
BackDev

(Backend Development through Visual Programming)

By

NC Abdullah

NC Muhammad Uzair

NC Muhammad Umar bin Ejaz

NC Rabeea Aftab

Supervised by:

Dr. Tauseef Ahmad Rana

Submitted to the faculty of the Department of Computer Software Engineering,

Military College of Signals, National University of Sciences and Technology,

in partial fulfillment of the requirements of a B.E Degree in Software Engineering.

June 2022

ii

In the name of Allah, the Most Beneficent, the Most Merciful

iii

CERTIFICATE OF CORRECTNESS AND

APPROVAL

This is to officially state that the thesis work contained in this report

“BackDev”

is carried out by

Muhammad Uzair, Muhammad Umar bin Ejaz, Rabeea Aftab and Abdullah

under my supervision and that in my judgement, it is fully ample, in scope and excellence, for the

degree of Bachelor of Software Engineering in Military College of Signals, National University

of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor

Dr. Tauseef Rana

 Date: ___________

iv

DECLARATION OF ORIGINALITY

We hereby declare that no portion of the work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

v

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains. We are thankful to Allah Almighty for

giving us strength and courage for completion of this project despite all the challenges and troubles.

We are thankful to our parents and families. Their constant support and prayers made this work of

enormous effort easy for us. Without their support this would not have been possible.

Our special thanks to our Supervisor Assistant Professor Dr. Tauseef Ahmad who supervised the

whole process of development in a very guiding and encouraging manner. His support and

guidance at times of challenges was always an asset for us.

We are grateful to our college faculty and our instructors who made us capable enough to develop

this project and complete it in a timely manner. We are thankful to our course who helped and

encouraged us in any way they could.

And of course, special acknowledgement for all the members of this group who tolerated each

other so well throughout the period of project.

vi

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for plagiarism. Turnitin report endorsed by Supervisor is attached.

Muhammad Uzair

00000268978

Abdullah

00000251175

Muhammad Umar Bin Ejaz

00000261131

Rabeea Aftab

00000261645

Signature of Supervisor

vii

ABSTRACT

Backend development has always been complex and involves a multitude of nuances that are

hard for beginners to understand. Our project aims to simplify these complexities by providing

a tool to automate many of the tedious, repetitive, and overly complicated problems in backend

development. The project enables the user to develop the backend using a flow-based

programming paradigm. The developer will design the process of his program on the canvas by

dragging and dropping different operators. Each operator has certain functionality, e.g., in low-

level operators all programming language constructs are available as operators. Also, there are

high-level operators of most common functionalities, e.g., File manipulation, database

interactions, requests, responses, etc. The intended users of this software are backend developers.

This software is a prototype automation tool where developers can develop backend applications

with less effort, i.e., more reusability is guaranteed, and the code of backend application will

be generated by this IDE under the hood.

viii

Table of Contents

1. Introduction .. 2

1.1. Overview .. 2

1.2. Problem Statement ... 2

1.3. Proposed Solution .. 3

1.4. Purpose ... 3

1.5. Scope .. 3

1.6. Deliverables .. 4

1.7. Relevant Sustainable Development Goals ... 4

2. Literature Review ... 5

2.1. Problem Domain .. 5

2.2. Shortcomings/Issues ... 5

2.3. Proposed Project ... 5

3. Software Requirements Specification... 6

3.1. Overall Description ... 6

3.1.1. Product Perspective .. 6

3.1.2. Product Functions ... 6

3.1.3. Operating Environment .. 7

3.1.4. Design and Implementation Constraints .. 7

3.1.5 User Documentation .. 7

3.1.6. Assumptions and Dependencies ... 7

3.2. External Interface Requirements .. 8

3.2.1. User Interfaces.. 8

3.2.2. Hardware Interfaces ... 10

3.2.3. Software Interfaces ... 10

3.2.4. Communications Interfaces .. 10

3.3. System Features .. 10

3.3.1. Visual programming Interface: .. 10

3.3.2. Objects/Blocks: .. 10

3.3.3. Server Management: .. 11

ix

3.3.4. Block Library: .. 11

3.3.5. Code Generation ... 11

3.3.6. Routes: .. 11

3.3.7. Sockets: .. 11

3.3.8. Help: ... 11

3.3.9. Testing: ... 11

3.3.10. API client: .. 11

3.3.11. Version Control: ... 11

3.3.13. Deployment: ... 12

3.3.14. Custom blocks/functions: ... 12

3.4. Other Non-functional Requirements .. 12

3.4.1. Performance Requirements .. 12

3.4.2. Safety Requirements .. 12

3.4.3. Software Quality Attributes ... 12

3.4.4. Business Rules.. 13

4. Design and Development ... 14

4.2. System Overview ... 15

4.3. System Architecture ... 15

4.3.1. Architectural Design ... 15

4.3.2. Decomposition Description .. 17

4.3.3. Design Rationale... 23

4.4. Data Design .. 23

4.4.1. Data Description ... 23

4.4.2. Data Dictionary ... 23

4.5. Component Design ... 25

4.6. Human Interface Design... 28

4.6.1. Overview of Human Interface .. 28

4.6.2. Screen Images ... 29

4.6.3. Screen Objects and Actions .. 30

4.7. Requirement Matrix ... 31

5. System Implementation ... 33

x

5.1. Tools ... 33

5.2. UI/Interface ... 33

5.2.1. Splash/Loading Screen ... 33

5.2.2. Workspace .. 34

5.2.3. Canvas .. 35

5.2.4. JavaScript Statements ... 35

5.2.5. Parameters .. 36

5.2.6. Default Functions ... 36

5.2.7. Tools Pane: ... 37

5.2.8. Git Section .. 37

5.2.9. Deployment .. 38

5.2.10. API Testing .. 38

5.2.11. NPM Packages ... 39

5.2.12. Code Generated .. 39

5.3. Code Analysis ... 40

5.3.1. Front End .. 40

5.3.2. Back End .. 43

6. Conclusion and Future Direction ... 44

6.1. Future Direction ... 44

6.2. Conclusion .. 44

7. References and Citations ... 45

xi

List of Figures
Figure# Caption Page

Figure 3.1: Workspace 9

Figure 3.2: Tools 9

Figure 4.1: Work Breakdown Structure 14

Figure 4.2: Architectural Design 15

Figure 4.3: Module Decomposition 17

Figure 4.4: Class Diagram 18

Figure 4.5: Use Case Diagram 20

Figure 4.6: Sequence Diagram 21

Figure 4.7: Deployment Diagram 22

Figure 4.8: Activity Diagram (Client) 26

Figure 4.9: Activity Diagram (Server) 28

Figure 4.10: Workspace 29

Figure 4.11: Tools 30

Figure 5.1: Splash Screen 34

Figure 5.2: Workspace 34

Figure 5.3: Canvas 35

Figure 5.4: JavaScript Statements 35

Figure 5.5: Parameter 36

Figure 5.6: Default Function 36

Figure 5.7: Tools 37

Figure 5.8: Git 37

Figure 5.9: Deployment 38

Figure 5.10: API 38

Figure 5.11: NPM 39

Figure 5.12: Generate 39

Figure 5.13: Frontend 40

Figure 5.14: React 41

Figure 5.15: Joint 42

Figure 5.16: Backend 43

List of Tables

Table 1.1: Deliverables 4

Table 4.1: Data Dictionary 22

Table 4.2: Requirement Matrix 30

Acronyms

NPM – Node Packet Manager

GUI – Graphical User Interface

JS – JavaScript

REGEX – Regular Expressions

2

1. Introduction

The Technology has revolutionized our way of living. So, with the advancement in technology, it

is a need of time to get our lifestyle and needs updated with the technology requirements. The

solution implemented will help to tackle the headache of developing the backend of application

with hard coding.

With this increasing trend of automation, we have developed the tool that will generate code

through visual programming. The code will be based on NodeJS. The developer or any

programming who is familiar with NodeJS can use this tool in order to save their time and resources.

The proposed solution will be helpful in future as anyone can integrate any other language instead

of NodeJS, they can do it.

1.1. Overview

Backend development has always been a tedious and complicated task that is hard for beginners to

get into. Especially when learning the nuances of backend development are constrained by the huge

learning curve of tools required to develop the backend. Over time, many of the processes involved

in backend development have been simplified however, there is still much left which discourages

people from getting into this part of web development. Our project aims to simplify this process so

that developers and especially beginners can get into the development of the backend without

worrying about the tools required and the overall configuration of these tools. With BackDev the

user can easily develop their program by using drag and drop. Also, with the provided operators of

common functionalities the user can reduce redundancy in their program and reuse many

components easily. The main idea behind BackDev is to help backend developers to do the

development in a new and interactive way. The developer will design the processes of the

application on the canvas by dragging and dropping operators instead of hard coding.

1.2. Problem Statement

The backend is a key component of every web application, whether big or small. However, it is still

overly complicated and has much room for improvement. Some of the problems in backend

development are as follows.

3

● No dedicated automation tool available for backend development.

● Overly complicated processes which can easily be simplified. Need to reduce the overall

complexity of backend development.

● Repeated tasks and redundancy which can be reduced.

1.3. Proposed Solution

We propose that there should be an application which will make it easy to perform these tasks of

backend development that are very complex and time consuming. The solution will be time saving

and helpful for the backend development who knows the basics of NodeJS. The major goal of our

proposed solution is to develop a desktop-based IDE which provides:

● Functionality to develop the backend using GUI (Drag and drop).

● Generates Node.js code.

● Built-in components for common functionalities in backend development.

● Ability to create new and reusable components.

1.4. Purpose

This thesis aims to provide enough detail about a system's design to enable software development

to proceed with a clear understanding of what will be built and how it will be built. This document

contains critical information about the software.

1.5. Scope

This project aims to reduce the complexity of and provide an easy approach to backend

development. The backend developer will design the process on canvas by dragging and dropping

operators. Each operator has certain functionality, e.g., low-level operators all programming

language constructs will be available as operators. Also, there will be high-level operators of most

common functionalities, e.g., File manipulation, database interactions, requests, responses, etc. The

intended users of this software are backend developers.

4

1.6. Deliverables

Table 1.1: Deliverables

 Sr Tasks Deliverables

 1 Literature Review Literature Survey and Feasibility Analysis

 2 R Requirements Specification Software Requirements Specification document

(SRS)

 3 Detailed Design Software Design Specification document

(SDS)

1.7. Relevant Sustainable Development Goals

This project falls under the UN defined SDG’s that are ‘Industry, Innovation and Infrastructure’

and ‘Decent Work and Economic Growth’ – this solution is intended to provide tool that is

innovative and very helpful for the industry. Also, project contains decent work and will be helpful

in the economic growth of the country.

5

2. Literature Review

Evolutions are made day by day and technology is getting towards easing the problems daily. The

same thing applies to the long coding process and challenges faced in that area to develop a product.

Coding especially for the backend is a long, hectic process that requires the ultimate effort of

developers.

Therefore, to ease the process, this project is focused to help developers in new advanced ways.

Leaving all that old-school coding methodologies apart, this innovation is focused on allowing users

to generate their code easily using visual programming.

2.1. Problem Domain

Back-end coding is harder and trickier overall. Diving into it, it involves repetition of the same code

again and again. It’s challenging along with time taking for developers. It requires the effort of the

person who is working on it.

2.2. Shortcomings/Issues

Coding and development at the backend is a long, time-consuming process that requires you to

work on various frames along with expertise in knowledge of many domains. Not only this, but the

work there usually reflects itself like a jumbled-up line of codes with a lot of repetition.

Understanding the long code there is a challenging task.

2.3. Proposed Project

Looking at the issues discussed, this project proposes a new adaptive way for developers and coders

that allows them to code easier. Now without repetition, they can present and work on their product

and sites more easily. This project aims toward user convenience.

6

3. Software Requirements Specification

This document covers the software requirement specifications for our Final Year project

BackDev. The idea is to create an Integrated Development Environment (IDE) for backend

development of web applications. It is based on “flow-based programming” and “visual

programming” concepts and provides an easy way of backend development. The

development in this IDE will be done in such a way that developer will design the processes

of application on the canvas by dragging and dropping operators. This software is a kind of

automation tool where developers can develop backend applications with less effort.

3.1. Overall Description

3.1.1. Product Perspective

The main idea behind BackDev is to help backend developers to do the development in a new and

interactive way. The developer will design the processes of the application on the canvas by

dragging and dropping operators instead of hard coding. The sidebar will be opened for that

respective component. The developer will set all the parameters of the component in a sidebar. The

command prompt will be running in the background and while importing the NPM packages, they

will be auto-installed in the background.

The goal of the BackDev is the development of a desktop-based prototype IDE that will provide

the ability to develop web backends using a flow-based programming paradigm. Also, there is a

tool available with the name of NoFlo which addresses the backend development like our software.

But our software BackDev has its own set of requirements, working principles, and usability and

will focus on a “developer first” approach to make it easy for developers to adapt to this

environment.

3.1.2. Product Functions

● The user shall be able to drag a certain module and drop it onto the editor

● The system shall have a section where we can enter the different parameters in the selected

module

7

● The system shall provide a help section where the information for the selected module will

be displayed

● The system shall provide different functions of express JS library like routing, database

connectivity, etc.

● The system will allow custom programming of NodeJS through low-level operators.

● The system will provide an interface to install NPM modules.

3.1.3. Operating Environment

BackDev is based on client-server architecture, The backend will be hosted on the web or local

machines and the front end will be used on all major web browsers on any operating system

3.1.4. Design and Implementation Constraints

This software does come with its design and implementation constraints:

● The prototype will be used for some forms of special operators only.

3.1.5 User Documentation

The user will be able to use the following as guides for using the software:

● User Manual that contains textual and pictorial help for users in guiding them to use the

software correctly and troubleshoot it.

● Project synopsis that will be used to understand the features and the constraints of the

software prototype.

● A webpage in the website interface for the software that answers frequently asked questions

and has a guide on using the software.

3.1.6. Assumptions and Dependencies

● BackDev resides in a physically controlled access facility that prevents unauthorized

physical access, and each user has a subscription.

● There are one or more competent individuals assigned to manage BackDev.

8

● Authorized administrators who will manage BackDev are non-hostile and are appropriately

trained to use, configure, maintain the software, and follow all the guidance.

3.2. External Interface Requirements

3.2.1. User Interfaces

The front-end user interfaces will have the following main screens available to the user:

● Launch Screen — Once the application is started, the first page that is displayed is the

launch menu which gives a prompt to create a new project or to open any existing project

that was done previously.

● Main Screen — This will be the main interface of our prototype where different

components will be joined together to create the backend application.

● Operator Interface — On the left side, there will be an interface of different operators

like programming constructs, database connectivity, routing, etc.

● Parameter Interface — On the top right side, there will be an interface of the parameter

in which after clicking the operator, you will be able to set the different parameters of

operators for routing you can set the name of the router, location of the router and for the

database, you can set the name of the database, column names, data types, etc.

● Help Interface — On the bottom right corner, there will be an interface for the help

portion. If the user does not know how to use any functionality or has any queries, the help

option can be used. The help screen contains a text field to enter search terms. A list of

search results for the query is displayed.

● NPM Interface — There will also be a portion for installation of npm packages and

libraries from which users can install different packages according to their needs.

9

Figure 3.1: Workspace

Figure 3.2: Tools

10

3.2.2. Hardware Interfaces

Since this application is not a resource-intensive application so it can be used on the hardware of

average computation power.

3.2.3. Software Interfaces

● Operating System — The prototype IDE will run on every platform like Linux,

Windows, Mac OS, etc.

● Browser — Any modern browser can run the application frontend.

● NodeJS Environment — NodeJS environment is needed to run the application

backend.

3.2.4. Communications Interfaces

The communication between the front-end and back-end of the application will be based on HTTPS

protocols.

3.3. System Features

This section describes in detail the system features of the system.

3.3.1. Visual programming Interface:

The system will provide a visual programming interface for JavaScript (NodeJS) enabling users to

create backend applications by configuring functional modules using GUI based operators,

allowing developers to design the processes of application on the canvas by dragging and dropping

operators

3.3.2. Objects/Blocks:

The system shall provide graphical objects (blocks) of JavaScript programming constructs. The

user shall drag the block into the canvas, the editor will then ask the user for parameters and generate

11

code. Every object/block shall have connectors that can be used to connect it according to the user

requirement

3.3.3. Server Management:

The system shall provide an interface to graphically manage all the server configurations. This

includes middleware management, database connection, socket management, etc.

3.3.4. Block Library:

The system shall provide a library of blocks, where frequently used functions such as database

queries, encryption/decryption, authentication, etc. will all be provided as draggable objects which

will generate code saving the hard labor.

3.3.5. Code Generation

The system will generate JavaScript code according to the logic defined by the user in a visual

programming interface

3.3.6. Routes:

The system shall provide an interface to manage routing using the expressjs library.

3.3.7. Sockets:

The system shall provide inbuilt blocks for socket communication using the socket.io library.

3.3.8. Help:

On the fly, help would be available with full documentation of each block

3.3.9. Testing:

There will be an interface to test the generated code using JavaScript testing libraries like jest.

3.3.10. API client:

The system will provide an inbuilt rest API client for server testing like postman

3.3.11. Version Control:

The system will provide inbuilt git support to manage versions of a project

12

3.3.12. Importing Libraries:

The system will provide an interface to import NodeJS libraries from the npm server.

3.3.13. Deployment:

The system will provide an inbuilt deployment interface to deploy the project

3.3.14. Custom blocks/functions:

The user shall be able to extend the block library by creating custom blocks that can then be reused.

3.4. Other Non-functional Requirements

3.4.1. Performance Requirements

The system should be able to produce desired results in a reasonable amount of time. The system

should not have any delays in performing normal operation

3.4.2. Safety Requirements

The system should not disclose any personal information of any user to other users. To prevent data

loss in case of system failure, the code will be stored in a separate file in the form of JSON. The

system should be able to recover itself from previous crashes and continue the drag-and-drop

process. The system should be able to warn about malfunctioning of the system.

The use of the software product has no harm to the users; nor does it have any possibility of loss or

damage that might be inflicted however during the use of the application. Users should not hold

any eatable or anything that can result in damage to the hardware equipment.

3.4.3. Software Quality Attributes

3.4.3.1. Correctness:

The code generated by the system must be correct and syntax error free.

13

3.4.3.2. Reliability:

In the event of a failure, the data on the server must stay secure. The system shall be able to work

in a normal way after restarting due to an error.

3.4.3.3. Portability:

The system should be able to run on different environments Linux/Windows/Mac. Windows and

others which are compatible with the requirements defined for it.

3.4.3.4. Usability:

The interface of the application should be attractive and user-friendly, and it should be easy to use.

Also, the system should be open source so that any developers anywhere can play with it to

introduce all sorts of cool add-ons and such.

3.4.3.5. Scalability:

Initially, the system will only support JavaScript (NodeJS), but the system will be developed in

such a way that additional programming languages can be integrated into the system

3.4.4. Business Rules

The product follows the rules set up by NUST and the SDGs goals of the United Nations

14

4. Design and Development

The introduction of the Software Design Specification (SDS) document provide overview of the

entire SDS with purpose, scope, definitions, acronyms, abbreviations, references and overview of

the SDS. The aim of this document is to present, in detail, the functional and non-functional aspects

of the project BackDev which will be an Integrated Development Environment (IDE) for backend

development of web applications. The detailed descriptions and visualizations of the BackDev are

provided in this document.

4.1. Work Breakdown Structure

Figure 4.1: Work Breakdown Structure

15

4.2. System Overview

The application will allow users to use drag-and-drop action to speed up their backend development

process. The developer will design the processes of the application on the canvas by dragging

and dropping operators instead of hard coding. A sidebar will be opened for that respective

component. The developer will set all the parameters of a component in the sidebar. The command

prompt will be running in the background and while importing the NPM packages, they will be

auto-installed in the background.

The developer can use different blocks that are available. Also, the developer can create their

custom blocks and save them for later use. The application will be built for NodeJS, the user shall

be able to drag a certain module and drop it onto the editor which will generate the code for the

user.

The user can set different parameters for a certain block and create program logic. After the creation

of program logic, the intermediate code in the form of JSON will be stored temporarily in the local

file and after pressing the run button that code will be converted to NodeJS code in a single file.

4.3. System Architecture

4.3.1. Architectural Design

The overall architecture of this application is based on pipe and filter architecture. The system is

divided into fully independent and replaceable modules termed filters in this architecture.

In this system, all modules are located on the same machine, some run on a browser, and some on

a desktop environment.

Figure 4.2: Architectural Design

16

● Logical diagrams

The user drags and drops blocks onto the canvas and draws the program logic using connectors and

other blocks. This is an abstract view of the overall view.

● Diagram JSON representation

The diagram that is drawn will be represented in the form of a JSON object.

● Intermediate code

The blocks will be converted into intermediate code which will be sent to the code generator

● Source code

The code for the program logic built in the diagram will be generated using the code generator.

17

4.3.2. Decomposition Description

4.3.2.1. Module Decomposition

It consists of different modules. The one component will be desktop application that will call other

components like Browser for front end and Node App for Back end. There will be other components

within those components that will perform here functionalities. Each component is related to other

component

Figure 4.3: Module Decomposition

18

Class Diagram

Figure 4.4: Class Diagram

There are 21 different classes/modules in our application.

● Main class will be the class that is connected with the BrowserInterface on the client side

and also with NodeApp on the server side.

● NodeApp is a server-side class that manages the different server configurations like version

control, file writer, deployment, npm installer, connection, etc.

● Browser Interface will be the client-side class that manages different client-side

configurations like client connection, grammar, canvas connectors, blocks, etc.

● NPM Installer will install different NPM packages that the user will want.

19

● Code Generate will generate the code for nodeJS.

● Code Grammar will check the code grammar.

● TestApi will test the code and give the results.

● Connection will be established with the client side.

● Version Control will manage different versions of code and allow to work in a team

● Intermediate Code is a class that will generate intermediate code in between the processes

when the user gives different parameters to the block.

● File Writer will write code and save that code in a file.

● Deployment will deploy the backend application to the server.

● Route Generator will set up the route according to the user’s need.

● Diagram2JSON will convert diagram logic to JSON format for the understanding of the

computer.

● Client connection will establish a connection with the server.

● NPM Library interface in which user will select different NPM packages to install.

● Block which can be dragged and dropped at a certain place.

● Connectors will be used to join blocks which will help in the creation of program logic.

● Canvas in which the user will create program logic by connecting different blocks.

4.3.2.2. Process Decomposition

The process decomposition is explained through a sequence diagram and use case diagram which

decomposes the system into well-defined and cohesive processes. The use cases explain the set of

actions that a user undertakes while using BackDev.

20

Use Case Diagram

Figure 4.5: Use Case Diagram

The primary actor, the developer in the use case diagram can perform all the functionalities listed

in the use case starting from Design Program Logic, Set function Params, Test APIs to Version

Control.

21

Sequence Diagram

Figure 4.6: Sequence Diagram

The sequence diagram shows the sequence of events and object interactions arranged in a time

sequence. The user opens the Main Window to interact with the system, which further displays

Canvas to the user. The user will select certain blocks and drag them on the canvas and select

22

different parameters and then the parameters will send to the code generation engine. After adding

the parameters, the intermediate code will be generated in a file.

Then the user will connect different blocks with connectors and the code will be modified in the

file. After the creation of program logic, the user will press the run button and the intermediate code

will be converted to nodeJS code and the user will get that code in a file.

Deployment Diagram:

Figure 4.7: Deployment Diagram

23

4.3.3.Design Rationale

The architectural style of this application is a pipe and filter. Each filter is responsible for certain

functions and the overall product functionality can be broken down into simpler filters in the

architecture. The output of one filter is fed as input to the next filter which will generate its output.

The pipe and filter architecture provides an effective way to implement an IDE with added

complexities of Visual Programming.

Consideration was given to the Model View Controller Architecture; however, the complexity of

the application necessitated the use of a less generalized architecture style.

4.4. Data Design

4.4.1. Data Description

Our application uses a particular file to store JSON data of the blocks, diagrams, and user data. The

multiple JSON files will then be converted into a single NodeJS file after pressing the run button.

A repository will also be used for version control.

4.4.2. Data Dictionary

Table 4.1: Data Dictionary

Objects Attributes Methods Parameters

NodeAPP Name: String runServer()

NPMInstaller Name: String SearchLibrary()

installModules()

Input: String

24

Code Generate generateCode() Output: String

TestAPI runTest()

results

Connection Flag: bool connect()

send()

Version Control gitInitialize()

manageVersions()

Output: File

Intermediate Code generateCode() Output: File

File Writer writeCode()

saveFiles()

Output: File

Deployment deployToServer() Output: File

Main runBrowserInterface()

runNodeApp()

GUI createDesktopGUI()

Browser Interface setUpModules()

setUpCanvas()

Diagram2JSON generateJSON()

Client Connection connect()

send()

Blocks Name: String renderBlock()

Connectors renderConnectors()

Canvas addBlock()

25

addConnector()

NPM Library displayModule()

fetchModule()

Route Generator setUpRoute()

Parameter Manager getParmeters()

4.5. Component Design

In this section of component design, we will take a closer look at each component of BackDev in a

more systematic way. Each Component will have a functional description and closer detail. The

main components of this application are the client and server which have been studied below

through the activity diagram.

Client Side

● User Opens IDE

● Application displays the main screen.

● User will choose a certain block and drop it on canvas.

● User will set different parameters of certain blocks.

● User will connect different blocks.

● user can view intermediate code in the form of JSON.

● User presses the run button.

● NodeJS Code will be displayed to the user.

26

Figure 4.8: Activity Diagram (Client)

27

Server Side

● Server will start

● Get parameters that were entered by the user.

● Generate intermediate code in the form of JSON if parameters are valid otherwise generate

an error message.

● Code Updates after joining different blocks.

● If the updated code is valid, then generate a NodeJS file else go back to step 4.

● Server will stop.

28

Figure 4.9: Activity Diagram (Server)

4.6. Human Interface Design

4.6.1.Overview of Human Interface

BackDev is a Desktop Application that will display the main screen when opened first by the user.

From the user’s perspective, when the main screen is displayed, he can select different blocks from

the block library and drops them into the canvas. Then the user will set the different parameters for

29

the specified block and connect different blocks. Users can also create custom blocks for the

specified functionality and they will be saved in the block library for future use. Users can import

different npm packages and libraries. A command prompt will be running in the background which

will install different npm packages for the user. After creating the program logic completely, the

user will enter the run button and the nodeJS file will be created. The user can also view the NodeJS

code file.

4.6.2.Screen Images

Figure 4.10: Workspace

30

Figure 4.11: Tools

4.6.3.Screen Objects and Actions

● Canvas

In a canvas, the user will be able to drag different blocks and create program logic by connecting

different blocks with a connector. This will act as a drawing page for the development of backend

applications.

● Parameter Section:

This section will have a list of all the parameters that the user can add for the specific block. Users

can adjust parameters according to the requirement.

● Block

There will be a unique block for the specific kind of functionality, by which a parameter section

will be displayed concerning that block. Users will set different parameters for that specific block.

31

● Connectors

Connectors will be used to link different blocks which will be merged as a whole, and program

logic will be completed.

● Block Library

It will contain all the blocks which will be used in the canvas for the creation of program logic. It

will be updated by a user-customized block.

4.7. Requirement Matrix

Table 4.2: Requirement Matrix
Req

No.
Requirement

Component

R-

4.1

The system will provide a visual programming interface for JavaScript

(NodeJS) enabling users to create backend applications by configuring

functional modules using GUI-based operators.

Diagrams

(Graphics)

R-

4.2

The system shall provide graphical objects (blocks) of JavaScript

programming constructs. The user shall drag the block into the canvas,

the editor will then ask the user for parameters and generate code.

Diagrams

(Graphics)

R-

4.3

The system shall provide an interface to graphically manage all the

server configurations. This includes middleware management, database

connection, socket management, etc.

Generate Code

R-

4.4

The system shall provide a library of blocks, where frequently used

functions such as database queries, encryption/decryption,

authentication, etc.

Diagrams

(Graphics)

R-

4.5

The system will generate JavaScript code according to the logic defined

by the user in a visual programming interface

Write Files

32

R-

4.6

The system shall provide an interface to manage routing using the

ExpressJS library.

Diagrams

(Graphics)

R-

4.7

The system shall provide inbuilt blocks for socket communication using

the socket.io library.

Diagrams

(Graphics)

R-

4.8

On the fly, help would be available with full documentation of each

block

Diagrams

(Graphics)

R-

4.9

There will be an interface to test the generated code using JavaScript

testing libraries like jest.

Grammar

Check

R-

4.10

The system will provide an inbuilt rest API client for server testing like

postman

Grammar

Check

R-

4.11

The system will provide inbuilt git support to manage versions of a

project

Write Files

R-

4.12

The system will provide an interface to import NodeJS libraries from

the npm server.

Receive Data

R-

4.13

The system will provide an inbuilt deployment interface to deploy the

project

Generate Code

R-

4.14

The user shall be able to extend the block library by creating custom

blocks that can then be reused

Diagrams

(Graphics)

33

5. System Implementation

5.1. Tools

Following tools were used in the development of the prototype application

● Visual Studio Code

Visual Studio Code was used as the code editor for most of the development.

● Node.js

Node was used as the platform for our javascript application.

● React

React javascript library was used in developing the front end of the application in

combination with HTML/CSS.

● JointJS

JointJS library was used to achieve certain functionalities of drag and drop in the canvas.

5.2. UI/Interface

Screenshots of the prototype app that was developed are attached below:

5.2.1. Splash/Loading Screen

This is the loading screen that appears whenever we start the application

34

Figure 5.1: Splash Screen

5.2.2. Workspace

This is the workspace of the application where the user has access to various things including the

canvas, functions, statements, etc.

Figure 5.2: Workspace

35

5.2.3. Canvas

The canvas is where the user draws the program logic. It is developed using HTML Canvas and

the JointJS library.

Figure 5.3: Canvas

5.2.4. JavaScript Statements

The user has access to different JavaScript statements in this section of the workspace. When the

user clicks a certain item, it appears on the canvas.

Figure 5.4: JavaScript Statements

36

5.2.5. Parameters

Here the user can set different parameters for a selected block from the canvas.

Figure 5.5: Parameter

5.2.6. Default Functions

In this section, the user has access to many different functions that javascript provides by default.

Of course, the user can also make some custom functions and add them to the list of custom

functions for later use.

Figure 5.6: Default Function

37

5.2.7. Tools Pane:

This is the tools pane where the user has access to many different tools for his application.

Figure 5.7: Tools

5.2.8. Git Section

The git section allows the user to use git commands directly using a GUI instead of having to use

the terminal/command prompt.

Figure 5.8: Git

38

5.2.9. Deployment

This section allows the user to deploy their app to Heroku.

Figure 5.9: Deployment

5.2.10. API Testing

This section allows the user to test their APIs using Postman

Figure 5.10: API

39

5.2.11. NPM Packages

Here the user can search for different node packages and install them directly from the app instead

of using the terminal/command prompt.

Figure 5.11: NPM

5.2.12. Code Generated

Here is some code that we have generated after creating some program logic.

Figure 5.12: Generate

40

5.3. Code Analysis

5.3.1. Front End

Following is the basis of our front-end code base which runs our web-based GUI.

Figure 5.13: Frontend

41

ReactJS

Here is some Code for ReactJS that we have used it as our Front End.

Figure 5.14: React

42

JointJS

Here is some code for the Joint JS that we have used in our project. We have integrate in with

ReactJS.

Figure 5.15: Joint

43

5.3.2. Back End

As for the Backend, we have used NodeJS. Here is some code of NodeJS.

Figure 5.16: Backend

44

6. Conclusion and Future Direction

6.1. Future Direction

Working with Backend Development and specifically, working with a NodeJS is a very huge

research field. With current project as a proof of concept, it has opened path for multiple research

areas to follow.

People interested in developing backend for applications through visual programming can

contribute to the project via developing modules to make this application better. Further, they can

contribute via developing module for the system to update the application as they can add any other

language to create backend instead of NodeJS.

Fellows from software engineering may contribute via designing and developing a more

sophisticated design to better accommodate and replicate backend techniques with more accuracy

and efficacy.

In this section, we will discuss the different possibilities of things that we can integrate into our tool

to improve it in the future.

● More components

● More functionality

● Improvement of the overall system

● Integrate other backend languages like PHP, JAVA etc.

6.2. Conclusion

We are developing a prototype visual programming tool that allows users to use drag-and-drop

based features to develop their programming logic. Due to limited time and resources, we couldn’t

fully explore the scope of this project. If implemented completely then it would surely be a very

helpful tool to not only students but also developers.

45

7. References and Citations

 Ambler, S. W. (2005). The elements of umltm 2.0 style. Cambridge University Press.

 "IEEE Recommended Practice for Software Requirements Specifications," in IEEE Std

830-1998 , vol., no., pp.1-40, 20 Oct. 1998, doi: 10.1109/IEEESTD.1998.88286.

 "IEEE Standard for Information Technology--Systems Design--Software Design

Descriptions," in IEEE STD 1016-2009 , vol., no., pp.1-35, 20 July 2009, doi:

10.1109/IEEESTD.2009.5167255.

 Young, A., Meck, B., Cantelon, M., Oxley, T., Harter, M., Holowaychuk, T. J., &

Cantelon, M. (2017). Node.js in action. Manning.

 Mardanov, A. (2013). Express.js Guide: The comprehensive book on express.js. Lean

Publishing.

