
NETWORK ANOMALY DETECTION

ENGINE

(NADE)

By

Maryam Shafique

Mazhar Abbas

Arsalan Aslam

Supervisor

Asst. Prof Waleed Bin Shahid

Submitted to the faculty of Department of Software Engineering,

Military College of Signals, National University of Sciences and Technology,

in partial fulfillment for the requirements of B.E Degree in Software

Engineering

 JULY 2021

CERTIFICATE OF CORRECTIONS & APPROVAL

Certified that work contained in this thesis titled “Network Anomaly Detection Engine

(NADE)”,carried out by Maryam Shafique , Mazhar Abbas and Arsalan Aslam under the

supervision of Asst. Prof. Waleed Bin Shahid for partial fulfillment of Degree of Bachelor of

Software Engineering, in Military College of Signals, National University of Sciences and

Technology, Islamabad during the academic year 2021 is correct and approved. The material that

has been used from other sources it has been properly acknowledged / referred.

Approved by

Signature:

Asst. Prof. Waleed Bin Shahid

(Supervisor)

Signature:

Assoc Prof. Dr. Hammad Afzal

(Co-Supervisor)

Date: 12 July 2021

DECLARATION

No portion of work presented in this thesis has been submitted in support of

another award or qualification in either this institute or anywhere else.

PLAGIARISM CERTIFICATE (TURNITIN REPORT)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is attached.

Maryam Shafique

Regn No: 00000240974

Signature:

Mazhar Abbas

Regn No: 00000240970

Signature:

Arslan Aslam

Regn No: 00000240957

Signature:

Signature of Supervisor

ACKNOWLEDGEMENTS

We are thankful to the Creator Allah Subhana-Watala to have guided us throughout this

work at every step and for every new thought which You setup in our mind to improve it. Indeed,

we could have done nothing without Your priceless help and guidance. Whosoever helped us

throughout the course of our thesis, whether our parents or any other individual was Your will,

so indeed none be worthy of praise but You.

We are profusely thankful to our beloved parents who raised us when we were not capable

of walking and continued to support us throughout in every department of our life.

We would also like to express special thanks to our supervisor Asst. Prof. Waleed Bin

Shahid for his help throughout the thesis and for their consistent direction and inspiration

throughout our venture. Without their assistance, we would not have the option to achieve

anything.

Finally, we would like to express our gratitude to all the individuals who have rendered

valuable assistance to our study.

Dedicated to our exceptional parents and adored siblings whose

tremendous support and cooperation led us to this wonderful

accomplishment.

Abstract

IT environments are growing ever more distributed, complex, and difficult to manage whereas

cyber-attacks are becoming more and more common. Attackers constantly look to exploit any

gap in IT systems, applications, and hardware to compromise confidentiality, integrity, and

availability of information. With rapidly increasing cyber-attacks, the old preventative, and

defensive techniques of simply using firewalls, antivirus software and conventional IDS stand

incapacitated to detect advanced network attacks. This accentuates the need to come up with an

elaborate NextGen Network Anomaly Detection Engine which monitors the attack and threat

landscape in real-time using advanced techniques.

A Network Anomaly Detection Engine can detect advanced network attacks in real-time with

the help of Machine Learning techniques. It would improve security visibility and actionability

along with an in-depth analysis of incoming and outgoing traffic. NADE will use custom Zeek[1]

scripts to extract useful features from network traffic that will include both attack and benign

network data. Then NADE will use Machine Learning driven techniques to detect advanced

threats which includes scanning, DoS attacks and other Network layer attacks. Moreover, our

solution, the Network Anomaly Detection Engine (NADE) will provide a platform where all logs

are gathered, and unusual behavior is detected.

Key Words: NADE, Machine Learning, Network Attacks

Table of Contents

CHAPTER 1: INTRODUCTION... 1

1.1 Overview .. 1

1.2 Scope .. 1

1.3 Product Functions... 1

1.4 Deliverables ... 2

1.5 Overview of the Document .. 2

1.5.1 Document Conventions .. 3

1.5.2 Headings .. 3

1.5.3 References.. 3

1.5.4 Basic Text .. 3

CHAPTER 2: LITERATURE REVIEW... 4

CHAPTER 3 : METHODOLOGY .. 6

3.1 Phase 1 ... 6

3.2 Phase 2 ... 6

3.2.1 DATASET ... 6

3.2.2 CICFlowmeter ... 7

3.2.3 ZeekFlowmeter .. 7

3.2.4 Characteristics of the Dataset: ... 14

3.2.5 Dataset Description .. 14

3.2.6 Dataset Analysis .. 15

3.2.7 ATTACKS: .. 16

3.2.8 MACHINE LEARNING: .. 21

3.2.9 RESULTS: ... 23

3.2.10 Classifiers Performance ... 25

3.3 Phase 3 ... 31

3.3.1 Elastic Search ... 31

3.3.2 Kibana: ... 31

CHAPTER 4 : SOFTWARE REQUIREMENT SPECIFICATION ... 35

4.1 Introduction .. 35

4.1.1 Purpose .. 35

4.2 System Overview ... 35

4.2.1 Product Perspective.. 35

4.2.2 User Classes and Characteristics ... 36

4.2.3 Operating Environment .. 36

4.2.4 Design and Implementation Constraints .. 37

4.2.5 User Documentation .. 37

4.2.6 Assumptions and Dependencies .. 37

4.3 External Interface Requirements .. 38

4.3.1 Hardware Interfaces ... 38

4.3.2 Software Interfaces .. 38

4.3.3 Communications Interfaces ... 38

4.4 System Features ... 38

4.5 Overall Use Case Diagram ... 39

4.5.1 Authentication .. 39

4.5.2 Capture Live Network Traffic ... 41

4.5.3 Feature Extraction through Zeek ... 42

4.5.4 Anomaly Detection using Machine Learning .. 43

4.5.5 Data Indexing ... 44

4.5.6 Data Visualization.. 46

4.6 Other Non-Functional Requirements ... 47

4.6.1 Performance Requirements .. 47

4.6.2 Safety Requirements .. 47

4.6.3 Security Requirements ... 47

4.6.4 Software Quality Attributes ... 47

4.6.5 Business Rules ... 48

CHAPTER 5 : DESIGN AND DEVELOPMENT .. 49

5.1 Introduction .. 49

5.1.1 Purpose .. 49

5.2 System architecture .. 49

5.2.1 Architectural Design .. 49

5.2.2 Decomposition Description ... 50

5.2.3 Design Rationale .. 55

5.3 Data Design .. 56

5.3.1 Data Description .. 56

5.3.2 Data Dictionary .. 56

CHAPTER 6 : TESTING .. 57

6.1 TEST CASE # 1 ... 57

6.2 TEST CASE # 2 ... 59

6.3 TEST CASE # 3 ... 61

6.4 TEST CASE # 4 ... 62

6.5 TEST CASE # 5 ... 64

6.6 TEST CASE # 6 ... 65

FUTURE WORK ... 67

REFERENCES: ... 67

Thesis for NADE

1

CHAPTER 1: INTRODUCTION

1.1 Overview

The size and complexity of today's enterprises is growing exponentially, along with the

number of IT personnel to support them. This makes information sharing and collaboration

difficult when problems occur. NADE allows security teams to keep on top of security alerts in

real-time. By gathering events across the network, a NADE can determine the nature of attack.

The main goal of NADE is to improve security, visibility and actionability along with an in-

depth analysis of incoming and outgoing traffic.

Network Anomaly Detection Engine (NADE) will log the actions that users take on the

network, create a baseline to train the ML-driven model which will eventually facilitate the

detection, and ultimate halting of network attacks. Our solution, the Network Anomaly Detection

Engine (NADE) will provide a platform where all logs are gathered, and unusual behavior is

detected, and attacks are visualized which would add value to the overall security posture of the

organization where it is applied.

1.2 Scope

The scope of NADE is to provide a cost-effective yet comprehensive solution that will

benefit organizations and individuals in protecting their data against loss or cyber theft. Next-

Generation Network Anomaly Detection Engine will capture live traffic and transform it into a

format where useful features can be seen and evaluated using Zeek scripts. Then this

transformed traffic is directed to the ML model for anomaly detection. If any anomaly is

detected, it will be indexed using ELK Stack and visualized on Kibana Dashboard. It will

improve security visibility, actionability, and posture while reducing analysts’ burden. It will

also prevent noise/false-positive results by using advanced Machine Learning techniques.

1.3 Product Functions

The main functions of NADE are highlighted below:

Thesis for NADE

2

• Capture live network traffic and extract useful features using Zeek scripts.

• Analyze and detect abnormal or suspicious user behavior, advanced threats and security

breaches in network using trained Machine Learning Model.

• Index the data for efficient searching and presenting the organized data for end-user.

• Generate operational security dashboard and reports to have a full visibility of security

attacks for Network Administrator.

1.4 Deliverables

Sr.

Tasks

Deliverables

1

Literature Review

Literature Survey

2 Requirements

Gathering

SRS Document

3

Application Design

Design Document (SDS)

4

Implementation

Implementation on computer with a

live test to show the accuracy and

ability of the project

5

Testing

Evaluation plan and test document

6

Training

Deployment Plan

7

Deployment

Complete application along with

necessary documentation

1.5 Overview of the Document

This document shows the complete working process of our project NADE. It starts with

the literature review which shows past work done in a similar field, requirement analysis of the

Thesis for NADE

3

system, system architecture which highlights the modules of the software and represents the

system in the form of a component diagram, Use Case Diagram, Sequence Diagram, and general

design of the system. Then it will move on to discuss the detailed Description of all the

components involved. Further, the dependencies of the system and its relationship with other

products and the capacity of it to be reused will be discussed.

1.5.1 Document Conventions

This section describes the standards followed while writing the document.

1.5.2 Headings

Headings are prioritized in a numbered fashion, the highest priority heading having a single

digit and subsequent headings having more numbers, per their level. All the main headings are

titled as follows: single-digit number followed by a dot and the name of the section (All bold

Times New Roman, size 18, Centered).

All second-level subheadings for every subsection have the same number as their

respective main heading, followed by one dot and subsequent subheading number followed by

name of the subsection (All bold Times New Roman, size 16). Further subheadings, i.e., level

three and below, follow the same rules as above for numbering and naming, but different for the

font (All bold Times New Roman, size 14).

1.5.3 References

All references in this document are provided where necessary, however, were not present,

the meaning is self-explanatory. All ambiguous terms have been clarified in the glossary at the

end of this document.

1.5.4 Basic Text

All other basic text appears in regular, size 12 Times New Roman. Every paragraph

explains one type of idea.

Thesis for NADE

4

CHAPTER 2: LITERATURE REVIEW

CIC dataset was created by Sharafaldin et al, Ashkari et al, and Ghorbani et al [3]. They proposed

a technique towards generating a new I DS dataset. They analyzed different IDS dataset and

proposed their approach to generate dataset for IDS. They extracted 84 features from network

traffic. They also discussed their environment configurations that was used to generate dataset.

The focus of their approach is to make a dataset having features for detection by machine learning.

We explored dataset thoroughly and, in this context, read some papers on CIC dataset

analysis [2]. In [2] they discussed shortcomings in the dataset. Although this is a state-of-the-

art dataset [3] and created by a well-known Institution of cyber security but it has some

shortcoming that are discussed in detail [2].

[2] Problem with dataset is this that it is highly class imbalanced which made us to drop

some rare-occurring attack traffic unfortunately. Second shortcoming is this that size of dataset is

so large that it cannot be processed on limited resource systems.

A similar approach to our approach is used in [1] to detect malicious traffic with the help

of Machine Learning. They extracted features from network traffic using customized Zeek scripts

and trained their model on CIC dataset after converting into csv format. They deployed model in

offline environment and measured its performance. But their approach is not capable of detecting

real-time attacks and does not provide a GUI (Graphical User Interface) for the visualization of

attacks.

Ahmim et al. [4] proposed a novel intrusion detection system (IDS) that combines different

classifier approaches which are based on decision tree and rules-based concepts, namely, REP

Tree, JRip algorithm and Forest PA. Specifically, the first and second method take as inputs

features of the dataset and classify the network traffic as Attack/Benign. The third classifier uses

features of the initial data set in addition to the outputs of the first and the second classifier as

inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017

dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time

overhead as compared to state of the art existing schemes.

Thesis for NADE

5

There are many techniques have been proposed to detect malicious network traffic but

most of them lack in machine learning and graphical dashboard. We took intuition form [1]. Our

approach may be considered as a future work of [1]. We used advanced Zeek scripts to extract

network traffic features. We have taken [1] to next level by developing a module for online

detection of attacks and GUI for graphical Interface.

We took data sampling technique from Ahmin et al [4]. They included a large

proportion of benign traffic in dataset as most of the time there will be benign traffic in the

network. In their novel hierarchical approach, they used two classifiers to detect attack traffic.

First classifier tells whether incoming traffic is benign or attack. Second classifier predicts the type

of attack if first classifier has predicted incoming traffic as attack. We experimented

this approach, but results were not improving by using hierarchical approach. So, we decided to

use one classifier for the detection of attack class.

Thesis for NADE

6

CHAPTER 3 : METHODOLOGY

We are intended to develop an Intrusion Detection System which has capability to detect network

layer attacks with minimum false alarms and an interactive graphical dashboard which can

visualize detected attacks in network traffic.

Our proposed approach has three phases.

3.1 Phase 1:

Zeek is a an open-source network monitoring tool, and it has its own scripting language.

We used Zeek scripting language to sniff network traffic. The Zeek script [7] extracts

84 features from network traffic. These features include CIC dataset features and

some additional features that are useful for attack detection.

Zeek writes extracted features in flowmeter.log file. We made a parameter named

‘duration’ which sets the time for which the network traffic will be captured by the Zeek. After the

traffic has been captured and written in flowmeter.log file, flowmeter.log file is accessed and is

converted into pandas data frame.

3.2 Phase 2:

In second phase, detection of attack is done using Machine Learning. As we have been able

to convert network traffic into pandas data frame , now we can pass it to trained machine learning

model which classifies whether incoming traffic is benign or some sort of attack.

3.2.1 DATASET:

We used CICIDS2017 dataset [5] to train the model. CICIDS2017 dataset contains benign

and the most up-to-date common attacks, which resembles the true real-world data (PCAPs). It

also includes the results of the network traffic analysis using CICFlowMeter with labeled flows

based on the time stamp, source, and destination IPs, source and destination ports, protocols, and

attack (CSV files).

They made a CICFlowmeter [6] tool to convert pcap files to csv format to analyze the

dataset. But their tool is not capable of working in real-time scenario. This is the reason we had to

use Zeek scripting language to extract required features.

https://github.com/ISCX/CICFlowMeter

Thesis for NADE

7

3.2.2 CICFlowmeter:

CICFlowMeter is a network traffic flow generator and analyzer. It can be used to generate

bidirectional flows, where the first packet determines the forward (source to destination) and

backward (destination to source) directions, hence more than 80 statistical network traffic features

such as Duration, Number of packets, Number of bytes, Length of packets, etc. can be calculated

separately in the forward and backward directions.

Additional functionalities include, selecting features from the list of existing features,

adding new features, and controlling the duration of flow timeout. The output of the application is

the CSV format file that has six columns labeled for each flow

(flow_id, src_ip, dst_ip src_port, dst_port, and protocol) with more than 80 network traffic

analysis features.

TCP flows are usually terminated upon connection teardown (by FIN packet) while UDP

flows are terminated by a flow timeout. The flow timeout value can be assigned arbitrarily by the

individual scheme e.g., 600 seconds for both TCP and UDP.

3.2.3 ZeekFlowmeter:

Zeek flowmeter is a tool (or script) written zeek scripting language which extracts CIC

Dataset features from network traffic. This tool can extract features from both pcap files and live

traffic.

Flowmeter performs layer 3 and 4 network traffic analysis and generates a set of new

features based on timing, volume, and metadata. These features are ideal for developing models

for traffic classification without using deep packet inspection. The extracted features are as

follows:

Feature Name Description
exists

in CICFlowMeter

uid The ID of the flow as given by Zeek No

flow_duration

The length of the flow in seconds (maximal

precision ms). If only on packet was seen the

duration is 0.

Yes

Thesis for NADE

8

fwd_pkts_tot
The number of packets travelling in the forward

direction.
Yes

bwd_pkts_tot
The number of packets travelling in the backwards

direction.
Yes

fwd_data_pkts_tot
The number of packets travelling in the forward

direction, which have a payload.
Yes

bwd_data_pkts_tot
The number of packets travelling in the backwards

direction, which have a payload.
No

fwd_pkts_per_sec

The average number of forward packets

transmitted per second during the flow. If the

duration is 0 then this feature is also set to 0.

Yes

bwd_pkts_per_sec

The average number of backward packets

transmitted per second during the flow. If the

duration is 0 then this feature is also set to 0.

Yes

flow_pkts_per_sec

The average number of packets transmitted per

second during the flow. If the duration is 0 then

this feature is also set to 0.

Yes

down_up_ratio

The number of backward packets divided by the

number of forward packets. If the number of

forward packets is 0 this feature is also set to 0.

Yes

fwd_header_size_tot
The total number of bytes the headers of the

forward packets contained.
Yes

fwd_header_size_min
The number of bytes the smallest headers of the

forward packets contained.
Yes

fwd_header_size_max
The number of bytes the largest headers of the

forward packets contained.
Yes

bwd_header_size_tot
The total number of bytes the headers of the

backward packets contained.
Yes

bwd_header_size_min
The number of bytes the smallest headers of the

backward packets contained.
No

Thesis for NADE

9

bwd_header_size_max The number of bytes the largest headers of the

backward packets contained.
No

fwd_pkts_payload.ma

x

The largest payload size, in bytes, seen in the

forward direction.
Yes

fwd_pkts_payload.min The smallest payload size, in bytes, seen in the

forward direction.
Yes

fwd_pkts_payload.tot
The total payload size, in bytes, seen in the

forward direction.
Yes

fwd_pkts_payload.avg The average payload size, in bytes, seen in the

forward direction.
Yes

fwd_pkts_payload.std
The standard deviation of the payload size, in

bytes, seen in the forward direction.
Yes

bwd_pkts_payload.ma

x

The largest payload size, in bytes, seen in the

backward direction.
Yes

bwd_pkts_payload.mi

n

The smallest payload size, in bytes, seen in the

backward direction.
Yes

bwd_pkts_payload.tot
The total payload size, in bytes, seen in the

backward direction.
Yes

bwd_pkts_payload.avg The average payload size, in bytes, seen in the

backward direction.
Yes

bwd_pkts_payload.std
The standard deviation of the payload size, in

bytes, seen in the backward direction.
Yes

flow_pkts_payload.ma

x

The largest payload size, in bytes, seen in the

flow.
Yes

flow_pkts_payload.mi

n

The smallest payload size, in bytes, seen in the

flow.
Yes

flow_pkts_payload.tot The total payload size, in bytes, seen in the flow. No

flow_pkts_payload.av

g

The average payload size, in bytes, seen in the

flow.
Yes

Thesis for NADE

10

flow_pkts_payload.std The standard deviation of the payload size, in

bytes, seen in the flow
Yes

payload_bytes_per_se

cond

The average number of payload bytes transmitted

per second. If the duration is 0 then this feature is

also set to 0.

Yes

flow_FIN_flag_count

The total number of FIN flags which have been

seen in a TCP flow. If the the flow is not a TCP

flow this feature is set to 0.

Yes

flow_SYN_flag_count
The total number of SYN flags which have been

seen in a TCP flow. If the the flow is not a TCP

flow this feature is set to 0.

Yes

flow_RST_flag_count

The total number of RST flags which have been

seen in a TCP flow. If the the flow is not a TCP

flow this feature is set to 0.

Yes

fwd_PSH_flag_count

The total number of PSH flags which have been

seen in the forward direction of a TCP flow. If

the the flow is not a TCP flow this feature is set to

0.

Yes

bwd_PSH_flag_count

The total number of PSH flags which have been

seen in the backward direction of a TCP flow. If

the the flow is not a TCP flow this feature is set to

0.

Yes

flow_ACK_flag_count
The total number of ACK flags which have been

seen in a TCP flow. If the the flow is not a TCP

flow this feature is set to 0.

Yes

fwd_URG_flag_count

The total number of URG flags which have been

seen in the forward direction of a TCP flow. If

the the flow is not a TCP flow this feature is set to

0.

Yes

Thesis for NADE

11

bwd_URG_flag_count

The total number of URG flags which have been

seen in the backward direction of a TCP flow. If

the the flow is not a TCP flow this feature is set to

0.

Yes

flow_CWR_flag_coun

t

The total number of CWR flags which have been

seen in a TCP flow. If the the flow is not a TCP

flow this feature is set to 0.

Yes

flow_ECE_flag_count

The total number of ECE flags which have been

seen in a TCP flow. If the the flow is not a TCP

flow this feature is set to 0.

Yes

fwd_iat.max
The largest inter-arrival time in microseconds bet

two consecutive packets in the forward direction.
Yes

fwd_iat.min
The smallest inter-arrival time in microseconds bet

two consecutive packets in the forward direction.
Yes

fwd_iat.tot
The inter-arrival time in microseconds bet two

consecutive packets in the forward direction.
Yes

fwd_iat.avg
The average inter-arrival time in microseconds bet

two consecutive packets in the forward direction.
Yes

fwd_iat.std
The standard deviation of all inter-arrival times in

the forward direction in microseconds.
Yes

bwd_iat.max

The largest inter-arrival time in microseconds bet

two consecutive packets in the backward

direction.

Yes

bwd_iat.min

The smallest inter-arrival time in microseconds bet

two consecutive packets in the backward

direction.

Yes

bwd_iat.tot
The inter-arrival time in microseconds bet two

consecutive packets in the backward direction.
Yes

Thesis for NADE

12

bwd_iat.avg

The average inter-arrival time in microseconds bet

two consecutive packets in the backward

direction.

Yes

bwd_iat.std
The standard deviation of all inter-arrival times in

the backward direction in microseconds.
Yes

flow_iat.max
The largest inter-arrival time in microseconds bet

two consecutive packets in the flow.
Yes

flow_iat.min
The smallest inter-arrival time in microseconds bet

two consecutive packets in the flow.
Yes

flow_iat.tot
The inter-arrival time in microseconds bet two

consecutive packets in the flow.
No

flow_iat.avg
The average inter-arrival time in microseconds bet

two consecutive packets in the flow.
Yes

flow_iat.std
The standard deviation of all inter-arrival times in

the flow, in microseconds.
Yes

fwd_subflow_pkts
The average number of packets in the subflows in

the forward direction.
Yes

bwd_subflow_pkts
The average number of packets in the subflows in

the backward direction.
Yes

fwd_subflow_bytes
The average number of payload bytes in

the subflows in the forward direction.
Yes

bwd_subflow_bytes
The average number of payload bytes in

the subflows in the backward direction.
Yes

fwd_bulk_bytes
The average number of payload bytes transmitted

in a bulk transmission in forward direction.
Yes

bwd_bulk_bytes
The average number of payload bytes transmitted

in a bulk transmission in backward direction.
Yes

fwd_bulk_packets
The average number of packets transmitted in a

bulk transmission in forward direction.
Yes

Thesis for NADE

13

bwd_bulk_packets
The average number of packets transmitted in a

bulk transmission in backward direction.
Yes

fwd_bulk_rate

The average number of payload bytes transmitted

per second during a bulk transmission in forward

direction.

Yes

bwd_bulk_rate

The average number of payload bytes transmitted

per second during a bulk transmission in backward

direction.

Yes

active.max
The longest duration the flow was active in

microseconds.
Yes

active.min
The shortest duration the flow was active in

microseconds.
Yes

active.tot
The total duration the flow was active in

microseconds.
Yes

active.avg
The average duration the flow was active in

microseconds.
Yes

active.std
The standard deviation of all active periods in

microseconds.
No

idle.max
The longest duration the flow was idle in

microseconds.
Yes

idle.min
The shortest duration the flow was idle in

microseconds.
Yes

idle.tot
The total duration the flow was idle in

microseconds.
Yes

idle.avg
The average duration the flow was idle in

microseconds.
Yes

idle.std
The standard deviation of all idle periods in

microseconds.
No

fwd_init_window_size The window size in bytes the first packet in the

forward direction has. The windows scale
Yes

Thesis for NADE

14

 parameter is currently ignored, as this is only set in

a SYN packet but we currently look at any packet.

bwd_init_window_siz

e

The window size in bytes the first packet in the

backward direction has. The windows scale

parameter is currently ignored, as this is only set in

a SYN packet but we currently look at any packet.

Yes

fwd_last_window_size

The window size in bytes the last packet in the

forward direction has. The windows scale

parameter is currently ignored, as this is only set in

a SYN packet but we currently look at any packet.

Yes

bwd_last_window_siz

e

The window size in bytes the last packet in the

backward direction has. The windows scale

parameter is currently ignored, as this is only set in

a SYN packet but we currently look at any packet.

Yes

3.2.4 Characteristics of the Dataset:

Diversity: Almost all most common attacks are carried out such as DDoS, DoS and PortScan etc.

Feature Set: Extracted more than 80 network flow features from the generated network traffic

using CICFlowMeter and delivered the network flow dataset as a CSV file. Dataset is both

available in CSV and PCAP format.

Protocols: All common protocols are present in the dataset, such as HTTP, HTTPS, FTP, SSH.

Labelled Dataset: Most important characteristic of dataset is this that dataset is fully labelled.

They have provided complete information on their website to label pcap data.

3.2.5 Dataset Description:

CICIDS Dataset was generated in five days from Monday to Friday. Dataset consists of five pcap

file that are named after the name of the day when they were created.

• Monday, Normal Activity, 11.0G (BENIGN Traffic only)

• Tuesday, attacks + Normal Activity, 11G (BruteForce)

• Wednesday, attacks + Normal Activity, 13G (DoS)

https://www.unb.ca/cic/research/applications.html#CICFlowMeter

Thesis for NADE

15

• Thursday, attacks + Normal Activity, 7.8G (Web Attacks)

• Friday, attacks + Normal Activity, 8.3G (PortScan + DDoS)

Dataset consists of 84 features (extracted from ZeekFlowmeter) and each record of dataset is a

bidirectional flow. Bidirectional flow means that the traffic between two hosts for a duration of

time. Based on this traffic 84 features are extracted which are shown in Table 3.1

3.2.6 Dataset Analysis

Some dataset classes are named after the tools to generate dataset. For example, DoS Hulk, DoS

Slowloris, DoS slowHTTPtest and DoS GoldenEye are tools to carry out DoS attack. Similarly,

FTP-Patator and SSH-Patator are tools to carry out BruteForce attack.

Dataset is highly class imbalanced, and size of dataset is very large. It covers seven types of

network attacks. Web attacks are in minority while PortScan, DDoS and DoS-Hulk (type of DoS

attack) are in majority. To overcome this problem, we came up with a strategy of class merge

and sampling.

We merged the classes of same attack. For example, DoS Hulk, DoS Slowloris, DoS

Goldeneye, and DoS slowHTTPtest belongs to DoS attack. We concatenated these four classes

Thesis for NADE

16

and labelled them as DoS. Same as this SSH-BruteForce and FTP-BruteForce are merged

and labelled as BruteForce.

Previous Label Count After down

sampling

New Label Count

DoS Hulk 163453 20000
DoS

46765 DoS GoldenEye 6932 6932

DoS

slowHTTPtest

15932 15932

DoS Slowloris 3901 3901

Previous Label Count After down

sampling

New Label Count

FTP-Patator 4032 4032
BruteForce

6972 SSH-Patator 2950 2950

After merging sub-classes, sampling, and dropping Infiltration, botnet and web-attacks, final

distribution of dataset is as follows.

Category Count

BENIGN 150000

DoS 46765

DDoS 25000

PortScan 25000

BruteForce 6972

Total 253737

3.2.7 ATTACKS:

NADE is, for the time, trained to detect 4 types of Network-Layer attacks listed as follows:

Thesis for NADE

17

● Port-Scan

● BruteForce

● DoS

● DDoS

Attacks are further categorized by the techniques used to perform the attack.

3.2.7.1 PORTSCAN:

Attacks are always performed in different phases. The first phase of every attack is the

Information Gathering part. The Attacker tries and collects information about the target before

actually performing the attacks. This could be any information related to the victim/target. One of

the most common parts of this phase is Port Scanning.

When a computer runs a network service, it opens a networking construct called a “port” to receive

the connection. Ports are necessary for making multiple network requests or having multiple

services available. For example, when you load several web pages at once in a web browser, the

program must have some way of determining which tab is loading which web page. This is done

by establishing connections to the remote web servers using different ports on your local machine.

Network connections are made between two ports – an open port listening on the server and a

randomly selected port on your own computer. For example, when you connect to a web page,

your computer may open port 49534 to connect to the server’s port 443. There are a total of 65535

available ports on a computer.

Not knowing which ports are open can decrease the attackers’ chance of successfully attacking the

target. So, usually, attacks begin with a port scan. Basically in a port scan, the attacker tries to

connect to all the ports of the target, and the responses are used to determine if the port is open,

closed, or filtered (usually by a firewall).

NADE used nmap port scans for Training and testing of the ML Model. Nmap, also sometimes

known as Network-Mapper, is a free and open-source tool for Network and Port scanning. It is

also proficient in many other active information gathering techniques. When port scanning with

Nmap, there are three basic scan types. These are:

Thesis for NADE

18

● TCP Connect Scans (-sT)

if Nmap sends a TCP request with the SYN flag set to a closed port, the target server will respond

with a TCP packet with the RST (Reset) flag set. By this response, Nmap can establish that the

port is closed. If, however, the request is sent to an open port, the target will respond with a TCP

packet with the SYN/ACK flags set. Nmap then marks this port as being open (and completes the

handshake by sending back a TCP packet with ACK set).

What if the port is open, but hidden behind a firewall?

Many firewalls are configured to simply drop incoming packets. Nmap sends a TCP SYN request,

and receives nothing back. This indicates that the port is being protected by a firewall and thus the

port is considered to be filtered.

The victim’s wireshark looks like this during TCP connect scan attack.

● SYN "Half-open" Scans (-sS)

As with TCP scans, SYN scans (-sS) are used to scan the TCP port-range of a target or targets;

however, the two scan types work slightly differently. SYN scans are sometimes referred to as

"Half-open" scans, or "Stealth" scans.

Thesis for NADE

19

Where TCP scans perform a full three-way handshake with the target, SYN scans sends back a

RST TCP packet after receiving a SYN/ACK from the server (this prevents the server from

repeatedly trying to make the request.

If a port is closed then the server responds with a RST TCP packet. If the port is filtered by a

firewall then the TCP SYN packet is either dropped, or spoofed with a TCP reset.

Here is the wireshark analysis of victim Network during the attack

● UDP Scans (-sU)

Unlike TCP, UDP connections are stateless. This means that, rather than initiating a connection

with a back-and-forth "handshake", UDP connections rely on sending packets to a target port and

essentially hoping that they make it. This makes UDP superb for connections which rely on speed

over quality (e.g. video sharing), but the lack of acknowledgement makes UDP significantly more

difficult (and much slower) to scan. The switch for an Nmap UDP scan is (-sU).

When a packet is sent to a closed UDP port, the target should respond with an ICMP (ping) packet

containing a message that the port is unreachable. This clearly identifies closed ports, which Nmap

marks as such and moves on.

When a packet is sent to an open UDP port, there should be no response. When this happens,

Nmap refers to the port as being open|filtered

Thesis for NADE

20

3.2.7.2 BRUTEFORCE

A brute force attack uses trial-and-error to guess login info, encryption keys, or find a hidden

web page.

NADE covered FTP and SSH bruteforce attacks. These were conducted with Hydra.

Hydra is a parallelized network login cracker built in various operating systems like Kali Linux,

Parrot and other major penetration testing environments. Hydra works by using different

approaches to perform brute-force attacks in order to guess the right username and password

combination.

The Wireshark analysis of victim Network during a hydra BruteForce is provided here.

3.2.7.3 DoS

A denial-of-service attack is a cyber-attack in which the perpetrator seeks to make a machine or

network resource unavailable to its intended users by temporarily or indefinitely disrupting the

services of a host connected to the Internet.

NADE used slowloris and hulk in DoS attacks. The wireshark of victim is given below during

slowloris.

Thesis for NADE

21

3.2.7.4 DDoS

A distributed denial-of-service (DDoS) attack occurs when multiple systems flood the bandwidth

or resources of a targeted system, usually one or more web servers.

DDoS attacks are carried out with networks of Internet-connected machines known as a botnet.

When a victim's server or network is targeted by the botnet, each bot sends requests to the target's

IP address, potentially causing the server or network to become overwhelmed, resulting in a denial-

of-service to normal traffic.

3.2.8 MACHINE LEARNING:

3.2.8.1 What is Machine Learning?

Machine Learning is a subfield of Artificial Intelligence which learns from the

experience(dataset) and makes prediction on unknown data. Machine Learning is very popular

nowadays because of the availability of sophisticated algorithms, large datasets and system

resources. Machine Learning algorithms can be classified into two categories.

• Supervised Learning Algorithms:

In supervised learning we provide both data and labels to train the

model. Logistic Regression, Decision Tree and Neural Networks are

supervised learning algorithms.

• Un-supervised Learning Algorithms:

Thesis for NADE

22

In unsupervised learning model is trained on unlabeled data. K-mean clustering is

one of the mostly used unsupervised learning algorithms.

As our project is intended to find out anomaly and classify it so we have to use

supervised Learning algorithms.

3.2.8.2 Machine Learning in Cybersecurity:

In conventional or rule-based IDS we have to identify patterns of attacks and define rules

manually to detect abnormal behavior in the network. But in Machine Learning-based IDS rules

or patterns are made automatically. In order to apply Machine learning we need huge data. As

networks are growing rapidly and a large amount of data is being generated every day, so we have

enough data to train our machine learning model and extract rules out of that. Once a

machine learning model is trained, we can deploy it in a network where it can make real time

prediction/detection.

3.2.8.3 Our Implementation of Machine Learning:

We have implemented supervised machine learning in our project. CIC dataset is a labeled

dataset that means we can train a supervised learning model for attack detection. We have five

classes in our final dataset which means our trained model

should classify incoming traffic among these five classes.

As our machine learning model will make predictions in real time, we need a model

which takes minimum time to predict and has maximum accuracy. We experimented

many machines learning models and techniques. We found out that Decision Tree Classifier suits

best in our case as it predicted 25000 records in 0.008 seconds with 99 percent accuracy. We tested

more classifiers than mentioned here. These classifiers showed best results.

3.2.8.4 Machine Learning Classifiers:

Machine learning classifiers used in this project are briefly described here,

Logistic Regression: is an iterative machine learning algorithm which consists of a perceptron

and have loss function. It tries to optimize the loss (or error) [8].

Thesis for NADE

23

Quadratic Discriminant Analysis (QDA) uses bayes theorem and covariance matrices for each

class to classify new observations [9, p. 149].

Multi-Layer Perceptron (MLP) also called Deep Learning, are inspired by

the behavior of neurons in brains. Logically they consist of interconnected nodes in layers that

performs calculations to make classifications. Layers and nodes in the network are

hyperparameters [10].

Decision Tree (DT) classifies data by traversing through a tree structure, asking

relevant questions about the features of the data, when the traversing reaches a leaf node, the data

point is classified according to the class in the leaf node [9, p. 303]. ID3 is a popular version of

DT.

Random Forest (RF) aggregates and produces a mean of the result of several Decision Trees

trained from different random subsets of the training data [9, p. 319].

3.2.9 RESULTS:

• Confusion Matrix
A confusion matrix is a way of describing the performance of a classification system. For example,

if the number of observations in each class is imbalanced or the dataset comprises more than two

classes, classification accuracy alone may be misleading. Calculating a confusion

matrix can assist us in determining what the categorization model gets right and where it goes

wrong.

True Positives: Positive records correctly classified by the model as positive.

True Negatives: Negative records correctly classified by the model as negative.

False Positives: Negative records incorrectly classified by the model as positives.

False Negatives: Positive records incorrectly classified by the model as negatives.

Thesis for NADE

24

A good IDS must have lower False Positives and False Negatives.

• False Positive means your system is blocking benign traffic.

False Positive Rate (FPR) = FP/FP+TN

• False Negative means your system is allowing malicious traffic to enter the

network.

False Negative Rate (FNR) = FN/FN+TP

If the system has a low detection rate, it gives a false sense of security, and if it has a high

false alarm rate, the security managers time is wasted analyzing false alarms. The point here is that

False positives generates false alarms and hence availability of the server is

compromised. Because when benign traffic which is coming from legitimate users is halted (after

detected as attack by IDS), It is more dangerous than allowing malicious traffic to enter the

network. Because we cannot deny access to users at any cost. So, the focus here is to reduce

false positives (false alarms).

• Train, Validation and Test Sets:

Training is the most important part in Machine Learning cycle. In training, dataset and

labels are fed into model and model learn the rules in the dataset. Dataset is split into training,

testing and validation set. Model is trained on the training data and its performance is measured

on validation and test set. Our final dataset consists of 253737 records. We split the dataset with

75 / 15 / 10 percent ratio in training, validation, and testing set, respectively.

Validation set is used for a special purpose in machine learning. Almost every ML model

is prone to overfitting. Overfitting is a condition in which model shows high accuracy on training

data and very poor accuracy on test data. To detect overfitting, we use k-fold cross-validation.

Thesis for NADE

25

Validation data is split into ‘k’ number of subsets randomly and each subset is passed to trained

model then its accuracy is calculated. After we have calculated all k subsets, we average their

accuracies and show it as validation accuracy. If validation accuracy is near to training accuracy,

our model is not overfitting on training data but if validation accuracy is far from training accuracy,

model is overfitting on training data.

 Split Ratio Count

Training set 0.75 190302

Validation set 0.15 38061

Testing set 0.10 25374

3.2.10 Classifiers Performance:

Thesis for NADE

26

• Logistic Regression Classifier:

• Decision Tree Classifier:

Thesis for NADE

27

• Random Forest Classifier:

• SGD Classifier:

Thesis for NADE

28

• AdaBoost Classifier:

• QDA Classifier:

Thesis for NADE

29

• MLP Classifier:

Thesis for NADE

30

Results:
Model Train Acc Validation

Acc

Test Acc Test Records Test Time

Logistic

Regression

0.993 0.993 0.993 25000 0.01

Decision Tree 0.999 0.999 0.998 25000 0.005

Random

Forest

0.999 0.998 0.998 25000 0.275

SGD

Classifier

0.999 0.998 0.998 25000 0.008

AdaBoost 0.811 0.765 0.815 25000 0.249

Multi-Layer

Perceptron

0.998 0.998 0.998 25000 0.057

Quadratic

Discriminant

Analysis

0.921 0.927 0.92 25000 0.083

Here is classification report of decision tree trained model,

Classes Precision Recall F1-Score Support

BENIGN 1.00 1.00 1.00 15075

BruteForce 0.99 1.00 1.00 699

DDoS 1.00 1.00 1.00 2452

DoS 0.99 1.00 0.99 4600

PortScan 1.00 1.00 1.00 2548

Real Time Results:

We carried out BruteForce, DoS, and Port Scanning attacks in real-time environment and

found following results. We set up two machines one is attacker (Kali Linux) and

other is victim (Ubuntu). Although, network configuration is not as same as the

Thesis for NADE

31

configuration of the network in which training data was generated. But still BruteForce and

PortScan has shown good results. One thing to be noted is this that False Alarm rate is very low

which is a big achievement because IDS most of the time misclassify benign traffic as attack

traffic [11].

“In fact, it has been estimated that up to 99% of alerts reported by IDSs are not related to security

issues (towards reducing false positives-page 1) [11]”

Classes Accuracy False Alarms

(False Positive Rate)

Detection

BENIGN 0.97 0.03 -

BruteForce 0.70 - 0.85

DDoS - - -

DoS 0.40 - 0.25

PortScan 0.98 - 0.95

3.3 Phase 3:

3.3.1 Elastic Search:

Elasticsearch is a part of ELK stack which is an open-source tool kit. Elasticsearch is a

distributed, free, and open search and analytics engine for all types of data, including textual,

numerical, geospatial, structured, and unstructured. The speed and scalability of Elasticsearch and

its ability to index many types of content mean that it can be used for several searches.

In last phase of our project, the predicted results from phase 2 are sent to Elasticsearch for

indexing. NADE creates an index in elastic search, which can be mapped to different columns as

per requirement. Once the prediction is sent, network traffic is captured again for ‘duration’

seconds and this loop continues until it is interrupted.

3.3.2 Kibana:

Kibana is a free and open frontend application that sits on top of the Elastic Stack, providing

search and data visualization capabilities for data indexed in Elasticsearch. Kibana also acts as the

Thesis for NADE

32

user interface for monitoring and managing data. We can create different spaces for different

users.

We can create and discover insights of our data.

Kibana is also a part of ELK stack which is a graphical visualization dashboard. We can create

multiple visualizations based on our data and requirement. It can be configured to refresh itself

after a specific interval of time. Data from elastic search is ingested into Kibana which visualize

data in different charts, graphs, histogram etc.

Thesis for NADE

33

We can explore underlying data of each visualization.

Thesis for NADE

34

Cost of Product:

EXPENSES COSTS

Sales per Unit 80,000 Rs.

Customer Service (Installation + Training + Customization) 50,000 Rs.

Development 30,000 Rs.

Thesis for NADE

35

CHAPTER 4 : SOFTWARE REQUIREMENT

SPECIFICATION

4.1 Introduction

The introduction of the Software Requirements Specification (SRS) section provides an

overview of the entire SRS with purpose, scope, definitions, acronyms, abbreviations, references,

and overview of the SRS. The aim of this document is to present detailed description of the

project NADE (Next-Gen Anomaly Detection) which uses a machine learning model to detect

advance network security attacks in real-time. The detailed requirements of the NADE are

provided in this document.

4.1.1 Purpose

This document covers the software requirement specifications for project “NADE”. The

idea of the project is to develop an indigenous network security solution that will provide deeper

insight about attack tactics, more clear realization, and visualization of threat landscape. This

section is meant to outline the features and requirements of NADE, to serve as a guide to the

developer on one hand and a software validation document for the prospective client on the other.

4.2 System Overview

4.2.1 Product Perspective

The size and complexity of today's enterprises is growing exponentially, along with the

number of IT personnel to support them. This makes information sharing and collaboration

difficult when problems occur. NADE allows security teams to keep on top of security alerts in

real-time. By gathering events from all the sources across the network, a NADE can reconstruct

the series of events to determine the nature of attack. The main goal of NADE is to improve

security, visibility and actionability along with an in-depth analysis of incoming and outgoing

traffic. NADE will use custom Zeek scripts to extract useful features from network traffic that

will include both attack and benign network data. Then NADE will use Machine Learning driven

techniques to detect advanced threats which includes scanning, DoS attacks and other Network

layer attacks. Our solution, the Network Generation Anomaly Detection Engine (NADE) will

Thesis for NADE

36

provide a platform where all logs are gathered, and unusual behavior is detected, and attacks are

visualized which would add value to the overall security posture of the organization where it is

applied.

4.2.2 User Classes and Characteristics

The following section describes the types of users of Network Anomaly Detection Engine

(NADE). There are explanations of the user followed by the interactions the user(s) shall be able

to make with the software.

4.2.2.1 Network Administrator

People who implement and enforce the company's security program. They are non-hostile

and appropriately trained to use, configure, and maintain the software and follow all guidance.

Network Anomaly Detection Engine (NADE) gives network security professionals an in-

depth analysis of incoming and outgoing traffic and detect any abnormal behavior. Network

Anomaly Detection Engine (NADE) will log the actions that users take on the network, create a

baseline to train the ML-driven model which will eventually facilitate the detection, and ultimate

halting of advanced network attacks

4.2.3 Operating Environment

The essential physical components for the proper operation of NADE in the evaluated

configuration are:

4.2.3.1 Software

• IDE: Python IDE (python 3)

• OS: Linux, Windows

• Dashboard: Kibana

• Elastic Search for logging

• Machine Learning libraries: Sklearn, pandas, numpy

• Zeek

Thesis for NADE

37

4.2.3.2 Hardware

• Workstation (for training)

• Standard Desktop Client

4.2.4 Design and Implementation Constraints

Language requirements: Software must be in English language

4.2.5 User Documentation

Following are the guides for the user of NADE:

• User Manual

• Online Documentation for users

Documentation for developers and technicians working on the projects include:

• Project Synopsis

• SRS Document

• UML Diagrams/Documents

4.2.6 Assumptions and Dependencies

• NADE will deal with only network layer attacks.

• There are one or more competent individuals assigned to manage NADE.

• Authorized administrators who manage NADE are non-hostile and are appropriately

trained to use, configure, and maintain, the TOE, and follow all guidance.

• There is the possibility of detection of false positives and false negatives.

• It is assumed that the IT environment will provide a secure line of communication

between distributed portions of the NADE and between the NADE and remote

administrators.

Thesis for NADE

38

4.3 External Interface Requirements

4.3.1 Hardware Interfaces

• Computers/Laptops with Internet Connections

4.3.2 Software Interfaces

• Operating System: Windows / Linux

• Frontend Dashboard: Kibana

• Deployment of Trained Model on Server (if required)

4.3.3 Communications Interfaces

Wi-Fi/Ethernet will be used by the client to connect to the server on which the trained

model is present.

4.4 System Features

This section illustrates organizing the functional requirements for the NADE:

• Authentication

• Capture Live Network Traffic

• Feature Extraction through Zeek

• Anomaly Detection using Machine Learning

• Data Indexing using Elastic Search

• Visualization through Kibana

Following is the component Diagram:

Thesis for NADE

39

gram

4.5 Overall Use Case Diagram

4.5.1 Authentication

4.5.1.1 Description

The admin has to login on ELK stack (Kibana dashboard) by entering username and password.

Thesis for NADE

40

4.5.1.2 Stimulus/Response Sequence

Thesis for NADE

41

4.5.1.3 Functional Requirements

1. The system shall be able to login user.

2. The system shall be able to authenticate user.

3. In case the information entered is incorrect, then it shall generate an error notification.

4.5.2 Capture Live Network Traffic

This feature enables the system to capture network traffic in real time and generate logs. These

logs will be fed into the system for further processing.

4.5.2.1 Stimulus/Response Sequences

Thesis for NADE

42

4.5.2.2 Functional Requirement

1. The system shall be able to capture network traffic.

2. If successful, proceed to next step (feature extraction).

4.5.3 Feature Extraction through Zeek

4.5.3.1 Description

Useful features from the logs obtained from previous stage that will include both attack and

benign network data will be extracted through Zeek scripts.

Thesis for NADE

43

4.5.3.2 Stimulus/Response Sequence

4.5.3.3 Functional Requirements

1. Features are extracted based on which we will detect attacks.

2. The Zeek Script shall be able to extract useful features.

4.5.4 Anomaly Detection using Machine Learning

4.5.4.1 Description

Based on the outputs from the previous stage, the trained machine learning model shall give a final

classification whether the network is under attack or not.

Thesis for NADE

44

4.5.4.2 Sequence/Response Sequences

4.5.4.3 Functional Requirements

1. The model shall be able to detect any malicious attacks and anomaly in the Network.

2. The model shall be able to discard the false positives.

3. The model shall be able to detect the type of true positives.

4.5.5 Data Indexing

4.5.5.1 Description

Results obtained from previous stage will be indexed for efficient access and visualization.

Thesis for NADE

45

4.5.5.2 Stimulus/Response Sequence

4.5.5.3 Functional Requirements

1. Data can be ingested into Elastic Search.

Thesis for NADE

46

2. Data is indexed on the bases on defined mappings.

3. In case the elastic search is not running, an error message is displayed.

4.5.6 Data Visualization

4.5.6.1 Description

The logs obtained from previous stage will be visualized in Kibana dashboard.

4.5.6.2 Stimulus/Response Sequence

Thesis for NADE

47

4.5.6.3 Functional Requirements

1. Data can be visualized in different ways using graphs, pie chart, histogram etc.

2. In case the Kibana is not running, then the system shall generate an error message.

4.6 Other Non-Functional Requirements

4.6.1 Performance Requirements

As performance is the critical component in security solutions so NextGen Anomaly

Detection Engine (NADE) is designed to reduce the delay in transmission. NADE will operate in

real time environment.

4.6.2 Safety Requirements

An authorized user of the internal network must not be able to transmit sensitive data

outside of the internal network, exposing it to unauthorized viewers.

An authorized user of the internal network must not temper with the records of NADE as

Persons may not be held accountable for their changes to the data because their actions are not

recorded.

4.6.3 Security Requirements

The System will ensure that only authorized administrators are granted access to the

security functions, configurations, and associated data.

4.6.4 Software Quality Attributes

4.6.4.1 Availability

The endpoints should be up and running 24/7.

Thesis for NADE

48

4.6.4.2 Correctness:

The logs generated must always have correct time stamp.

4.6.4.3 Accuracy:

NADE will provide more accurate results by using best possible Machine Learning

Model.

4.6.4.4 Adaptability:

Currently the server runs on windows OS, but it must adapt to Linux/Unix.

4.6.5 Business Rules

• The system is available for linux and windows only.

• NADE solution is only capable to tackle network attacks. (Port sanning, Dos attack and

other network layer attacks)

• NADE solution is suitable for small to medium networks.

Thesis for NADE

49

CHAPTER 5 : DESIGN AND DEVELOPMENT

5.1 Introduction

5.1.1 Purpose

This software design section contains the complete design description of the project “Network

Anomaly Detection Engine (NADE)”. The purpose of this document is to understand each

component and module of the project. It will provide information about the relationship between

each module and how they are interconnected. The document is intended to inform stakeholders

the details of the design and the design process. It is meant to outline the features, structure, and

architecture of a “NADE”, to serve as a guide to developers and the intended audience. The

intended audiences for the NADE include project supervisor, group members, project evaluation

team and other concerned persons. It also shows how the use cases detailed in the SRS will be

implemented in the system using this design.

5.2 System architecture

5.2.1 Architectural Design

The diagram below provides an illustration of the System architecture along with the various

components used.

Thesis for NADE

50

5.2.2 Decomposition Description

5.2.2.1 Deployment Diagram

5.2.2.2 Flow Diagram

Thesis for NADE

51

5.2.2.3 Class Diagram

Thesis for NADE

52

5.2.2.4 Activity Diagram

• Authentication

• Capture Live Network Traffic

Thesis for NADE

53

• Feature Extraction through Zeek

• Anomaly Detection using Machine Learning

Thesis for NADE

54

• Data Indexing and Visualization

5.2.2.5 Component Diagram

Thesis for NADE

55

5.2.3 Design Rationale

We have selected Model View Component Architecture(MVC). MVC patterns separate the

input, processing, and output of an application. This model divided into three interconnected

parts called the model, the view, and the controller. All the three above given components are

built to handle some specific development aspects of any web or .net application development.

Following is some of the reasons for MVC selection:

1. We have considered this because we have 3 components and we want to segregate all

three components, due to obvious security reasons, deployment of model is on the server

end, which in this case is Model and other 2 components are on client side.

2. The requirement for data is to be processed fast, MVC fulfils this required by providing

the asynchronous design.

3. Individual components require continuous modification of Model (ML MODEL) as to

increase the efficiency and better scale to satisfy the modern needs.

Thesis for NADE

56

4. The modifications on the Model does not affect the other components, hence clients will

not face any disruption.

5.3 Data Design

5.3.1 Data Description

The mechanism/phenomena of data storage and information domain is very simple,

the network traffic will be captured using Zeek’s scripts and useful features will be extracted

from network traffic on which the Machine Learning Model will learn.

The live network traffic is passed to the model and results are stored in the Elastic

Search, which is based on NOSQL/Non structured DB.

5.3.2 Data Dictionary

Field Type Description

Forward Inter

Arrival Time

Time

Stamp

Time between two packets in forward direction.

Backward Inter

Arrival Time

Time

Stamp

Time between two packets in backward direction.

Flow Inter

Arrival Time

Time

Stamp

Time between two packets in either direction.

Active Integer Duration of sending packets for before going idle.

Idle Integer Duration of idleness before starting to send packets

again.

Flow Bytes per

second

Integer Bytes per second in either direction

Flow Packets

per second

Integer Packets sent per second in either direction.

Duration Integer Time between the first and the last packet of the flow.

Thesis for NADE

57

CHAPTER 6 : TESTING

6.1 TEST CASE # 1

OUTPUT:

Thesis for NADE

58

Thesis for NADE

59

6.2 TEST CASE # 2

OUTPUT:

Thesis for NADE

60

Thesis for NADE

61

6.3 TEST CASE # 3

OUTPUT:

Thesis for NADE

62

6.4 TEST CASE # 4

OUTPUT:

Thesis for NADE

63

Thesis for NADE

64

6.5 TEST CASE # 5

OUTPUT:

Thesis for NADE

65

6.6 TEST CASE # 6

Thesis for NADE

66

OUTPUT:

Thesis for NADE

67

FUTURE WORK:

Project can be extended by incorporating alerts in Kibana. Alert rules can be defined to trigger an

alert if attack is detected. Secondly, other attacks dataset can be generated and concatenated with

current dataset or minority CIC dataset attack classes, which we have dropped for simplicity, can

be up sampled. Generating other attacks dataset will increase the diversity of attack types and

unknown attacks will also be detected. Other machine learning techniques should also be

explored.

Thesis for NADE

68

REFERENCES:

[1] Vilhelm Gustavsson, “Machine Learning for a Network-based Intrusion Detection System An

application using Zeek and the CCIDS2017 dataset.”

[2] Ranjit Panigrahi, Samarjeet Borah, “A detailed analysis of CICIDS2017 dataset

ford esigning Intrusion Detection Systems”

[3] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New

Intrusion Detection Dataset and Intrusion Traffic Characterization”, 4th International Conference

on Information Systems Security and Privacy (ICISSP), Portugal, January 2018

[4] Ahmed Ahmim, Leandros Maglaras, Mohamed Amine Ferrag, Makhlouf Derdour, Helge

Janicke, “A Novel Hierarchical Intrusion Detection System based on Decision Tree and Rules-

based Models.”

[5] CICIDS 2017 Dataset, www.unb.ca/cic/datasets/ids-2017.html

[6] CICFlowmeter, www.github.com/CanadianInstituteForCybersecurity/CICFlowMeter

[7] Zeek Script, “www.github.com/zeek-flowmeter/zeek-flowmeter”

[8] Joanne Peng, “An Introduction to Logistic Regression Analysis and Reporting”

[9] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, 1:st

ed. Springer, 2017, ISBN:978-1-4614-7137-0.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. 2016. [Online].

Available: http://www.deeplearningbook.org

[11] Tadeusz Pietraszek and Axel Tanner IBM Zurich Research Laboratory, Säumerstrasse 4,

8803 Rüschlikon, Switzerland, “Data Mining and Machine Learning—Towards Reducing False

Positives in Intrusion Detection

http://www.unb.ca/cic/datasets/ids-2017.html
http://www.github.com/CanadianInstituteForCybersecurity/CICFlowMeter
http://www.github.com/zeek-flowmeter/zeek-flowmeter
http://www.deeplearningbook.org/

Thesis for NADE

69

PLAGIARISM REPORT

