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ABSTRACT   
   

Autonomous driving heavily relies on accurate trajectory prediction to optimize route planning 

and enhance vehicle safety. Current deep learning-based trajectory models have demonstrated 

remarkable success on public datasets but often fall short in real-time applications due to 

computational limitations in vehicles. In this research, we propose LaneFormer, an optimized 

trajectory prediction framework designed to balance high predictive accuracy with 

computational efficiency, ensuring its suitability for real-time deployment in autonomous 

systems. Our model introduces an efficient attention mechanism to capture complex interactions 

between agents and road structures, outperforming state-of-the-art methods while using fewer 

resources. We evaluate LaneFormer on the Argoverse dataset, demonstrating its robustness in 

predicting future trajectories with competitive metrics across multimodal scenarios.  

   

Key Words: Autonomous Vehicle, Transformer, Trajectory Prediction, Self-Attention, 

MultiModality, Argoverse Dataset.  
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Chapter 1: Introduction   

1.1  Why self-driving vehicles:  

  Self-driving cars are a relatively new technology with the ability to bring a drastic change in 

the way people move around. The manufacture and use of unmanned vehicles seek to respond 

to some of the greatest challenges, especially road safety, level of operation, and the negative 

influence on the surroundings. This advancement is achieved escorted by the scientific 

improvement of advanced sensors, machine learning algorithms, and even artificial intelligence 

that have been incorporated into self-driving cars, these technologies help in eliminating human 

error which causes a higher rate of road accidents. This safety improvement is significant as it 

speaks to the potential number of lives lost or aggravated injuries. Besides safety, self-driving 

cars minimize traffic and ensure better use of the roads. They are designable such that they are 

within a network that enables them to send alerts to each other and change course by the 

prevailing conditions on the roads, thus ensuring that the right routes are taken, there are little, 

or no gridlocks and time is saved. Also, through autonomous systems, constant speed safety and 

limits of the traffic rules can be controlled for better traffic flow and little to no violators of the 

rules. Self-driving cars are also expected to cut down on the pollutants emitted. That is, in 

driving patterns, speed, acceleration & braking, and even selection of the distance, autonomous 

cars are likely to use less fuel and energy more effectively. This optimization also goes in line 

with various global initiatives aimed at further minimizing the carbon consequences [1][2].  

In addition, driverless cars have the potential to enhance the mobility of people unable to drive 

such as the aged and the disabled. Thus, providing a more accessible form of transportation. 

The implementation and use of autonomous vehicles in public transport and ride-hailing 

services can lead to more affordable and convenient transport solutions [2].  
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Figure 1: Vehicle accidents [3].   

  

  

Figure 2: Road fatalities in 2021 – 2023 [3].  

  

The main factors listed for these fatalities were speeding, intoxication, and distraction.  

   

1.2 How self-driven vehicles are better than human-driven vehicles.   

   Self-driven vehicles, these vehicles provide a far better enhancement in road safety than 

human-driven vehicles. One of the major causes of this improvement is the fact that they 

do not involve human errors, which is the main cause of most of the traffic accidents. 

Pulling out from the statistics, distraction, tiredness, sober or compromised behavior, and 

emotional distress are some of the factors that affect how people drive. Autonomous 

vehicles, however, do not suffer such liabilities. These are equipped with complex 

computation algorithms together with an array of sensors and are limited by the lack of 

ex-devices that help process data that is being received in real-time [2][4].  

Self-drive cars also employ several auxiliary and additional sensors like LIDAR, radar, 

various others, and cameras. This has the capability of tracking numerous objects and 

making reactions faster than a human driver. Besides, their models have prediction 

capabilities and algebraic functions telling them where any imagined person like 

pedestrians, cyclists, or vehicles would move, thus strategically avoiding any possible 

such collisions.  
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The cars are armed with a Vehicle-to-Everything (V2X) communication interface that 

allows communication with vehicles nearby, the surrounding traffic environment, and 

road conditions. These give enhanced awareness of the surrounding environment and the 

ability of the vehicle to predict and actively react to moving traffic situations more 

effectively than human drivers. Further, autonomous cars abide by each traffic regulation 

about speed and all other road rules always and under no circumstances creating room for 

risky behavior responsible for accidents and road rage. Their choices are unaffected by 

distractions, emotions, and other factors, which enhances safety on the roads and reduces 

unpredicted behavior [5][6].  

  

  

  

Figure 3: Components of Autonomous Vehicle [7].  

  

1.3 Component   

  Autonomous vehicles, or self-driving cars, are used to be more advanced and efficient because 

they are made up of many different means of communication that work together to make 

navigation faster and safer. These components can be categorized in a more general manner 

into the following key areas [6][8].  
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1.3.1 Sensors   

The sensors are the eyes and ears of an autonomous vehicle, receiving valuable and critical 

information about the surroundings. Information is obtained from different sources with the 

help of various types of sensors [9],  

• Lidar:  

Lidar systems use laser pulses and gauge the distance from the laser to the nearby 

surfaces. Collecting this enormous number of points helps the vehicle create a 3D image 

of all the surroundings to identify such things as obstacles, edges of the roadway, and a 

host of others [10].  

• Radar:   

Radar sensors detect objects using radio waves and measure their speed. These sensors 

are well utilized in harsh weather conditions such as fog and rain and are used in 

adaptive cruise control and collision avoidance functions.  

• Cameras:   

High-definition cameras record visual information in images and videos. They assist the 

vehicle in identifying lane markings, road signs, people, and other vehicles. Cameras 

play an important role in capturing information from the visual space essential for road 

movement.  

• Ultrasonic_Sensors:   

Ultrasonic sensors are often used for short-range detection and aid in the low-speed 

operation of vehicles mostly during parking. These devices measure the distance of an 

object from the device by producing sound waves and calculating the duration taken for 

the echoes to return.  

1.3.2 Detection and Planning  

The perception system interprets the sensed data to recognize the environment around the 

vehicle. Several complex algorithms are involved in this process, such as computer vision and 

sensor fusion methods [11]:  

• Object_Detection_and_Classification:   

The vehicle not only detects people inside but also identifies other objects outside of 

the car using advanced algorithms, including vehicles, pedestrians, traffic signs, and 
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obstacles on the road. This is done using images through Lidar cameras and video based 

on deep learning models built within the data.  

• Localization:   

Localization allows the car to position itself on a map properly. This component often 

incorporates GPS data and other information collected from sensors, such as Lidar or 

cameras, to allow the vehicle to achieve a high level of location accuracy even when 

the GPS signal is poor.  

1.3.3 Input   

Autonomous vehicles use detailed, high-definition (HD) maps to navigate complex 

environments. These maps contain information about road geometry, lane markings, traffic 

signals, speed limits, and more [12]:  

• HD_Maps:   

HD maps are essential in guiding self-driving cars through busier areas. These maps show 

details related to the geometry of the roads, lane marks, traffic lights, and speed limits.  

• Path_Planning:  

Using the provided HD maps that have been worked on previously, the vehicle can use 

the real-time generated data from the sensors in conjunction with the stationary 

environment for localization and path planning.  

• Global_Planning:   

Uses map data to access the total end-to-end-point course relevant to the problem.  

• Local_Planning:  

Adjust the vehicle's trajectory in real-time by avoiding obstacles and following traffic 

rules.  

1.3.4 Control System  

The control system follows the plan by sending the corresponding commands to the actuators of the 

different systems that are present in the vehicle like the throttle, brakes, steering, etc [9]:  

• Longitudinal_Control:   
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Regulates the motion of the vehicle through its speed by giving acceleration as well as 

applying the brakes on the vehicle.  

• Lateral_Control:  

utilization of steering in controlling the direction of motion of the vehicle along a 

specified path or within a specified target lane. More advanced control methods like 

Proportional-Integral-Derivative (PID) controllers or Model Predictive Control (MPC) 

are applied to increase the stability of driving.  

1.3.5 Decision-Making Module  

This module is regarded as the brain of the vehicle as it perceives the surroundings makes 

decisions regarding various aspects and edits the above manual to suit its requirements. It 

receives inputs such as perception mapping and planning too [13]:  

• Predict_Trajectories:  

Foresee the movement of cars, pedestrians, and other surrounding objects which is very 

critical in preventing accidents and making recommended path choices.  

• Behavior_Planning:  

This will involve coming up with decisions that involve activities including but not 

limited to changing lanes, turning, and stopping. In the process of studying the 

environment, the vehicle will evaluate several factors, such as traffic conditions, lights, 

and pedestrian walkways, for timely responses.  

1.3.6 Actuator   

The actuators are the components that are responsible for controlling the motion of the vehicle. 

They execute commands sent by the control system for steering, throttle, brakes, and 

transmission by turning the electronic signals into motions [9].  

1.4Motivation   

Given the critical role of autonomous vehicles in revolutionizing transportation, this research is 

motivated by the importance of the need to develop road safety and traffic management. 

Regardless of trends, horrifying statistics regarding road accidents, and the related fatalities and 

economic costs call for much better approaches and reliable models for trajectory prediction. 
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Many of the existing techniques for trajectory prediction fail to consider the practicality of the 

road by for example making wrong decisions that prompt an accident. Today, being in the 

Internet of things evolution there comes an opportunity to improve tackle trajectory prediction 

with greater accuracy, efficiency, and in real-time. Treating these features with respect, 

autonomous vehicles can considerably prevent accidents occurrence, enhance the performance 

of route determination systems, and promote comfort and safety for all road users.  

  

  

1.5 Problem Statement   

In autonomous driving, accurately predicting the future trajectories of surrounding agents, such 

as vehicles, pedestrians, and cyclists, is essential for safe and efficient navigation in dynamic 

environments. This task is particularly challenging due to the variability in agent behavior, 

complex road geometries, and the presence of multimodal interactions at intersections and other 

high-traffic areas. Using the Argoverse dataset, which provides high-definition map data and 

agent trajectory information, this study aims to develop a robust trajectory prediction model 

that can reliably forecast the future positions of target agents over a given time horizon. By 

leveraging detailed past trajectories and HD map features, the objective is to improve the 

model's ability to predict multiple possible outcomes with high accuracy, enabling it to handle 

diverse scenarios and enhance decision-making in real-world autonomous driving applications.  

1.6 Objectives   

This research aims to:   

 •  Minimum ADE: Our approach targets achieving minimal ADE.  

•  Multimodality: We leverage a multimodal model for robust decisions.  

  

1.7 Proposed Solution   

The solution proposed in this thesis involves a two-stage pipeline for detecting railway track 

defects using advanced AI techniques. The first stage employs a YOLOv8 segmentation model, 

fine-tuned on a dataset of railway track images, to identify and segment various track 

components.   
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The segmented images are then processed to extract the rail surface, which is converted to 

grayscale and used to pre-train a U-Net-based model on a dataset of normal rail surfaces. This 

model is further fine-tuned on a subset of the Railway Surface Defects Dataset (RSDDs) to 

enhance its ability to detect surface irregularities. The combination of these two stages into a 

unified detection system offers a scalable and efficient solution for railway track inspection.   

1.8 Thesis Organization   

The structure of this thesis is as follows:   

● Chapter 2: Literature Review    

Provides an overview of existing research on railway track defect detection, highlighting 

the strengths and limitations of current methods.   

● Chapter 3: Proposed System    

Details the design and development of the AI-based detection system, including dataset 

preparation, model training, and system architecture.   

● Chapter 4: Implementation    

Discusses the implementation of the proposed system, covering the tools and 

technologies used and the challenges encountered during development.   

● Chapter 5: Results and Discussion    

Present the results of the performance evaluation of the system, analyzing its 

effectiveness in detecting railway track defects across different scenarios.   

● Chapter 6: Conclusion and Future Work    

Summarizes the key findings of the research, discusses its implications for railway  

 safety, and outlines possible directions for future research.     
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Chapter 2: Literature Review   

As evident from research, trajectory prediction using advanced deep learning models, such as 

Generative Adversarial Networks (GANs), offers significant potential in accurately forecasting 

the future positions of agents in dynamic environments. However, studies have consistently 

highlighted the computational challenges posed by these models. The large number of 

parameters required to capture complex agent interactions and environmental details makes 

these models computationally intensive. For instance, models like LaneGCN and attentionbased 

GANs have shown improved accuracy but come with a high computational cost, requiring 

substantial memory and processing power. These challenges are particularly evident in real-

time applications, where latency and resource constraints are critical. As research progresses, 

the focus is shifting toward optimizing these models to maintain high accuracy while reducing 

computational demand, paving the way for more practical deployment in scenarios like 

autonomous driving and robotics.  

  

2.1 Generative Adversarial Network-Based Approaches   

The theory of Generative Adversarial Networks (GANs) is quite popular, especially for its 

application in trajectory prediction for autonomous vehicles. The research reported here models 

the future movement of vehicles in dense traffic conditions to anticipate accidents. GAN-based 

models consist of two components: a generator that constructs probable future trajectories and 

a discriminator that ensures diversity in the generated trajectories. This framework shifts the 

classic artificial intelligence dilemma of distinguishing between real and fake to producing 

more realistic and believable future trajectories. The "upset vigorously signified" allows the 

convergence of the systems toward accurate predictions (et al., 2022).   

The Adversarial training framework based on GANs handles the ambiguity and multiple modes 

of real traffic, acknowledging that each vehicle can have various possible target centres. GAN 

models enhance the predictability and stochasticity of trajectories, especially in complex road 

scenarios. Additionally, they help in visualizing dependencies between vehicle systems and 

road infrastructure, ensuring realistic behavior in crowded or complex traffic environments (et 

al., 2023). Equipped with driving scenario databases, models using GAN methods for trajectory 

prediction can perform well in diverse road and traffic conditions. GANs are increasingly used 

to predict challenges faced by self-driving cars. Although the network designs are 
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computationally expensive, including GANs in the trajectory prediction process improves the 

sensibility of autonomous system plans and navigation, making vehicles safer and more 

efficient [14], [15], [16].  

  

2.2 Deep Learning-Based Approaches   

Predictive modeling research in autonomous driving has neglected other types of modeling and 

embraced a deep learning approach because those models effectively handle agent-agent and 

agent-environment interactions. The main features of classical methods focus only on 

segmenting images and video frames to construct a scene. On the other hand, it is also worth 

mentioning that deep learning technologies based on Recurrent Neural Networks (RNNs), 

Convolutional Neural Networks (CNNs), and Graph Neural Networks (GNNs) help predict 

trajectories more efficiently as they learn spatiotemporal patterns from the data (Bhattacharyya 

et al., 2018; Chai et al., 2019). They allow long-term dependencies to be maintained as in RNN 

architectures, while CNN modules are included to read rasterized maps for a more complex 

driving scene. Furthermore, the history of RNNs has been developed productively by 

empowering them with attention and, eventually, transformer techniques to concentrate on 

important details of traffic for better modeling (Zhao et al., 2020).  

Another recent trend is the incorporation of multimodal trajectory prediction where the models 

elaborate on multiple future possible paths to capture the degree of uncertainty of the driving 

context. VectorNet (Gao et al., 2020), and LaneGCN (Liang et al., 2020) extend the targeted 

state-of-the-art by formalizing road geometry and interactions with agents through graphs that 

enable the model to work with interrelation between multiple objects of the scene. In this 

fashion, the deep learning models also utilize vectorized and graph-based encodings to give a 

better picture of the driving scene to enhance trajectory predictions. Such multistage strategies 

have been benchmarked on the Argoverse dataset with favorable results, showcasing the strong 

impact that deep learning can have to guarantee a safe and consistent autonomous system [4],  

[5], [6], [14], [17], [18][19], [20].  

  

2.3 Generative AI-based Approaches    

The acceleration of recent developments in Generative AI (GenAI) and particularly transformer 

architectures has been realized especially in trajectory prediction in autonomous driving 
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applications. While transformers were originally designed for language-based tasks, they are 

more than able to predict and model long-term dependencies and complex relationships in 

sequential tasks. For example, mmTransformer (Liu et al., 2021) and other transformer-based 

models (Casas et al., 2020) in trajectory prediction optimally use self-attention, which drives 

each of the agents in a scene and learns the interactions between the cars and the environment. 

These models enable the prediction of the scene using both the previous trajectories and 

highdefinition (HD) maps or both maps developing a beautifully informative narrative. Since 

Transformers capture spatial and temporal dependencies in the surrounding environment, these 

models can obviate the other relevant modality prediction to driving and resolve some of the 

uncertainties that exist in real-world driving navigation [21].  

Additionally, it is worth pointing out that achieving multiple plausible future outcomes can also 

be supported more efficiently when Generative AI approaches are integrated into Transformer 

models. For instance, by incorporating VectorNet with a decoder based on Transformers, it has 

been shown that predicting turning angles can be significantly improved by graph-based 

encodings of interactions (Gao et al., 2020). Such approaches, like Multi-Head Attention 

Networks (Liang et al. 2020), pull the focus to different actors and features of roads to make a 

better prediction of the trajectory. Also, these GenAI methods utilize the efficiency of 

Transformers to combine information coming from different modalities, such as road geometry 

and vehicle states, to produce high-fidelity and robust multicomponent trajectory forecasts 

[16][17][18][19]. Deployment of such models on datasets including Argoverse has shown that 

future motion forecasts can be generated making a great contribution towards achieving 

autonomous navigation [1], [11], [12], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31].  

  

  

  

2.4 Research Gap   

As regards the previous research, it is apparent that there has been significant development in 

trajectory prediction. However, certain gaps persist. One such issue is the existing unimodal 

nature of most of the current methods. This deficiency hampers the performance of the model 

which is not able to foresee many potential future events appropriately, thus making the model 

less effective and flexible in more complex situations. There is also considerable debate about 

the relatively high average displacement error (ADE). This is due to some existing models being 
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unable to achieve a low average when predicting future states of agents. Overcoming these gaps 

is very important in enhancing the development of trajectory prediction models which are more 

accurate and flexible autonomous driving applications.  
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Chapter 3: Proposed System   
In this chapter, we will discuss the proposed system to detect different defects in the railway 

track system. We will also discuss how we gathered our dataset and the different architectures 

of deep learning models we used.   

3.1 Dataset   

In this study, the Argoverse dataset has been utilized to train and assess the performance of 

trajectory prediction models. This dataset contains multiple driving scenarios, which include 

interactions with other actors in simple and complex city environments with varied roads and 

movement patterns. It encompasses relevant information for training models, such as vehicle 

trajectories, lane status information, and light signal status. It also helps the model understand 

the temporal dynamics of traffic by including both increasing traffic and non-peak periods. 

Further details regarding the Argoverse dataset will be discussed in the forthcoming chapter 

[32]  

3.2 Transformer Model  

The area of trajectory prediction has progressed because it is effectively able to model complex 

interactions with moving objects and their environments. In this paper, we present 

transformerbased models that incorporate previous and planned road structure information in 

addition to patterns of past movements of vehicles for future trajectory prediction. These models 

employ attention-based time and spatial features-based methods that revolutionize trajectory 

prediction. With the use of transformers, trajectory prediction allows for the inclusion of 

variance in behavior so that scenario driving in the predictive components can be done [22][8], 

[24], [33], [34], [35], [36].  

3.2.1 Attention Block   

The enhancement of the self-attention mechanism is important for trajectory prediction. It 

allows the model to pay attention to different parts of an agent's motion and the motion 

environments. In trajectory prediction, self-attention is used to track dependencies across 

multiple time slices and agents, evaluating the strength of each dependence dynamically. This 

helps the model to understand better both short- and long-range interactions in the scene. By 
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considering inputs such as past trajectories and environmental context, the self-attention block 

creates a more accurate representation that considers nearby agents and road structures. This 

broader perspective enables the prediction to encompass a more comprehensive range of 

possibilities, as it considers the agent's history and the likely interactions, resulting in more 

precise and real-life future trajectory predictions.  

3.2.2 MLP Block   

Fusion and processing of the encoded data for trajectory prediction through a transformer model 

would require an MLP block to be included. This MLP block is utilized to incorporate 

attentional MLP to the given features from the attention mechanism of the transformer. It aids 

in encoding the historical context of the agents and their actions. Furthermore, the MLP further 

optimizes the transformer's ability to predict in which direction the agents should be steered to 

do appropriate movements by passing outputs in a sequence of varying functional layers. This 

block incorporates spatiotemporal information well without altering the structure of the 

predicted trajectories concerning agents' intentions and road geometry, making the trajectory 

prediction system better [37].  

3.2.3 1D Convolutional Neural Networks (CNNs)   

Using 1D CNN within transformer-based trajectory prediction models helps process sequential 

motion data more efficiently. The 1D CNN is well-suited for preserving temporal information 

as it can effectively capture the short temporal structure within an agent’s trajectory. In this 

architecture, the 1D CNN acts as a subunit that preprocesses the raw trajectory inputs before 

the attention mechanisms implemented by the transformer for the cross direction. Instead of 

just reinforcing short-term memories as in models with only CNN, this model captures 

shortterm details using the CNN without losing the understanding of the long-term effects using 

the transformer. As a result, the model's forecasting performance is improved, and its robustness 

in various realistic driving situations is enhanced.  
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Figure 4: The simplest representation of 1D CNN Architecture (Amit et al, 2021).   

  

3.3 Proposed System Diagram   

This chapter deals with the author’s datasets – the data collected for training and its statistics 

the author addresses next. In other sections, the author addresses the different architectures that 

they employed while training and fine-tuning their datasets. To make it easier to follow all the 

processes, the schematic diagram of the proposed system is shown in Figure 11. In the next 

chapter, the author narrates how it was possible for them to integrate all these components, and 

therefore design their system.  
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Figure 5: Proposed System Diagram.   
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Chapter 4: Implementation   
This chapter provides an overview of the process of developing and implementing a trajectory 

prediction model based on the transformer architecture. It discusses how the proposed model 

handles complex traffic scenarios by considering both spatial and temporal dimensions in the 

interactions of various actors. The chapter also includes an evaluation of the new model in 

comparison to other trajectory prediction models to determine its efficiency and accuracy. 

Additionally, it explains the development and retraining of the model, focusing on 

attentionbased feature extraction and feature fusion. Moreover, the chapter describes how the 

model incorporates multiple target behaviors and outlines steps taken to enhance prediction 

accuracy. Overall, this chapter aims to enhance understanding of the transformer model 

architecture used in this research and the methods employed to improve trajectory prediction 

accuracy.  

4.1 Dataset   

The Argoverse dataset contains detailed trajectories and high-definition maps with additional 

information such as speed limits and road characteristics. However, the dataset only provides 

location coordinates and lacks details about motion in space, such as angles and vertical falls. 

To address this issue, we introduce a vectorization operation to the roads and maps, converting 

them into variables that depict advanced geometry. When trails are recorded for agents, 

sampling is done at constant time intervals to create geometrically accurate points, which are 

then connected to form vector lines representing the path traversed by the agent. This technique 

helps prevent the loss of directional positions and aids the model in understanding movement 

dynamics. The same approach is applied to road sections, where the road is subdivided into 

equal portions known as splines or polylines. Constant distances are sampled on the roadmap, 

and adjacent points are joined to create vectors. A combination of these vector polygons 

explains the shape and orientation of individual road sections within the broader road network, 

making it more useful for the model [23][24].  

Each vector is expressed as   
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𝑑𝑖  = [ 𝑥𝑖  , 𝑦𝑖 , 𝑥𝑖𝑝𝑟𝑒 , 𝑦𝑖𝑝𝑟𝑒 , Δx, Δy, vid, sid ]                    

represents the coordinates of the current point in a bird's-eye view [𝑥𝑖𝑝𝑟𝑒 , 𝑦𝑖𝑝𝑟𝑒 ] Denotes its 

preceding neighbor's coordinates. The values Δx and Δy indicate the distance from the 

current point to the neighboring point on the current surface, defining the separation 

between roads or trajectories at a given moment. Additionally, the identifiers vid and sid 

represent the segment and vector of the scene, providing all the necessary information for 

proper construction. Converting trajectories and road segments into these vectors makes it 

easier for transformer models to understand local and global spatial relations more 

efficiently, thereby increasing the predictive power of the model.  

  

  

Table 1: Dataset split  

4.2 Model   

4.2.1 Input Block   

The models that we have designed are built on the transformer framework and include four key 

blocks that will assist in solving the trajectory prediction problem. The first one is the input 

block, which aims to perform input data conversion of the input data such as HD maps and 

vehicle trajectories into vector form ready for any processing in the succeeding layers. This is 

important because the model requires this process since it encodes several details involving 

space and time directions into one simpler form. The input block provides a robust starting point 
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for precise and holistic trajectory prediction with input data from both the road structure and 

dynamic agents trajectories [17].  

The next block is the encoder, which acts more like a purifier that employs the self-attention 

mechanism to pull out pertinent hidden features from the input data. Self-attention helps the 

model to focus on specific elements in a scene, including other vehicles, road shapes, or traffic 

signs and determines how important they are. In view of these interactions, the encoder can 

handle agents’ and the environment’s delicate but powerful relations. This helps to enhance the 

understanding of each agent dynamics and soil understanding of how agents interact in a traffic 

scene. The output of this encoder block is a set of vectors whose attributes are more 

sophisticated with respect to the agents and road features.  

After the encoder comes the transformer blocks, which continue to generate the representation 

by combining the features of the agents and the roads and enhancing each of them. The blocks 

take advantage of the self-attentional mechanism to model complex interactions between the 

elements in the scene, determining how agents will behave with other cars and changes in the 

surroundings. The last element in the structure is a decoder based on multilayer perceptron 

MLP, which integrates the features that are obtained and accomplishes the prediction of the 

target agent’s motion. In the MLP-based decoder, the information obtained in the previous 

blocks is put in use so that the trajectory is accurately predicted in terms of connecting 

shortrange and long-range directional influences. With this structured and flexible architecture, 

the model adaptation in autonomous driving tasks makes it easier to cope with different cases 

in real life.  

  

4.2.2 Encoder Block  

1. Merging Trajectories and High-Definition Maps for Encoding:   

After post-processing, the trajectories and the HD maps are encoded; that is, they are 

represented in vector form, which is the input to be gained from the performance model of the 

trajectory. These vectors feature in complex attributes like road patterns, moving vehicles and 

other activities around. They are structured in a way that makes the model learn the spatial 

relationships embedded in it. The feature vectors are then encoded through a structural phase 

transformation to achieve detail enhancement using a strong encoding mechanism. Based on 

earlier studies and empirical investigations, our model adopts an efficient and 
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performancebased encoder structure that incorporates compositional devices such as attention, 

CNNs and MLPs at the same time into the input.  

  

Figure 6. Encoder Block  

2. MLP-Encoding of Road Information:   

The encoder is based on a Multi-Layer Perceptron (MLP) and encodes road information. This 

component encodes input vectors corresponding to road segments at each time step. In the 

example above, the input vector 𝑓𝑖 𝑡 refers to the characteristics of this road segment at this 

instant in time. This transformation is achieved using a three-layer perceptron with a "ReLU 
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activation function, denoted "phis 𝛿𝑚𝑎𝑝, and a learnable weight matrix 𝑊𝑚𝑎𝑝. The resulting 

feature matrix is structured in three dimensions: H, L, and M) where H signifies the number of 

hidden features, L indicates the fixed length of each segment (set to 10 meters for 

standardization), and M denotes the total number of road segments in the scene. This encoding 

allows the model to incorporate various road characteristics into a unified framework, preparing 

the data for subsequent processing [36].  

  

3. Addressing Limitations of Individual Feature Vectors with Attention Mechanism:  Using 

just the individual feature vectors is not enough to estimate the trajectory. For instance, while two 

road sections may look very similar in their beginning parts, differences may occur in their last 

parts that produce different geometric interpretations. This difference can be significant in how 

well the model can predict behaviors. To overcome this challenge, an attention mechanism is 

presented to successfully encode road segments into a set of feature vectors. The attention 

mechanism also assures the presence of inclusivity of both the local and global geometrical 

changes of the segment by letting the model attend to the key aspects of every segment. In this 

manner, each agent obtains a unique feature vector, which is used to determine the query, key, 

and value matrices needed in the self-attention mechanism.  

  

4. Calculating Query, Key, and Value Matrices for Self-Attention:   

The next step in the encoder is devoted to computing the query (q), key (k), and value (v) 

matrices. This task is basic to the self-attention mechanism, which enables the model to perform 

feature selection in the input data. The calculations can be formulated as follows:   

       𝑞 𝑡𝑖 =       𝑊 𝑞𝑓 𝑖𝑡, 𝑘 𝑡𝑖 = 𝑊 𝑘𝑓 𝑖𝑡, 𝑣 𝑡𝑖 = 𝑊 𝑣𝑓 𝑖𝑡,  

where 𝑊 𝑞 , 𝑊 𝑘 and 𝑊 𝑣  are learnable weight matrices. These matrices are then passed 

through a weighting block utilizing the softmax function to normalize their contributions   
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      ℎ 𝑡𝑖 = softmax (𝑞⎷ 𝑡𝑖  .𝑑𝑘   𝑡𝑘𝑖𝑇 )𝑣 𝑡𝑖  

Here, 
𝑑

  𝑘  represents the key matrix's length, ensuring that the model properly scales the 

attention scores.     ℎ  𝑖 = 𝛿𝑎𝑔𝑔  ( ℎ 𝑡𝑖 ; 𝑊𝑎𝑔𝑔  )  

This process enables the aggregation of features using a two-layer MLP, denoted as 𝛿𝑎𝑔𝑔  , 

across road segments, resulting in a comprehensive feature matrix structured as (H, M).  

  

    

5. Encoding and Aggregating Agent Trajectories:   

A similar encoding scheme is employed in this step for the agents’ trajectories. Each trajectory 

vector is operated on by an encoder block, creating a corresponding feature vector. For example, 

if two vehicles move together in the first half of their paths and obstruct each other’s motion in 

the second half, their combined future course of movement will be dissimilar. To resolve this 

issue, we also utilize a self-attention block within the observation period to encode the whole 

trajectory to create one feature vector for each agent instead of time sequentially encoding 

portions of the trajectory at a time. This architecture uses self-attention, which helps keep each 

agent's temporal variations and dynamics in view and facilitates a better representation of each 

agent’s motion.  

  

6. Smoothing Trajectory Data with 1D CNN in Agent Encoder:  

The agent encoder has the task of correcting the irregular nature of trajectory data, which can 

be caused by uncertain GPS tracking. This irregularity, also known as non-smoothness, can 

impact the accuracy of vehicle trajectories, posing a challenge for trajectory prediction models. 

This issue was addressed by incorporating a 1D CNN in the agent encoder. Unlike only an MLP, 

a 1D CNN can process a more significant portion of the trajectory due to its broader receptive 

field. The convolutional operation of the 1D CNN helps to reduce noise and mitigate the impact 

of insufficient data on trajectory prediction quality. By integrating the 1D CNN, the model can 

make accurate movement predictions even with noisy input data [38].  
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4.2.3 Fusion Block  

The fusion process in transformer-based trajectory prediction models plays a vital role in 

combining the information of roads and the agents' interactions. So, in our setup, we prepare 

agents and road feature vectors into N by L and M by L 2D matrices, respectively. Where N is 

the number of agents, M is the number of roads, and L is the vector dimension of an agent or 

road segment. The future movement of a particular vehicle cannot only be based on its past 

movements but also consider the motions of surrounding agents and the road shape. Thus, low- 

and high-level interactions within the traffic scene are essential to forecast movements 

accurately.   

  

Figure 7. Fusion Block  

For instance, when there are three vehicles, A, B, and C, A must understand the interaction with 

B and C and the geometry of the surroundings. At the same time, the model should combine 

these interactions to understand the model of the world or the so-called global interaction. To 

address the complex structure of local and global interactions, we utilize a hierarchical 

information fusion method employing the transformer architecture in this proposal. This 

hierarchical fusion approach incorporates local and global traffic scene information in the fusion 

process. The mechanism known as self-attention is of primary importance in this function, as it 

acts as the critical data-fusing node in the transformer architecture. Self-attention enables the 

machine learning model to emphasize specific regions of the input features, such as other agents 

and their environment, that the model perceives as applicable to the current task. When this 

hierarchical strategy is adopted, the model can maintain the deep structures of road and agent 

behaviors and improve its accuracy in prediction tasks [39].  
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For local information fusion, a transformer-style decoder is employed. In this structure, the 

agent and road matrices include a feature within which the multi-head attention block operates 

as a self-attention mechanism to focus on the more important features of the agent and road 

matrices. Another multi-head attention block also acts as an information collector, acting as a 

cross-attention layer that fuses information from the agent and road. A stack of four transformer 

layers is also utilized for additional performance improvements to be attained in capturing 

scenarios that are complex over the previous models. It is worth noting that the positions of 

road and agent features in this architecture can be switched, making it possible for the data to 

be integrated from the agent towards the road and the other way around. This facilitates the 

model by avoiding scenarios where users will be more prone to the features of one set of 

features. Rather, an equal assimilation of information can be achieved from both sets of features.  

  

We apply the self−attention method to enable communication between all agents and all road 

segments by focusing on all interactions within the global context. Relying on this global fusion 

approach, the outcome produced is a feature vector that characterizes the target agent by 

containing all the spatial and interactional information concerning the environment surrounding 

the agent. The consideration of local and global interactions is done using different levels of 

hierarchy, and the model predicts the movements of the vehicles with optimal accuracy under 

different driving environments by understanding the details of every situation. This additional 

enhancement ensures that the model takes performance to the next level by determining with a 

high level of confidence which trajectories will most probably be taken.  

  

  

4.2.4 Multi-Modality Block  

The concept of multi-modality is essential in trajectory prediction for autonomous systems. It 

involves considering several potential future paths based on the agent's past movements and the 

current environment. For instance, a vehicle approaching an intersection could turn left, right, 

or continue straight. Consequently, the decoder of a trajectory prediction model must be able to 

predict more than one future path. This is done by setting a parameter k corresponding to the 

number of alternative trajectories the model can generate [40], [41].  
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Figure 8. Decoder Block  

Adopting multimodality is important to enhance the performance and robustness of vision 

systems, as it facilitates the model's emulation of the real world rather than focusing on one 

driving scenario.  

The two basic contributions of this work are the same with respect to making the multi-modality 

more efficient using a multi-layer perceptron-based (MLP) decoder in the motion forecasting 

block. The approach involves embedding six trajectory decoders with the same design structure 

of a multi-layer perceptron (MLP). However, during the training phase, these six decoders 

behave differently as they are given distinct parameter configurations and will therefore be good 

for future trajectory modes. This ensures that the model can generate various, plausible 

outcomes due to various driving scenarios. The formulation   

            𝑝 𝑘𝑖 =           𝛷 𝑘𝑑𝑒𝑐 ( ℎ  𝑖 ; 𝑊 𝑘 )                                                                  where 

𝑝
 𝑘𝑖 represents the kth predicted trajectory of the ith agent, depending on 

𝛷
 𝑘𝑑𝑒𝑐, which is the 

kth trajectory decoder; 
ℎ

  𝑖, a feature vector concerning the instantaneous agent i and 
𝑊

 𝑘   

, a weight matrix for the kth decoder. This structure then enhances the model to understand the 

intricate details of various motion patterns, providing room for representing several possible 

movements.  

    
𝑐

  𝑖 =   𝛷  𝑠𝑐𝑜𝑟𝑖𝑛𝑔 ( ℎ  𝑖 ; 𝑊𝑠𝑐𝑟 )                                                                   

The model also includes a scoring strategy for each predicted trajectory. A score is assigned to 

each trajectory based on its likelihood. This scoring mechanism is part of a decoding unit called 
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Φscoring, which inputs a weighted feature vector associated with each trajectory. This produces 

a vectored outcome that shows confidence in the chances of a trajectory being the final most 

probable one. Using dual trajectory decoders and confidence score systems, the model can 

forecast multiple possible scenarios while focusing on the most realistic trajectory to increase 

forecasting accuracy in a changing and turbulent environment .  

  

4.3 Training Loss   

The loss function used to train the trajectory prediction model based on the transformer consists 

of two main parts: the classification loss function and the regression loss function. The primary 

goal is to correctly classify the most probable predicted trajectory and accurately regress toward 

the actual trajectory. Multiple losses and models, such as LaneGCN, guide our implementation.  

The combined loss is the sum of these two individual losses [25][28][42].  

 ℓ   =  ℓ  𝑐𝑙𝑠 + ℓ𝑟𝑒𝑔     

This strategy ensures that the optimization procedures are effective for classification and 

regression tasks. The classification loss encourages the model to choose a specific trajectory, 

while the regression loss allows for the estimation of the chosen trajectory. To calculate the 

classification loss, the model selects the trajectory most accurately associated with the k-th 

ground truth at the last time step, referred to as k*. Once this best-associated trajectory is 

determined, it serves as a reference for further computations. The following notation applies to 

the classification loss:  

   1  ∑𝑁 ∑  𝑘∗ 𝑚𝑎𝑥 (0, 𝑐 

𝑘𝑖 + ∊ − 𝑐 𝑘𝑖 ∗ )  

Where 
𝑐

 
𝑘

𝑖
  indicates each confidence score of predicting trajectory k for the ith agent, and N 

is the total number of agents. The parameter ϵ equals 0.2 and is specifically a tolerance that has 

been put in place to ensure that the confidence score of the correct trajectory k* predicted is 

significantly higher than all the other predicted trajectories. This margin-based loss improves 

the model’s performance by enabling it to focus on accurately distinguishing the positive class 
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trajectory. The regression loss component aims to match the predicted trajectory to the actual 

trajectory. It is computed as a weighted sum of two terms:  

 ℓ 𝑟𝑒𝑔  =  𝛼ℓ  𝐹𝐷𝐸 + ( 1 − 𝛼 )ℓ𝐴𝐷𝐸     

here,  𝛼ℓ  𝐹𝐷𝐸 refers to the Final Displacement Error, which is the mean squared error MSE of 

the endpoint of the predicted trajectory k* and the actual endpoint of the trajectory. The second 

term,  ℓ
𝐴𝐷𝐸

 
 is referred to as the Average Displacement Error, which in this case is taken as the 

standard Euclidean distance between k * and the actual position over the whole time frame. The 

parameter α\alpha\alpha describes the effect of the weight applied to each loss component. While 

the model reduces the error at the final point, it also allows one to preserve the accuracy of the 

predicted motion over the entire sequence. In the end, these loss components are combined, 

leading to a more effective training process, resulting in better trajectories predictions.  
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Chapter 5: Results and Discussion   
In this section, we present the performance of the two-stage trajectory predictor and how this 

performance varies when only one mode is used (K=1) or when multiple modes are allowed for 

inference K=6. The qualitative and quantitative evaluation focuses on minimum Average 

Displacement Error (minADE) and minimum Final Displacement Error (minFDE). The terms 

used here are aimed at providing a critical and rounded evaluation of the ability of the model to 

forecast trajectories over time. The minADE captures the typical variation between the 

predicted pathways and the movement for each time step. At the same time, the minFDE is an 

absolute measure at the last time frame and addresses the issue of how accurate the model gets 

while predicting the previous point of movement.  

Our performance evaluation shows that in the multi-mode scenario K=6, the transformer model 

seems to learn the multiple models being estimated, which reduces minADE and min FDE 

values. It implies that the model is competent in understanding various motions and navigation 

uncertainties in the active driving system. We also see a similar pattern in the K=1 case; 

however, here, the model can predict the most likely path very accurately, but the model’s total 

accuracy drops on the last position forecast. These results emphasize the models’ capabilities   

5.1 Multi-Modality Results   

5.1.1 Comparison with Argoverse Baseline  

Comparing the performance of LaneFormer with the Argoverse baseline model for 

multimodality K=6 reveals significant improvements across key metrics. LaneFormer achieves 

a minADE (minimum Average Displacement Error) of 0.80, substantially lower than the 

Argoverse baseline's 1.71, indicating a much closer alignment between the predicted and actual 

trajectories over time. Similarly, the minFDE (minimum Final Displacement Error) of 

LaneFormer is 1.21, outperforming the baseline's 3.29, showing that LaneFormer provides a 

more accurate endpoint prediction. Additionally, the Miss Rate of LaneFormer is 0.12, markedly 

lower than the baseline's 0.54, which highlights its enhanced ability to predict the correct 

trajectory within a threshold, reflecting greater reliability and precision in diverse driving 

scenarios. These results demonstrate LaneFormer's superior accuracy and effectiveness in 

trajectory prediction.  
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Table 2: Comparison of LaneFormer with Argoverse.   

Model (K=6)  minADE   minFDE   MR  

Argoverse Baseline  1.71   3.29   0.54  

LaneFormer   0.80   1.21   0.12  

   

  

5.1.2 Comparison with LaneGCN   

Compared to the works of LaneGCN, the LaneFormer model further enhances the existing work 

in terms of the net performance of the model on key trajectory prediction metrics for the multi-

modality setting with K=6. It is interesting to judge how well LaneFormer outperforms 

LaneGCN in its minADE metric, as the authors report the lower minimum Average 

Displacement Error (minADE) amounting to 0.85, whereas in LaneGCN, it is 0.87. Likewise, 

this helps in lowering the minimum Final Displacement Error (FDE) that is noticed by all the 

participants of the competition, which is also cut down in LaneFormer, the minFDE measured 

at 1.31 against LaneGCN's 1.36, emphasizing the better efficiency profile at the expected final 

position of all agents. Additionally, the miss rate of LaneFormer is said to be 0.14, while that of 

LaneGCN is 0.16 means that there is better performance from LaneFormer in predicting 

realistic future trajectories. In a nutshell, these findings showcase LaneFormer as capable of 

predicting more realistic trajectories than other systems.  

  

  

Table 3: Comparison of LaneFormer with LaneGCN.   

Model (K=6)  minADE   minFDE   MR  
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LaneGCN  0.87   1.36   0.16  

LaneFormer   0.80   1.21   0.12  

  

5.1.3 Comparison with Lane Transformer  

The comparison of the performance of LaneFormer and Lane Transformer for the K=6 

multimodality scenario shows that in prediction accuracy and prediction performance, 

LaneFormer is slightly better than Lane Transformer. The value of minADE (minimum Average 

Displacement Error) for LaneFormer equals 0.85, which is also somewhat better than Lane 

Transformer's 0.86, indicating that regarding the average trajectory prediction performance, 

Lane Former performs slightly better than Lane Constructor. Both models achieve the same 

value for minFDE (minimum Final Displacement Error), which is equal to 1.31, meaning that 

their accuracy towards the end of the last predicted position is similar. Nevertheless, regarding 

the miss rate, LaneFormer scores 0.14 while Lane Transformer scores 0.15, meaning that the 

likelihood of a true future path being missed slightly favors Lane Former. Such a result suggests 

that there is an overall improvement in how accurate multi-modal trajectory prediction .  

Table 4: Comparison of LaneFormer with LaneGCN.   

Model (K=6)  minADE   minFDE   MR  

Lane Transformer   0.86   1.31   0.15  

LaneFormer   0.80   1.21   0.12  
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5.2 Results   

5.2.1 Comparison with Argoverse Baseline  

When measuring the performance competency of LaneFormer with respect to the Argoverse 

baseline's K=1 model at the same level, improvements are evident in all key measures. 

LaneFormer obtains a minADE (Minimum Average Displacement Error) of 1.64 while the 

Argoverse baseline reaches 3.45 indicating how effective the relationship between actual and 

predicted trajectories is through time. Furthermore, the minFDE (Minimum Final Displacement  

Error) value for LaneFormer is 3.49, which is lower than the baseline's 7.88, thus meaning that 

LaneFormer enhances the prediction of the point where the trajectory will end. LaneFormer 

demonstrates a Miss Rate of 0.59; this is considerably lower than the baseline, which reports a 

Miss Rate of 0.87. while very few relationships regarding threshold values are considered, the 

greater effect on the predictive ability of the misclassification threshold rather than its actual 

value is evident. These results, taken into account, prove the reason why LaneFormer produces 

more accurate and effective trajectory predictions [32].  

  

Table 5: Comparison of LaneFormer with Argoverse.   

Model (K=1)  
minADE   minFDE   MR  

Argoverse Baseline  3.45   7.88   0.87  

LaneFormer   1.64   3.49  0.59  

   

  

  

5.2.2 Comparison with LaneGCN   

Consider lane following tasks and trajectory prediction as an example. In particular, in the Lead 

vehicle level K=1 setting, the LaneFormer model is significantly more accurate than the 

LaneGCN in terms of Minimum Conversion metrics. For instance, LaneFormer records a 

minimum Average Displacement Error of 1.64 (minADE), a better achievement than that of 
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LaneGCN’s minADE of 1.71, which places the agents’ average path forecasts under precision. 

LaneFormer is also noted to possess a minimum final displacement error of 3.49, less than 

LaneGCN’s minimum final displacement error of 3.78. The equivalent miss rates for LaneGCN 

are 0.59, and for LaneFormer are 0.59, which means that the Lane Former is more accurate than 

the latter in predicting reasonable trajectories of vehicles they might take in the future.  

  

  

  

  

Table 6: Comparison of LaneFormer with LaneGCN.   

Model (K=1)  
minADE   minFDE   MR  

LaneGCN  1.71   3.78   0.59  

LaneFormer   1.64   3.49   0.59  

  

  

5.2.3 Comparison with Lane Transformer  

A comparative analysis of the accuracy and prediction of collision with respect to LaneFormer 

and Lane Transformer for the K=1 scenario shows that LaneFormer performs somewhat better 

than Lane Transformer. For LaneFormer minADE calls, a 1.64 value was obtained. In 

comparison, Lane Transformer achieved a 1.75 value, which indicates that, on average, 

LaneFormer gives more correct trajectory predictions than Lane Transformer. The minimum 

final displacement error (minFDE) showed that all the models had the same value of 3.49, 

suggesting that the models’ accuracy at the last predicted point was similar. Additionally, data 

on the percentage of misses indicates that only 0.59 of the recorded Miss rate for the new system 

was much better than the recorded 0.59 for Lane Transformer, suggesting that the new model 

missed future true trajectory a little less often than the comparator model .  
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Table 7: Comparison of LaneFormer with LaneGCN.   

Model (K=1)  
minADE   minFDE   MR  

Lane Transformer   1.75   3.84   0.59  

LaneFormer   1.64   3.49   0.59  
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5.3 Plots   

  

Figure 6: Visualization of the road and the trajectories of the target agent on the Argoverse 

validation set. The red, blue, and orange lines represent the ground truth, predicted trajectories, 

and observed trajectories, respectively.  
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Chapter 6: Conclusion and Future Work   
This chapter summarizes the results achieved from the present study. It also discusses the 

proposed system's limitations and mentions the possible future work of this thesis.   

6.1 Conclusion   

The research proposes a motion forecasting system that can accurately predict the trajectory of 

autonomous vehicles in complicated driving conditions. In this research, we introduced the 

LaneFormer model, an optimized trajectory prediction framework designed to improve the 

predictive accuracy of trajectory forecasting. Through the integration of an attention-based 

mechanism and the refinement of a vectorized approach, LaneFormer successfully addresses 

the computational constraints that are often overlooked by conventional deep-learning models. 

Our approach demonstrates superior performance, particularly in multimodal trajectory 

prediction, where multiple possible outcomes are crucial for real-world scenarios. By 

effectively balancing the requirements of high accuracy with resource efficiency, LaneFormer 

outperforms existing models such as LaneGCN and LaneTransformer, particularly in key 

metrics like minADE, minFDE, and MR, showcasing its capability to handle complex dynamic 

environments while remaining computationally feasible for onboard vehicle systems.  

The approach presented in this paper provides an upper-level, precise, and adaptable solution 

for the autonomous vehicle trajectory forecasting problem and is suitable for application in most 

autonomous systems across the globe.  

6.2 Future Work   

Future work on trajectory prediction using the Argoverse 2 dataset can focus on advancing multimodal 

prediction models that leverage the enhanced data quality and diversity of Argoverse 2 compared to 

Argoverse 1.1. Given Argoverse 2’s more accurate representation of complex urban environments and 

its emphasis on capturing multiple plausible future trajectories, future research could explore designing 

models that better handle uncertainty and predict multiple potential outcomes for each agent. This could 

include developing improved multimodal architectures, such as advanced transformer-based or 

graphbased models, capable of learning diverse agent behaviors and interactions across various traffic 

scenarios. Additionally, optimizing these models for real-time inference, even with the added 

complexity of multimodality, will be essential for practical applications. Further research could also 

investigate transfer learning techniques that allow models trained on Argoverse 2 to generalize 
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effectively across other urban driving datasets, enhancing their robustness and applicability in different 

geographical locations and traffic conditions.  
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