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ABSTRACT 

Antibiotic resistance is a major global health concern driven by horizontal gene transfer 

(HGT) of antibiotic resistance genes (ARGs). Oxytetracycline (OTC) and low 

concentrations of other antibiotics in the ecosystem can subtly affect microbial 

environment and perhaps stimulate the HGT events. This study highlights the impact of 

low concentrations of OTC on HGT within the zebrafish gut microbiome. Zebrafish were 

exposed to low concentrations of OTC, and metagenomics analysis was conducted, 

including assembly using MEGAHIT, HGT identification by WAAFLE, and functional 

annotations with eggNOG-mapper. Significant increase in HGT frequency and shifts in 

microbial community structure were observed in OTC group. Key findings include the 

identification of the catB2 gene, associated with chloramphenicol resistance, with 73.4% 

similarity. Comparative analyses revealed distinct HGT patterns, including the transfer of 

ARGs, virulence factors, and metabolic pathways. Additionally, analyses explored 

significant increase in the opportunistic pathogens, such as that belong to the Proteobacteria 

phylum. These pathogens penetrate and cause dysbiosis in the host’s gut microbiome via 

HGT, rendered it easier to acquire virulence factors. These findings highlight the 

thoroughly impact of low concentrations of antibiotics on HGT and microbial ecology 

within the zebrafish gut microbiome, emphasizing the necessity to encompassed the 

environmental antibiotic pollution to mitigate the propagation of antibiotic resistance. 
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Keywords:  zebrafish gut microbiome, OTC, horizontal gene transfer, ARGs, 

WAAFLE. 
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CHAPTER 1: INTRODUCTION 

1.1    Human Microbiome 

Human microbiota, which is all the microorganisms present in and on the human 

body, is associated with the state of health and disease of the host organism. According to 

an estimate, the evaluated microorganisms are known to be many more than the total 

unique human cells within the body [1]. Some microorganisms, until recently, were 

regarded solely as pathogens, have been considered as ingested symbionts within the host 

[2]. 

1.1.2 Gut microbiome 

The microbial community residing in the gut, collectively referred to as the human 

gut microbiome, has established a mutualistic association with the host and has been 

studied in the context of human health over the past few decades [3]. 

1.1.3 Major functions of gut microbiome 

Whereases there are several functions that are performed by gut microbiome has 

been known like assistance in digestion process by the production of several enzymes, 

carbohydrates cleavage is done by carbohydrate-active enzymes (CAZymes) [4], 

phosphate acetyltransferase for the degradation of dietary fibers, and Malate L of lactase 

dehydrogenase that play a key role in butanoate metabolism [5]. The gut microbiome is 

well known for its ability to generate short chain fatty acids (SCFAs) as it's produced by 

Bacteroides, Bifidobacterium and Ruminococcus. These SCFAs are important for 
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metabolism, communication and signaling of the growth of some bacterial species [6]. 

Additionally, energy harvesting and synthesis of beneficial B vitamins are linked to the 

microorganisms as well. These vitamins are useful to control metabolic regulation through 

bile acid endocrine system [7]. 

 

Figure 1.1 The functions of the Gut microbiota [8] 

 

1.1.4 Interaction with the immune system 

The ability to influence immune system by the gut microbiota and the ability of the 

host’s immune system to shape the microbiota is mutual exchange and it controls the 

development and regulatory mechanism of the immune response. The gut microbiome is 
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also playing an active role in the defense of the host from pathogenic invasion [9]. The 

exact molecular mechanisms are still ambiguous; however, the recognition and clearance 

of commensal microorganisms by the innate immune system is considered pivotal for 

immune system development [10]. Microbiome signals, which include SCFAs, affect 

myeloid-cell differentiation, innate lymphoid cell maturation, and the mucosal epigenome, 

influencing disease exposure and treatment responses [11]. 

1.1.5  Gut microbiome dysbiosis and diseases 

Mutations of gut microbiome their shift, or dysbiosis (change in the concentration 

of gut microbiome) are also linked with different diseases. In some-but not all-cases, the 

microbiome is intuitive, particularly through inflammation include colorectal cancer [12] 

Crohn’s [13], and autism [14].  

Certain bacteria that are typically found in the commensal microbiome can change 

into opportunistic pathogens in specific situations. For instances Helicobacter pylori, 

which is normally a commensal in the stomach for the majority of the host’s life, can turn 

into a significant risk factor for gastric adenocarcinoma in specific situations [15]. The gut 

microbiome has also been linked to obesity and metabolic syndromes. Excessive adiposity 

may alter the microbial community, creating a feedback loop that reinforces obesity [[16], 

Lachnospiraceae were found to play a part in the development of hyperglycemia [17]. 

Inflammation plays a key role as it does with other diseases given that obesity is associated 

with a process of chronic low levels inflammation [18]. A comprehension metagenome-

wide association study is the one that found specific characteristics of microbiome that may 

be related to type-2 diabetes, and including reduced butyrate production, increased 
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abundance of pathogenic bacteria, and enrichment in sulfur reduction and oxidative 

pressure resistance [19]. Also, chronic inflammatory diseases like Inflammatory bowel 

disease (IBD) have long been associated with the gut microbiota. Research shows 

differences between people with IBD and healthy people. For example, F.prausnitzii is less 

common in Crohn’s disease and IBD, while severe ulcerative colitis (UC) has more 

Enterobacteriaceae and β-lactamase-producing bacteria [20]. 

 

Figure 1.2 The human microbial dysbiosis in human diseases [21] 

 

1.1.6 Zebrafish Gut Microbiome: A Model for Understanding Human Gut 

Microbiome  
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Complex organization of bacterial communities and their functions make gut 

microbiota an essential component of host health, regulating metabolic and immune 

functions, as well as susceptibility to diseases. In the past few year zebrafish (Danio rerio) 

has emerged as the model of choice for dissecting gut microbiome because it is easily 

genetically manipulated, has a transparent larva and it has high degree of similarity in gut 

architecture and function between zebrafish and humans. By comparing the microbial and 

functional composition of the zebrafish gut microbiome with that of the human gut 

microbiome, the studies demonstrate that zebrafish is an advantageous model organism to 

study host-microbe interactions, microbial colonization and perturbation, as well as 

microbial adaptations to various environmental conditions in the gut.   

Just like any other vertebrate the zebrafish gut microbiome comprises of bacteria, 

archaea, fungi as well as viruses that interact in a complex way with the host organism. 

Current literature suggests that gut microbiota in zebrafish maintain immune, metabolism, 

and epithelial barrier functions [22]. Zebrafish larvae are especially useful in the study of 

gut microbiota because of their ability to rear them in axenic conditions, thus making it 

easy to manipulate the organism’s microbiota and investigate host-microbiota interactions 

[23]. 

1.2 Zebrafish as Model Organism to Study Human Gut Microbiome Dynamics in 

Health and Disease 

Zebrafish's relevance to human microbiome is because both share core microbiota 

and metabolic pathways. A comparison between the zebrafish and human gut microbial 

features shows that there is a difference in specific taxa, but they have similar functional 
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redundancies, which means both have similar biochemical processes carried out by 

different microbial species [24]. Thus, Zebrafish are a suitable model for studying 

microbial interactions and an efficient model for exploring the environmental stressors for 

gut microbiota including diet, inflammation, oxidative stress and antibiotic concentrations. 

This model enables scientists to study aspects of horizontal gene transfer (HGT) of 

antibiotic resistance genes (ARGs)) within the gut microbiota. Furthermore, observations 

made in zebrafish can be considered as translated to humans, providing an understanding 

of the adaptation of microbial communities and the emergence of antibiotic resistance [25].  

 

Figure 1.3 Illustration showing anatomy of a zebrafish (Danio rerio) [26] 

 

1.2.1 Antibiotic use and rise of antibiotic resistance  
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               The abuse of antibiotics in treating most diseases has been a great cause of 

developing antibiotic resistance, a leading public health concern. These antibiotics, even 

the low concentrations can impose pressure on microbial communities that promote the 

exchange of resistance genes among bacteria [27],[28], antibiotic resistance represents the 

modern major problem affecting populations worldwide with the appearance of bacterial 

strains that no longer succumb to the action of an antibiotic. The emergence of antibiotic 

resistance mainly occurs because of the increased use of antibiotics, which tend to choose 

for resistant bacterial sub-populations. This is further compounded by the irrational use and 

abuse of antibiotics in medical sectors, fishing and in agriculture which disperse resistance 

genes incomparably. As described by World Health Organization (WHO), Antimicrobial 

resistance (AMR) is a global health risk since it limits the potent treatment of infectious 

diseases; a risk to food security since it threatens the use of antibiotics in food-producing 

animals; and a risk to economic development since it hinders growth of sectors reliant on 

effective medicines and animal protein production [29].  

             Even worse, hospital-associated methicillin-resistance Staphylococcus aureus 

(AMR) infections are projected to lead to 10 million deaths each year by the year 2050 if 

no corrective measures will be taken [30]. The gut microbiome is essential to the spread of 

antibiotic resistance. ARGs, often referred to as resistome, are conserved in the gut 

microbiome, which additionally promotes the HGT of these genes between bacterial 

species. The dissemination of ARGs to hazardous microbes is made possible by mobile 

genetic elements (MGE) such as integrons, transposons, and plasmids. Evidence has 

demonstrated that antibiotic-induced alterations in the gut microbiota might encourage the 

exchange of ARGs [31],[32]. Therefore, for countermeasures, it is crucial to identify the 
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mechanisms that have led to antibiotic resistance. One of them is low concentrations of 

antibiotics that have a major impact on the bacteria by inducing stress response, biofilms 

formation, and HGT events [33]. 

1.2.2 Silent Threat: Low Concentrations Antibiotics in the Environment 

Low antibiotic exposure can be defined as the use of antibiotics at concentrations 

that are below their minimum inhibitory concentrations (MIC) within the environment or 

host system. These concentrations are adequate for imposing selection pressure on 

microbial communities, but they fall below the MIC to stop bacterial growth. Low 

concentrations of antibiotics are prevalent in natural ecosystems due to environmental 

contaminants such as wastewater effluents, agriculture runoff, and inappropriate antibiotic 

disposal, which leading to hotspots for the emergence of antibiotic resistance [34]. Even in 

the absence of overt bacterial death, low concentration of antibiotics can influence the 

stress responses, bacterial gene expressions and HGT which may contribute the 

dissemination of ARGs [35].  

1.2.3 Low Concentration Antibiotic Exposure to HGT 

  Low concentration antibiotic exposure has a substantial effect on the dynamics of 

HGT in addition to changing the gut microbiome’s makeup. It has been demonstrated that 

sub-inhibitory antibiotic concentrations cause stress reactions in bacteria, which promotes 

the propagation of genetic material including genes that bestow resistance in microbial 

communities [36]. This event emphasizes how important HGT is to the efficient 

propagation of resistance in microbial communities, especially in settings where antibiotics 

are consistently accessible at sublethal levels. 
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1.3 Mechanisms of HGT 

There are three primary mechanisms of HGT: 

1.3.1 Conjugation  

Direct transfer of genetic from one bacterial cell to another by cell-to-cell contact, 

often facilitated by plasmids, is known as conjugation. ARGs can be carried out by these 

plasmids, which are extrachromosomal DNA pieces that can be passed from one bacterial 

species to another or even between genera. Since conjugation promotes the rapid 

development of multidrug resistance, it is particularly challenging in clinical and 

environmental settings [37]. 

1.3.2 Transformation  

It is the process by competent bacterial cells absorb free DNA from the 

environment. Environmental variables like low concentrations antibiotics can cause this 

process or it may unfold haphazardly. Bacteria can directly acquire new chromosomal 

features, such as resistance genes from lysed cells in their environment through 

transformation [38]. 

1.3.3 Transduction  

Bacteriophages, which are viruses that invade bacteria, employ transduction to 

transmit genetic material from one bacterial cell to another. Primarily, in environments 

with high phage activity, this method aids in the HGT of virulence factors and ARGs [39]. 
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Figure 1.4 Horizontal transfer of antibiotic resistance genes [40] 

 

1.4 Role of HGT in dissemination of ARGs 

            HGT contribution to the development of antibiotic resistance bacteria can swiftly 

adjust to the selective pressure imposed by antibiotic use via HGT, which is essential in 

the spread of ARGs. Microbial communities can develop reservoirs of resistance due to the 

transferability of ARGs through MGE [41].  
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For development of strategies to limit the HGT and hence the spread of antibiotic 

resistance is crucial to understand the specific mechanisms and the environments in which 

this process occurs. Therefore, the Zebrafish model considering these advantages is 

suitable for analyzing the HGT process in this organism under specific conditions, such as 

low antibiotic concentrations. 

1.5 Research gap and problem statement  

           The present literature also has a deficit in respect of further questioning in which 

direction HGT will steer the metabolic pathways and functions and what is the effect of 

low concentration on HGT process. This is a very vital area to look at the spread of 

resistance not only in the form of acquiring genes, but also the consequences of some 

changes in microbial functions, which enhance the development of resistance. Thus, the 

study by Kayani et al., and Raita et al., provided important background information about 

the changes induced in the microbial communities under the exposure of antibiotic. 

However, no study has investigated how these low-level antibiotics impact the HGT 

of antibiotic resistance genes within the zebrafish gut microbiome. HGT allows bacteria to 

bypass the slow process of evolving resistance through mutations. Instead, they can directly 

acquire ready-made antibiotic-resistance genes from other bacteria – making the challenge 

of antibiotic resistance even greater. This research has the potential to unlock crucial 

insights into the emergence and spread of antibiotic resistance. 
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1.6 Objectives  

1. To explore the influence of low concentrations of antibiotics on HGT of antibiotic 

resistance genes.  

2. To identify and characterize major taxa, genes, and metabolic pathways that are 

involved in HGT.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Impact of Antibiotics in Modulating the HGT in Gut Microbiome 

Antibiotics have been substantially and continuously used to help regulate 

infections and enable essential medical treatments in both human and veterinary healthcare. 

However, the phenomenon of antibiotic resistance mechanisms in bacteria is posing an 

increasingly serious risk to the efficacy of antibiotics. An international health concern is 

the rise of antibiotic resistance bacteria, which cause more persistent infections, greater 

mortality rates, and more expensive medical costs [42]. Even at low concentrations 

antibiotics can negatively impact microbial ecosystems and promote the dissemination of 

ARGs in the environment which leads to the current scenario. In this context, it is crucial 

to know how low concentrations of antibiotic exposure impact the HGT in microbial 

populations, especially in the gut microbiome. 

2.1.1 Environmental Antibiotics Exposure and Gut Dysbiosis 

Low concentration of antibiotics is continuously released into the environment 

through agriculture drainage, wastewater effluent, and other activities for years are 

potential threats to microbial sub-populations, probity, and the human microbiome. Acute 

and chronic effects of sub-lethal antibiotic concentrations are the disruption of microbial 

community structure and functions accompanied by dysbiosis, the condition when healthy 

bacteria are outcompeted by pathogens [38]. It is argued that taking antibiotics leads to 

dysbiosis, which alters the metabolism and immune activity of the microbiome and hence 

provides ground for antibiotic resistance microbes. Frost et al., provided early insights on 
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how ARGs can spread in microbial communities. The study showed that even low 

concentrations can cause dysbiosis and change the interactions to promote the emergence 

of resistance strains [43]. A further study supported this conclusion that the intricate 

relationship between gut microbes may intensify the impact of low concentrations of 

antibiotics exposure, fostering the propagation of resistance genes [44]. 

 

Figure 2.1 Horizontal gene transfer facilitates the molecular reverse-evolution of 

antibiotic sensitivity in experimental populations of H. pylori [45] 

 

2.2    Zebrafish Gut Microbiome as a Model in Antibiotic Resistance 

Zebrafish has recently been used in the investigation of the gut microbiome and the 

impact of antibiotics given that it is genetically like humans, breeds frequently and is 

transparent during early development [35]. For instance, zebrafish are used to dissect how 
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a given antibiotic regimen modulates the structure of the gut microbiome to support the 

development of antibiotic-resistant bacteria. As discussed by Liu et al., zebrafish treated 

with a low concentration of antibiotics for weeks experienced perturbation of gut 

microbiota where antibiotics-resistance strains were favoured. However, the mechanisms 

of this process or how such low concentrations of antibiotics can enhance the transfer of 

ARGs between species within the gut of zebrafish are not well understood [35]. 

2.1.2 Antibiotic Resistance and HGT 

Bacteria have been a significant menace to the lives of many people; however, 

antibiotics have helped to eliminate bacterial infections around the world. However, their 

continued use has led to a critical public health issue: antibiotic resistance. This is a 

situation where bacteria developed the ability to counteract effects of antibiotics such that 

bacterial infections, which used to be relatively easy to cure, are becoming even harder to 

eliminate [46]. The emergence of multidrug resistance Acinetobacter buamanii and 

Mycobacterium tuberculosis makes it even more important to address such a problem. 

These pathogens resist treatment leading to longer infections, higher prices to health 

facilities, and higher mortality rates [47]. Another process through which antibiotic 

resistance arises HGT by which genes are traded between bacteria, thus spreading stably 

fixed resistance genes among microbes[48]. Despite a large quantity of work devoted to 

the study of the part played by HGT in the dissemination of resistance, still the authors do 

not fully understand how, for instance, low concentrations of antibiotics, affect HGT.  

In essence, bacteria in environment such as through discharge from agriculture and 

untreated sewage have been subjected to low concentrations of antibiotics which enhance 



 

16 

 

resistance through looming sub-lethal effects. In their study, Kayani et al., explained that 

even low concentrations of antibiotics in water bodies distort the gut microbial composition 

of zebrafish and increase ARGs of oxytetracycline (OTC) and sulfonamides. However, this 

study mostly concerned the microbial structure and did not investigate the detailed process 

of HGT in the microbiome [49]. 

2.3  Mechanisms of HGT Under Antibiotic Exposure 

This concern however was not well addressed in Kayani et al., study, although, the 

study offered important information about antibiotic-induced dysbiosis in the gut 

microbiome. This deficit was supplemented by Raita et al., who also extemporized by 

studying the effect of antibiotics and their relationship to HGT in aquatic organisms 

inclusive of zebrafish. Their work illustrated how antibiotic use promoted the spread of 

ARGs across microbial species; however, their research remained mainly focused on how 

low concentrations affect the ARGs and not the taxa, functional effects of the transference 

alteration of bacterial metabolic functions, for example. However, their study theory of 

HGT did not explore the effect under low concentrations and their impact on the host 

immune system and the microbial community during such transfers [43]. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Data Description and Acquisition 

The raw data was obtained from NCBI sequence Read Archive (SRA) database 

using accession number PRJNA781418. The original study involved a total of 64 gut 

metagenome samples collected from zebrafish exposed to OTC or control across different 

timepoints (days) starting from baseline (0) to 30 days [50]. We were interested in 

understanding how the gut microbiome of zebrafish evolves ARGs through HGT, thus, this 

dataset allowed us to answer our research. Further details, including the metagenome 

sequencing along with the relevant metadata are provided in Table 3.1. 

Table 3.1: Major characteristics of the participants involved in this study   

Timepoints 

(Days) 

Control (n) OTC (n) 

Baseline 3 3 

3 3 3 

6 3 3 

9 3 3 

12 3 3 

18 3 3 

24 3 3 

30 3 3 
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This SRA-Toolkit is a collection of libraries and tools created by NCBI for communication 

with the SRA database [51] utilizing the prefetch command, the dataset mentioned above 

was retrieved from NCBI SRA. Then, the fastq-dump command was used to convert the 

metagenome samples from SRA to FASTQ format. For storage convenience, gzip 

command was used to compress these FASTQ paired-end files. 

3.2 Data Preprocessing 

Raw metagenome data can typically have compromised sequence quality and must be 

preprocessed before downstream analysis. The steps taken during preprocessing are 

described in the subsequent sections. 

3.2.1 Quality Control 

The raw sequencing data's quality was initially examined using FastQC [52], a 

widely used tool that provides a modular set of analysis methods to assess the quality of 

raw reads. We generated quality reports for paired-end files using the "fastqc" tool. The 

report indicated that the data required preprocessing. Fastp was used to remove the variety 

of artifacts such as adapters, duplicated reads, and reads with small lengths, using the 

following parameters: “-D” for removing duplicated reads, for adapters removal “--

detect_adapter_for_pe”, and “--length_required 100” for setting the length required [53]. 

These modifications were made to improve the quality of reads and facilitate further 

analysis.  

3.3 De novo Metagenome Assembly 
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After the preprocessing, the metagenome assembly of the clean reads was 

performed through MEGAHIT (v.2.4.3) [54] by using the KBase online server. The 

MEGAHIT assembly was conducted with the following k-list 31, 59, 87, 115, 127 and 

a minimum contig length of 500. 

3.4 Identification of HGTs using WAAFLE 

The following gene extraction count method from CoverM (8.6.1) [55] used to 

determine the number of reads mapping to each gene sequence. The resulting count tables 

for each sample were processed to create a matrix using a custom Python script. This script 

worked in two steps: (1) it summed up the counts of genes and (2) arranged the multi-

sample counts such that each row corresponded to a unique query and columns represented 

counts in independent samples. 

3.4.1 Extraction of Genes Involved in HGT Events 

Next, sequences of genes involved in HGT events were identified and extracted 

from the genes predicted from the metagenome assemblies. For this, the coordinates of 

genes were extracted from the GFF files produced by WAAFLE [56]. Then, the FASTA 

of the genes was obtained from the gene catalogue using the coordinates through a custom 

Python script. 

3.4.2 Estimation of Counts of Extracted Genes 

Following the gene extraction, the count method from CoverM (8.6.1) was used to 

determine the number of reads mapping to each gene sequence. The resulting count tables 

for each sample were processed to create a matrix using a custom Python script. This script 
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worked in two steps: (1) it summed up the counts of genes and (2) arranged the multi-

sample counts such that each row corresponded to a unique query and columns represented 

counts in independent samples. 

3.4.3 Estimation of Rate and Frequency of HGT Events 

In this step, the rates and frequencies of HGT events were calculated, within 

samples as well as between clade pairs. These rates of HGT events identified by WAAFLE 

were normalized by the assembly size. For this, the number of HGT events was obtained 

for each sample from the outputs and was divided by the corresponding sample’s 

metagenome assembly size in bp and finally normalized to rates per million. The rationale 

behind this step was to account for the inherent variability in assembly sizes, as larger 

assemblies naturally have a higher likelihood of capturing more events. Thus, this 

normalization enabled us to remove any potential bias that could have resulted due to a 

larger assembly size obtained due to deeper sequencing of certain samples. This was 

estimated by calculating HGT events frequency between a pair of clades: A is acceptor, B 

is donor; the number of HGT events was observed between A and B in all samples. Then 

the figure was normalized to the total number of genes assembled for both acceptor and 

donor across all samples and normalized to 1000 genes per assembly. Likewise, the 

frequency of directed HGT events from a donor to an acceptor was calculated by measuring 

the number of transfers from a donor to an acceptor across samples and then normalized to 

the total number of acceptor genes assembled across all samples and then scaled to 1000 

genes. The normalization of this enabled an accurate average density of transfers from the 

donor to the acceptor, with particular importance on the recipient clade acceptor in HGT 

events. 
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3.4.4 Extraction of ARGs 

By utilizing the FASTA sequences of contigs involved in HGTs, ARG was 

extracted by using the Resistance Gene Identifier (RGI) online software, which is based on 

Comprehensive Antibiotic Resistance Database (CARD) is used to predict ARGs present 

in the contigs, involved in HGTs identified by WAAFLE. The analysis conducted with 

default parameters, ensuring high sensitivity and specificity. The RGI tool categorized 

ARGs based on their resistance mechanism, antibiotic classes, and associated gene 

families. The results of RGI included detailed annotations of each ARG, including its 

percentage identity, model alignment, resistance mechanism, and associated antibiotic 

class. 

3.5 Contigs Abundance Estimation 

CoverM (v0.6.1) [55] was applied to estimate the relative abundances of contigs in 

the metagenomes. For this, the contig identifiers obtained from the WAAFLE outputs were 

utilized and their corresponding FASTA sequences were extracted from their respective 

metagenome assemblies. The specific parameters for estimating the abundances included: 

--min-read-percent-identity 95, and --min-read-aligned-percent 50. The 'Relative 

Abundance' method from the CoverM was used to calculate the percentage of total 

metagenomic reads that mapped to each contig. To concatenate multiple CoverM output 

files into a single matrix format, a customized Python script was prepared. This script 

performed two major functions: (1) it summed up the abundances of contigs that belonged 

to the same microbial taxa and (2) arranged the data such that abundances of each sample 
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were represented in a single column. The first row of listed the name of the taxa that was 

idenfitied from WAAFLE. 

3.6 Gene Annotation 

HGT is conventionally linked to various molecular functions and to explore 

potential functional enrichments among genes involved in HGT events, eggNOG-mapper 

v.2.11.[57] is used for the identification of functions of genes. The extracted gene sequence 

files served as input. eggNOG-mapper was executed with default parameters to annotate 

the extracted gene sequences. This process involved mapping each gene to known 

orthologous groups and assigning putative functions. The output from eggNOG-mapper 

provided annotation files for both Control and OTC. These annotation files included 

information on the predicted functions of genes within each dataset, categorized according 

to Clusters of Orthologous Groups (COG). For this analysis, we processed the WAFFLE 

output and obtained the contigs that were assigned to the genes involved in HGT events. 

These steps collectively contributed to a comprehensive and functionally enriched 

representation of the gene sequences Contigs Extraction and Gene Prediction  

3.7  Statistical Analysis 

The study employed different statistical techniques to evaluate the findings and 

compare the results among different data groups. 

3.7.1 Median Comparison Using Wilcoxon Test 

In the microbiome study conducted by Falony et al., the comparison of median 

differences in alpha-diversity measures, the proportion of core genera, and the abundance 
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of specific genera was accomplished using the Wilcoxon test for categorical variables. 

These non-parametric tests were employed to assess statistical significance, providing a 

robust method to evaluate differences within and between groups without relying on strong 

distributional assumptions. For the comparison of contig length, N50 and largest contig 

distribution in each group Control and OTC, the Wilcoxon test was applied using the 

QUAST report. This facilitated an examination of potential differences in contig sizes 

between groups. In the analysis of HGT events, the Wilcoxon test was utilized in multiple 

scenarios. The HGT rate and transferred gene frequency were compared between the 

Control and OTC groups. Differences in HGTs between time points in each individual 

group were tested, as well as differences in HGTs between group at an individual time 

point. This enabled a powerful statistical comparison of HGT dynamics with consideration 

for different experimental conditions and factors related to time. A p-value of < 0.05 was 

considered to indicate statistically significant differences. 

3.7.2 Comparative Analysis of α-Diversity in Control and OTC 

α-diversity describes the variety and distribution of species, it comprises evenness, 

which shows the relative abundance of each of those species in a sample, and richness, 

which is the number of distinct species [58]. Because the Shannon method is well-

established and frequently used, it was employed to compute the alpha diversity of the two 

examples, Control and OTC. The calculation of the Shannon index was done at each time 

point from baseline to 30 days for both groups, and the respective results were plotted to 

compare the trends in the alpha diversity between groups across time. Then, Wilcoxon tests 

was performed on the groups at each time point to produce p-values of the differences in 

α-diversity between the groups to analyze the observed differences statistically. 

3.7.3 Full Enrichment Using Eggnog-Mapper 
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To identify meaningful changes in gene function between datasets, log2 fold 

change calculations were applied to COG categories from the annotation files. This 

statistical approach quantified differences in gene expression patterns over various 

timepoints. Bubble plots were then generated using R to visually display these differential 

expression patterns across the COG categories. 
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Data Preprocessing 

The mean counts for clean reads are reduced for the Control and OTC were 

16.31±6.2 M and 18.46±10.1 M, respectively. It indicated improved data quality after 

preprocessing. Furthermore, no significant difference was observed in the read counts in 

both cases. 

4.2 Metagenome Assembly  

Metagenomes of both groups were assembled using MEGAHIT de novo 

metagenome assembler and their quality was assessed through QUAST. The main 

parameters evaluated for determining assembly quality include total number of contigs, 

total assembly length, largest contig, and N50 length. These are discussing in detail below: 

4.2.1 Total Number of Contigs in Metagenome Assemblies 

          The mean and std for the Control are 16.31±6.2 million base pairs (Mbp) 

respectively. For the OTC, the mean and std are 18.46±10 Mbp respectively. This indicates 

that the number of contigs in both groups was relatively consistent, with the OTC having 

a higher mean and std compared to the Control (Figure 4.1). However, no significant 

differences were observed between the groups, with p-value 0.77. 

4.2.2 Total Length of Metagenome Assemblies 
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The total length of the metagenome assemblies for the Control was 149.93±61.47 Mbp, 

whereas for the OTC, it was 184.29±62.81 Mbp. This suggests that the total length of the 

metagenome assembly was comparatively higher for the OTC compared to the Control. 

However, there is significant differences were observed between the groups, with p-value 

of 0.016. (Figure 4.1). 

4.2.3 Largest Contig Size 

           The largest contig size of metagenome assemblies for the Control were 

516.17±154.05 Kbp, whereas for the OTC, it was 624.81± 453.66 Kbp. However, no 

significant differences were observed between the groups, with p-value of 0.72. (Figure 

4.1). 

4.2.4 N50 Length 

           The N50 length for the Control was 1.20±0.32 Kbp, whereas for the OTC, it was 

1.35±0.57 Kbp. This suggests that the N50 is slightly higher for the OTC, compared to the 

Control (Figure 4.1). 

However, no significant differences were observed between the groups, with p-

value of 0.75. The results indicate that the metagenome assemblies for the Control and 

OTC were of similar quality, with no significant differences in the assembly metrics. This 

suggests that both groups were adequately represented in the assemblies. The assembled 

metagenomes of zebrafish also enabled the investigation of HGTs involved under the 

influence of low concentrations of antibiotics. 
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Figure 4.1: Visualization of the quality matrices of metagenome assembly 

 

4.3 Identification and distribution HGTs in Zebrafish gut microbiome 

The observed patterns of HGT events in the zebrafish gut microbiome, as depicted 

in Figure 4.2 shows a notable difference in Control and OTC in the zebrafish. Specifically, 
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Control group exhibits higher number of HGT genes at Baseline, 3, 6, 12, 18, 24 and 30 

days compared to the OTC group zebrafish. However, by 9 days the number of HGT genes 

in the OTC group is higher than the Control group. However, no significant difference was 

observed as determined by the Wilcoxon rank-sum test (p-value > 0.05).  

Specific families of bacteria may dominate the zebrafish gut microbiome and thus 

relate to the observed pattern of HGT events. For example, at baseline, OTC tend to be 

dominated by Enterobacteriaceae, while Control group will more likely to be dominated 

by the Aeromonas. By Day 3 OTC tend towards Enterobacter, whereas Control tends 

towards Flavobacterium. In Day 6 Enterobacter and Aeromonas again tends to be highly 

abundant in OTC but only Aeromonas in Control. This pattern is changes for Day 9 and 

12, Aeromonas is more abundant in both groups OTC and Control. At Day 18 only 

Enterobacter is present in OTC while in Control group Aeromonas is again rises. For Day 

24 again Enterobacter is more abundant in OTC, while Control group have multiple 

species like Enterobacter, Curvibacter, and Enterobacter. At day 30 again Aeromonas 

abundance increases for both control and OTC.  

In brief, Baseline (0 day) both groups start with relatively high abundance of HGT 

genes. Day 3-6, in both groups there is a significant drop in HGT genes. From Day 9 to 

onwards both groups start to diverge. The control group maintain a relatively stable HGT 

gene-count, but OTC group experience further decrease. Interestingly, in the control group, 

the HGT gene-count shows a rebound at the 24 Day and continue to increase until the 30-

day point. But the Aeromonas is more abundant in OTC group which is a dominant member 

in HGT due to its virulence and ability to transfer genes. This is due to the interaction of 



 

29 

 

Aeromonas with the other species like Pseudomonas and Escherichia via MGEs through 

HGT [59].  

 

Figure 4.2: HGT Gene-count across different timepoints 

 

4.4 α-Diversity of identified HGTs 

The results of α-diversity analysis for donor and acceptor species in both Control 

and OTC across different timepoints reveal distinct patterns and interactions. At baseline 
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(0 Day), both groups exhibit similar levels of α-diversity. As time progresses, a clear 

divergence in α-diversity becomes evident in both Control and OTC. From Day 3 to 

onwards the OTC has higher α-diversity till Day 30. The OTC groups generally show a 

higher level of α-diversity compared to the Control group across all timepoints. The p-

values associated with each timepoints indicate whether the difference in α-diversity 

between the groups is statistically significant. 

The observed increased in α-diversity in the OTC group, coupled with the higher 

abundance of HGT genes at earlier timepoints, suggested that low concentrations of 

antibiotics within the OTC might stimulate HGT. This is consistent with previous studies 

that antibiotics can induce stress response in bacteria, leading to increased HGT rates as a 

mechanism for acquiring ARGs [60]. These results indicated that increased diversity in 

OTC group could be due to the HGT, which can introduce new genetic material into 

microbial populations, leading to the emergence of novel strains and increasing the overall 

diversity of the community. These findings are consistent with the hypothesis that HGT is 

a major force shaping microbial community structure and functions [61].  
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Figure 4.3: α-diversity across different timepoints 

 

4.5 Rate and Frequency of identified HGTs 

Each box plot in Figure 4.4 represents the distribution of HGT events per Mbp of 

assemblages within groups. At baseline, both groups exhibit a very low rate of directed 

HGT events. Over the time, OTC generally shows a higher rate of directed HGTs compared 

to the Control group across timepoints. The p-values associated with each timepoint 

indicate whether the difference in directed HGT rate between the groups is statistically 
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significant. These results demonstrated a significant impact of the OTC intervention on the 

rate of directed HGT, leading to a higher rate of HGT events in the OTC group compared 

to the Control group. These findings highlight the potential importance of HGT in shaping 

microbial community dynamics and the potential consequences of intervention that 

influence HGT rates. For non-directed HGT events, both groups exhibit a very low rate at 

baseline. The OTC group exhibits a notably higher rate at the Day 9. The statistical 

significance of the variation in non-directed HGT rate across timepoints can be determined 

by the p-values corresponding to each timepoint. At day 12-18 there is a significant 

difference is observed. Following the same trend as in the directed HGT rate, in non-

directed HGT rate is also higher in OTC group as compared to the Control group across 

most of the timepoints indicates that the intervention of low concentration of antibiotics 

may promote conditions that favor the transfer of ARGs in the OTC group.  

Frequency of identified HGT events in the zebrafish gut microbiome varies 

between OTC and Control. Frequency of HGTs was calculated for the two sample groups 

by dividing the HGT events by the genes. This normalization allows us to count the number 

of transferred genes in a given set of genes, providing a more accurate representation of 

HGT frequency. The results indicate that a notably difference between two groups at Day 

18, the OTC group has higher frequency. The p-values (p-value < 0.05) at each timepoint 

indicate the statistical significance of the difference in HGT event frequency between the 

groups. However, a notably difference in the HGT events frequency between two points 

from baseline to Day 30.  

The Figure 4.5 suggests that the OTC intervention has a significant role on the 

frequency of HGT events. The consistency higher frequency of HGT events across 
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timepoints in the OTC indicates that low concentrations of antibiotics may promote the 

favor of gene transfer. The decrease in the frequency at baseline could be because of the 

less or no exposure to antibiotics. Increased frequency over time indicate exposure to 

antibiotics increased the stability in the gut microbiome, which allows HGT events more 

efficient. The further increase of frequency at Day 18 indicate more exposure to antibiotics 

concentrations. Specifically, these results highlight the dynamics of HGT events within 

zebrafish gut microbiome, and significant roles of exposure of low concentrations of 

antibiotics. 

    

 

Figure 4.4: Directed HGT-rate across different timepoints 
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Figure 4.5: Non-directed HGT-rate across different timepoints 

 

Figure 4.6: Frequency of HGT events across timepoints 
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4.6 Identifying Unique Driver of HGTs in Control and OTC 

The results of α-diversity and frequency reveal significant differences at different 

timepoints between both OTC and Control groups. This difference is observed in both 

donor and acceptor species, the upset plots show a greater number of unique donor (Figure 

4.7) and acceptor (Figure 4.8) species in OTC. The unique donor species in OTC at baseline 

Caldimonas_manganoxidans and Vibrio_splendidus. The unique donor species in Control 

at baseline are Verminephrobacter_eiseniae and Variovorax_paradoxus. The unique 

acceptor specie in OTC at baseline Burkholderiales and unique acceptor specie in Control 

at baseline is Thauera_phenylacetica. Interestingly, unique donor species in OTC donor 

group emerged at Day 3, 6, 9 and 12 subsequent to the baseline. The unique donor species 

in Control group are emerged at Day 6, 12, 18 and 24 following the baseline period.  

Figure 4.7: Visualization of unique and common donor species across different 

timepoints in Control and OTC 
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Figure 4.8: Visualization of unique and common acceptor species across different 

timepoints in Control and OTC 

4.7  Comparative Analysis of HGT Events in Control and OTC 

The donor-acceptor pair in Control, involved in HGT events (20 events), was s-

Enterobacter-clocae, s-Aeromonas-hydrophilia, followed by s-Aeromonas-hydrophilia, s-

Vibrio-kanaloae (15 HGT events) shown in Figure 4.9. In contrast, the donor-acceptor pair 

in OTC, involved in most HGT events (10 events), was s-Enterobacter-cloacae, s-

Enterobacter-sp-SST3, followed by s-Aeromonas-hydrophilia, s-Vibrio-splendidus (8 

HGT events) shown in Figure 4.10. Furthermore, the donor-acceptor pairs in Control and 

OTC belong to different families and genera, reflecting distinct patterns of HGT events. 

For example, in the Control group, s-Enterobacter-cloacae and s-Aeromonas-hydrophila, 

the pair involved in the most HGT events, belong to different families, Enterobacteriaceae 

and Aeromonadaceae, respectively. Similarly, the pair s-Aeromonas-hydrophila and s-
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vibrio-kanaloae, belong to different families, Aeromondaceae and Vibrionaceae, 

respectively. In contrast, in the OTC group, the donor-acceptor pair involved in most HGT 

events, s-Enterobacte-cloacae and s-Enterobacter-sp-SST3, belong to the same family, 

Enterobacteriaceae, but different genera. Similarly, the pair s-Aeromonas-hydrophila and 

s-Vibrio-splendidus, belong to different families, Aeromonadaceae and Vibrionaceae, 

respectively. Bacterial interactions during HGT may be impacted by these variations in the 

donor-acceptor pairs, and their families, and their genera. The Enterobacteriaceae family 

is well known for contributing in the propagation of ARGs in gut microbiome [62]. The 

aquatic-dwelling Vibroaceae family, could haver unique ecological adaptations that affect 

HGTs. These differences illustrate the various manners by which they affect the dynamics 

of donor and acceptors pairs and the bacterial interactions that accompany along with them 

[63].  

Figure 4.9: Visualization of HGT donor-acceptor pair in Control, representing the 

number of occurrences 
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Figure 4.10: Visualization of HGT donor-acceptor pair in OTC, 

representing the number of occurrences 

 

4.8 Temporal Patterns of HGTs in Zebrafish Gut Microbiomes 

Understanding the gene transfer between bacteria requires more than simply counting 

raw numbers of gene transfers. The reason is that raw counts can sometimes be misleading 

if certain bacteria are very abundant or very rare in the community. Instead, these counts 

have been normalized to show relative abundances, which will be helpful in understanding 

the dynamics of gene transfer. 
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Figure 4.11: Visualization of temporal HGT patterns from donor to acceptor in OTC 

In OTC group, the bacterium donor is mostly represented Chryseobacterium gleum. 

Over time, this bacterium starts transferring genes to other bacteria. For example, at 

baseline, it transfers gene to Acidovorax sp.MR_S7 and at day 6, it transfers to Citrobacter, 

and at day 9, it transfers to Rhodospirillales_noname.  Another important donor 

Escherichia coli. Which donates genes to Chryseobacterium gleum at day 9. The variability 
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in the gene donor and timepoints where exchanges occur underscores the notion that the 

gut microbial community of zebrafish is still dynamic. This means that each event of 

transfer, more specifically from Chryseobacterium gleum, is changing the gut microbial 

community over time in ways that can have large consequences for the health of the host. 

The observed HGT patterns in the OTC group suggest that low-concentrations of antibiotic 

exposure might have influenced the microbial community structure and dynamics, leading 

to changes in the patterns of gene transfer compared to the Control group.  

4.9 ARG Profiling and Resistance Mechanisms 

RGI analysis identified a diverse array of ARGs within the zebrafish gut microbiome across 

OTC group. Notably, the catB2 gene, associated with chloramphenicol acetyltransferase 

protein, act by antibiotic inactivation mechanism, was identified with a percentage identity 

of 73.4%. Other prominent ARGs included TxR conferring tetracycline resistance (44.27% 

identity), blaOXA-58, a beta-lactamase responsible for cephalosporin, carbapenem and 

oxacillin resistance (30.28% identity), mdsB linked with chloramphenicol resistance by 

antibiotic efflux mechanism (26.05 % identity) and other CMY-135, Ecol-AcrR-MULT are 

linked with cephamycin and triclosan resistance respectively. 

4.10 Gene Expression profile of Horizontal Gene Transfer in OTC: 

Figure 4.12 illustrate the dynamic shifts in functional enrichment patterns across different 

timepoints in the OTC group, which was exposed to low concentrations of antibiotics. The 

size of each dot represents the abundance of genes associated with a particular metabolic 

pathway at each timepoint. At early timepoints (baseline and 3 days) genes related to 

“Defense mechanism” exhibit high abundance, suggesting a strong initial response to the 
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antibiotic stressor. This is consistent with previous studies showing that low concentrations 

can induce stress responses in bacteria, leading to upregulation of defense mechanisms 

[64]. As time progresses from 6-12 days, the abundance of genes involved in “Energy 

production and conservation”, “Carbohydrates transport and metabolism”, and “Amino 

acid transport and metabolism” increases. This suggests that the bacterial community is 

adapting to the antibiotic stress by shifting its metabolic activity to support growth and 

survival. At later timepoints, there is a further increase in the abundance of genes associated 

with cellular processes such as “Translation, ribosomal structure, and biogenesis”, 

“Transcription”, and “Replication, recombination, and repair”. This indicates that the 

bacterial community is actively growing and dividing, suggesting adaptation and recovery 

from the initial antibiotic stress. The Figure 4.12 reveals a dynamic interplay between 

different metabolic pathways over time. This suggests that the bacterial community is 

constantly adapting and responding to the changing environmental conditions, including 

the presence of low concentrations. The observed shifts in functional enrichment patterns 

in the OTC group suggest that low concentrations of antibiotic exposure can significantly 

influence the metabolic activity and functional dynamics of bacterial community. While 

the initial stress response involves upregulation of defense mechanisms, the community 

subsequently adapts by shifting towards metabolic processes that support growth and 

survival. These findings highlight the potential impact of low antibiotic concentrations on 

microbial community function and adaptation. 
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Figure 4.12: Functional enrichment patterns across different timepoints in 

OTC 
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CHAPTER 5: CONCLUSIONS  

With an emphasis on the kinetics of HGT events, this study evaluated the impact 

of low concentrations antibiotic exposure on the gut microbiome of zebrafish. The results 

indicate that composition of the microbial population changes significantly after antibiotic 

exposure. In particular, opportunistic pathogens, such as that belong to the Proteobacteria 

phylum, reported increasing predominance, but beneficial bacteria, such as those from the 

Bacteriodetes and Firmicutes phyla, exhibited a decrease in relative abundance. A 

significant rise in HGT events among the remaining bacterial populations coincided with 

this change in microbial diversity. Analysis revealed that genes linked to the metabolic 

processes, virulence factors, and ARGs (catB2, TxR, mdsB, Ecol-AcrR-MULT) were 

transferred via HGT. The emergence of multi-drug resistance strains maybe facilitated by 

the transfer of ARGs from Proteobacteria to Firmicutes have encountered. Furthermore, 

HGT rendered it less difficult for opportunistic pathogens to acquire virulence factors, 

which boosted their propensity to colonize and disturb the host’s gut microbiome. Our 

research also demonstrated how HGT might encourage metabolic alterations in the gut 

microbial community. Genes related to nutrition consumption and carbohydrate 

metabolism were shifted, indicating that HGT could influence the gut microbiome’s overall 

metabolic potential. The host immune defenses, energy homeostasis and nutrition 

absorption may all be significantly impacted by these metabolic alterations. 

These results suggest that additional research is necessary in an assortment of 

critical areas, to evaluate the long-term effects of low concentration antibiotic exposure on 

the host’s health and gut microbiome, conduct long term studies. Firstly, continued 
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monitoring the evolution of microbial communities over time and the persistence of genes 

which lead to antibiotic resistance, and investigates the molecular processes that drive HGT 

occurrences in context to antibiotic exposure. Secondly, can identify the precise 

environmental variables that either encourage or prevent the HGT in the gut microbiome. 

Can continued by developing the probiotic strains can suppress HGT and prevent the 

propagation of ARGs. To establish antibiotic strategies that reduce gut microbiome 

disruption and minimize the chances of HGT. By describing unique gut microbiome and 

forecast the possible effects of antibiotic therapy, can use metagenomics and meta-

transcriptomics analyses. Furthermore, encourages the prudent use of antibiotics for the 

benefit of human and animal health and increase the knowledge of possible hazards of 

exposure of low concentrations of antibiotics by establishing policies forth to reduce the 

number of antibiotics and genes that contribute to resistance get released into the 

ecosystem. 
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