorithm.
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Rare event estimation
for a large-scale stochastic
hybrid system with air
traffic application
Henk A. P. Blom, G. J. (Bert) Bakker
and Jaroslav Krystul

9.1 Introduction

This study is motivated by the problem of safety verification for a future air
traffic operations concept through the analysis of reach probabilities. From a
control-theoretic perspective, such an advanced operations concept is a blueprint
for a controlled stochastic hybrid system (SHS) which satisfies the strong Markov
property [13]. Recently, Sastry and co-workers [2, 1] studied the optimization
of the control policy of a discrete-time SHS, such that the probability of stay-
ing within some prescribed safe set remains above some prescribed minimum
level. Specifically, Amin et al. [2] developed a theoretical framework which
expressed the reach probability as a multiplicative function, and this was used to
develop a dynamic programming-based approach to computing probabilistic max-
imal safe sets, that is, initial states of a system for which control policies exist that
assure that the reach probability stays below some given value. Subsequently,
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Abate et al. [1] showed this problem to be complementary to the problem of
optimizing the control policy of an SHS such that the reach probability of some
prescribed unsafe set remains below some given maximum level, and that the
same dynamic programming-based computation of maximal safe sets can be used.
The dynamic programming approach becomes computationally intractable when
the SHS considered is of large-scale type. Prandini and Hu [39] developed a
Markov chain approximation based method for the computation of reach proba-
bilities for a continuous-time SHS. This way the dynamic programming challenge
is avoided, but the computational load of their method prohibits its application
to a large-scale SHS. Prajna et al. [38] developed an approach which obtains
an upper bound of the reach probability, but this cannot handle large-scale SHS
either.

In theory, reach probability estimation can be done by simulating many tra-
jectories of the process considered, and counting the fraction of cases where the
simulated trajectory reaches the unsafe set within some given period T . When the
reach probability value is very small then the number of straightforward Monte
Carlo (MC) simulations needed is impractically large. The rare event estimation
literature forms a potentially rich source of information for speeding up MC
simulation, for example by combining methods from large-deviation and impor-
tance sampling theories [11, 29, 31]. An early successful development in this
area is sequential MC simulation for the estimation of the intensity of radiation
that penetrates a shield of absorbing material in nuclear physics (see [10]). More
recently this approach has also found application in non-nominal delay time and
loss estimation in telecommunication networks [3]. L’Ecuyer et al. [36] provide
a very good recent overview of these sequential MC simulation developments.

In order to exploit rare event estimation theory within probabilistic reachabil-
ity analysis of controlled SHS, we need to establish a theoretically unambiguous
connection between the two concepts. Implicitly, this connection has recently
been elaborated by Del Moral and co-workers [16–18, 20, 21]. They embedded
theoretical physics equations, which supported the development of advanced MC
simulations, within the stochastic analysis setting that is typically used for prob-
abilistic reachability analysis. They subsequently showed that this embedding
provides a powerful background for the development and analysis of sequential
MC simulation for rare event simulation. In Chapter 3 of the present volume this
novel development is well explained in the broader context of splitting techniques
in rare event simulation.

The aim of this chapter is to present a part of the framework developed
by Del Moral et al. [16–18, 20, 21] in a probabilistic reachability setting, to
further develop this for a large-scale SHS, and to demonstrate its practical use
for safety verification of an advanced air traffic operation. In [8, 9], the practical
use of the approach of Del Moral [16–18, 20, 21] for safety verification of an
advanced air traffic operation has already been demonstrated for some specific
scenarios. In these scenarios, the main contributions to the reach probability value
came from diffusion behavior. It also became clear that the same sequential
MC simulation approach failed to work for scenarios of the same air traffic
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operation where the reach probability is determined by rare switching between
modes. This chapter aims to tackle such more demanding rare event estimation
problems for large-scale controlled SHSs. Essentially the approach is to introduce
an aggregation of the discrete mode process, and to develop importance switching
and Rao–Blackwellization relative to these aggregated modes.

The chapter is organized as follows. Section 9.2 develops a factorization of
the reach probability. Section 9.3 explains the approach of [16, 17, 20, 21].
Section 9.4 presents an extension of this approach to hybrid systems. Section 9.5
develops the aggregation mode process and characterizes key relations with the
controlled SHS. Section 9.6 develops a novel sequential MC simulation approach
for estimating reach probabilities. Section 9.7 briefly describes the free flight air
traffic example considered. Section 9.8 applies the novel approach to estimate
reach probabilities for this air traffic example. Section 9.9 presents concluding
remarks. An early version of this chapter is [5].

9.2 Factorization of reach probability

Throughout this and the following sections, all stochastic processes are defined
on a complete stochastic basis (�,F, F, P, T) with (�,F, P ) a complete prob-
ability space, and F an increasing sequence of sub-σ -algebras on the positive
time line T = R+, i.e. F � {J , (Ft , t ∈ T),F}, J containing all P -null sets of
F and J ⊂ Fs ⊂ Ft ⊂ F for every s < t .

Let us denote E′ = R
n × M, with M a discrete set. Let E ′ be the Borel

σ -algebra of E′. We consider a time-homogeneous strong Markov process which
is also a generalized stochastic hybrid process {xt , θt} [32, 12, 14, 35], with {xt }
assuming values in R

n and {θt} assuming values in M. The first component of {xt }
equals t and the other components of {xt} form an R

n−1-valued càdlàg process
{st }. The M-valued process {θt} is a càdlàg switching process. Incorporating
t as a state component allows any time-inhomogeneous strong Markov process
{st , θt } to be represented as a time-homogeneous strong Markov process {t, st , θt}
[19]. The problem considered is to estimate the probability that {st } hits a given
‘small’ closed subset D ⊂ R

n−1 within a given time period [0, T ), i.e. P(∃t ∈
[0, T ); st ∈ D).

Following Del Moral and co-workers [16, 17, 20, 21], this probability can
be characterized in the form of a multiplicative function the terms of which are
defined through an arbitrarily assumed nested sequence of closed (time-invariant)
subsets D = Dm ⊂ Dm−1 ⊂ . . . ⊂ D1, with the constraint that P(s0 ∈ D1) = 0
and each component of {xt }, which may hit any Dk , is a pathwise continuous
process. In order to derive a multiplicative functional characterization of the
hitting probability, we set τ0 = 0 and define τk, k = 1, . . . , m, as the first moment
that {st } hits subset k, that is,

τk = inf{t > 0; st ∈ Dk}, (9.1)

which implies P(∃t ∈ [0, T ); st ∈ Dm) = P(τm < T ).
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We also define {0, 1}-valued random variables {χk, k = 0, . . . , m} as follows:

χk =
{

1, if τk < T or k = 0,

0, otherwise.

By using these τk and χk definitions and the assumption that each compo-
nent of {st} that may hit any Dk, k = 1, . . . , m, has continuous paths (i.e.,
{st } cannot enter Dk by jumping over the boundary of Dk) we can write the
probability of {st } hitting D before T as a product of conditional probabilities
of reaching Dk given Dk−1 has been reached at some earlier moment in time,
that is,

P(τm < T ) = E[χm] = E

[
m∏

k=1

χk

]
=

m∏
k=1

E[χk|χk−1 = 1]

=
m∏

k=1

P(τk < T |τk−1 < T ) =
m∏

k=1

γk (9.2)

with γk � P(τk < T |τk−1 < T ).
With this, the problem can be seen as one of estimating the conditional

probabilities γk in such a way that the product of the estimators γ̃k is unbiased.
Because of the multiplication of the various individual γ̃k estimators, which
depend on each other, in general such a product may be heavily biased. Garvels
et al. [27, 28] showed for a discrete-time Markov process, that estimating the γk

′s
in (9.2) by an appropriate sequential MC simulation approach, which is known
as the splitting method, guarantees unbiased estimation of P(τm < T ). The key
innovation of [16–18, 20, 21] was to develop such a convergence type of proof
for a sequential MC simulation approach towards the estimation of the γk

′s in
(9.2) under the much weaker condition that {st } is embedded in (or is) a strong
Markov process.

9.3 Sequential Monte Carlo simulation

For the process {xt , θt } we follow the approach of [16, 17, 20, 21] to charac-
terize how the evolution proceeds from τk−1 ∧ T to τk ∧ T . For any B ∈ E ′, let
pξk |χk

(B|1) denote the conditional probability of ξk = (xτk∧T , θτk∧T ) ∈ B given
χk = 1. Under the assumption that P(s0 ∈ D1) = 0, we characterize the follow-
ing recursive sequence of transformations:

pξk−1|χk−1(·|1)
prediction−−−−−−→ pξk |χk−1(·|1)

conditioning−−−−−−−→ pξk |χk
(·|1).⏐⏐�

γk
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Because {xt , θt} is a strong Markov process, {ξk} is a Markov sequence. Hence
the prediction step satisfies a Chapman–Kolmogorov equation:

pξk |χk−1(B|1) =
∫

E′
pξk |ξk−1(B|ξ)pξk−1|χk−1(dξ |1). (9.3)

Next we characterize the conditional probability of reaching the next subset:

γk = P(τk < T |τk−1 < T ) = P(χk = 1|χk−1 = 1)

= E[χk|χk−1 = 1] =
∫

E′
1Qk

(ξ)pξk |χk−1(dξ |1), (9.4)

where Qk � (0, T ) × Dk × M. Similarly, the condition step satisfies, for any
B ∈ E ′,

pξk |χk
(B|1) =

∫
B

1Qk
(ξ)pξk |χk−1(dξ |1)∫

E′ 1Qk
(ξ ′)pξk |χk−1(dξ ′|1)

. (9.5)

With this, the γk
′s in (9.2) are characterized as a solution of the set of recursive

equations 9.3–9.5. Following [16, 17, 20, 21], this recursive characterization can
numerically be approximated through a sequential MC simulation to estimate
P(τm < T ). This is referred to as the interacting particle system (IPS) algorithm,
and works as follows.

Simulate Np random trajectories of {xt , θt } over [0, T ), each of which starts
from a random initial condition ((0, s0), θ0), with s0 /∈ D1. Each simulated tra-
jectory stops at τ1 ∧ T , that is, upon hitting Q1 or when the first x-component
reaches T . The full hybrid states of these trajectory end points form an empirical
density π̃1 as an approximation of pξ1|χ1(·|1). This empirical density is used to
generate (i.e., to resample) Np initial conditions of trajectories which are subse-
quently simulated until hitting Q2 or when the first x-component reaches T ; the
end points in Q2 form an empirical density π̃2 as an approximation of pξ2|χ2(·|1).
This cycle repeats from Q2 to Q3, . . ., and finally from Qm−1 to Qm = Q. Dur-
ing the kth cycle, a fraction γ̃k of the Np simulated trajectories arrives at Qk .
The product of these m fractions forms an estimator for P(τm < T ).

Using the recursive characterization of the conditional density, it has also
been shown[16, 20] that the product of these fractions γ̃k forms an unbiased
estimate of the probability of {st } hitting the set D within the time period [0, T ),
that is,

E

[
m∏

k=1

γ̃k

]
=

m∏
k=1

γk = P(τ < T ).

In addition, there is a bound on the L1 estimation error [16, 20],

E

(
m∏

k=1

γ̃k −
m∏

k=1

γk

)
≤ cp√

Np

,
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with cp a finite constant which depends on the simulated scenario and the
sequence of nested subsets adopted. These convergence results assume that the
resampling of the empirical density π̃k is done uniformly, hence there is a chance
of resampling some particles more than once, and other particles not at all. Fur-
thermore, Cérou et al. [18] developed some complementary error bounds, and
showed convergence under an alternate resampling approach.

Application of this IPS algorithm to air traffic operation may work well for
specific scenarios where rare discrete modes are not significantly contributing to
the reach probability [8, 9]. However, there also are relevant scenarios which do
not satisfy the latter condition. To tackle this problem, [32–34] proposed hybrid
versions of the baseline IPS algorithm. These approaches work well only if the
size of space M is not too big. However, in many realistic scenarios the state
space M of the discrete valued component {θt } is usually very large. Therefore
another extension was proposed, namely, the hierarchical hybrid IPS algorithm
(HHIPS), which will be presented and applied in this chapter. For the reader’s
convenience, however, before addressing HHIPS, we first introduce the hybrid
IPS (HIPS) algorithm of [33].

9.4 Importance switching based hybrid
IPS algorithm

Although in theory the IPS approach is applicable virtually to any strong Markov
process, in practice the straightforward application of this approach to stochastic
hybrid processes may fail to produce reasonable estimates within a reasonable
amount of simulation time. First, there may be few or no particles in modes with
small probabilities (i.e., ‘light’ modes). This happens because each resampling
step tends to sample more ‘heavy’ particles from modes with higher probabilities,
thus, ‘light’ particles in the ‘light’ modes tend to be discarded. Second, if the
switching rate is small then it is highly unlikely to observe even one switch
during a simulation run. In such cases, the possible switching between modes
is not properly taken into account. Together with the first problem, this badly
affects IPS estimation performance. By increasing the number of particles the
IPS estimates should improve but only at the cost of substantially increased
simulation time which makes the performance of IPS approach similar to that of
the standard Monte Carlo.

The HIPS algorithm of [33] incorporates sampling per mode (stratified
sampling with modes defining the strata) to cope with large differences in
mode weights, and importance switching (a form of importance sampling for
the discrete-valued component {θt }) to cope with rare mode switching. In what
follows, we outline the HIPS algorithm.

If the initial probabilities of some particular modes are very small then it is
highly unlikely that particles will be drawn in these modes. To avoid this, at
the initial sampling step we start with a fixed number of particles in each mode
however small the initial probability is and adjust the weights appropriately. Let
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Np denote the initial number of particles in each mode θ ∈ M. In total the system
of particles will consist of N = Np · |M| particles. Let J θ denote the ordered set
of indices of particles which are in mode θ (J θ ∩ J η = ∅ for θ 
= η). The whole
set of indices is defined by

J �
⋃
θ∈M

J θ = {1, 2, . . . , N}, |J | = N.

At the initial sampling step we will have |J θ | = Np particles in each mode
θ ∈ M. As particles evolve and switch from one mode to another, the numbers
of particles in different modes will change, as will the index sets J θ . But at each
resampling step we will again sample Np particles for each mode θ ∈ M from a
conditional empirical distribution.

Let γ̃k and π̃k denote numerical approximations of γk and pξk |χk
(·|1), respec-

tively. We choose these numerical approximations in the form of the weighted
empirical distributions associated with the particle system {ξ i

k, ω
i
k}Ni=1, where

ξk � (xτk∧T , θτk∧T ) and ω ∈ [0, 1]. When simulating from τk−1 ∧ T to τk ∧ T ,
only a fraction γk of the Monte Carlo simulated trajectories will reach Qk . The
HIPS algorithm estimates these fractions and their product in a recursive way
using the following steps:

Step 0 generates, for each θ ∈ M value, Np initial particles at k = 0 and then
starts the cycling through steps 1 through 3 for k := 1, 2, . . . ,m.

Step 1 extrapolates each particle from τk−1 ∧ T to τk ∧ T in time steps of
length h, using importance switching for the new value of the {θt}
component.

Step 2 evaluates the particles that have arrived at Qk. For this, use is made of
equations 9.4–9.5.

Step 3 resamples with replacement, for each θ ∈ M, Np particles that have
arrived at Qk; the weights must be adjusted accordingly.

Each of these steps is specified in detail below.

Hybrid interacting particle system (HIPS)

HIPS Step 0: Initial sampling for k = 0.

• For each θ ∈ M, sample Np independent initial R
n values out-

side D1:

x
j

0 ∼ px0|θ0(·|θ). Set θ
j

0 = θ, then ξ
j

0 = (x
j

0 , θ
j

0 ), j ∈ J θ .

• Assign initial weights:

ω
j

0 = Pθ0(θ)
/
Np, j ∈ J θ , θ ∈ M.
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• Then γ̃0 = 1 and

px0,θ0(dx, θ) ≈
∑
θ∈M

∑
j∈J θ

ω
j

0δ
(x

j
0 ,θ

j
0 )

(dx, θ) =
N∑

i=1

ωi
0δ(xi

0,θi
0)(dx, θ).

Iteration cycle: For k = 1, . . . ,m, cycle over steps 1–3:

HIPS Step 1: Prediction.

• For i = 1, . . . , N , using importance switching for the {θt }
component,1 generate path starting at ξ i

k−1 = (xi
τk−1∧T , θ i

τk−1∧T )

until the kth set Qk is reached.

• The weight of each particle must be adjusted recursively in
time (i.e., at each time discretization step):

ωi
t+h = ωi

t · Lt+h|t (θ i
t+h|θ i

t , x
i
t ),

where

Lt+h|t (θ i
t+h|θ i

t , x
i
t ) = pθt+h|θt ,xt (θ

i
t+h|θ i

t , x
i
t )

p̃θt+h|θt ,xt (θ
i
t+h|θ i

t , x
i
t )

is the likelihood ratio corresponding to the change of switching
rates of the {θt} component.

• This yields a new set of particles {ξ i
k, ω

i
k}Ni=1.

HIPS Step 2: Evaluation of the Qk-arrived particles.

• Particles which do not reach the set Qk are killed, i.e. we set
ω̂i

k = 0, else set ω̂i
k = ωi

k and ξ̂ i
k = ξ i

k .

• The new set of particles is {ξ̂ i
k, ω̂

i
k}Ni=1.

• Approximation of γk:

γk ≈ γ̃k =
N∑

i=1

ω̂i
k.

If all particles are killed, i.e. γ̃k = 0, then the algorithm stops
and Phit (0, T ) ≈ 0.

• If k = m, then stop HIPS with the estimate

Phit ≈
m∏

k=1

γ̃k.

1 In order to increase the frequency of switchings at each time discretization step we
replace the original transition probabilities pθt+h|θt ,xt (·|θ, x) by some known transition probabilities
p̃θt+h|θt ,xt (·|θ, x), which guarantees higher switching rates (see [32, 33] for details).
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• For each i = 1, . . . , N , set ξ̃ i
k = ξ̂ i

k and normalize the weights:
ω̃i

k = ω̂i
k/γ̃k.

• This yields a new set of particles {ξ̃ i
k, ω̃

i
k}Ni=1.

• The estimated pξk |χk
(·|1) satisfies

pξk |χk
(dx, θ |1) ≈ π̃k(dx, θ) =

N∑
i=1

ω̃i
kδ(x̃i

k
,θ̃ i

k
)(dx, θ).

HIPS Step 3: Resampling step.

• For each mode θ ∈ M, resample with replacement Np values
of ξ̃k from the unnormalized conditional empirical measure

pξk |χk,θk
(·|1, θ) ≈ π̃k(dx, θ |θk = θ) =

∑
j∈J θ

ω̃
j

k δ(x̃
j
k
,θ̃

j
k
)
(dx, θ)

and adjust the weights as follows:

ω
j

k =
∑

s∈J θ ω̃s
k

Np

, j ∈ J θ , θ ∈ M.

• This yields a new set of particles {ξ i
k, ω

i
k}Ni=1.

• If k < m, then repeat steps 1–3 for k := k + 1.

9.5 Aggregation of modes

In [32–34], hybrid versions of the baseline IPS algorithm [16, 17, 20, 21] have
been developed, which take into account that rare discrete modes may contribute
significantly to the reach probability to be estimated. As explained in Section 9.4,
the hybrid IPS version of [33] simulates a more frequent switching M-valued
process {θ̆t }, and compensates importance weights for the difference between {θ̆t}
and {θt }. In [34] another hybrid IPS version has been developed, which makes use
of Rao–Blackwellization, that is, using exact probabilistic equations for certain
components and simulated particles for all other components [15]. For filtering
of a stochastic hybrid process {xt , θt} two Rao–Blackwellization versions have
been developed [22, 6]: that of [22] uses exact probabilistic equations for {xt } and
particle simulation for {θt}, while that of [6] uses exact probabilistic equations
for {θt} and particle simulation for {xt}. In [34] the latter approach is combined
with IPS. The resulting hybrid IPS version uses exact probabilistic equations
for the evolution of {θt } and simulates particles for the Euclidean valued {xt }.
This Rao–Blackwellization based hybrid IPS version also resamples at the end
of each IPS cycle Np x-values from π̃k(·, θ) for each mode θ ∈ M, leading to
a total of Np × |M| particles, where |M| is the number of elements in M. Since



202 STOCHASTIC HYBRID SYSTEM

the computational load increases linearly with |M|, these hybrid IPS approaches
are intractable when |M| is very large. This condition applies to the air traffic
example (where |M| ≈ 1025) considered later in this chapter.

The idea is to improve the situation for very large |M| by developing a
hybrid IPS approach not for {θt , xt}, but for {κt , (θt , xt )}, where {κt} is some
complementary K-valued process with |K|  |M|. In order to accomplish this,
we group modes that have large differences in mode switching frequencies. This
defines a partition {Mκ , κ ∈ K}, that is,

⋃
κ∈K

Mκ = M and Mκ

⋂
Mκ ′ = ∅ for

κ 
= κ ′, and a K-valued aggregation mode process {κt } as follows:

κt (ω) = κ, if θt (ω) ∈ Mκ . (9.6)

Because the evolution of the aggregation mode process {κt} depends on the
evolution of {θt }, {κt } may inherit rare mode switching from {θt }. In order to avoid
these rare effects in the evolution of particles, we also define a K-valued Markov
chain {κ̆t } with known non-rare transition rates, and use the transition rates of {κ̆t }
to determine for each particle a new κ̆-value at some time step h later. The particle
weight is compensated with the corresponding importance switching ratio

pκτ+h|κτ ,xτ ,θτ (κ̆|κ, x, θ)/pκ̆τ+h|κ̆τ (κ̆|κ),

where κ, x, θ denote the given (κτ , xτ , θτ ) particle value, and κ̆ denotes the
value newly sampled for κ̆τ+h.

Next, the prediction of the new θτ+h particle from the (xτ , θτ ) particle val-
ues is done conditional on the newly sampled κ̆-value. Theorem 1 provides a
probabilistic characterization of such κ̆-conditional θ -prediction.

Theorem 1. (κ̆-conditional θ -prediction) For an arbitrary stopping time τ ,

pθτ+h|xτ ,θτ ,κτ+h
(η|x, θ, κ̆) = 1Mκ̆

(η)pθτ+h|xτ ,θτ (η|x, θ)∑
η′∈M

1Mκ̆
(η′)pθτ+h|xτ ,θτ (η

′|x, θ)
. (9.7)

Proof. Using Bayes yields:

pθτ+h|xτ ,θτ ,κτ+h
(η|x, θ, κ̆) = pκτ+h|θτ+h

(κ̆|η)pθτ+h|xτ ,θτ (η|x, θ)∑
η′∈M

pκτ+h|θτ+h
(κ̆|η′)pθτ+h|xτ ,θτ (η

′|x, θ)
.

Substituting pκτ+h|θτ+h
(κ̆|η) = 1Mκ̆

(η) yields (9.7). �

The prediction of the x-part of the particle over time step h is done by
drawing a sample from pxτ+h|xτ ,θτ ,θτ+h

(·|x, θ, η). In order to identify all particles
that arrive at Qk before time T , the prediction over time step h has to be done
up to T /h times. After these prediction steps, there is no guarantee that for
each κ̆ ∈ K some minimum number of particles have arrived at Qk . Hence,
we resample the Qk-arrived particles such that we regain Np particles for each
κ ∈ K. In order to make this possible, in Theorem 2 we provide a characterization
of the (conditional) probabilities pκτ+h

and pxτ ,θτ |κτ+h
as a function of pxτ ,θτ , for



STOCHASTIC HYBRID SYSTEM 203

arbitrary stopping time τ and time step h. This characterization allows us to
sample a fixed number of particles per aggregation mode κ ∈ K, and to sample
for each particle a novel θ -value conditional on the aggregation mode value.

Theorem 2. (Hierarchical interaction) If pκτ+h
(κ) > 0 for an arbitrary stopping

time τ , then

pxτ ,θτ |κτ+h
(dx, θ |κ) =

∑
η∈Mκ

pθτ+h|xτ ,θτ (η|x, θ)pxτ ,θτ (dx, θ)/pκτ+h
(κ), (9.8)

pκτ+h
(κ) =

∑
θ∈M

∫
Rn

∑
η∈Mκ

pθτ+h|xτ ,θτ (η|x, θ)pxτ ,θτ (dx, θ). (9.9)

Proof. By definition of the partitioning {Mκ , κ ∈ K}, we have

pκτ+h,xτ ,θτ (κ, dx, θ) =
∑

η∈Mκ

pθτ+h,xτ ,θτ (η, dx, θ)

=
∑

η∈Mκ

pθτ+h|xτ ,θτ (η|x, θ)pxτ ,θτ (dx, θ).

Dividing the left- and right-hand sides by pκτ+h
(κ) yields (9.8). From the law of

total probability we have:

pκτ+h
(κ) =

∑
θ∈M

∫
Rn

pκτ+h,xτ ,θτ (η, dx, θ).

Substitution of the latter into the former yields (9.9). �

In order to see what Theorem 2 means for the empirical kind of densities that
will be used, we assume pxτ ,θτ (·) equals an empirical density:

pxτ ,θτ (dx, θ) =
∑
κ∈K

Nκ∑
i=1

ωκ,iδ(xκ,i ,θκ,i )(dx, θ) (9.10)

with {xκ,i, θκ,i, ωκ,i}Nκ

i=1, κ ∈ K, a given set of particles. Substituting (9.10) into
(9.8) and evaluating yields:

pxτ ,θτ |κτ+h
(dx, θ |κ)

=
∑

η∈Mκ

pθτ+h|xτ ,θτ (η|x, θ)
∑
κ ′∈K

Nκ′∑
i=1

ωκ ′,iδ
(xκ′,i ,θκ′,i )(dx, θ)/pκτ+h

(κ)

=
∑
κ ′∈K

Nκ′∑
i=1

∑
η∈Mκ

pθτ+h|xτ ,θτ (η|xκ ′,i , θκ ′,i)ωκ ′,iδ
(xκ′,i ,θκ′,i )(dx, θ)/pκτ+h

(κ).

(9.11)
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Similarly, substituting (9.10) into (9.9) yields

pκτ+h
(κ) =

∑
κ ′∈K

Nκ′∑
i=1

∑
η∈Mκ

pθτ+h|xτ ,θτ (η|xκ ′,i , θκ ′,i )ωκ ′,i . (9.12)

The idea is to use equation (9.11) for resampling Np particles from
pxτk

,θτk
|κτk+h

(·|κ) for each κ-value once at the beginning of a prediction cycle
from τk to τk+1. Equation (9.12) is used to compensate each particle weight for
this resampling.

9.6 Hierarchical hybrid IPS algorithm

Similar as in the IPS algorithm for an SHS [9,8], a particle is defined as a triplet
(x, θ, ω), ω ∈ [0, 1], x ∈ R

n and θ ∈ M. Numerical approximations γ̃k and π̃k

are used for γk and pξk |χk
(·|1) respectively. When simulating from τk−1 ∧ T to

τk ∧ T , a fraction γ̃k of the Monte Carlo simulated trajectories only will reach Qk .
The Hierarchical Hybrid Interacting Particle System (HHIPS) algorithm estimates
these fractions and their product in a recursive way, using the following steps:

Step 0 generates for each κ-value Np initial particles at k = 0, and then starts
the cycling over steps 1 through 3 for k := 1, 2, . . . , m.

Step 1 extrapolates each particle from τk−1 ∧ T to τk ∧ T in time steps of length
h, using importance switching for the new κ-value and κ-conditional
sampling of a new θ -value. For the latter use is made of the κ-conditional
θ -prediction characterization in Theorem 1.

Step 2 evaluates the particles that have arrived at Qk . For this, use is made of
equations 9.4–9.5.

Step 3 resamples from the particles that have arrived at Qk . In order to draw
Np samples per κ-value, use is made of the hierarchical interaction char-
acterization in Theorem 2.

Each of these steps is specified in detail below.

Hierarchical hybrid interacting particle system

HHIPS Step 0: Initial sampling for k = 0.

• At time t = 0 we start with a set of Nκ := Np particles for

each aggregation mode κ ∈ K: {xκ,i , θκ,i, ωκ,i}Np

i=1, κ ∈ K,

where the particles are obtained as follows. First, the θκ,i

are independently drawn from pθ0|κ0(·|κ). Then, the xκ,i ∈
{0} × R

n−1/D1 are independently drawn from px0|θ0(·|θκ,i)
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with the first component of xκ,i equal to zero. The initial
weights satisfy

ωκ,i = pκ0(κ)

Np

, i = 1, . . . , Np, κ ∈ K.

• With this we have γ̃0 = 1 and

p̃x0, θ0(dx, θ) =
∑
κ∈K

Nκ∑
i=1

ωκ,iδ(xκ,i ,θκ,i )(dx, θ).

• Identify a sufficiently large number J of equal discretiza-
tion steps of time length h = T /J , which allows a numerical
integration time step h to be used.

• Identify an appropriate positive value for α < 1/J .
Iteration cycle: For k = 1, . . . , m, cycle over steps 1–3:

HHIPS Step 1: Prediction.

• Start with empty sets Sκ
k , κ ∈ K, to store all particles that

arrive at Qk = (0, T ) × Dk × M.

• For j = 1, . . . , J , iterate over substeps 1(a)–1(c).

Substep 1(a). Sample κτ+h using importance switching.
If k > 1 and j = 1, then go to substep 1(b), else for each κ ∈ K

and i = 1, . . . , Nκ :

• If ωκ,i = 0 then ω̆κ,i := 0 and κ̆κ,i := κ ; else sample a κ̆κ,i ∈
K with probability α for each of the values in K \ {κ}, and
with probability 1 − α(|K| − 1) for the value κ , and correct
the corresponding weight according to this importance switch-
ing, that is,

ω̆κ,i =
⎧⎨
⎩ωκ,i pκτ+h |xτ ,θτ (κ̆κ,i |xκ,i ,θκ,i )

1−α(|K|−1)
, if κ̆κ,i = κ,

ωκ,i pκτ+h |xτ ,θτ (κ̆κ,i |xκ,i ,θκ,i )

α
, if κ̆κ,i 
= κ.

• The resulting sets of particles are {x̄κ ′,l, θ̄ κ ′,l , ω̆κ ′,l , κ̆κ ′,l}Nκ′
l=1 ,

κ ′ ∈ K. For each κ ∈ K, collect from these particles those Nκ

particles for which κ̆κ ′,l = κ , that is,

Nκ :=
∑

κ ′∈K,Nκ′ 
=0

Nκ′∑
l=1

1{κ}(κ̆κ ′,l).
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• For each κ ∈ K, renumber the indices of these Nκparticles
such that the first index equals κ and the second index runs
over {1, . . . , Nκ}. This yields for each κ ∈ K the following
new set of particles {xκ,i, θκ,i, ωκ,i}Nκ

i=1 if Nκ 
= 0, and an
empty set ∅ if Nκ = 0.

Substep 1(b). κτ+h-conditional prediction of (xτ+h, θτ+h).
For each κ ∈ K, determine the new set of particles {x̄κ,i , θ̄ κ,i ,
ω̄κ,i}Nκ

i=1 as follows:

• For each κ, i for which ωκ,i = 0, set x̄κ,i := xκ,i and θ̄ κ,i :=
θκ,i . Else use Theorem 1 to sample a new value θ̄ κ,i from

pθτ+h|xτ,θτ ,κτ+h
(η|xκ,i ,θκ,i ,κ)

= 1Mκ (η)pθτ+h|xτ ,θτ (η|xκ,i, θκ,i)∑
η′∈Mκ

1Mκ (η
′)pθτ+h|xτ ,θτ (η

′|xκ,i, θκ,i)

and a new value x̄κ,i from

pxτ+h|θτ+h,xτ ,θτ (dx|θ̄ κ,i , xκ,i, θκ,i).

• The weights are not changed, that is, ω̄κ,i := ωκ,i .

Substep 1(c). Memorizing particles that arrived at Qk .

• If (x̄κ,i , θ̄ κ,i) ∈ Qk and ωκ,i 
= 0, then a copy of the particle
{x̄κ,i , θ̄ κ,i , ω̄κ,i} is stored in the set Sκ

k .

• Subsequently, we set ω̄κ,i := 0 in the original particle.

• If j = J , then step 1 is complete, hence go to step 2, else
repeat substeps 1(a)–1(c) for j := j + 1.

HHIPS Step 2. Evaluate the Qk-arrived particles.

• The particles which are memorized in Sκ
k , κ ∈ K, provide an

estimate of pξk |χk
(·|1) and γk .

• Renumbering the particles in Sκ
k yields a set of particles

{x̃κ,i , θ̃ κ,i , ω̃κ,i}Nκ

i=1 with Nκ the number of particles in Sκ
k .

• Weighted fraction γ̃k of the Qk-arrived particles:

γk ≈ γ̃k =
∑

κ∈K,Nκ 
=0

Nκ∑
i=1

ω̃κ,i .

• If Nκ = 0 for all κ ∈ K, then the algorithm stops with the
estimate Phit (0, T ) ≈ 0.
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• If k = m, then stop HHIPS with the estimate Phit (0, T ) ≈∏m
k=1 γ̃k .

• For each κ ∈ K and i = 1, . . . , Nκ ,

ω̃κ,i := ω̃κ,i/γ̃k.

• The estimated pξk |χk
(·|1) satisfies

pξk |χk
(dx, θ |1) ≈ π̃k(dx, θ)

=
∑

κ∈K,Nκ 
=0

Nκ∑
i=1

ω̃κ,iδ(x̃κ,i ,θ̃κ,i )(dx, θ).

HHIPS Step 3. Copy the Qk-arrived particles through κτk+h-conditional resam-
pling.

• Evaluate aggregated mode probabilities at τ := τk using
(9.12):

pκτ+h|χk
(κ|1) ≈ ϕ(κ)

=
∑

κ ′∈K,Nκ′ 
=0

Nκ′∑
i=1

∑
η∈Mκ′

pθτ+h|xτ ,θτ (η|x̃κ ′,i , θ̃ κ ′,i)ω̃κ ′,i .

• For each κ ∈ K, independently draw Np random pairs
(xκ,i , θκ,i), i = 1, . . . , Np, from the particle spanned
empirical measure, using (9.11):

pxτ ,θτ |κτ+h,χk
(dx, θ |κ, 1)

≈
∑

κ ′∈K,Nκ′ 
=0

Nκ′∑
i=1

∑
η∈Mκ′

pθτ+h|xτ ,θτ (η|x̃κ ′,i , θ̃ κ ′,i )

× ω̃κ ′,iδ{x̃κ′,i ,θ̃κ′,i }(dx, θ)/ϕ(κ).

• This yields, for each κ ∈ K, a set of particles
{xκ,i, θκ,i, ωκ,i}Np

i=1 with ωκ,i := ϕ(κ)/Np.

• If k < m, then repeat steps 1–3 for k := k + 1 and Nκ := Np.

Remark 1. The key extensions of HHIPS over IPS for an SHS [8,9] are:

(i) embedding of an aggregation mode process;

(ii) particles are maintained per aggregation mode;
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(iii) importance switching of aggregation mode is used for the conditional pre-
diction of SHS particles;

(iv) hierarchical interaction is used for the resampling of particles that reached
Qk , k = 1, . . . , m − 1.

9.7 Free flight air traffic example

We consider a specific free flight operational concept that has been developed
within a recent European research project [37]. In the free flight air traffic
example, the airspace is an en-route airspace without fixed routes and without
support by air traffic control. All aircraft flying in this airspace are assumed to be
properly equipped and enabled for free flight: the pilots can try to optimize their
trajectory, due to the greater freedom to choose path and flight level. The pilots
are only limited by their responsibility to maintain airborne separation, in which
they are assisted by the so-called Airborne Separation Assistance System (ASAS).
This system processes the information flows from the data-communication links
between aircraft, the navigation systems and the aircraft guidance and control
systems. ASAS detects conflicts, determines conflict resolution maneuvers and
presents the relevant information to the aircrew. The number of agents involved
in the free flight operation is huge and ranges from the Control Flow Manage-
ment Unit to flight attendants. In the setting chosen for an initial risk assessment,
the following agents are taken into account:

• one flying pilot in each aircraft;

• one non-flying pilot in each aircraft;

• various systems and entities per aircraft, such as the aircraft position evo-
lution and the conflict management support systems;

• some global systems and entities, such as the communication frequencies
and a satellite system.

The approach taken in developing the specific free flight concept of operation
[37] is to avoid much information exchange between aircraft and to avoid ded-
icated decision-making by artificial intelligent machines. Although the conflict
detection and resolution approach developed for this free flight concept has its
roots in the modified potential field approach [30], it has some significant devi-
ations from this. The main deviation is that conflict resolution is intentionally
designed not to take the potential field of all aircraft into account. The resulting
design can be summarized as follows:

• All aircraft are supposed to be equipped with Automatic Dependent
Surveillance-Broadcast (ADS-B), which is a system that periodically
broadcasts own aircraft state information, and continuously receives
the state information messages broadcasted by aircraft that fly within
broadcasting range (∼ 100 Nm).
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• To comply with pilot preferences, conflict resolution algorithms are
designed to solve multiple conflicts one by one rather than in a fully
concurrent way (see [30]).

• Conflict detection and resolution are state-based, that is, intent information,
such as information at which point surrounding aircraft will change course
or height, is assumed to be unknown.

• The vertical separation minimum is 1000 ft and the horizontal separation
minimum is 5 Nm. A conflict is detected if these separation minima will
be violated within 6 minutes.

• The conflict resolution process consists of two phases. During the first
phase, one of the aircraft crews should make a resolution maneuver. If this
does not work, then during the second phase, both crews should make a
resolution maneuver.

• Prior to the first phase, the crew is warned when an ASAS alert is
expected to occur if no preventive action would be implemented on
time; this prediction is done by a system referred to as Predictive ASAS
(P-ASAS).

• Conflict co-ordination does not take place explicitly, that is, there is no
communication on when and how a resolution maneuver will be executed.

• All aircraft are supposed to use the same resolution algorithm, and
all crew are assumed to use ASAS and to collaborate in line with the
procedures.

• Two conflict resolution maneuver options are presented: one in the vertical
and one in the horizontal direction. The pilot decides which option to
execute.

• ASAS related information is presented to the crew through a cockpit display
of traffic information.

In order to use the HHIPS algorithm for the estimation of collision risk in
this free flight operation, we need to develop an MC simulator of this operation,
such that the simulated trajectories constitute realizations of a hybrid state strong
Markov process. Everdij and Blom [23,24,25,26] have developed a stochastically
and dynamically colored Petri net (SDCPN) formalism that ensures the specifi-
cation of a free flight MC simulation model which is of the appropriate class.
In [9] it is explained how the SDCPN formalism has been used to develop an
MC simulation model of a particular free flight design. The dimensionality of
the resulting MC simulation model is very large, for example in simulating two
aircraft there are about 1025 discrete mode combinations, and the Euclidean state
may go up to R

336 [9]. For this very large stochastic hybrid system we want to
estimate the probability of collision between aircraft. This is practically infeasible
using naive MC simulation.
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9.8 Application of HHIPS to air traffic example

In [4,8,9] we developed a way to cast the air traffic SHS model within the setting
of the IPS formulation, and used the IPS to evaluate demanding high risk bearing
multi-aircraft scenarios. This IPS approach, however, does not work properly
anymore for low risk bearing scenarios. The aim of this section is to demonstrate
that the novel HHIPS works well for such a low risk bearing scenario, using the
same SHS model.

In the low risk bearing scenario considered, two aircraft start at the same flight
level, some 250 km away from each other, and fly on opposite direction flight
plans head-on with a ground speed of 240 m/s. This means that collision may
be reached after about 500 s simulation, hence we set T = 600 s. The collision
reach probability is estimated by running the HHIPS algorithm ten times.2 The
aggregation modes chosen are all combinations of the following high-level mode
values: global communication support is ‘up’ or ‘down’, and the decision-making
loop of aircraft 1 is ‘up’ or ‘down’. This leads to a total of four aggregation mode
values.

The Dk
′s were identified through an iterative process of learning from con-

ducting MC simulations. This quite easily led to the identification of a series of
Dk

′s that appeared to work well. Although it is likely that further optimization
of the Dk

′s may lead to a reduction in the variance and confidence interval of
the estimates (see Chapter 3), we have not yet tried to do so.

Each identified Dk is defined by three parameters, the values of which are
given in Table 9.1 for a sequence of eight nested subsets. Here dk and hk define
a cylinder of diameter dk and height hk , respectively. �k is the time period over
which position and velocity differences between the two aircraft are compared. If
within �k the predicted position difference falls within the corresponding cylin-
der, then Dk is said to be reached. The three parameters of D1, D2, D4, D6 and D8

are such that reaching them represents a type of conflict that is well known in air
traffic, i.e. medium-term conflict, short-term conflict, conflict, near-collision and
collision, respectively. The extra D3, D5 and D7 appeared useful in avoiding too
small fractions remaining from hitting D4 after D2, D6 after D4 and D8 after D6.

The number of particles used is 5000 per aggregation mode value; hence
20 000 particles are used per HHIPS run. The time step h = 1 s, and α = 0.001.

Table 9.1 IPS conflict level parameter values

k 1 2 3 4 5 6 7 8

dk (Nm) 4.5 4.5 4.5 4.5 2.5 1.25 0.50 0.054
hk (ft) 900 900 900 900 900 500 250 131
�k (min) 8 2.5 1.5 0 0 0 0 0

2 In [7] a similar two-aircraft encounter scenario is simulated using an initial precursor of the
current HHIPS.
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Table 9.2 γ̃k values estimated by first five HHIPS runs. IPS based estimation
typically yields values 0.0 for k ≥ 4

k Run 1 Run 2 Run 3 Run 4 Run 5

1 1.000 1.000 1.000 0.991 1.000
2 5.77E-04 5.64E-06 6.24E-06 5.04E-06 6.13E-06
3 6.40E-03 7.25E-01 7.20E-01 6.84E-01 7.66E-01
4 0.566 0.569 0.596 0.540 0.608
5 0.344 0.256 0.223 0.401 0.198
6 0.420 0.452 0.402 0.459 0.429
7 0.801 0.845 0.929 0.710 0.949
8 0.814 0.827 0.841 0.828 0.802

� 1.97E-07 1.89E-07 1.89E-07 2.00E-07 1.85E-07

Table 9.2 presents the values for γ̃k which have been estimated during the first five
HHIPS runs. The estimated mean probability of collision between the two aircraft
equals 1.91 × 10−7. The estimated standard deviation is 1.6 × 10−8, which shows
that the estimated value is quite accurate. It should be noticed that the variation
in the fractions per level is significantly larger than the variation in the product
of the fractions. Apparently, the dependency between the fractions γ̃k reduces
the variation in the multiplication of these fractions.

Finally, we improved the availability/reliability of the ASAS related systems
by a factor of 100, and then conducted the ten HHIPS runs again. This resulted in
a 100-fold decrease of the collision reach probability. These results demonstrate
that HHIPS works well for this large-scale SHS.

9.9 Concluding remarks

This chapter first presented the rare event estimation theory developed in
[16,17,18,20,21] within the framework of probabilistic reachability analysis of
SHS. Subsequently, the theory was extended with mode aggregation, importance
switching and Rao–Blackwellization. This allows probabilistic reachability
analysis theory to be applied to large-scale SHS, and in particular when the
reachability probability considered receives significant contributions from
combinatorially many rare modes. The power of the resulting novel sequential
MC simulation approach was demonstrated through a successful application
to collision risk estimation in a demanding future air traffic scenario. And, of
course, there are several interesting directions for follow-up research, such as:

• extending the convergence proof for IPS to HIPS and HHIPS;

• incorporating parameter sensitivity assessment in IPS, HIPS and HHIPS;

• optimization of Dk
′s identification in the air traffic example.
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Particle transport applications
Thomas Booth

10.1 Introduction

Historically, Monte Carlo nuclear particle transport simulations were the first
large-scale use of Monte Carlo methods on digital computers. From the begin-
ning, the field of transport has had some very important, and very difficult,
problems to solve. The simulation of rare events arises almost immediately
because nuclear particles (e.g., neutrons and photons) can be hazardous to human
health at high doses. There are many rare event simulation applications besides
shielding, but this chapter will focus on shielding because this application, and
its importance, are widely understood. For instance, humans need to be shielded
from the high-energy nuclear particles from a nuclear reactor, whether the reac-
tor is a commercial power reactor, a naval reactor on a warship, or the sun. The
penetration probabilities for nuclear shields are often 10−8 to 10−10 or smaller,
so that it is an extremely rare particle that penetrates the shield.

This chapter focuses primarily on practical rare event simulations using the
variance reduction techniques in the Los Alamos National Laboratory’s Monte
Carlo transport code MCNP [31]. The reasons for this focus are threefold. First,
MCNP is by far the most widely used transport code in the world, both in terms
of the number of users and the amount of computer time expended in MCNP
calculations. Second, there are many Monte Carlo transport codes with many
different variance reduction techniques and the author has neither the space nor
the expertise to discuss every technique. Third, this chapter has been written as
an introduction for non-transport Monte Carlo practitioners and not as a general

Rare Event Simulation using Monte Carlo Methods Edited by Gerardo Rubino and Bruno Tuffin
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survey of techniques in transport. (Because of this focus, the reader should note
that the reference list is skewed toward publications associated with MCNP; see
Lux and Koblinger [22] for a more representative reference list.)

The review process for this chapter indicated that transport Monte Carlo
differs in significant ways from the Monte Carlo used in other fields, for example
operations research. Not only are the terminology and methods quite different in
many cases, there is sometimes even a conceptual difference in the viewpoints of
what a Monte Carlo calculation is. This chapter first discusses these differences
in terminology and viewpoint, to the extent that the author and reviewer have
identified them.

In the major portion of this chapter, some of the methods used in rare event
transport simulations are described and then demonstrated in the context of a
sample transport problem. In addition to the methods illustrated on the sample
problem, the ‘comb’ is discussed because few people are aware of the comb
technique, despite some interesting theoretical and practical aspects. Inasmuch
as the implications of using importance function information is not always well
understood, some guidance is given. The chapter concludes with practical com-
ments about when users should stop variance reduction efforts, followed by some
comments on the future of Monte Carlo transport methods.

10.2 Scope of particle transport problems considered

The field of particle transport contains deterministic (i.e., non-stochastic) solu-
tion techniques as well as the Monte Carlo techniques discussed in this chapter.
Almost all of the deterministic techniques solve the transport problem by solving
the Boltzmann transport equation [1] for the particle flux (particle density times
velocity) as a function of position, energy, angle and time. Monte Carlo is often
viewed as an alternative approach to solving transport equations, so most of the
texts implicitly assume in their discussions that the Monte Carlo codes are being
used to estimate quantities such as particle densities, currents, and fluxes. This
assumption is often invalid, as explained in the paragraph after next.

Those not familiar with transport can get some idea of the issue by considering
the planar heat equation ∇2T = 0 in a homogeneous medium with boundary
conditions T = 1 on some part of the boundary and T = 0 on the rest of the
boundary. The solution to the heat equation at a point P can be shown to be
[2] the probability that a particle starting at P = (x, y) with an isotropic random
direction and randomly walking on circles reaches the T = 1 boundary rather
than the T = 0 boundary. Thus, the random walk is ‘solving’ the heat equation.
Note that if two particles are started at P with particle 2’s direction opposite to
particle 1’s direction, the random walk of either one ‘solves’ the heat equation. If
instead one changes the question to estimating the probability that both particles
reach the T = 1 boundary, one needs to write a different equation involving the
joint density of particles 1 and 2 because the heat equation gives no information
about the joint density.
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There are many transport problems for which solving the standard Boltzmann
transport equation is irrelevant because it describes the behavior of individual par-
ticles. Any particle transport problems that depend on the collective behavior of
several particles must be treated differently. From a Monte Carlo standpoint, the
estimates made are dependent on collections of particles and therefore the col-
lection of particles carries a statistical weight rather than the individual particles
[4–6, 25]. One example is the coincident physical detection of a pair of gamma
rays from an electron–positron annihilation event. The physical detector system
responds only when both gamma rays enter the detector within a very short
time interval (‘in coincidence’). If two gamma rays enter the detector, but not
in coincidence, the detector does not respond because the gamma rays could not
be from the annihilation event. The Boltzmann equation provides no information
about the probability of coincidence in the detector.

For simplicity, this chapter considers only those types of Monte Carlo calcu-
lations for which individual particles carry weights.

10.3 Transport terminology

A particle history is one independent sampling of the random walk process from
the particle’s source event (birth) to the termination of the particle (and progeny,
if any). For instance, if a source particle subsequently produces fission progeny
(e.g., as in a nuclear reactor), then the history includes the random walks of all
fission particles related to the initial source particle. A score or tally is a contri-
bution to a desired estimate such as the number of partices crossing a surface.
For the sake of simplicity, the scores will always be assumed non-negative, as
is almost always the case. The history score, sn, or history tally is the sum of
all scores for a given history. The history score is the basic statistical quantity in
transport. If, for instance, one wishes to estimate the mean number of collisions
per source particle, then one increments the history score, sn, of particle n at
each collision by sn + 1 → sn. When the history is complete, the final sn is then
the history score.

A particle track is any particle associated with a particle history. For instance,
in a nuclear chain reaction a particle history will consist of many particle tracks
from fission. Tracks may also be created by variance reduction techniques (e.g.,
particle splitting, described later).

The sample mean and variance of the history score are estimated with N

particle histories as

μ̂ = 1

N

N∑
n=1

sn, (10.1)

σ̂ 2 = 1

N − 1

N∑
n=1

(sn − μ̂)2. (10.2)
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The particle weight multiplies a score when a score is made. Note that a particle
track can score many times and each time with a possibly different weight. For
instance, if the desired estimate is the total energy crossing a surface, then the
history score would be w1E1 + w2E2 + w3E3, if the particle crossed the surface
three times with energies Ei and weights wi .

Note that weight in transport is simply a score multiplier that may change for
many reasons. Some of the transport uses for weight seem to differ substantially
from other Monte Carlo fields. For instance, consider estimating the number
of collisions in disjoint regions 1 to 100. A naive estimate takes a particle of
unchanging weight w = 1 and every time a collision occurs on sample n the
current score is updated by sn + 1 → sn. An equally valid estimate would be for
the nth sample to consist of two particle tracks. Track 1 has weight w = 1 in
odd regions and weight w = 0 in even regions. Conversely, track 2 has weight
w = 0 in odd regions and weight w = 1 in even regions. Every time a collision
occurs on either track 1 or track 2 the current score is updated by sn + w → sn.
The mean estimate is preserved because the weighted distribution of collisions
is the same as in the analog case. (While this example is contrived solely for
explanatory purposes, and is not effective as a variance reduction method, MCNP
does, in fact, sometimes introduce additional weighted tracks in similar cases that
are effective for variance reduction.) Note that a track’s weight can go from 0 to
non-zero in transport calculations; this is sometimes confusing to Monte Carlo
practitioners who understand weight in the limited sense of a likelihood ratio
correction. There are some transport situations (not discussed here) where the
weight can be negative or even complex.

Probably most Monte Carlo transport practitioners understand and use the
term ‘analog Monte Carlo’ in mostly the same way. That is, convenient probabil-
ity densities are abstracted from the physical transport process. These convenient
probability densities are then embedded in a transport code. For example, the
neutron distance to collision is sampled conveniently from an exponential distri-
bution without modeling the detailed interactions between the neutron and each
nuclide along its path. For this chapter, the term ‘analog’ describes a direct sam-
pling of these abstracted probability densities. For the most part, people have
abstracted very similar probability densities from the physical transport process.
Nonetheless, it is probably worthwhile to note that an analog sampling in the
context of this chapter refers to the particular probability densities that MCNP
has abstracted from the physical transport process. Roughly speaking, an analog
Monte Carlo sampling of a transport problem is what one gets when no variance
reduction techniques are used.

The physical transport process is a Markov process in the phase space P =
(r, �, E, t) because knowing the particle’s position, direction, and energy at time
t , the particle’s behavior is independent of how it arrives at P. Similarly, in an
analog Monte Carlo simulation of nature, the future of a particle’s random walk
depends only on its current phase-space location P, and not on how it arrived at P.

Non-analog simulations of particle transport depart, in one way or another,
from the analog process. Non-analog methods are also known as ‘variance
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reduction methods’ because the aim of using non-analog methods is to reduce the
variance in the estimated mean for a given computer time. Note that non-analog
simulations need not be Markov processes, despite the fact that the physical
transport is a Markov process. Monte Carlo transport calculations typically use
large numbers (say, 1000–10 000) of ‘variance reduction parameters’ as input
to different variance reduction techniques. Note that the adjective ‘variance
reduction’ is optimistic; it is quite possible to specify ‘variance reduction’ that
actually increases the calculational variance for a fixed computing time.

10.4 Unbiased combinations of non-analog Monte
Carlo techniques and fair games

A common Monte Carlo philosophy (not used for MCNP) is to consider
non-analog techniques one, or perhaps two, at a time. The non-analog techniques
are always explicitly known at the beginning of a Monte Carlo calculation.
Typically, the set of possible random walk chains is thus known from the outset
and one proves that a properly weighted estimator over the known set of chains
will preserve the same mean estimate as an analog calculation. There are almost
always some important restrictions, sometimes taken for granted and not even
mentioned, associated with this approach. Consider, for example, the following
discussion in [21]:

In fact, L(X1, . . . , Xj ) can be viewed as a weight that the chain has
accumulated so far. This weight will simply multiply the contribution
of this chain to the estimator at the end (if τB < τA) and otherwise
has no influence on the sample path of the chain after step j . If we
decide to apply splitting or roulette to this chain at step j, then the
weighting factors that these methods introduce can simply multiply
the likelihood ratio.

Here, L is a likelihood ratio and τA and τB are the numbers of steps to
reach (disjoint) regions A and B, respectively. Note the assumption ‘otherwise
has no influence on the sample path of the chain after step j ’. The transport
Monte Carlo in MCNP often samples from very different sets of chains that are
explicitly dependent on the weight. From MCNP’s perspective this assumption
unnecessarily restricts the possible non-analog techniques available, and may
lead to very suboptimal calculations compared to calculations that are not bound
by this restriction.

Many Monte Carlo transport codes, in particular MCNP, may use many com-
binations of variance reduction techniques in a single calculation. Also, it is not
uncommon for advanced users to introduce their own special Monte Carlo method
designed solely for one specific difficult calculation. Users typically will combine
their special method with some of the standard methods in MCNP. Having to
write down an ‘estimator’ (see [28]) for each possible combination of variance
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reduction techniques, and prove unbiasedness, was not a practical thing to do
for MCNP purposes. Spanier [28], for instance, has an estimator for sampling
from biased transport kernels (p. 114) and a different estimator for splitting and
Russian roulette (p. 128). Presumably if one uses both methods at the same time,
one needs to define yet another estimator for the combination.

The philosophy for transport Monte Carlo is quite different. An example
may help illustrate the difference. Suppose three people are working on a Monte
Carlo calculation that is broken into three time intervals 0 ≤ t < T1, T1 ≤ t < T2,
and T2 ≤ t < T3. The ith person is responsible for the non-analog Monte Carlo
methods used in the ith time interval. The first person does not need to know how
the next two people will choose to do the sampling in their time intervals. The
first person can use any non-analog techniques he likes, provided he guarantees
the second person that if all samplings for t ≥ T1 are analog, then all mean
estimates will be the same as if the entire calculation 0 ≤ t < T3 were done
analog. The second person need not know how the third person will choose to
do the sampling. The second person can use any non-analog techniques he likes,
provided he guarantees the third person that if all samplings for t ≥ T2 are analog,
then all mean estimates will be the same as if the entire calculation 0 ≤ t < T3

were done analog. The third person can use any non-analog techniques he likes,
provided he too preserves the mean estimates that would occur if his part of the
transport were purely analog.

The difficulties associated with proving unbiasedness for arbitrary combina-
tions of variance reduction techniques were resolved by introducing the notion of
variance reduction as a set of ‘fair games’. A game (e.g., splitting) is said to be
‘fair’ if the mean values of all estimates are the same as a totally analog Monte
Carlo procedure. That is, except for computation time, Monte Carlo transport
practitioners would be happy with mean results from an analog calculation. The
practitioners do not care what variance reduction games are played as long as
the mean results are unaffected and the calculation is efficient. Transport results
in MCNP do not rely on the ‘estimator’ concept. Instead, MCNP relies on the
concept of a ‘fair game’ and a proof [12] that any combination of fair games is
also a fair game.

One final comment about discarding the estimator approach is perhaps worth-
while. The author is not suggesting that it is impossible for someone to justify
all possible combinations (current and future) of variance reduction techniques
in MCNP with an estimator approach; the author is simply saying that it looks
daunting and has never been done. Perhaps it is possible, perhaps not.

10.5 Weight-dependent vs weight-independent
transport

Most theoretical Monte Carlo transport discussions assume that a particle’s ran-
dom walk is independent of the particle’s weight. That is, two otherwise identical
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particles of weights w1 and w2 have the same distribution of possible random
walks. For any particular random walk, particle 2’s score is w2/w1 times particle
1’s score. (Note that this assumption in transport is akin to the assumption in
the previous section specified by the phrase ‘otherwise has no influence on the
sample path of the chain after step j ’.) Under this assumption, a particle’s score
is directly proportional to its weight and the rth score moment for a particle of
weight w is wr times the rth score moment for a unit weight particle. [22, p.
163]. To give some idea of the ubiquitousness of this assumption, note that [22]
first mentions this assumption in a footnote.

A cautionary note is perhaps worthwhile here. Because weight-independent
simulations are more tractable mathematically, they account for almost all of the
theoretical discussions in the Monte Carlo literature. (Two good exceptions can
be found in [22, pp. 178 and 186].) One should not be misled into concluding that
weight-independent simulations are more important, better, or more widely used
than weight-dependent simulations. Many (probably most) of the large production
Monte Carlo codes allow weight-dependent simulation. MCNP has always done
weight-dependent simulation as a default. (To the author’s knowledge, the pre-
decessor codes to MCNP, as far back as the 1950s, always did weight-dependent
simulation as a default as well.) There is often some distance between Monte
Carlo theory and practice. Two examples are given below.

First, consider the weight window technique (described later in more detail)
that enforces a range of acceptable weights by splitting if the weight is above the
window and rouletting if the weight is below the window. After the enforcement,
all weights are then within the window. The weight window is perhaps the
most widely used variance reduction technique in transport Monte Carlo today,
but it has received scant theoretical attention (Fox [19, pp. 213–233] gives an
interesting discussion).

Second, consider Monte Carlo optimization techniques. There are numerous
theoretical derivations about optimal parameters to minimize the variance; they
almost always assume weight-independent transport. A favorite problem for the-
orists is optimizing the exponential transform [26, 27, 18, 24] (described later).
(The reference list is not exhaustive; see [22, p. 487] for more.) Inasmuch as
practical experience indicates that a weight window almost always improves the
performance of the exponential transform, the usefulness of optimizing the expo-
nential transform in the absence of a weight window is severely curtailed. An
empirically optimized transform used with a weight window can give very good
results. When the weight window is removed with the same transform parame-
ter, the results are often disastrous. In one documented case [3, pp. 54–56], the
efficiency decreased by a factor of 100.

The author’s speculation as to the reason for the divergence between theory
and practice is that:

(i) transport theoreticians focus on techniques that are more mathematically
analyzable;
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(ii) Monte Carlo transport practitioners focus on getting good results whether or
not the techniques used are easily mathematically analyzable, provided the
techniques provably preserve the mean estimates.

Note that if the state space is formally augmented to include the particle
weight A = ((r, �, E, t), w) , then most current Monte Carlo transport calcula-
tions are Markov processes in the augmented space. This augmentation does not
remove the mathematical difficulties associated with analyzing weight-dependent
random walks. The key mathematical advantage to analyzing weight-independent
random walks is that the score from walks with one set of variance reduction
parameters can often be written in terms of the score derived with another set of
variance reduction parameters. With weight-dependent random walks, it is typi-
cally impossible, or at the very least impractical, to write the score from walks
with one set of variance reduction parameters in terms of the score derived with
another set of variance reduction parameters.

As a simple example of analyzing a weight-independent random walk
process, let p(s, w)ds be the probability that a particle of weight w at P
contributes a score s in ds after it departs P. (Note that p(s, w) is generally
the score density from a non-analog transport process after departing P.)
If the transport is weight-independent, then a particle of weight aw (a > 0)
will contribute a score as in the interval d(as) with the same probability.
That is,

p(as, aw)d(as) = p(s, w)ds. (10.3)

The rth moment of the score distribution is

Mr =
∫

p(s, w)sr ds. (10.4)

Now consider splitting the particle into two particles, each of weight w/2. For
the split case, the rth moment of the score distribution is

Sr =
∫ ∫

(s1 + s2)
rp(s1, w/2) p(s2, w/2) ds1 ds2. (10.5)

Without knowledge of what Monte Carlo techniques (e.g., a weight window) are
used subsequently, it is impossible to know what p(s, w/2) is. If the walks are
known to be weight-independent, however, then

p(s, w/2)ds = p(2s, w)d(2s) (10.6)

and, letting xi = 2si ,

Sr =
∫ ∫ (

x1 + x2

2

)r

p(x1, w) p(x2, w) dx1 dx2. (10.7)



PARTICLE TRANSPORT APPLICATIONS 223

From this (noting that
∫

p(x, w)dx = 1 because p is a probability density)

S1 = 1

2

∫
x2p(x2, w) dx2 + 1

2

∫
x1p(x1, w) dx1 =

∫
xp(x, w) dx = M1.

(10.8)

This shows that the mean is the same with or without the splitting. Similarly,

S2 = 1

4

∫ ∫
(x2

1 + 2x1x2 + x2
2)p(x1, w) p(x2, w) dx1 dx2 = 1

2

(
M2 + M2

1

)
(10.9)

The knowledge of the statistical properties (Mr ) of one Monte Carlo calculation
thus allows one to predict the statistical properties (Sr ) of a different Monte
Carlo calculation. Thus, the statistical properties using one set of Monte Carlo
variance reduction parameters can be empirically derived via simulation and then
the statistical properties of calculations with other parameters can be inferred.
Note that this analysis cannot be done without using the weight independence
relationship of (10.3).

10.6 Analog Monte Carlo neutron transport steps

An analog Monte Carlo transport calculation consists of the following basic steps:

1. Begin the nth source particle history.

2. Sample a source particle.
That is, sample a particle’s phase-space coordinates (r, �, E, t) =
(position, direction, energy, time) from Q(r, �, E, t).

3. Sample the distance η to the particle’s next event.
Let b be the distance to the boundary in direction �. The distance to
the next event, η, is sampled using the exponential distribution σe−ση.
(Here, σ is the physical interaction probability per unit length derived from
the nuclear data and the exponential distribution arises naturally from the
physics.) If η < b, then the particle collides before reaching the boundary,
otherwise the particle is put on the boundary. Move the particle a distance
η in the particle direction � = v/v, where v is the particle velocity and
v is the particle’s speed. That is, increment the position by r + η� → r.
Increment the time by t + η/v → t . (Note that the energy, E, is constant
between collisions.)

If an interior boundary is reached (e.g., an interface between concrete and
iron regions), then go to step 3.

If an exterior boundary is reached (e.g., the particle escapes the solar
system), go to 5.

If no boundary is reached, the particle has collided. Go to step 4.
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4. Sample the collision.
Sample the collision nuclide i (e.g., carbon-12, carbon-13, nitrogen-14,
iron-56).

Sample for capture (termination of the particle when the collision nuclide
removes the particle) vs survival (i.e., non-capture) on nuclide i. If capture
occurs, go to step 5. If the particle survives the collision, then sample for
the j th type of interaction on nuclide i (e.g., elastic scatter, inelastic scatter,
fission).

If necessary, sample the number of output particles K for interaction j

on nuclide i. (For example, an elastic scatter always has exactly has one
particle coming out of a collision, but the number of particles coming out
of a fission event is random.) For interaction j (e.g., fission) on nuclide i

(e.g., uranium-235), sample the output phase-space coordinates for the K

output particles from a probability law

Ci,j ((r, �, E, t) → (r1,�1, E1, t), . . . , (rK, �K, EK, t))

(Note that the collision is instantaneous and the time does not change.)

If K > 1, save K − 1 particles in a bank to process later.

Go to step 3.

5. Check for banked particles.
If there are particles waiting in the bank to be processed, take one from
the bank and go to step 3.

If there are no particles in the bank, go to step 6.

6. End the nth source particle history.
Process the statistical results for the nth source particle. For example, if
the nth source particle history contributes sn, increment the m moment
sums (for transport, usually m = 1, 2, 3, and 4)

Sm + sm
n → Sm

so that error estimates can be made.

Go to step 1 and sample a new source particle.

10.7 Intuitive ideas of variance reduction

In the analog simulation described in the previous section, every simulated parti-
cle represents one physical particle and the simulated particles are subject to the
same probability laws as the physical particles. The number of particles penetrat-
ing a shield, for example, can be estimated by starting N simulated particles from
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the source and tallying the number penetrating the shield. Often, the number of
particles in a physical source is very large, say more than 1015, so N is typically
much smaller than the physical number of particles. Because the process is a
linear one, if N particles produce k penetrating particles, one can infer (at the
end of the simulation) that a physical source of Q particles will produce Q(k/N)

penetrating particles.
It is often convenient to do this normalization at the beginning of the transport

procedure rather than at the end. (The physical source strength, Q, might be the
number of neutrons produced by a nuclear reactor over some time period, for
example, or the number of X-rays from a medical imaging machine.) The user
specifies a source strength Q and then, instead of assigning weight 1 to the
computer particle, representing one physical particle, assigns a weight Q to the
computer particle, representing Q physical particles.

Once the user starts viewing a computer particle as w physical particles, then
it is a short intuitive leap to variance reduction. For instance, a 2:1 split can
be interpreted as separating the w particles into two groups of particles each
having w/2 particles. The average physics is preserved because there still are w

physical particles after the split. In practice, this concept is generalized and as
long as the expected weight (i.e., the expected number of physical particles) is
preserved, then the average physics is preserved and the simulation means will
be unbiased. This chapter will rely on this intuitive concept, though proving this
intuitive notion is not always trivial [12, 8].

10.8 A sample rare event transport problem

Most Monte Carlo transport practitioners seem to learn variance reduction prin-
ciples and methods most easily by applying them to sample transport problems.
This chapter will consider some aspects of a simple rare event transport problem
[3] that is commonly used for training purposes at Los Alamos.

The transport problem is shown in Figure 10.1. The geometry is cylindrically
symmetric about the y-axis. There is a point isotropic neutron source at the bottom
of a 200-cm diameter concrete cylinder of height 180 cm. The source energy
spectrum is 95% at 2 MeV and 5% at 14 MeV. (Note that 2 MeV is typical of
fission neutron energies and 14 MeV is typical of fusion neutron energies.) Any
neutron exiting the cylindrical surface is immediately terminated by a perfect
absorber in the region labeled ‘zero importance’.

The primary tally (labeled F5) of interest is the time integrated neutron
flux (particle density times speed per unit volume) at the detector point D =
(200, 0, 0). (Note that the probability that a neutron scatters directly at D is zero,
but the ‘point detector flux’ estimate can be derived as the average flux in a
small sphere that has shrunken to zero radius [31].) The detector only responds
to particles above 0.01 MeV.

To contribute to the F5 tally, a neutron must:

(i) penetrate 180 cm of concrete;
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(ii) leave the top of the concrete cylinder with a direction close enough to the
cylinder axis that the neutron goes almost straight up the cylindrical void
cell and crosses into the small low-density concrete (0.0203 g/cc) cell;

(iii) collide in the low density concrete cell (because point detector contribu-
tions are made only from collision/source points); and

(iv) have energy above 0.01 MeV.

These events are unlikely because:

(i) 180 cm of 2.03 g/cc concrete is difficult to penetrate;

(ii) there is only a small solid angle up the cylindrical void;

(iii) not many collisions will occur in 10 cm of the low-density (0.0203 g/cc
concrete); and

(iv) particles lose energy penetrating the concrete.

10.9 The exponential transform

Consider a particle in a cell of constant material properties. The probability of
going a distance η without collision is

e−ση, (10.10)

where σ is the interaction probability per unit length for the material, called the
‘cross-section’ in nuclear parlance. That is, the probability of colliding in any
interval dη is σdη.

If there is a boundary at a distance b along the flight path of a particle of
weight w then the average weight reaching the boundary is

we−σb, (10.11)

and the average weight colliding in interval dη at a distance η <b is

wσe−σηdη. (10.12)

The exponential transform biases the sampling of the distance the particle travels
before collision. Instead of using the true cross-section σ , the sampling is done
with a fictitious cross-section σ̃ . Preserving the expected weight reaching the
boundary requires a weight multiplication wb such that

wbwe−σ̃ b = we−σb, i.e., wb = e−(σ−σ̃ )b. (10.13)
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Figure 10.1 Transport problem.

Preserving the expected weight colliding in dη about η requires a weight multi-
plication wc such that

wcwσ̃e−σ̃ ηdη = wσe−σηdη, i.e., wc = σ

σ̃
e−(σ−σ̃ )η. (10.14)

The typical choice for a penetration problem like this is

σ̃ = σ(1 − pμ), (10.15)

where p is the exponential transform parameter and μ is the cosine of the par-
ticle’s direction relative to the penetration direction (ŷ here). For p > 0, the
cross-section is reduced for particles moving forward, resulting in longer jumps
between collisions. Conversely, particles moving backward will have smaller
jumps between collisions.

Table 10.1 shows results from MCNP (with 5 million samples) for the average
weight penetrating the concrete cylinder (F1 tally in Figure 10.1). (To indicate
when no estimate is available, MCNP displays a ‘0’.) Some things to note:

1. With no transform, or with p = 0.1, none of the particles penetrate, result-
ing in a zero mean.

2. The transform seems to be doing its job preferentially sampling particles
deep into the shield.
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Table 10.1 Results with different exponential transform biasing parameters

Transform
parameter

Mean
×10−8

Fractional
error

Variance of
the variance

Tail
slope

Figure
of merit

Time
(minutes)

0 (analog) 0.0000 0.0000 0.0000 0.0 0.0 32.17
0.1 0.0000 0.0000 0.0000 0.0 0.0 36.79
0.2 4.3760 0.6676 0.6682 0.0 0.06 35.82
0.3 3.9866 0.3713 0.2023 0.0 0.18 39.85
0.4 3.3257 0.2833 0.2219 0.0 0.32 38.93
0.5 3.2646 0.2515 0.3971 0.0 0.41 38.97
0.6 4.1875 0.4156 0.8391 0.0 0.14 41.86
0.7 2.9717 0.1502 0.1890 2.2 1.1 42.27
0.8 2.8228 0.2492 0.5888 1.9 0.37 43.71
0.9 2.3219 0.3310 0.8525 1.9 0.20 46.71
0.99 (poor) 1.7534 0.3639 0.4461 1.7 0.17 45.01
50 million
0.7 4.5135 0.1670 0.3561 2.4 0.087 410.23

3. The time is increasing with p. This is understandable because fewer of
the particles exit the y = 0 surface of the cylinder and thus the typical
particle has more collisions in the biased game.

4. With one exception, the mean is decreasing with increasing p. This phe-
nomenon occurred regularly enough that the exponential transform was
sometimes called the ‘dial an answer’ technique at Los Alamos, because
the mean seemed to depend on the user’s choice of p. The sample mean
will converge to the true mean after enough samples, but the user may not
be able to afford that many samples; this is a rare event sampling problem
that is occurring.

5. The fractional errors (standard deviation of the mean divided by the mean)
are all quite high. The general rule of thumb is that means are not believ-
able until the error is less than 10%.

6. The ‘variance of the variance’, Var (Var(X)) / (Var(X))2, values are all
quite high. The general rule of thumb is that variance of the variance
should be below 0.1 for a reliable calculation.

7. The tail slope [23, 31] is a measure of how many moments exist. A tail
slope of k indicates that k − 1 moments exist. MCNP requires at least
500 non-zero history scores before attempting to estimate the slope; this
accounts for the 0 slope estimate for the smaller p entries.

8. The figure of merit (fom) is 1/(error2 × time) and is a measure of the
efficiency of the calculation.

9. The last line shows the result at 50 million histories for what looked like the
best parameter at 5 million histories. Note that the fractional error estimate
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has increased upon a tenfold increase in histories. This is indicative of
poor sampling of rare events. Additionally, note that the variance of the
variance has increased when it should be decreasing, and the figure of
merit has decreased when it should be constant. Thus, this calculation
would be deemed unreliable by almost all transport practitioners.

One of the features of a well-designed Monte Carlo transport code is that it
provides large amounts of summary information about the sampling in addition to
the tallies. As one example, MCNP gives the largest history score (for each tally)
and its associated history number, so that the history can be rerun to produce an
‘event log’ that lists everything that happened during the history. The event log
allows the user to investigate why a history scored so much. For the exponential
transform, one finds an occasional particle that collided many times and was
subject to numerous weight multiplications and now has a very large weight
compared to other particles in the same phase-space region. This is not good.

10.10 The weight window

Consider two otherwise identical particles with weights w1 = w and w2 = 100w

at the same phase-space point P . For weight-independent transport, particle 2
will contribute about 10 000 times as much to the second moment as particle 1.
The time required to sample a collision is independent of the weight, so one is
spending the same amount of time on particle 1 as particle 2, despite the fact that
particle 2 contributes roughly 10 000 times as much to the variance. This makes
no computational sense, so a ‘weight window’ is enforced so that all particles in
a given region have roughly the same weight.

The weight window in a region consists of a lower weight wl , a survival
weight ws , and an upper weight wu such that wl < ws < wu; typically, ws =
3wl and wu = 5wl . If w < wl then the particle is rouletted and survives with
probability w/ws and weight ws , or is killed. If wl ≤ w ≤ wu, no action is
taken. If w >wu then the particle is split by the minimum integer m such that
wl ≤ w/m ≤ wu. (Note that wu ≥ 2wl is also required.)

The weight window lower bound in some region R is typically chosen to
be inversely proportional to the average score generated after the particle enters
region R. The rationale behind this is that every particle in the problem then
has roughly the same expected score independent of where it is. This is often a
good choice, though later we shall discuss some limitations of this choice. For
now, note that standard practice is either to attempt to estimate this expected
score via bookkeeping on the Monte Carlo process or to deterministically solve
equations [32, 30] for this expected score function, usually called the ‘adjoint’ or
‘importance’ function in the transport literature. The deterministic methods are
beyond the scope of this chapter, but a quick explanation of the Monte Carlo
bookkeeping is possible.

The importance of a particle at a point P in phase space equals the expected
score a unit weight particle will generate. Imagine dividing the phase space into
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a number of phase space ‘cells’ or regions. The importance of a cell then can be
defined as the expected score generated by a unit weight particle after entering
the cell. Thus, with a little bookkeeping, the cell’s importance can be estimated
with the ‘weight window generator’ as

Expected Score (Importance) = TS

TW
(10.16)

Here T S is the total score because of particles (and their progeny) entering the
cell and T W is total weight entering the cell. References [11, 3] have a nice
graphical illustration of a sample importance estimation process based on three
source particles.

Ideally, weight window regions are chosen small enough that the expected
score between adjacent regions does not vary more than a factor of 2–4. When
the expected score between adjacent regions is larger than 4, it is suggested that
the user further subdivide the problem into more zones.

10.11 Exponential transform with weight window

The weight window generator was run for 5 minutes with a transform parameter
of p = 0.7 and produced the weight window lower bounds in the 18 zones (from
the bottom of the concrete to the top of the concrete) of 5.000E-01, 1.007E-01,
4.147E-02, 1.492E-02, 5.008E-03, 1.645E-03, 5.485E-04, 1.913E-04, 7.117E-05,
2.844E-05, 1.199E-05, 5.253E-06, 2.356E-06, 1.078E-06, 4.891E-07, 2.217E-07,
1.007E-07, and 4.610E-08. The survival weight and upper window bounds were
3 and 5 times the lower bounds respectively.

Table 10.2 shows results for 500 000 history runs with different transform
parameters. Comparing Tables 10.1 and 10.2, note that the particle histories per
minute are roughly a factor of 10 less with the weight window. On the other

Table 10.2 Exponential transform with weight window

Transform
parameter

Mean
×10−8

Fractional
error

Variance of
the variance

Tail
slope

Figure
of merit

Time
(minutes)

0.0 (analog) 4.2811 0.0335 0.0034 10.0 28 32.00
0.1 4.0905 0.0323 0.0041 8.0 26 36.70
0.2 4.1190 0.0308 0.0033 10.0 27 38.26
0.3 4.2112 0.0281 0.0023 10.0 34 37.49
0.4 4.1524 0.0272 0.0031 10.0 35 38.80
0.5 4.1000 0.0277 0.0042 4.9 34 38.54
0.6 4.0929 0.0264 0.0028 10.0 36 39.93
0.7 4.2260 0.0290 0.0058 4.7 30 39.97
0.8 4.0316 0.0334 0.0076 6.6 23 39.53
0.9 4.0399 0.0387 0.0101 5.9 17 38.67
0.99 (poor) 4.0306 0.0670 0.0446 3.2 6.1 36.59
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hand, the efficiency (fom) is dramatically improved and every calculation with
p ≤ 0.9 passes MCNP’s ten statistical checks ([23], see also Section 10.19). In
particular, note that the tail slope estimate (k > 4) is indicating at least three finite
moments for all calculations, so that use of the central limit theorem is possible,
unlike the calculations in Table 10.1. The last line shows that even with a very
poor choice of a very high transform parameter, the tail slope indicates that the
variance is finite.

Elaborating a bit more, using the central limit theorem requires at least two
finite moments. Eventually, the high score tail of the density f (x) must decrease
faster than 1/x3 (slope 3), or else the second moment,

∫
x2f (x) dx, will not

be finite. Note that it is even better if the high score tail of the density f (x)

decreases faster than 1/x5 (slope 5), so that four finite moments exist. When
four moments exist, not only is the central limit theorem applicable, but also
the sample variance is usually a good estimate of the true variance used in the
central limit theorem. Valid confidence intervals are thus much more likely when
four moments exist.

A complete print (event log) of the largest scoring history for p = 0.6 indi-
cates that one of the (relatively rare) high-energy 14 MeV source neutrons is
responsible for the largest score. At this point, one would attempt to bias the
sampling of the source so that more 14 MeV neutrons were sampled, with cor-
respondingly smaller weights. One could proceed by using the weight window
generator to estimate an energy-dependent weight window, then adjust the source
energy bias so that the source particles are within their space-energy weight win-
dows. Space does not permit description here, but see [3] for an illustration of
source energy bias and space-energy weight windows.

10.12 Collision biasing

This chapter has shown how to get particles through a bulk concrete shield, but
almost none of the penetrating particles will have just the right angle to stream up
the void in Figure 10.1. Let the analog collision kernel be C(E, � → E′, �′) for
a particle entering collision at E,� and exiting at E′, �′. (The collision occurs
at one spatial point in an instant of time, so space and time variables do not
change upon collision.) Using the expected score function I (E′,�′) one would
like to sample from the biased collision density (given that exactly one particle
is known to exit the collision)

C̃(E,� → E′, �′) = C(E, � → E′, �′)I (E′,�′)∫ ∫
C(E, � → E′′, �′′)I (E′′,�′′)dE′′d�′′ . (10.17)

The trouble is that sampling C̃ efficiently is not straightforward. Recall from the
analog sampling section that the collision process is a complicated procedure that
is composed of a number of steps. Note that there are numerous ways to go from
(E, � → E′, �′). One has to sum, over all possible reactions, on all possible
collision nuclides, the probability densities for scattering to (E′,�′). Although
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it is not too difficult to calculate C for any given (E′, �′), calculating C for all
(E′′, �′′) required to evaluate the denominator in (10.17) is not practical. For
this reason, it is problematical to sample C̃; in practice Monte Carlo transport
codes use other approaches.

The TRIPOLI code [13] sometimes samples an approximation to C̃ by sam-
pling C n times and evaluating Ik = I (E′′

k , �′
k). The j th sample is picked with

probability and weight multiplier

pj = Ij∑n
k=1 Ik

=
1
n
Ij

1
n

∑n
k=1 Ik

, wj = 1/n

pj

. (10.18)

Note that the denominator in the rightmost equality for pj is a Monte Carlo esti-
mate of the integral in (10.17). This ‘is computationally expensive and therefore
rarely used in TRIPOLI-4 runs’ [17].

The MCBEND sampling [15] ignores C altogether and samples the biased
collision output from

p̃(E,� → E′, �′) = I (E′, �′)∫ ∫
I (E′′, �′′)dE′′d�′′ , (10.19)

and the scattering physics associated with C is incorporated with the weight
multiplication

w = C(E, � → E′, �′)
p̃(E,� → E′, �′)

. (10.20)

(The I function is a piecewise constant function in MCBEND and the importance
function used is actually energy-independent as well.)

MCNP’s ‘dxtran’ method [31] accomplishes angle biasing in tandem with
an expected value penetration technique. The basic dxtran method consists of
defining a spherical region of interest. The collision sampling proceeds as in
Section 10.6, except that (after the collision nuclide, interaction type, and energy
have been sampled) the dxtran method splits a particle into a dxtran particle
that crosses the dxtran sphere (before its next collision) and a non-dxtran
particle that does not. The non-dxtran particle is sampled the same way,
with the same weight, as it would have been without dxtran, except that the
non-dxtran particle is killed if it reaches the sphere surface. Thus, for events not
including crossing the sphere, the weight of particles executing any next event
is identical. The dxtran particle’s angle is sampled from an arbitrary density
p̃(�) (usually a constant and always non-zero only in the cone of directions
toward the sphere) with a weight multiplication such that the expected weight is
preserved,

wmp̃(�) = p(�), (10.21)
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where p(�) is the unbiased density. Of the particles scattered at �, the fraction
that arrive at the surface of the sphere is

e− ∫ S(�)
0 σ(η)dη, (10.22)

where S(�) is the distance to the sphere in the sampled direction �. Thus the
dxtran particle’s weight at the sphere is

wdxtran = p(�)

p̃(�)
e− ∫ S(�)

0 σ(η)dη. (10.23)

Note that the dxtran particle has weight zero from the collision point until it
reaches the sphere; it makes no tallies as these are already accounted for by the
non-dxtran particle. (MCBEND has a similar method called ‘forced flight’ [15].)

10.13 Applying dxtran

For the sample problem here, a 100-cm radius dxtran sphere is placed at
(0, 2000, 0); that is, at the top boundary of the void cylinder in Figure 10.1. All
the runs in Table 10.3 were 60-minute runs with the same generated window and
a transform parameter p = 0.6. Without dxtran, the fom is 12 and with dxtran
the fom is 9.6. The history variance is decreasing with dxtran, but the fractional
error in the mean reported in Table 10.3 has increased. The problem is that
dxtran takes too much time, 193 113 compared to 811 398 histories per hour.

Transport codes contain a wealth of sampling information beyond just the
estimates themselves, and a look at this information indicates that the zones near
the source put little weight on the dxtran sphere and the zones at the top of the
concrete put weights of about 10−10 on the sphere. It thus makes little sense
to follow particles whose weights get lower than 10−10. The exponential factor
in (10.23) is accumulated zone by zone by moving the dxtran particle through
each zone. When the dxtran particle has been exponentially attenuated through
a distance S′(�) <S(�) its final weight at the dxtran sphere is known to be

Table 10.3 Applying dxtran to improve tally F4 (60-minute runs per window
and p = 0.6 )

Histories Run type Mean
×10−15

Fractional
error

Variance of
the variance

Tail
slope

Figure
of merit

811398 no dxtran 7.0365 0.0372 0.0102 3.3 12
193113 dxtran 7.4593 0.0417 0.0060 10.0 9.6
341834 dxtran/RR1 7.3325 0.0315 0.0036 8.5 17
562564 dxtran/RR 1,2 7.4355 0.0253 0.0043 5.3 26
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less than

w′ = p(�)

p̃(�)
e− ∫ S′(�)

0 σ(η)dη. (10.24)

To save time, a roulette game was played when w′ < 10−10 because this was
consistent with the typical dxtran weights from collisions near the top of the
concrete cylinder. That is, the particle either survived with probability w′/10−10

with weight 10−10 or was killed. This saves time because far fewer zones have
to be tracked through. When this roulette game (RR1) is played, the number of
histories increases to 341 834 and the fom is now more than without dxtran.

In the zones near the source the particles will be subject to a large exponential
attenuation, so it makes little sense to start a dxtran particle, track it through a
number of zones until its weight becomes too low, and then roulette the particle.
If one knows this is happening (this is known from summary information from
the transport code), then one can play a roulette game even before producing
a dxtran particle. For each cell the user supplies a roulette probability q. If
the dxtran particle survives the roulette game, it’s weight is multiplied by q−1,
otherwise it is killed.

Near the top of the concrete cylinder there will be little attenuation so there
we take q = 1. At the bottom we expect the attenuation factor to be at least 0.001,
so we take q = .01 there. In between, we geometrically space them resulting in
the q probabilities in the concrete cylinder: 0.01, 0.013, 0.017, 0.023, 0.030,
0.039, 0.051, 0.067, 0.087, 0.11, 0.15, 0.20, 0.26, 0.34, 0.44, 0.58, 0.76, 1.0.
Note from Table [10.3] that this second roulette game increases the particles per
hour to 562 564 and the fom improves to 26.

10.14 Forced collisions

To estimate the flux at a point (the F5 tally), at each collision a tally of

F5 = p(�)

R2
e− ∫ R

0 σ(η)dη (10.25)

is made where R and � are the distance and direction from the collision site to
the detector point. To make any F5 estimate, a collision must occur in the tiny
low density concrete cell at the top of Figure 10.1. To increase the number of
collisions in this cell, the particle is split into an uncollided weight fraction e−σL

(that goes the full distance L through the cell) and a collided weight fraction
1 − e−σL. The collision point is sampled from the conditional density (given that
a collision is known to occur in 0 <η <L)

pc(s)ds = σe−σηdη

1 − e−σL
. (10.26)

This ensures that every particle track that enters makes a contribution to the F5
tally. The result is given in Table 10.4. The reference F5 tally without forced
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Table 10.4 Final results applying forced collisions to improve tally F5
(60-minute run )

Histories Tally
type

Mean Fractional
error

Variance of
the variance

Tail
slope

Figure
of merit

562564 ref F5 4.3727 ×10−18 0.0330 0.0087 4.3 15

526600 tally F1 4.3196 ×10−8 0.0263 0.0028 10.0 24
tally F4 7.5105 ×10−15 0.0259 0.0027 10.0 25
tally F5 4.4836 ×10−18 0.0259 0.0027 10.0 25

collision (first line) is from the run reported on the last line of Table 10.3. The fom
improved from 15 to 25. This concludes the illustration of rare event simulation
on a sample problem.

10.15 The comb

MCNP does not use the comb technique, so the comb has not been demonstrated
on the sample problem just concluded. Nonetheless, the comb is an old transport
method and has some interesting aspects. The comb [16] inputs K tracks (of
the same history) of varying weights wi > 0 with sum W = w1 + . . . + wK and
outputs M tracks of constant weight L = W/M .

Suppose that one has K particles and one decides that one would rather follow
M particles. The K particles are ‘combed’ into M particles using an M-toothed
comb. Figure 10.2 shows a comb with K = 6 and M = 4. The length of the
comb is the sum of the particle weights

W =
K∑

i=1

wi. (10.27)

The comb teeth are equally spaced, with the position of the teeth randomly
(ξ is a uniform random number on (0,1)) selected as

tm = ξ
W

M
+ (m − 1)

W

M
, m = 1, . . . , M. (10.28)

Each time a tooth hits interval i, the ith particle is duplicated and assigned a
postcombed weight

w′
i = W

M
. (10.29)

Defining the integer j by

j <
wi

W/M
≤ j + 1, (10.30)
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make 1 copy of particle 1 with weight W/M

W = w1+w2+w3+w4+w5+w6

make 0 copies of particle 2

make 0 copies of particle 4

make 0 copies of particle 6

make 2 copies of particle 3 with weight W/M

make 1 copy of particle 5 with weight W/M

w1 w2 w3 w5 w6
w4

Figure 10.2 Simple comb.

one sees that either j or j + 1 teeth of a comb with a pitch of W/M will hit an
interval of length wi . In particular,

pi,j = j + 1 − wi

W/M
(10.31)

is the probability of j teeth in interval i, and

pi,j+1 = wi

W/M
− j (10.32)

is the probability of j + 1 teeth in interval i.
Let Ci be the total weight from the ith particle after combing. Then, using

Eqs. 10.31 and 10.32, the expected weight after combing is

E[Ci] = pi,j j
W

M
+ pi,j+1(j + 1)

W

M
= wi

W/M

W

M
= wi. (10.33)

Note that this combing exactly preserves the total weight because the output of
the combing is always M particles of weight W/M .

One interesting aspect of combing is that the random walk of track i now
depends on track j , whereas almost all Monte Carlo theory discussions assume
that what happens to track i depends solely on track i’s current phase-space
position.
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The comb is often employed to control populations of particles. For nuclear
criticality problems, one often wants to set the number of particles in each fission
generation to M . The comb provides a way to take the K particles at the end of a
fission generation and produce M equally weighted particles whose total weight
is the same as the precombed weight.

For rare event simulations, an importance weighted comb allows one to pro-
duce a set of particles where every particle in the set has equal expected tally.
This is typically a much more computationally efficient distribution of weights
for similar reasons as the weight window. Unlike weight windows, the comb
has the additional advantage that the number of particles in the history can be
constrained to any desired number.

10.16 Comments on using the importance function

Recall from Section 10.10 that the weight window at point P is typically chosen
to be inversely proportional to the importance function at P, which is the first
moment of the score distribution for a particle at P. This is interesting because
one is attempting to minimize the second moment indirectly using information
about the first moment.

Biasing using importance function information often works well if there is a
relatively small spread in history scores. That is, each history contributes roughly
the mean score. In this case, both the bulk of the mean and the bulk of the variance
are produced by the same particles. That is, focusing on particles that contribute
most to the second moment is similar to focusing on particles that contribute
most to the mean. Indeed, in the limiting case of a zero variance solution all
particles contribute exactly the mean score and there is no reason to consider the
second moment at all.

The other side of the coin is that the available variance reduction techniques
may not allow one to arrange the sampling so that there is a relatively small
spread in history scores. In these cases, the set of particles contributing most of
the variance may be very different from the set of particles contributing most
of the mean. For instance, the set of typical particles that contribute 99% of the
mean might only contribute 1% of the variance. In this case, focusing efforts on
typical particles that score will not work very well because the typical particles
are very different from the particles contributing most to the variance. One would
do better to base the variance reduction on the second-moment equation rather
than the importance (first-moment) equation.

It is sometimes useful to derive a second-moment equation (see [22, Ch.
5]) that is a function of some variance reduction games and their associated
parameters. At this point, it is almost universal practice to consider only
transport processes that are independent of particle weight. That is, suppose
that p(P, w, s)ds is the probability that a particle of weight w at phase-space
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location P would contribute a score in ds about s in its subsequent random
walk. One can write an equation for p(P, w, s)ds that depends on the variance
reduction techniques used, but generically looks like

p(P, w, s)ds =
∫

K(P → P′)p
(
P′, w′, s − S(P → P′, w′)

)
ds dP′. (10.34)

That is, the probability that a particle at P scores s in ds in its subsequent random
walk is the probability (K(P → P′)dP′) that the walk next goes to P′, scoring
S(P → P′, w′) times the probability, p

(
P′, w′, s − S(P → P′, w′)

)
ds, that the

particle subsequently scores s − S(P → P′, w′) in ds so that the total score from
P is S(P → P′, w′) + (s − S(P → P′, w′) = s. The rth-moment equation is then
derived by integration of this probability function times sr ,

Mr(P, w) =
∫

srp(P, w, s)ds

=
∫

K(P → P′)
∫

srp
(
P′, w′, s − S(P → P′, w′)

)
ds dP′. (10.35)

One can also derive an equation for the mean computing time as a function
of the variance reduction games and their associated parameters. When this is
done, one can maximize the fom directly by using a calculation with one set
of variance reduction parameters to infer the behavior of the fom with different
choices for those parameters. The paper by Burn [14], and many of the the
references therein, maximize the fom by the ‘direct statistical approach’ (DSA
method). The DSA method has been compared to the importance-based weight
window method [9]. Both methods work well when there are no large changes in
importance on a single transport step. When there is a large change in importance,
importance-based splitting methods tend to oversplit because they do not factor
in the time required to follow the extra split particles, as the DSA method does.

10.17 When to stop variance reduction efforts

There are a dozen or so commonly used variance reduction techniques in MCNP
that can be used by themselves or in combination with other techniques. There
are typically hundreds or thousands of parameters required to use some of these
techniques (e.g., weight windows). Blindly changing parameters is almost never
effective. Instead, code users are advised to get an ‘event log’ for the several
largest scoring histories. The event log lists everything that happened in a history.
If a history has made a particularly large score, then an event log can be used
to identify the part of the random walk that is being poorly sampled. Once the
user understands the poor sampling, the user can then make an informed guess at
how to change the sampling via the variance reduction techniques. When none
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of the code’s variance reduction techniques can impact the cause of the specific
poor sampling, it is time to quit tinkering with variance reduction techniques and
simply run the problem long enough.

10.18 The future

There are at least three areas, in various stages of development, that look promis-
ing for the future.

1. Deterministic transport methods can be used to determine variance reduc-
tion parameters for Monte Carlo transport codes [32, 30]. Currently people
are using deterministic codes to solve for the importance function which
is then used in the Monte Carlo calculation. In the future, determinis-
tic codes presumably could also be used to solve second-moment and
time equations, avoiding some of the pitfalls associated with optimizations
based on the importance function alone (see Section [10.16]).

2. Adaptive Monte Carlo methods can accelerate the convergence rate instead
of simply the reducing the coefficient C in the standard C/

√
N conver-

gence. These methods are being studied both inside and outside the field
of transport (see [20, 10, 29] for an inexhaustive list). There has been
limited success in the field of transport, but efforts continue.

3. The variance in Monte Carlo particle transport calculations is often domi-
nated by a few particles whose importance increases manyfold on a single
transport step. The ‘ex post facto’ method [7] is a novel variance reduc-
tion method that uses a large importance change as a trigger to resample
the offending transport step. That is, the method is employed only after
a random walk attempts a transport step that would otherwise introduce
a large variance in the calculation. This method has been successfully
tested in some difficult transport problems. The method is not limited
to transport and appears generally applicable across many Monte Carlo
fields.

10.19 Appendix: MCNP’s ten statistical checks

MCNP records information on the mean, relative error, variance of the variance,
figure of merit, and the tail slope behavior of the empirical score distribution to
assist the user in evaluating the Monte Carlo results.

Statistical check for the mean:

• a non-monotonic behavior (no up or down trend) in the estimated mean as
a function of the number histories N for the last half of the problem.
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Statistical checks for the relative error (R) (i.e., standard deviation divided by
the mean):

• an acceptable magnitude of the estimated R of the estimated mean (less
than 0.05 for a point detector tally or less than 0.10 for a non-point detector
tally);

• a monotonically decreasing R as a function of the number histories N for
the last half of the problem;

• a 1/
√

N decrease in the R as a function of N for the last half of the
problem.

Statistical checks for the variance of the variance (VOV):

• the magnitude of the estimated VOV should be less than 0.10 for all types
of tallies;

• a monotonically decreasing VOV as a function of N for the last half of
the problem;

• a 1/N decrease in the VOV as a function of N for the last half of the
problem.

Statistical checks for the figure of merit (fom):

• a statistically constant value of the fom as a function of N for the last half
of the problem;

• a non-monotonic behavior in the fom as a function of N for the last half
of the problem.

Statistical check for the large score tail slope of the empirical score distribu-
tion (f (x)):

• the slope of the 25 to 201 largest positive history scores x should be greater
than 3.0 so that the second moment

∫ ∞
−∞ x2f (x)dx will exist if the slope

is extrapolated to infinity.

The seven N -dependent checks are for the last half of the problem. For
example, one expects a roughly monotonic decrease in the relative error after
‘enough’ samples have been run. MCNP looks at the sample information from
the last half of the samples (N/2 to N ) and if the last half of the problem seems
to have the correct dependence, then N is deemed large enough.
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Rare event simulation
methodologies in systems
biology

Werner Sandmann

Compared to many other domains within which efficient Monte Carlo techniques
for dealing with rare events are well established and have been successfully
applied and advanced for decades, rare event simulation in systems biology is in
its infancy. One major reason surely is that systems biology itself is still fairly
young. Particularly relevant rare events in systems biology originate from the
fact that different molecular reactions within the same biological or genetic net-
work usually occur on multiple time scales, which means that their rates differ by
orders of magnitude. Reactions with extremely small rates are rare events. This
yields the problem of stiffness which poses serious difficulties in solving systems
of differential equations as well as in performing efficient stochastic simulations.
We give a prospective survey of approaches coping with the simulation of stiff
Markovian models arising in systems biology. It becomes apparent that further
investigation of rare event simulation in systems biology offers great poten-
tial for improvements, for instance by adapting techniques from other domains
and possibly combining them with those that are already in use for biological
systems.
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11.1 Introduction

Systems biology is a rapidly emerging field that investigates intra- and inter-
cellular dynamics from a system-oriented point of view. As such, it is highly
interdisciplinary and combines theoretical, experimental and computational tech-
niques from mathematics, computer science, and engineering with those from
physics, chemistry, molecular and cell biology. Biological systems, in the same
way as artificial or technical ones, consist of mutually related components that
interact with each other and the system environment. They are formidably com-
plex, and developing computationally tractable models is desirable and necessary
in order to gain insights and predict their behavior. The reader is referred to [3,
41, 42] for expositions of general concepts and methods in systems biology,
and more specifically to [11, 74] for a focus on computational modeling and
system-theoretical aspects.

The basic building blocks at the molecular level of biological systems are
coupled biochemical reactions between different molecular species. The fun-
damental rules are given by stoichiometric equations defining which molecular
species may react in order to result in a certain product and how many molecules
are involved in the reaction. Quantitative timing aspects are specified by reaction
rates assigned to each reaction. Sets of such molecular reactions constitute bio-
logical and genetic networks, also referred to as pathways, which are enormously
complex as the set of reactions is huge.

Different (but related) modeling paradigms reflect different viewpoints or
focuses. As usual, models are distinguished in terms of their states as well as by
the rules driving the possible state changes and governing the system dynamics.
They may be state-continuous or state-discrete, continuous or discrete in time,
deterministic or stochastic. For a long time the most common, somehow canon-
ical approach was deterministic, where the system state at any time is given by
the concentrations (measured in moles per liter) of each molecular species. By
the law of mass action, expressing the system dynamics in terms of the chemi-
cal rate equations yields a system of ordinary differential equations (ODEs) for
the concentrations of molecular species. However, this properly reflects neither
the discreteness of molecular quantities nor the stochastic nature of chemical
reactions. The evidence of inherent randomness has been reported and pointed
out in many studies, and stochastic models are today well established in system
biology; see [6, 9, 32, 46, 47, 75, 79] to mention but a few particularly notable
publications dealing specifically with stochastic models.

The most widespread stochastic modeling approach to biochemically reacting
systems that we adopt in this chapter is by continuous-time Markov chains
(CTMCs), whose dynamics are described in terms of the chemical master
equation. As in other domains, the largeness of the models makes stochastic
simulation a particular prominent analysis technique. Accelerating simulations is
motivated by the fact that stochastic simulations in general are computationally
costly, meaning that the advantage of being able to deal with large models has
to be offset by the significant amount of computer time required. Rare events
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come into play since almost all biological systems possess stiffness. Hence, a
major rare event simulation issue is accelerated simulation of stiff models.

11.2 Markovian modeling of biological systems

Markovian modeling of chemically reacting systems has a long tradition that
can be traced back to the study of autocatalytic reactions in the 1940s [29]. In
the 1950s, Singer [72] considered chain reactions and some types of coupled
reactions, and Bartholomay [7] provided a large body of theory resulting in a
series of papers on topics covering sequences of unimolecular and bimolecular
reactions, reaction rate constants, and several applications. While using a dif-
ferent terminology, these early works already implicitly included the chemical
master equation which is well known today and is equivalent to the Kolmogorov
differential equations. Detailed reviews of the early literature with many more ref-
erences can be found in [8, 49, 77]. It was also recognized quite early that in the
thermodynamic limit, when the number of molecules and the volume approach
infinity but the concentrations remain finite, the Markovian and the deterministic
paradigm are equivalent [43, 51]. A physical justification of stochastic modeling
of coupled chemical reactions by CTMCs was provided in the 1970s by Gille-
spie [34, 35] and later rigorously derived in [36] yielding that it is evidently in
accordance with the theory of thermodynamics.

The basic assumption in stochastic modeling of biochemically reacting sys-
tems via CTMCs as well as in deterministic modeling by systems of ODEs is that
the system is well stirred and thermally equilibrated, meaning that a well-stirred
mixture of molecules inside some fixed volume will interact at constant temper-
ature. To put it another way, the system is spatially homogeneous such that the
numbers or concentrations of molecules do not depend on positions in space.

11.2.1 Model notation and terminology

We consider d ∈ N
+ molecular species S1, . . . , Sd and M ∈ N

+ possible reac-
tions R1, . . . , RM , also referred to as reaction channels. Each reaction Rm is
basically defined by a corresponding stoichiometric equation,

sm1Sm1 + · · · + smr Smr −→ smr+1Smr+1 + · · · + sm�
Sm�

, r, � ∈ N, r ≤ �,

(11.1)

where Sm1 , . . . , Smr are reactants, Smr+1 , . . . , Sm�
are products , and the num-

bers sm1 , . . . , sm�
∈ N are stoichiometric coefficients . Such an equation simply

expresses that the arrow’s left-hand side can be transformed to its right-hand
side if the required number of reactant molecules collide. The overall number of
reactant molecules, sm1 + · · · + smr , is called the order1 of the reaction. Although
equation (11.1) formally allows an arbitrary number of molecules, it is usually

1 We consider discrete states described by the number of molecules of all species. If concentrations
are considered, the order of a reaction is the sum of concentration exponents in the rate law for the
reaction, and non-integer orders are possible.
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not realistic to consider higher than third-order reactions as this would require a
collision of more than three molecules. Even third-order reactions are often more
realistically modeled as a pair of second-order reactions. Note that zero-order
reactions do make sense. They are useful to model, for instance, synthesis without
a stimulus, or any influence from ‘outside’ the system.

Modeling requires an appropriate specification of system states and system
dynamics. In the CTMC approach, for each molecular species Sk at any time t ≥ 0
a discrete random variable Xk(t) describes the number of molecules of species
Sk present at time t . The system state at time t is the discrete d-dimensional
random vector X(t) = (X1(t), . . . , Xd(t)), and the set X ⊆ N

d of all possi-
ble system states constitutes the system’s state space. The conditional transient
(time-dependent) probability that the system is in state x ∈ X at time t , given
that the system starts in an initial state x0 ∈ X at time t0, is denoted by

p(t)(x) := p(t)(x | x0, t0) = P(X(t) = x | X(t0) = x0). (11.2)

The system changes its state due to one of the possible reactions. For each
reaction Rm the reaction rate is given by a state-dependent function αm, called
the propensity function of Rm where αm(x)dt is the conditional probability that
a reaction of type Rm occurs in the infinitesimal time interval [t, t + dt), given
that the system is in state x at time t . That is,

αm(x)dt = P (Rm occurs in [t, t + dt) | X(t) = x) . (11.3)

Each reaction Rm has an assigned stochastic reaction rate constant2 cm such
that the propensity function is simply given by cm times the number of possible
combinations of the required reactants and thus computes as

αm(x) = cm ·
mr∏
j=1

(
xmj

smj

)
, (11.4)

where xmj
denotes the number of molecules of species Smj

present in state x, and
smj

is the stoichiometric coefficient of Smj
according to the relevant reaction’s

stoichiometric equation (11.1).
The probability that a reaction occurs within a specific time interval only

depends on the length of this interval. Thus, the propensity functions are
time-independent. Besides, given a current system state, the next state in the
system’s time evolution only depends on this current system state and neither
on the specific time nor on the history of reactions that led to the current state.
Hence, the system is in fact modeled as a (time-homogeneous, conservative)
CTMC (X(t))t≥0 with d-dimensional state space X ⊆ N

d .

The terminology and notation as introduced here and commonly used in
biology as well as in chemistry and physics are quite different from those in

2 Note that the CTMC modeling approach and the deterministic ODE approach are closely related,
not only in the thermodynamic limit. The stochastic reaction rate constant can be easily converted
to/from the rate constant provided by the law of mass actions. Only the system’s volume and the
Avogadro number must be appropriately taken into account; see [34, 80] for details.
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mathematics, computer science, and engineering. In particular, they constitute a
purely functional specification as opposed to an algebraic matrix specification.
Consequently, expressions governing the system dynamics usually adhere to one
of these specifications and at a first glance may appear to be rather different but
of course they are equivalent. More specifically, the chemical master equation is
one way to write the Kolmogorov differential equations.

11.2.2 Chemical master equation and Kolmogorov
differential equations

For each reaction Rm denote by vm = (vm1, . . . , vmd) the state change vector
where vmk is the change of molecules of species Sk due to a reaction of type Rm.
Then, given that the system starts in an initial state x0 ∈ X at time t0, the system
dynamics in terms of the state probabilities’ time derivatives are described by
the chemical master equation

∂p(t)(x)

∂t
=

M∑
m=1

(
αm(x − vm)p(t)(x − vm) − αm(x)p(t)(x)

)
. (11.5)

In order to recognize the equivalence of the functional specification and a matrix
specification note that the multidimensional discrete state space can be mapped to
the set N of non-negative integers such that each state x ∈ X is uniquely assigned
to an integer i ∈ {1, . . . , |X |}. The probability that a transition from state i ∈ N to
state j ∈ N occurs within a time interval of length h ≥ 0 is denoted by pij (h), and
correspondingly P(h) = (pij (h))i,j∈N is a stochastic matrix, where P(0) equals
the unit matrix I, since no state transitions occur within a time interval of length
zero. It is well known (cf. [12, 77]) that a CTMC is uniquely defined by an initial
probability distribution and a transition rate matrix, also referred to as infinites-
imal generator matrix, Q = (qij )i,j∈N, consisting of transition rates qij where
Q is the derivative at 0 of the matrix function h �→ P(h). The relation of each
P(h) to Q is given by P(h) = exp(hQ). In that way Q generates the transition
probability matrices by a matrix exponential function which is basically defined
as an infinite power series. Hence, all information on transition probabilities is
covered by the single matrix Q. In terms of P and Q the Kolmogorov forward
differential equations , the Kolmogorov backward differential equations , and the
Kolmogorov global differential equations can respectively be expressed as

∂

∂t
P(t) = P(t)Q,

∂

∂t
P(t) = QP(t),

∂

∂t
p(t) = p(t)Q, (11.6)

where p(t) denotes the vector of the transient state probabilities corresponding to
(11.2). Explicitly writing the Kolmogorov global differential equations in terms
of the coefficients and some algebra yields

∂p
(t)
i

∂t
=

∑
j :j �=i

p
(t)
j qji −

∑
j :j �=i

p
(t)
i qij =

∑
j :j �=i

(
p

(t)
j qji − p

(t)
i qij

)
. (11.7)
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The equivalence of the chemical master equation and Kolmogorov differential
equations can now be easily seen by interpreting i ∈ N as the number assigned
to state x ∈ X , that is, p

(t)
i = p(t)(x), qij = αm(x) if j is the number assigned to

state x + vm, and qji = αm(x − vm) if j is the number assigned to state x − vm.

11.2.3 Model structure and rare event issues

Although we are concerned with Markovian models, the specific structure of
biological systems as well as the practically relevant topics largely disable direct
one-to-one mappings from other domains to systems biology. Markovian models
of biological and genetic networks are almost always potentially infinite–in either
case the state space is multidimensional and extremely huge. They are typically
not ergodic and contain absorbing states or absorbing classes since some molec-
ular species might get exhausted, which often implies that no more reactions are
possible at all or only reactions that do not lead out of a certain set of states.
Absorption times can be important such as the time to apoptosis (cell death) or
the time to viral infection. Stationary distributions are less relevant than in many
other domains. They are relevant, for example, in the case of multiple absorbing
classes, meta- or bistable systems such as bistable genetic switches, but transient
phenomena are often of primary interest.

In general, transient analysis tends to be much more difficult than steady-state
(limiting to infinite time) analysis. Moreover, in biological and genetic net-
work models, except for zero-order reactions, we are always concerned with
state-dependent rates given by the propensity functions. This is a significant
difference from, for example, the vast majority of queuing models where con-
stant arrival and service rates are rather usual. Inherent to biochemically reacting
systems are multiple time scales. There are fast and slow reactions with rates
differing by many orders of magnitude such that the system is stiff, which makes
numerical analysis cumbersome both in the domain of ODEs and in the domain
of CTMCs.

Stiffness also causes serious problems in stochastic simulation. Consequently,
efficient simulation of stiff Markovian models is a major challenge in stochastic
modeling and analysis of biological systems. Obviously, reactions with very small
rates are rare events. Within the particular framework of huge and stiff Markovian
models, some transition rates might be unknown. In practice, models are built
according to real-world observations which in the context of biological systems
often correspond to experiences and conclusions drawn from lab experiments. If
the rates of specific reactions are unknown but empirical data is available, rare
event simulation can be suitable for estimating small reaction rates. Therefore,
estimating unknown rare event probabilities or rates is one topic of potentially
high relevance. Even if the actual goal of the study is not the determination of
the reaction rates, these rates are required for an appropriate model. Then rare
event simulation becomes part of model building.

Almost all stochastic simulation techniques that have been applied in systems
biology originate from chemical physics, which is quite natural against the
background of molecular reactions driving biological and genetic networks. At
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present, stochastic simulation approaches to estimating unknown reaction rates
or rates of reactive pathways between metastable regions almost exclusively
appear in chemical physics. However, since the models are similar these
methods are applicable in systems biology. Many of the algorithms in use are
variations around importance sampling or closely related ideas; see [16, 28,
31]. For advanced, well-worked-out approaches we refer the interested reader
in particular to transition path sampling [10, 30] and forward flux sampling
[1, 2, 50, 76]. Presumably, sooner or later they will become more widespread
and make their way into systems biology just like methods for simulating stiff
models with known reaction rates.

Our major focus is on efficient simulation techniques for stiff models with all
rates known. Rather than aiming to estimate unknown reaction rates or unknown
probabilities of certain trajectories or sets of states, we consider accelerated
simulation in the presence of rare events with known probabilities or rates, respec-
tively. Some such techniques are established in systems biology and have been
more or less extensively applied. After giving some background on stochastic
simulation of biological systems in Section 11.3, we discuss in Section 11.4 the
applicability of importance sampling. Section 11.5 outlines partitioning-based
techniques as one important class of approximation approaches that are well
suited for model reduction as well as for hybrid analysis. Section 11.6 provides a
quite comprehensive description of adaptive tau-leaping, an approximate ‘multi-
step method’ that currently appears to be the most mature approach to accelerated
simulation of stiff biochemically reacting systems.

11.3 Stochastic simulation: Background
in systems biology

Stochastic simulation of biological systems is usually referred to as the Gillespie
algorithm in the literature. It was Gillespie [34, 35] who, in addition to justifying
Markovian models and the chemical master equation, also proposed the use of
stochastic simulation for analyzing coupled chemical reactions. He formulated
crude generation of CTMC trajectories in this framework. When the CTMC is
in some state, it resides there for an exponentially distributed sojourn time the
mean of which is given by the reciprocal of the sum of all outgoing transition
rates. When a state transition occurs, the probability that the CTMC enters a
particular state (the transition probability) is given by the transition rate to that
state divided by the aforementioned sum of all outgoing transition rates. Hence,
in the notation introduced in Section,

Init t := t0, x := x0 and tend

while t < tend

1. Compute all αm(x) and α0(x) := α1(x) + · · · + α
M

(x);
2. Generate two random numbers u1, u2, uniformly distributed on (0, 1);
3. Generate time τ to next reaction: τ = − ln(u1)/α0(x);
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4. Determine reaction type Rm: m=min {k : α1(x) + · · · + αk(x) > u2α0(x)};
5. Set t := t + τ ; x := x + vm;

Gillespie [34] referred to this method of trajectory generation as the ‘direct
method’ and also discussed an equivalent method that he called the ‘first reac-
tion method’ which is an equivalent interpretation of the CTMC dynamics often
referred to as a race, for example in computer performance evaluation, particu-
larly common in the context of stochastic Petri nets. Given any state, the tentative
times until entering a particular state are all exponentially distributed with mean
the reciprocal of the according transition rate. Hence, the next state will be entered
according to the ‘fastest’ transition. Since the minimum of exponential distribu-
tions is again exponentially distributed with mean the reciprocal of the sum of
the parameters (rates) of the exponential distributions involved, the equivalence
to the former interpretation easily follows.

The pseudo-code above does not provide implementation details but expresses
the properties to be computed mathematically. Basic skills and fundamental
knowledge of data structures and algorithms immediately imply a binary search
in Step 4. Astonishingly, for quite a long time much of the work and publications
on stochastic simulation for biochemically reacting systems was concerned with
‘improvements’ by reducing the computation costs of determining the reaction
type in the direct method, until finally the binary search version was formulated.
Several mathematically equivalent implementations of the direct method all bear
their own name; see [20, 45, 48]. For obvious reasons, we avoid the details here.

Applying the ‘race version’ of the CTMC dynamics, Gibson and Bruck
[33] presented the ‘next reaction method’, now commonly referred to as the
Gibson–Bruck algorithm. Their ‘improvement’ is simply a better implementa-
tion than a naive one of the direct method. Roughly speaking, only properties that
change are recalculated (others are reused) after a reaction is simulated, and some
standard advanced data structures that can be found in, for example, [24] are used.
The algorithm was celebrated as more efficient than the direct method, but a sim-
ple count of the number of necessary operations leads to the conclusion that this
cannot be true. Not surprisingly, [20] showed that a proper implementation of the
direct method is indeed more efficient, though this seems hitherto to have gone
largely unrecognized. The Gibson–Bruck algorithm is still often considered the
best available method for statistically exact trajectory generation and it is there-
fore in widespread use in Monte Carlo studies of biological and genetic networks.

In contrast to the efforts expended on implementations of trajectory genera-
tion, hardly any investigation of statistical accuracy or robustness of estimators
is available. A notable exception is [22] where distance measures for probability
distributions are considered.

11.4 Can we apply importance sampling?

Given the methodological background provided in previous chapters of this book,
the most obvious approach is to apply importance sampling. Indeed, as we are
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concerned with CTMCs, importance sampling can be appropriately formulated
for biological networks [63, 64].

For CTMCs the relevant probability measures are path distributions, and
absolute continuity corresponds to the condition that all paths that are possible
under the original measure must remain possible under the importance sampling
measure. This can be obviously achieved by the condition that for all positive
rates in the original model the corresponding rates under importance sampling
are positive. Since we are dealing with CTMCs given in terms of biochemical
notation as described in Section 11.2.1, we need an appropriate framework for
the application of importance sampling to that type of model specification. In
particular, we need to express the distribution or density, respectively, of reaction
paths.

Let t1 < t2 < . . . denote the successive time instants at which reactions occur
and Rmi

, mi ∈ {1, . . . ,M} the reaction type that occurs at time ti . Define τi :=
ti+1 − ti to be the time between the ith and the (i + 1)th reactions. Hence, state
x(ti ) is reached due to the ith reaction Rmi

at time ti and remains unchanged
for a sojourn time of τi , after which the (i + 1)th reaction Rmi+1 occurs at time
ti+1 and changes the state to x(ti+1). Thus, the time evolution of the system is
completely described by the sequence of states and corresponding sojourn times,
and in compact form (x(t0), τ0), (x(t1), τ1), (x(t2), τ2), . . . describes a trajectory.
For a trajectory up to the Rth reaction, considering the Markovian property which
in turn implies exponentially distributed sojourn times, the reaction path density
is given by

dP ((x(t0), τ0), . . . , (x(tR), τR))

= p(t0)(x0) ·
R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1) , (11.8)

where α0(x(ti−1)) := α1(x(ti−1)) + · · · + αM(x(ti−1)). Note that for a given time
horizon over which the system is observed (and should be simulated) the number
R of reactions is not known in advance and not deterministic. Formally, it is a
random stopping time, which is in accordance with the requirement of dP being
a density of a probability measure P defined on the path space of the Markov
process.

With importance simulation, the underlying probability measure determined
by the propensity functions is changed. Since the only requirement is absolute
continuity of the probability measures involved, there is great freedom of choice
in changing the measure. It is only necessary that all reaction paths that are
possible (have positive probability) under the original measure remain possible.
Each probability measure on the path space that meets the aforementioned con-
dition can be considered–even non-Markovian models are allowed as long as
they assign positive probabilities to all possible reaction paths.

Nevertheless, we should avoid a large increase in trajectory generation efforts
compared to the original measure. Thus, obviously the most natural (and valid)
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change of measure is to remain in the Markovian world. The easiest way is
to change the original propensity functions to ‘importance sampling propensity
functions’ α∗

m such that for all m ∈ {1, . . . , M} we have α∗
m(x) = 0 ⇒ αm(x) =

0, x ∈ X , or equivalently, starting with the original propensity functions,
αm(x) > 0 ⇒ α∗

m(x) > 0, x ∈ X . One then generates trajectories according to
the changed propensity functions and multiplies the results with the likelihood
ratio to get unbiased estimates for the original system. The trajectory generation
is thus carried out as before, for instance by applying the direct method, where
now the changed propensity functions are used, yielding a sequence of states with
associated sojourn times and reaction path density as in (11.8). Thus, denoting
by p∗(t0) the initial distribution for the states, the likelihood ratio becomes

L(ω) = p(t0)(x0)

p∗(t0)(x0)
·

R∏
i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1)

α∗
mi−1

(x(ti−1)) exp
(
α∗

0(x(ti−1))τi−1
) (11.9)

which can be efficiently computed during trajectory generation without much
extra computational effort by successively updating its value after each simulated
reaction according to the running product. In particular, the unbiased number of
molecules can be obtained at any time.

Although arising naturally, the change of measure as described above may
be too restrictive. In cases where more flexibility is needed, it is possible to
use a different change of measure in each simulation step, or propensity func-
tions that depend on the number of reactions that have already occurred (corre-
sponding to a non-homogeneous model) or the history of the simulation steps
just executed. Formally, define functions β

(r)
m (x(t0), . . . , x(tr )), where, for all

m ∈ {1, . . . ,M}, αm(x(tr )) > 0 ⇒ β
(r)
m (x(t0), . . . , x(tr )) > 0. Then the reaction

path density under importance sampling is

dP ((x(t0), τ0), . . . , (x(tR), τR))

= p(t0)(x0) ·
R∏

i=1

β(i−1)
mi−1

(x(t0), . . . , x(ti−1)) exp(β0(x(t0), . . . , x(ti−1))τi−1)

(11.10)

and the corresponding likelihood ratio (leaving the initial distribution unchanged)
becomes

L(ω) =
R∏

i=1

αmi−1 (x(ti−1)) exp (α0(x(ti−1))τi−1)

β
(i−1)
mi−1 (x(t0), . . . , x(ti−1)) exp(β0(x(t0), . . . , x(ti−1))τi−1)

. (11.11)

However, the latter form of the change of measure is more involved than the
straightforward one.

In any case, importance sampling requires a target event such that the change
of measure can be constructed with regard to the target event. This applies to
situations where the interest is in the probability of a specific set of states, in
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the probability of reaching a rare set before returning to the (non-rare) origin, or
in times until absorption in a rare set. One then often speaks of an attractor set
and a rare set and the aim of importance sampling is to induce a drift towards
the target event. Many examples can be found in previous chapters of this book.
Obviously, if we are interested in transient or stationary probability distributions
or in the moments of the numbers of molecules, there is no specific target event.
The rare events are rare reactions, and there are many of them. As mentioned in
Section 11.2.3, the rare event simulation problems in biological network models
often occur because of stiffness rather than the rarity of certain states. Hence, it is
not clear how to do importance sampling. At first glance, it might be reasonable
to apply failure biasing techniques that are successful for highly reliable systems,
but though the models for highly reliable systems are usually stiff, the property
of interest then is the rate or probability of rare system failures, which constitute
target events for importance sampling. It is currently an open question how far
proper adaptations might be applied to accelerate the simulation of stiff models
such that robust estimation becomes possible for whole distributions rather than
specific target events. Finally, another well-known problem with importance sam-
pling is that it is usually not suitable for transient analysis over large horizons.
If the length of trajectories grows, then the likelihood ratio vanishes and impor-
tance sampling increases the variance of the estimators. While for steady-state
simulations this problem can be often successfully circumvented by regenerative
simulation, there is no satisfactory solution for transient analysis over a large
time horizon.

On the positive side, there are other useful applications of likelihood ratios.
Recently, they have been used to compare system behaviors by simultaneous sim-
ulation of multiple parameter settings [64]. Given that rate constants are often
experimentally obtained and thus naturally perturbed, such comparisons are useful
to demonstrate the sensitivity of the system dynamics to (small) parameter per-
turbations. Similarly, it is reasonable to estimate sensitivities by likelihood ratio
gradient estimation techniques. Further speed-up can be provided by combination
with uniformization [65, 66].

11.5 Partitioning-based techniques

One important class of techniques for large and stiff models is based on partition-
ing. In order to reduce its size and computational complexity, the overall system
model is partitioned into computationally tractable, non-stiff submodels which
are analyzed separately. The key is to define a reasonable partitioning such that
appropriately combining the results for submodels yields good approximations
for the overall model. Applied to biological systems driven by coupled molecular
reactions, usually either molecular species or reactions are classified as ‘fast’ or
‘slow’ and the model is partitioned accordingly.

The underlying rationale in the context of chemical kinetics is based on
assuming a partial equilibrium or quasi-steady state, which are well-known
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notions in deterministic reaction kinetics; see [55, 56, 61, 68–70]. Partial equi-
librium means the systems exhibits fast reactions that are always in equilibrium,
which gives rise to partition into fast and slow reactions. Quasi-steady state
applies similarly to molecular species. For many stiff systems both notions are
equivalent. In stochastic models, equilibrium and steady state are different in that
they refer to transition probabilities or rates and to time-invariance properties
of probability distributions. Stochastic interpretations of deterministic partial
equilibrium and quasi-steady state are similar to the prominent concepts of
quasi-stationary distributions, lumpability, and nearly completely decomposable
systems, which have been investigated at great length in applied probability
and exploited to develop algorithms based on decomposition, aggregation, and
disaggregation. Comprehensive treatments of the theoretical foundations as well
as particularly relevant applications to the numerical solution of CTMCs can
be found in [5, 13, 25–27, 44, 53, 71, 73] and the references therein. However,
these concepts and methods are not (yet) prevalent in systems biology or
chemical kinetics. Instead, only quite recently, some pioneering work within the
context of chemically reacting systems has been done in that modified chemical
master equations and corresponding analysis algorithms were derived. More
specifically, the notion of deterministic partial equilibrium has been adapted in
[40] and the notion of deterministic quasi-steady state in [57].

Assume that the molecular species can be classified into fast and slow, and
renumber the d species such that S1, . . . , Ss are slow and Ss+1, . . . , Sd are fast.
Then the system state at any time t is X(t) = (Y (t), Z(t)) where Y (t) and Z(t)

are the state vectors for the slow and the fast species, respectively. Denote the
state change vector by vm = (v

y
m, vz

m) accordingly. Now, the chemical master
equation (11.5) reads

∂p(t)(y, z)

∂t
=

M∑
m=0

(αm(y − vy
m, z − vz

m)p(t)(y − vy
m, z − vz

m)−αm(y, z)p(t)(y, z)).

(11.12)

Assuming that Z conditional on Y is Markovian and adapting the quasi-steady
steady assumption to the Markovian model yields

∂p(t)(z | y)

∂t
=

M∑
m=0

(αm(y − vy
m, z − vz

m)p(t)(z − vz
m | y)

− αm(y, z)p(t)(z | y)) = 0, (11.13)

which implies that the distribution of (Z | Y )(t) is time-invariant, and one gets

∂p(t)(y)

∂t
=

M∑
m=0

(βm(y − vy
m)p(t)(y − vy

m) − βm(y)p(t)(y)), (11.14)



SYSTEMS BIOLOGY 255

where

βm(y) =
∑

z

αm(y, z)p(z | y). (11.15)

The above equations have been provided by [57] as a stochastic version of the
deterministic quasi-steady state assumption. Similar equations have been obtained
in [40] for partitioning according to fast and slow reactions, hence essentially
based on the partial equilibrium assumption. Closely related to both approaches
is the slow-scale stochastic simulation algorithm [17] where the partitioning is
according to fast and slow species and an alternative approximate equation for
the slow species is derived. An extension to three time scales is proposed in [14].

Given any of these sets of assumptions and equations, once a partitioning is
defined the submodels can be tackled by any suitable solver. In fact, subsequently
to the work in [40, 57], various algorithmic versions appeared that mainly dif-
fer in the techniques used to solve and combine the submodels, either purely
simulative or hybrid. Quite often, the slow submodel is solved by simple direct
stochastic simulation and only the fast submodel is subject to different solvers.
Advanced stochastic simulation techniques such as tau-leaping (see Section 11.6)
are applied, or the submodel is treated by ODE solvers for the deterministic
reaction rate equations. Hence, the submodels are sometimes even handled with
different modeling paradigms. It is beyond our scope to go into the details and
we refer the reader to the original papers, [14, 54, 62, 78] to mention but a few.

All these algorithms are quite young. Case studies and applications are lim-
ited to a few relatively simple models. Analyses of their accuracy or statistical
robustness for general model classes are still lacking, and the important issues
of checking the validity of the underlying assumptions and automated partition-
ing require further investigation. Also, almost all algorithms proposed so far
apply stochastic simulation at least to parts of the model, though the reduced
size and complexity render non-simulative solutions possible. In the conclusion
of [57], Rao and Arkin emphasize that they believe the true strength of the
quasi-steady-state assumption is as a tool for model reduction. We fully agree
and note that the same holds for all partitioning techniques. Concerning solution
techniques, purely numerical, non-simulative methods, if efficiently applicable,
should be clearly preferred as they eliminate the statistical uncertainty from the
results so that the question of the robustness of estimators becomes obsolete. One
step in this direction is [15] where a stiff enzymatic reaction set is numerically
solved via aggregation, which has been demonstrated to be much faster than the
slow-scale stochastic simulation algorithm. Further investigations are forthcom-
ing [67]. Undoubtedly, integrating the knowledge from the numerical solution
of Markovian models is very promising. More generally, combining methods
from different domains – which is essentially the goal of systems biology – is
highly desirable and offers a great potential for significant advances in stochastic
chemical kinetics.
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11.6 Adaptive tau-leaping

Tau-leaping was originally proposed by Gillespie [37] as an approach to accel-
erate the inherently slow trajectory generation at the cost of statistical exactness.
The basic idea is, instead of simulating every reaction, to determine at any time
t a time step size τ by which the simulation is advanced. Given the system state
(number of molecules of each species) X(t) at time t and the selected step size τ ,
the system state X(t ′) at time t ′ := t + τ is approximated. Then at time t ′ a new
step size τ ′ is selected and so on until the simulation time has reached the time
horizon of interest. Hence, if the step sizes are chosen such that many reactions
are likely to occur within a time interval [t, t + τ), then the trajectory generation
becomes significantly faster. On the other hand, much care must be taken with
a proper choice of the time steps in order to avoid too rough an approximation
that would result from excessively large time steps. Furthermore, the original
tau-leaping approach, which is nowadays referred to as explicit tau-leaping, is
not suitable for stiff systems, and implicit tau-leaping was proposed in [59] as a
modification in order to deal particularly with stiffness. Recently, in an attempt to
combine the advantages of both explicit and implicit tau-leaping, Cao et al. [19]
invented an adaptive explicit–implicit tau-leaping algorithm which we describe
in what follows. We take a top-down approach starting with the fundamental
underlying rationale, after which we successively detail the specific steps.

Denote by Km the random variable describing the number of times that a
reaction of type Rm occurs in the time interval interval [t, t + τ). Then

X(t + τ) = X(t) +
M∑

m=1

vmKm. (11.16)

Accordingly, a basic scheme for any algorithm that advances the simulation by
predefined time steps instead of simulating every single reaction is as follows:

Init t := t0, x := x0 and tend ;
while t < tend

1. Compute all αm(x) and α0(x) := α1(x) + · · · + α
M

(x);
2. Choose a step size τ according to some appropriate rule;
3. Compute suitable estimates k̂1, . . . , k̂M for K1, . . . , KM ;
4. Set t := t + τ and update the system state x according to (11.16);

Tau-leaping assumes that all propensity functions are at least approximately
constant in [t, t + τ), which must be formally specified and is referred to as the
leap condition . Then, handling all propensity functions as if they were indeed
constant gives an appropriate rule for Step 2 of the above algorithm. An essential
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difference between explicit and implicit tau-leaping lies in the updating of the
system state, that is, in obtaining the estimates k̂1, . . . , k̂M . In addition, the choice
of the step size τ differs.

If all propensity functions are constant in [t, t + τ), the random variable Km

is Poisson distributed with mean ταm(X(t)). Consequently, explicit tau-leaping
proceeds by simply computing the estimates k̂1, . . . , k̂M as realizations of the
corresponding Poisson distributed random variables. Obviously, (11.16) then
becomes an explicit deterministic expression for X(t + τ) as a function of x

and obeys similarities to the explicit (forward) Euler method for solving sys-
tems of deterministic ODEs. More specifically, if the number of molecules of
each species is large and the Poisson random variates are approximated by their
means, (11.16) becomes the explicit Euler formula for the deterministic reaction
rate equations. However, explicit ODEs solvers become unstable for stiff systems,
and the same holds for explicit tau-leaping in the case of stiff Markovian systems.

Implicit tau-leaping is inspired by the implicit (backward) Euler method which
is known to be well suited for stiff ODE systems. A completely implicit version of
tau-leaping would require random variates to be generated according to the Pois-
son distribution with parameters ταm(X(t + τ)), m = 1, . . . , M , which depend
on the unknown random state X(t + τ). Instead, a partially implicit version is
considered. Rewriting Km as Km − ταm(X(t)) + ταm(X(t)) and evaluating all
propensity functions in the last term at X(t + τ) instead of X(t) yields

X(t + τ) = X(t) +
M∑

m=1

vm

(
Km − ταm(X(t)) + ταm(X(t + τ))

)
. (11.17)

Then, in a first step, all Km are again approximated by Poisson random variables
as with explicit tau-leaping. Once the realizations, denoted by k1, . . . , kM , have
been generated and given X(t) = x, (11.17) becomes an implicit deterministic
equation that is solved by Newton iteration. Typically, the resulting estimate
x̂(t + τ) for X(t + τ) is not integer-valued. Therefore, in practice, the estimates
to be used for the updating in Step 4 of the above algorithm are obtained by
rounding the corresponding term in (11.17) to the nearest integer,

k̂m = round(km − ταm(x) + ταm(x̂(t + τ))). (11.18)

It has been empirically demonstrated that implicit tau-leaping significantly speeds
up the simulation of some stiff systems. As an alternative to (11.17), motivated
by the properties of the trapezoidal rule for solving systems of deterministic
ODEs, [21] proposed substituting (11.17) by the trapezoidal tau-leaping formula

X(t + τ) = X(t) +
M∑

m=1

vm

(
Km − τ

2
αm(X(t)) + τ

2
αm(X(t + τ))

)
, (11.19)

which sometimes yields higher accuracy. However, it depends on the specific
problem at hand whether (11.17) or (11.19) should be preferred.
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The crucial point in both explicit and implicit tau-leaping is an appropriate
choice of the step size τ by an automated procedure. For accuracy both meth-
ods require that the propensity functions must be approximately constant in the
time interval [t + τ). The step size must be efficiently computed and the time
steps must be significantly larger than in a single-reaction simulation such that
the computational overhead is negligible compared to the simulation speed-up.
Furthermore, it is obviously possible that an updating step results in a negative
number of molecules of some species if certain critical reactions occur too often
and exhaust one or more of its reactants, which must be avoided. Since the inven-
tion of tau-leaping, the step size selection procedure has been modified several
times until finally in [18] it reached its current state for the explicit version. How-
ever, with implicit tau-leaping for stiff systems the step size can often be chosen
much larger than suggested by [18], which motivated the adaptive version in [19].

In state x, the expected time to the next reaction is 1/α0(x). Consequently,
if a candidate step size is less than na/α0(x) it is considered inefficient and nb

single reactions are simulated according to the standard direct method, where
both na and nb are parameters to be specified. A reaction is taken as critical if
the maximum number of times it can occur before exhausting one of its reactants
is less than some threshold nc, another parameter to be specified. It may not be
known in advance whether or not the problem at hand is stiff. In particular, the
system dynamics may be such that in some time periods the system possesses
stiffness and in others it does not. With adaptive tau-leaping at each updating step
during the simulation either explicit or implicit tau-leaping is chosen dynamically.
Hence, a decision rule is necessary. Adaptive tau-leaping applies the simple rule
that the system is considered to be stiff if the tentative step size for explicit
tau-leaping is more than nd times smaller than the tentative step size for implicit
tau-leaping, which introduces another parameter to be specified.

We are now ready to formulate an algorithm that, given state x at time t and
step size selection procedures for explicit and for implicit tau-leaping, dynam-
ically chooses one of the two methods with an appropriate step size. Our for-
mulation here streamlines the formulation in [19, Section 4] and is much more
concise but equivalent to it.

1. Define set C of indices of critical reactions:

C :=
{
m ∈ {1, . . . , M} : αm(x)〉0 ∧ min

i:vim<0

⌊
xi

|vim|
⌋

< nc

}
;

2. Compute candidate step sizes τ (ex), τ (im) for explicit and implicit
tau-leaping;

3. If τ (ex) < na/α0(x) ∧ τ (im) < na/α0(x)

then simulate nb single reactions, update t and x, and goto 1;
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4. Compute candidate step size τ̃ as expected time to next critical reaction:

Generate τ̃ ∼ Exponential

( ∑
m∈C

αm(x)

)
;

5. If τ (ex)〉 min(τ (im)/nd ; τ̃ )

then use explicit tau-leaping with τ := min(τ (ex); τ̃ );
else use implicit tau-leaping with τ := min(τ (im); τ̃ );

6. If x + ∑
m k̂mvm has negative components

then reduce τ (ex) and τ (im), and goto 3;

Note that the last step is required because there is still a positive probability
of generating negative population sizes, though this probability should be small
for appropriately chosen parameters. Hence, altogether the step size selection
procedure can be interpreted as an acceptance–rejection method. The inventors
more specifically reduce τ (ex) and τ (im) by half, but this seems rather arbitrary
and may be subject to changes.

It remains to precisely specify Step 2, which has been subject to various
improvements that we shall briefly outline. In order to formalize the leap condi-
tion of approximately constant propensity functions, an error control parameter
ε > 0 is required. In early versions the goal was to bound for every reaction
the expected change in its propensity function during a time step of size τ by
εα0(x), hence by ε times the sum of all propensity functions evaluated at state x.

The original tau-selection procedure in [37] does not always yield an appro-
priate step size that satisfies this condition, but later in [38] it was shown that
the largest value of τ that indeed satisfies it can be obtained by bounding the
mean and the standard deviation of the expected change in the propensity func-
tion of each reaction by εα0(x). It was also recognized that instead of bounding
the change in the propensity function for all reactions by εα0(x) it is more
appropriate to bound the change in the propensity function individually for every
reaction Rm by εαm(x), which corresponds to bounding the relative changes in
each propensity function by ε. Strictly applied, this implies that τ becomes zero
and the simulation does not advance at all if any of the propensity functions
evaluated at state x is very small. But, as noted in [18], if αm changes at all,
then according to equation (11.4) it changes by at least cm such that a change
of less than cm does not make sense, and consequently the change in αm can
be bounded by the maximum of εαm(x) and cm. Furthermore, [18] presented
a procedure that approximately enforces this bound, which is much faster than
estimating the mean and the standard deviation according to [38]. The essential
underlying rationale is, instead of directly considering propensity functions, to
bound the relative changes in populations of certain molecular species such that
the relative changes in the propensity functions will be all approximately bounded
by ε. It differs for explicit and implicit tau-leaping only in the species that are
taken into account and is the current ‘state of the art’ in step size selection for
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tau-leaping. Here, we present it in a compact form. The details of the derivation
can be found in [18].

In either case, it suffices to consider reactant species. Denote by R the set of
indices of all reactant species and define, for all i ∈ R,

μ̂i,M(x) :=
∑
m∈M

vmiαm(x), σ̂ 2
i,M(x) :=

∑
m∈M

v2
miαm(x), (11.20)

where M denotes a set of indices of reactions. Then the candidate step size
dependent on M is

τM = min
i∈R

(
max(εxi/gi(x), 1)

|μ̂i,M(x)| ,
max(εxi/gi(x), 1)2

|σ̂ 2
i,M(x)|

)
. (11.21)

where gi is a function defined in order to guarantee that bounding the relative
change of states is sufficient for bounding the relative change of propensity
functions. Denote by h(i) the highest order of reactions in which species Si

appears as reactant and by n(i) the maximum number of Si molecules required
by any of the highest-order reactions. Then

gi(x) = h(i) + h(i)

n(i)

n(i)−1∑
j=1

j

xi − j
. (11.22)

The step size depends on M only through μ̂i,M(x) and σ̂ 2
i,M(x), and the only

difference in the step size selection for explicit and implicit tau-leaping is in the
choice of M which defines exactly those reactions that are considered in the step
size selection. For explicit tau-leaping, these are simply the non-critical reactions.
Hence, τ (ex) = τ{1,...,M}\C .

For implicit tau-leaping the partial equilibrium assumption (see Section 11.5)
is exploited. As it is difficult to identify all reactions that are in partial equilibrium,
only reversible reactions are checked for partial equilibrium, which means that
their propensity functions evaluated at state x must be approximately equal.
More specifically, it is assumed in [19] that two reactions Rm1 , Rm2 , where Rm1

reverses Rm2 and vice versa, are in partial equilibrium at state x if the difference
in their propensity functions is less than δ times the minimum of the propensity
functions. That is,

|αm1(x) − αm2(x)| ≤ δ min(αm1(x), αm2(x)), δ > 0. (11.23)

Then in the step size selection for implicit tau-leaping only reactions that are
neither critical nor in partial equilibrium (checking only reversible reactions)
are considered. Hence, denoting by E the set of indices of (reversible) partially
equilibrated reactions, we have τ (im) = τ{1,...,M}\C\E .

It has been empirically demonstrated that tau-leaping can significantly accel-
erate the simulation of chemically reacting systems. The consistency and stability
are formally addressed in [60]. However, further investigation of various issues
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is desirable. First of all, the choice of the parameters ε, na, nb, nc, nd is cur-
rently rather informal and they are chosen heuristically. The inventors state that
they ‘normally’ or ‘usually’ take ε in the range 0.03–0.05, na = 10, nb = 10
if the previous step uses implicit tau-leaping and nb = 100 otherwise, nc = 10,
nd = 100, and δ ‘around’ 0.05. This seems to rely only on empirical compar-
isons of tau-leaping with the direct single-reaction method. Obviously, in the
huge models constructed in practice, such a comparison will not be feasible as
the direct method does not provide accurate results in reasonable time. Simi-
larly, the statistical robustness of tau-leaping requires further investigation. Most
often, the statistical accuracy of the estimates was only shown by comparison
to the direct method. The first formal approach given in [22] considers the Kol-
mogorov distance, the histogram distance and the newly introduced self distance
for probability measures. Finally, another issue of interest is how the probability
of rejecting a candidate step size depends on the parameters mentioned above.

Tau-leaping is an active field of research and diverse variants exist. Indeed,
in recent years the literature on tau-leaping has grown exponentially. We refer
the interested reader to [4, 23, 39, 52, 58, 81] for some recent developments.
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