
i | P a g e

Machine Learning Based Web Application Firewall

(SMA3 WAF)

By

Maryam Murtaza

Aden Bin Farrukh

Muhammad Ali

Ayesha Seemab

Malik Shehroz Ahmed

Supervised by:

Asst Prof Dr. Mian Muhammad Waseem Iqbal

Submitted to the faculty of Department of Computer Software Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad,

in partial fulfillment for the requirements of B.E Degree in Computer Software Engineering.

June 2022

ii | P a g e

In the name of ALLAH, the Most benevolent, the Most Courteous

iii | P a g e

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report

“Web Application Firewall Using Machine Learning”

is carried out by

Maryam Murtaza, Aden Bin Farrukh, Muhammad Ali, Ayesha Seemab, and

Malik Shehroz Ahmed

under my supervision and that in my judgement, it is fully ample, in scope and excellence, for the

degree of Bachelor of Computer Software Engineering in Military College of Signals,

 National University of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor

Asst Prof Dr. Mian Muhammad Waseem Iqbal

Department of IS, MCS

 Date: June 24th, 2022

iv | P a g e

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

v | P a g e

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues and most of all supervisor, Asst Prof Dr. Mian Muhammad Waseem

Iqbal without your guidance.

The group members, who through all adversities worked steadfastly.

vi | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has 12% similarity index. Turnitin report endorsed by Supervisor is attached.

Maryam Murtaza

NUST Serial no 00000241682

Ayesha Seemab

NUST Serial no 00000259928

Aden Bin Farrukh

NUST Serial no 00000216406

Malik Shehroz Ahmed

NUST Serial no 00000266964

Muhammad Ali

NUST Serial no 00000267339

Signature of Supervisor

vii | P a g e

ABSTRACT

In the field of technology and cyber security, cyber-attacks on web applications are constantly

increasing. One of its most promising outcomes has been the availability of powerful web

applications and low-cost internet. However, threats such as Cross site scripting, DoS, and Web

attacks are becoming much more of a concern due to such technological advancements. This has

essentially rekindled the interest of engineers in technological security and has prompted them to

conduct extensive research on the topic.

Web applications hold vital information about both the company and its clients. However, with

the rise of cybersecurity attacks, they are being hacked more often, prompting administrators to

look for ways to protect them from the black hat culture. The project "Machine Learning based

Open-source Web Application Firewall" is about a firewall built and deployed in a live web

application. The project aims to detect incoming requests in real-time using a Machine Learning

detection engine and forward them to web application firewall. It is directed towards the server if

it is a benign request; otherwise, it is routed to a log, where it is analyzed.

When implemented, this project can be beneficial for administrators and network security experts

to gather valuable information about a hacker's operation and its footprints, which can substantially

contribute to creating new rules and mechanisms to deter potential attacks.

viii | P a g e

Table of Contents

Table of Contents ... viii

List of Figures .. x

1. INTRODUCTION ... 1

1.1 Overview .. 1

1.2 Problem Statement ... 2

1.3 Approach .. 3

1.4 Scope .. 4

1.5 Purpose ... 4

1.6 Contributions .. 4

2. Literature Review .. 5

2.1 Security Detection Reasons .. 5

2.2 What is Web Application Firewall? ... 6

2.3 Working of Web Application Firewall ... 7

2.4 Web Application Firewall History ... 8

2.5 Web Application Firewall Types ... 8

2.5.1 Open Source WAFs vs Commercial .. 9

2.5.2 WAF vs Firewall .. 9

2.6 Advantages of WAF ... 9

2.7 Importance ... 11

3. Software Requirement Specifications .. 12

3.1 Overall description ... 12

3.1.1 Product Perspective.. 12

3.1.2 Product Functions .. 12

3.2 External Interface Requirements .. 13

3.2.1 User Interface ... 13

3.2.2 Hardware Interface .. 14

3.2.3 Software Interface .. 14

3.3 Non-Functional Requirements ... 14

4. Design and Development ... 15

4.1 System Overview ... 15

4.2 System Architecture ... 15

4.2.1 Architectural Design .. 15

4.3 Component Design ... 15

4.4 Human Interface ... 16

4.4.1 Interface Overview .. 16

ix | P a g e

4.4.2 Screen Images .. 17

4.4.3 Screen Objects and Actions ... 17

4.5 Requirements Matrix .. 18

5. Test & Evaluation Methodolgy ... 19

5.1 Test Objectives ... 19

5.2 Features to be Tested .. 20

5.3 Detailed Test Strategy .. 21

5.4 Item Pass/Fail Criteria .. 21

5.4.1 Test Deliverables ... 22

6. Machine Learning Model .. 33

6.1 Feature Engineering ... 33

6.1.1 Step 1: Import dependencies ... 33

6.1.2 Step 2: Feature engineering custom features .. 36

6.2 XGB booster .. 46

6.3 Pickle .. 48

7. References and Work Cited .. 50

8. Plagiarism Report .. 53

x | P a g e

List of Figures

Figure 3.1 Working of Proposed WAF .. 13
Figure 4.1 The user interface of proposed firewall will look like this. .. 17

file:///C:/Users/warra/Downloads/sma3%20waf.docx%23_Toc104676652
file:///C:/Users/warra/Downloads/sma3%20waf.docx%23_Toc104676653

1 | P a g e

1. INTRODUCTION

1.1 Overview

There is nothing that has 100% security, but we must try to provide security in various ways in

order to maintain our privacy on the internet, but the web application firewall is an important

element in protecting websites, user’s privacy, is an additional option on sites. This makes it

difficult for hackers to attack the site and steal data from the site. According to a recent survey,

72% of the companies surveyed have hacked websites / applications in the last 24 months. The most

successful attacks occurred at the application layer (Layer 7 of the OSI model). This is still the most

vulnerable area. The lower layers are not always secure, but network protocols have been enhanced

over the years to levels that are extremely difficult to hack and rarely vulnerable. Furthermore,

because operating systems, web servers, and cryptographic engines are usually offered by a small

number of manufacturers, they are relatively safe and have a large enough user base to detect and

address flaws early. there is. However, web applications are the opposite, usually unique (even if

they share common code such as frameworks) and are usually only by a single client or only to a

single client. It will be managed. This reduces the average security of your code (because each

company does not have access to expertise in such a fragmented market) and is less likely to detect

vulnerabilities before they are exploited. Therefore, web applications are 1/10 more vulnerable than

browsers / operating systems.

2 | P a g e

1.2 Problem Statement

Today's world is a world of technology. Humans use technology to travel, communicate, and learn

for everything. Everything in our lives is directly or indirectly dependent on technology. However,

everything comes with pros and cons. With all these benefits, technology also brings some serious

concerns. One of them is Data Security. This data can be on a web application, or a server, or any

system.

With technology and the Internet making communication and data sharing across networks simpler

by the day, the issue of compromised Internet and network security is becoming more prevalent.

An attacker can obtain access to a web application and modify or delete information stored in a

database. The three fundamental aspects of security that must be addressed are secrecy, permitted

access to information, and data integrity.

According to Shannon Williams new report, between 2020 and 2021, the number of malicious web

application attacks have climbed 88%. In 2019 alone, cyber-attacks cost us 2.1 trillion dollars; now,

that is a tremendous amount of money wasted just because of insufficient security measures.

Existing protection standards, such as a network firewall, scanning the web application, and backing

up the data, fail to stop an intruder's activities if he successfully acquires a loophole inside a web

application or has disguised his identity for a firewall-enabled system. In addition, these existing

security solutions have certain limitations associated with them. First of all, they collect a massive

amount of data, and this feature poses issues like a greater chance of false positives and greater

power. Secondly, most importantly, they only mitigate the attack but do not provide information

about the attackers and the tools they use.

3 | P a g e

Security managers are focused on preventing network and web attacks by preventing all types of

penetration, but nothing is done to engage the attacker in an in-depth analysis of the attacker's

motivations, strategies, and experience. Our project bridges this gap by combining detection and

deception. With the number of attackers and the sophistication of their Dos, Scanning, and Web

attacks rapidly increasing, it is more important than ever to monitor and record their activities and

collect information that can help improve existing security tools.

1.3 Approach

We first installed a firewall (MODSecurity) on the Kali Linux to test vulnerabilities present in a

vulnerable web application (DVWA) and check the traffic that goes through it. Four different types

of attacks were carried out namely Cross-site scripting (XSS), SQL injection (SQLi), Web session

hijacking and Distributed Denial of service (DDoS). A machine learning model then takes in the

logs from both web app and Mod Security as input and process this data to get better.

This model processes the network requests in real time, these python scripts identify if the traffic is

legitimate or malicious based on the previous network traffic. Legitimate traffic is directed towards

the web application and malicious one gets dropped, both are added to logs irrespective of type and

labeled accordingly.

4 | P a g e

1.4 Scope

The real time machine learning based protection allows or project to be used in a wide variety of

sectors including e-commerce, sensitive organizations, healthcare and even in security sectors. The

project's primary purpose is to supplement and incorporate existing security tools while also

providing resistance to attacks and minimize firewall evasion. This project combines a machine

learning model with existing tools in the hopes to combine the theoretical expertise and practical

experience to improve the overall security of web application.

1.5 Purpose

The following are the key goals that this project aims to achieve:

• Installing a web application firewall that logs all network traffic which is then used to make

a training dataset for our machine learning model based on the OWASP top 10 attacks [1].

• Keeping detailed logs allowing the machine learning model to learn and reduce risks by

analyzing the trends and patterns of these attacks which assists in the development of an

effective mechanism.

1.6 Contributions

This project was created primarily to protect web applications against DOS, SQLI, XSS, and other

Web attacks by providing insight into the attackers' activities and allowing researchers to better

understand the attackers' strategies. As a result, they can integrate and improve existing systems.

5 | P a g e

2. Literature Review

This chapter will go over the philosophy behind using a web application firewall and some of its

features and why it is used. The definition of a web application will be compared to more official

IT standards and some less formal ones to try to clarify what it is. Finally, the integration of a web

application with already existing tools and coded programs to effectively detect cyber threats and

assist engineers in their efforts to protect personal privacy from being compromised and eroded.

2.1 Security Detection Reasons

With the steadily influencing universe of broadcast communications, the requirement for safe

information transport over open gateways (the Internet) is developing. As per late reports, the

quantity of hackers on the planet isn't just increasing, yet additionally moving to worldwide scale.

CBC detailed on a mass convergence of the hacking local area in and around China, guessing and

guaranteeing that this was completely prompted by the Chinese government to start accessing the

knowledge and records of enterprises from the West or Western world states (Europe and America),

and for global business and government spying (Canada Television). Whether this is valid, it

mirrors a pattern in which individuals are turning out to be more and more worried about the

security of their information. Due to the occasions that are happening around us, it is turning out to

be increasingly normal that we as a whole have a type of safety to forestall unapproved admittance

to our information, going from public frameworks to totally secluded frameworks with next to zero

external access, and the capacity to perceive these assaults is turning out to be very important.

Organizations who give security gear are starting to go to the hacking society, similarly as house

alert installers have gone to ex-hoodlums and criminals, to have the option to identify these attacks

6 | P a g e

and controls. Reports will be sent back for audit, so the organizations can foster their projects and

assemble new guidelines and acknowledgment calculations.

2.2 What is Web Application Firewall?

The Web Application Firewall (WAF) is a security module for application proxy devices that

defends back-end web application servers against a number of threats. Application protection is a

crucial additional layer of security since it protects against a variety of application layer security

risks that aren't generally covered by traditional network layer attack detection and prevention

systems. WAFs' are of two types. One is open-source WAFs' that are accessible on the web and are

utilized effectively with no expense. The other one is closed source WAFS' which are likewise

called as restrictive. Web Application Firewalls (WAF) have developed to shield web applications

from assault. A mark - based WAF answers dangers through the execution of utilization explicit

principles which block vindictive traffic. Be that as it may, these guidelines should be persistently

adjusted to address advancing dangers. WAF has a capacity to manage assaults on the application

layer that standard firewall doesn't.

At first, data or information that might be helpful to an aggressor, like on a site, is purposely passed

on open for the assailant to get to. So, a web application firewall deludes the gatecrasher into

imagining that he has accessed a real web application. Every one of the aggressors' way of behaving

and communications with the gadget can be logged and continually followed while they are

attempting to get to the application. At the point when introduced inside an application, a WAF

dismisses all risky traffic, safeguarding the application from attack. Thus, a WAF gathers data about

new hacking strategies, yet in addition shields the application from threats

7 | P a g e

2.3 Working of Web Application Firewall

WAF decomposes HTTP requests and uses a series of algorithms to determine which portions of

the dialogue are benign and which are malicious. The WAF can evaluate its material using one of

two ways, or a mix of the two.

• Whitelisting: The whitelist technique implies that the WAF rejects all requests by default

and only permits those that are known to be secure. The following is a list of IP addresses

that have been identified as being protected. Asset escalation is lower on whitelists than on

blacklists. The drawback of using a whitelist is that it may mistakenly block traffic that is

not harmful. You can use the internet to project yourself and become more productive, but

it might be unclear.

• Blacklisting: To block harmful online traffic and secure websites or web applications, the

blacklist technique enables packets to pass by default and employs predefined markers /

filters. A harmful package is depicted in the regulation summary. Because public websites

and online apps receive a lot of traffic from new IP addresses that are neither malicious nor

benign, blacklists are a good fit. The disadvantage of the blacklist strategy is that it focuses

on assets and resources. Rather than depending on the IP address inferred by default, more

data is required to channel the packet from an explicit quality standpoint.

• Hybrid security: The mixed security model supports both blacklists and whitelists.

Regardless of the security model used by the WAF, the WAF will eventually inspect HTTP

communication and try to eliminate vengeful traffic before it arrives at the server for

processing.

8 | P a g e

2.4 Web Application Firewall History

The idea of Web Application Firewall was introduced in market in the late 1990s during a time

when web server attacks were becoming more prevalent. Previously, network layer-based firewalls

were being used but they didn’t prevent application layer-based attacks on web applications. From

there the need to protect web applications from cyber-attacks arose leading to the birth of web

application firewalls.

2.5 Web Application Firewall Types

Network-based WAFs are usually hardware-based and implemented locally on-premises through

a dedicated appliance, reducing latency. Most major network-based WAF vendors enable for the

replication of rules and settings over several computers, enabling for large-scale planning, setup,

and installation. The biggest disadvantage of this sort of WAF item is the cost, which is a result of

both immediate capital consumption and continuous operational costs for maintenance.

The WAF that runs on the host can be fully integrated into the application code. Cost savings and

better customization choices are two advantages of host based WAF execution. Because they

require host-side assets and complex processing to expedite the usage of those assets, host-based

WAFs can be a monitoring test.

A cloud based WAF responds to associations that require turnkey elements that require minimal

resources to run and maintain at minimal cost. Cloud WAF is straightforward to set up, is available

on a subscription basis, and frequently just requires basic DNS or proxy modifications to divert

application traffic. Filtering your organization's web application traffic with an external provider

can be very tedious, but this technique uses a comparative strategy to protect your applications in

different areas of support and protect them from application layer attacks.

9 | P a g e

2.5.1 Open Source WAFs vs Commercial

Both free source and commercial WAF solutions are available. ModSecurity, Naxsi, and

WebKnight are some of the most popular open source suppliers. F5, Barracuda, and Cloudflare are

among of the most popular commercial providers.

2.5.2 WAF vs Firewall

A firewall is a generic word for software that secures a computer network by screening incoming

data packets. There are various categories under this wide description that are categorised according

to the sort of protection offered and how it is supplied. Stateful inspection, proxies, packet filtering,

and NGFW are among these duties. Another firewall categorization is WAF, which distinguishes

itself by how information packets are expressly channelized. WAFs are unique in that they focus

solely on online attackers at the application layer, but other forms of firewalls, such as packet

filtering and stateful inspection, are unable to guard against these types of assaults. The WAF

functions similarly to a proxy firewall, but with an emphasis on Layer 7 application logic.

2.6 Advantages of WAF

Traditional firewalls are outclassed by WAF because it gives better insight into sensitive application

data passing through the HTTP application layer. This helps to avoid attacks on the application

layer that aren't impacted by standard network firewalls, such as:

Cross-site scripting (XSS) attacks are a sort of injection in which malicious content is injected into

otherwise trustworthy websites. XSS attacks occur when an attacker uses a web application to

transmit malicious code to an alternate end client, usually in the form of a browser-side script. The

10 | P a g e

flaws that allow these attacks to succeed are so pervasive that they may be found whenever a web

application utilises them in its output without first authorising or encoding client input.

Structured Query Language (SQL include injecting or "injecting" SQL queries into a client-

server application using data from the client. It pulls sensitive information from the database,

updates database information (insert, update, delete), conducts housekeeping operations on the

database (such as terminating the DBMS), and is included in the DBMS document after successful

SQL Infusion exploitation. You can get the contents of a certain record back. - A framework exists

and sends commands to the framework you're working on a temporary basis. A SQL injection attack

is one in which a SQL command is injected into the information plane input and impacts the

execution of preset SQL instructions.

Web session hacking The Session Hijacking attack comprises of the double-dealing of the web

meeting control system, which is regularly overseen for a meeting token.

DDoS attacks overload your business by flooding it with traffic to the point that it can no longer

service its users. This sort of attack can be handled by both network firewalls and WAFs, although

they are aimed at different tiers of the assault.

Another advantage of WAF is that it allows you to defend your web-based application without

having to go into the source code. While host-based WAFs may be integrated into your application

code, cloud-based WAFs are ideal for keeping your applications out of the public eye. Furthermore,

the cloud WAF is simple to set up and maintain, and it offers rapid virtual patch provisioning,

allowing companies to swiftly adjust settings in response to newly discovered threats.

11 | P a g e

2.7 Importance

WAF is good for various efforts to deliver products over the Internet, such as web banking, social

media platforms, and mobile application engineers, to prevent information leakage and data

leakage. Many sensitive information, such as visa information and customer records, is stored in

back-end records opened through web applications. Attackers frequently target these programmes

in order to gain useful data. Banks, for example, can employ WAF to help them comply with the

Payment Card Industry Data Security Standard (PCI DSS), a set of guidelines aimed at ensuring

the security of cardholder data (CHD). One of the 12 PCI DSS integrity criteria is the use of a

firewall. This uniformity applies to all CHD-related businesses. As more modern organizations

leverage mobile applications and the evolving Internet of Things (IoT), the number of transactions

occurring in the web-powered application layer is increasing. As a result, WAFs are an important

part of a state-of-the-art enterprise security model.

12 | P a g e

3. Software Requirement

Specifications

The Software Requirements Specification (SRS) provides a detailed description of the requirements

for the Web application firewall using machine learning (SMA3). This allows for a complete

understanding of what is to be expected of the SMA3 that is to be constructed. The idea is to

customize the open-source web firewall using machine learning to obtain the functionality of closed

firewall. This is supposed to define the capabilities and necessities of SMA3, that serves as a manual

to the builders on one hand and a software program validation for the cease customers at the other.

3.1 Overall description

3.1.1 Product Perspective

SMA3 will protect the vulnerable data of websites. It will detect and prevent the incoming malicious

traffics. Both intrusion detection and prevention becomes more effective. As the WAF is used ,it

develops its own set of rules for the certain type of attack using Machine Learning and it will better

and better over time.

3.1.2 Product Functions

• The WAF will secure web application.

• The WAF will detect and prevent any malicious threats.

• The Web application firewall will use auditing and logging system to help in decision

making.

13 | P a g e

3.2 External Interface Requirements

3.2.1 User Interface

• Home Screen: A dashboard which offers a menu with a list of option that are available.

• Turn On/Off: A button to turn firewall on or off.

• Log Analysis: A window which give the list which shows the malicious packets that were

present in the network traffic.

• Help: A window that helps you learn about the web application firewall.

Figure 3.1 Working of Proposed WAF

14 | P a g e

3.2.2 Hardware Interface

Two laptops with Linux operating system running in it and are connected using network interfaces.

3.2.3 Software Interface

Python: using python language cause its more interactive and easier to use.

Machine learning libraries: scipy, numpy, tenserflow etc.

3.3 Non-Functional Requirements

➢ Downtime should not be more than 10 seconds.

➢ False positives and negatives must not be more than 20%.

➢ In case of an attack alert should be provided to alert the analyst.

15 | P a g e

4. Design and Development

4.1 System Overview

SMA 3 will protect the vulnerable data of websites. It will detect and prevent the incoming

malicious packets in traffic. Both intrusion detection and prevention become more effective. As the

WAF is used, it develops its own set of rules for the certain type of attacks using Machine Learning

and it will get better and better over time.

4.2 System Architecture

4.2.1 Architectural Design

The architectural design of the SMA3 WAF is Event Driven Architecture. Upon the detection of an

event, the system acts accordingly. We are using python as our main programming language in

which Machine learning model is developed. The model waits for the request and train the core rule

of the firewall in such a way that the firewall will automatically accept or reject the request. If

request accept the client will access the application. In this project, the user will request the web

application, Web Application Firewall will identify if the request is malicious, it will deny the

request otherwise it will allow the user to access the application.

4.3 Component Design

In this component design section, we will look at each component of the SMA3WAF more

systematically. Each component will have a functional description and closer detail. The main

16 | P a g e

component of this system is machine learning base web application firewall component that have

been studies below through activity diagram.

4.4 Human Interface

4.4.1 Interface Overview

• Home Screen: A dashboard which offers a menu with a list of option that are available.

• Turn On/Off: A button to turn firewall on or off.

• Log Analysis: A window which give the list which shows the malicious packets that were

present in the network traffic.

• Help: A window that helps you learn about the web application firewall.

17 | P a g e

4.4.2 Screen Images

4.4.3 Screen Objects and Actions

The “Home Screen” will display the main menu. The Turn on/off button will show the status of the

firewall. If the firewall will be on or active, Log analysis will show the malign packets present in

the traffic. Help Window will guide the user to learn about web application firewall.

Figure 4.1 The user interface of proposed firewall
will look like this.

18 | P a g e

4.5 Requirements Matrix

Label Requirement Component

The user should turn firewall on using a button provided in user
interface

Firewall component on the home page

The user should have established a network connection NILL

The rules for web application firewall must be written in

such a way that the firewall can learn to protect in an easy

way.

NILL

There should be a manual or guide to understand the working of the

application.

Help component on menu bar

 There is a data of traffic Log button on home screen

 Access the request Outgoing traffic show

19 | P a g e

5. Test & Evaluation Methodolgy

5.1 Test Objectives

The goal is to block malicious HTTP / S traffic to your web application, prevent malicious data

from leaking out of your app, and allow legitimate traffic. This is accomplished by following a set

of policies that assist identify which traffic is malicious and which is not.

Test Items

Because the web application firewall is centred on avoiding harmful attacks on web application

systems. Incoming HTTP messages are examined by the WAF, which determines whether they

should be blocked or sent to the web application. The choice is made based on a set of heuristics

for detecting attack patterns. This inhibits assaults on the application layer that would normally get

past standard network firewalls, such as:

• Cross-site scripting (XSS)

• Structured Query Language (SQL) injection

• Web session hacking

• Distributed denial-of-service (DDoS) attacks

Based on the requirement specification document the functionalities that we need to test are as

following:

• Detect malicious traffic:

https://www.techtarget.com/searchsecurity/definition/cross-site-scripting
https://www.techtarget.com/searchsoftwarequality/definition/SQL-injection
https://www.techtarget.com/searchsoftwarequality/definition/session-hijacking
https://www.techtarget.com/searchsecurity/definition/distributed-denial-of-service-attack

20 | P a g e

The system will be able to detect malicious requests from the network traffic while keeping a log

and allowing the normal flow of traffic.

• Prevent malicious traffic:

The system will prevent and log any malicious traffic while allowing the normal flow of traffic.

• Changing logs to data frame:

This project uses python scripts to make a Machine Learning Model which can take .json or .csv

And convert it into data frame which can then be used as input to ML model

• Evaluating the core rule sets:

The ML model will evaluate core rule sets based on network traffic. If there are more than

acceptable false-positives or false-negatives, then the ML model will find a better collection or

arrangement for the core rule sets to follow.

• Updating the core rule sets:

After finding a good collection the ML model will make changes to mod Security custom rule set

file allow the new arrangement to be implemented.

5.2 Features to be Tested

1. Extracting features from the log files.

2. Distinction between malicious and benign traffic.

21 | P a g e

3. Using the extracted features for training our ML model.

4. ML model directing the CRS to be used based on them.

5.3 Detailed Test Strategy

This project is a code intensive system hence there are different modules for different

functionalities. This kind of program can be tested by using White-box and block-box testing

techniques as it provides output for each module separately with desired and random inputs.

• White box testing:

White box testing is used when a software is to be tested on the code level and functions and their

results are according to the requirements we put forth. This kind of testing will focus on one function

at a time and ignore the rest to get testing done on a deeper level as compared to just running the

whole system.

• Black Box testing:

Black box testing typically iterates over every possible input and uses the software to ensure that it

leads to the correct output as the end user does.

5.4 Item Pass/Fail Criteria

As client request is sent towards the firewall, firewall filters all types of requests whether these

request are malicious or not, filtering of request will be done on the basis of core rule sets. Machine

22 | P a g e

learning model train the core rule sets that the firewall automatically accepts or reject the request.

Client request was present in the log. If the request is accepted, client will access the website.

Details of the test cases can be found in the Test Deliverables section. The principle outlined below

is when a test item is judged to pass or fail.

• Prerequisites are met

• Input runs as specified

• If the result works as specified in the output, this means that the module will pass.

• If the system does not work or does not meet the output specifications, it is a module

failure.

5.4.1 Test Deliverables

Following are the test cases:

Authentication Failed/Registration Failed User enters an email address in an invalid format.

Corresponding output: An error message is displayed the actual output has been confirmed.

23 | P a g e

Test Case WAF

Test Case Number 1

Description This Section checks if the installed Web application fire wall

works fine and there is no problem in its default working.

Testing technique used White box testing

Preconditions The Linux environment must contain apache2 and MySQL

database

Input Malicious traffic

Steps Starting apache2 and MySQL. Configure SecRuleEngine from

DetectionOnly to on in modsecurity.conf file. Perform general

attacks to check if it protects the web app.

Expected output Waf protects the web app from simple attacks. Display a forbidden

message when an attack is detected.

Alternative Path Reinstall or reconfigure

Cause: Installation or configuration issues.

24 | P a g e

Actual output Waf protects the web app from simple attacks. Display a forbidden

message when an attack is detected.

25 | P a g e

Test Case Log file creation

Test Case

Number

2

Description This test is to make sure that the log files are created properly.

Testing

technique used

Whitebox testing

Preconditions Case no.1 has a pass (WAD is installed properly)

Input None from user side (Log are created automatically)

Steps In modsecurity.conf file find find audit log configuration and change

SecAuditEngine from RelevantOnly to on for logging of all the traffic.

SecAuditLog implies the location of the file.

Expected output Log file is created at the specified directory.

Alternative Path Reconfiguration

Cause: Configuration issues in modsecurity.conf file or directory missing.

26 | P a g e

Actual output

27 | P a g e

Test Case Feature extraction

Test Case

Number

3

Description Python script to convert the logs into a useable information or Feature extraction by

translating .log file into a .json or .csv file

Testing

technique

used

WhiteBox Testing

Preconditions Case 2 is working and has a pass.

Input Location of the modsec.audit.log file

Steps Run the python Script with -f tag and location of the log file after

Expected

output

The output file will be created in the same directory as the log file

Alternative

Path

Make log file again or add a different one

Cause: Log file is missing or corrupted.

28 | P a g e

Actual output

Test Case ML model (Dataframe conversion module)

Test Case Number 4

Description This part of the ML model will take the in the extracted

features in .json or .csv files and convert them in dataframe

which are to be used for as input for our machine learning

process.

Testing technique used White Box Testing

Preconditions Case 3 has a pass.

Input .json or .csv file from case 3

Steps Use python script to target the converted file with feature.

Extract the needed information to be used in the form of a

dataframe.

Expected output Needed information is extracted successfully

29 | P a g e

Alternative Path Reevaluation

Cause: information not extracted, or file is corrupted

Actual output Needed information is extracted successfully

30 | P a g e

Test Case ML model (Learning and testing)

Test Case Number 5

Description The ML model needs to learn the difference between good and bad

network traffic which be done by providing it with the required data

extracted up till case 4.

Testing technique used Black Box Testing

Preconditions Case 4 has a pass

Input Dataframe

Steps The ML model takes the dataframe as input learns from it and applies

it on a test traffic.

Expected output Good efficiency in the test results

31 | P a g e

Alternative Path Reevaluation

Cause: More than acceptable false positives and negatives

Actual output

Test Case Custom Core Rule sets

Test Case Number 6

Description The last case left to be tested is the ability of this python script to write

custom care rule sets in case it evaluates that WAF was not either strict

enough or flexible enough

Testing technique used Black Box Testing

Preconditions Case 5 has a pass

Input Analyst reports false categorization of the network traffic.

32 | P a g e

Steps Once the analyst inputs the log file that contains the information on

packets that were falsely categorized the ML model then checks the

significance of that traffic and makes changes accordingly if needed

Expected output Keeps the strictness of WAF at just the right amount as to not hinder

the normal traffic or let the malicious traffic pass

Alternative Path Reevaluation

Cause: More than acceptable false positives and negatives

Actual output Keeps the strictness of WAF at just the right amount as to not hinder

the normal traffic or let the malicious traffic pass.

33 | P a g e

6. Machine Learning Model

6.1 Feature Engineering

Performing all feature engineering. The different steps are:

6.1.1 Step 1: Import dependencies

Libraries

• import pandas as pd

Pandas are primarily used for data analysis and related operations on tabular data in data frames.

• import NumPy as np

Python library called NumPy is used for working with arrays.

• import pickle

Pickle is a Python library that allows you to serialize and de-serialize Python object structures, often

known as marshalling or flattening. Serialization is the process of transforming a memory item into

a byte stream that may be saved on disk or communicated over the internet.

• import matplotlib , pyplot as plt

Matplotlib is a Python package that allows you to create static, animated, and interactive

visualizations.

• import seaborn

Seaborn is a Python module for creating statistical visuals. It is based on matplotlib and tightly

interacts with pandas data structures. Seaborn assists us in exploring and comprehending our data.

34 | P a g e

• import string

Using the same implementation as the built-in format () function, we may construct and tweak our

own string formatting behavior in the string module.

• from IPython.display import display

In all frontends, show a Python object. All representations are calculated and supplied to the

frontends by default. Frontends have control over which representations are utilised and how they

are used. This is analogous to using print() in terminal IPython; for usage with richer frontends, see

Jupyter notebook examples with extensive display logic.

• from sklearn.feature_extraction.text import CountVectorizer

The scikit-learn module in Python provides CountVectorizer, a useful utility for converting a given

text into a vector based on the frequency (count) of each word that appears in the text.

• from sklearn.feature_extraction.text import TfidfVectorizer

TfidfVectorizer - Converts text into feature vectors that may be used as estimator input.

• from.sklearn,.model_selection.import.train_test_split

training and testing data will be splited.

• from sklearn, model_selection import RandomizedSearchCV

RandomizedSearchCV has two methods: "fit" and "score." If the estimator supports them, it also

implements "score samples," "predict," "predict proba," "decision function," "transform," and

"inverse transform."

35 | P a g e

• from sklearn, model_selection import learning curve

A quantifiable job, such as a factory worker learning to operate a new equipment that requires

particular, repeated actions, is an example of where a learning curve might be used. The worker

grows faster and more efficient as he learns to operate the equipment by following the procedural

procedures.

• from sklearn, decomposition import Truncated SVD

For dimensional reduction, truncated SVD (also known as LSA) is utilised. This transformer uses

truncated singular value decomposition to reduce linear dimensionality (SVD). This estimator,

unlike PCA, does not centre the data prior to generating the singular value decomposition.

Confusion matrix:

A confusion matrix C is defined as the number of observations known to be in group I and predicted

to be in group j, where Ci,j is the number of observations known to be in group I and projected to

be in group j.

Genuine negatives have a count of C0,0, false negatives have a count of C1,0, true positives have

a count of C1,1 and false positives have a count of C0,1.

ROC curve:

In binary classification, ROC curves are used to investigate a classifier's output. To apply the ROC

curve and ROC area to multi-label classification, the result must be binarized.

36 | P a g e

6.1.2 Step 2: Feature engineering custom features

➢ length of payload

Code

def create_feature_length(payloads):

 """

 function to create length feature

 """

 payloads['length'] = [len(str(row)) for row in payloads['payload']]

 return payloads

payloads = create_feature_length(payloads)

display(payloads.head())

#plot graph

plot_feature_distribution(payloads['length'])

Output

37 | P a g e

➢ number of non-printable characters in payload

Code

def create_feature_nonprintable(payloads):

 """

 function to find non- printable char in payload if present -->1 if absent --> 0

 """

 payloads['non-printable'] = [len([1 for letter in str(row) if letter not in string.printable])

for row in payloads['payload']]

 return payloads

payloads = create_feature_nonprintable(payloads)

display(payloads.head())

plot_feature_distribution(payloads['non-printable'])

Output

38 | P a g e

➢ number of punctuation characters in payload

Code

def create_feature_punchualchar(payloads):

 #adds new punctual cloumns with count of punctual characters inpayload

 payloads['punctuation'] = [len([1 for letter in str(row) if letter in string.punctuation]) for

row in payloads['payload']]

 return payloads

payloads = create_feature_punchualchar(payloads)

display(payloads.head())

plot_feature_distribution(payloads['punctuation'])

Output

39 | P a g e

➢ the minimum byte value of payload

Code
def create_feature_minbyte(payloads):

 payloads['min-byte'] = [min(bytearray(str(row),'utf-8')) for row in payloads['payload']]

 return payloads

payloads = create_feature_minbyte(payloads)

display(payloads.head())

plot_feature_distribution(payloads['min-byte'])

Output

40 | P a g e

➢ the maximum byte value of payload

Code

#max byte feature# maximum byte value of payload

def create_feature_minbyte(payloads):

 payloads['max-byte'] = [max(bytearray(str(row),'utf-8')) for row in payloads['payload']]

 return payloads

payloads = create_feature_minbyte(payloads)

display(payloads.head())

plot_feature_distribution(payloads['max-byte'])

Output

41 | P a g e

➢ the mean byte value of payload

Code

#mean byte value of payload

def create_feature_minbyte(payloads):

 payloads['mean-byte'] = [np.mean(bytearray(str(row),'utf-8')) for row in

payloads['payload']]

 return payloads

payloads = create_feature_minbyte(payloads)

display(payloads.head())

plot_feature_distribution(payloads['mean-byte'].astype(int))

Output

42 | P a g e

➢ the standard deviation of payload byte values

Code

#standard deviation of byte value of payload

def create_feature_minbyte(payloads):

 payloads['std-byte'] = [np.std(bytearray(str(row),'utf-8')) for row in payloads['payload']]

 return payloads

payloads = create_feature_minbyte(payloads)

display(payloads.head())

plot_feature_distribution(payloads['std-byte'].astype(int))

Output

43 | P a g e

➢ number of distinct bytes in payload

Code

#distinct byte value of payload

def create_feature_minbyte(payloads):

payloads['distinct-byte'] = [len(set(bytearray(str(row),'utf-8'))) for row in

payloads['payload']]

 return payloads

payloads = create_feature_minbyte(payloads)

display(payloads.head())

plot_feature_distribution(payloads['distinct-byte'].astype(int))

Output

44 | P a g e

➢ number of SQL keywords in payload

Code

#number of SQL keywords in payload

sql_keywords = pd.read_csv('https://trello-

attachments.s3.amazonaws.com/5ed2d4107c349c221194b608/5ed2d453f0e5a45bcd8cf16

c/435e639346787ce2b495a16e9f690ef5/SQLKeywords.txt', index_col=False)

def create_feature_sql_keywords(payloads):

 '''

 Feature

 Number of SQL keywords within payload

 '''

 payloads['sql-keywords'] = [len([1 for keyword in sql_keywords['Keyword'] if

str(keyword).lower() in str(row).lower()]) for row in payloads['payload']]

 return payloads

create_feature_sql_keywords(payloads)

display(type(sql_keywords))

display(payloads.head())

plot_feature_distribution(payloads['sql-keywords'])

Output

45 | P a g e

➢ number of javascript keywords in payload

Code
javascript key word is presten or not in payload

js_keywords = pd.read_csv("https://trello-

attachments.s3.amazonaws.com/5ed2d4107c349c221194b608/5ed2d453f0e5a45bcd8cf16

c/dedc7eb9846a30c252cd950a0e2153d9/JavascriptKeywords.txt",index_col=False)

def create_feature_javascript_keywords(payloads):

 payloads['js-keywords'] = [len([1 for keyword in js_keywords['Keyword'] if

str(keyword).lower() in str(row).lower()]) for row in payloads['payload']]

 return payloads

display(js_keywords)

payloads = create_feature_javascript_keywords(payloads)

display(payloads.head())

plot_feature_distribution(payloads['js-keywords'])

Output

46 | P a g e

6.2 XGB booster

Extreme Gradient Boosting is abbreviated as XGBoost. It's a gradient-boosted decision tree

(GBDT) machine learning package that's scalable and distributed. It is the top machine learning

package for regression, classification, and ranking tasks, and it includes parallel tree boosting.

Gradient boosting refers to the process of "boosting" or enhancing a single weak model by merging

it with numerous other weak models to get a collectively strong model. The method of additively

producing weak models is formulated as a gradient descent algorithm over an objective function in

this application of boosting. To reduce mistakes, gradient boosting establishes intended outcomes

for the following model. The gradient of the mistake with regard to the prediction determines the

targeted outcomes for each case.

The model I used allows for multiple results of packet characteristics to be examined.

47 | P a g e

48 | P a g e

6.3 Pickle

For serialising and de-serializing a Python object structure, the Python pickle package is utilised.

Pickling an object in Python allows it to be stored on a disc. Before writing to file, Pickle "serialises"

the item. It's a method for converting a Python object (such a list or dict) into a character stream.

This character stream provides all of the information required to recreate the object in a subsequent

Python script.

49 | P a g e

50 | P a g e

7. References and Work Cited

1. Clincy, Victor, and Hossain Shahriar. "Web application firewall: Network security models and

configuration." 2018 IEEE 42nd Annual Computer Software and Applications Conference

(COMPSAC). Vol. 1. IEEE, 2018

2. Gupta, Namit, Abakash Saikia, and D. Sanghi. "Web application firewall." Indian Institute of

Technology, Kanpur 61 (2007): 62.

3. N. Moustafa, B. Turnbull and K. R. Choo, "An Ensemble Intrusion Detection Technique Based on

Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things," in IEEE

Internet of Things Journal, vol. 6, no. 3, pp. 4815-4830, June 2019, doi:

10.1109/JIOT.2018.2871719.

4. Tekerek, Adem, Cemal Gemci, and Omer Faruk Bay. "Development of a hybrid web application

firewall to prevent web based attacks." 2014 IEEE 8th International Conference on Application of

Information and Communication Technologies (AICT). IEEE, 2014.

5. Elmasri, B. (2015). Detection of denial of service attacks on application layer protocols (Order

No. 10085278). Available from ProQuest Dissertations & Theses Global. (1780275442).

6. Mereani, F. A. (2021). Investigating the detection of stored scripting attacks using machine

learning. (Unpublished Doctoral thesis, City, University of London)

7. Moosa, Asaad. "Artificial neural network based web application firewall for SQL

injection." International Journal of Computer and Information Engineering 4.4 (2010): 610-619.

8. Tekerek, A. D. E. M., and O. F. Bay. "Design and implementation of an artificial intelligence-based

web application firewall model." Neural Network World 29.4 (2019): 189-206.

https://pk.slytoday.com/ws?q=web%20application%20firewall&asid=sly_ask_pk_gc4_05&mt=b&nw=g&de=c&ap=&ac=18268&cid=15489902554&aid=134266773081&locale=en_PK&gclid=CjwKCAjwkMeUBhBuEiwA4hpqEIFLxBMnDsQPaQDYFvx9v9H3-u1B53GolbMI5oTQXVoDsPnhWP110BoCm4gQAvD_BwE
https://pk.slytoday.com/ws?q=web%20application%20firewall&asid=sly_ask_pk_gc4_05&mt=b&nw=g&de=c&ap=&ac=18268&cid=15489902554&aid=134266773081&locale=en_PK&gclid=CjwKCAjwkMeUBhBuEiwA4hpqEIFLxBMnDsQPaQDYFvx9v9H3-u1B53GolbMI5oTQXVoDsPnhWP110BoCm4gQAvD_BwE

51 | P a g e

9. Singh, Jatesh Jagraj, Hamman Samuel, and Pavol Zavarsky. "Impact of paranoia levels on the

effectiveness of the modsecurity web application firewall." 2018 1st International Conference on

Data Intelligence and Security (ICDIS). IEEE, 2018.

10. Pałka, Dariusz, and Marek Zachara. "Learning web application firewall-benefits and

caveats." International Conference on Availability, Reliability, and Security. Springer, Berlin,

Heidelberg, 2011.

11. Torrano-Gimenez, C., Perez-Villegas, A., Alvarez, G., Fernández-Medina, E., Malek, M., &

Hernando, J. (2009, July). An Anomaly-based Web Application Firewall. In SECRYPT (pp. 23-28).

12. Muzaki, Rizki Agung, et al. "Improving Security of Web-Based Application Using ModSecurity and

Reverse Proxy in Web Application Firewall." 2020 International Workshop on Big Data and

Information Security (IWBIS). IEEE, 2020.

13. Hacker, Andrew J., and ISSAP CISSP. "Importance of web application firewall technology for

protecting web-based resources." ICSA Labs an Independent Verizon Business (2008): 7.

14. Epp, Nico, et al. "Anomaly-based web application firewall using http-specific features and one-class

svm." Workshop Regional de Segurança da Informação e de Sistemas Computacionais. 2017.

15. Appelt, Dennis, Cu D. Nguyen, and Lionel Briand. "Behind an application firewall, are we safe from

SQL injection attacks?." 2015 IEEE 8th international conference on software testing, verification and

validation (ICST). IEEE, 2015.

16. Akbar, M., & Ridha, M. A. F. (2018). Sql injection and cross site scripting prevention using

owasp modsecurity web application firewall. JOIV: International Journal on Informatics

Visualization, 2(4), 286-292.

17. Mukhtar, B. I., & Azer, M. A. (2020, December). Evaluating the modsecurity web

application firewall against SQL injection attacks. In 2020 15th International Conference

on Computer Engineering and Systems (ICCES) (pp. 1-6). IEEE.

52 | P a g e

18. Nagendran, K., Balaji, S., Raj, B. A., Chanthrika, P., & Amirthaa, R. G. (2020, March).

Web application firewall evasion techniques. In 2020 6th International Conference on

Advanced Computing and Communication Systems (ICACCS) (pp. 194-199). IEEE.

19. Shaheed, A., & Kurdy, M. H. D. (2022). Web Application Firewall Using Machine Learning

and Features Engineering. Security and Communication Networks, 2022.

20. Yuan, H., Zheng, L., Dong, L., Peng, X., Zhuang, Y., & Deng, G. (2019, February).

Research and implementation of WEB application firewall based on feature matching.

In International Conference on Application of Intelligent Systems in Multi-modal

Information Analytics (pp. 1223-1231). Springer, Cham.

21. Khamdamov, R. K., Kerimov, K. F., & ugli Ibrahimov, J. O. (2019). Method of Developing

a Web-Application Firewall. Journal of Automation and Information Sciences, 51(6).

22. Thang, N. M. (2020). Improving efficiency of web application firewall to detect code

injection attacks with random forest method and analysis attributes HTTP

request. Programming and Computer Software, 46(5), 351-361.

23. Manaseer, S., & Al Hwaitat, A. K. (2018). Centralized Web Application Firewall Security

System. Modern Applied Science, 12(10), 164.

24. Lee, H. Y., & Yang, H. S. (2017). Construction of Security Evaluation Criteria for Web

Application Firewall. Journal of digital Convergence, 15(5), 197-205.

25. Malekar, V., & Waghmare, J. M. (2013). Web application firewall to protect against web

application vulnerabilities: A survey and comparison. International Journal of Computer

Technology and Applications, 4(1), 141.

53 | P a g e

8. Plagiarism Report

54 | P a g e

55 | P a g e

56 | P a g e

