
i | P a g e

Automated Asset Management

Author

Ali Sajjad

Muhammad Zubair

Mubashir Hussain

Talha Aslam

Supervisor

Asst Prof Dr Saddaf Rubab

Submitted to the faculty of Department of Computer Software Engineering,

Military College of Signals, National University of Sciences and Technology,

in partial fulfillment for the requirements of B.E Degree in Computer Software

Engineering.

June 2021

ii | P a g e

CERTIFICATE OF CORRECTIONS & APPROVAL

Certified that work contained in this thesis titled “Automated Asset Management” carried out

by _Ali Sajjad, Mubashir Hussain, Muhammad Talha Aslam, Muhammad Zubair_ under

the supervision of _Asst Prof Dr Saddaf Rubab_ for partial fulfillment of Degree of Bachelor

of Computer Software Engineering in Military College of Signals, National University of

Sciences and Technology, Islamabad during the academic year 2020-2021 is correct and

approved.

Approved by

Supervisor

Asst Prof Dr Saddaf Rubab

Date: June 21, 2021

iii | P a g e

DECLARATION

No portion of work presented in this thesis has been submitted in

support of another award or qualification in either at this institute or

anywhere else.

iv | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Signature of Student:

Ali Sajjad

Mubashir Hussain

Muhammad Talha Aslam

Muhammad Zubair

Signature of Supervisor

Asst Prof Dr Saddaf Rubab

v | P a g e

Acknowledgements

We would like to thank Allah Almighty for His incessant blessings which have been

bestowed upon us. Whatever we have achieved, we owe it to Him, in totality. We are also

thankful to our families for their continuous moral support which makes us what we are.

We are extremely grateful to our project supervisor Asst Prof Dr. Sadaf Rubab from

MCS who in addition to providing technical help and guidance also provided us moral support

and encouraged us throughout the development of the project.

We are highly thankful to our all teachers and staff of MCS who supported and guided us

throughout our course work. Their knowledge, guidance and training enabled us to carry out this

whole work.

Finally, we are grateful to the faculty of Computer Software Engineering Department of

the Military College of Signals, NUST.

In the end we would like to acknowledge the support provided by all our friends,

colleagues and a long list of well-wishers whose prayers and faith in us propelled us towards our

goal.

vi | P a g e

DEDICATION

In the name of ALLAH, the most Merciful, the most Beneficent.

Dedicated to our parents and adored siblings whose tremendous support

and cooperation led us to this wonderful accomplishment

vii | P a g e

Abstract

The project aims to develop an automated system for finding the dimensions of the road assets.

All this process is being done manually before which required a lot of manpower, time, and cost.

But with Automated Asset Management (AAM) all this process is now shifted towards

automation and that saves a lot of resources. The Automated Asset Management will help the

transportation department in maintaining the road asset`s condition on time. The system will take

four input data files with extensions (txt, bin, json, jpg) and it will give you the dimensions of the

assets identified in the image.

The system uses LiDAR point cloud data and maps the 3D point data on the 2D image. It will

generate an excel sheet in which the information regarding the assets and their dimensions are

stored.

viii | P a g e

Table of Contents

CERTIFICATE OF CORRECTIONS & APPROVAL .. ii
DECLARATION ... iii
Plagiarism Certificate (Turnitin Report)..iv
Acknowledgements .. v
Abstract ... vii
Table of Contents ... viii
List of Figures .. x
List of Tables ...xi
CHAPTER 1: INTRODUCTION... 12

1.1 Problem Statement ... 12
1.2 Solution .. 12
1.3 Scope .. 12
1.4 Objectives... 12

CHAPTER 2: Literature Review ... 13
2.1 Methodology .. 13

CHAPTER 3: External Interface Requirements .. 15
3.1 User Interfaces ... 15
3.2 Hardware Interfaces ... 15
3.3 Software Interfaces... 16

3.3.1 Python v3 ... 16
3.3.2 Libraries ... 16
3.3.3 OS permission .. 16

CHAPTER 4: System Features .. 16
4.1 Validating Input ... 16

4.1.1 Description and Priority ... 16
4.1.2 Stimulus/Response Sequences ... 17
4.1.3 Functional Requirements ... 17

4.2 Dimensional Measurement of the Assets ... 17
4.2.1 Description and Priority ... 17
4.2.2 Stimulus/Response Sequences ... 17
4.2.3 Functional Requirements ... 17

4.3 Evaluation .. 18
4.3.1 Description and Priority ... 18
4.3.2 Stimulus/Response Sequences ... 18
4.3.3 Functional Requirements ... 18

ix | P a g e

CHAPTER 5: Nonfunctional Requirements ... 19
5.1 Performance Requirements .. 19
5.2 Safety Requirements .. 19
5.3 Software Quality Attributes ... 19

CHAPTER 6: Architecture ... 20
6.1 Architecture Design ... 20
6.2 Decomposition Description .. 20

6.2.1 Module Decomposition .. 20
6.2.2 Process Decomposition .. 21

6.3 Sequence Diagram: .. 21
6.4 Design Rationale .. 21

CHAPTER 7: Data Design .. 22
7.1 Data Description .. 23
7.2 Data Dictionary .. 23

CHAPTER 8: Component Design .. 23
CHAPTER 9: Human Interface Design ... 29

9.1 Overview Of User Interface ... 29
CHAPTER 10: Requirements Matrix .. 30
APPENDIX A ... 31
REFERENCES .. 31

x | P a g e

List of Figures

Figure 1 System Architecture .. 20
Figure 2 Sequence Diagram... 21
Figure 3 System’s Component Diagram .. 24
Figure 4 User Interface .. 29

xi | P a g e

List of Tables

Table 1 Data Description ... 23
Table 2 Data Dictionary .. 23

12 | P a g e

CHAPTER 1: INTRODUCTION

The Automate Asset Management is a system that will be used to measure the

dimensions of road assets that are present in the inventory using LIDAR point cloud and Imagery

and maintain them in a database.

1.1 Problem Statement

 In the most countries where asset management is being done, it is manual using lots of

manpower which requires a lot of time and cost fortune.

1.2 Solution

 So, for the problem on hand, we propose Automated Asset Management (AAM) in which

all the tasks are being automated reducing to manpower required previously to minimum and

thus costing a little. The positive side of this system is that error caused by manpower is also

reduced to minimum because of accuracy of the system.

1.3 Scope

The Automated Asset Management system calculates the dimensions of the assets. It

helps in Road Maintenance Process. The main benefit of this system is that it does all this

process automatically rather manually. It saves a lot of time and human resource. When this

process is manually done, it takes weeks or sometimes months and a lot of human resource and a

lot of cost must be spent on it but with this automation system, a lot of time, cost, and human

resource can be saved. It improves the road management and therefore the Transportation.

The assets that are currently present in the inventory, are as follow:

• Streetlight

• Signpost

• Rail guard

• Sidewalk

1.4 Objectives

The main objective of the project is to develop an automated dimensional measurement system

which can be integrated into our industrial partner’s existing transportation asset management

13 | P a g e

service which will be used to build a comprehensive asset inventory for the US Department of

Transportation and other agencies.

CHAPTER 2: Literature Review

2.1 Methodology

Project from lidar to Cam2:
To convert Velodyne (lidar) points into camera coordinates, consider the following

transformation:

14 | P a g e

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃2 ∗ 𝑅𝑅0_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑇𝑇𝑇𝑇_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑡𝑡𝑡𝑡_𝑐𝑐𝑐𝑐𝑐𝑐

Multiplication should be performed in homogenous coordinate to simplify the calculation. To

convert to pixel coordinate, simply normalize by z-coordinate.

• In 3D, the homogeneous point (x,y,z,w) corresponds to the Cartesian point (x/w,y/w,z/w)

• There are an infinite number of homogeneous ways to represent each Cartesian point.

E.g., (1,1,1,1), (2,2,2,2) and (3,3,3,3) all correspond to the Cartesian point (1,1,1)

• For finite points, w is not 0.

To map points to pixel, this is a projective transformation from lidar to image plane.

• Compute projection matrix

• Project points to image plane

• Remove points that lie outside of image boundaries.

Project from Cam2 to Lidar:
To project a 2d pixel coordinate converted from lidar point in previous section back to its

original value:

• Compute inverse of the projection matrix

• Convert 2d point to its homogenous representation.

• Multiply this homogenous point with the inverse of the projection matrix.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝__𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃0 ∗ 𝑅𝑅0__𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑇𝑇𝑇𝑇__𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣__𝑡𝑡𝑡𝑡__𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝__𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−1 = 𝑃𝑃0−1 ∗ 𝑅𝑅0__𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1 ∗ 𝑇𝑇𝑇𝑇__𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙__𝑡𝑡𝑡𝑡__𝑐𝑐𝑐𝑐𝑐𝑐−1

Finding depth of pixel points:

To project the bounding box points(pixel) to 3d lidar points, the depth of the point is required in

cam2/image coordinate system. The depth of the point can be found by comparing the 2d point

with the projected lidar points in image coordinates present inside bounding box.

Dimensional Measurements:

15 | P a g e

The length of the sides of polygon are usually of different sizes.

How to approximate the length and width/height of a polygon? [Problem]

Maybe, approximate a bounding box that can fit a polygon and measure its dimensions.

CHAPTER 3: External Interface Requirements

3.1 User Interfaces

Automated Asset Management (AAM) will be executed from a command line. It will have

different command line arguments to control its behavior which will be described in the user

manual.

3.2 Hardware Interfaces

• Core i5 or greater

• RAM 4GB Minimum (8 GB recommended)

• VRAM 2GB Minimum (4 GB recommended)

16 | P a g e

3.3 Software Interfaces

3.3.1 Python v3

For the working of this software, python3 is needed to be installed on the system.

3.3.2 Libraries

Moreover, there are several libraries required to be installed on the system prior than its working:

• NumPy

• SciPy

• openpyxl

Additional libraries will be added later if required.

Furthermore, the additional libraries for data visualization that will be helpful for testing are:

• matplotlib

• mayavi

• OpenCV-python

• PyQt5

3.3.3 OS permission

Regarding OS permission control, access must be granted to read and write the files so that

software can work uninterruptedly.

CHAPTER 4: System Features

This segment of this document will be explaining features of the AAM software, their stimulus

and responses, sequence of actives (if any) and functional requirements related to these features.

4.1 Validating Input

4.1.1 Description and Priority

The system will validate the input dataset according to the provided standard format. A single

instance in dataset consists of four files given below with their corresponding extension:

• Lidar data (.bin)

• Image (.png)

• Annotated assets data (.json)

• Calibration (.txt)

17 | P a g e

An instance of dataset will have the same name plus the appropriate extension. For example,

000040.bin -- 000040.png -- 000040.json -- 000040.txt

An additional ground-truth file (.csv) can be provided as an input for evaluation process.

4.1.2 Stimulus/Response Sequences

After feeding the system with input dataset, it will validate the first instance of the data set. If the

data instance is validated successfully, the system will move to the next step of dimensional

measurements. If the data instance is not validated successfully, then the system will store an

appropriate error message and will move to the next data instance in the set if any, or else the

system will exit after generating an output file. An additional step of evaluation will be

performed before exiting if the ground truth is provided.

4.1.3 Functional Requirements

REQ-1.1: The system should be able to read the dataset from a given directory.

REQ-1.2: The system should be able to validate the instance of dataset before moving to the

next step. If that instance contains any error, record an appropriate message for that error in the

final output file.

4.2 Dimensional Measurement of the Assets

4.2.1 Description and Priority

After the data instance is validated successfully, it goes through a series of steps to measure the

dimensions of the assets present in the inventory. And then records it in the final output file

(excel spreadsheet).

4.2.2 Stimulus/Response Sequences

The validated data instance is passed to the dimensional measurement step. If the dimensions are

calculated successfully, they are recorded in the output file. If not, then the appropriate error is

recorded in the output file. And then the next data instance goes through the same series of steps

if any in the dataset. An additional evaluation step might be performed before exiting (same step

as described in section 4.1.2).

4.2.3 Functional Requirements

REQ-2.1: The system should be able to measure the 2d-dimensions (length and width) of the

assets present in the inventory.

18 | P a g e

REQ-2.2: The system should be able to record the successful dimensional measurements in the

output file.

REQ-2.3: The system should be able to record appropriate error messages for the unsuccessful

dimensional measurements in the output file.

4.3 Evaluation

4.3.1 Description and Priority

It is an optional step to evaluate the system accuracy against the ground-truth of dataset provided

to the system. It will be controlled via command line argument.

4.3.2 Stimulus/Response Sequences

After the dimensional measurements of all the instances of the dataset, the accuracy of the

system can be measured from comparing the ground-truth provided as an input via command line

and results of the system. The system will generate an evaluation results file before exiting. It

will include the overall combined accuracy of the system and the accuracy of each class of the

assets present in the inventory and some additional statistical analysis.

4.3.3 Functional Requirements

REQ-3.1: The system should be able to evaluate itself from the ground-truth of dataset provided

via command line.

REQ-3.2: The system should be able to record the evaluation results in a file. It should include

the overall accuracy of the system and the accuracy of each class of the assets present in the

inventory.

19 | P a g e

CHAPTER 5: Nonfunctional Requirements

5.1 Performance Requirements

• Software should be optimized enough to use least resources required for

computations.

• Software should be time effective so that it speeds up the process.

5.2 Safety Requirements

• Exceptions should be handled well in the software so that unexpected crashes can be
avoided.

5.3 Software Quality Attributes

• The final Python script should be properly commented.

• The code should follow the PEP-8 style guide for Python code.

20 | P a g e

CHAPTER 6: Architecture

6.1 Architecture Design

The architectural design of the Automated Asset Management is Pipe and Filter. The pipe and

filter divide the system into the following modules to achieve the complete functionality.

Pipe
The pipes serve as connectors for the stream of data being transformed, each connected to the
next component in the pipeline.
Filter
Filters are the independent entities also known as components, which performs transformation on
data and process the input they receive.

Figure 1System Architecture

6.2 Decomposition Description

The decomposition of the system is explained in the following two ways.

6.2.1 Module Decomposition

NIL

21 | P a g e

6.2.2 Process Decomposition

The process decomposition is explained through sequence diagram which decomposes the

system into well-defined and cohesive processes. The sequence diagram shows the sequence of

processes that undertakes to give the desired output.

6.3 Sequence Diagram:

Figure 2 Sequence Diagram

The sequence diagram shows the sequence of events and interactions arranged in time sequence

from user’s perspective. The user will give input to the system and then the system will validate

the input if the input is incorrect then it will display an error to the user otherwise if input is

correct then system do the mapping of 2d image to 3d Lidar points and after that calculate the

dimensions of the assets present in the image and record these dimensions onto an excel file and

display that file to the user at the termination of the program.

6.4 Design Rationale

The architecture chosen for the Automated Asset Management is Pipe and Filter.

It has independent entities called filters (components) which perform transformations on data and

process the input they receive, and pipes that serve as connectors for the stream of data being

transformed, each connected to the next component in the pipeline. As the process of calculating

22 | P a g e

dimensions is quite large and requires a lot of data processing and transformation, so it is broken

down to multiple steps. Each filter is responsible for one of the steps and this architecture

supports parallelism which can increase the speed of the system. We are giving a directory/path

to the program as input and that directory contains many files. So, if path or format of the file

isn`t correct than the program won`t stop there, it shows error to that input and moves on to the

next one. Moreover, each filter is responsible for applying a function to the given data and some

filters run parallel to each other to give the desired output.

CHAPTER 7: Data Design

23 | P a g e

7.1 Data Description

The training dataset for the automated asset management system comprised of four files for one

component/image.

File Name File Extension File Description
JSON .json It contains bounding boxes of assets which includes

their vertices and names of assets.
TEXT .txt It contains camera calibrations matrix for images

with LIDAR camera as reference.
BIN .bin It contains the 3D point cloud but in binary form.
IMAGE .png It is a 2D image of roadway.
Table 1Data Description

7.2 Data Dictionary

Function Table
Function Name Parameters Description
load_lidar file_path Loads lidar data from directory.
load_image file_path Loads image from directory.
load_calibration file_path Loads the camera calibrations from

file path.
load_assets file_path Loads Bounding boxes from file

path in json file.
load_ground_truth file_path Loads ground truth values from file

path for comparison
load_data_instance base_file_name,

path=DEFAULT_DATA_PATH

get_projection_matrix calib_dict Calculates the projection matrix
from calibration dictionary.

project_lidar_to_image point_cloud, projection_matrix,
image_shape

Project the lidar points to image
using calculated projection matrix.

get_points_in_polygon polygon_points, test_points Gets the points in the polygon by
comparing its depth with other
points in the polygon.

polygon_area polygon_points Finds the area of the polygon using
its given vertices.

get_depth asset_label, asset_points,
asset_lidar_points

Finds the depth of a point in 2D
image with using mapped lidar
points.

project_image_to_lidar asset_points, inv_projection_matrix Maps the images to their point
cloud.

reduce_dimensions asset_points_3d Reduces the dimension from 3D to
2D, mainly used for side walks

minimum_bounding_rectangle asset_points Finds the rectangle around given
points with minimum area.

main Controls whole program
Table 2 Data Dictionary

CHAPTER 8: Component Design

24 | P a g e

Figure 3System’s Component Diagram

In this section we will provide the detailed description of the functions listed in section 7.2.

Function 1
Name:
load_lidar
Dependencies:
Full path including filename of lidar point cloud binary (.bin) file.
Description:
Loads lidar point cloud data from a binary file into numpyndarray.
Summary:

25 | P a g e

Returns

point_cloud: numpy.ndarray
 An [N x 3] point cloud matrix

Raises

FileNotFoundError
 If file is not found at specified path
ValueError
 If the specified file is not in raw binary format (.bin)

Function 2
Name:
load_image
Dependencies:
Full path including filename of image file.
Description:
Loads image into numpyndarray.
Summary:
 Returns

image: numpy.ndarray
 [height x width x channels] image pixel value matrix

 Raises

FileNotFoundError
 If file is not found at specified path
UnidentifiedImageError
 If the specified image file is not supported by Pillow

Function 3
Name:
load_ calibration
Dependencies:
Full path including filename of calibration file.
Description:
Loads calibration data into a dictionary.
Summary:
 Returns

calib_dict: {str: numpy.ndarray}
 A dictionary of calibration data with name as key and values as numpy array

 Raises

FileNotFoundError
 If file is not found at specified path
IncorrectFormatError
 If the specified calibration file is not in proper Kitti format
ValueError
 If the file contains numeric values in incorrect format

Function 4
Name:
load_ assets
Dependencies:
Full path including filename of assets' label file.
Description:

26 | P a g e

Loads assets' data into a dictionary.
Summary:
 Returns

asset_dict: dictionary (json)
 A dictionary of assets' data (labels, points)
 Raises

FileNotFoundError
 If file is not found at specified path
JSONDecodeError
 If there is any error in decoding json data

Function 5
Name:
load_ground_truth
Dependencies:
Full path including filename of ground truth file.
Description:
Loads ground truth csv file into numpy array.
Summary:
 Returns

ground_truth: numpy.ndarray
 A 2d numpy array of ground truth data
 Raises

FileNotFoundError
 If file is not found at specified path
ValueError
 If the file contains formatting and value errors

Function 6
Name:
load_data_instance
Dependencies:
Base file name of the data instance, like '000040' from '000040.png'.
Path of dataset, it will look for files in the following folders in
 the provided path
 'path/images' for image (png) files
 'path/bin' for lidar (bin) files
 'path/calib' for calibration (txt) files
 'path/assets' for assets (json) files
Description:
Loads an instance of data from the given path.
Summary:
 Returns

image, point_cloud, calib_dict, asset_dict: tuple
 A tuple consisting of the above data if the instance is loaded
 Successfully.
 Raises

See load_image, load_lidar, load_calibration and load_assets documentation.

Function 7
Name:
get_projection_matrix
Dependencies:
calib_dict: {str: numpy.ndarray}
 A dictionary of calibration data with name as key and values as numpy array

27 | P a g e

Description:
Get lidar points to camera-2 image points projection matrix and its inverse matrix.
Summary:
 Returns

projection_matrix: np.ndarray
 [3 x 4] Lidar to camera-2 image projection matrix
inv_projection_matrix: np.ndarray
 [4 x 4] Inverse matrix of projection_matrix (Homogeneous Coordinate
 System)

Function 8
Name:
project_lidar_to_image
Dependencies:
point_cloud: np.ndarray
 [N x 3] point cloud matrix
projection_matrix: np.ndarray
 [3 x 4] Lidar to camera-2 image projection matrix
image_shape: tuple/list
 A tuple/list of image's height, width in sequence
Description:
Projects lidar point-cloud to camera-2 image points.
Summary:
 Returns

points_2d: np.ndarray
 [N x 3] lidar points matrix in camera-2 coordinates. Only
 points in image's fov (field of view) are returned.
 indices: np.ndarray
 1D array of indices of lidar points in image's fov, so that they can be
 indexed in the original point_cloud matrix.

Function 9
Name:
get_points_in_polygon
Dependencies:
polygon_points :np.ndarray
 [N x 2] asset/polygon bounding box/vertices matrix
test_points :np.ndarray
 [N x 3] lidar points matrix already coverted to camera-2 cooridnates
Description:
Finds out which 2d test points are lying inside the boundary of the given polygon..
Summary:
 Returns

points_in_polygon: np.ndarray
 [N x 3] matrix of lidar points (in camera-2 space) lying inside the boundary of the polygon/asset's bounding
box.

Function 10
Name:
polygon_area
Dependencies:
polygon_points: np.ndarray
 [N x 2] asset/polygon bounding box points/vertices matrix.
Description:
Finds area of the polygon.
Summary:
 Returns

28 | P a g e

poly_area: float
 Area of the polygon

Function 11
Name:
get_depth
Dependencies:
asset_label: str
 Name of the asset
asset_points: np.ndarray
 [N x 2] asset's bounding box points matrix
asset_lidar_points: np.ndarray
 [N x 3] matrix of lidar points (in camera-2 space) lying inside the
 boundary of the asset's bounding box.
Description:
Finds the depth (z-coordinate) of the asset's bounding box points from the lidar points in camera-2 image space
enclosed in bounding box of the asset.
Summary:
 Returns

asset_points_depth: np.ndarray
 [N x 3] asset bounding box points matrix with depth as third coordinate.
idx_list: np.ndarray
 Indices of closest points in asset_lidar_points to asset_points

Function 12
Name:
project_image_to_lidar
Dependencies:
asset_points: np.ndarray
 [N x 3] asset coordinates in image space including depth as third coordinate.
inv_projection_matrix: np.ndarray
 [4 x 4] inverse of lidar to camera-2 image projection matrix.
Description:
Project`s camera-2 image/asset points to lidar point-cloud.
Summary:
 Returns

asset_points_3d: np.ndarray
 [N x 3] asset points in lidar point-cloud space

Function 13
Name:
reduce_dimensions
Dependencies:
asset_points_3d: np.ndarray
 [N x 3] matrix of points in 3d space
Description:
Projects 3d points into 2d space using Singular Value Decomposition and takes centroid of 3d points as origin in 2d
space.
Summary:
 Returns

asset_points_2d: np.ndarray
 [N x 2] matrix of points in 2d space projected from the points in the new 3d space.

Function 14
Name:
minimum_bounding_rectangle
Dependencies:
asset_points: np.ndarray

29 | P a g e

 [N x 2] matrix of asset points in 2d space
Description:
Find the smallest bounding rectangle for a set of points.
Summary:
 Returns
rect_points: np.ndarray
 [4 x 2] matrix of minimum bounding rectangle points

CHAPTER 9: Human Interface Design

9.1 Overview Of User Interface

The User Interface of this program is Command Line Interface (CLI). When user runs the program, the input will be
given to the program through command line.

Figure 4 User Interface

30 | P a g e

CHAPTER 10: Requirements Matrix

Sr Requirement Component

1 User will enter the input directory and system will validate the path
and load the data if corrected.

Function 1,2,3,4,5,6

2 After loading the data, system will project 3D lidar points on image
and after doing several processes, find the dimensions of the assets.

Function 7,8,9,10,11,12,13,14

3 After finding the dimensions, system will compare the results with
the ground truth and find the absolute error.

Main Function

31 | P a g e

APPENDIX A

REFERENCES

https://wrf.ecse.rpi.edu/pmwiki/pmwiki.php/Main/HomogeneousCoords

https://www.mrt.kit.edu/z/publ/download/2013/GeigerAl2013IJRR.pdf

https://www.programmersought.com/article/67871412286/

https://medium.com/test-ttile/kitti-3d-object-detection-dataset-d78a762b5a4

https://github.com/yanii/kitti-pcl/blob/master/KITTI_README.TXT

https://medium.com/swlh/camera-lidar-projection-navigating-between-2d-and-3d-911c78167a94

https://stackoverflow.com/questions/45333780/kitti-velodyne-point-to-pixel-coordinate

https://github.com/bostondiditeam/kitti/blob/master/Papers_Summary/Geiger2013IJRR/readme.

md

https://docs.enthought.com/mayavi/mayavi/mlab.html

https://gis.stackexchange.com/questions/93848/finding-length-and-width-of-polygon-using-qgis

Plagiarism Report

https://wrf.ecse.rpi.edu/pmwiki/pmwiki.php/Main/HomogeneousCoords
https://www.mrt.kit.edu/z/publ/download/2013/GeigerAl2013IJRR.pdf
https://www.programmersought.com/article/67871412286/
https://medium.com/test-ttile/kitti-3d-object-detection-dataset-d78a762b5a4
https://github.com/yanii/kitti-pcl/blob/master/KITTI_README.TXT
https://medium.com/swlh/camera-lidar-projection-navigating-between-2d-and-3d-911c78167a94
https://stackoverflow.com/questions/45333780/kitti-velodyne-point-to-pixel-coordinate
https://github.com/bostondiditeam/kitti/blob/master/Papers_Summary/Geiger2013IJRR/readme.md
https://github.com/bostondiditeam/kitti/blob/master/Papers_Summary/Geiger2013IJRR/readme.md
https://docs.enthought.com/mayavi/mayavi/mlab.html
https://gis.stackexchange.com/questions/93848/finding-length-and-width-of-polygon-using-qgis

32 | P a g e

18
Automated Asset Management
ORIGINALITY REPORT

%

SIMILARITY INDEX

11%
INTERNET SOURCES

0%
PUBLICATIONS

15%
STUDENT PAPERS

PRIMARY SOURCES

 1 Submitted to Higher Education Commission
Pakistan
Student Paper

wrf.ecse.rpi.edu
Internet Source

medium.com
Internet Source

Submitted to University of Pretoria
Student Paper

Submitted to University of Bahrain
Student Paper

Submitted to RDI Distance Learning
Student Paper

 7 Submitted to Colorado Technical University

Online
Student Paper

 8 Submitted to 於2012-06-13提交⾄ Higher
Education Commission Pakistan
Student Paper

9%

1%

1%

1%

1%

1%

1%

<1%

 2

 3

 4

 5

 6

33 | P a g e

34 | P a g e

www.slideshare.net
Internet Source

Submitted to CSU, San Jose State University
Student Paper

Submitted to University of Maryland,
University College
Student Paper

Submitted to University of Western Ontario
Student Paper

eprints.kfupm.edu.sa
Internet Source

id.scribd.com
Internet Source

syedhasan010.medium.com
Internet Source

Mahesh Shirole, Rajeev Kumar. "UML
behavioral model based test case
generation", ACM SIGSOFT Software
Engineering Notes, 2013
Publication

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Exclude quotes Off

Exclude bibliography On

Exclude matches Off

9

10

11

12

13

14

15

16

35 | P a g e

	CERTIFICATE OF CORRECTIONS & APPROVAL
	DECLARATION
	Plagiarism Certificate (Turnitin Report)
	Acknowledgements
	3TAbstract
	Table of Contents
	List of Figures
	List of Tables
	CHAPTER 1: INTRODUCTION
	Problem Statement
	Solution
	Scope
	Objectives

	CHAPTER 2: Literature Review
	Methodology

	CHAPTER 3: External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	Python v3
	Libraries
	OS permission

	CHAPTER 4: System Features
	Validating Input
	Description and Priority
	Stimulus/Response Sequences
	Functional Requirements

	Dimensional Measurement of the Assets
	Description and Priority
	Stimulus/Response Sequences
	Functional Requirements

	Evaluation
	Description and Priority
	Stimulus/Response Sequences
	Functional Requirements

	CHAPTER 5: Nonfunctional Requirements
	Performance Requirements
	Safety Requirements
	Software Quality Attributes

	CHAPTER 6: Architecture
	Architecture Design
	Decomposition Description
	Module Decomposition
	Process Decomposition

	Sequence Diagram:
	Design Rationale

	CHAPTER 7: Data Design
	Data Description
	Data Dictionary

	CHAPTER 8: Component Design
	CHAPTER 9: Human Interface Design
	Overview Of User Interface

	CHAPTER 10: Requirements Matrix
	APPENDIX A
	REFERENCES
	Plagiarism Report

