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Abstract 

 
IT environments are growing ever more distributed, complex, and difficult to manage whereas 

cyber-attacks are becoming more and more common. Attackers constantly look to exploit any 

gap in IT systems, applications, and hardware to compromise confidentiality, integrity, and 

availability of information. With rapidly increasing cyber-attacks, the old preventative, and 

defensive techniques of simply using firewalls, antivirus software and conventional IDS stand 

incapacitated to detect advanced network attacks. This accentuates the need to come up with an 

elaborate NextGen Network Anomaly Detection Engine which monitors the attack and threat 

landscape in real-time using advanced techniques. 

 

A Network Anomaly Detection Engine can detect advanced network attacks in real-time with 

the help of Machine Learning techniques. It would improve security visibility and actionability 

along with an in-depth analysis of incoming and outgoing traffic. NADE will use custom Zeek[1] 

scripts to extract useful features from network traffic that will include both attack and benign 

network data. Then NADE will use Machine Learning driven techniques to detect advanced 

threats which includes scanning, DoS attacks and other Network layer attacks. Moreover, our 

solution, the Network Anomaly Detection Engine (NADE) will provide a platform where all logs 

are gathered, and unusual behavior is detected. 

 
Key Words: NADE, Machine Learning, Network Attacks 
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CHAPTER 1: INTRODUCTION 

 
1.1 Overview 

The size and complexity of today's enterprises is growing exponentially, along with the 

number of IT personnel to support them. This makes information sharing and collaboration 

difficult when problems occur. NADE allows security teams to keep on top of security alerts in 

real-time. By gathering events across the network, a NADE can determine the nature of attack. 

The main goal of NADE is to improve security, visibility and actionability along with an in- 

depth analysis of incoming and outgoing traffic. 

Network Anomaly Detection Engine (NADE) will log the actions that users take on the 

network, create a baseline to train the ML-driven model which will eventually facilitate the 

detection, and ultimate halting of network attacks. Our solution, the Network Anomaly Detection 

Engine (NADE) will provide a platform where all logs are gathered, and unusual behavior is 

detected, and attacks are visualized which would add value to the overall security posture of the 

organization where it is applied. 

 

 

1.2 Scope 

The scope of NADE is to provide a cost-effective yet comprehensive solution that will 

benefit organizations and individuals in protecting their data against loss or cyber theft. Next- 

Generation Network Anomaly Detection Engine will capture live traffic and transform it into a 

format where useful features can be seen and evaluated using Zeek scripts. Then this 

transformed traffic is directed to the ML model for anomaly detection. If any anomaly is 

detected, it will be indexed using ELK Stack and visualized on Kibana Dashboard. It will 

improve security visibility, actionability, and posture while reducing analysts’ burden. It will 

also prevent noise/false-positive results by using advanced Machine Learning techniques. 

 

1.3 Product Functions 

The main functions of NADE are highlighted below: 
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• Capture live network traffic and extract useful features using Zeek scripts. 

• Analyze and detect abnormal or suspicious user behavior, advanced threats and security 

breaches in network using trained Machine Learning Model. 

• Index the data for efficient searching and presenting the organized data for end-user. 

• Generate operational security dashboard and reports to have a full visibility of security 

attacks for Network Administrator. 

 

1.4 Deliverables 
 

 
 

Sr. 
 

Tasks 
 

Deliverables 

 

1 
 

Literature Review 
 

Literature Survey 

 

2 Requirements 

Gathering 

 

SRS Document 

 

3 
 

Application Design 
 

Design Document (SDS) 

 

4 
 

Implementation 
 

Implementation on computer with a 

live test to show the accuracy and 

ability of the project 

 

5 
 

Testing 
 

Evaluation plan and test document 

 

6 
 

Training 
 

Deployment Plan 

 

7 
 

Deployment 
 

Complete application along with 

 
necessary documentation 

 

1.5 Overview of the Document 

This document shows the complete working process of our project NADE. It starts with 

the literature review which shows past work done in a similar field, requirement analysis of the 
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system, system architecture which highlights the modules of the software and represents the 

system in the form of a component diagram, Use Case Diagram, Sequence Diagram, and general 

design of the system. Then it will move on to discuss the detailed Description of all the 

components involved. Further, the dependencies of the system and its relationship with other 

products and the capacity of it to be reused will be discussed. 

 

1.5.1 Document Conventions 

This section describes the standards followed while writing the document. 

 
1.5.2 Headings 

Headings are prioritized in a numbered fashion, the highest priority heading having a single 

digit and subsequent headings having more numbers, per their level. All the main headings are 

titled as follows: single-digit number followed by a dot and the name of the section (All bold 

Times New Roman, size 18, Centered). 

All second-level subheadings for every subsection have the same number as their 

respective main heading, followed by one dot and subsequent subheading number followed by 

name of the subsection (All bold Times New Roman, size 16). Further subheadings, i.e., level 

three and below, follow the same rules as above for numbering and naming, but different for the 

font (All bold Times New Roman, size 14). 

 

1.5.3 References 

All references in this document are provided where necessary, however, were not present, 

the meaning is self-explanatory. All ambiguous terms have been clarified in the glossary at the 

end of this document. 

 

1.5.4 Basic Text 

All other basic text appears in regular, size 12 Times New Roman. Every paragraph 

explains one type of idea. 
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CHAPTER 2: LITERATURE REVIEW 

 
 

CIC dataset was created by Sharafaldin et al, Ashkari et al, and Ghorbani et al [3]. They proposed 

a technique towards generating a new I DS dataset. They analyzed different IDS dataset and 

proposed their approach to generate dataset for IDS. They extracted 84 features from network 

traffic. They also discussed their environment configurations that was used to generate dataset. 

The focus of their approach is to make a dataset having features for detection by machine learning. 

 

We explored dataset thoroughly and, in this context, read some papers on CIC dataset 

analysis [2]. In [2] they discussed shortcomings in the dataset. Although this is a state-of-the-   

art dataset [3] and created by a well-known Institution of cyber security but it has some 

shortcoming that are discussed in detail [2]. 

 

[2] Problem with dataset is this that it is highly class imbalanced which made us to drop 

some rare-occurring attack traffic unfortunately. Second shortcoming is this that size of dataset is 

so large that it cannot be processed on limited resource systems. 

 

A similar approach to our approach is used in [1] to detect malicious traffic with the help 

of Machine Learning. They extracted features from network traffic using customized Zeek scripts 

and trained their model on CIC dataset after converting into csv format. They deployed model in 

offline environment and measured its performance. But their approach is not capable of detecting 

real-time attacks and does not provide a GUI (Graphical User Interface) for the visualization of 

attacks. 

 

Ahmim et al. [4] proposed a novel intrusion detection system (IDS) that combines different 

classifier approaches which are based on decision tree and rules-based concepts, namely, REP 

Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs 

features of the dataset and classify the network traffic as Attack/Benign. The third classifier uses 

features of the initial data set in addition to the outputs of the first and the second classifier as 

inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 

dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time 

overhead as compared to state of the art existing schemes. 
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There are many techniques have been proposed to detect malicious network traffic but 

most of them lack in machine learning and graphical dashboard. We took intuition form [1]. Our 

approach may be considered as a future work of [1]. We used advanced Zeek scripts to extract 

network traffic features. We have taken [1] to next level by developing a module for online 

detection of attacks and GUI for graphical Interface. 

 

We took data sampling technique from Ahmin et al [4]. They included a  large  

proportion of benign traffic in dataset as most of the time there will be benign traffic in the 

network. In their novel hierarchical approach, they used two classifiers to detect attack traffic. 

First classifier tells whether incoming traffic is benign or attack. Second classifier predicts the type 

of  attack  if  first  classifier  has  predicted  incoming  traffic  as   attack.  We  experimented   

this approach, but results were not improving by using hierarchical approach. So, we decided to 

use one classifier for the detection of attack class. 
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CHAPTER 3 : METHODOLOGY 

 
We are intended to develop an Intrusion Detection System which has capability to detect network 

layer attacks with minimum false alarms and an interactive graphical dashboard which can 

visualize detected attacks in network traffic. 

Our proposed approach has three phases. 

 

3.1 Phase 1: 

Zeek is a an open-source network monitoring tool, and it has its own scripting language. 

We   used Zeek scripting   language   to   sniff   network   traffic.   The Zeek script [7] extracts  

84 features from   network   traffic.   These   features include CIC   dataset   features    and    

some additional features that are useful for attack detection. 

Zeek writes extracted features in flowmeter.log file. We made a parameter named 

‘duration’ which sets the time for which the network traffic will be captured by the Zeek. After the 

traffic has been captured and written in flowmeter.log file, flowmeter.log file is accessed and is 

converted into pandas data frame. 

 

3.2 Phase 2: 

In second phase, detection of attack is done using Machine Learning. As we have been able 

to convert network traffic into pandas data frame , now we can pass it to trained machine learning 

model which classifies whether incoming traffic is benign or some sort of attack. 

 

3.2.1 DATASET: 

We used CICIDS2017 dataset [5] to train the model. CICIDS2017 dataset contains benign 

and the most up-to-date common attacks, which resembles the true real-world data (PCAPs). It 

also includes the results of the network traffic analysis using CICFlowMeter with labeled flows 

based on the time stamp, source, and destination IPs, source and destination ports, protocols, and 

attack (CSV files). 

They made a CICFlowmeter [6] tool to convert pcap files to csv format to analyze the 

dataset. But their tool is not capable of working in real-time scenario. This is the reason we had to 

use Zeek scripting language to extract required features. 

https://github.com/ISCX/CICFlowMeter
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3.2.2 CICFlowmeter: 

CICFlowMeter is a network traffic flow generator and analyzer. It can be used to generate 

bidirectional flows, where the first packet determines the forward (source to destination) and 

backward (destination to source) directions, hence more than 80 statistical network traffic features 

such as Duration, Number of packets, Number of bytes, Length of packets, etc. can be calculated 

separately in the forward and backward directions. 

Additional functionalities include, selecting features from the list of existing features, 

adding new features, and controlling the duration of flow timeout. The output of the application is 

the    CSV    format    file     that     has     six     columns     labeled     for     each     flow 

(flow_id, src_ip, dst_ip src_port, dst_port, and protocol) with more than 80 network traffic 

analysis features. 

TCP flows are usually terminated upon connection teardown (by FIN packet) while UDP 

flows are terminated by a flow timeout. The flow timeout value can be assigned arbitrarily by the 

individual scheme e.g., 600 seconds for both TCP and UDP. 

 

3.2.3 ZeekFlowmeter: 

Zeek flowmeter is a tool (or script) written zeek scripting language which extracts CIC 

Dataset features from network traffic. This tool can extract features from both pcap files and live 

traffic. 

Flowmeter performs layer 3 and 4 network traffic analysis and generates a set of new 

features based on timing, volume, and metadata. These features are ideal for developing models 

for traffic classification without using deep packet inspection. The extracted features are as 

follows: 

 

Feature Name Description 
exists 

in CICFlowMeter 

uid The ID of the flow as given by Zeek No 

 
flow_duration 

The length of the flow in seconds (maximal 

precision ms). If only on packet was seen the 

duration is 0. 

 
Yes 
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fwd_pkts_tot 
The number of packets travelling in the forward 

direction. 
Yes 

bwd_pkts_tot 
The number of packets travelling in the backwards 

direction. 
Yes 

fwd_data_pkts_tot 
The number of packets travelling in the forward 

direction, which have a payload. 
Yes 

bwd_data_pkts_tot 
The number of packets travelling in the backwards 

direction, which have a payload. 
No 

 
fwd_pkts_per_sec 

The average number of forward packets 

transmitted per second during the flow. If the 

duration is 0 then this feature is also set to 0. 

 
Yes 

 
bwd_pkts_per_sec 

The average number of backward packets 

transmitted per second during the flow. If the 

duration is 0 then this feature is also set to 0. 

 
Yes 

 
flow_pkts_per_sec 

The average number of packets transmitted per 

second during the flow. If the duration is 0 then 

this feature is also set to 0. 

 
Yes 

 
down_up_ratio 

The number of backward packets divided by the 

number of forward packets. If the number of 

forward packets is 0 this feature is also set to 0. 

 
Yes 

fwd_header_size_tot 
The total number of bytes the headers of the 

forward packets contained. 
Yes 

fwd_header_size_min 
The number of bytes the smallest headers of the 

forward packets contained. 
Yes 

fwd_header_size_max 
The number of bytes the largest headers of the 

forward packets contained. 
Yes 

bwd_header_size_tot 
The total number of bytes the headers of the 

backward packets contained. 
Yes 

bwd_header_size_min 
The number of bytes the smallest headers of the 

backward packets contained. 
No 
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bwd_header_size_max The number of bytes the largest headers of the 

backward packets contained. 
No 

fwd_pkts_payload.ma 

x 

The largest payload size, in bytes, seen in the 

forward direction. 
Yes 

fwd_pkts_payload.min The smallest payload size, in bytes, seen in the 

forward direction. 
Yes 

fwd_pkts_payload.tot 
The total payload size, in bytes, seen in the 

forward direction. 
Yes 

fwd_pkts_payload.avg The average payload size, in bytes, seen in the 

forward direction. 
Yes 

fwd_pkts_payload.std 
The standard deviation of the payload size, in 

bytes, seen in the forward direction. 
Yes 

bwd_pkts_payload.ma 

x 

The largest payload size, in bytes, seen in the 

backward direction. 
Yes 

bwd_pkts_payload.mi 

n 

The smallest payload size, in bytes, seen in the 

backward direction. 
Yes 

bwd_pkts_payload.tot 
The total payload size, in bytes, seen in the 

backward direction. 
Yes 

bwd_pkts_payload.avg The average payload size, in bytes, seen in the 

backward direction. 
Yes 

bwd_pkts_payload.std 
The standard deviation of the payload size, in 

bytes, seen in the backward direction. 
Yes 

flow_pkts_payload.ma 

x 

The largest payload size, in bytes, seen in the 

flow. 
Yes 

flow_pkts_payload.mi 

n 

The smallest payload size, in bytes, seen in the 

flow. 
Yes 

flow_pkts_payload.tot The total payload size, in bytes, seen in the flow. No 

flow_pkts_payload.av 

g 

The average payload size, in bytes, seen in the 

flow. 
Yes 
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flow_pkts_payload.std The standard deviation of the payload size, in 

bytes, seen in the flow 
Yes 

payload_bytes_per_se 

cond 

The average number of payload bytes transmitted 

per second. If the duration is 0 then this feature is 

also set to 0. 

 
Yes 

 
flow_FIN_flag_count 

The total number of FIN flags which have been 

seen in a TCP flow. If the the flow is not a TCP 

flow this feature is set to 0. 

 
Yes 

flow_SYN_flag_count 
The total number of SYN flags which have been 

seen in a TCP flow. If the the flow is not a TCP 

flow this feature is set to 0. 

 
Yes 

 
flow_RST_flag_count 

The total number of RST flags which have been 

seen in a TCP flow. If the the flow is not a TCP 

flow this feature is set to 0. 

 
Yes 

 

 
fwd_PSH_flag_count 

The total number of PSH flags which have been 

seen in the forward direction of a TCP flow. If 

the the flow is not a TCP flow this feature is set to 

0. 

 

 
Yes 

 

 
bwd_PSH_flag_count 

The total number of PSH flags which have been 

seen in the backward direction of a TCP flow. If 

the the flow is not a TCP flow this feature is set to 

0. 

 

 
Yes 

flow_ACK_flag_count 
The total number of ACK flags which have been 

seen in a TCP flow. If the the flow is not a TCP 

flow this feature is set to 0. 

 
Yes 

 

 
fwd_URG_flag_count 

The total number of URG flags which have been 

seen in the forward direction of a TCP flow. If 

the the flow is not a TCP flow this feature is set to 

0. 

 

 
Yes 
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bwd_URG_flag_count 

The total number of URG flags which have been 

seen in the backward direction of a TCP flow. If 

the the flow is not a TCP flow this feature is set to 

0. 

 

 
Yes 

flow_CWR_flag_coun 

t 

The total number of CWR flags which have been 

seen in a TCP flow. If the the flow is not a TCP 

flow this feature is set to 0. 

 
Yes 

 
flow_ECE_flag_count 

The total number of ECE flags which have been 

seen in a TCP flow. If the the flow is not a TCP 

flow this feature is set to 0. 

 
Yes 

fwd_iat.max 
The largest inter-arrival time in microseconds bet 

two consecutive packets in the forward direction. 
Yes 

fwd_iat.min 
The smallest inter-arrival time in microseconds bet 

two consecutive packets in the forward direction. 
Yes 

fwd_iat.tot 
The inter-arrival time in microseconds bet two 

consecutive packets in the forward direction. 
Yes 

fwd_iat.avg 
The average inter-arrival time in microseconds bet 

two consecutive packets in the forward direction. 
Yes 

fwd_iat.std 
The standard deviation of all inter-arrival times in 

the forward direction in microseconds. 
Yes 

 
bwd_iat.max 

The largest inter-arrival time in microseconds bet 

two consecutive packets in the backward 

direction. 

 
Yes 

 
bwd_iat.min 

The smallest inter-arrival time in microseconds bet 

two consecutive packets in the backward 

direction. 

 
Yes 

bwd_iat.tot 
The inter-arrival time in microseconds bet two 

consecutive packets in the backward direction. 
Yes 
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bwd_iat.avg 

The average inter-arrival time in microseconds bet 

two consecutive packets in the backward 

direction. 

 
Yes 

bwd_iat.std 
The standard deviation of all inter-arrival times in 

the backward direction in microseconds. 
Yes 

flow_iat.max 
The largest inter-arrival time in microseconds bet 

two consecutive packets in the flow. 
Yes 

flow_iat.min 
The smallest inter-arrival time in microseconds bet 

two consecutive packets in the flow. 
Yes 

flow_iat.tot 
The inter-arrival time in microseconds bet two 

consecutive packets in the flow. 
No 

flow_iat.avg 
The average inter-arrival time in microseconds bet 

two consecutive packets in the flow. 
Yes 

flow_iat.std 
The standard deviation of all inter-arrival times in 

the flow, in microseconds. 
Yes 

fwd_subflow_pkts 
The average number of packets in the subflows in 

the forward direction. 
Yes 

bwd_subflow_pkts 
The average number of packets in the subflows in 

the backward direction. 
Yes 

fwd_subflow_bytes 
The average number of payload bytes in 

the subflows in the forward direction. 
Yes 

bwd_subflow_bytes 
The average number of payload bytes in 

the subflows in the backward direction. 
Yes 

fwd_bulk_bytes 
The average number of payload bytes transmitted 

in a bulk transmission in forward direction. 
Yes 

bwd_bulk_bytes 
The average number of payload bytes transmitted 

in a bulk transmission in backward direction. 
Yes 

fwd_bulk_packets 
The average number of packets transmitted in a 

bulk transmission in forward direction. 
Yes 
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bwd_bulk_packets 
The average number of packets transmitted in a 

bulk transmission in backward direction. 
Yes 

 
fwd_bulk_rate 

The average number of payload bytes transmitted 

per second during a bulk transmission in forward 

direction. 

 
Yes 

 
bwd_bulk_rate 

The average number of payload bytes transmitted 

per second during a bulk transmission in backward 

direction. 

 
Yes 

active.max 
The longest duration the flow was active in 

microseconds. 
Yes 

active.min 
The shortest duration the flow was active in 

microseconds. 
Yes 

active.tot 
The total duration the flow was active in 

microseconds. 
Yes 

active.avg 
The average duration the flow was active in 

microseconds. 
Yes 

active.std 
The standard deviation of all active periods in 

microseconds. 
No 

idle.max 
The longest duration the flow was idle in 

microseconds. 
Yes 

idle.min 
The shortest duration the flow was idle in 

microseconds. 
Yes 

idle.tot 
The total duration the flow was idle in 

microseconds. 
Yes 

idle.avg 
The average duration the flow was idle in 

microseconds. 
Yes 

idle.std 
The standard deviation of all idle periods in 

microseconds. 
No 

fwd_init_window_size The window size in bytes the first packet in the 

forward direction has. The windows scale 
Yes 
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 parameter is currently ignored, as this is only set in 

a SYN packet but we currently look at any packet. 

 

 
bwd_init_window_siz 

e 

The window size in bytes the first packet in the 

backward direction has. The windows scale 

parameter is currently ignored, as this is only set in 

a SYN packet but we currently look at any packet. 

 

 
Yes 

 
fwd_last_window_size 

The window size in bytes the last packet in the 

forward direction has. The windows scale 

parameter is currently ignored, as this is only set in 

a SYN packet but we currently look at any packet. 

 

 
Yes 

 
bwd_last_window_siz 

e 

The window size in bytes the last packet in the 

backward direction has. The windows scale 

parameter is currently ignored, as this is only set in 

a SYN packet but we currently look at any packet. 

 

 
Yes 

 
 

3.2.4 Characteristics of the Dataset: 

Diversity: Almost all most common attacks are carried out such as DDoS, DoS and PortScan etc. 

Feature Set: Extracted more than 80 network flow features from the generated network traffic 

using CICFlowMeter and delivered the network flow dataset as a CSV file. Dataset is both 

available in CSV and PCAP format. 

Protocols: All common protocols are present in the dataset, such as HTTP, HTTPS, FTP, SSH. 

Labelled Dataset: Most important characteristic of dataset is this that dataset is fully labelled. 

They have provided complete information on their website to label pcap data. 

 

3.2.5 Dataset Description: 

CICIDS Dataset was generated in five days from Monday to Friday. Dataset consists of five pcap 

file that are named after the name of the day when they were created. 

• Monday, Normal Activity, 11.0G (BENIGN Traffic only) 

• Tuesday, attacks + Normal Activity, 11G (BruteForce) 

• Wednesday, attacks + Normal Activity, 13G (DoS) 

https://www.unb.ca/cic/research/applications.html#CICFlowMeter
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• Thursday, attacks + Normal Activity, 7.8G (Web Attacks) 

• Friday, attacks + Normal Activity, 8.3G (PortScan + DDoS) 

 

Dataset consists of 84 features (extracted from ZeekFlowmeter) and each record of dataset is a 

bidirectional flow. Bidirectional flow means that the traffic between two hosts for a duration of 

time. Based on this traffic 84 features are extracted which are shown in Table 3.1 

 

3.2.6 Dataset Analysis 

Some dataset classes are named after the tools to generate dataset. For example, DoS Hulk, DoS 

Slowloris, DoS slowHTTPtest and DoS GoldenEye are tools to carry out DoS attack. Similarly, 

FTP-Patator and SSH-Patator are tools to carry out BruteForce attack. 

 
 

 
Dataset is highly class imbalanced, and size of dataset is very large. It covers seven types of 

network attacks. Web attacks are in minority while PortScan, DDoS and DoS-Hulk (type of DoS 

attack) are in majority. To overcome this problem, we came up with a strategy of class merge 

and sampling. 

We merged the classes of same attack. For example, DoS Hulk, DoS Slowloris,  DoS  

Goldeneye, and DoS slowHTTPtest belongs to DoS attack. We concatenated these four classes 
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and labelled them  as  DoS.  Same as this  SSH-BruteForce and  FTP-BruteForce are merged  

and labelled as BruteForce. 

 
 

Previous Label Count After down 

sampling 

New Label Count 

DoS Hulk 163453 20000  
DoS 

 
46765 DoS GoldenEye 6932 6932 

DoS 

slowHTTPtest 

15932 15932 

DoS Slowloris 3901 3901 

 
 

Previous Label Count After down 

sampling 

New Label Count 

FTP-Patator 4032 4032  
BruteForce 

 
6972 SSH-Patator 2950 2950 

 

After merging sub-classes, sampling, and dropping Infiltration, botnet and web-attacks, final 

distribution of dataset is as follows. 

 
 

Category Count 

BENIGN 150000 

DoS 46765 

DDoS 25000 

PortScan 25000 

BruteForce 6972 

Total 253737 

 

 

3.2.7 ATTACKS: 

NADE is, for the time, trained to detect 4 types of Network-Layer attacks listed as follows: 
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● Port-Scan 

● BruteForce 

● DoS 

● DDoS 

 
 

Attacks are further categorized by the techniques used to perform the attack. 

 
3.2.7.1 PORTSCAN: 

 

Attacks are always performed in different phases. The first phase of every attack is the 

Information Gathering part. The Attacker tries and collects information about the target before 

actually performing the attacks. This could be any information related to the victim/target. One of 

the most common parts of this phase is Port Scanning. 

 
When a computer runs a network service, it opens a networking construct called a “port” to receive 

the connection. Ports are necessary for making multiple network requests or having multiple 

services available. For example, when you load several web pages at once in a web browser, the 

program must have some way of determining which tab is loading which web page. This is done 

by establishing connections to the remote web servers using different ports on your local machine. 

Network connections are made between two ports – an open port listening on the server and a 

randomly selected port on your own computer. For example, when you connect to a web page, 

your computer may open port 49534 to connect to the server’s port 443. There are a total of 65535 

available ports on a computer. 

 
Not knowing which ports are open can decrease the attackers’ chance of successfully attacking the 

target. So, usually, attacks begin with a port scan. Basically in a port scan, the attacker tries to 

connect to all the ports of the target, and the responses are used to determine if the port is open, 

closed, or filtered (usually by a firewall). 

 

NADE used nmap port scans for Training and testing of the ML Model. Nmap, also sometimes 

known as Network-Mapper, is a free and open-source tool for Network and Port scanning. It is 

also proficient in many other active information gathering techniques. When port scanning with 

Nmap, there are three basic scan types. These are: 
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● TCP Connect Scans (-sT) 
 

if Nmap sends a TCP request with the SYN flag set to a closed port, the target server will respond 

with a TCP packet with the RST (Reset) flag set. By this response, Nmap can establish that the 

port is closed. If, however, the request is sent to an open port, the target will respond with a TCP 

packet with the SYN/ACK flags set. Nmap then marks this port as being open (and completes the 

handshake by sending back a TCP packet with ACK set). 

 

What if the port is open, but hidden behind a firewall? 

 
Many firewalls are configured to simply drop incoming packets. Nmap sends a TCP SYN request, 

and receives nothing back. This indicates that the port is being protected by a firewall and thus the 

port is considered to be filtered. 

 

The victim’s wireshark looks like this during TCP connect scan attack. 

 

 

 
● SYN "Half-open" Scans (-sS) 

 

As with TCP scans, SYN scans (-sS) are used to scan the TCP port-range of a target or targets; 

however, the two scan types work slightly differently. SYN scans are sometimes referred to as 

"Half-open" scans, or "Stealth" scans. 
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Where TCP scans perform a full three-way handshake with the target, SYN scans sends back a 

RST TCP packet after receiving a SYN/ACK from the server (this prevents the server from 

repeatedly trying to make the request. 

 

If a port is closed then the server responds with a RST TCP packet. If the port is filtered by a 

firewall then the TCP SYN packet is either dropped, or spoofed with a TCP reset. 

 

Here is the wireshark analysis of victim Network during the attack 

 

● UDP Scans (-sU) 
 

Unlike TCP, UDP connections are stateless. This means that, rather than initiating a connection 

with a back-and-forth "handshake", UDP connections rely on sending packets to a target port and 

essentially hoping that they make it. This makes UDP superb for connections which rely on speed 

over quality (e.g. video sharing), but the lack of acknowledgement makes UDP significantly more 

difficult (and much slower) to scan. The switch for an Nmap UDP scan is (-sU). 

 

When a packet is sent to a closed UDP port, the target should respond with an ICMP (ping) packet 

containing a message that the port is unreachable. This clearly identifies closed ports, which Nmap 

marks as such and moves on. 

 

When a packet is sent to an open UDP port, there should be no response. When this happens, 

Nmap refers to the port as being open|filtered 
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3.2.7.2 BRUTEFORCE 
 

A brute force attack uses trial-and-error to guess login info, encryption keys, or find a hidden 

web page. 

 

NADE covered FTP and SSH bruteforce attacks. These were conducted with Hydra. 

 
Hydra is a parallelized network login cracker built in various operating systems like Kali Linux, 

Parrot and other major penetration testing environments. Hydra works by using different 

approaches to perform brute-force attacks in order to guess the right username and password 

combination. 

 

The Wireshark analysis of victim Network during a hydra BruteForce is provided here. 

 

3.2.7.3 DoS 
 

A denial-of-service attack is a cyber-attack in which the perpetrator seeks to make a machine or 

network resource unavailable to its intended users by temporarily or indefinitely disrupting the 

services of a host connected to the Internet. 

 

NADE used slowloris and hulk in DoS attacks. The wireshark of victim is given below during 

slowloris. 
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3.2.7.4 DDoS 
 

A distributed denial-of-service (DDoS) attack occurs when multiple systems flood the bandwidth 

or resources of a targeted system, usually one or more web servers. 

 

DDoS attacks are carried out with networks of Internet-connected machines known as a botnet. 

When a victim's server or network is targeted by the botnet, each bot sends requests to the target's 

IP address, potentially causing the server or network to become overwhelmed, resulting in a denial- 

of-service to normal traffic. 

 

3.2.8 MACHINE LEARNING: 

3.2.8.1 What is Machine Learning? 

 

Machine Learning is a subfield of Artificial Intelligence which learns from the 

experience(dataset) and makes prediction on unknown data. Machine Learning is very popular 

nowadays because of the availability of sophisticated algorithms, large datasets and system 

resources. Machine Learning algorithms can be classified into two categories. 

• Supervised Learning Algorithms: 

In  supervised   learning   we provide both   data   and labels to   train   the   

model. Logistic Regression, Decision Tree  and  Neural  Networks  are  

supervised learning algorithms. 

• Un-supervised Learning Algorithms: 
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In unsupervised learning model is trained on unlabeled data. K-mean clustering is 

one of the mostly used unsupervised learning algorithms. 

As our project is intended to find out anomaly and classify it so we have to use 

supervised Learning algorithms. 

 

3.2.8.2 Machine Learning in Cybersecurity: 
 

In conventional or rule-based IDS we have to identify patterns of attacks and define rules 

manually to detect abnormal behavior in the network. But in Machine Learning-based IDS rules 

or patterns are made automatically. In order to apply Machine learning we need huge data. As 

networks are growing rapidly and a large amount of data is being generated every day, so we have 

enough data to train our machine learning model  and  extract  rules  out of that. Once  a  

machine learning model is trained, we can deploy it in a network where it can make real time 

prediction/detection. 

 

3.2.8.3 Our Implementation of Machine Learning: 
 

We have implemented supervised machine learning in our project. CIC dataset is a labeled 

dataset that means we can train a supervised learning model for attack detection. We have five 

classes      in      our       final       dataset which       means       our       trained       model       

should classify incoming traffic among these five classes. 

As our machine learning model will make predictions in real time, we need a model 

which takes  minimum  time  to  predict  and  has  maximum  accuracy. We  experimented   

many machines learning models and techniques. We found out that Decision Tree Classifier suits 

best in our case as it predicted 25000 records in 0.008 seconds with 99 percent accuracy. We tested 

more classifiers than mentioned here. These classifiers showed best results. 

 

3.2.8.4 Machine Learning Classifiers: 
 

Machine learning classifiers used in this project are briefly described here, 

 

Logistic Regression: is an iterative machine learning algorithm which consists of a perceptron 

and have loss function. It tries to optimize the loss (or error) [8]. 
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Quadratic Discriminant Analysis (QDA) uses bayes theorem and covariance matrices for each 

class to classify new observations [9, p. 149]. 

 
Multi-Layer Perceptron     (MLP) also     called      Deep      Learning,      are inspired      by 

the behavior of neurons in brains. Logically they consist of interconnected nodes in layers that 

performs calculations to make classifications. Layers and nodes in the network are 

hyperparameters [10]. 

 
Decision  Tree  (DT) classifies  data  by   traversing   through   a   tree structure,   asking 

relevant questions about the features of the data, when the traversing reaches a leaf node, the data 

point is classified according to the class in the leaf node [9, p. 303]. ID3 is a popular version of 

DT. 

 
Random Forest (RF) aggregates and produces a mean of the result of several Decision Trees 

trained from different random subsets of the training data [9, p. 319]. 

 

3.2.9 RESULTS: 

• Confusion Matrix 
A confusion matrix is a way of describing the performance of a classification system. For example, 

if the number of observations in each class is imbalanced or the dataset comprises more than two 

classes, classification accuracy alone may be misleading. Calculating a confusion 

matrix can assist us in determining what the categorization model gets right and where it goes 

wrong. 

 
True Positives: Positive records correctly classified by the model as positive. 

True Negatives: Negative records correctly classified by the model as negative. 

False Positives: Negative records incorrectly classified by the model as positives. 

False Negatives: Positive records incorrectly classified by the model as negatives. 
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A good IDS must have lower False Positives and False Negatives. 

 

• False Positive means your system is blocking benign traffic. 

False Positive Rate (FPR) = FP/FP+TN 

• False Negative means your system is allowing malicious traffic to enter the 

network. 

False Negative Rate (FNR) = FN/FN+TP 

 

If the system has a low detection rate, it gives a false sense of security, and if it has a high 

false alarm rate, the security managers time is wasted analyzing false alarms. The point here is that 

False  positives generates  false  alarms  and  hence  availability  of  the  server  is   

compromised. Because when benign traffic which is coming from legitimate users is halted (after 

detected as attack by IDS), It is more dangerous than allowing malicious traffic to enter the 

network. Because we cannot deny access to users at any cost. So, the focus here is to reduce  

false positives (false alarms). 

• Train, Validation and Test Sets: 

Training is the most important part in Machine Learning cycle. In training, dataset and 

labels are fed into model and model learn the rules in the dataset. Dataset is split into training, 

testing and validation set. Model is trained on the training data and its performance is measured 

on validation and test set. Our final dataset consists of 253737 records. We split the dataset with 

75 / 15 / 10 percent ratio in training, validation, and testing set, respectively. 

 

Validation set is used for a special purpose in machine learning. Almost every ML model 

is prone to overfitting. Overfitting is a condition in which model shows high accuracy on training 

data and very poor accuracy on test data. To detect overfitting, we use k-fold cross-validation. 
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Validation data is split into ‘k’ number of subsets randomly and each subset is passed to trained 

model then its accuracy is calculated. After we have calculated all k subsets, we average their 

accuracies and show it as validation accuracy. If validation accuracy is near to training accuracy, 

our model is not overfitting on training data but if validation accuracy is far from training accuracy, 

model is overfitting on training data. 

 

 Split Ratio Count 

Training set 0.75 190302 

Validation set 0.15 38061 

Testing set 0.10 25374 

 

 
3.2.10 Classifiers Performance: 
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• Logistic Regression Classifier: 
 

 

• Decision Tree Classifier: 
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• Random Forest Classifier: 

 

 

• SGD Classifier: 
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• AdaBoost Classifier: 
 

 

• QDA Classifier: 
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• MLP Classifier: 
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Results: 
Model Train Acc Validation 

Acc 

Test Acc Test Records Test Time 

Logistic 

Regression 

0.993 0.993 0.993 25000 0.01 

Decision Tree 0.999 0.999 0.998 25000 0.005 

Random 

Forest 

0.999 0.998 0.998 25000 0.275 

SGD 

Classifier 

0.999 0.998 0.998 25000 0.008 

AdaBoost 0.811 0.765 0.815 25000 0.249 

Multi-Layer 

Perceptron 

0.998 0.998 0.998 25000 0.057 

Quadratic 

Discriminant 

Analysis 

0.921 0.927 0.92 25000 0.083 

 
Here is classification report of decision tree trained model, 

 

Classes Precision Recall F1-Score Support 

BENIGN 1.00 1.00 1.00 15075 

BruteForce 0.99 1.00 1.00 699 

DDoS 1.00 1.00 1.00 2452 

DoS 0.99 1.00 0.99 4600 

PortScan 1.00 1.00 1.00 2548 

 
Real Time Results: 

We carried out BruteForce, DoS, and Port Scanning attacks in real-time  environment  and  

found following   results.   We   set   up two   machines   one is attacker (Kali    Linux) and   

other is victim (Ubuntu). Although, network configuration is not as same as the 
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configuration of the network in which training data was generated. But still BruteForce and 

PortScan has shown good results. One thing to be noted is this that False Alarm rate is very low 

which is a big achievement because IDS most of the time misclassify benign traffic as attack 

traffic [11]. 

“In fact, it has been estimated that up to 99% of alerts reported by IDSs are not related to security 

issues (towards reducing false positives-page 1) [11]” 

Classes Accuracy False Alarms 

(False Positive Rate) 

Detection 

BENIGN 0.97 0.03 - 

BruteForce 0.70 - 0.85 

DDoS - - - 

DoS 0.40 - 0.25 

PortScan 0.98 - 0.95 

 

 

3.3 Phase 3: 

3.3.1 Elastic Search: 

Elasticsearch is a part of ELK stack which is an open-source tool kit. Elasticsearch is a 

distributed, free, and open search and analytics engine for all types of data, including textual, 

numerical, geospatial, structured, and unstructured. The speed and scalability of Elasticsearch and 

its ability to index many types of content mean that it can be used for several searches. 

 

In last phase of our project, the predicted results from phase 2 are sent to Elasticsearch for 

indexing. NADE creates an index in elastic search, which can be mapped to different columns as 

per requirement. Once the prediction is sent, network traffic is captured again for ‘duration’ 

seconds and this loop continues until it is interrupted. 

 

3.3.2 Kibana: 

Kibana is a free and open frontend application that sits on top of the Elastic Stack, providing 

search and data visualization capabilities for data indexed in Elasticsearch. Kibana also acts as the 
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user interface for monitoring and managing data. We can create different spaces for different 

users. 

 

 
We can create and discover insights of our data. 

 
 

 
Kibana is also a part of ELK stack which is a graphical visualization dashboard. We can create 

multiple visualizations based on our data and requirement. It can be configured to refresh itself 

after a specific interval of time. Data from elastic search is ingested into Kibana which visualize 

data in different charts, graphs, histogram etc. 
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We can explore underlying data of each visualization. 
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Cost of Product: 
 

EXPENSES COSTS 

Sales per Unit 80,000 Rs. 

Customer Service (Installation + Training + Customization) 50,000 Rs. 

Development 30,000 Rs. 
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CHAPTER 4 : SOFTWARE REQUIREMENT 

SPECIFICATION 

4.1 Introduction 

The introduction of the Software Requirements Specification (SRS) section provides an 

overview of the entire SRS with purpose, scope, definitions, acronyms, abbreviations, references, 

and overview of the SRS. The aim of this document is to present detailed description of the 

project NADE (Next-Gen Anomaly Detection) which uses a machine learning model to detect 

advance network security attacks in real-time. The detailed requirements of the NADE are 

provided in this document. 

 

4.1.1 Purpose 

This document covers the software requirement specifications for project “NADE”. The 

idea of the project is to develop an indigenous network security solution that will provide deeper 

insight about attack tactics, more clear realization, and visualization of threat landscape. This 

section is meant to outline the features and requirements of NADE, to serve as a guide to the 

developer on one hand and a software validation document for the prospective client on the other. 

 

4.2 System Overview 

4.2.1 Product Perspective 

The size and complexity of today's enterprises is growing exponentially, along with the 

number of IT personnel to support them. This makes information sharing and collaboration 

difficult when problems occur. NADE allows security teams to keep on top of security alerts in 

real-time. By gathering events from all the sources across the network, a NADE can reconstruct 

the series of events to determine the nature of attack. The main goal of NADE is to improve 

security, visibility and actionability along with an in-depth analysis of incoming and outgoing 

traffic. NADE will use custom Zeek scripts to extract useful features from network traffic that 

will include both attack and benign network data. Then NADE will use Machine Learning driven 

techniques to detect advanced threats which includes scanning, DoS attacks and other Network 

layer attacks. Our solution, the Network Generation Anomaly Detection Engine (NADE) will 
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provide a platform where all logs are gathered, and unusual behavior is detected, and attacks are 

visualized which would add value to the overall security posture of the organization where it is 

applied. 

 

4.2.2 User Classes and Characteristics 

The following section describes the types of users of Network Anomaly Detection Engine 

(NADE). There are explanations of the user followed by the interactions the user(s) shall be able 

to make with the software. 

 

4.2.2.1 Network Administrator 
 

People who implement and enforce the company's security program. They are non-hostile 

and appropriately trained to use, configure, and maintain the software and follow all guidance. 

 
Network Anomaly Detection Engine (NADE) gives network security professionals an in- 

depth analysis of incoming and outgoing traffic and detect any abnormal behavior. Network 

Anomaly Detection Engine (NADE) will log the actions that users take on the network, create a 

baseline to train the ML-driven model which will eventually facilitate the detection, and ultimate 

halting of advanced network attacks 

 

4.2.3 Operating Environment 
 

The essential physical components for the proper operation of NADE in the evaluated 

configuration are: 

 

4.2.3.1 Software 
 

• IDE: Python IDE (python 3) 

• OS: Linux, Windows 

• Dashboard: Kibana 

• Elastic Search for logging 

• Machine Learning libraries: Sklearn, pandas, numpy 

• Zeek 
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4.2.3.2 Hardware 
 

• Workstation (for training) 

• Standard Desktop Client 

 
 

4.2.4 Design and Implementation Constraints 

Language requirements: Software must be in English language 

 

 
4.2.5 User Documentation 

Following are the guides for the user of NADE: 

• User Manual 

 

• Online Documentation for users 

 

Documentation for developers and technicians working on the projects include: 

 

• Project Synopsis 

 

• SRS Document 

 

• UML Diagrams/Documents 

 
4.2.6 Assumptions and Dependencies 

• NADE will deal with only network layer attacks. 

 

• There are one or more competent individuals assigned to manage NADE. 

 

• Authorized administrators who manage NADE are non-hostile and are appropriately 

trained to use, configure, and maintain, the TOE, and follow all guidance. 

• There is the possibility of detection of false positives and false negatives. 

 

• It is assumed that the IT environment will provide a secure line of communication 

between distributed portions of the NADE and between the NADE and remote 

administrators. 
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4.3 External Interface Requirements 

4.3.1 Hardware Interfaces 

• Computers/Laptops with Internet Connections 

4.3.2 Software Interfaces 

• Operating System: Windows / Linux 

 

• Frontend Dashboard: Kibana 

 

• Deployment of Trained Model on Server (if required) 

 
4.3.3 Communications Interfaces 

Wi-Fi/Ethernet will be used by the client to connect to the server on which the trained 

model is present. 

 
 

4.4 System Features 

This section illustrates organizing the functional requirements for the NADE: 

 

• Authentication 

 

• Capture Live Network Traffic 

 

• Feature Extraction through Zeek 

 

• Anomaly Detection using Machine Learning 

 

• Data Indexing using Elastic Search 

 

• Visualization through Kibana 

Following is the component Diagram: 
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gram 

4.5 Overall Use Case Diagram 
 

4.5.1 Authentication 

4.5.1.1 Description 
 

The admin has to login on ELK stack (Kibana dashboard) by entering username and password. 
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4.5.1.2 Stimulus/Response Sequence 
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4.5.1.3 Functional Requirements 
 

1. The system shall be able to login user. 

2. The system shall be able to authenticate user. 

3. In case the information entered is incorrect, then it shall generate an error notification. 

 

 

4.5.2 Capture Live Network Traffic 
 

This feature enables the system to capture network traffic in real time and generate logs. These 

logs will be fed into the system for further processing. 

 

4.5.2.1 Stimulus/Response Sequences 
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4.5.2.2 Functional Requirement 
 

1. The system shall be able to capture network traffic. 

2. If successful, proceed to next step (feature extraction). 
 

4.5.3 Feature Extraction through Zeek 

4.5.3.1 Description 
 

Useful features from the logs obtained from previous stage that will include both attack and 

benign network data will be extracted through Zeek scripts. 
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4.5.3.2 Stimulus/Response Sequence 
 

4.5.3.3 Functional Requirements 
 

1. Features are extracted based on which we will detect attacks. 

2. The Zeek Script shall be able to extract useful features. 

 

4.5.4 Anomaly Detection using Machine Learning 

4.5.4.1 Description 
 

Based on the outputs from the previous stage, the trained machine learning model shall give a final 

classification whether the network is under attack or not. 
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4.5.4.2 Sequence/Response Sequences 
 

 
4.5.4.3 Functional Requirements 

 

1. The model shall be able to detect any malicious attacks and anomaly in the Network. 

2. The model shall be able to discard the false positives. 

3. The model shall be able to detect the type of true positives. 

 

4.5.5 Data Indexing 

4.5.5.1 Description 
 

Results obtained from previous stage will be indexed for efficient access and visualization. 
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4.5.5.2 Stimulus/Response Sequence 
 

 
4.5.5.3 Functional Requirements 

 

1. Data can be ingested into Elastic Search. 
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2. Data is indexed on the bases on defined mappings. 

3. In case the elastic search is not running, an error message is displayed. 
 

4.5.6 Data Visualization 

4.5.6.1 Description 
 

The logs obtained from previous stage will be visualized in Kibana dashboard. 
 

4.5.6.2 Stimulus/Response Sequence 
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4.5.6.3 Functional Requirements 
 

1. Data can be visualized in different ways using graphs, pie chart, histogram etc. 

2. In case the Kibana is not running, then the system shall generate an error message. 
 

4.6 Other Non-Functional Requirements 

4.6.1 Performance Requirements 

As performance is the critical component in security solutions so NextGen Anomaly 

Detection Engine (NADE) is designed to reduce the delay in transmission. NADE will operate in 

real time environment. 

 

4.6.2 Safety Requirements 

An authorized user of the internal network must not be able to transmit sensitive data 

outside of the internal network, exposing it to unauthorized viewers. 

An authorized user of the internal network must not temper with the records of NADE as 

Persons may not be held accountable for their changes to the data because their actions are not 

recorded. 

 

4.6.3 Security Requirements 

The System will ensure that only authorized administrators are granted access to the 

security functions, configurations, and associated data. 

 

4.6.4 Software Quality Attributes 

4.6.4.1 Availability 
 

The endpoints should be up and running 24/7. 
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4.6.4.2 Correctness: 
 

The logs generated must always have correct time stamp. 
 

4.6.4.3 Accuracy: 
 

NADE will provide more accurate results by using best possible Machine Learning 

Model. 
 

4.6.4.4 Adaptability: 
 

Currently the server runs on windows OS, but it must adapt to Linux/Unix. 
 

4.6.5 Business Rules 

• The system is available for linux and windows only. 

• NADE solution is only capable to tackle network attacks. (Port sanning, Dos attack and 

other network layer attacks) 

• NADE solution is suitable for small to medium networks. 
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CHAPTER 5 : DESIGN AND DEVELOPMENT 

 
5.1 Introduction 

5.1.1 Purpose 

This software design section contains the complete design description of the project “Network 

Anomaly Detection Engine (NADE)”. The purpose of this document is to understand each 

component and module of the project. It will provide information about the relationship between 

each module and how they are interconnected. The document is intended to inform stakeholders 

the details of the design and the design process. It is meant to outline the features, structure, and 

architecture of a “NADE”, to serve as a guide to developers and the intended audience. The 

intended audiences for the NADE include project supervisor, group members, project evaluation 

team and other concerned persons. It also shows how the use cases detailed in the SRS will be 

implemented in the system using this design. 

5.2 System architecture 

5.2.1 Architectural Design 

The diagram below provides an illustration of the System architecture along with the various 

components used. 
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5.2.2 Decomposition Description 

5.2.2.1 Deployment Diagram 
 

 

5.2.2.2 Flow Diagram 
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5.2.2.3 Class Diagram 
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5.2.2.4 Activity Diagram 
 

• Authentication 

 
 

• Capture Live Network Traffic 
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• Feature Extraction through Zeek 
 

 
 

• Anomaly Detection using Machine Learning 



Thesis for NADE 

54 

 

 

 

 

 

• Data Indexing and Visualization 
 
 

 

 
5.2.2.5 Component Diagram 
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5.2.3 Design Rationale 

We have selected Model View Component Architecture(MVC). MVC patterns separate the 

input, processing, and output of an application. This model divided into three interconnected 

parts called the model, the view, and the controller. All the three above given components are 

built to handle some specific development aspects of any web or .net application development. 

Following is some of the reasons for MVC selection: 
 

1. We have considered this because we have 3 components and we want to segregate all 

three components, due to obvious security reasons, deployment of model is on the server 

end, which in this case is Model and other 2 components are on client side. 

2. The requirement for data is to be processed fast, MVC fulfils this required by providing 

the asynchronous design. 

3. Individual components require continuous modification of Model (ML MODEL) as to 

increase the efficiency and better scale to satisfy the modern needs. 
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4. The modifications on the Model does not affect the other components, hence clients will 

not face any disruption. 

5.3 Data Design 

5.3.1 Data Description 

The mechanism/phenomena of data storage and information domain is very simple, 

the network traffic will be captured using Zeek’s scripts and useful features will be extracted 

from network traffic on which the Machine Learning Model will learn. 

The live network traffic is passed to the model and results are stored in the Elastic 

Search, which is based on NOSQL/Non structured DB. 

 
 

5.3.2 Data Dictionary 
 

Field Type Description 

Forward Inter 

Arrival Time 

Time 

Stamp 

Time between two packets in forward direction. 

Backward Inter 

Arrival Time 

Time 

Stamp 

Time between two packets in backward direction. 

Flow Inter 

Arrival Time 

Time 

Stamp 

Time between two packets in either direction. 

Active Integer Duration of sending packets for before going idle. 

Idle Integer Duration of idleness before starting to send packets 

again. 

Flow Bytes per 

second 

Integer Bytes per second in either direction 

Flow Packets 

per second 

Integer Packets sent per second in either direction. 

Duration Integer Time between the first and the last packet of the flow. 
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CHAPTER 6 : TESTING 

 
6.1 TEST CASE # 1 

 

OUTPUT: 
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6.2 TEST CASE # 2 
 
 

OUTPUT: 
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6.3 TEST CASE # 3 
 

OUTPUT: 
 

 
 



Thesis for NADE 

62 

 

 

 

 
 

6.4 TEST CASE # 4 

 

OUTPUT: 
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6.5 TEST CASE # 5 
 

 

OUTPUT: 
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6.6 TEST CASE # 6 
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OUTPUT: 
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FUTURE WORK: 

 
Project can be extended by incorporating alerts in Kibana. Alert rules can be defined to trigger an 

alert if attack is detected. Secondly, other attacks dataset can be generated and concatenated with 

current dataset or minority CIC dataset attack classes, which we have dropped for simplicity, can 

be up sampled. Generating other attacks dataset will increase the diversity of attack types and 

unknown attacks will also be detected. Other machine learning techniques should also be 

explored. 
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