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This book provides a concise overview of the use of ionic liquids as electro‑
lytes in lithium‑ion batteries (LIBs) from a theoretical and computational 
perspective. It focuses on computational studies to understand the behavior 
of lithium ions in different ionic liquids and to optimize the performance of 
ionic liquid‑based electrolytes. The main features of the book are as follows:

• Provides a thorough understanding of the theoretical and computa‑
tional aspects of using ionic liquids as electrolytes in LIBs, includ‑
ing the evaluation and reproducibility of the theoretical paths.

• Covers various computational methods such as density functional 
theory, molecular dynamics, and quantum mechanics that have 
been used to study the behavior of lithium ions in different solvents 
and to optimize the performance of ionic liquid‑based electrolytes.

• Discusses recent advances such as new computational methods for 
predicting the properties of ionic liquid‑based electrolytes, new 
strategies for improving the stability and conductivity of these 
electrolytes, and new approaches for understanding the kinetics 
and thermodynamics of redox reactions with ionic liquids.

• Suggests how theoretical insights can be translated into practical 
applications for improving performance and safety.



This monograph will be of interest to engineers working on LIB 
optimization.
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Preface

In the name of God, the merciful, the compassionate.
Lithium‑ion batteries (LIBs) have become ubiquitous in portable elec‑

tronics, electric vehicles (EVs), and grid‑scale energy storage systems due to 
their high energy density, long cycle life, and low self‑discharge rate. While 
they have revolutionized technology and facilitated the widespread  adoption 
of EVs and renewable energy sources, they are not without limitations. Safety 
concerns, limited energy density, and challenges related to the use of ionic 
liquid (IL) electrolytes have prompted the need for further research and 
development in this field.

In response to these limitations, researchers have turned to computa‑
tional methods to gain a deeper understanding of the fundamental processes 
that govern the behavior of LIBs. This has led to significant advances in the 
field, enabling the accurate prediction of key properties and the identification 
of potential solutions to address existing challenges. However, the use of IL 
electrolytes in LIBs presents its own set of challenges, including safety con‑
cerns, high cost, and limited scalability.

To address these issues, researchers have explored various theoretical 
approaches, such as modifications to the chemical structure of ILs and their 
combinations with other materials. While these efforts have shown promise, 
there is a need to thoroughly evaluate the validity, data management, and 
reproducibility of the theoretical approaches used in these studies. By estab‑
lishing a set of guidelines for validating, managing, and reproducing theoreti‑
cal approaches, researchers can contribute to a more robust and reliable field 
of LIB research.

The potential of LIBs as an efficient energy storage system is undeni‑
able, and ongoing research and enhancement strategies are essential to 
further improve their energy and power density. By addressing the current 
limitations and challenges, researchers can pave the way for the continued 
advancement and widespread adoption of LIBs in various energy storage and 
conversion applications. In this work, we provide an overview of the issues 
that have been associated with the use of ILs in LIBs. The safety concerns, 
high cost, and limited scalability of ILs have been identified as significant 
issues that need to be addressed in order to fully realize the potential of ILs in 
LIBs. To address these challenges, various theoretical approaches have been 
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explored in the literature, including modifications to the chemical structure 
of ILs and combinations with other materials.

Through a comprehensive review of the literature, we have identified 
several studies that have investigated the challenges associated with the use 
of ILs in LIBs. However, the validity, data management, and reproducibility 
of theoretical approaches used in these studies have not been thoroughly eval‑
uated. To address these issues, we have conducted a review of the literature 
and identified several key factors that contribute to the validity, data manage‑
ment, and reproducibility of theoretical approaches. These factors include the 
use of appropriate models, the rigor of data collection and analysis, and the 
transparency of methodology and results.

To provide a framework for addressing these issues, we propose a set of 
guidelines for validating, managing, and reproducing theoretical approaches 
used in LIB research. These guidelines emphasize the importance of using 
appropriate models, conducting rigorous data collection and analysis, and 
ensuring transparency in methodology and results. By following these guide‑
lines, researchers can improve the validity, data management, and reproduc‑
ibility of theoretical approaches and contribute to a more robust and reliable 
field of LIB research.

In crafting this book, I have harnessed the power of artificial intelligence 
(AI) to explore diverse realms of knowledge. By leveraging AI‑generated 
questions and refining the answers through extensive research in academic 
journals and books, I have delved into new frontiers. The process involved 
feeding the responses to another AI system and further enhancing and pol‑
ishing them under human oversight and direction. While AI technology has 
been instrumental in shaping the content of this book, the final work is the 
result of careful curation and refinement under human leadership.
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1Introduction 

Lithium‑ion batteries (LIBs) are widely used in portable electronics, electric 
vehicles (EVs), and grid‑scale energy storage systems (1–4). This is attributed 
to their high energy density, long cycle life, and low self‑discharge rate (5–10). 
They have revolutionized the way we use technology and have enabled the 
widespread adoption of EVs and renewable energy sources (11–14).

However, LIBs also have some limitations. One major limitation is 
their safety concerns, as they have a tendency to overheat and become 
unstable and can catch fire or explode if not handled properly (15–19). 
Another limitation is their limited energy density, which limits the range 
of EVs (20,21) and the amount of energy that can be stored in grid‑scale 
energy storage systems (1,22,23). The driving range of EVs is a primary 
concern for customers and is determined by the energy density of the bat‑
teries. LIBs have high energy storage densities but fall short of gasoline. 
Next‑generation batteries with energy densities beyond LIBs are needed to 
increase driving range effectively. New designs such as Li‑sulfur, Li‑air, or 
Mg‑ion batteries have higher theoretical energy densities but suffer from 
safety or poor recyclability issues. Battery packs in EVs also include other 
components that reduce overall energy densities. Improving cell design 
and pack efficiency is critical to increasing the energy densities of EV bat‑
teries (20).

Ionic liquid (IL) electrolytes have been proposed as a potential solu‑
tion to these limitations. ILs are salts liquid at or near room temperature and 
have unique properties that make them attractive as electrolytes in batteries. 
However, using ILs in lithium batteries also poses several challenges, includ‑
ing safety concerns, high cost, and limited scalability.

In this work, we provide an overview of the issues that have been associ‑
ated with the use of ILs in LIBs. The safety concerns, high cost, and limited 
scalability of ILs have been identified as significant issues that need to be 
addressed in order to fully realize the potential of ILs in LIBs. To address 
these challenges, various theoretical approaches have been explored in the 
literature, including modifications to the chemical structure of ILs and com‑
binations with other materials.

https://doi.org/10.1201/9781003531821-1
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This book aims to provide a comprehensive review of the theoretical 
approaches used in the study of LIBs that utilize ILs as electrolytes. Despite 
the growing interest in the use of ILs in LIBs, the validity, data manage‑
ment, and reproducibility of the theoretical approaches used in this field 
have not been thoroughly evaluated. To address this gap, this book identifies 
several key factors that contribute to the reliability and robustness of theo‑
retical approaches in LIB research, including the use of appropriate mod‑
els, rigorous data collection and analysis, and transparency in methodology 
and results. The book proposes a set of guidelines for validating, managing,  
and reproducing theoretical approaches used in LIB research, with an 
emphasis on the importance of using appropriate models, conducting rigor‑
ous data collection and analysis, and ensuring transparency in methodology 
and results. The book also provides a critical review of the literature on the 
use of ILs in LIBs, highlighting the challenges associated with ILs in terms 
of ion transfer, both in bulk and at the electrode interface. The book presents 
an overview of the computational methods used to study the case, including 
their evaluation and data management, with a focus on proper reproducibility.
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2Ionic Liquids, 
Advantages 
and 
Limitations
Ionic liquids (ILs) have several properties and characteristics that make them 
suitable for use as electrolytes in lithium batteries.

One of the critical advantages of ILs is their high thermal stability. They 
have very low vapor pressure and do not evaporate easily, which makes them 
less prone to combustion or explosion than some other types of electrolytes. 
This fact is particularly important for high‑energy‑density batteries like 
lithium‑ion batteries, which can generate much heat during charging and 
discharging.

ILs also have low flammability and toxicity, which makes them safer to 
handle and dispose of than some other types of electrolytes. They are also 
non‑volatile, which means that they do not produce gas during cycling, reduc‑
ing the risk of gas build up and potential rupture of the battery (24–29).

Another advantage of ILs is their wide electrochemical window. It means 
they can withstand a wide range of voltage potentials without breaking down 
or decomposing. This is important for lithium batteries because the voltage 
range in these batteries can be pretty high, and the electrolyte needs to with‑
stand this without reacting or degrading. Thus, ILs can potentially increase 
the energy densities of lithium batteries (30–35).

Finally, ILs have a high degree of tunability. This implies that the char‑
acteristics of these materials can be customized to suit specific purposes. 
This allows for developing customized electrolytes with optimal properties 
for a particular battery design.

Overall, the combination of high thermal stability, low volatility, wide 
electrochemical window, and tunability make ILs a promising choice for 
electrolytes in lithium batteries. These properties and characteristics enable 
the development of safer, more efficient, and longer‑lasting batteries.

https://doi.org/10.1201/9781003531821-2
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However, there are still challenges that need to be addressed, such as 
their high viscosity, low ionic conductivity, high cost, and limited availability 
compared to traditional electrolytes (36–41).

ILs can have a relatively high viscosity, which can limit their ionic con‑
ductivity and diffusion rates in the battery. This can lead to performance 
issues such as low power density and poor cycling stability (42–45).

ILs can be relatively expensive to produce, making them less competitive 
with other types of electrolytes in terms of cost. The primary reason for this 
is the utilization of various chemical substances during the synthesis proce‑
dure, coupled with advanced purification methods (46–49).

While ILs are generally stable over a wide range of voltages and temper‑
atures, some types may be less stable under certain conditions. For example, 
some ILs can decompose or react with the lithium electrode at high potentials 
or temperatures, reducing battery performance or posing safety risks (50).

ILs may have limited solubility for some types of lithium salts, which 
can affect their ionic conductivity and overall battery performance (51,52).

Integrating ILs into existing battery designs may be challenging due to 
their unique properties and requirements. This may require modifications to 
the battery design or the development of new manufacturing processes (53–58).

Addressing these challenges will require continued research and 
 development to optimize the properties of ILs as electrolytes for lithium bat‑
teries. This may involve the development of new types of ILs with lower 
viscosity, higher solubility, and improved stability, as well as the optimiza‑
tion of  battery design and manufacturing processes to integrate ILs more 
effectively. Additionally, cost‑reduction efforts will be necessary to make ILs 
more competitive with other electrolytes. Despite these challenges, the poten‑
tial benefits of IL electrolytes, such as improved safety, higher energy density, 
and longer cycle life, make them an area of active research and development 
in the field of advanced battery technologies (59).

STRATEGIES FOR OVERCOMING 
LIMITATIONS OF IL ELECTROLYTES

There are several ways to address the limitations of IL electrolytes.

Viscosity

To overcome the issue of high viscosity, researchers are exploring ways to 
modify the structure of ILs or add small amounts of other solvents to reduce 
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their viscosity. For example, researchers are exploring the utilization of func‑
tionalized ILs or the addition of small amounts of co‑solvents to improve the 
ionic conductivity and reduce the viscosity of the electrolytes.

Modifying the Structure of Ionic Liquids to  
Reduce Viscosity

Modifying the structure of ILs is one way to reduce their viscosity. One 
approach is to introduce structural features that disrupt the packing of ions 
and reduce the strength of interionic interactions. This can be achieved by 
varying the size, shape, and, or functional groups of the ions that make up the 
IL. For example, introducing alkyl chains of different lengths or branching 
patterns can increase the distance between the ions and reduce the strength 
of interionic interactions, leading to lower viscosities.

Another approach is introducing functional groups that can weaken the 
interionic interactions and reduce viscosity.

Tansel (60) focused on the importance of thermodynamic and physi‑
cal characteristics in the permeation of ions during membrane separation. 
Specifically, the hydrated radius, hydration‑free energy, and viscous effects 
were studied concerning how they impact ion transport through a membrane. 
The authors suggested that a deeper understanding of these factors can help 
to optimize membrane separation processes and improve the efficiency of ion 
transport.

Izgorodina et al. (61) explored the role of dispersion forces in predicting 
the thermodynamic and transport properties of common ILs. The authors 
suggested that dispersion forces, a type of intermolecular force, play a cru‑
cial role in determining the ILs properties, including viscosity, density, and 
thermal conductivity. The authors use an assembly of experimental measure‑
ments and molecular simulations to investigate the influence of dispersion 
forces on these properties. They concluded that accurate modeling of disper‑
sion forces is essential for predicting the ILs characteristics and designing 
new ILs with tailored properties.

Dean et al. (62) discussed the importance of structural analysis in under‑
standing the behavior of low‑melting organic salts, particularly in the context 
of ILs. The authors reviewed various techniques that can be used to study the 
structure of these materials, including X‑ray crystallography and NMR spec‑
troscopy. They also discussed the importance of understanding the structural 
properties of ILs, such as their intermolecular interactions and the organiza‑
tion of their constituent ions, in relation to their unique physical and chemical 
properties.

Sanchora et al. (63) highlighted the importance of considering the effects 
of the alkyl chain length and water content on the properties of ILs. Using 
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a combination of experimental and computational techniques, the authors 
explored how changes in the alkyl chain length and water content affect the 
1‑alkyl‑3‑methylimidazolium chloride IL’s physical and chemical properties, 
such as its ion pairing energy and hydrogen bonding which impact density, 
viscosity, and surface tension.

Molecular dynamic simulations provide valuable insights into the reason 
behind the lower viscosity observed when alkoxy chains are incorporated 
instead of alkyl chains. These simulations suggest that the reduced viscosity 
result from the alkoxy chains being less efficient in assembling and interact‑
ing with each other, leading to minimal aggregation. Experimental findings 
support this, showing that the presence of alkoxy chains reduces intermolecu‑
lar correlations and cation‑anion electrostatic interactions, resulting in faster 
dynamics compared to alkyl counterparts. Raman‑induced Kerr spectroscopy 
studies demonstrate that including ether‑substituted groups weakens inter‑
ionic interactions due to their larger volume. However, their flexibility allows 
for faster reorientation and stronger interionic interactions. Moreover, certain 
imidazolium and pyridinium cations produce stable complexes with polyeth‑
ylene glycol (PEG) chains through ion‑dipole interactions. Consequently, ILs 
containing long and flexible alkoxy chains are expected to exhibit diminished 
Coulombic interactions between the cation and anion species (64–69).

Fumino et  al. (70) utilized far infrared and terahertz spectroscopy to 
study the interactions in Coulomb fluids. The results indicated that the overall 
interaction between cations and anions in ILs is a delicate balance between 
Coulomb forces, hydrogen bonding, and dispersion forces. In the case of 
protic ILs, the low‑frequency spectra showed distinct vibrational modes that 
revealed the presence of medium to strong hydrogen bonds between the cat‑
ions and anions. The researchers also employed isotopic substitution to iso‑
late frequency shifts related to interaction strength and reduced masses.

The study further investigated how these interactions impact the physi‑
cal properties of ILs, such as their melting point, viscosity, and enthalpy of 
vaporization.

Hayyan et  al. (71) conducted a study to synthesize Deep Eutectic 
Solvents (DESs) by combining triethylene glycol (TEG) with five different 
phosphonium and ammonium salts. They examined the physical properties 
of these synthesized DESs at different temperatures ranging from 25°C to 
80°C. Fourier transform infrared spectroscopy (FTIR) was also used to ana‑
lyze the functional groups present in the DESs. The physical properties of 
deep eutectic solvents (DES) were significantly influenced by blending either 
ammonium or phosphonium salts with triethylene glycol (TEG) as the hydro‑
gen bond donor (HBD). These properties include freezing point, viscosity, 
electrical conductivity, and density. The study demonstrated that the physical 
properties of DESs can be tailored by selecting appropriate HBDs and salts.
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Briefly, modifying the structure of ILs to reduce their viscosity involves 
balancing the competing effects of interionic interactions and structural fea‑
tures that can disrupt these interactions. By carefully designing the structure 
of ILs, it is possible to achieve the desired balance and create ILs with lower 
viscosities for specific applications.

Co‑solvent Addition

The choice of co‑solvent depends on the specific application and performance 
requirements, as well as the compatibility of the co‑solvent with the IL and 
the electrode materials. It is essential to carefully select co‑solvents to ensure 
that they do not adversely affect the stability and safety of the battery. In 
 addition, the amount and type of co‑solvent added should be optimized to 
balance the trade‑off between viscosity reduction and ionic conductivity 
improvement. Some co‑solvents that are appropriate to be added to ILs to 
reduce viscosity are introduced below:

• Organic Solvents: Organic solvents such as acetonitrile, propylene 
carbonate, and dimethyl carbonate can be added to ILs to reduce 
their viscosity and improve their ionic conductivity. These solvents 
can also improve the solubility of lithium salts in ILs, which can 
further improve their electrochemical performance (72–78).

• Water: Adding small amounts of water to ILs can reduce their 
viscosity and improve their ionic conductivity (79–83). Water can 
also improve the solubility of lithium salts in ILs and promote the 
formation of stable solid electrolyte interphase (SEI) layers on 
electrode surfaces (84).

• Ionic Liquids: Mixing two or more ILs with different molecular 
structures and properties can result in a decrease in viscosity and 
an increase in ionic conductivity (85–88). This is because the dif‑
ferent ILs can interact with each other to form a more fluid and 
mobile mixture.

For instance, in the mixing of PAN/BAN and [C2MIM][BF4] 
ILs, the [C2MIM] cations integrate into protic networks, while 
the [BF4] anions occupy previously vacant regions near protic cat‑
ion tails. This subtle microstructural adjustment results in com‑
plex variations in the transport properties of the ions. Similarly, 
for EAN–[C2MIM][BF4] mixtures, a novel conductivity curve 
exhibits pronounced deviations from the simple ideal mixing rule, 
with three different regions defined by a local maximum and a 
global minimum at intermediate concentrations. These regions are 
defined by the onset of the formation of EAN HB networks and the 
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virtual disappearance of aprotic IL structures, where long‑range 
ordering for [C2MIM][BF4] breaks down (89).

• Surfactants: Surfactants can be added to ILs to reduce their sur‑
face tension and improve their wetting properties (90). This can 
improve the contact between the electrolyte and electrode sur‑
faces, improving battery performance. Contact angle testing and 
electrolyte absorption are commonly used to measure wettability, 
with a lower contact angle indicating better wettability.

Co‑solvent Considerations

When selecting co‑solvents for ILs, there are several safety concerns that 
need to be considered. Some of these concerns include:

• Volatility: Some co‑solvents can be highly volatile, which can 
increase the risk of flammability and explosion (91–93). When 
selecting co‑solvents, it is crucial to choose ones that have low 
volatility and are stable under the conditions of battery operation.

• Toxicity: When selecting co‑solvents, it is essential to choose ones 
that are non‑toxic and have a low environmental impact (94,95). 
To assess the environmental impact of co‑solvents, it is essential to 
consider their life cycle, from manufacturing to disposal, through 
a life‑cycle assessment (LCA). However, this data is often tailored 
to specific applications and is not always available. In practice, it is 
more realistic to assess solvents on key properties for which data 
is available, such as hazard labels, physical properties, or biobased 
feedstock percentage.

• Compatibility: When selecting co‑solvents, it is vital to ensure 
that they are compatible with the chosen electrode materials and 
other components of the battery (96,97). This can be achieved by 
considering the co‑solvent’s impact on the battery’s ionic con‑
ductivity, electrode compatibility, and overall safety during the 
selection process. Novel cosolvent mixtures have been devel‑
oped for  cutting‑edge uses like rapid charging or suitability with 
 lithium‑metal electrodes. These mixtures were created using simi‑
lar design strategies, considering the compatibility of the cosolvent 
with the battery’s electrode materials and other components (98).

• Stability: Some co‑solvents may not be stable under the conditions 
of battery operation, leading to degradation and reduced battery 
performance. It is important to consider the battery’s operating 
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conditions, such as temperature, pressure, and the presence of 
other chemicals. The co‑solvent should also not react with the 
electrolyte or other battery components, as this could cause deg‑
radation and reduced performance. When selecting co‑solvents, it 
is important to choose ones that are stable under the conditions of 
battery operation.

• Cost: Some co‑solvents such as fluorinated ones may be more 
expensive than others, which can increase the overall cost of 
battery production (99). When selecting co‑solvents, it is impor‑
tant to balance the cost with the desired performance and safety 
requirements.

To address these concerns, it is important to carefully evaluate the properties 
of co‑solvents and their potential impact on battery performance and safety. 
This can be done through experimental and computational methods, such 
as electrochemical measurements, spectroscopy, and molecular simulations.

In addition, it is essential to follow best practices for handling and dis‑
posing of co‑solvents to minimize their impact on human health and the 
environment. This includes using appropriate personal protective equipment, 
ensuring proper ventilation, and properly storing and disposing of co‑solvents 
according to local regulations (100).

Cost Limitations

To address the cost issue, researchers are investigating alternative methods of 
IL synthesis that are more cost‑effective. For example, some researchers are 
exploring the use of renewable or waste materials as starting materials for IL 
production or recovery (101–103) or lithium battery waste (104). Additionally, 
the use of ILs in high‑value applications, such as aerospace and defence may 
help to justify their higher cost (105–108).

There are primarily two main methods for the preparation of ILs: 
metathesis of a halide salt with a desired anion and acid‑base neutraliza‑
tion reactions. These methods typically require the use of molecular solvents, 
which can be expensive and contribute to the overall cost of IL production 
(109). However, recent research has focused on developing novel methods of 
synthesis that replace molecular solvents with ILs themselves, which can be 
more cost‑effective. Although ILs are typically considered expensive com‑
pared to traditional solvents, their ease of recycling makes them a favorable 
option for various applications. Researchers are exploring techniques such 
as membrane separation, extraction, and distillation to recover ILs. These 
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methods have the potential to lower the overall cost of IL production and 
enhance their sustainability (110).

Stability

To improve the stability of ILs, researchers are exploring new types of ILs 
that are more stable under high potentials or temperatures. These new ILs are 
designed to have higher thermal stability, lower polarization, and lower loss of 
active material at elevated temperatures. The anions in ILs have a significant 
influence on their tribological properties, with hydrophobic anions such as 
BF4 and PF6 may cause corrosion of steel under humid conditions. However, 
other hydrophobic anions such as bis(fluorosulfonyl)imide (FSI) anion are 
less corrosive and exhibit good tribological properties (111). Additionally, the 
use of additives or coatings on the electrode or separator (112–116) can help 
to minimize the interaction between the IL and other materials in the battery.

Solubility

To address the issue of limited solubility, researchers are exploring using 
different types of lithium salts or modifying the structure of the IL to 
improve its solubility. For example, some researchers are exploring the use 
of functionalized ILs or the addition of small amounts of co‑solvents to 
improve the solubility of the electrolytes, which has been discussed in the 
viscosity section.

Toxicity

To address the issue of toxicity, researchers are exploring the use of ILs with 
lower toxicity or modifying the structure of the IL to reduce its toxicity. By 
changing the chemical compositions of the cations and anions, like utilizing 
non‑aromatic compounds, pairing them with particular anions, and adjust‑
ing the length and hydrophobicity of the side chains, it is possible to reduce 
toxicity levels in ILs, rendering them safer for diverse uses. For example, 
cholinium‑based ILs are recognized as the least toxic, while enhancing the 
hydrophobicity and length of the side chains can elevate toxicity. Hence, the 
careful selection of cations and anions and the modification of their char‑
acteristics are vital in creating less toxic ILs. Additionally, proper handling 
and disposal protocols can help to minimize the risk of exposure to toxic ILs 
(117–122).
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Integration

To address the issue of integration, researchers are exploring the use of 
new battery designs or modification of existing designs to better accom‑
modate the unique properties of IL electrolytes. This may involve the 
development of new manufacturing processes or the use of specialized 
equipment to handle and store the electrolytes (123–127). The integra‑
tion of IL electrolytes in battery systems requires careful consideration 
of the electrolyte selection, design, and manufacturing processes. The 
use of simulation solutions, additives or coatings, and the development 
of new manufacturing processes or specialized equipment can help opti‑
mize battery design and engineering, making them more stable, safer, and 
cost‑effective. Simulation solutions for all physics (chemical, electrical, 
mechanical, thermal) and scales (from material to cell, module, pack, full 
vehicle integration) are also being developed to optimize battery design 
and engineering.

Overall, addressing the limitations of IL electrolytes will require contin‑
ued further research and innovation to enhance their functionality and per‑
formance for specific battery applications. This may involve a combination 
of modifying the structure of the IL, developing new synthesis methods, and 
optimizing battery designs and manufacturing processes.

Some New Battery Designs that can Better 
Accommodate the Unique Properties 
of Ionic Liquid Electrolytes

There are several new battery designs that can better accommodate the 
unique properties of IL electrolytes. Some examples include the following:

• Solid‑State Batteries: Solid‑state batteries use a solid electrolyte 
instead of a liquid electrolyte, which can improve safety, sta‑
bility, and energy density, Figure  1. IL electrolytes can be used  
as solid electrolytes or as additives to improve the properties of the 
solid electrolyte. For example, ILs can improve ionic conductivity 
and reduce the interfacial resistance between the solid electrolyte 
and the electrodes (128–135).

• Flow Batteries: Flow batteries use a liquid electrolyte stored in 
external tanks and circulated through the battery during opera‑
tion. IL electrolytes can be used as the electrolyte in flow batteries, 
which can improve energy density and reduce the risk of leakage 
or combustion (136–143).
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FIGURE 1 Schematics for a solid state battery.

FIGURE 2 Schematics for a typical flow battery.
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• Lithium‑Sulfur Batteries: Lithium‑sulfur batteries use a sulfur 
cathode and a lithium anode, which can provide high energy den‑
sity and low cost. However, sulfur cathodes typically have poor 
stability and low conductivity (144–146). IL electrolytes can be 
used as additives to improve the stability and conductivity of the 
sulfur cathode, leading to better battery performance (147–153).

• Three‑Dimensional Batteries: Three‑dimensional (3D) batter‑
ies use a porous electrode structure that allows for better electro‑
lyte penetration and ion transport (154–157). IL electrolytes can 
be used in 3D batteries to improve the transport properties of the 
electrolyte and reduce the concentration polarization at the elec‑
trode/electrolyte interface, leading to better battery performance 
(158,159).

• Electrolyte‑Filled Batteries: Electrolyte‑filled batteries use a 
porous electrolyte‑filled structure instead of a traditional separa‑
tor. This structure allows for better ion transport and reduces the 
risk of short circuits or dendrite formation (160–165). IL electro‑
lytes can be used in electrolyte‑filled batteries to improve their 
stability and reduce the risk of leakage or combustion (166–170).

Overall, these new battery designs can better accommodate the unique prop‑
erties of IL electrolytes and improve their performance in terms of energy 
density, safety, and stability. However, developing these new battery designs 
will require significant research and development to optimize their properties 
and performance. Additionally, the high cost of IL electrolytes may be a lim‑
iting factor in some of these designs, and further cost‑reduction efforts will 
be necessary to make them more competitive with other types of electrolytes.
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3Ion Transport, 
Electrode- 
Electrolyte Interface
The ion transport mechanism in ionic liquid electrolytes differs from tra‑
ditional organic solvent‑based electrolytes. In ionic liquids, ions can move 
through the bulk liquid or along the surface of the electrode, depending on 
the specific properties of the electrolyte and the electrode. This can impact 
the battery’s performance, as different ion transport mechanisms may have 
different rates of ion transfer and different levels of resistance.

The impact of these properties on the performance of the lithium bat‑
tery can vary depending on the specific application and battery design. 
For example, in high‑power applications, such as electric vehicles, high 
ionic conductivity and fast ion transport are important for achieving high 
power output. However, in high‑energy‑density applications, such as sta‑
tionary energy storage, the stability of the electrolyte is more important, 
as the battery must be able to operate reliably over many cycles without 
degradation.

The viscosity of the ionic liquid electrolyte can impact the rate of ion 
transport and diffusion in the battery. Higher viscosity can lead to slower ion 
transport, resulting in lower power output and reduced cycling stability. To 
address this issue, researchers are exploring ways to modify the structure of 
the ionic liquid or add small amounts of co‑solvents to reduce the viscosity 
of the electrolyte.

The ion transport mechanisms in ionic liquid electrolytes can also affect 
the battery’s performance. For example, if the ion transport occurs predomi‑
nantly through the surface of the electrode, the battery may experience higher 
resistance and lower capacity.

The electrode‑ionic liquid interface is an essential component of the 
lithium battery, as it governs the transfer of ions between the electrode and 
the electrolyte. Here are a few ways that researchers are working to opti‑
mize the electrode‑ionic liquid interface to improve ion transport and reduce 
resistance:

https://doi.org/10.1201/9781003531821-3
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 A. Surface Modification: One approach to optimizing the 
 electrode‑ionic liquid interface is to modify the surface of the 
electrode to improve its wettability and reduce the interfacial 
resistance (171–173). For example, researchers have experimented 
with applying a thin layer of metal oxide or a conductive polymer 
coating to the surface of the electrode to improve its interaction 
with the electrolyte (174–176). Researchers have also used ionic 
liquid as a wetting agent for the interface between solid‑state elec‑
trolytes and electrodes to enhance interfacial wetting and improve 
battery performance. The optimization of the ionic liquid content 
in the interface has been crucial for achieving high performance in 
solid‑state batteries (177).

 B. Nanostructuring: Another approach is to modify the surface of 
the electrode at the nanoscale. Nanostructuring can increase the 
surface area of the electrode and improve its interaction with the 
electrolyte (178–183). Several materials are considered promising 
for nanostructured electrodes in lithium‑ion batteries. These mate‑
rials possess unique properties that make them attractive for elec‑
trode applications, such as high surface area, high conductivity, 
and good stability. Here are a few examples:

 a Carbon Nanotubes (CNTs): CNTs are one‑dimensional struc‑
tures made of carbon atoms arranged in a cylindrical shape. 
They have a high surface area and excellent electrical conduc‑
tivity, making them attractive for use as electrode materials in 
lithium‑ion batteries. In addition, CNTs have good mechani‑
cal strength and flexibility, which can improve the electrode’s 
durability (184–186).

 b Graphene: It is a two‑dimensional material made of a single 
layer of carbon atoms arranged in a hexagonal lattice. It has a 
high surface area, excellent electrical conductivity, and good 
mechanical properties, making it attractive for use as an elec‑
trode material in lithium‑ion batteries. Graphene can also be 
easily functionalized with other materials to improve its per‑
formance (187).

 c Metal Oxides: Metal oxides, such as titanium dioxide (TiO2) 
and iron oxide (Fe2O3), have attracted attention as potential 
electrode materials due to their high stability and low toxic‑
ity (188,189). Metal oxides can also have a high theoretical 
capacity, which can further improve the energy density of 
the battery (190–192). However, their low electrical con‑
ductivity can limit their performance as electrode materials 
(193–195).
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 d Metal Sulfides: Metal sulfides, such as molybdenum disul‑
fide (MoS2) and cobalt sulfide (CoS), have also been stud‑
ied as potential electrode materials in lithium‑ion batteries 
(196–200). Metal sulfides have a high theoretical capacity and 
good electrochemical stability, making them attractive for use 
in high‑performance batteries (201,202). However, their low 
electrical conductivity can limit their performance, and more 
research is needed to improve their conductivity.

 e Silicon: It is a promising material for use as an electrode mate‑
rial in lithium‑ion batteries due to its high theoretical capac‑
ity and abundance (203,204). However, silicon electrodes can 
suffer from significant volume changes during cycling, which 
can lead to mechanical degradation and reduced performance. 
Researchers are exploring ways to mitigate this issue by using 
nanostructured silicon electrodes, which can improve the 
mechanical stability of the electrode (205,206).

The smaller size and nanostructured design of these silicon elec‑
trodes can help accommodate the volume changes better and pre‑
vent cracking, pulverization, and loss of electrical contact that can 
occur in larger silicon electrodes (207).

However, the commercialization of these delicate nanostruc‑
tured silicon electrodes is still challenging due to issues like poor 
first‑cycle coulombic efficiency (208) and higher manufacturing 
costs compared to larger silicon particles.

 C. Electrolyte Additives: Adding electrolyte additives can also 
improve the electrode‑ionic liquid interface (209–213). For exam‑
ple, researchers have added small amounts of lithium salts or other 
additives to the electrolyte to improve the wetting of the electrode 
surface and reduce the interfacial resistance (210). Tuning the 
reaction time and/or electrolyte composition (e.g., using different 
lithium salts like LiFSI, LiPF6, and LiAsF6) can lead to diverse 
surface morphologies on the lithium metal electrode, which can 
impact the wettability and interfacial resistance (214,215).

 D. Interface Modelling: Finally, researchers are using computational 
methods to model and optimize the electrode‑ionic liquid inter‑
face at the molecular level (216–222). These models can provide 
insights into the specific interactions between the electrode and 
the electrolyte, allowing for the design of more effective electrode 
materials and electrolytes. While computational modelling is a 
powerful tool for optimizing the electrode‑ionic liquid interface 
in lithium‑ion batteries, it has some limitations. Here are a few 
examples:
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 a. Complexity: The electrode‑ionic liquid interface is a complex 
system with many interacting components, including the elec‑
trode material, the ionic liquid electrolyte, and the interface 
between them. Modeling this system accurately requires a 
high level of computational complexity and can be computa‑
tionally expensive, especially for large‑scale systems.

 b. Accuracy: The accuracy of computational models for the 
electrode‑ionic liquid interface depends on the accuracy of 
the input parameters and assumptions used. For example, the 
properties of the ionic liquid electrolyte, such as its viscosity 
and dielectric constant, can vary depending on the specific 
formulation and conditions, and accurate modelling of these 
properties can be challenging (223).

 c. Validation: Validation of computational models for the 
 electrode‑ionic liquid interface can be complex, as experimen‑
tal measurements of the interface are often limited and can be 
affected by surface roughness, impurities, and sample prepara‑
tion. As a result, it can be challenging to validate the accuracy 
of computational models and to ensure that they are represen‑
tative of the real‑world system (224).

 d. Limitations of Current Models: Current computational mod‑
els for the electrode‑ionic liquid interface often rely on sim‑
plifying assumptions and approximations, such as treating the 
ionic liquid as a continuum medium and ignoring the effects of 
solvent molecules and other small ions. These approximations 
can limit the accuracy and applicability of the models, and 
more advanced models that incorporate more detailed infor‑
mation about the ionic liquid electrolyte are needed (225,226).

 e. Scaling: Finally, computational modelling is often limited by 
scalability, as simulating larger systems requires higher com‑
putational resources. This can limit the ability of research‑
ers to model the electrode‑ionic liquid interface in complex 
systems, such as in multi‑layered electrodes or systems with 
multiple interfaces (227). Despite these limitations, computa‑
tional modelling remains an important tool for optimizing the 
electrode‑ionic liquid interface in lithium‑ion batteries.

By combining computational modelling with experimental measurements 
and other analytical techniques, researchers can gain a better understanding 
of the complex interactions at the interface and develop more effective strat‑
egies for improving the performance and stability of lithium‑ion batteries 
(228–232).
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4Theoretical and 
Experimental 
Investigation 
of Ionic Liquids 
in Lithium Ion 
Batteries
The behavior of IL electrolytes in lithium batteries has been extensively 
studied using theoretical models that take into account the thermodynam‑
ics and kinetics of the electrochemical reactions. These models play a cru‑
cial role in understanding the complex electrochemical processes occurring 
within batteries and are essential for predicting and optimizing battery 
performance.

• Poisson‑Nernst‑Planck (PNP) Equation: One theoretical model 
used to describe the behavior of IL electrolytes is the PNP equa‑
tion, which is a partial differential equation that describes the 
transport of ions in an electrolyte solution. The PNP equation 
takes into account the electrostatic interactions between ions, the 
concentration gradients of the ions, and the external electric field. 
The PNP equation can be solved using numerical methods, such 
as finite difference or finite element methods, to obtain the spatial 
distribution of ions in the electrolyte (233).

• Molecular Dynamics (MD) Simulation: Another theoretical 
model used to study the behavior of IL electrolytes in lithium 
batteries is MD simulation. MD is a computational method that 
simulates the movement of atoms and molecules over a period of 
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time, using classical mechanics. In MD simulation, the interac‑
tions between atoms and molecules are described by a potential 
energy function, which can be parameterized using experimen‑
tal data or quantum mechanical calculations. MD simulation can 
be used to study the structure and dynamics of IL electrolytes, 
as well as the interactions between IL electrolytes and electrode 
surfaces (234–239).

As a case study, a key challenge in the utilization of polymerized ionic liquids 
(polyILs) as electrolytes in energy storage devices is the observed reduction 
in anion diffusivities compared to their parent ionic liquids (ILs). This dis‑
parity in ion transport behavior between the two systems has prompted the 
need for a deeper understanding of the underlying mechanisms governing ion 
transport in these materials. In the following case study, we explore a com‑
parative analysis of ion transport in ILs and polyILs, leveraging the insights 
gained from molecular dynamics simulations. By exploring the distinct ion 
transport mechanisms in these materials, we aim to provide valuable guid‑
ance for the design and optimization of polyIL electrolytes with enhanced 
performance in advanced energy storage applications. The findings from this 
case study offer a comprehensive understanding of the factors influencing ion 
diffusion in ILs and polyILs, shedding light on the challenges and opportuni‑
ties associated with the utilization of polyILs in next‑generation energy stor‑
age technologies (240).

Case Study 1: Comparative Analysis 
of Ion Transport in ILs and PolyILs

SYNOPSIS

This case study investigates the comparative assessment of ion transport 
dynamics in conventional ILs and polyILs. The investigation centers on 
unraveling the fundamental mechanisms governing ion movement in 
these distinct systems, shedding light on the obstacles and potentials asso‑
ciated with incorporating polyILs into energy storage and electrochemi‑
cal devices.

OBJECTIVE

The primary aim of this research is to compare and analyze ion transport 
mechanisms in ILs and polyILs through the lens of molecular dynamics 
simulations. By scrutinizing the factors influencing ion diffusion in these 
materials, the study seeks to offer insights that can shape the design and 
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enhancement of polyIL electrolytes for superior performance in energy stor‑
age applications.

METHODOLOGY

• Utilized molecular dynamics simulations to explore ion transport in ILs 
and polyILs.

• Examined ion transport mechanisms in ILs, with a focus on ion associa‑
tion dynamics and structural relaxation.

• Explored the distinctive aspects of ion transport in polyILs, particularly 
emphasizing the impact of polymer chain dynamics and anion diffusion 
within cationic polymer cages.

FINDINGS

• Revealed that in ILs, ion transport is intricately linked to ion association 
dynamics and structural relaxation, affecting the rate of ion diffusion.

• Uncovered that in polyILs, anion diffusion is predominantly governed by 
anions hopping between cationic polymer cages, with the “trap time” dic‑
tating the pace of anion transport.

• Emphasized the influence of factors like free volume fraction, polymer 
chain oscillations, and chain translation speed on ion diffusivities in poly‑
ILs across different temperatures.

CONCLUSION

The comparative exploration of ion transport in ILs and polyILs yields valu‑
able insights into the distinct mechanisms dictating ion diffusion in these 
materials. By discerning the variations in ion transport behavior, research‑
ers can refine the design of polyIL electrolytes for enhanced performance in 
energy storage and electrochemical devices.

KEY INSIGHTS

• Molecular dynamics simulations serve as a potent tool for investigating 
ion transport mechanisms in ILs and polyILs.

• The unique characteristics of polyILs, including polymer chain dynam‑
ics and cationic polymer cages, significantly impact ion diffusion 
behavior.

• Lessons from this study can steer the development of advanced polyIL 
electrolytes with improved ion transport properties for cutting‑edge 
energy storage applications.

• Insights from this study can guide the development of advanced polyIL 
electrolytes with enhanced ion transport properties for next‑generation 
energy storage applications.
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This case study underscores the importance of understanding and compar‑
ing ion transport in traditional ILs and emerging polyILs, providing valuable 
insights for the design and optimization of polyIL electrolytes in advanced 
energy storage systems.

• Density Functional Theory (DFT): DFT is a quantum mechanical 
method that can calculate the electronic structure and energetics 
of molecules and materials. DFT can be used to study the adsorp‑
tion of ions and molecules on electrode surfaces, as well as the 
formation and decomposition of solid electrolyte interphase (SEI) 
layers (241–245). In this section, we delve into the realm of com‑
putational analysis to unlock the potential of alicyclic ILs as elec‑
trolytes in lithium metal batteries. The study presented here aims 
to uncover the intricate electrochemical stability, charge transfer 
moments, and ion interactions within these ILs, paving the way for 
optimized performance in battery applications (246–248).

As we navigate through the methodology employed to dissect the properties 
of alicyclic ILs, we uncover key findings that shed light on their suitability as 
electrolytes for lithium metal batteries. By understanding the complex interplay 
between anions, cations, lithium ions, and ion pairs within these IL electrolytes, 
we gain valuable insights into enhancing battery performance and longevity.

Join us on this journey as we leverage computational modeling to unravel 
the behavior and potential of alicyclic ILs in lithium metal battery electrolytes.

Case Study 2. Computational Analysis of Alicyclic 
ILs in Lithium Metal Battery Electrolytes

OVERVIEW

This case study delves into the computational exploration of alicyclic ILs as 
electrolytes in lithium metal batteries. The research focuses on understanding 
the electrochemical stability windows, charge transfer moments, and ion inter‑
actions within these ILs to enhance their performance in battery applications.

OBJECTIVE

The primary objective of the study is to investigate the electrochemical sta‑
bility, bulk properties, and ion interactions of alicyclic ILs to optimize their 
utilization as electrolytes in lithium metal batteries. By employing computa‑
tional approaches, the aim is to enhance the efficiency and reliability of these 
ILs in battery systems.
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METHODOLOGY

• Utilized computational modeling to analyze the electrochemical stability 
windows of alicyclic ILs as lithium metal battery electrolytes.

• Investigated how the ionic structure of alicyclic ILs influences their bulk 
properties and charge transfer moments.

• Explored the interactions between anions, cations, lithium ions, and ion 
pairs within alicyclic IL electrolytes for lithium metal batteries.

FINDINGS

• Identified the electrochemical stability windows of alicyclic ILs, provid‑
ing insights into their suitability as electrolytes for lithium metal batteries.

• Analyzed the charge transfer moments of alicyclic ILs to understand their 
charge distribution and transfer behavior in battery systems.

• Investigated the complex interactions between anions, cations, lithium 
ions, and ion pairs within alicyclic IL electrolytes, shedding light on their 
impact on battery performance, see Figure 3.

FIGURE 3 AIM picture for RmAzp+NTf2+Li. The symbols for every atom except 
hydrogen are indicated on the corresponding atom.
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CONCLUSION

The computational analysis of alicyclic ILs in lithium metal battery electro‑
lytes offers valuable insights into their electrochemical behavior, bulk prop‑
erties, and ion interactions. By understanding these aspects, researchers can 
tailor the design and composition of alicyclic ILs to enhance their functional‑
ity and stability in lithium battery applications.

KEY TAKEAWAYS

Computational modeling provides a powerful tool for studying the electro‑
chemical behavior of alicyclic ILs in lithium metal batteries. Understanding 
the charge transfer moments and ion interactions within these ILs is cru‑
cial for optimizing their performance. Insights from this study can guide the 
development of advanced electrolytes for more efficient and reliable lithium 
metal battery systems.

This case study highlights the significance of computational analysis in elu‑
cidating the behavior and properties of alicyclic ILs as electrolytes in lithium 
metal batteries, paving the way for enhanced battery performance and longevity.

• Monte Carlo (MC) Simulation: This is a statistical method that can be 
used to simulate the behavior of a system with many interacting particles. 
MC simulation can be used to study the thermodynamics and kinetics of 
ion transport and reactions in IL electrolytes (249–252).

• Continuum Models: These models can be used to describe the transport of 
ions and electrons in the electrolyte and electrode materials. Continuum 
models are based on the laws of conservation of mass, momentum, and 
energy. They can be used to describe the behavior of a system at a larger 
scale than molecular simulations (253–257).

• Hybrid Models: These models combine multiple computational approaches, 
such as MD and continuum models, to capture both the detailed molec‑
ular interactions at the interface and the macroscopic behavior of the 
electrode‑IL system. Hybrid models can provide a more complete under‑
standing of the interface by incorporating both electronic and ionic inter‑
actions, as well as the effects of external factors, such as temperature and 
pressure (258).

Experimental techniques, such as electrochemical measurements, spectros‑
copy, and microscopy, have been used to study the behavior of IL electrolytes 
in lithium batteries.

• Electrochemical Measurements: Measurements such as cyclic 
voltammetry and electrochemical impedance spectroscopy can be 
used to measure the electrochemical properties of the electrolyte 
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and electrode materials, including their capacitance, resistance, 
and diffusion coefficient. Cyclic voltammetry (CV) is a valuable 
electrochemical method utilized in battery research to assess the 
electrochemical characteristics of materials used in batteries. It 
involves analyzing the current response of a redox active solution 
to a linear potential sweep, providing insights into redox processes, 
energy levels, and electronic‑transfer kinetics. By sweeping the 
electrode potential linearly over time and measuring the result‑
ing current flow in an electrochemical cell, CV yields essential 
electrochemical data about the material being studied. This tech‑
nique is widely applied in diverse fields like analytical chemistry, 
materials science, and electrochemistry for both research purposes 
and practical applications, offering crucial information on electro‑
active species behavior, electrochemical kinetics, diffusion coef‑
ficients, concentration analysis, and electrode surface properties.

Electrochemical impedance spectroscopy (EIS) is a technique 
used to measure the impedance of a system as a function of the 
AC potentials frequency. It is a powerful method that provides 
insights into the behavior of complex electrochemical systems by 
isolating and distinguishing the influence of various physical and 
chemical phenomena. EIS is widely employed in diverse fields, 
including batteries, catalysis, corrosion processes, semiconductor 
interfaces, and ion diffusion across membranes. EIS measures the 
resulting current response as a sine wave superimposed on the DC 
current, providing valuable information about the system’s imped‑
ance as a function of frequency. EIS is used in electrochemical 
measurements to characterize the behavior of electrochemical sys‑
tems, study electrode kinetics, analyze mass transport phenomena, 
and evaluate the performance of protective coatings against cor‑
rosion1. It is a versatile technique that allows researchers to rap‑
idly characterize electrochemical systems, study processes from 
high to low frequencies, and optimize system behavior at differ‑
ent operating points, such as different states of charge in batteries. 
Overall, EIS is a valuable tool in electrochemical measurements, 
 providing detailed insights into the electrochemical behavior of 
systems, enabling the characterization of various electrochemical 
processes, and offering opportunities for system optimization and 
performance enhancement in a wide range of applications. Some 
other electrochemical techniques used to measure the electro‑
chemical properties of electrolyte and electrode materials include: 
chronoamperometry, chronopotentiometry, potentiostatic inter‑
mittent titration technique (PITT), and linear sweep voltammetry.
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• Spectroscopy Techniques: Techniques such as infrared and 
Raman spectroscopy can be used to study the chemical struc‑
ture and composition of the electrolyte and electrode materials. 
Spectroelectrochemistry (SEC) combines electrochemistry and 
spectroscopy techniques to offer enhanced insights compared 
to using them separately. It enables real‑time characterization of 
electrogenerated species. Among the four spectroscopy techniques 
with high potential in SEC, IR‑SEC, and Raman‑SEC are high‑
lighted for their ability to analyze the chemical structure and com‑
position of electrolyte and electrode materials. NMR‑SEC is also 
recognized as a valuable method for understanding electrochemi‑
cal systems.

• Microscopy Techniques: Microscopy techniques, including scan‑
ning electron microscopy (SEM) and transmission electron 
microscopy (TEM), are valuable tools used to visualize the mor‑
phology and structure of electrode materials and solid electrolyte 
interphase (SEI) layers. These techniques provide  high‑resolution 
imaging capabilities that allow researchers to examine the surface 
morphology, structure, and composition of electrode materials at 
the micro‑ and nano‑scale levels. SEM is particularly useful for 
studying the surface topography and elemental composition of 
materials, while TEM provides detailed insights into the inter‑
nal structure and composition of materials at the atomic level. By 
utilizing SEM and TEM, researchers can gain a comprehensive 
understanding of the physical characteristics and properties of 
electrode materials and SEI layers, aiding in the development and 
optimization of advanced energy storage devices (259).

In summary, studying the behavior of IL electrolytes in lithium batteries 
is a complex and interdisciplinary field. By combining theoretical models, 
computational methods, and experimental techniques, researchers can gain 
a comprehensive understanding of the behavior of IL electrolytes in lithium 
batteries. This can lead to the design of new IL electrolytes with improved 
performance, such as higher conductivity, stability, and safety, as well as the 
optimization of electrode materials and system designs to maximize battery 
performance and lifetime.
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5Validation, 
Management, and 
Reproducibility
HOW TO VALIDATE THE ACCURACY OF 

COMPUTATIONAL MODELS FOR THE 
ELECTRODE IONIC LIQUID INTERFACE?

Validating the accuracy of computational models for the electrode‑ionic liq‑
uid interface is an important step in ensuring that the models represent the 
real‑world system. Here are a few ways that researchers can validate the accu‑
racy of computational models:

• Comparison with Experimental Measurements: Researchers vali‑
date computational models by comparing their predictions with 
experimental measurements of the electrode‑ionic liquid interface 
using techniques like X‑ray photoelectron spectroscopy (XPS), 
infrared spectroscopy (IR), or scanning tunneling microscopy 
(STM). This comparison helps assess the accuracy of the compu‑
tational model and pinpoint areas for enhancement based on the 
agreement with experimental data (260–263).

• Sensitivity analysis: This is a method utilized to evaluate how 
sensitive a model is to changes in input parameters and assump‑
tions. By adjusting these parameters and observing the result‑
ing impact on the model’s predictions, researchers can determine 
which parameters significantly influence the model’s accuracy 
and may require further refinement or detailed characterization 
(264,265).

• Consistency with Known Physical Principles: Another way to 
validate a computational model is to ensure that it is consistent 
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with known physical principles (266,267). For example, the model  
should conserve energy and momentum, and it should satisfy 
fundamental laws such as the laws of thermodynamics (268). By 
verifying that the computational model upholds these physical 
constraints and principles, researchers can increase confidence 
in the model’s accuracy and reliability. This type of validation 
complements the comparison to experimental data, as it ensures 
the model is not only predictive, but also grounded in the under‑
lying physical reality. Validating a computational model against 
physical principles is an important step in the overall valida‑
tion process, as it helps identify potential flaws or inconsisten‑
cies in the model formulation, prior to comparing it to empirical 
observations.

• Comparison with Other Models: Researchers may also validate 
their computational models by comparing them with other models 
validated in the literature (269). By comparing the predictions of 
different models, researchers can identify areas of agreement and 
disagreement and gain insights into the limitations and uncertain‑
ties of the models. This may be achieved by comparing their pre‑
dictions, analyzing the consistency in outcomes, and assessing the 
alignment or discrepancies in results.

Researchers compare the outputs of different computational 
models to determine where they agree or disagree in their predic‑
tions. They evaluate the consistency in predictions across various 
models, with consistent results indicating agreement and inconsis‑
tencies highlighting disagreements. Researchers also analyze the 
alignment or discrepancies in results concerning specific param‑
eters or assumptions to identify factors contributing to agreement 
or disagreement between the models.

• Reproducibility: Another critical aspect of validating computational 
models is reproducibility. The model should be well‑ documented 
and the code should be made available to other researchers, so that 
others can reproduce the results and validate the model indepen‑
dently (270–272).

• Benchmarking: Finally, researchers may validate their computa‑
tional models by benchmarking them against known or reference 
systems (273). For example, researchers may use standard test 
cases or reference systems to validate the accuracy of their models. 
By benchmarking the model against a known system, researchers 
can assess the accuracy and reliability of the model and identify 
areas for improvement.



28 Theoretical Insights into the Electrochemical Properties

A common benchmarking system for validating compu‑
tational models of the electrode‑ionic liquid interface is the 
graphite‑electrolyte interface. The graphite electrode is a widely 
used electrode material in lithium‑ion batteries, and its interface 
with the electrolyte has been extensively studied experimen‑
tally and computationally (37,228,239,274,275). These studies 
have demonstrated the importance of accurately modeling the 
interactions between the graphite electrode and the electrolyte, 
including the effects of surface roughness, solvent molecules, 
and charge transfer processes. They have also highlighted the 
limitations and uncertainties of the models and identified areas 
for improvement.

Experimental measurements of the graphite‑electrolyte inter‑
face can be obtained using techniques such as X‑ray photo‑
electron spectroscopy (XPS), infrared spectroscopy (IR), and 
scanning tunneling microscopy (STM). These measurements 
can be used to validate the accuracy of computational mod‑
els, by comparing the model predictions with the experimental  
data.

Computational models of the graphite‑electrolyte interface typi‑
cally involve molecular dynamics simulations, in which the atomic 
interactions and dynamics are simulated over a while. The accu‑
racy of the model can be assessed by comparing the simulation 
results with experimental measurements, as well as with other 
computational models that have been validated in the literature. 
Sensitivity analysis can also be used to identify which parameters 
are most critical to the accuracy of the model, and which may need 
to be refined or better characterized.

The graphite‑electrolyte interface provides a well‑defined sys‑
tem for benchmarking computational models and has been used in 
numerous studies for this purpose (276–278).

In conclusion, validating the accuracy of computational models for the 
electrode‑ionic liquid interface involves a comprehensive approach. 
This includes integrating experimental measurements, sensitivity analy‑
sis, adherence to physical principles, comparison with existing models, 
ensuring reproducibility, and benchmarking. By employing these diverse 
strategies, researchers can enhance their confidence in the precision and 
dependability of their models. This, in turn, enables the development of 
more efficient strategies for enhancing the performance and stability of 
lithium‑ion batteries.
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SOME COMMON CHALLENGES 
RESEARCHERS FACE WHEN VALIDATING 

COMPUTATIONAL MODELS

Validating computational models can be challenging, and researchers may 
face several common challenges. Here are a few examples:

• Limited Experimental Data: The main challenge in validating 
computational models is the scarcity of experimental data for com‑
parison, particularly in the context of the electrode‑ionic liquid 
interface. Obtaining experimental measurements for this interface 
is often challenging, expensive, and prone to errors and uncertain‑
ties. Consequently, researchers may have to work with a restricted 
amount of experimental data for validation, which can hinder the 
thorough assessment of the model’s accuracy and reliability.

• Variability of Experimental Data: Even when experimental data 
is available, it can be subject to variability and uncertainty. For 
example, measurements of the electrode‑ionic liquid interface can 
be affected by factors such as surface roughness, impurities, and 
sample preparation, which can lead to variability in the data. This 
can make it challenging to validate the accuracy of the model and 
to identify the sources of error and uncertainty.

• Complexity of the System: The electrode‑ionic liquid interface is a 
complex system with many interacting components, including the 
electrode material, the ionic liquid electrolyte, and the interface 
between them. Modeling this system accurately requires a high 
level of computational complexity, and may require simplifying 
assumptions and approximations that can limit the accuracy of the 
model.

• Limitations of the Model: Computational models for the  electrode‑ 
ionic liquid interface often rely on simplifications and approxima‑
tions, potentially overlooking crucial phenomena and interactions 
at the interface. These models may omit factors like solvent mol‑
ecules, small ions, or charge transfer mechanisms, impacting their 
accuracy and relevance. Researchers must carefully consider the 
model’s constraints and the assumptions underlying it to interpret 
results accurately.

• Computational Resources: Validating computational models can be 
computationally intensive and may require significant computational 
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resources, especially for large‑scale systems or for models that 
incorporate multiple levels of detail and complexity. This can make 
it challenging for researchers to run and validate the model within 
a reasonable time frame or with available computational resources.

• Model Transferability: Another challenge in validating computa‑
tional models is their transferability to other systems or conditions. 
Models that are validated for a specific system or set of conditions 
may not be applicable for other systems or under different condi‑
tions, which can limit their utility. Researchers need to carefully 
assess the transferability of the model and its assumptions when 
applying it to new systems or conditions.

Validating computational models for the electrode‑ionic liquid interface 
requires careful consideration of the limitations and challenges involved, as 
well as the strengths and weaknesses of the model and the available experi‑
mental data. By addressing these challenges and refining the models over 
time, researchers can develop more accurate and reliable models that can 
guide the development of new materials and devices for lithium‑ion batteries.

TECHNIQUES FOR MANAGING AND 
ANALYZING LARGE AMOUNTS OF 

DATA GENERATED BY SIMULATIONS

Managing and analyzing large amounts of data generated by simulations is 
a common challenge in computational modeling. Here are a few techniques 
that can help researchers manage and analyze the data efficiently:

• Parallel Processing: This is a technique used to distribute the com‑
putational workload across multiple processors or nodes (279,280). 
By running simulations in parallel, researchers can reduce the time 
required to generate the data and increase the efficiency of the sim‑
ulations. Parallel processing can be implemented using specialized 
software and hardware, such as graphical processing units (GPUs) 
and high‑performance computing (HPC) clusters.

GPUs are designed with parallel processing architecture, allow‑
ing them to handle resource‑intensive tasks efficiently. They 
consist of multiple cores that can perform extensive calculations 
simultaneously, making them well‑suited for tasks like ML model 
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training, data mining operations, and high‑resolution graphics ren‑
dering. GPUs can integrate multiple units to enhance processing 
potential, consume less memory, and execute tasks faster due to 
their parallel processing nature.

HPC clusters leverage both CPUs and GPUs to perform diverse 
operations simultaneously. While CPUs handle serial process‑
ing for various applications and the operating system within the 
cluster, GPUs excel at parallel processing for massive external 
workloads like ML model training and data mining. HPC clusters 
can be designed without GPUs, but including GPUs significantly 
boosts the system’s performance. CPUs are essential for running 
an HPC system, and GPUs further enhance the processing power, 
especially for resource‑intensive tasks.

• Data Compression: This is a technique used to reduce the size 
of the data generated by the simulations without losing important 
information (281,282).

Data compression is the process of encoding information using 
fewer bits than the original representation. This technique, also 
known as source coding or bit‑rate reduction, aims to reduce the 
size of data without losing its essential content.

There are two main types of data compression:
Lossless Compression: This method reduces bits by eliminating 

statistical redundancy without losing any information. The 
original data can be perfectly reconstructed from the com‑
pressed form.

Lossy Compression: This approach removes unnecessary or less 
important information, resulting in a smaller file size but with 
some loss of data accuracy or detail.

For example, researchers may use lossless compression tech‑
niques, such as gzip or bzip2, to compress data files without los‑
ing any information (283–286). Alternatively, researchers may use 
lossy compression techniques, such as JPEG or MP3, to reduce the 
size of data files while sacrificing some level of accuracy or detail 
(287,288).

The device that performs the data compression is referred to as 
an encoder, while the one that reverses the process (decompres‑
sion) is known as a decoder.

• Data Visualization: This is a technique used to represent the data 
generated by the simulations in a visual format that is easy to inter‑
pret and analyze (289,290). For example, researchers may use plots, 
graphs, or 3D visualizations to represent the data and identify pat‑
terns and trends Figure 4. Data visualization can be implemented  
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using specialized software tools, such as MATLAB, Python, or 
ParaView.

The choice of data visualization technique depends on factors 
such as the type of data, the research question, and the target audi‑
ence. Principles of effective data visualization, such as clarity, 
conciseness, and appropriate use of color and scale, should be con‑
sidered when creating visualizations.

• Machine Learning: This is a technique used to analyze large 
amounts of data and identify patterns and trends automatically 
(291,292). For example, researchers may use clustering or regres‑
sion algorithms to analyze the data generated by the simulations and 
identify correlations between variables or features (224,232,293–
295). Machine learning can be implemented using specialized 
software tools, such as scikit‑learn (296) or TensorFlow.

The choice of machine learning technique depends on the type 
of data, the research question, and the desired insights.

Effective use of machine learning requires careful data prepro‑
cessing, model selection, and validation to ensure the reliability 
and accuracy of the results.

Some advantages of using machine learning over traditional 
methods of data analysis include:

In summary, machine learning excels at uncovering intricate 
patterns and relationships in data that traditional statistical meth‑
ods may overlook. Its scalability allows for efficient processing 
of large datasets, making it ideal for big data analysis. Machine 
learning models can adjust to data changes, ensuring ongoing 
accuracy. By minimizing human biases, machine learning delivers 
more objective predictions. It automates decision‑making, enhanc‑
ing speed and reducing manual intervention. With the ability to 
analyze diverse data sources, machine learning enhances forecast‑
ing and decision‑making accuracy. Its flexibility and adaptability 
across various domains make it a versatile tool for a wide range of 
applications.

The limitation of machine learning is its dependence on the 
quality and quantity of data. Insufficient or biased data can lead 
to inaccurate results, impacting the effectiveness and reliability of 
machine learning algorithms.

• Data Management Software: This is a tool used to organize, store, 
and retrieve large amounts of data generated by simulations (297). 
For example, researchers may use specialized software tools, such 
as MongoDB (298) or Cassandra (299), to manage and query large 
datasets efficiently and effectively. Data management software can 
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FIGURE 4 Some types of charts for data visualization.
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also be used to automate routine tasks, such as data backup and 
archiving (300).

In contemporary enterprises, data management software is 
essential. For the purpose of managing, organizing, and storing 
enormous volumes of data, data management services offer an 
organized framework. Databases are the foundation of everything 
from keeping track of inventory to maintaining customer data. 
Data management software effectively stores large amounts of 
data, arranging it into rows, tables, and columns. This structured 
organization facilitates efficient data retrieval, allowing users to 
quickly obtain specific information through the use of queries. The 
software also enables data manipulation, empowering users to add, 
edit, or remove data, ensuring the accuracy and currency of the 
database. To safeguard sensitive information, data management 
services employ security features such as encryption, authoriza‑
tion, and authentication, preventing breaches or unwanted access. 
Additionally, these tools offer robust data recovery and backup 
capabilities, routinely backing up data to ensure the continua‑
tion and integrity of the information, even in the event of system 
failures.

FIGURE 5 Five essential functions in data management.
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By addressing these core database management functions, data 
management software plays a crucial role in supporting businesses, 
enabling them to effectively leverage their data to drive informed 
decision‑making and foster innovation (301).

• Collaborative Platforms: Collaborative platforms are online tools 
that allow researchers to share and analyze data collaboratively 
(302). For example, platforms such as GitHub or GitLab can be 
used to share code and data between researchers (300,303). While 
platforms such as Jupyter Notebooks or Google Colab can be used 
to run and analyze simulations in a collaborative environment 
(304,305).

HOW TO IMPROVE THE 
REPRODUCIBILITY OF 

COMPUTATIONAL MODELS

Improving the reproducibility of computational models is an important goal 
for researchers, as it enables other researchers to validate and build upon their 
work, and ensures that the results are reliable and accurate. Here are a few 
strategies that can help improve the reproducibility of computational models:

• Documenting the Methodology: Researchers should document 
the methodology used to develop and validate the computational 
model, including the software tools, input parameters, and simula‑
tion protocols. This documentation should be detailed and trans‑
parent, and should be made available to other researchers through 
published papers, technical reports, or online repositories.

• Version Control: Version control is a technique used to track 
changes to the code and data used in the computational model, and 
to ensure that the results can be reproduced precisely. Researchers 
should use version control tools, such as Git or SVN, to track 
changes to the code and data, and to document the history of the 
model development (306).

• Sharing the Code: Sharing the code used to develop the computa‑
tional model is an important step in improving reproducibility, as 
it allows other researchers to reproduce the results and build upon 
the work. Researchers should make their code available in online 
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repositories, such as GitHub or GitLab, and should ensure that the 
code is well‑documented and easy to use.

• Providing Input Data and Results: This strategy used in the com‑
putational model is another important step in improving repro‑
ducibility. Researchers should make their input data and results 
available in online repositories, such as Figshare or Zenodo, and 
should ensure that the data is well‑organized and annotated (307). 
This will enable other researchers to reproduce the results and 
build upon the work.

• Using Open‑Source Software: Using open‑source software tools 
can also help improve the reproducibility of computational models, 
as it allows other researchers to use and modify the software with‑
out restrictions. Researchers should use open‑source software tools 
and should ensure that they use well‑established and widely‑used 
libraries and frameworks.

• Conducting Sensitivity Analysis: This is an important step in 
improving the reproducibility of computational models, as it 
enables researchers to identify the input parameters that are most 
critical to the accuracy of the model (308,309). Sensitivity analysis 
should be conducted using a range of input parameter values, and 
the results should be documented and reported in publications.

• Peer Review: Finally, This is an important step in improving 
the reproducibility of computational models, as it allows other 
researchers to evaluate the validity and accuracy of the model. 
Researchers should submit their work to peer‑reviewed journals or 
conferences, and should ensure that their work is subject to rigor‑
ous peer review.

Overall, improving the reproducibility of computational models requires a 
combination of strategies, including documenting the methodology, using 
version control, sharing the code and data, using open‑source software, con‑
ducting sensitivity analysis, and peer review. By following these strategies, 
researchers can ensure that their work is reliable, accurate, and useful to the 
broader scientific community.
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6Conclusion 

Ionic liquids have unique properties that make them suitable for use as elec‑
trolytes in lithium batteries. However, integrating them into existing battery 
designs may be challenging and require modifications. Continued research is 
needed to optimize the properties of ionic liquids and develop new types with 
improved characteristics. The interaction between cations and anions in ionic 
liquids is a delicate balance of forces. Researchers are exploring new battery 
designs or modifications to accommodate ionic liquid electrolytes.

The ion transport mechanism in ionic liquid electrolytes differs from tra‑
ditional organic solvent‑based electrolytes. High ionic conductivity and fast 
ion transport are crucial for high power output in applications like electric 
vehicles. The viscosity of the ionic liquid electrolyte affects ion transport and 
diffusion in batteries. Researchers are exploring ways to modify the ionic 
liquid structure or add co‑solvents to reduce viscosity. Validating compu‑
tational models for the electrode‑ionic liquid interface requires experimen‑
tal measurements, sensitivity analysis, consistency with physical principles, 
comparison with other models, reproducibility, and benchmarking. Careful 
consideration of limitations, challenges, strengths, weaknesses, and available 
experimental data is necessary for validating these models.

Managing and analyzing large amounts of data generated by simulations 
is a common challenge in computational modeling. To improve the reproduc‑
ibility of computational models, researchers should document the method‑
ology, use version control, share the code, conduct sensitivity analysis, and 
undergo peer review.

Improving the reproducibility of computational models is crucial for 
researchers. Strategies to achieve this include documenting the methodology, 
using version control, sharing the code and data, using open‑source software, 
conducting sensitivity analysis, and undergoing peer review. These mea‑
sures ensure that the work is reliable, accurate, and beneficial to the scientific 
community.
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