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Abstract

Lane-changing algorithms play a critical role in ensuring passenger safety and traffic

efficiency in the dynamic and stochastic environment of Autonomous Vehicles (AVs).

Despite their safety-critical nature, these algorithms are predominantly analyzed using

computer simulation. While simulations provide valuable insights, their sampling-

based nature inherently limits their ability to capture all potential corner cases, which

can lead to overlooked safety-critical scenarios. To address these limitations, we ad-

vocate for the use of probabilistic model checking as a more rigorous approach for the

formal analysis of lane-changing algorithms. Probabilistic model checking is a formal

verification technique that systematically explores all possible behaviors of a system

within its modeled environment. Unlike simulations, it provides mathematical guar-

antees about the system’s behavior by exhaustively analyzing the model. This makes

it particularly effective for identifying and addressing rare but critical scenarios that

simulations might miss.

Our proposed approach leverages Markov Decision Processes (MDPs) to model the

stochastic dynamics of AV lane-changing maneuvers. MDPs represent the probabilistic

nature of real traffic and the AV behavior and provide detailed dynamics of the sys-

tem. Then properties of interest are formally specified using Probabilistic Computation

Tree Logic (PCTL), a powerful logic for expressing complex temporal and probabilistic
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properties. Using the probabilistic model checker PRISM, we formally verified criti-

cal properties of the MOBIL (Minimizing Overall Braking Induced by Lane Changes)

model, a widely adopted framework for AV lane change. We specifically investigated

the safety and lane change efficiency, temporal performance, and system robustness

under dynamic traffic conditions. We demonstrate with this work that probabilistic

model checking not only surpasses the simulation limitations but also gives a complete

and rigorous safety and reliability assurance framework for AV lane-changing algo-

rithms. By formalizing and verifying these critical properties, this work establishes a

foundation for developing more dependable and efficient AV systems that can robustly

navigate the complexities and uncertainties of real-world traffic conditions.

Keywords: Formal Analysis, Probabilistic Analysis, Lane-Changing Algorithms, For-

mal Verification, Model Checking, PRISM, MOBIL, Autonomous Vehicles
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Chapter 1

Introduction

1.1 Motivation

"Autonomous driving is both very, very sophisticated but

on the other hand very, very accurate. The tolerance for

failure is almost zero"

Amnon Shashua (Co-founder of Mobileye)

Autonomous Vehicles (AVs) represent a transformative advancement in modern

transportation technology, with profound potential to enhance safety, efficiency, and

accessibility on a global scale. These systems use sensors, machine learning algorithms,

and sophisticated control mechanisms to move around in the complex, real-world sur-

roundings, with minimal human involvement [1]. Central to the operational efficacy

of AVs is the process of path planning [2]—a computational process by which an AV

determines the optimal route and corresponding maneuvers required to progress from

its current location to a designated destination.
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Lane changing [3] is a crucial and one of the most complex tasks of path planning

and its effect is substantial on safety and efficiency of roadway systems. Because of

the dynamic, sometimes stochastic nature, of road environments, it is very important

for AVs to make lane-changing decisions efficiently, almost optimally, in near real-time

to avoid collisions. Lane changing involves transitioning between lanes to optimize

traffic flow, maintain safety, or adhere to traffic regulations while interacting with

other vehicles in shared roadways.

The challenges posed by lane changing underscore the need for robust verification

frameworks. The imperative for safe and effective lane changing is further underscored

by empirical evidence from real-world incidents. According to the NHTSA documen-

tation, all 11 crashes of Tesla models on autopilot system reveal potential challenges in

autonomous systems in terms of path planning and lane changing [4]. Also, NHTSA

predicts that there will be thousands of crashes with Level 2 [5] AVs (with require driver

supervision) and about 200 attended incidents involving higher level AVs (with some

driver interventions to full automation) per year [6]. These projections make one case

for rigorous verification frameworks that ensure AVs execute as intended, perform the

desired behaviors, and fulfill their safety constraints in their decision-making. Robust

lane-changing algorithms not only reduce the risk of vehicular accidents but also offer

broader societal benefits, including alleviating traffic congestion, reducing emissions,

and enhancing the overall reliability of transportation infrastructure.

The reliability and correctness of lane-changing algorithms in AVs cannot be fully

ensured using traditional techniques like simulation or road testing alone. Although

these methods are useful, they are missing the rigor needed to account for those rare

but critical edge cases that could compromise safety. This need for robustness became

evident when incidents such as the 2018 accident in Tempe, Arizona, where a pedestrian
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was run over by an autonomous Uber vehicle, came to light [7]. This incident exposed to

light fundamental inadequacies of algorithmic and systems design; which is why their

stringent, mathematically rigorous methods are needed to ensure operational safety

and reliability. To demonstrate, with 95% confidence, that the rate of failure of AVs is

20% less than for human drivers (1.09 fatalities per 100 million miles, US, 2013), even

despite an AV fleet of 100 vehicles operating 24/7, 365 days/year at an average speed

of 25 mph, would take around 400 years of simulation time [8]. In fact the inherent

limitations of empirical testing have already been seen in the real world. For example,

CalTech developed an autonomous vehicle known as Alice for DARPA Urban Challenge

[9]. Alice’s goal was to navigate through an urban environment where its tasks included

parking and obeying traffic regulations. Nonetheless, during competition, Alice showed

unsafe behavior almost ‘owning’ a collision. Subsequently, the root cause was found

in the adverse interaction between the reactive obstacle avoidance subsystem and the

reacting path planner. The failure was in a very specific set of circumstances and, even

with a lot of testing, it would have been very hard to notice on something that would

only happen in one out of a few million [10]. Only formal verification methods, such

as probabilistic model checking, provide the capacity to rigorously analyze and ensure

the reliable performance of such systems across all possible scenarios.

1.2 Autonomous Vehicles

Autonomous vehicles represent a paradigm shift in transportation. With a suite of

sensors like LiDAR, radar, cameras, and ultrasonic sensors they allow the perception

of the environment [11]. Real-time decisions are made using the processed data which

has been done through advanced algorithms and machine learning techniques. Their
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transformative potential extends across multiple dimensions: This will reduce acci-

dents, optimize traffic flow, and expand mobility access. These systems are a major

step forward in tackling world transportation problems.

The Society of Automotive Engineers (SAE) classifies AV automation capabilities

into six levels, ranging from Level 0 (no automation) to Level 5 (full automation) [5]:

• Level 0 (No Automation): The driver handles all driving tasks without sup-

port.

• Level 1 (Driver Assistance): Systems provide limited assistance, such as

cruise control or lane centering.

• Level 2 (Partial Automation): The system assumes control of steering and

acceleration but requires driver oversight.

• Level 3 (Conditional Automation): The system handles full driving tasks

under specific conditions but may require human intervention.

• Level 4 (High Automation): Autonomous operation in most environments,

excluding extreme conditions.

• Level 5 (Full Automation): Complete autonomy in all scenarios without

driver input.

Despite a lot of progress, there are still some hurdles to AVs development. In order

to navigate real-world traffic, systems for decision-making need to be designed capable

of making decisions in the presence of uncertainty, like that from the presence of an

aggressive driver or change in the environment that occurs suddenly. Additionally,

social acceptance and regulation challenges remain an issue, specifically the ethical
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dilemma and liability in the crash scenarios [12]. As AVs approach Level 5 automation,

it will be imperative that decision-making systems are reliable.

However, safety remains a central concern. Implicit assumptions of human behavior

and unpredictable behavior of human drivers are a big challenge for automated systems

to predict and adapt appropriately. Therefore, the evidence demonstrates the need for

rigorous verification frameworks to certify the safety and reliability of AV systems for

high-risk tasks such as lane changing where the complexity of the problem is expanded.

1.3 Lane-Changing Algorithms

Lane-changing algorithms [3] are an essential part of path planning process of AVs

and they have to successfully contend with the intricacies of the shared roadways that

pose autonomous and human driven vehicles with varying degrees of predictability.

Despite being fundamental to AV navigation, the operation of lane changing remains

a challenging task. A successful lane-changing algorithm must take into account ve-

hicle kinematics, dynamic traffic conditions and well as regulatory adherence and be

tractable to real time execution [13]. These algorithms are critical to the safety and

traffic efficiency because of their complexity.

Three principal approaches to lane-changing algorithms have been developed:

1. Rule-Based Algorithms: These depend on predefined heuristics, including

the maintenance of minimum safe distances or the prioritization of right-of way.

However, these are interpretable and computationally efficient, but their rigid

structure makes them less adaptable to unpredicted traffic scenarios [14].

2. Machine Learning-Based Algorithms: Large datasets are used to predict

the optimal maneuver using such machine learning techniques as neural networks,
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reinforcement learning approaches, etc. Although these methods are robust to

diverse conditions, they tend to be opaque and hard to hold accountable in safety

critical domains [15].

3. Hybrid Methods: Combining the benefits of rule-based and machine learning

approaches, hybrid methods aim to balance interpretability and adaptability. For

complex scenarios, they apply machine learning and stick to rule–based safety

constraints [16].

Despite advancements, lane-changing algorithms face significant challenges:

• Handling Edge Cases: A major problem is that algorithms may fail to gener-

alize sufficiently, resulting in too many rare and unforeseen traffic scenarios being

risky.

• Human Interaction: Human drivers are erratic and context dependent; au-

tonomous systems must operate side by side with them.

• Safety vs. Efficiency Trade-Offs: The persistent challenge is to balance "cau-

tious maneuvering" to stay out of a collision’s way with traffic flow optimization.

To address these challenges, various analysis techniques have been employed. Tradi-

tional analysis methods for lane-changing algorithms include paper-and-pencil proofs,

simulations, and experimentation. Each of these techniques has its own strengths and

limitations. Paper-and-pencil proofs offer theoretical insights and mathematically rig-

orous arguments about system behavior. However, they are prone to human error and

impractical for exhaustive analysis of large, complex systems with numerous interact-

ing components. Using simulations and experimentation, system performance can be

predicted cost-effectively without deploying the system. Their process of evaluating
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real-world scenarios is not rigorous enough and often misses the rare bugs in the sim-

ulations. However, these approaches won’t be able to find a bug in the system if that

corner case occurs. When doing real experimentation, a huge waste (loss) of resources

could happen if an unforeseen anomaly arises when the system goes live. To build a

system, that is precise and accurate from all aspects, formal verification is used. The

Table 1.1. Comparison of Analysis Techniques

Techniques Pros Cons

Paper-and-
pencil Proofs

• Completeness

• Human-error prone

• Practically impossible to
analyze large and complex
systems

Simulations

• User friendly

• Quick insights about the
working of the force algo-
rithm

• Incomplete

• Impossible to predict all
corner cases

Experiments

• Real-time: hardware/soft-
ware interaction

• Quick insights about the
working of the force algo-
rithm

• Incomplete

• Impossible to predict all
corner cases

• High cost

Formal
Verification

(Model
Checking)

• Completeness

• Rigorous testing for all
scenarios

• State-space explosion

approach uses theorem proving and model checking to verify safety-critical systems

formally. Deep theoretical guarantees make theorem proving a match for proving sys-

tem properties using mathematical logic. Model checking explores all possible states to

ensure correctness and reliability. They both catch corner case bugs that get missed in

a simulation or a test. The major drawback of model checking is its state space explo-
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sion: requirements that grow exponentially with system complexity cause intractable

computational demands. Abstraction and decomposition will help temper this issue.

Yet, model checking is indispensable for highly safety-critical systems since it provides

unmatched reliability. Table 1.1 presents a detailed comparison of these methods.

Formal methods [17] have the potential to cater for the above-mentioned chal-

lenges. However, the environmental uncertainties, the unpredictable traffic patterns,

and obstacle presence, in the case of lane changing pose substantial challenges for tra-

ditional formal verification methods. To capture these uncertainties and unpredictable

aspects, we propose a probabilistic model checking based approach to verify the safety

and performance of lane-changing algorithms. Probabilistic model checking [18] en-

tails constructing mathematical representations, such as Markov Decision Processes

(MDPs) [19], to capture the probabilistic dynamics of the system. MDPs allow deci-

sion making within an uncertain environment that is captured through probabilistic

transitions and multiple decision pathways. Probabilistic model checking also facili-

tates a comprehensive verification process involving probabilistic properties expressed

in Probabilistic Computation Tree Logic (PCTL) [20].

Overall, while traditional methods provide useful insights, formal verification tech-

niques such as model checking offer a systematic and robust way to analyze lane-

changing algorithms, ensuring safety, reliability, and performance in AVs.

1.4 Problem Statement

The increasing adoption of Autonomous Vehicles (AVs) introduces significant challenges

in ensuring safety, reliability, and efficiency in complex driving scenarios. Among these,

lane-changing maneuvers are particularly critical due to their impact on traffic flow,
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collision avoidance, and compliance with driving regulations. AVs must perform lane

changes dynamically while considering the presence of other vehicles, uncertain driver

behaviors, and unpredictable environmental conditions.

Existing methods for verifying lane-changing algorithms, such as simulations and

real-world testing, fail to provide exhaustive safety guarantees, as they cannot capture

rare but critical edge cases. Moreover, traditional verification techniques, including

paper-and-pencil proofs and heuristic-based evaluations, lack the scalability and rigor

necessary to analyze the vast number of possible interactions in dynamic road environ-

ments. These limitations highlight the need for a robust, formal verification framework

capable of ensuring the correctness of lane-changing algorithms under probabilistic

uncertainties.

This thesis addresses the problem of formally analyzing lane-changing algorithms

for AVs using probabilistic model checking. By leveraging MDPs and PCTL, this

study aims to verify the safety and performance of AV lane-changing strategies rigor-

ously. The proposed approach provides a mathematically sound framework to assess

AV decision-making in uncertain environments, ensuring that lane changes are per-

formed optimally while adhering to safety constraints. The research bridges the gap

between theoretical formal methods and real-world AV challenges, contributing to the

development of safer and more reliable autonomous driving systems.

1.5 Related Work

In this section, we review related work, highlighting key advancements and method-

ologies in the field, while identifying gaps that our study aims to address.
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1.5.1 Traditional and Sampling-Based Approaches

Lane changing has garnered significant scholarly attention due to its critical role in

ensuring safety, efficiency, and reliability for AVs. Traditional lane-changing method-

ologies encompass a range of graph-based algorithms, such as Dijkstra’s algorithm [21]

and A* [22]. They proved to be very effective in the static or moderately changing envi-

ronment where the positions of the obstacles and road participants are easy to predict.

The algorithms that derive from this idea have been fundamental tools for computing

shortest paths, especially in static environments, because they allow efficient shortest

path computation. However, they can often be insufficient in highly dynamic envi-

ronments that introduce rapid changes of traffic elements which go beyond the scope

of static planning paradigms. To overcome these shortcomings, sampling-based meth-

ods including the Probabilistic Roadmaps (PRM) [23] and Rapidly-exploring Random

Trees (RRT) [24] have received more attention lately. These methods incorporated

stochasticity to cope with the dynamic nature of complex environments. The benefit

of generating feasible trajectories for both holonomic and non-holonomic systems is

provided. In addition, the RRT* [25] can even guarantee the asymptotic optimality of

the generated path, formally ensuring the almost-sure convergence to global optimal

solutions, with increasing number of samples. The sampling-based methods and their

variants have been widely applied [21, 24] to AVs. The computational complexity of

the sampling procedure, however, is high, making their practical use limited.

1.5.2 Machine Learning Approaches

Machine learning, particularly using reinforcement learning, is being increasingly used

to improve the decision making in uncertain and dynamic environments. For example,
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Yang et al. [26] presented a model consisting of combining Long Short-Term Mem-

ory (LSTM) networks with Deep Deterministic Policy Gradients (DDPG) to enhance

trajectory prediction in lane changes. By incorporating temporal learning into AV

decision-making, they improved average single step rewards by 7.4% over traditional

methods. Furthermore, hybrid frameworks that integrate reinforcement learning with

traditional rule-based methods were introduced to benefit from the adaptability of

learning-based techniques while keeping the interpretability of deterministic models.

A framework combining Deep Q-Learning with rule-based constraint was introduced

by Ghimire et al. [27], resulting in a safety rate of 0.8 while ensuring improved decision-

making efficiency. Tian et al. [28] used personalized lane change assistance systems

based on mode predictive control in conjunction with the end-to-end imitation learning.

This approach is adapted to the particular driver’s behavior, giving it a driver tailored

driving experience, which is useful for human like AV behaviour modeling.. Moreover,

Shi et al. [29] proposed a method to use imitation learning as reinforcement learning

to initialize learned lane-changing behaviors, which improve collision rates and speed

performances considerably.

1.5.3 Formal Verification in Lane Changing

Formal methods have been used to analyze lane-changing algorithms. For example,

Zita et al. [30] formally analyzed the lane changing module of an AV, finding de-

fects both in the model and its implementation. These results demonstrate the ability

of formal methods to dramatically improve software reliability for autonomous sys-

tems. Similarly, Yang et al. [31] applied probabilistic model checking to multimodal

transportation systems, optimizing path planning by dynamically adjusting congestion

probabilities based on IoT sensor data. Dhonthi et al. [32] has also applied Signal
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Temporal Logic (STL) to verify the safety and the efficiency of AV path planning.

They verified AV trajectories in scenarios that may arise in real time (e.g., automated

valet parking) given temporal logic specifications. This approach assures that safety

standards are fulfilled by varying constraints that demonstrate that the AV behaves

appropriately to static and dynamic obstacles. Chen and Li [33] also suggest a hybrid

approach that combines data driven and model driven approaches to advance formal

modeling and analysis of the driving scenarios. They abstract complex models and map

them to formal structures to provide a mechanism that improves the safety analysis of

AV path planning.

Lane changing is vital for AV systems, influencing their safety, efficiency, and re-

liability. Traditional graph-based methods like Dijkstra’s and A* excel in static en-

vironments but struggle with the dynamic and uncertain nature of real-world traffic.

Sampling-based techniques, such as PRM and RRT, add stochasticity but are com-

putationally expensive for real-time applications. Machine learning approaches, while

adaptive, often lack formal safety guarantees. Formal methods offer rigorous verifica-

tion but fail to capture the stochastic aspects of lane changes. Bridging these gaps

requires a unified approach using MDPs and probabilistic model checking to ensure

robust and reliable AV lane-changing algorithms.

To bridge these gaps, there is a critical need for a unified approach that lever-

ages the strengths of probabilistic modeling and formal verification. Such an approach

should address the inherent uncertainty and dynamic nature of lane-changing scenarios

while providing rigorous guarantees regarding safety and efficiency. By capturing the

unpredictable aspects of lane changing using a rich formalism like MDPs and employ-

ing probabilistic model checking for their analysis, we can advance the development of

robust and reliable lane-changing algorithms for AVs operating in safety-critical envi-
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ronments.

1.6 Proposed Framework

The objective of this thesis is primarily focused on the formal modeling, analysis,

and verification of lane-changing algorithms for AVs using probabilistic model check-

ing. The proposed methodology establishes a structured framework that ensures the

safety, reliability, and efficiency of AV lane-changing strategies in dynamic traffic en-

vironments. Specifically, this thesis develops a framework encompassing the following

capabilities:

1. The ability to formally model the parameters of the ego vehicle and surrounding

vehicles, including position, speed, acceleration, and lane information. This foun-

dational representation ensures accurate depiction of real-world traffic scenarios.

2. The ability to formalize decision-making algorithms, such as rule-based methods,

reinforcement learning, and fuzzy logic, and evaluate their performance against

temporal logic-based safety and performance requirements.

3. The ability to represent and analyze the stochastic interactions between the ego

vehicle and its environment using an MDP. This enables precise modeling of

uncertainties and dynamic decision outcomes.

4. The ability to verify lane-changing strategies using a probabilistic model checker

(e.g., PRISM). This includes specifying safety constraints (e.g., collision avoid-

ance) and performance objectives (e.g., optimizing travel time) in temporal logic

and systematically evaluating these properties.
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The proposed framework, illustrated in Figure 1, outlines the methodology for

the formal analysis of lane-changing algorithms. The grey-shaded boxes in the figure

represent the key contributions of this thesis, which form the essential components for

formalizing and verifying lane-changing strategies in AVs. The input to this framework,

represented by the rectangles with curved bottoms, includes the modeling parameters

of the ego vehicle and surrounding vehicles, as well as the decision-making algorithms

to be evaluated. The first step in the framework involves building a formal model of

the ego vehicle and its environment, using the parameters outlined above, in the form

of an MDP. This formalism captures the probabilistic and dynamic nature of traffic

interactions.

Figure 1.1: Proposed Framework
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To enable this step, the thesis formalizes the decision-making algorithms, including

rule-based, reinforcement learning, and fuzzy logic, and integrates them into the MDP

framework. The algorithms are modeled to consider key functions such as obstacle

avoidance, traffic flow adaptation, and vehicle behavior prediction. The second step

involves specifying system properties in PCTL, such as safety and performance criteria.

These properties serve as the basis for evaluating the effectiveness of lane-changing

strategies.

The third step in the proposed approach involves verifying the specified properties

using a probabilistic model checker. The PRISM model checker is utilized to evaluate

metrics such as the probability of successful lane changes, collision risks under various

traffic conditions, and expected improvements in time and fuel efficiency. To streamline

the verification process, this thesis builds a library of pre-verified properties, including

classical safety and performance criteria, to minimize the effort required for interactive

verification.

Finally, the output of the framework comprises the quantitative results of system

properties. These results provide a rigorous certification of the safety and performance

of the lane-changing algorithms for the given traffic scenarios. By leveraging this

framework, the thesis establishes a robust methodology for ensuring the correctness and

continuous improvement of lane-changing strategies in autonomous driving systems.

1.7 Thesis Contributions

In summary, the main focus of this thesis is on the modeling, analysis, and verification

of lane-changing algorithms for AVs using a probabilistic formal framework. This ap-

proach leverages Markov Decision Processes and temporal logic verification to ensure
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both safety and performance in dynamic traffic environments. In this endeavor, this

thesis makes the following contributions.

1. It presents a formal framework for modeling and verifying lane-changing algo-

rithms in AVs, leveraging MDPs to capture the probabilistic nature of traffic

dynamics and interactions.

2. It introduces a method to formally specify and verify key safety and perfor-

mance requirements using Probabilistic Computation Tree Logic (PCTL) and

the PRISM model checker, ensuring rigorous evaluation of lane-changing strate-

gies.

3. It provides an algorithm-agnostic structure to analyze a wide variety of decision-

making approaches, including rule-based methods, reinforcement learning, fuzzy

logic, etc., making the framework adaptable to diverse scenarios.

4. It presents quantitative performance and safety metrics for lane-changing strate-

gies, offering a systematic approach to guide iterative improvement and ensure

robust, real-world applicability of autonomous vehicle systems.

1.8 Organization of the Thesis

The rest of this thesis is structured as follows. In Chapter 2, we provide an introduction

to the theoretical foundations essential for understanding the complex topics discussed

throughout the thesis. This chapter outlines key concepts and background information

that will facilitate the reader’s comprehension of the advanced material presented in

later chapters. It acts as a primer, ensuring that readers are adequately prepared for

the more technical discussions that follow.
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Chapter 3 focuses on the general formalizations that underpin lane-changing algo-

rithms. In this chapter, we present a rigorous treatment of the formalized frameworks

that form the core of the research. The emphasis is placed on the structure and rele-

vance of these models, which are integral to the objectives of the thesis. This chapter

establishes a solid theoretical foundation, serving as a reference point for subsequent

analyses and discussions.

In Chapter 4, we formalize and verify the MOBIL model within a specific frame-

work. This chapter examines the model’s principles, mechanisms, and applicability

while detailing the rigorous verification methods and results. By integrating analysis

and verification, we demonstrate the model’s robustness, reliability, and theoretical

soundness, laying the foundation for its broader applicability and practical use.

Finally, Chapter 5 concludes the thesis with a synthesis of the main findings and

contributions. This chapter recaps the key results and highlights areas for future re-

search, proposing potential directions for extending the work and addressing unresolved

challenges in the field.
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Chapter 2

Preliminaries

In this chapter, we introduce some preliminary material on which our work builds.

First, we describe the model that represents autonomous vehicle behaviors and their

interactions with dynamic environments, specifically MDPs. We also introduce relevant

concepts such as policies and reward structures, which are central to decision-making

in MDPs. Then, we discuss how to formally specify system properties, which we

then reason about, using PCTL. Next, we describe how to incorporate such formal

models along with probabilistic requirements to assess and guarantee that systems

behave reliably. Finally, we discuss the probabilistic model checking approach, with an

emphasis on the PRISM tool, and highlight the unique challenges associated with the

formal verification of autonomous vehicle systems.

2.1 Formal Verification

Formal methods consist of applying formal reasoning on the core functionality and

behavior of any real-time system by using mathematics to model the system first and

to eliminate defects in the system design. These are widely used to verify safety-critical
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systems in which failure leads to financial loss or could even result in humans being

lost. Such systems are exemplified by car lane-changing algorithms in autonomous

vehicles, which are critical for functional and logical verification. Minor errors in the

design of software or hardware can have such catastrophic outcomes as collisions or

system failures that would compromise both passenger safety and public confidence in

autonomous vehicle technologies.

First, we abstract a system into a mathematical model that captures its key be-

haviors and constraints in order to verify the system. The formal logic (e.g. temporal

logic) expresses properties or specifications that the system is supposed to satisfy. Then

tools or techniques analyze the model against these properties to assure compliance.

This process entails entering all possible states that the system can attain and recog-

nizing any irregularities or mistakes. Formal verification has a rigorous mathematical

foundation and offers the confidence that in all circumstances the system will operate

as expected, even in obscure edge cases that are hard to catch with normal testing

methods.

Formal verification employs two principal techniques: Model checking and Theorem

proving. In Theorem proving, we create a formal proof to make sure that a system

is correct. This technique usually concludes a certain property from a set of axioms

by means of logical inference following a human expert. On the other hand, model

checking is an automated technique in which the state space of a system model is

systematically explored to guarantee that it satisfies given properties.

To be specific, in the context of this thesis about analyzing lane-changing algorithms

for autonomous vehicles, we prefer model checking as our technique. This is because

model checking, in particular, is very well suited to dynamic system verification of finite

state spaces like lane-changing algorithms. It allows us to perform automated analysis
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of these systems without having to handle probabilistic behaviors found in real-world

applications. Although theorem proving and theorem proving systems are laudable,

they tend to be complex and require manual intervention, which have themselves lim-

ited their practicality for systems as complex and dynamic as those of autonomous

vehicles.

For analyzing lane-changing algorithms, we chose model checking over theorem

proving because it is faster and able to scale better than theorem proving. It is more

effective as volatile traffic can be (and is) mathematically modeled. Probabilistic model

checking is especially suitable given the nature of lane-changing algorithms for AVs,

which are probabilistic in behaviors such as traffic conditions and sensor inaccuracies.

These uncertainties are modeled efficiently using Markov chains and explore large state

spaces. Automated exhaustive analysis and error path identification are made possible

on tools like PRISM [34], Spin [35], Storm [36] and UPAAL [37]. They can discover

error paths, and verify safety and performance properties crucial to the system. Prob-

abilistic model checking is an ideal tool for developing safety-critical applications such

as autonomous vehicle lane-changing algorithms because we are able to model and an-

alyze probabilistic behaviors. Such tools allow developers to program the system for

certainty, even when the system is otherwise likely to operate under the ambiguities of

uncertain and dynamic conditions.

While powerful, theorem proving is not used in this thesis because the theorem

proving methods are not sufficient for verifying the complex, dynamic behavior of sys-

tems like lane-changing algorithms for autonomous vehicles. Constructing proofs for

large and intricate systems is time-consuming, error-prone, and requires substantial

manual effort and expert guidance in theorem proving. Also, it does not provide the

automation and scalability of model checking, and so is less useful for real applications
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based on finite state models with probabilistic behavior. However, while verification of

lane-changing algorithms has to deal with dynamic and probabilistic behavior, proba-

bilistic model checking offers an efficient and automated procedure to verify uncertain

systems, making it a more attractive option.

2.2 Formal Probabilistic Modeling and Verification

A formal framework for analyzing and ensuring the reliability of autonomous vehicle’s

lane-changing algorithms under uncertain and dynamic conditions is given by proba-

bilistic modeling and verification. This chapter covers the basic concepts and tools,

such as the Markov Decision Processes, Probabilistic Computation Tree Logic, and the

PRISM model checker, required to formally analyze lane-changing algorithms.

2.2.1 Markov Decision Processes (MDPs)

Markov Decision Processes [19] allow modeling systems that exhibit both nondeter-

ministic and probabilistic behavior. That’s why we use Markov Decision Processes

(MDPs) to model the ego vehicle, surrounding vehicles, and lane-changing algorithms.

Definition 2.1 (MDP). An MDP is defined as tuple M = (S, s′,A,P , AP, L), where:

• S is finite set of states;

• s′ ∈ S is the initial state;

• A is a finite set of actions;

• P : S × A × S → [0, 1] is a probabilistic transition function, where ∀s ∈ S, a ∈

A :
∑

s′∈S P(s, a, s′) ∈ {0, 1};
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• AP is a set of atomic propositions;

• L : S → 2AP is a labelling function, such that q ∈ L(s) if and only if q is true in

s ∈ S.

v1

v2

v3 v5

v4 v6

a1

a2
a3

0.3

0.7

a5a4

Figure 2.1: A Markov decision process (MDP) with 6 states. The labels of each state
are v1, v2, v3, v4, v5, v6. The actions are a1, a2, a3, a4, a5.

In each state s of an MDP M, a choice is made between the actions that are enabled

in s. These actions form the set As ={a ∈ A | P(s, a, s′) > 0 for some s ∈ S}. When

an action a ∈ As is selected in state s, the probability of transitioning to the next state

s′ is give by P(s, a, s′). A sequence of such transitions, denoted σ = s0
a0−→ s1

a1−→ s2 . . . ,

where P(si, ai, si+1) > 0 for i ∈ N, represents an (infinite) path through the MDP. A

finite path ρ = s0
a0−→ s1

a1−→ . . .
an−1−−−→ sn is defined as prefix of an infinite paths. The

set of all finite and infinite paths of M starting from state s are denoted by FPathM,s

and IPathM,s, respectively. The choice of action to take at each step of the execution

of an MDP M is made by a policy, which can base its decision on the history of M

up to the current state.

Definition 2.2 (Policy). A policy for MDP M is a function π : FPathM,s′ → A such

that, for any path ρ ending in state sn, we have π(ρ) ∈ Asn.
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In this work, we will use memoryless policies π : S → A, which only base their

choice of action on the current state, and finite-memory policies, which track a finite

set of “modes” needed, in conjunction with the current state, to choose an action. For

a particular policy π, we can define a probability space PrπM,s over the set of infinite

paths IPathM,s.

Furthermore, for a measurable function X : IPathM,s → R, we write Eπ
M,s(X) for

the expected value of X with respect to PrπM,s.

Finally, we define MDP reward structures. We use a variant that assigns non-

negative values to state-action-state triples.

Definition 2.3 (Reward Structure). A reward structure in the context of an MDP

M = (S, s′,A,P , AP, L), is formally defined as a function R : S × A → R≥0, where

R(s, a) assigns a real-valued positive reward to each transition between states s and s′

due to action a.

Of particular interest in this thesis is the expected minimum cumulative reward

under constraints related to critical state penalties and lane changes until a target is

reached.

Definition 2.4 (Expected Cumulative Reward). For a reward structure R on an MDP

M and a target label b ∈ AP , we define the function cumulbR as:

cumulbR(s0
a0−→ s1

a1−→ . . .) =

nb−1∑
i=0

R(si, ai, si+1),

where nb is the first index for which b ∈ L(snb
). For the cases where b /∈ L(si) ∀i,

we define nb = ∞.

The expected cumulative reward under a policy π on M is then defined as:
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Eπ
M,s(cumul

b
R),

where the expectation is computed over the possible paths generated by following

policy π, starting from state s.

2.2.2 Probabilistic Computation Tree Logic (PCTL)

Probabilistic Computation Tree Logic (PCTL) [20] is the extension of Computation

Tree Logic (CTL) [38] which allows reasoning about infinite sequences of states..The

PCTL grammar syntax defines state formulas and path formulas for reasoning about

probabilistic systems.

Definition 2.5 (PCTL Syntax). A state formula ϕ is defined as:

φ ::= true | p | ¬φ | φ ∧ φ | P∼q[ϕ],

where p is an atomic proposition (p ∈ AP ), ∼ is a comparison operator (∼∈ {<,≤, >

,≥}), q is a probability threshold (q ∈ [0, 1]), and ϕ is a path formula.

Path formulas, denoted by ϕ, are defined as:

ϕ ::= Xφ | φUφ | φRφ.

In this grammar, Xφ means φ holds in the next state, φUψ means ψ eventually

holds with φ continuously true until then, and φRψ means φ holds until ψ or forever

if ψ never holds.

The operator semantics include logical operators ¬φ (negation) and φ∧ψ (con-

junction). Probability quantification is expressed using P∼q[ϕ], specifying that the
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probability of ϕ satisfies ∼ q. Derived operators include eventually (Fφ) defined as

true Uφ, and always (Gφ) defined as ¬F¬φ. These allow reasoning about probabilistic

temporal properties in a system.

2.2.3 PCTL Specifications for MDPs

For a Markov Decision Process (MDP) M and a PCTL formula φ defined over atomic

propositions AP , the probability of a path satisfying φ from state s under policy π is

denoted by PrπM,s(φ). This is given as:

PrπM,s(φ) = PrπM,s({σ ∈ IPathM,s | σ |= φ}),

where IPathM,s represents all paths starting from s. The maximum probability of

satisfying φ across all policies is Prmax
M,s(φ).

Additionally, the expected accumulated reward until a co-safe PCTL formula

φ is satisfied is defined for reward structure r as:

cumulπR(s0
a0−→ s1

a1−→ . . . ) =

nφ−1∑
i=0

R(si, ai, si+1),

where nφ is the first index where φ holds. The expected reward under π is Eπ
M,s(cumulπR),

and its maximum over all policies is Emax
M,s(cumulπR).

2.2.4 PRISM Model Checker

The probabilistic model checker PRISM [34] is a widely used probabilistic model checker

designed for analyzing various probabilistic models, including MDPs. PRISM provides
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a high-level modeling language, i.e., the PRISM language, based on the Reactive Mod-

ules formalism for constructing and analyzing complex systems [39]. In PRISM, models

are described as a system of interacting modules where a module consists of a finite set

of variables, which, taken as a whole, describes the state of the corresponding module.

The transitions of a module are specified through a series of guarded commands in the

following format:

[action] <guard> → <prob>:<update> + · · · + <prob>:<update>

A command does contain a guard, and optionally an action label, and a probabilistic

choice between updates. A guard is a logical predicate over variables, which allows

command execution only when it is true. The system moves to a new state according

to the specified updates with probabilities given by 〈prob〉. Actions facilitate the

interaction between modules by allowing synchronization and communication between

several components.

Support for reward structures in PRISM is provided through reward commands,

defined as follows:

<action><guard>:<reward>

representing the rewards accumulated when taking an action in a state that is satisfying

the guard.
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Chapter 3

Formal Framework for Lane Change

Analysis

This chapter lays down the formal groundwork needed to analyze and verify lane-

changing algorithms for autonomous vehicles. Vehicle dynamics, surrounding traffic

and environmental constraints are modeled precisely for Lane change which is a complex

and critical safety maneuver. This section provides a basis for probabilistic model

checking and the verifications of algorithmic properties, after we define the key concepts

and definitions used in the formalization.

3.1 Formal Definitions and Theoretical Constructs

This section introduces the formal definitions, propositions, and lemmas that establish

the foundational framework for analyzing lane-changing algorithms. Each concept is

defined rigorously to facilitate the development of verifiable and testable models.

To formalize the modeling of a roadway environment for AVs, we first define the
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scenario configuration, which outlines the basic structure and components of the road-

way.

Definition 3.1 (Scenario Configuration). Consider a roadway with a fixed number of

lanes L >= 1. An autonomous ego vehicle and multiple other vehicles are situated

on this roadway. Each vehicle occupies a position in a discrete set of reference points

along and cross the lanes. The state of each vehicle is described at discrete time steps.

The state of the autonomous ego vehicle is characterized by key parameters that

describe its operational status, position, and speed within the roadway environment.

Definition 3.2 (Ego Vehicle State). An ego vehicle is characterized by a state tuple

(s, l, v), where: s ∈ S is the operational state of the vehicle (e.g., cruising, changing

lanes, keeping lane), l ∈ {1, 2, · · · , N} donates the current lane number, with N being

the total number of lanes and v ∈ V represents the speed levels of the vehicle, where V

is a finite set of possible speeds.

Similarly, to account for interactions with other vehicles, we define the surrounding

vehicle states, which detail the presence, speed, and distance of other vehicles relative

to the ego vehicle.

Definition 3.3 (Surrounding Vehicles). For each position relative to the ego vehi-

cle (e.g., ahead in the current lane, behind in right lane), we define: presencei ∈

{true, false} is a Boolean variable indicating the presence of a vehicle at position i,

speedi ∈ V is the speed of the vehicle at position i, if present, and distancei ∈ D is the

the distance of vehicle at position i from ego vehicle, where D is a finite set of possible

distances.

Definition 3.4 (State Space). Let S be the finite state space capturing all the relevant

system aspects. Each state s ∈ S is defined by tuple:
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s = (EgoV ehicleState, {presencei, speedi, distancei}i∈J )

For each potentially occupied position i ∈ J (e.g., front, behind, neighbouring lanes),

presencei ∈ {true, false} and speedi ∈ V ∪ {0} represents the speed of the vehicle if

present, or 0 if not present.

Definition 3.5 (Transition Model). The system evolves based on a probabilistic tran-

sition model:

T : S ×A → P(S)

where P(S) is the probability distribution over the global state space. For a given state

s and action a, T (s, a)(s′) represents the probability of transitioning to state s′.

Definition 3.6 (Utility Function). Ego vehicle is associated with a utility function

Uego : S ×Aego → R

capturing the preferences from various outcomes. The utility function may consider

safety, efficiency, and comfort.

The goal of a lane-changing algorithm is to maximize Uego under the constraints of

the system dynamics.

Definition 3.7 (Feasibility of Lane Change). A lane change for the ego vehicle from

lane l to l′ (where l′ ∈ {l − 1, l + 1}) is feasible if:

1. l′ is within the set of lanes L, and

2. The lateral gap in lane l′ is sufficient to accommodate the ego vehicle i.e., ∀i ∈ Jl′,

if presencei = true, then distancei ≥ dmin
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Where Jl′ is the set of positions (e.g., ahead, behind) relative to ego vehicle in lane

l′, distancei is the distance between ego vehicle and vehicle at position i and dmin is

safety threshold ensuring sufficient clearance for lane change.

Lemma 3.8 (Collision-Free Dynamics). If the safety threshold dmin is strictly enforced,

then any sequence of lane-changing actions will result in collision free lane change.

Formally:

∀s ∈ S, if ∀i ∈ Jl′ , if presencei = true, then distancei ≥ dmin.

Proof. The safety condition guarantees that the distance between the ego vehicle and

vehicles in the target lane is large enough at any point prior to a lane change. The

enforcement of distancei ≥ dmin prevents any overlap in positions after the lane change,

thereby avoiding collision.

Lemma 3.9 (Data Collection Validity). The ego vehicle must ensure that data col-

lection from surrounding vehicles is complete for the decision-making algorithm to be

executable:

DataCollection =
n∧

i=1

datachecki > 0

where datacheckiindicates successful data acquisition (e.g., presence and speed) of the

surrounding vehicles i.

Proof. The decision-making algorithm of the ego vehicle relies on complete and accu-

rate data from surrounding vehicles to predict their behaviors and ensure safe navi-

gation. Without this data, the algorithm cannot make reliable decisions, rendering it

inexecutable.
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Proposition 3.10 (Optimization Objective). The objective of lane-changing algorithm

is to maximize the expected cumulative reward over a planning horizon while satisfying

all the safety constraints. Formally,

minσ E
σ

 T∑
t=0

(st, at)


subject to safety criterion, and operational constraints.

Proof. By formulating the problem as an MDP with associated rewards and penalties,

standard optimization techniques can be applied to find the policy σ that yields the

highest expected reward, reflecting efficient and safe driving behavior.

3.2 Verification Properties for Lane-Changing Algo-

rithms

Next, we propose some of the key properties that are needed to verify lane-changing

algorithms. We formalize these properties to provide a rigorous basis for proving lane-

changing behaviors correct and robust in dynamic environments.

3.2.1 Safety Properties

Based on the general formalizations described above, the ego vehicle must always op-

erate without colliding with other vehicles, to ensure that ego vehicle always satisfies

the safety criteria in current lane or in target lane while changing the lane.

P≥1[G (ϕsafe)]

where ϕsafe is a safety invariant ensuring sufficient clearance and no collision.
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3.2.2 Liveness Properties

These are some liveness properties which can be verified for the formal analysis of

lane-changing algorithms.

3.2.2.1 Eventual Progress

The ego vehicle must eventually take an action to ensure the system progress:

P>0[F (action ∈ stay, change_lane)]

3.2.2.2 Avoiding stagnation

The ego vehicle should avoid remaining in an unsafe or critical state indefinitely:

P>0[F (ϕsafe)]

3.2.2.3 Lane Change Feasibility

The ego vehicle must eventually have the ability to perform a safe lane change:

P>0[F (action = change ∧ ϕsafetarget)]

3.2.3 Performance Properties

Now we present some performance-based properties which are:
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3.2.3.1 Time Efficiency

The algorithm should maximize the time efficiency:

Emax[Time Efficiency]

3.2.3.2 Minimizing Critical State

The ego vehicle should avoid spending excessive time in critical states:

Emax[Time in Critical States]

3.2.3.3 Avoiding Excessive Deceleration

The ego vehicle should minimize deceleration event unless necessary for safety:

Emin[Total Deceleration]

3.3 Concluding Remarks

In this chapter, we began by defining the formal constructs necessary for analyzing

lane-changing algorithms, including state space, transition models, and utility func-

tions. We then discussed the key verification properties categorized into safety, live-

ness, and performance. The motivations of this chapter were twofold: to establish a

rigorous foundation for evaluating lane-changing algorithms and to provide a system-

atic approach for verifying their safety, feasibility, and efficiency. The next chapter will

delve into the probabilistic model checking of these algorithms, building on the formal

framework presented here.
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Chapter 4

Case Study: Formalization and

Verification of MOBIL

In this chapter, we present the formal foundations required for analyzing and verifying

the MOBIL algorithm, a widely recognized framework for lane-changing decisions in

autonomous vehicles. Lane-changing is a critical aspect of autonomous driving, re-

quiring meticulous modeling of vehicle behavior, interactions with surrounding traffic,

and adherence to safety and feasibility constraints. This chapter introduces the core

definitions, lemmas, and propositions necessary for formalizing the MOBIL algorithm,

serving as a foundation for probabilistic model checking and verification of its prop-

erties. The formalization encompasses essential components, such as incentive and

safety criteria, lane change feasibility, and factors like politeness and traffic density,

ensuring a comprehensive understanding of the algorithm’s functionality. Additionally,

we categorize and verify the algorithm’s safety, liveness, and performance properties,

providing a systematic evaluation of its effectiveness in dynamic traffic scenarios.
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4.1 Formalization of MOBIL

The MOBIL model [40] is being considered as a de facto benchmark lane-changing

model in traffic simulations, and as such is a useful proxy for understanding and eval-

uating automated driving behaviors. Therefore, analysis results from MOBIL can be

viewed as an informative starting point for the design and verification of more advanced

lane-changing algorithms towards safer and more reliable autonomous driving systems.

The MOBIL lane-changing model is formalized where the speed of the ego vehicle

is discretized with three distinct states as defined in definition 3.2. Secondly, this

abstraction makes the continuous nature of speed manageable for our lane-changing

decisions by simplifying it into manageable categories. It discretizes the dynamics and

simplifies its analysis while preserving the important dynamics to the model to capture

all the corner cases.

Definition 4.1 (Ego Vehicle State in MOBIL). An ego vehicle in the MOBIL model is

characterized by a state tuple (s, l, v, a), where: s ∈ {0, 1, 2, 3, 4, 5, 6, 7} representst the

operational state, l ∈ {1, 2, 3} denotes the current lane number, v ∈ {1, 2, 3} represent

the discretized speed level: v = 1 : 0− 40km/h,v = 2 : 41− 80km/h, and v = 3 : 81−

120km/h and a ∈ {0, 1} indicates whether the ego vehicle has collected environmental

data (a = 1).

Building upon definition 3.3 of surrounding vehicles, we define specific positions

relative to the ego vehicle that are critical for lane-changing decisions in MOBIL. We

have made some assumptions that an ego vehicle only considers surrounding vehicles

within its unsafe distance. Relative positions from vehicles across three lanes are

identified to locate surrounding vehicles. For example, the surrounding vehicles of
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an ego vehicle in the middle lane (Lane 2) is at positions 1,2,3,4,6,7,8, and 9 depending

on their presence. The ego vehicle position in the center lane is depicted in Figure 4.1

and the corresponding position in the surrounding vehicles is also shown in Figure 4.2.

Consider the case where the vehicle that is directly in front of the ego vehicle (Position

2) is within the unsafe distance. In this scenario, the ego vehicle must make a lane

change.

Figure 4.1: Ego Vehicle considering lane change to left as vehicle is in front (old and
new followers are denoted by fc and ftl respectively).

This detailed enumeration of positions ensures MOBIL comprehensively accounts

for all relevant surrounding vehicles during decision-making.

Definition 4.2 (Surrounding Vehicles in MOBIL). For each relevant position relative

to the ego vehicle, MOBIL defines: presencei ∈ {true, false} indicates the presence

of a vehicle at position i and speedi ∈ {0, 1, 2, 3} is discretized speed of the vehicle at

position i, where speedi = 0 is when no vehicle is present, or data not collected. Other

speeds are the same as for ego vehicle defined in definition 4.1.

Definition 4.3 (Incentive Criterion in MOBIL). The incentive criterion in MOBIL

evaluates the net benefit of lane change by considering both the ego vehicle’s acceleration
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Figure 4.2: Ego Vehicle Lane Change and Relative Positions of Surrounding Vehicles.

and the impact on surrounding vehicles:

Incetive Criterion = ∆accego + p(∆accnew_follower +∆accold_follower) > athr

Definition 4.4 (Safety Criterion in MOBIL). The safety criterion in MOBIL ensures

that any lane change does not adversely affect the safety of surrounding vehicles:

Safety Criterion = accft ≥ bsafe

More specifically, for left and right lane,

Safety_left = accftl ≥ bsafe and Safety_right = accftr ≥ bsafe

Where accftlis the acceleration of new follower in target lane (left or right) after the

lane change and bsafe is the safety threshold (e.g,bsafe = −1) represents the maximum

acceptable deceleration to prevent unsafe conditions.

Definition 4.5 (Lane Change Feasibility Conditions in MOBIL). A lane change to

the left or the right in MOBIL is feasible if all the following conditions are met:

1. Incentive Criterion > athr

37



2. Safety Criterion holds true

3. Lane Availability

Proposition 4.6 (Lane-Changing Decision Rule in MOBIL). An ego vehicle employ-

ing the MOBIL model will initiate a lane change to l′ iff all feasibility conditions in

Definition 4.5 are satisfied.

Proof. If any of the feasibility conditions (Incentive, Safety, or Lane Availability) are

not satisfied, initiating the lane change would either fail to provide sufficient benefit,

compromise safety, be impossible due to lane constraints, or violate regulations. There-

fore, in the absence of any of these conditions, the lane change cannot be initiated. On

the other hand, if all feasibility conditions are met, the lane change offers a net benefit,

does not compromise safety, and adheres to all necessary constraints and regulations.

In this case, initiating the lane change is both appropriate and justified.

Lemma 4.7 (Safety Precedence). If the Safety Criterion is not satisfied, the ego vehicle

must not change lanes, regardless of Incentive Criterion.

Proof. In autonomous vehicle operations, safety is paramount. Even if a lane change

offers significant benefits to the ego vehicle (e.g., increased speed), violating the Safety

Criterion can lead to hazardous situations such as collisions or forced braking of other

vehicles. Therefore, safety considerations override any potential incentives for lane

changing.

Lemma 4.8 (Collision-Free Lane Changes). If the safety criterion is strictly enforced,

then lane changes will always be collision-free:

∀s ∈ S, Safetyleft ∨ Safetyright ⇒ no Collisions
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Proof. The safety criterion requires that the acceleration of the following vehicle in

the target lane does not fall below bsafe, ensuring sufficient safety margin to prevent

collisions.

Defining safety-critical states is essential for ensuring the system’s ability to respond

effectively to hazardous scenarios. A formal definition of such states is outlined below:

Definition 4.9 (Critical State). A Critical State in MOBIL occurs when the ego vehicle

cannot safely continue in the current lane or execute a safe lane change. Formally:

Critical State⇒ ¬SafetyCurrent ∧ ¬(Safetyleft ∨ Safetyright)

In such a state, the vehicle may need to perform emergency maneuvers or take corrective

actions to maintain safety.

Definition 4.10 (Politeness Factor). The Politeness Factor p in MOBIL reflects the

ego vehicle’s consideration for the acceleration changes of other drivers. p = 0: Egoistic

behavior, where only ego vehicle’s benefits are considered in lane-changing decisions.

p = 1: Altruistic behavior, where the ego vehicle also accounts for the impact of its

action on surrounding vehicles’ acceleration.

Lemma 4.11 (Effect of Traffic Density on Politeness factor). Higher politeness factors

p generally lead to fewer lane changes by the ego vehicle, as it becomes more consid-

erate of the impact on surrounding vehicles. However, the relationship between p and

lane changes is influenced by traffic density, with counterintuitive behaviors possible at

extreme politeness levels or under specific conditions (e.g., discretized models, traffic

density effects).

Proof. The politeness factor p in MOBIL scales the ego vehicle’s consideration for sur-

rounding vehicles during lane changes. At p = 0, the ego vehicle prioritizes only its
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own acceleration incentive, often resulting in fewer cooperative lane changes, especially

in dense traffic. At p = 1, the ego vehicle considers others’ incentives, leading to more

cooperative lane changes that optimize overall traffic flow. This relationship is influ-

enced by traffic density and discretization effects, which may amplify counterintuitive

behaviors.

4.2 Verification Results

In this section, we assess the correctness and performance of MOBIL based on the pro-

posed probabilistic model checking approach. We mainly verify the safety, liveness, and

performance properties under different MOBIL parameter configurations by building

on the generic properties, outlined in Chapter 3.

4.2.1 Safety Properties

We have verified some safety properties to ensure the safety of ego vehicle, which are:

4.2.1.1 Deadlock

A deadlock property ensures that the ego vehicle will not indefinitely wait to change

lanes due to conflicting conditions or resource availability. Hence, we verify the follow-

ing property to ensure that.

E[G ¬ "deadlock"]

4.2.1.2 Recovery from Unsafe Conditions

P ≥ 0.90
[
("Critical_State")U ≤ 10 (s = 0)

]
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Once the ego vehicle enters a critical state, this property confirms it can return to

a safe driving condition within a bounded number of steps. By verifying “Recovery

from Unsafe Conditions” we ensure the system cannot remain indefinitely in an unsafe

configuration, underscoring the vehicle’s ability to promptly regain safety. For example,

we define a critical state for the ego vehicle as follows:

label "Critical_State" = s = 7;

This property holds “true” in PRISM and ensures that the ego vehicle will safely tran-

sition from a critical state to a safe state with at least 90% probability within 10

steps.

4.2.2 Liveness Properties

Here we present some liveness properties that ensure that the ego vehicle is making

progress.

4.2.2.1 Eventual Progress

P ≥ 1
[
F ("Lane_Changed" ∨ "Keeping_Lane")

]
This property guarantees with probability 1 that the system will ultimately change

lanes or remain in its lane.”Keeping_Lane” and ”Lane_Changed” are the represen-

tation of the states in which the vehicle has been keeping the lane and changing the

lane, respectively, in the model and given as:

label "Lane_Changed" = s = 2 ∨ s = 3;
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label "Keeping_Lane" = s = 1;

In the PRISM model checker, this property holds “true”, which ensures that the system

ensures progress to one of these two outcomes.

4.2.2.2 Eventually Make a Justified Lane Change

This property in PRISM is expressed as:

Pmax =?[F((incentive_left ∨ incentive_right) ∧ ”Lane_Changed”)]

This property computes the maximum probability that, at some later time in the

future, the system performs a lane change (Lane_Changed) with incentive to change

the lane (incentive_left or incentive_right). This makes sure that lane change takes

place only with the existence of a valid incentive. The incentive formulas are defined

as:

incentive_left = ∆accego_left + p · (∆accnew_follower_left +∆accold_follower) > athr

incentive_right = ∆accego_right + p · (∆accnew_follower_right +∆accold_follower) > athr

PRISM returns Pmax = 1, indicating that ego vehicle is guaranteed to eventually

perform a justified lane.

4.2.3 Performance Properties

Using reachability rewards [39] in PRISM, we evaluate our lane-changing model (MO-

BIL) under different parameter configurations with respect to various reward-based
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properties. Two of these properties, in particular, will guide our selection of the opti-

mal parameter values:

R{Lane_Changes}min = ? [C ≤ T]

We leverage upon cumulative reward properties [39] to find the minimum expected

number of lane changes by ego vehicle within time bound T in our model. Similarly,

R{Critical_State_Penalty}min = ? [C ≤ T]

which measures the minimum expected critical state penalty accumulated before ter-

mination within time-bound T.

We instantiate our model with varying values of two MOBIL parameters: the po-

liteness factor, denoted as p), which takes values from the set {0, 0.25, 0.50, 0.75, 1},

and the acceleration threshold or incentive criterion, denoted by athr, which can be

0.1, 0.5, or 1. Table 4.1 summarizes the resulting variables of these two parameters

after 200 discrete steps (T=200). Each cell corresponds to (p, athr)) setting and shows

Minimum Expected Lane Changes and Minimum Expected Critical State (penalty).

Overall, a higher politeness factor p generally increases lane changes since the ego

vehicle accommodates its neighbors more frequently. Meanwhile, lowering the incentive

threshold (athr) tends to boost the number of lane changes but can reduce the likelihood

of entering high-risk states. The fewest lane changes (2.452) occur with (p = 0, athr = 1,

though this setting has a relatively high critical-state penalty (4.481). Conversely, the

lowest penalties (around 3.746–3.754) appear when p is higher or athr is lower, at

the cost of increased maneuvers. Balancing these factors, a moderate setting—such

as (p = 0.5, athr = 1)—offers a middle ground between limiting lane changes and
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Table 4.1. Minimum Expected Lane Changes and Critical States for Different Pa-
rameters

p athr Minimum
Expected

Lane Changes

Minimum
Expected

Critical State

0 0.1 3.767 4.324

0.25 0.1 4.744 3.885

0.5 0.1 5.025 3.77

0.75 0.1 5.499 3.746

1 0.1 5.492 3.746

0 0.5 3.767 4.324

0.25 0.5 3.847 4.002

0.5 0.5 4.693 3.828

0.75 0.5 5.067 3.754

1 0.5 5.492 3.746

0 1 2.452 4.481

0.25 1 3.364 4.085

0.5 1 3.847 3.885

0.75 1 4.725 3.77

1 1 4.767 3.754

mitigating risky maneuvers. Accordingly, the subsequent properties will be verified

using this moderate parameter configuration (p = 0.5, athr = 1).

4.2.3.1 Minimum Expected Number of Lane Changes

R{Lane_Changes}min = ? [C ≤ 200]

We performed the experiment again, measuring Minimum Expected Lane Changes over
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200 discrete steps, this last time with a moderate threshold parameter of athr = 1. The

graphs resulting from this are shown in Figure 4.3 and prove Lemma 4. In general,

we find that lane changes decrease as politeness factors p increase because the ego

vehicle is more considerate. However, under predetermined discretization conditions

or when the levels of politeness are extreme, traffic density can lead to counterintuitive

behaviors.

Figure 4.3: Expected Lane Changes over Time Steps

4.2.3.2 Minimum Expected Time Efficiency

This property is defined as:

R{Time_Efficiency}min = ? [C ≤ 200]

We performed an experiment to evaluate the Minimum Expected Time Efficiency for

T ≤ 200. As shown in Figure 4.4, the ego vehicle is more time-efficient at p = 1 than

at p = 0.5 and p = 0, demonstrating that it can maintain safety while increasing its

lane-changing rate to achieve better travel times.
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Figure 4.4: Time Efficiency at different p values

4.2.3.3 Minimum Deceleration

R{Acceleration_Management}min = ? [F Lane_Changed ∨ Critical_State]

We conducted this experiment at athr = 1 with varying values of politeness factor p,

the results as shown in Figure 4.5, reveal that p = 0.5 outperforms p = 0 yet remains

slightly below p = 1.

Figure 4.5: Minimum Deceleration over different politeness factor

However, since p = 1 leads to an increased number of critical states, p = 0.5 and

athr = 1 represent a balanced choice to achieve both safety and efficiency.
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Comparing the proposed PRISM based verification results with the simulation-

based results presented in the original MOBIL paper [40], highlights that both the

approaches are complementary in nature, and the proposed approach has some distin-

guishing advantages. As an example, the simulation results in MOBIL paper show a

peak of 1,100 lane changes per hour per km under symmetric rules (p = 0) and 600

changes under p = 1 (more cooperating behavior). These results are useful for under-

standing the behavior of real vehicles in real time, but the proposed based analysis

provides a systematic quantification of these dynamics as a function of varying param-

eters and demonstrates the existence of balanced configurations like p = 0.5, athr = 1

which result in a moderate amount of lane changes (4.767) while keeping the penalty

under critical states to a minimum (3.754). Moreover, unlike the MOBIL simulations

which observe safety through emergent behaviors as well as velocity adjustments, our

approach guarantees critical properties, such as a ≥ 90% recovery probability from

unsafe states and absence of deadlocks for all modeled conditions. Additionally, the

MOBIL simulations focus on emergent dynamics in particular scenarios leading to chal-

lenges on generalizing results or examining rare edge cases. However, in comparison

our approach, completely checks all possible states and so is correct and robust by

definition beyond the scope of simulation studies. On the other hand, the models used

in simulation-based analysis are closer to reality compared to our discretized models.

These comparisons show that the two approaches are complementary in nature and

have to play together to provide more comprehensive insights about the underlying

lane-changing algorithm.
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4.3 Concluding Remarks

In this chapter, we formalized and verified the MOBIL algorithm for autonomous vehi-

cle lane-changing by constructing a rigorous mathematical framework. The properties

analyzed were safety, liveness and performance. The liveness properties ensured the

support to smooth traffic flow for the algorithm while the safety properties ensured

the prevention of deadlocks and unsafe conditions. Based on this analysis, parameter

configurations were identified that exhibit a tradeoff between lane change frequency

and critical penalty minimization.

The formal methods were shown to be robust for analyzing lane-changing algo-

rithms, with high probability recovery from unsafe states and guarantees for avoiding

deadlock. This approach revealed balanced configurations that achieved efficiency while

maintaining cooperative behavior. In doing so, these findings reconfirm the necessity of

building in rigorous analysis in the development of autonomous driving systems from

the very beginning for safety and reliability reasons.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we presented a groundbreaking approach to the formal analysis of lane-

changing algorithms for AVs using probabilistic model checking. This comprehensive

methodology represents a leap forward in systematically formalizing and verifying lane-

changing strategies. By employing a generic framework, we not only analyzed critical

safety, liveness, and performance properties but also deconstructed the complex lane-

changing process into manageable subtasks, enabling separate model utilization for

verification.

Our application of this approach to the widely recognized MOBIL algorithm un-

derscored its effectiveness. Through meticulous analysis, we identified key parameters

that significantly impact lane-changing decisions and elucidated the influence of varying

thresholds and parameter values. Furthermore, we delved into the effects of traffic den-

sity on the ego vehicle’s decision-making, uncovering nuanced insights into this pivotal

aspect. This research establishes a robust foundation for the ongoing formal analysis

49



of lane-changing algorithms, reaffirming the indispensable role of formal methods in

enhancing the safety and reliability of AVs.

5.2 Future Work

To expand the horizons of this research, several directions can be explored:

• Symmetric vs. Asymmetric Traffic Rules: While our research has been

thoroughly conducted under symmetric traffic rules, future studies can boldly

delve into the complexities of asymmetric traffic rules, mirroring the intricate and

diverse traffic networks found across Europe and other regions. This exploration

can potentially reveal novel insights into the adaptability of autonomous systems.

• Multi-Agent Scenarios: A transformative leap can be made by extending

the proposed approach to encompass dynamic interactions between multiple au-

tonomous agents. This expansion will not only address cooperative strategies but

also pioneer understanding in competitive scenarios, paving the way for harmo-

nious coexistence in increasingly crowded autonomous ecosystems.

• Dynamic and Learning-Based Models: Pushing the envelope further, future

investigations can integrate state-of-the-art dynamic models alongside advanced

reinforcement learning techniques. This paradigm shift could enable autonomous

systems to evolve in real-time, crafting lane-changing strategies that are not only

adaptive but also capable of responding to unforeseen challenges with unparal-

leled agility.

• Real-Time Decision-Making: The frontier of real-time decision-making beck-

ons with its promise of precision and reliability. Developing cutting-edge method-
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ologies to verify and execute split-second decisions can revolutionize the safety

and efficiency of lane-changing maneuvers, ensuring impeccable performance un-

der the pressure of real-world demands.

• Scalability and Efficiency: To truly elevate this framework, optimizing for

scalability is imperative. By enabling the analysis of exceedingly complex traffic

scenarios and massive datasets, the research can lay the groundwork for address-

ing the sprawling networks of modern metropolises and beyond.

• Broader Application: The versatility of this framework holds untapped poten-

tial for a wider spectrum of lane-changing algorithms. Systematically applying it

to diverse methodologies could uncover universal principles, fostering a profound

understanding of autonomous behaviors across a multitude of contexts.

This future work will build upon the foundation laid in this study, propelling the field

of autonomous vehicle research toward more sophisticated and practical solutions for

real-world deployment.
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