Vehicle Monitoring and Tracking System
(V.M.T.S)

SYNDICATE MEMBERS

Abdul Rehman
Ameer Hamza Hassan
Talha Mazhar

Tehreem Mateen Zia

SUPERVISOR

Lt Col. Dr. Hasnat Khurshid

Submitted to the faculty of Department of Electrical Engineering,
Military College of Signals, National University of Sciences and Technology,
in partial fulfillment for the requirements of B.E Degree in Electrical Engineering.
(June, 2021)

Dated:

CERTIFICATION OF CORRECTION & APPROVAL

Certified that work contained in this thesis titled “Vehicle Monitoring and Tracking System”,
carried out by “NC Abdul Rehman, NC Ameer Hamza Hassan, NC Talha Mazhar and NC Tehreem
Mateen Zia” under the supervision of “Lt Col Dr. Hasnat Khurshid” partial fulfillment of Degree
of Bachelors of Electrical Engineering, in Military College of Signals, National University of
Sciences and Technology, Islamabad during the academic year 2020-2021 is correct and approved.

The material that has been used from other sources has been properly acknowledged/ referred.

Approved by Supervisor
Lt Col. Dr. Hasnat Khurshid

Department of EE, MCS

DECLARATION

No portion of work presented in this thesis has been submitted in support of another award or

qualification in either this institute or anywhere else.

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is attached.

Signature of Student
Abdul Rehman
Reg# 00000218159

Signature of Student
Ameer Hamza Hassan
Reg# 00000218240

Signature of Student
Talha Mazhar
Reg# 00000209656

Signature of Student
Tehreem Mateen Zia
Reg# 00000211714

Signature of Supervisor

Acknowledgements

We are thankful to our Creator Allah Subhana - Watala to have guided us throughout this
work at every step and for every new thought which You setup in our mind to improve it. Indeed,
we could have done nothing without Your priceless help and guidance. Whosoever help us
throughout the course of our thesis, whether our parents or any other individual was Your will, so

indeed none be worthy of praise but You.

We are profusely thankful to my beloved parents who raised us when we were not capable
of walking and continued to support us throughout in every department of our life.

We would also like to express special thanks to our supervisor Dr. Hasnat Khurshid for his
unconditional support and guidance. His assistance and valuable suggestions enable us to meet our
objectives in this endeavor. We are also very grateful for Digital Image Processing course which
he has taught us. We can surely say that we haven’t learnt any other engineering subject

comprehensively than the one which he has taught.

Finally, we would also like to express our gratitude to NC Ameer Hamza Hassan who

offered his car for experiment and many others who have rendered valuable assistance to our study.

Dedicated to our exceptional parents and adored siblings whose
tremendous support and cooperation led us to this wonderful

accomplishment.

Abstract

Since the start of twentieth century, the role of automobile has become vital. Almost
everyone who drives a car faces trouble regarding its performance, maintenance and most
importantly, its tracking. One would like to maintain and solve the main issues of his/her car
without having the need to go to a mechanic. The proposed system provides a GSM based
vehicle tracking and monitoring system. This system renders service about vehicle’s internal
performance and tracking via short message service (SMS). In VMTS composition, we have
utilized the car’s “On-Board Diagnostics (OBD-II)” port to extract input data of various
features of the car and translate this raw data by means of an 1C- chip named ELM-327 into
human readable form. The GPS module provides the tracking of car, whereas the GSM
module sends the car’s location and important monitoring information to user’s mobile
device via SMS. A message will pop-up on mobile device to notify its user about the car’s

location and other relevant monitoring data to the mobile device.

Keywords: OBD-I1, ELM-327, GPS, GSM, AT Commands

Table of Content

Pag

Certificate of Correction and APProval......ccccceeeviiiniieiierniiniiareecersnseasessnsonmense ii
LD 2T 1) iii
Plagiarism Certificate (TUrNitin REPOrt)....ccceeiieiieiieiiiinriaciecerensenceecsensansonn iv
ACKNOWIEdZeMENES. . .uuviiiinriiiiieiiiiinniiiiintieiesssessesssosesssossssssosssssssssssssssnnsses v
DediCation....cccvvieiiiniiiieiiiiiiieiiiiiiiiiiieiiieiiirtetatosascsnstosntosnsssssssnssssasonne vi
N 01 1 vii
Table Of COMteNtS...cuieiiiiiieiieieiiiiaeieeeeetenteecesensancescssnsensescnscnsansosnsasns viii
(TS 0] 8 3 1411 (- R ix
LISt Of TaADIES. e eeeeieieiieeneiiiareeeneinteaceeeesentencescsensansoscnsonsonsansessnsansonsnsonns X
Chapterl: INtroduction......cueeeeeeiiieeieeeeeerieeeeceeensencescessnsensessescnsansesssensanss 1
1,1 OVEIVIEW OF VIMITS . .. oottt sttt ettt s et e e sttt e e s st e e e s s bt e e e s st b e e e s st b e e e s sabbaeessbbesessabbeeesin 2
1.2 Problem SAEMENT.ooviiieiiei et 2
1.3 Research MethodolOgy.........cccooiiiiiiiiiii e 2
1.4 Project DESCIIPLION.ceciiiiiiieiieite ettt sttt e et besre e e be e b e steebeebesaeeneenre e 3
1.5 SCOPE AN ODJECTIVE.eiiiiiiieiite ettt 3
I B T DA 1) (TSRS 4
1.7 Organization 0f DOCUMENT..........coiviie it st sre et sae e nre e 4
Chapter 2: LIterature REVIEW........ccuviiiiiiie ettt 5
2.1 BacKroUNd.ocooiiiiiiieieii e 6
2.2 Research and Literature REVIEW.ccoouiiiiriiiieieieieesese s 6

Chapter 3: Design Requirement...............cocooiiiiiiiiiiiiiiie st 8

3.1 Project HardWAare.ccccoiiiiiiiiie e 9

3.1.1 Car’s OBD II Port Pin Configuration and Protocols...ccocereervninnieneeniennenn. 9
3.1.2 B30T s bbb b 11
3.1.3 BIUEtOOth MOTUIE.......ceiieeiccec e 12
3.1.3.1 Why Bluetooth ModUIE?...........cccovieeieieeecce e 12

3.1.3.2 HEC-05. . o 12

314 GSM SIMO00A. .. oot et 13
315 ArduiNO MOUIE. ... 13
316 GPS TIACKET ..ttt 14
I o 0] [=To T 1V LTRSS 15
3.2.1 ArdUINO IDE. ..ottt s 15
3.2.2 ANAroid EMUIALOT.ciiiiiiiiiiicisc e 15
3.2.3 VISUAL STUAIO ... 16
3.2.4 Flutter (Front EN)......ccooviiiiiiieiiieeeese e 16
3.2.5 Firebase Server (Back ENd)..........ccccoiviiiiiiiiiiiccc e 17
Chapter 4: WOrKING...........ccocoiiiiiiiiie s 18
4.1 Project Hardware WOIKING.........cooiiiiiiieiece et sttt sre e 19
4.1.1 How ECU communicates with car’s OBD POIt...........ccccovvviiiiiniiiiiinieee, 19
4.1.1.1 OBD- Parameter IDS........ccccooimiiiieriiinre e 19

4.1.2 ELM Data EXtracCtion.cccccciuieiiiiiiiieeire e sitee e steeste e s steeesteesstneesnveesntneesnneeenneas 20
4.1.3 ArduiNO UNO.......oiiiiiee ettt 21
4.1.4 Bluetooth Module Configuration with Arduino...........ccoceeviiiiiiiiniiiiencnes 21
4.1.4.1 Handling PIDS.cccooiiiieiiieieinist st 23

4.1.4.2 Code for Engine Coolant Temperature.c.ccoerevvrirerienesenenenns 23

4.1.4.3 Code for Battery VOItage.ccccoevviiieiriniiinieiceeeses e 26

4.1.4.4 Code for Engine Load........ccccooviiiiiiininiienesieesese e 26
4.1.4.5 Code for Air Intake TEMPErature........c.ccovvevveieereseeirene s esee e see e 26
4.1.4.6 Code for Throttle POSItION..........cccvieiiiiee e 26
4.1.4.7 Code for Vehicle Speed.......c.ccviviiiiieiieiicie i 27
4.1.4.8 Code for Engine Revolution per minute (RPM)........ccccovvvivviieeiennnns 27
415 GPS TIACKEN ..ottt et bbbttt e 28
4.1.6 Send Data OVEr GSM.......cocuiiiiieie et sttt s nne e 28
4.2 Project SOftWare WOIKING........cooiviiiiieiiiece ettt st st sre e ne e 30
4.2.1 Send Data to Mobile Device through GSM........ccccocoriiiriiininiinicenese e 30
4.2.2 Front End Coding for Monitoring and tracking............cccccvviviiviiieicsieciiesee 32
4.2.3 Firebase AuthentiCation.cceeivveiiirieiiieeirie it seree e e eree e erae e s ebee e sareeeaeeas 45
Chapter 5: Results and ANGIYSIS........cccoiiiiiiiiiieiee s 46
Chapter 6: Conclusion and NeXt STEPSciviiiiiirieieie e 52
8.1 COMNCIUSION. .. coiuriiiiiitiie e ettt e e ettt e e st e e e st e e e st e e e e e sbeeeeesbbeeeesabbeeeesbaeeeesbbeeessbaeeessbeeeeesnts 53
B.2 1 FULUIE WWOTK ...ttt ettt e st e s b st e s e st e e be e be e beesbeeeaaeenteesree e 53
APPENDIX A
Abbreviation
APPENDIX B
Synopsis
APPENDIX C
Demonstration Outline
APPENDIX D
AT Commands

REFERENCES

List of Figures:

Figure 1: OBD-11 Port Pin CONFIQUIATIONcviviiiiiiiisesesie e 10
Figure 2: ELM-327 Pin ConfigUIAtioN..........cciiiiiiiic ettt sttt e 11
Figure 3: Bluetooth MOdUIE HC — 05........ooiiiiiecee e 12
Figure 4: GSM MOodUIE STIMOO0A.ooeiieiiie ittt ettt et sre s e tesseesaesteaneesteeseentesreeneeneeans 13
FIQUre 5: ArdUINO UNODoociicecc ettt sttt st e e se e be e e e b e s be et e sbeeteebesreeneenre e 13
FIQUIE 6: GPS TTACKET ...ttt bbb e n e 14
FIQUIE 7: ATAUINO IDEoo e sttt e et e b e e et e s be et e sbeebeebesbeeneenne e 15
Figure 8: ANAroid EMUIALONcooiiiiiiiieiie bbbttt n e 15
FIGUIE 92 VISUBL STUDIO ...ttt bbb n e 16
T TU T O U =] USROS S 16
FIQUIE 112 FITEDASE ...ttt h bbbttt b bbb nnenen s 17
Figure 12: ELM Data EXtraction FIOW Chart............cccioiiiiiiiiiiiiece e s 21
Figure 13: Data SENUOVEN GSIMooui ittt te et be et e s be e e e sbesteesbesreeneesee e 28
FIgure 14: BIOCK DIBQIAMoviuiiiiiiiiiiitiitesie ettt b bbbttt b e eneas 29
Figure 15: Hardware INtErface UNIt...........coooiiii it sttt et sttt s re e e 29
Figure 16: Application SIgNiN PAGEcoiiiiiiiiieee et 40
Figure 17: Application REgiStration PAgeeiiiuiiiiiiiie ettt e e et s s aree e s snba e e e s nreeas 40
Figure 18: APPliCatiONHOME PAGE........cviiiiiii ettt sttt be e sbe e teenbesreenresre e 44
Figure 19: Firebase AUTNeNtiCAtiON PAJE............ooiiiiiiiiiisce e 45
Figure 20: Engine Coolant Temperature RESUILS...........ccuiiiiieiieie e 47
Figure 21: ENQINELOAA RESUILSc.eiiieieiiiie ettt ettt sttt s r e neenre e e nee e 48
Figure 22: Throttle POSITION RESUILS.oiiiiiiiiiiie s 48

Figure 23: ENQGINE RPIM RESUILS.........iiiiiii et re et e s ae e be e teesteesteesnaeeneeenre e e 49

Figure 24: Battery VOItage RESUILS.........oiiiie ettt st sre e e 49

Figure 25: Air Intake TeMPErature RESUITS.........ccveviiieiiiiiie ettt st re e e 50
Figure 26: Message Sending COMMANToruirrereieiiisiesiesre et sr st sbesnean s neneneas 50
Figure 27: Message VIiewed 0N MODIIE...........coiiiiiiiii e 51
Figure 28: TracKing DeVICE.o e 51

Figure 29: LOCAtioN OF VENICIE ..o 51

List of Tables:

Table 1: SAE J1979 Protocols ..

Table 2: OBD-Il Parameter IDs

CHAPTER 1: INTRODUCTION

Chapter 1: Introduction

1.1 Overview of VMTS

VMTS is an abbreviation for “Vehicle Monitoring and Tracking System”. It
provides real time information about car’s performance and tracking via short message
service (SMS). This system is capable of handling an amount of data received through the
On-Board Diagnostics (OBD-I1) port for diagnostic purposes.

1.2 Problem Statement

Car Diagnostic Sensors are being used worldwide. They are used to monitor speed,
temperature, vehicle coolant system, faulty radiator etc. but do not provide tracking and
monitoring at the same time. They are expensive. Mostly people do not even know about
potential slot OBD port in their cars and end up paying a fee to the mechanic to check the
vulnerabilities in his/her car.

1.3 Research Methodology

In developing hardware system and testing web application we have attained

knowledge about certain terms. For this effort, a variety of databases and sources of

information were examined. Below are the methods that were used to gather information.
Databases:

1. Research Papers from Google Scholar.

2. Google search engine.

3. University Library to find appropriate books and papers.

Search Terms Used:

1. OBD Protocols

2. OBD Applications

3. ELM-327 Pin Description

4. GSM module Connectivity

5. Flutter SDK

6. Dart Programming Language (VS Code)
7. Firebase Server

From these databases and searches most relevant data has been gathered. All non-

relevant literature and information is disregarded.
1.4 Project Description

The VMTS project consists of two parts i-e hardware build system and software
application. The user can purchase the hardware kit at a very low cost and download the
mobile application from google play store. Hardware kit contains ELM-327 that will connect
directly with OBD-II port which in turn is integrated to the Arduino Module, GPS tracker and
GSM module.

Software implementation will utilize Visual Studio Code as the editor for flutter SDK with
Dart as the programming language with firebase as the backend server. Flutter is used to make
the front-end of the application and Firebase for the server side. The user will need to inserta

SIM card for the GSM module that will communicate with mobile device through SMS.
1.5 Scope and Objectives

The project's scope is to design the low-cost system which give offline tracking and

online monitoring.
This technology can be used:

e If some valuable products need to be transported then continuous monitoring
and tracking is required.

e By rent -a-car service for optimum working of the car.

e Parental control can be set if car’s speed goes beyond a certain speed or any

mishap occur.

e By alayman with little knowledge of car to perform scans & identify them by
his own.

The major goal of this initiative is to

e To correctly implement hardware that will communicate car’s data to user

mobile device.

e Correct development of application that would be able to retrieve vehicle

monitoring parameter.

e Allow user to be able to obtain provided information about their car they want.

1.6 Deliverables

v" Hardware Device

v Web Application

1.6 Organization of Document

This document is divided in to following main parts:

1.

The first part includes the introduction, problem statement, scope and objective of the

project.
The second part explains the summary of the literature review and background.
The third part is related to the hardware and software description of the project

The fourth part includes detailed hardware design, software implementation and

working of the project.
The fifth part shows the experimental analysis and observation.
The sixth part shows the conclusion and future modification.

The seventh part gives the timeline of project implementation, Appendices which is
abbreviations used in the thesis, AT commands summary and synopsis of this

project.

CHAPTER 2: LITERATURE REVIEW

Chapter 2: Literature Review

2.1 Background

Almost in all cars, Engine Control Unit commonly known as ECU is designed to control
vehicle engine by getting values from various sensors present in a car. If there is any fault in these
sensors, the check engine light also known as Malfunction Indication Lamp turns on, indicating
the fault. The faults can be removed by connecting the OBD scanner and once the fault code is

cleared the check engine light itself turns off.

OBD is onboard diagnostics — a process to scan the vehicle with an onboard computer.
OBD scanner is a device that enable us to read and find error codes of car. There are two versions
of OBD i-e OBD-1 and OBD-2.

Before OBD-I, each car manufacturer had its own set of standards, and mechanics had to
purchase expensive scan gear from those manufacturers. In 1987, OBD-1 was introduced, marking
the beginning of standardization of OBD. It had sensors that retrieved diagnostic information and
alerted the driver of engine problems. However, it had many problems and fell short in terms of

accuracy and supported only car manufacture before 1995.

As aresult, in 1996 OBD-I1 came into existence after certain variations. It can be connected
hands freely via Bluetooth or Wi-fi. It is Universal and one scanner can support different

manufacturers. It provides data with high accuracy.
2.2 Literature Review

There are so many proposed research papers available on the OBD system, several applications
have been built for use on mobile phones using Android platform.

We have focused particularly on OBD scanner and application developed for monitoring car’s
parameter like speed and live location of car. The following research papers were consulted to get

guidance related vehicle monitoring and tracking are summarized below:

1. Android-Based Universal Vehicle Diagnostic and Tracking System

This paper has been proposed by Ashraf tahat in year 2012. In this paper, they used a cheap
hardware unit and an Android application to monitor an automobile using an OBD system of
vehicle and a GPS tracker to pinpoint its whereabouts. They used Bluetooth module to acquire

desire data from ECU of the vehicle.
2. Vehicle Monitoring Controlling and Tracking System by Using Android Application.

This paper has been proposed by Rajeevan and Payagala in the year 2016. In this paper
they have discussed monitoring and controlling of vehicle functions like vehicle doors, parking
lights, side mirrors and location by using sensor actuator module, communication module and

android application.

CHAPTER 3: DESIGN REQUIREMENT

Chapter 3: Design Requirement

3.1: Project Hardware
The project utilizes the following hardware components:

3.1.1 Car’s OBD-II Port Pin Configuration and Protocols:
The OBD-II port is a 16-pin connector either beneath the steering wheel or beneath the

dashboard. With the use of a particular scan tool, a driver or any person can read error codes.

OBD-II port has standardized pin configuration listed below.

Pin 1: For Makers

Pin 2: For SAE J1850 PWM and VPW

Pin 3: For Makers

Pin 4: Earth

Pin 5: Earth

Pin 6: For ISO 15765-4 CAN

Pin 7: The K-Line of ISO 9141-2 and I1SO 14230-4
Pin 10: For SAE J1850 PWM

Pin 14: For 1ISO 15765-4 CAN

Pin 15: The K-Line of 1ISO (141-2 and ISO 14230-4
Pin 16: Power from car battery

The following figure shows the OBD2 port pin layout.

We created this system to read specific parameters from a car with an OBD-II port that supports

SAE J1850 BUS +

CAN BUS HIGH

1ISO9141 K - LINE

SAE J1850 BUS -

1SO9141 L - LINE
CAN BUS LOW

Figure 1: OBD-II Port Pin Configuration

the SAE J1979 (11 bits ID) signaling protocol and display them on a mobile app.

SAE J1979 is a standard that specifies how to ask an ECU for various performance
parameters. SAE J1850 Pulse Width Modulation PWM, SAE J1850 Variable Pulse Width VPW,
ISO 9141-2, ISO 14230-4 Keyword Protocol 2000, and 1SO 15765 CAN 250/500kBaud 11/29bit

ID are the five OBD-I11 signaling methods defined by this standard protocol.

Table 1: SAE J1979 Protocols

Protocols Data Transfer Rate Vehicle Type

SAE J1850 PWM 41.6 kB/sec Ford

SAE J1850 VPM 10.4 kB/sec GM Vehicle

1SO 9141-2 10.4 kbit/sec Asian and European vehicles
(2000 — 2004)

1SO 14230-4 KWP 10.4 kbit/sec 2003+ vehicle

1SO 15765 CANB500/250 kbit/sec Since 2008

10

3.1.2 ELM-327

The ELM-327 OBD-II interface is a car diagnostic tool that sends car’s internal data from
an OBD-II compliant vehicle to laptops, PC’s, Android phones, tablets, iPhones, and iPads. It
converts data from the car's On-Board Diagnostic port into a human-readable format. This
technology allows you to read real-time data from the ECU (vehicle computer) and display it in a

clear and concise manner. It has following features:

« Stand-by mode with power control
* RS232 connection

* Looks for Protocols on its own.

* Set up with AT commands

* OBD-II port for power

Connection Diagram

PDIP and SOIC
(top view)

MCLR [7 [OBD Tx LED
Vmeasure [] OBD Ax LED
J1B50 Valts [] RSZ23Z Tx LED
J1850 Bus+ [] RS232 Rx LED

Memary [] CAN Rx
BaudRate] M [0 canTx
LFmode [] E] 150L
Was [ﬁ []IS0 K
XT1 O] Voo
xT2 [[ves
YPW In [] AS232 Ry
150 In [] RSZ3Z Tx
FWM In O] 1 PwrCtrl f Busy
J1850 Bus- [[IgnMen / RTS

Figure 2: ELM-327 Pin Configuration

11

3.1.3 Bluetooth Module

Bluetooth is a short-range wireless technology that can be used to communicate between
two microcontrollers, such as the Arduino, or with any other Bluetooth device, such as a phone or
laptop. It communicates with the microcontroller via a serial port (USART). It operates on the 2.45
GHz frequency band. There is a point-to-point or multi-point connection with a maximum range

of 10 meters. It has a LMBps data transfer rate.
3.1.3.1 Why Bluetooth Module?

Now the question is, why do we need a Bluetooth module? Well, this is because some cars
can have their OBD port on the dashboard which is not very secure location to place tracking
device. Someone can easily remove the device. For that what we have done is, we have split the
device into two parts; one for tracking and the other for monitoring in such a way that both com-
municate through Bluetooth. Monitoring device is plugged in OBD port however, the Tracking
device can be placed in any hidden place such as doors, under the seats. By doing so, whenever

someone removes the Monitoring device plugged in OBD port, the tracker still works.

3.1.3.2 HC-05

The HC-05 Bluetooth module is a tiny wireless communication module. It uses the serial
port protocol to communicate with the microcontroller. The data baud rate is 9600 bits per second,
while the command mode baud rate is 38400 bits per second. You may switch between master and
slave mode with it. AT Commands are supported, and Tx (transmitter) and Rx (receiver) pinouts
are used to control them.

HC-05

—

Figure 3: GSM Module SIM900A

12

3.1.4 GSM SIM900A

Itis a dual-band GSM/GPRS engine that operates on EGSM 900MHz and DCS 1800
MHz frequencies and can automatically search both bands. The AT commands can be used
to change the frequency. It requires a single supply voltage of 3.4 VV to 4.5 V. In SLEEP

mode, the current consumption is as low as 1.5 mA, thanks to a power-saving feature.

Figure 4: GSM Module

3.1.5 Arduino Module

Arduino is a cross-platform (Windows, macOS, Linux) application based on simple
hardware and software. ATmega328P microcontroller is used in Arduino UNO. In comparison
to Arduino Mega Board, it is simple to use. There are six analogue pin inputs, fourteen digital

pins, a USB connector, a power jack, and an ICSP header on this board.

Figure 5: Arduino UNO

13

3.1.6 GPS Tracker

A GPS tracking unit uses the Global Positioning System to determine the movement or
geographic location of vehicle, assets, or person. When the GPS signal is received, the GPS
module calculates the coordinates. It has much memory for data loggers to save coordinates.

Data pusher includes a GSM or GPRS modem for sending data to a computer through SMS or
GPRS in form of IP Packets.

Figure 6: GPS Tracker

14

3.2 Project Software

3.2.1 Arduino IDE:

Arduino Integrated Development Environment sometimes known as the Arduino
Software, allows users to build and upload programs. It typically supports the C and C++
programming languages. It contains a code editor, message area, text console, toolbar with
buttons for common functions, and menu system. The serial monitor can also be used to display

data loops that are continuously monitored.

©.0

ARDUINO

Figure 7: Arduino IDE
3.2.2 Android Emulator:

An Android emulator is a computer-based virtual mobile device that mimics the
functionality of an Android handset running the Android operating system. It enables the
development and testing of programs without the use of many physical devices of varying
configurations. The emulator mimics nearly all of the features of a real Android handset.
Incoming phone calls and text messages may be stimulated, device position can be specified,

different network speeds can be stimulated, Google Play can be accessed, and much more.

Android
s Studio

Figure 8: Android Studio

15

3.2.3 Visual Studio

Visual Studio is a Microsoft integrated development environment for creating computer
programs, websites, web applications, web services, and mobile applications. It supports
different programming languages and enables the code editor and debugger to work with

practically any programming language as long as a language-specific service is available.

Figure 9: Visual Studio

3.2.4 Flutter (Front End)

Flutter is an opensource SDK created by Google. It is designed to support mobile
application that run on both Android and iOS, as well as interactive applications that runs on
web pages or on the Desktop. It uses a variety of widgets to carry out a fully functioning

application. Flutter uses Dart Programming Language.

Flutter

Figure 10: Flutter

16

Fire Base:

Backend-as-a-Service (BaaS) app development platform Firebase provides hosted
backend services such as a real-time database, cloud storage, authentication, crash reporting,

machine learning, remote setup, and static file hosting. Flutter is supported by Firebase.

»”'" Firebase

Figure 11: Firebase

17

CHAPTER 4: WORKING

18

Chapter 4: Working

4.1Project Hardware working

4.1.1 How ECU communicates with car’s OBD Port

We can communicate with cars ECU using standard OBD-II PIDs. This can be done by

configuring ELM with Arduino. For example, 0105 SAE J1979 Standard protocol to get values

of Engine Coolant Temperature.

4.1.1.1 OBD-I1 Parameter IDs

On board Diagnostic Il parameter 1Ds are codes that used as a diagnostic tool and request

for car’s input data from the ECU of car. SAE standard J1979 is a protocol that defines many

OBD-I11 PIDs.

The most recent OBD-I11 standard, SAE J1979., lists ten diagnostic service. J1979 used to refer

services as 'modes' before 2002. They are as follows

Table 2: OBD-11 Parameter IDs:

Modes Description

PIDs (hex)

01 Used to identify what powertrain data, available to the scan tool.

02 Shows freeze frame data.

03 The “confirmed” emission-related diagnostic fault codes are displayed. The
defects are identified by accurate numeric, 4-digit numbers displayed on the
screen.

04 Delete stored diagnostic problem codes and values

05 The oxygen sensor monitor screen is displayed, as well as the test data acquired
concerning the oxygen sensor.

06 This command is used to request on board monitoring test services for both
continuously and intermittently monitored systems..

07 Requests emission-related diagnostic problem codes that have been observed
during the current or previous driving cycles.

19

08 It could allow an off board test equipment to regulate the working of a system,

test, or component on-board.

09 Get information about the vehicle

0A It displays a list of stored emission-related “permanent” diagnostic issue codes.

4.1.2 ELM Data Extraction

The ELM-327 IC may communicate with Bluetooth module. The results will show on PC
like >88 degrees C.

The character “>' indicates that the device is idle and waiting for the character. Simply type >AT

‘space' Z followed by the return key:

>AT Z

The IC will be reset. If you obtain an unusual reading, it's possible that the baud rate is incorrect.
By monitoring the message content, ELM-327 may simply find where the received characters
should be directed. Commands for ELM-327's internal usage must start with characters'AT,' while
commands for vehicle can only contain ASCII codes for hexadecimal digits (0 to 9 and A to F).

All communications to the ELM-327 should be terminated with a carriage return characters
hex ‘0D' before being acted upon, whether it be a ‘AT' type internal command or a hex string for

OBD bus. ELM-327 will signal a question mark (?) if the message is partial or unclear.

It's important to remember that ELM-327 is a protocol interpreter that makes no changes
to validate the OBD messages that you transmit. It just makes sure that hexadecimal digits are
received, converted to bytes, and then transmitted out to the OBD port. It has no way of knowing

whether a message transmitted to the car was sent with error.

ELM-327 is not case-sensitive and it also ignores space characters (tab, etc.). When a single
carriage return character is received, it can repeat any command (AT or OBD). If you've given a
command (e.g 01 OC to get RPM), you don't have to resend the complete command to repeat the
request to the vehicle — only send a carriage return character, ELM will then resend that command

on your behalf.

Because the memory can only store one command, there is no providing in the existing

20

ELM-327 for additional storage.

C Vehicle Power OM)

Lk
l Process received
data

l

Transmit Data to
reqguest device

DB
Connection
check

OED-Il Communication

L 3
connection

Transmit received
data to Bluetooth
module

QBD-
wehicle Data
Reguest

Figure 12: ELM Data Extraction Flow Chart

4.1.3 Arduino UNO

Arduino is used as a main microcontroller in this project. Its configuration with Bluetooth module,

GPS module and GSM makes it a main part of the project.
4.1.4 Bluetooth Module Configuration with Arduino

First Bluetooth module is configured by Arduino in Master mode in order to receive the

data extracted through ELM. For Configuration we uploaded following code on the Arduino UNO
board.

21

#include <SoftwareSerial .h=

SoftwareSerial Bluetooth(2,3);

char ¢="";

void setup() |
Serial.begin(9600);
Serial_printin{"ready");

Bluetooth.begin(38400);

[
i

void loop() |
if{ Bluetooth.available()) {
c=Bluetooth.read();

Serial.write(c);

if{Serial. available()){
c=5erial.read():

Bluetooth.write(c);

For configuration, following commands were used.

AT+Reset
AT+ORGL (Set to original)

AT+ROLE=1 (Set to Master)

22

e AT+CMODE=0 (Set a specific address to connect to.)
« AT+BIND=AABB,CC,112233

« AT+PAIR=AABB,CC,112233,20 (,20 means 20 second timeout)
Hence the data gets visible on serial monitor of Arduino.

4141 Handling PIDs

After setting up the Bluetooth module, next step is to access the required data. Since
OBD port works with standard Parameter IDs (P1Ds), the data extraction is carried out by using
those IDs as an input to the car. For example, if you want vehicle’s speed, you would need to
send an input message to the car demanding values for Vehicle’s speed.This work is done using

an Arduino code,

4.1.4.2 Code for Engine Coolant Temperature

int inData = 0;

char inChar = 0;

String BuildINString = "";
String DisplayString="";
String WorkingString="";
long Display'Value;

long A;

void setup() |
Serial.begin(9600);

/{ begin Serial Monitor with 9600 buad

23

vold(* resetFunc) (void) = {;
void loop() |
f{ put your main code here, to run repeatedly:

BuildINString = "";

Serial.printin("0105");
// Send Coolant PID request 0105

delay(2000):

// Receive complete string from the serial buffer
Read():
Serial.print(BuildINString);
BuildINString.trim();
BuildINString = BuildINString.substring(0, 15):
WorkingString = BuildINString.substring(11.13);
A = strtol(WorkingString.c_str(),NULL.16);

//convert hex to decimnal

DisplayValue = A;
DisplayString = String(DisplayValue -40) + " degree C %
// Subtract 40 from decimal to get the right temperature

Serial.print(DisplayString):

24

delay(1000);
Serial.println("AT Z"):

delay(500):

resetFunc();
delay(2000);

void Read() |
BuildINString="";

while{ Serial.available() = 0)

¥
|

inData=0;

inChar=0;

inData = Serial. read();

inChar=chaninData);

if{inChar !'="?" && inChar !=">" && inChar !=" "){

BuildINString = BuildINString + inChar;

]

[
|

The code gives you value of Engine Coolant Temperature in Celsius scale. Same code
can be changed for different parameters.

25

4143 Code for Battery Voltage
For voltage values, same code is used with some changes that include.
e Using “AT RV” instead of ‘0105”.

e For battery voltage, no further calculations are required so Voltage values can be seen
just by using

Serial.print (BuildINString);

4.1.4.4 Code for Engine Load
Similarly, we can get Engine load in percentage by,
Using “0104” instead of ‘0105”.

For engine load, further calculations are required so

DisplayValue = DisplayValue * (100/255);

Hence obtained data is converted in Percentage. Data can be displayed by,

DisplayString = String(DisplayValue) +" % ”;

Serial.print (DisplayString);

4145 Code for Intake Air Temperature

For intake air temperature, we just need to change PID in Arduino code above,
Using “010F” instead of ‘0105

Result is shown in Celsius scale.

4146 Code for Throttle Position

Similarly, we can get Engine load in percentage by,

Using “0111” instead of ‘0105”.

For throttle position, further calculations are required so

26

DisplayValue = DisplayValue * (100/255);

e Hence obtained data is converted in Percentage. Data can be shown by,

DisplayString = String(DisplayValue) +" % ”’;

Serial.print (DisplayString);

4147 Code for Vehicle Speed

Vehicle Speed is varying data and its values change every second. But fortunately, further

calculations are not required since the speed values are directly received.
e Using “010D” instead of ‘0105”.

e Data can be displayed as,

DisplayString = String(DisplayValue) + " km/h ;

Serial.print (DisplayString);

4148 Code for Engine Revolution per minute (RPM)
For engine rpm, the code mentioned above is altered such that to use PID 010C. Hence
e Using “010C” instead of ‘0105”.
e The string received by passing this PID is a bit complex.
41 0C OE 3E

Here OE represents A and 3E represents another variable B.

long B;
BuildINString = BuildINString.substring(0, 17);

B = BuildINString.substring(15,17);

27

[/lconvert to hex

B = strtol(B.c_str(),NULL,16);

e So for further calculation since we have got A and B so,

DisplayValue = ((255 * A)+B) / 4;

e RPM value can be displayed as,

DisplayString = String(DisplayValue) + " rpm ”;

Serial.print (DisplayString);

415 GPS Tracker

The Transmission pin of the GPS module is linked to the Receiver pin of the Arduino, and
the other way round. The appropriate sketch is uploaded to the Arduino, which receives location

data in the form of Longitude and Latitude.
4.1.6 Send Data over GSM

Code given below shows how message is sent to the mobile user. However, this is just a

basic code, the conditions are not added here like what happens when user clicks Refresh button

[
Monitoring F
Data /
Mobile
(e D | E

Tracking / ﬂ
Data f

Figure 13: Send Data Through GSM

etc.

SMS service provides offline tracking hence making the project more effective. SMS is

received on mobile device and shown on a mobile application.

28

Mobile
App

Tracker

Figure 14: Block Diagram

Figure 15: Hardware Interface Unit

29

4.2 Project Software Working
4.2.1 Send Data to Mobile Device through GSM

Following code is to send data to user’s mobile phone providing an offline tracking and

monitoring experience.

#include <SoftwareSerial h=>
SoftwareSerial SIM00A(10,11);
void setup()

i
1

SIM900A begin(9600); / baud rate of GEM Module
Serial.begin{9600); // baud rate of Serial Monitor {Arduino)
Seral.println ("SIM900A Beady"™);

delay(100});

Serial.println ("Type s to send message or r to receive message”);

void loop()

i
1

SendMessage():
delay(1*10*7);

{fbig delay so that user is not disturbed.

void SendMessage()

i
1

Serial.println ("Sending Message");

30

SIMY0A println("AT+CMGF=1"): //Sets the GSM Module in Text Mode
delay({ 1000);

/Mobile phone number to send message
SIMY00A println(" AT+HCMGS=\"+921234567890\"r");
delay({ 1000);

[Messsage content

SIM900A printlnL:" + longitude + ™n L: " + latitude + "n temp: " + Coolant Temprature +
"\n Load: " + Engine_load + "\n BV: "+Battery _voltage);

delay(100);

Serial.println ("Finish");

SIM900A println{(char)26)./ ASCII code of CTRL+Z
delay({ 1000):

i

void RecieveMessage()

i
[l AT Command to receive a live SMS
SIM00A println(" AT+CNMI=2.2.0,0.0");
delay({ 1000);

i

This is a general code, however the conditions are not added here such as what happens if user
presses the “Refresh” button on mobile app etc. This code is just to show how the GSM module

would send data.

31

4.2.2 Front End Coding for Monitoring and tracking

The following code is written in the Visual Studio Code editor for the Flutter SDK.

N .
import ‘'package:firebase core/firebase core.dart’;
import 'package:first _app/src/app.dart’;
import ‘package:first_app/src/screens/login.dart’;
import 'package:first_app/src/screens/home.dart’;
import ‘'package:flutter/material.dart’;

void maiﬂ() async {
debugShowCheckedModeBanner:
false;

WidgetsFlutterBinding.ensurelInitialized();

runApp(LoginScreen(b);

X

import ‘package:first _app/copy.dart’;

import ‘package:flutter/material.dart’;

import ‘package:flutter/services.dart’;

import ‘package:first app/src/constants.dart’;

class LoginScreen extends StatefulWidget {
@override
_LoginScreenState createState() => _LoginScreenState();

}

class lLoginScreenState extends State<LoginScreen> {
bool _rememberMe = false;

Widget buildEmailTF() {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Text(
‘Email’,
style: kLabelStyle,
Y-

SizedBox(height: 16.0),
Container(
alignment: Alignment.centerLeft,
decoration: kBoxDecorationStyle,
height: 66.0,
child: TextField(
keyboardType: TextInputType.emailAddress,
style: TextStyle(
color: Colors.white,
fontFamily: ‘OpenSans’,
)
decoration: InputDecoration(
border: InputBorder.none,
contentPadding: EdgelInsets.only(top: 14.0),
prefixIcon: Icon(
Icons.email,
color: Colors.white,
)5
hintText: 'Enter your Email’,
hintStyle: kHintTextStyle,

33

Widget buildPasswordTF() {
return Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Text(
‘Password’,
style: kLabelStyle,
)
SizedBox(height: 18.9),
Container(
alignment: Alignment.centerLeft,
decoration: kBoxDecorationStyle,
height: 66.9,
child: TextField(
obscureText: true,

style: TextStyle(
color: Colors.white,
fontFamily: ‘OpenSans’,
)5
decoration: InputDecoration(
border: InputBorder.none,
contentPadding: EdgeInsets.only(top: 14.8),
prefixIcon: Icon(
Icons.lock,
color: Colors.white,
)5
hintText: 'Enter your Password’,
hintStyle: kHintTextStyle,

Widget buildForgotPasswordBtn() {

return Container(
alignment: Alignment.centerRight,
child: FatButten(
onPressed: () => print('Forgot Password Button Pressed'),
padding: EdgeInsets.only(right: ©8.8),
child: Text(
'Forgot Password?’,
style: kLabelStyle,

return Container(
height: 26.9,
child: Row(
children: <Widget>[
Theme(
data: ThemeData(unselectedWidgetColor: Colors.white),
child: Checkbox(

value: _rememberMe,
checkColor: Colors.green,
activeColor: Colors.white,
onChanged: (value) {
setState(() {
_rememberMe = value;
1);
}
)s
)s
Text(
‘Remember me’,
style: kLabelStyle,

Widget buildlLoginBtn() {
return Container(

padding: EdgeInsets.symmetric(vertical: 25.9),
width: double.infinity,
child: RaisedButten(

n

elevation: 5.0,
onPressed: () {
Navigator.of(context)
.pushReplacement(MaterialPageRoute(builder: (context) => 0BD()));

b
padding: Edgelnsets.all(15.9),
shape: RoundedRectangleBorder(
borderRadius: BorderRadius.circular(30.0),
)s
color: Colors.white,
child: Text(
"LOGIN’,
style: TextStyle(
color: Color(@xFF527DAA),
letterSpacing: 1.5,
fontSize: 18.0,
fontWeight: FontWeight.bold,

fantFamilv: 'OnenSanc’

Widget buildSignInWithText() {
return Column(
children: <Widget>[
Text(

"- 0R -',

style: TextStyle(
color: Colors.white,
fontWeight: FontWeight.w400,

)

)s
SizedBox(height: 26.8),
Text(
‘Sign in with’,
style: kLabelStyle,
Y.

Widget buildSocialBtn(Function onTap, AssetImage logo) {
return GestureDetector(
onTap: onTap,
child: Container(
height: 66.09,
width: 66.9,
decoration: BoxDecoration(
shape: BoxShape.circle,
color: Colors.white,
boxShadow: [
BoxShadow(
color: Colors.black26,
offset: Offset(e, 2),
blurRadius: 6.9,
)s
1,

image: DecorationImage(
image: logo,

):

Widget build
return Padding(
padding: EdgeInsets.symmetric(vertical:
child: Row(
mainAxisAlignment: MainAxisAlignment.spaceEvenly,
children: <Widget>[
_buildSocialBtn(
() => print(’'Login with Facebook'),
AssetImage(
‘assets/logos/facebook. jpg’,
)
)
_buildSocialBtn(
() => print('Login with Google'),
AssetImage(
‘assets/logos/google.jpg’,

Widget buildSignupBin() {
return GestureDetector(

onTap: () {
Navigator.of (context)

.pushReplacement(MaterialPageRoute(builder: (context) =

1
child: RichText(
text: TextSpan(
children: [
TextSpan(
text: 'Don\'t have an Account? °,
style: TextStyle(
color: Colors.white,
fontSize: 18.09,
fontWeight: FontWeight.w400,
)s
)s
TextSpan(
text: 'Sign Up’,
style: TextStyle(
color: Colors.white,
fontSize: 18.0,
fontWeight: FontWeight

@override
Widget build(BuildContext context) {
return Scaffold(
body: AnnotatedRegion<SystemUiOverlayStyle>(
value: SystemUiOverlayStyle.light,
child: GestureDetector(
onTap: () => FocusScope.of(context).unfocus(),
child: Stack(
children: <Widget>[
Container(
height: double.infinity,
width: double.infinity,
decoration: BoxDecoration(
gradient: LinearGradient(
begin: Alignment.topCenter,
end: Alignment.bottomCenter,
colors: [

0BD()));

Container(
height: double.infinity,
child: SingleChildScrollView(
physics: AlwaysScrollableScrollPhysics(),
padding: EdgelInsets.symmetric(
horizontal: 406.9,
vertical: 126.0,
)s
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
Text(
‘Sign In’,
style: TextStyle(
color: Colors.white,
fontFamily: ‘OpenSans’,
fontSize: 30.0,
fontWeight: FontWeight.bold,
)s
),
SizedBox(height: 38.8),

Register
Sign In Enter Your Name

Email - Talha Mazhar

B cnter your Emal
2 Email

Password B talhamazhar94@gmail.com

a Enter your Passward Pessword

P e AR ALl L)
[0 Remember me

Sign Up

OR
OR

oo g 9 °

Move to Login Page
Don't have an Account? Sign Up

<4 (] B

Figure 16: Application Sign in Page Figure 17: Application Registration Page

40

The coding for the Home Page and its result is shown in the following figures:

import ‘'package:first_app/src/screens/login.dart’;
import ‘package:flutter/cupertino.dart’;
import ‘package:flutter/material.dart’;
import ‘package:firebase auth/firebase auth.dart’;

class OBD extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: "Vehicle Monitoring Tracking System’,
debugShowCheckedModeBanner: false,
home: MyHomePage(),
)s
¥
X

class MyHomePage extends StatelessWidget {
final auth = FirebaseAuth.instance;
@override
Widget build(BuildContext context) {
return new Scaffold(
backgroundColor: Color(8xFFC5CAES),
body: Center(
child: Column(mainAxisAlignment: MainAxisAlignment.center, children: <
Widget>[
new Stack(alignment: Alignment.center, children: <Widget>[
new Container(

margin:
new EdgeInsets.only(bottom: 96.6, right: 5.5, left: 1286.8),
height: 1606.9,
width: 186.9,
decoration: new BoxDecoration(
borderRadius: new BorderRadius.circular(26.8),
color: Colors.redAccent.shade760),
child: new Icon(
Icons.build outlined,
size: 50.0,
color: Colors.white,
)
)
new Container(
margin:
new EdgeInsets.only(right: 106.0
height: 106.0,
width: 100.0,
decoration: new BoxDecoration(
borderRadius: new BorderRadius.circular(256.8),
color: Colors.indigo.shade760),
child: new Icon(
Icons.place_outlined,
size: 50.0,
color: Colors.white,

)

)
PP

new Container(
padding: EdgelInsets.only(bottom: 160.8),
child: Row(
mainAxisAlignment: MainAxisAlignment.center,
children: [
Text(
"Vehicle Monitoring & Tracking System’,
textScaleFactor: 1.5,
style: TextStyle(fontWeight: FontWeight.bold),

1,
)
) s
new Row(
children: <Widget>[
Expanded(
child: Padding(
padding: const EdgeInsets.only(bottom: 28.8),
child: InkWell(
onTap: () {
print(“Container clicked™);
}s
child: new Container(
height: 66.6,

alignment: Alignment.center,
decoration: BoxDecoration(
color: Color(@xFF18D191),
borderRadius: new BorderRadius.circular(106.8)),
child: Text('Get Location’,
style: new TextStyle(
fontWeight: FontWeight.bold,
fontSize: 25.0,
color: Colors.white)),

new Row(
children: <Widget>[
Expanded(
child: Padding(
padding: const Edgelnsets.only(top:
child: InkWell(
onTap: () {
print(“Container clicked");
}s
child: new Container(
height: 60.0,
alignment: Alignment.center,

decoration: BoxDecoration(
color: Color(©xFF18D191),
borderRadius: new BorderRadius.circular(16.8)),
child: Text('Run Diagnostic Tests’,
style: new TextStyle(
fontWeight: FontWeight.bold,
fontSize: 25.0,
color: Colors.white)),

new Row(
children: <Widget>[
Expanded(
child: Padding(
padding: const EdgeInsets.only(bottom: 18.8),
child: InkWell(
onTap: () {
auth.signOut();
Navigator.of(context).pushReplacement(MaterialPageRoute(
builder: (context) => LoginScreen()));
}s

child: new Container(

height: 60.8,
alignment: Alignment.bottomRight,
decoration: BoxDecoration(
color: Color(@xFF 9),
borderRadius: new BorderRadius.circular(10.8)),
child: Text('Sign Out’,
style: new TextStyle(
fontWeight: FontWeight.bold,
fontSize: 20.0,
color: Colors.white),

Vehicle Monitoring & Tracking System

Figure 18: Application Home Page

44

4.2 .3 Firebase Authentication:

Android Login Page v Go to docs ‘ o
Authentication o
Users Sign-in method Templates Usage

+: Prototype and test end-to-end with the Local Emulator Suite, now with Firebase Authentication Get started (4 X

Q_ search by email address, phone number or user UID (&

Identifier Providers Created Signed in Useruid 1
tehreem(@gmail.con 22 Jun 202 TQr9BIxSEOh2WGaFG4MqvDFoi0v2
ameerhamza@gmail.cor 22 Jun 202 clgqo0qtB8UWTbgC6GMULCHSs
amazhar94@gn 22 Jun 202 DgPFTHKXOyRAQIGXYWStDXyTH3
or pa = 5

Figure 19: Firebase Authentication Page

We have used firebase for server. Firebase retrieve real time database. The task is how to get a

data and how to perform a simple queries on data. The data at server will show results that are

discussed in next chapter.

45

CHAPTER 5: RESULTS

46

Chapter 5: Results

Results include real time tracking and monitoring or various car monitoring like speed,

engine rpm, engine coolant temperature, engine load, battery voltage and air filters.

Engine Coolant Temperature:

Results are in degree Celsius,

e COM3

Send

>73 degrees C
0105

0105

41 05 49

>73 degrees C
0105

0105

41 05 49

>73 degrees C
0105

0105

41 05 49

AT Z

AT 2

AT Z

[] Autoscroll [] Show timestamp

Both NL &CR

~

9600 baud

~

Clear output

Figure 20: Engine Coolant Temperature Results

47

Engine Load:

Result shown in Percentage load,

® CoOM3
I Send |
0104 i
41 04 92

>57 Percent AT

0104

0104

41 04 A4

>64 Percent AT

0104

0104

41 04 CE

>80 Percent AT

0104 v
[] Autoscroll [] Show timestamp [BothnL&cR | [9600baud | | Clear output

Figure 21: Engine Load Results

Throttle Position:

Result shown in Percentage load,

Il | send
0111 <
0111

41 11 1B

>10 Percent AT Z

0111

0111

41 11 1B

>10 Percent AT Z

0111

0111

471 TE B

1>10 Percent AT Z v
[] Autoscroll [_] Show timestamp ;Bbth NL &CR 9600 baud ~| | Clear output

~

Figure 22: Throttle position Results

48

Engine RPM :

Revolutions Per Minute values (x1000),

e COM3 ol) X

| send

>1156 rpm AT Z
010cC

010C

41 0C 12 cCcC

>1156 rpm AT Z
010cC

010cC

41 0C OE 3E

>899 rpm AT Z
010cC

010C

41 0C 1le 08

[J Autoscroll [[] Show timestamp BothNL&CR | 9600baud ~ | | Clear output

Figure 23: Engine RPM Results

Battery Voltage:
Battery Voltage in Volts,

e ComM3

| Send
AT RV &
AT RV

&2, TNV

>AT Z

AT RV

AT RV

12.1v

>AT Z

AT RV

AT RV

12.1v

>AT Z

AT RV

AT RV

X2 N =2
[] Autoscroll [] Show timestamp [BothNL &CR + | |9600 baud ~ Clear output

Figure 24: Battery Voltage Results

49

Intake Air Temperature:

010F
010F
41 OF 56

>86 degrees C AT Z
010F

010F

41 OF 56

>86 degrees C AT Z
010F

010F

41 OF 56

>86 degrees C AT Z

v

[[] Autoscroll [] Show timestamp Both NL & CR

v | |9600 baud

v

dear output

Figure 25: Air Intake Temperature Result

e® COM3

LATITUDE= 33.582554LONGITUDE= 73.0612590.000.000105
0C AT Z

010F

0cC AT Z

0111

0 % AT Z

0104

0%

Set SMS Number
Set SMS Content
Finish

Message has been sent ->SMS Selesai dikirim
LATITUDE= 33.582554LONGITUDE= 73.0612590.000.000105
0 AT Z

N1NE

Sending Message

[] Autoscroll [] Show timestamp ‘VBoth NL&CR :9600 baud

v

Clear output |

Figure 26: Message Sending Command

50

Lon-73,06125, Lat-33,58255 Coolant temp 3
0C, Throttle pos: 0% Intake air temp:oC
Engine load :10%

Figure 27: Message viewed on Mobile Screen

Military
(o i
Signals, NUST

Figure 28 Tracking Device

MCS Library

Figure 28: Location of vehicle

51

CHAPTER 6: CONCLUSION & NEXT STEPS

52

Chapter 6: Conclusion and Next Steps

This section will focus on how VMTS will provide its users effort-less monitoring and tracking of

vehicle and what future improvements need to be done to make this project more feasible.

6.1 Conclusion:

The GSM based Vehicle Tracking and Monitoring system promises its user about real time

tracking and monitoring of vehicle’s parameter such as speed, coolant temperature, fuel

consumption and other provided information via short message service. It can be used by nearly

all automobiles that use standard Protocol. In Pakistan, as population is increasing, traffic vehicles

are also increasing and unfortunately road accidents, theft of cars etc. also increasing. For an

average man it is difficult to afford such an expensive tracking and monitoring sensors. VMTS

provides the solution of tracking and monitoring at the same time as it is combination of cheap

hardware and web application so any one can afford it.

6.2 Future Work:

Due to a shortage of time, many various tests, experiments, and modifications have been

postponed. Future development will focus on expanding security services, parking sensors, and

resolving issues that arise when a cellular network is unavailable.

53

APPENDICES

54

APPENDIX-A

SYNOPSIS

V.M.T.S (Vehicle Monitoring and Tracking System)

Extended Title:
GSM Based Vehicle Monitoring and Tracking System through OBD Port

Brief Description of The Project / Thesis with Salient Specifications:
This project aims to track and monitor any vehicle in real time at mobile application. The latitudes/longitudes, speed,
coolant temperature and other provided information will be sent to its user via SMS.

Scope of Work:
Wireless Access, Embedded System, Monitoring and Tracking.

Academic Objectives:
e To develop understanding of how monitoring and tracking is done.
e Being able to get familiar with different languages (Flutter)
o Develop critical thinking & problem solving skills that will also help us in Professional life.

Application / End Goal Objectives:
Making an application that can
o Monitor vehicle
Record speed
Monitor Engine Temperature
Engine RPM
Battery Voltage
Live tracking
Web Application

O O O O O O

Previous Work Done on The Subject:
Idea has been published in research papers and some parts have been implemented throughout world using different
applications.

Material Resources Required:
1. Tracking device
2. Device to provide engine temperature, car speed e.tc.

No of Students Required: 4 (Four)
Group Members:
1. Abdul Rehman (Group Coordinator)
2. Ameer Hamza Hassan
3. Talha Mazhar
4. Tehreem Mateen Zia

Special Skills Required:
Programming in

e Flutter

e Firebase

55

APPENDIX-B

Abbreviations List:

OBD On Board Diagnostic

ECU Engine Control Unit

GSM Global System for Mobile Communication
GPS Global Positioning System

AT ATtention

SMS Short Message Service

IDE Integrated Circuit Board

P1Ds Parameter IDs

SAE Society of Automotive Engineers

ISO International Organization for Standardization

56

APPENDIX-C

Demonstration Outline

Literature
Review

L

Planning

0

Software
Learning

O

Application
(Front End)

O

r

Hardware
Implementation
|\

J

L

Server (Back
End)

L

Practical
Installation

O

Testing

Feb
2021

March
2021

Oct Nov
2020 2020

Jan
2021

Dec
2020

April
2021

1
J 1
i
1

June
2021

May
2021

57

Appendix-D

AT Commands

Several parameters within the ELM327 can be
adjusted in order o modify is behaviour. These do mot
maormally have to be changed before attempting to talk
to the wehicle, but cccasionally the user may wish to
customize these setiings — for example by fuming the
character echo off. adjusting a timeowt wvalue, or
changing the header bytes. In order 1o dio this, intermal
AT commands must be used.

Those familiar with PC modems will immediatedy
recognize AT commands as a standard way in which
modems are intemally configured. The ELM32T uses
essantially the same method, abways watching the
data sent by the PC, kooking for messages that begin
with the character ‘A" followed by the character T'. K
found, the next characters will be interpreted as an
internal configurafion or ‘AT command, and will be
executed upon receipt of a terminating carmage retum
character. If the command is just a setting change, the
ELMAZT will reply with the characters 'OK, fo say that

AT Command Summary

General Commands

<R repeat the last command
BRD hh try Baud Rate Divisor bk
BRT hh set Baud Rate Timaout

it set all to Defaults

EO, E1 Echo off, or on®

FE Forget Evanis

I print the versicn 1D

L, L1 Linefeeds off, or on

LP g2 o Low Power mode

A, M1 Memory off, or on

RD Raad the stored Data byte
50 hh Save Data byt hh

WS Warm Start (quick software resat)
z rasat all

@1 display the device description
@ display the device identifier

(@3 ccocococococoooe siore the @2 identifier

58

it was successiully complated.
Some of the following commands allow passing

numbsrs as arguments in order fo set the intamal
values. These will always be hexadecimal numbers
which must generally be prowided in pairs. The
hexadecimal corversion chart in the OBD Commands
gection (page 31) may be helpful if you wish to
interpret the values. Also, you should be aware that for
the on/off types of commands, the second character is
the number 1 or the number 0, the universal terms for
on and off.

The remainder of this page. and the two pages
following prowide a summary of all of the commands
that the current wersion of the ELM32T recognizes. A
maore complete description of each command begins
on page 12. Mote that the setiings which are shown
with an asterisk (*) are the default values.

Programmable Parameter Commands

PP xx OFF disable Prog Parameter xx

PP FF OFF all Prog Parameters disabled
PP xx OM enable Prog Parametar o

PP FF ON all Prog Farameters enabled
PP xx 5V yy for PP xx, Set the Value fo vy
PP5 print a PP Summarny

Voltage Reading Commands

CVdddd Calibrate the \oltage to dd.dd volts
CV 0000 restore CV value to factory setling
RV Read the input Voltage

Other
iGN read the Ignkon input lewvel

References:

1. Tahat, A., Said, A., Jaouni, F., & Qadamani, W. (2012, June). Android-based universal
vehicle diagnostic and tracking system. In 2012 IEEE 16th International Symposium on
Consumer Electronics (pp. 137-143). IEEE.

2. Rajeevan, A., Payagala, N. K., & Lanka, S. (2017). Vehicle monitoring controlling and
tracking system by using android application. International Journal of Technical Research
and Applications, 4(1), 114-1109.

3. ELM327, O. B. D. (2012). to RS232 Interpreter. ELM Electronics.
4, Mahoney, S. M. (2008). Creating a Wireless OBD-I1 Scanner.

5. Information retrieved from https://happilyembedded.wordpress.com/2015/07/23/thirst-
for-knowledge-sae-j1979-protocol/

6. Information Retrieved from https://ukdiss.com/examples/android-system-application-
ehicles-on-board-diagnostics.php

59

https://happilyembedded.wordpress.com/2015/07/23/thirst-for-knowledge-sae-j1979-protocol/
https://happilyembedded.wordpress.com/2015/07/23/thirst-for-knowledge-sae-j1979-protocol/
https://happilyembedded.wordpress.com/2015/07/23/thirst-for-knowledge-sae-j1979-protocol/

Plagiarism-1

CORIGINALITY REFORT

10, 7« A 7

SIMILARITY INDEX INTERNET SCOUIRCES FUEBLICATIONS STUDENT PAPERS

FRIMARY SOURCES

Submitted to Arts, Sciences & Technology 2%
University In Lebanon

Student Faper

www.makeuseof.com 2%

Infernel Source

docplayer.net 1
Intarmel Source %

BB =2

Submitted to Auston Institute of Management 1
and Technology %

Student Paper

H Submitted to The University of the South 1 %
Pacific
SELicl el P.‘.'[:I:'"l

H hdl.handle.net 1
Intarnel Source %
Submitted to University of Mauritius

n student Paper Y "":1 %%
electrosome.com

H Internel Source { 1 %

60

en.wikipedia.org

Intermel Source

Submitted to University of Hertfordshire

Student Paper

www.scribd.com

Intermnal Source

P

Mark Sellnau, Matthew Foster, Wayne Moore,
James Sinnamon, Kevin Hoyer, William
Klemm. "Second Generation GDCI Multi-
Cylinder Engine for High Fuel Efficiency and
S Tier 3 Emissions”, SAE International
Journal of Engines, 2016

Publication

13

es.scribd.com

Intermel Source

B

Ashraf Tahat, Ahmad Said, Fouad Jaouni,
Waleed Qadamani. "Android-based universal
vehicle diagnostic and tracking system", 2012

IEEE 16th International Symposium on
Consumer Electronics, 2012

Publication

Bhagyeshwari Chauhan, Avni Jain, Tanmay
Chaturvedi, Sandeep Saini. "User Interactive
and Assistive Fleet Management and Eco-
Driving System”, 2015 IEEE Region 10
Symposium, 2015

Publication

61

jp.ic-on-line.cn

Exclude quotes

Exclude biblography

62

