VISION-Z: Al BASED AIDING DEVICE FOR VISUALLY
IMPAIRED AND BLIND PEOPLE

SIMRA KAUSAR RAJA
WAIJIHA JAWWAD
M. ZARGHAM BAIG

PERVAZ ALAM

Supervisor
Brig. Dr. Abdul Ghafoor

Submitted to the faculty of Department of Electrical Engineering,
Military College of Signals, National University of Sciences and Technology,
in partial fulfillment for the requirements of B.E Degree in Electrical Engineering
June 2021

By
SIMRA KAUSAR RAJA
WAJIHA JAWWAD
M. ZARGHAM BAIG
PERVAZ ALAM

Supervisor
Brig. Dr. Abdul Ghafoor

Submitted to the faculty of Department of Electrical Engineering,
Military College of Signals, National University of Sciences and Technology,
in partial fulfillment for the requirements of B.E Degree in Electrical Engineering
June 2021

CERTIFICATE OF CORRECTIONS & APPROVAL

Certified that work contained in this thesis titled “Al Based Aiding Device For Visually Impaired
And Blind People” carried out by Simra Kausar Raja, Wajiha Jawwad, M. Zargham Baig, Pervaz
Alam under the supervision of Brig Dr. Abdul Ghafoor for partial fulfillment of Degree of
Bachelors of Electrical Engineering, in Military College of Signals, National University of
Sciences and Technology, Islamabad during the academic year 2020-2021 is correct and
approved. The material that has been used from other sources it has been properly acknowledged

[referred.

Approved by

Project Supervisor

Brig. Dr. Abdul Ghafoor

Date: 15™ JUNE 2021

DECLARATION

No portion of work presented in this thesis has been submitted in support of another award or

qualification in either this institute or anywhere else.

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is
attached.

Signature of Supervisor

Acknowledgements

| am thankful to my Creator Allah Subhana-Watala to have guided me throughout this
work at every step and for every new thought which You setup in my mind to improve it. Indeed,
| could have done nothing without Your priceless help and guidance. Whosoever helped me
throughout the course of my thesis, whether my parents or any other individual was Your will, so

indeed none be worthy of praise but You.

| am profusely thankful to my beloved parents who raised me when | was not capable of
walking and continued to support me throughout in every department of my life.

| would also like to express special thanks to my supervisor Dr. Abdul Ghafoor and co-

supervisor Dr. Mohsin Riaz (Comsats) for his help throughout the thesis.

I would also like to pay special thanks to Naveed Mazhar for his tremendous support and
cooperation. Each time | got stuck in something, he came up with the solution. Without his help 1
wouldn’t have been able to complete my thesis. [appreciate his patience and guidance

throughout the whole thesis.

Finally, 1 would like to express my gratitude to all the individuals who have rendered
valuable assistance to my study.

Dedicated to my exceptional parents and adored siblings whose
tremendous support and cooperation led me to this wonderful

accomplishment.

Abstract

Traditionally, a visually impaired person uses a white cane as a tool for directing them while
moving or walking. Although, this cane is useful, it cannot guarantee high level of protection of
blind person away from all obstacles and help them in self-navigating in complex environments.

Mostly such handheld devices aim at utilizing the sensory ability of the person.

Smart Assistive devices are the current technological development in finding easier navigation
solutions for visually impaired people, as these devices provide solutions that work in both

indoor and outdoor environments leading to a much-improved life quality.

This research focuses on a wearable assistive device for the blind. This project introduces a smart
assistive device that provides complete autonomy to the visually impaired people by providing
detection and recognition of objects and people around them. It also monitors the health of the
person. This multipurpose system is designed to help the blind person to navigate alone safely
and to avoid any obstacles that may be encountered, whether fixed or mobile, to prevent any
possible accident. The device provides audio output for every functionality. The system is

designed to be convenient and accessible, so that visually impaired person can operate it easily.

By this project, we aim to provide a unique, cost effective and completely upgraded system for
visually impaired people.

Key Words: Visually impaired people, Smart Assistive devices, Navigation

Table of Contents

CERTIFICATE OF CORRECTIONS & APPROVALcoiiieiieeereeee s iii
DECLARATION . ..ttt ettt bttt et e e be e et e e sbe e e nbe e naeeenns \Y;
Plagiarism Certificate (TUrnitin REPOIT).......ccoiiiiiiiiiiii e %
ACKNOWIBAGEMENTS ...ttt et r et eebeeneesreeneeenes vi
ADSTIACT. ...ttt bbbttt viii
TaDIE OF CONTENTS ... bbbttt e e IX
LEST OF FIQUIES. ..ttt bbbttt bbbt bt xiii
LISE OF TADIES ..t b e ettt XV
CHAPTER: 1 INTRODUCTION. ...ttt 1
1.1 OVBIVIBW. oottt bbb bbbt bttt b bbb n et b e 1
1.2 Background and MOLIVALION...........cccueiiiieii e 1
1.3 Scope and DEelVEraDIEScoviiiiiice e 2
CHAPTER: 2 LITERATURE REVIEW ... 3
1.4 Use of BacKground StUAYccviiiiiiiiic i 4
CHAPTER: 3 DESIGN AND SPECIFICATIONS.......ooiiiie et 5
3.1 Project Description and Salient FEALUIEScooviieieiiinieneie e 5
3.2 Setting up the NVIDIA Jetson Nano Developer Kit ... 7
3.21 SPECITICAIONS OVEIVIBW: ...ttt bbb 7
3.2.2 BaSIC SBIUP: ettt et 7
3.2.3 Prerequisites FOr PYTNONcoiiiiiice s 8

3.3 INCreasing SWaP IMEBMOIYcc.uiiiiiiieeiie ettt e et e e e nte e sraeenaeeannas 9
3.4 Peripherals INterfaCingccocoviiii i 9

34.1 PYAULO GUI ... 9

3.4.2 Interfacing Arduino t0 JEtSON NaNO.........cccocveiiiiie i 10

34.3 Interfacing Keypad to JEtSON NaNO..........cceiieiiiie i 11
34.4 Interfacing Camera to JEtSON NANO..........cceiveiiiie e 11

3.5 Speech Output With JEtSON NANOc.ccieiiieiiiiece e e 12
CHAPTER 4: OBSTACLE DETECTIONoiiiiieieiee e 13
4.1 UIRIASONIC SEBNSONeiuiiiiiiitiite sttt b bbbt n e bbb anes 13
411 Connecting Ultrasonic Sensor to ArdUINOcceiereriiinineeiesese et 14
4.1.2 Compilation and Code EXECULIONceviiieieiiieiesie e 14
CHAPTER 5: HEALTH MONITORING SYSTEM......c.coiiiiiiiiiie e 16
D1 TEMPEIALUIE SENSONeeveeiirieiie sttt st e s e sre e enne e s e e ne e ann e nne e 16
5.1.1 DS18B20 Pin Configurationccccoveiiiiiiiieie e 16

5.2 WOIKING PrINCIPIE: ...veeeiiee ettt ettt nas 17
5.3 PUISE SBNSOI: ...ttt 19
CHAPTER 6: FACE RECOGNITION SYSTEMooiiiiiieeeee e 21
8.1 INEFOQUCTION ..ottt 21

G T AN [o o] 11 1 4 ISP 21
6.2.1 INEUFAL NEEWOTKS ...ttt 22
6.2.2 ProCESSING FIOW ... 22
6.2.3 LibrarieS ULHHZEA:ooieee s 24
6.2.4 FaCE_TECOGNITIONeitiiiitiiiieiieie ettt bbb 24
6.2.5 OpenCV and it’s PrereqUiSItes:.......ciiiiiiieriiieiieriiee et 24

8.3 RESUIIS: .ottt e e a e e e nneenren 25
CHAPTER 7: IMAGE CAPTIONING.......ooiiiiiiee e 27
7.1 INTFOAUCTION L.ttt b bbbttt b bbb ene s 27

7.2 ALGOMENM Lo 27

7.2.1 Convolutional Neural Networks (CNN)cccoevviieiieieciese e 27

7.2.2 Recurrent Neural Networks (RNIN)ooviiiiieiice e 29
A T AN Lo o] 11 T T @0 g To0 o oSSR 30
7.3.1 IMPOrtiNG LIDFAIIEScveeiecc e 30
7.3.2 GPU COoNFIGUIALTON ...t 31
7.3.3 Capturing Live Camera FEEd ..o 31
7.3.4 L0oadiNg the TramMESceiieei s 32
7.3.5 Initialize MobileNetV/2 and load the pretrained ImageNet weights........................ 32
7.3.6 FEALUIE XEFACTION.iviiiiticiie et 32
7.3.7 TOKENIZE the CAPTIONSoeeiiiiiieiiiee s 33
7.4 Model: MODIIENEIVZ ... 33
741 ENCORT ... 34
7.4.2 DIBCOUEY ...ttt bbb et bbb 34
743 AUention MeChaNISIMoiuiiiiiiiiicere e 35
74.4 EVAIUALE. ..o 36
7.5 TeXEL0 SPEECN....ecee e e s 37
T8 RESUILS ...ttt 38
CHAPTER 8: CURRENCY RECOGNITIONccoiiiiiiiecieeiee e 39
8.1 ProCesSiNg FIOW:ccuoiiiiiiiiieee bbb 39
8.2 Using Machine Learning Algorithm (YOLO V5).....cccoiiiiiiiiiiiiiieese e 39
8.2.1 Network Architecture and TraiNINgccocveiiiiiiieiese e 41
8.2.2 LiNEAr REGIESSION: ..ttt sb bt 42
8.3 Data Set GaAthEriNGoivi i 42
8.4 Dala Pre-PrOCESSING.....ciueiteitirieiteetieierte st sttt sttt ettt b et st b et e et et et e bt nbe b nneeneas 43

8.5 DALA ANNOTALION ...ttt ettt n e nnnnnnnnnnnn 43

8.6 Data AUGMENTALIONveiiiiiiiieite et et e e e e ae e e e nneennas 44

8.7 SOTtWAre Prer@QUISITES......iiveiieeieeie ettt e et ste e sraesteeneesneennas 45
8.7.1 PYENON 3.9.0 . 45
8.7.2 AnAconda DIStrIDULIONccveiiiiiiciiee e 45
8.7.3 ViSUAI STUAIO COURc.uiiiiiieiieie e 46

8.8 Preparation of Machine Learning Modelccooeiiiiiiniiiceee s 46
8.8.1 TENSOMFIOW ...t 46
8.8.2 Y AL e 46

8.9 Using The Model To Make PrediCtionscccouvieieiieninenenesiesesieie e 47

8.10 Accuracy of Deep Learning AlgOrithm...........ccooiiiiiiiiiiir e 49

CHAPTER 9: RECOMMENDATIONS AND CONCLUSIONS........ccooiiiiieieeee 50
9.1 RECOMMENUAIIONS ...ttt ettt b bbb 50
9.2 CONCIUSION......eiiieiciiit ettt bbb bbb bbb n e b 50

APPENDIX A APPROVED SYNOPSIS ... 52

APPENDIX B PROJECT TIMELINE ... 53

APPENDIX C COST BRAKDOWN.......ociiiiiiiiieie et 54

APPENDIX D CODESottt ettt ettt ne e 55

APPENDIX E FINAL DELIVERABLE.........co e 74

BIBLOGRAPHYY ..ttt ettt ettt b et e et e bt e st e e nbe e s beeenbeenne e 75

REFERENGCES.ottt ne s 76

List of Figures

FIQUIE 1 PrOJECT @S @ SYSIEIM ...uviiiiiiiieiii ettt ettt et e e e ste e s re e beeneenneenns 6
Figure 2 Project BIOCK DIAQIAMcoviiiiieiecie ettt e sre e raenee s e nns 6
FIGUIE 3 HC-SROA ...t b bbbttt ne ettt b e 13
Figure 4 Arduino CirCUIt DIAQIAMoiiiiiieieierie ettt 14
Figure 5 Temperature Sensor Circuit DIagram............cccveveiieieiie e 16
FIQUIE 6 DSLBB20c.eiuiieieiieiesiete ettt sttt sttt b et et se bt e e be st nenre s 17
Figure 7 Circuit Diagram fOr PUISE SENSOTcciiiiiiiiiieeieee e 19
Figure 8 Pulse Sensor Pin CoNfIQUIatioNcoviiuiiiiiiiniieiee e 19
Figure 9 Facial Recognition Processing FIOW [12]........ccooeiieiiiiiiic e 22
Figure 10 Wajina JAWWAG.cceiiiiieie sttt te e esne e e 25
FIQUIE 11 PEIVAZ ALBM ..ottt bbb 25
Figure 12 Simra Kausar Raja Figure 13 M. Zargham Baigccocvrvrierieiiiieienc e 26
Figure 14 Example of convolved feature [13]cccoveiiiieieeieee e 28
Figure 15 Example of pooling layers Working [13]......ccccoceiieiiieieiieie e 28
Figure 16 Example of connecting layers wWorking [13]ccccooeiirininineniseeee e 29
Figure 17 Converting Feed-Forward NN t0 RNN [15]ocoooiiiiiieeeee e 29
Figure 18 Layers in RNN encoder-decoder model with Bahdanau attention [14] 36
FIGUIE 19 INPUL. ..ottt e st e et e s b et e et e e be e s beebeeasesteeneeneesaeenreas 38
Figure 20 Running Image Captioning Model and QUEIPULcccooiiiiiiiniiiecee e 38
Figure 21 YOLO ArChiteCture [10] ...cc.ooeiiiieieieie e 41
Figure 22 Eq of Linear Regression [L1]cccovveiiiiiiicieeie ettt 42
Figure 23 Sample of Data Set 0F RS.10cviiieiiciecicce et 43
Figure 24 Data Set WIth ClaSSES TXEccueiiriiieieieiee et 44
Figure 25 Steps 0f AUGMENTATIONoiiiiiiiieiee e 45
FIGUIE 26 RS.20 iiiiieiiie ettt ettt et et e b e et e e bt e e ab e e bt eesteesbeeebeeeteeeteenneeanes 47
FIGUIE 27 RS. 10 . ittt ettt e et e e b e e e ab e et e e eateesbeeebe e e reeeteenneeanes 47
FIQUIE 28 RS. B0 ...ttt bbb b bbbt e et bbb bbb 48
FIQUIE 29 RS. 500ttt bbbttt bbbt bbbt b e bbb ne e 48

FIQUIE 30 RS. 5000eiuiiieiiieiieieite ettt bbb b bbbt b et e b et e na et et b e 48

https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392183
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392190
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392191
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392205
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392206
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392207
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392208
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392209

FIGUIE 3L RS.100 ... i itieitieie ettt ettt e e te et e e s e s se e teeseesbe e beeseeaneesreesenneesneeneeas
FIQUIE 32 RS.1000 ... cccuteieiieiie ettt ettt te e te e te e s e s seestaeseeebe e beeneeasaesreeseaneenneeneeas
Figure 33 BaCKeNd DISPIAYccueiuiiiiiiiiiieiee e

https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392210
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392211

List of Tables

TaDIE 1 SPECS OVEIVIBW ...tttk b bbbttt bbb 7
Table 2 APPrOVEA SYNOPSIS .ecuvierieiieeiieeieiee st eee st e e e e st e staeae e e sbeebessaesreeseesseesteeeeaneesreenseaneens 52
Table 3 Project TIMEIINE........coi et re e 53

TADIE 4 COSE BIEAKAOWN......eeeeeeeeeeeeeeeeeeee et s e senneneesneesnnnnnnnnnnnnens 54

CHAPTER: 1
INTRODUCTION

This chapter provides a comprehensive introduction of the project “VISION Z — Al Based

Aiding Device for Visually Impaired People”.

1.1 Overview:

Right now, visually impaired individuals face many difficulties and a common one is when they
involve in self-navigation in environments that are new or complex for them. They do not have
the ability to self-navigate without making contact with the surrounding using an aiding object or
listen to the surrounding environment. This is the main focus of this project which addresses this
issue by providing a better portable and wearable device for them to become autonomous in their

daily living lives.

1.2 Background and Motivation

Out of the world’s 7.79 billion population, an estimated 49.1 million are blind ,221.4 million
people have moderate visual impairment, and 33.6 million people have severe visual
impairments till date. The estimated number of blind persons has increased from 34.4 million in
1990 to 49.1 million in 2020 which is a 42.9% increase.

Analysis of data from all these countries over the world says that there are more than 200 million
people with moderate to severe vision impairment out of which approximately 49 million are
completely blind. Also, according to some research, the number of blind people across the world
is set to triple within the next four decades the worst affected areas for visual impairment are in
South and East Asia. In Pakistan only from the last studies, we know that 1.12 million people are
blind, 1.09 million people had severe vision loss and 6.79 million people had moderate vision

loss. Looking at these global and local figures the burden of vision loss is becoming hard to

tackle.

When we look at existing solutions for such people on the market some of them are outdated,
some are too expensive keeping in mind the low and middle-income people and most of them

offer singular and limited functionality.

Such impairment can notably affect a person's life. Visually impaired people should be able to
communicate with the world around them seamlessly and effortlessly, with a smart assistive

device with handheld control that brings the surroundings to them in an audible form.

1.3 Scope and Deliverables

We propose an Al-based recognition and detection system incorporated with a group of sensors
that provides multiple functionalities. This device is wearable and portable which makes it easy
for the person to perform daily routine tasks independently. This device is a mid-range solution,
which is not too expensive and is kept as economical as possible without compromising its
functionality too much making it affordable. It includes using deep learning algorithms and
libraries used in python language for recognition and detection. Its processing unit is the Nvidia
Jetson Nano developer kit used in concurrence with Arduino Uno board, USB camera, USB
headphones mounted along with a temperature and pulse rate sensor. Its functionalities include
obstacle detection via a multitude of ultrasonic sensors in the path view of the user. Known
people in front of the user are recognized through a face recognition scheme and anyone elsewise
as unknown. Identification of Pakistani paper currency notes is done using a currency
recognition scheme. The device will use an image classifying model for image captioning of the
surrounding. The thus developed codes will be integrated into the processor and tested via a live
USB camera feed. All output, in the end, is provided to the user as audio through USB

headphones based on the functionality the user selects through the keyboard/keypad at that time.

In conclusion, the goal of this project is to act as a secondary vision in audible form for the
visually impaired person. This is achieved by incorporating both our software and hardware

skills and implementing them practically in a system.

CHAPTER: 2
LITERATURE REVIEW

Various systems are developed to reduce the problems faced by impaired people. One of the

models is developed in [1].

In this model obstacle is detected by implementing multi-sonar system. In 2000, a tiny mobility
design is used for impaired people. This design was based with wheels [2].

In 2007 designed a microprocessor and a PDA called Design of a Wearable Walking Guide
System for the Blind. This design does not have a very vast scope because of its very limited
functionality [3].

We provided a concept for a mobile navigation aid that uses Microsoft Kinect and optical marker
tracking to help visually impaired people navigate the building. This is the result of a student
project and is totally based on lower-cost hardware and software. It gives none stop tactile
information about a person's waist, gives an impression of the person's surroundings and warns
of objects. [4].

Blind people use white sticks as a tool to guide them while moving. also, the white cane is
useful, it is not fully guaranteed to protect the blinds from various objects. This article presents
an obstacle avoidance method that uses an electronic cane as a walking tool for obstacle
avoidance practitioners. It uses infrared sensors to detect obstacles on the way. With the help of

various obstacles [5].

Introduce YOLO, which is a new method. Previous work will reuse classification technique to
perform detection. Whereas in yolo we frame the object detection into a regression problem of

by using grid boxes and compare class probabilities [6].

This article presents the FPGA which is a real-time vision system that simulates this method.
This is cheaper mobile system consisting of a CMOS camera. The deployment technic used in
this article are suitable for other smart mobile sensors and machine vision applications such as

the power, speed and the latency are important factors [7].

Batavia et all discussed a technique that is the combination of two techniques: adaptive color
segmentation and stereo-based color homograph. That algorithm is specifically suitable for such

surroundings where the terrain is relatively flat, and the colors are same [8].

In 2014,” automatic obstacle detection using image segmentation” by Pankaj Jain and Dr Mohan
Awasthy implemented the method by dividing it into two parts: segmenting the obstacles
containing images, and then finding the obstacles from those obstacles containing images [9].

1.4 Use of Background study

These documents are about obstacle detection and object recognition. Each document focuses on
a particular aspect of the project, discussing the positives and negatives, and then suggesting the
most appropriate method or algorithm. These background studies not only highlight many of the
problems encountered by developers in the past, but also suggest what improvements can be

made in terms of functionality and cost effectiveness in the future.

CHAPTER: 3
DESIGN AND SPECIFICATIONS

3.1 Project Description and Salient Features

Vision Z is an amalgamate of Al technology which has inculcated a multitude of features with
the goal to provide assistance to blind and visually impaired people. This would ultimately help

them in self-navigation of their surroundings. It is composed of six main modules, which are:

Facial Recognition
Image captioning
Currency Detection
Obiject Detection
Health Monitoring
Audio Output

AN N N N YN

The edge device which we are making use of is the Nvidia Jetson Nano Al Development Kit.
It’s a videlicet GPU-powered compact computer upon which we have deployed our whole
project. Our device is controlled by the user itself who decides which functionality he wants to

utilize at the moment.

One can use the facial recognition feature which is used to detect and identify people. It can also
be used to describe the current surroundings of the user using the image captioning feature.
Output results are given through audio which proves to be very beneficial for a user who is
visually impaired or blind. It even has currency detection which will identify the current
Pakistani currency present with the user. Another useful capability offered by Vision-Z is that it
detects different kinds of obstacles which are in the path of the blind or the visually impaired
person with the help of ultrasonic sensors. Health monitoring for the user is also available which
gives the pulse rate and the temperature of the user using the pulse sensor and the temperature

Ssensor.

Project as a System

HUMAN INPUT
Option selected

keypad

ENVIRONMENT
Data from sensors
And pichure

Figure 1 Project as a System

The diagram below is depicting a schematic form of the general arrangement of the different

peripherals and sensors of our project.

Project Block Diagram

Processing unit User Interface

Arduino [
- NANG \ Keypad Headphones

SENSORS DATA MODEL DATA

Ultrasonic sensor)
IMAGE CURREMNCY FACIAL

CAPTIONING RECOGMITION RECOGNITION

Heart rate

Temperature

Figure 2 Project Block Diagram

3.2 Setting up the NVIDIA Jetson Nano Developer Kit

Jetson Nano is an Al-based developer kit that is a compact yet sturdy edge device or computer
that enables the user to execute several neural networks in parallel. This edge computing device
is GPU-enabled and is an excellent candidate for the applications of Al and deep learning
applications like speech processing, object detection, image classification, and segmentation, and

many more.

3.2.1 Specifications Overview:

Table 1 Specs Overview
GPU 128-CORE, MAXWELL BASED ARCHITECTURE

CPU QUAD-CORE ARM A57 @ 1.43 GHZ
STORAGE MICROSD CARD
MEMORY 4 GB RAM, 64-BIT LPDDR4 25.6 GB/S

USB 4X USB 3.0, USB 2.0 MICRO-B
OTHERS GPIO, UART, 12C, 12S, SPI
DISPLAY HDMI AND DISPLAY PORT

MECHANICAL 69 MM X 45 MM, 260-PIN EDGE CONNECTOR

The official OS on which the Jetson Nano operates is the Linux4Tegra, which is based on
Ubuntu 18.04. The SDK supported by NVIDIA Jetson Nano is called JetPack.

3.2.2 Basic Setup:
The steps in setting up our edge device are:

o Download the Jetson Nano Developer Kit SD Card Image from the Jetson Download
Center (The Official Source).

o Flash it to the microSD card using the Etcher Software (a software which writes nano
program image onto the SD card).

o Now we will load the microSD card by inserting it inside the SD card slot.

o Now we can connect the power source to our nano, which will automatically boot up our

system.

3.2.3 Prerequisites For Python

We type the following commands for the installation of python prerequisites :

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install git cmake python3-dev nano

sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev

Now we have to install pip3. Pip is a tool used for installing python packages from Python

Package Index.

sudo apt-get install python3-pip
sudo pip3 install -U pip testresources setuptools

sudo pip install virtualenv virtualenvwrapper

The next the next step is to set up a virtual environment for Python so that we have a completely
isolated virtual environment for our project. To set up a python virtual environment we will use

the virtualenv. It’s a python tool that enables its users to build isolated environments in python.

mkvirtualenv ml -p python3

workon ml

Now we just have to download python v3 and install it.
3.3 Increasing Swap Memory

Memory swapping is vital for our project. It is such a computer technology which permits an OS
to provide additional memory to an executing application or a process than it is present in the
physical RAM. Memory swapping is done when RAM space is limited or exhausted. The OS
utilizes memory swapping to get additional memory from the secondary memory which, in our

case, is the microSD card.

In Jetson Nano, to swap portions we require to build a swapfile. Currently, the Nano has a RAM

space limited to 4GB that will not be adequate to compile all our Al models.

By default, there is 2GB of swap memory, but it is still not enough to fulfill the needs of our
project. Hence, we’ll set up a swapfile to increase the swap memory from 2 GB to

6 GB. Afterwards, we must reboot our system to confirm that the swapfile is executing aptly.

3.4 Peripherals Interfacing

Since a multitude of sensors is utilized to perform the various functions, hence they must be
interfaced first with the Jetson Nano. All the health and ultrasonic sensors are connected to the
Arduino. It processes the data from the sensors and redirects it to the Jetson Nano for further
processing. For interfacing, the Arduino to Jetson Nano, coding in python language is to be
done. Programming and interfacing the sensors to Arduino is done using the Arduino IDE.

We are making use of a keypad to control and select the different tasks required. each button
corresponds to a certain task.

The Jetson Nano is programmed in Python using a specific library audio library to give the

speech output. The audio output is given through the speakers or wireless headphones to user.
3.4.1 PyAuto GUI

It’s a GUI automation Python module with cross-platform support automatically enabled. It
allows python to control the mouse and keyboard, and other peripherals for GUI automation

tasks. To install it we use the command:

pip install pyautogui
3.4.2 Interfacing Arduino to Jetson Nano

We are working with Arduino along with Jetson Nano because we need to retrieve sensory data
from the Arduino and serially send that to the main processor. The method we are adopting for
the interfacing is to connect your Arduino simply via a USB cable using Python.

First, connect your Arduino with Jetson Nano through the USB cable.

After that access, we will open the command terminal on Jetson Nano and type in the following

command.

Is /dev/ttyA*

An Output received from the /dev/ttyACMO, implies that the Arduino has been configured to
Nano and will now be recognizable by it because ttyACMO is an indication of the connection
between two USB devices.

Afterwards we need to install PySerial which is a library that provides support for serial

connections between devices. For installation type in the following command

pip3 install pyserial.

Now the library is installed so we can import it later on. Opening the Arduino IDE and write the

following

void setup()
{ Serial.begin(9600); }

void loop()

{
if (Serial.available())

{ Serial printin(”Hello Jetson!"); }
/

Create a python file with the following code

10

import serial

ardvino = serial.Serial('/dev/ttyACMB', 9500, timeout=1)

while True:
try:
data = arduino.readline()
if data:
print(data)
print('Hi Arduino')
except:
arduino.close()

On running this python script, serial communication between Arduino and Jetson Nano will start.

3.4.3 Interfacing Keypad to Jetson Nano

We have used a numeric keypad to select the functionalities. To user can select the options he
requires on his demand by pressing the specified keys. The keypad has a USB 2.0 port attached

with plug and play feature, hence making its interfacing simple and clear.
3.4.4 Interfacing Camera to Jetson Nano

We are working with a camera along with Jetson Nano because we need a live camera feed as
input to all our models i.e., face recognition, currency recognition and image captioning models.
The way adopted for the camera interfacing is to connect the camera via its USB connector.

The camera used for all live feed is the Philips Real CMOS S988 USB camera. The Philips
CMOS supports still images as well as HD videos with additional several resolutions included
such as 1080p@30FPS, 720p@60FPS, and VGA90 but we are using the 30 FPS. The main edge
which we have while using this camera is that it is USB 2.0 supported and has a plug-and-play

feature.

11

3.5 Speech Output with Jetson Nano

For the audio output, we are employing a python text to speech library known as pyttsx3. The
main advantage to using this is that it works offline and provides support for multiple Text to
Speech engines including: -

o sapi5

o Nsss

o espeak

This library has three fundamental parts which are
o The Engine Factory
o The Engine Interface
o The Voice Metadata

The pyttsx3 library includes the pyttsx3.init() factory function which refers to a pyttsx3.Engine ;
this is the main engine or the engine factory for our text to speech. Amid the construction, the
engine initializes a pyttsx3.driver.DriverProxy object whose primary responsibility is to load a
speech engine driver enacting from the pyttsx3.drivers module. The Engine Interface provides
application access to text-to-speech synthesis whereas the pyttsx3.voice.Voice is the voice
metadata which holds information about a speech synthesizer voice. After the construction, the
application utilizes the engine object to register the event callbacks, controlling the event queue,

production of speech, initializing and stopping event loops and other important functionalities.

12

CHAPTER 4:
OBSTACLE DETECTION

4.1 Ultrasonic Sensor

Ultrasonic sensor is such equipment or sensor which is utilized in measuring the distance to an
object or an obstacle with the help of ultrasonic sound waves. It utilizes a transducer to send and
receive ultrasonic pulses. Through the reflection time of pulses, we come to know about the
object's position. A distinct echo pattern is produced when high-frequency sound waves are

reflected from boundaries or edges.

Figure 3 HC-SR04

The working principle upon which this sensor is based is fairly simple. An ultrasonic pulse
(40kHz) is transmitted in the air and if an obstacle/object is encountered then the pulse is
reflected back to it. The distance of the object is obtained by calculating the travel time period
and the speed of sound.

The formula used is simply the speed formula

Speed=Distance/Time

we need to calculate time, so it becomes

Time=Distance/Speed

Distance is 2 meters (1 meter to travel forward and 1 to reflect back) and speed is 343m/s.
By using the above time equation:
The speed of sound in air is 343 m/s and since we are detecting any obstacle in 1-meter range so

that would t=2/343 which nearly 4 milliseconds period between transmitter and receiver.

13

If the receiver detects the wave after 4 milliseconds of the wave being transmitted, then that
means there is some obstacle within 1 meter.

4.1.1 Connecting Ultrasonic Sensor to Arduino

We used an Arduino. Firstly, we need to connect the ultrasonic sensor with the Arduino.

L
&

£
g

gzeegesxaggs 288

FFETTTTTTTTI

RN
zrarzzze

I

Figure 4 Arduino Circuit Diagram

To type our code in the Nano we have to first install Arduino Sketch coding. After typing the
code we will compile it and forward it to the Arduino board.

Plug Arduino into the USB cable and into the nano. Once we upload Arduino, we can then
compile and activate the code.

4.1.2 Compilation and Code Execution

The code used in our device gives the distance (in cm) to the closest object/obstacle.

14

/S This uses Serial Monitor to display Range Finder distance readings

A/ Include HewPing Likbrarvy
#include "NewPing.h"™

S Hook up HC-5E04 with Trig to Arduino Pin 9, Echo to Arduino pin 10
#d=fins TRIGGEER_FIN %
#defins ECHO FIN 10

£ Maximam distance we want to ping for {(in centimeters).
#defins MAX DISTANCE 400

FS HewPing setup of pins and maximam distance.
HewPing sonar (TRIGGER _PIN, ECHO PIN, MARX DISTANCE)
flocat duration, distancer

wold setup()

{
Serial .begin (9600)
}

wold loop ()
{

S Send ping, get distance in cm
distance = sonar.ping_cmi() ;

S5 Send results to Serial Monitor

Serial.print{"Distance = ")

if {distance >= 400 || distance <= 2}
{

Serial.println{™0ut of range™):

}

=lae

{

Serial .print {distance);

Serial.println{™ cm™):
}

de=lav {(S00)

}

15

CHAPTER 5:
HEALTH MONITORING SYSTEM

5.1 Temperature sensor

DS18B20 is a temperature sensor that provides 9-to-12-digit temperature readings. These values
show the temperature of a specific device. The communication of this sensor can be completed
through the single-wire bus protocol, which uses the data line to communicate with the internal
microprocessor. Furthermore, it obtains its power from the data line hence no external power

source is required. The range from which the temperature can be calculated is from -55°C to
+125°C.

DS18820
»V
82
i1 '{"1
—ICRE;T"'io_\l 9| =
o
Ay apgr y e
4 L
e ifE
N A 0
xrm 21
Ld s ;—2"&
0 -2
T -
4 e
332

Figure 5 Temperature Sensor Circuit Diagram

5.1.1 DS18B20 Pin Configuration

16

Figure 6 DS18B20

Pin 1: Ground terminal
Pin 2: Power supply (Vcc) from 3.5V to 5V
Pin 3: Data pin: It provides temperature value, which communicates using the single-wired

method.

5.2 Working Principle:

DS18B20 has three pins, which are power, data, and ground terminals. We connect the sensor's
power and ground terminals to the Arduino's power and ground and the sensor's data pin to the
Arduino's digital 1 \V O pin 2. Then we can use our code to calculate the user's temperature. To
get the temperature measurement, we need to issue a command. When received by the sensor, it
will initiate a data dialog and all measured values are stored in the sensor's RAM. We can read it
to get data or write to it to specify the resolution of the sensor. To read the data, we issue a
command and receive 9 bytes of data. Then use the following formula to determine the
temperature.
Temperature = ((high byte << 8) low byte) * 0.0625

Then convert this value to Fahrenheit and display it to the user.

The code for this is:

17

g¢include «<OneWire.h>
#includes <DallasTemperature.h>

Ff Data wire is plugged into digital pin 2 on the Arduine

$define ONE WIRE BUS 2

Ff Setup a oneWire instance to communicate with any OneWire dewvice
OneWire oneWire (ONE_WIERE BUS);

/f Pass oneWire reference to DallasTemperature library DallasTemperature sensors{soneWire);

vold setup (void)

{

gensors.begin{); // Start up the library
Serial.begin{9e00);

1

vold loop (woid)

{

S/ Send the command to get temperatures
sensors.requestlemperatures ()

S/print the temperature in Celsius

Serial.print ({"Temperature: ");

Serial.print {(senscrs.getTempCByIndex {0}) s
Serial.print({char)17&);//shows degrees character
Serial.print("C | ™):

S/print the temperature in Fahrenheit
Serial.print({{sensors.getTempCByIndex(0) * %.0) /S 5.0 + 32.0}):
Serial.print(({char)17&)://shows degrees character
Serial.println("F"):

delay (500)
}

18

5.3 Pulse Sensor:

V3 sv vin
o13

012

Arduino o0

L]
L

8
FFTTTTTTTTTTTI

s
H
lII!T‘

222223
o

Figure 7 Circuit Diagram for Pulse Sensor

Pulse wave refers to a change in volume of a blood vessel that ensues while the heart starts
pumping the blood. The pulse sensor is such a device that detects as well as monitors the change
in volume. Output is obtained from the pulse sensor when the user connects his fingertip to it.
The sensor consists of 24 inches’ color code wire, ear clip, Velcro Dots-2 transparent stickers-3.

Figure 8 Pulse Sensor Pin Configuration

Pulse sensor is open source, with plug-and-play hardware. It effortlessly integrates real-time
heart rate information into our project. The sensor consists of two circuits which act similar to an
optical amplifier with noise eliminating too. Due to these circuits, pulse reading is very easy and
fast. The sips at 5v power draw just 4mA.

Basically, the pulse sensor consists of three pins which are GND, VCC and SIGNAL. The black
wire is the ground terminal, the red is the supply wire, and the third purple is the output signal
wire

After connection, we use the VCC pin and GND pin to supply power. The pulse sensor operating

voltage is 5V or 3.3V. First, we connect the sensor to an Arduino, then we can run the code.

19

The Arduino code for this sensor is:

#¢define USE ARDUINO INTERRUPTS trus // Set-up low-level interrupts for most acurate BEM math
¢include <PulseSensorFlayground.h> // Includes the PulseSensorPlayground Library

const int PulseWire = 0; // '5' Signal pin connected to AQ

const int LEDL3 = 13; // The on-board Arduinc LED

int Threshold = 550; // Determine which Signal to "count as a beat™ and which to ignore
PulseSensorPlayground pulsedensor; // Creates an object

void setup()

{
Serial.begin(9600);

// Configure the PulseSensor chject, by assigning our variables to it
pulsedensor.analoglnput (PulseWire) ;
pulseSensor.blinkOnPulse (LED13); // Blink on-board LED with heartbeat
pulseSensor. setThreshold (Threshold) ;

// Double-check the "pulseSensor” object was created and began sesing a signal
if ([pulseSensor.begin)}

{

Serial.println("PulseSensor chject created!™);

}
}

vold loop() |
int myBEM = pulseSensor.getBeataPerMinute(); // Calculates BEM

if (pulseSenscr.sawStartOfBeat())

[// Constantly test to see if a beat happened

Serial.println("¥ L HeartBeat Happensd ' "); // If trus, print a message
Serial.print ("BEM: ");

Serial.println{myBEM); // Print the BEFM wvalue

}

delay{20]
}

20

CHAPTER 6:
FACE RECOGNITION SYSTEM

6.1 Introduction

Facial recognition insinuates the detection and identification of a person. Whenever the user
requires this functionality, he will press the dedicated button for it which in turn invokes it. The
faces are detected using the mounted camera with the help of Jetson Nano. The result is then

shared in the form of audio given via the headphones.

Face recognition harnesses the machine learning (ML) algorithms and deep learning. ML can be
regarded as a sub-branch of Al in which the system learns to identify data and make decisions
based on a provided dataset. Deep learning is referred to as a sub-branch of ML which employs
ML algorithms and data sets to train/instruct its deep neural networks for enhanced accuracy.

Our system is set up in such a manner that almost any task can be completed or automated with

minimal human intervention.

NVIDIA Jetson Nano developer kit has a Mobile Industry Processor Interface (MIPI) powered
Camera Serial Interface (CSI) port. It can support several camera modules like the Raspberry Pi
camera and others. The camera used in our device is the Philips CMOS, model s988, which is
compact yet suitable for machine learning and computer vision applications like facial

recognition. Our device supports facial recognition for four persons.
6.2 Algorithm

The main scheme on which the facial recognition model works is Machine Learning and Deep
Learning. The main difference between ML and DL is that ML makes use of different algorithms
to learn from the data set and make well-informed decisions based on what it has learned
whereas DL organizes the algorithms in such a manner that they form an Artificial Neural
Network (ANN) which has the ability to learn and educate itself and additionally make its own

decisions intelligently.

21

6.2.1 Neural Networks

They are a series of algorithms that identify relationships and patterns in data. ANN has similar
functionality like that of a human. It is made up of hundreds and/or thousands, sometimes
millions of artificial neurons known as the processing units. They are interlinked to each other
with the help of nodes. Traditionally, all the inputs and outputs are independent of each other. It
employs a set of learning algorithms known as backpropagation to learn regarding the

information fed in it and produce a result or output.

The main advantage of using backpropagation is that the network can also work backward i.e it
can go from the output unit back to the input unit to adjust weights of the connections between

its units hence producing the lowest possible error between the actual and the desired outcome.

6.2.2 Processing Flow

Data acts as the main fuel since ML algorithm learns from these enormous data set. These
datasets are used to educate the deep neural networks. The main phases that the ML algorithm
undergoes for facial recognition are :

Face Aligned Fealure

ImageVideo | Face Location, Face Vector Face ID

Detection |Size & Pose| Face Feature .| Feature
e Alignment Extraction Matching I

Tracking
Database of
Enrolled
Users

Figure 9 Facial Recognition Processing Flow [12]

o Face Detection : Locating faces in an image.

o Face Alignment: Adjusting or normalizing the faces found.

22

o Feature Measurement and Extraction: The algorithm uses data to identify different
patterns and features from the face to form a feature vector. ML algorithm also decides
which classes are to be and which are relatively close. This process is known as
embedding.

o Face Recognition or Feature Matching: ML algorithm will match the feature vector of
the input face against the feature vector of known faces in the database. If the difference

between them is close then it means that the face is matched.

The algorithm uses data to identify different patterns and form a feature vector. It implies that
input is in the form of an image and the output is in the form of a feature vector. A feature vector
is regarded as an N-dimensional vector containing numbers, that manifest the different features
of the image or generally the object. Embedding is the formation of such a vector that contains
data of features which are semantically close to each other. The main classes formed in our

feature vector are:

Height of face

Width of face

The average color of the face (R, G, B)
Width of lips

Height of nose

o g~ w b F

Other Secondary classes

Once every image is encoded into a feature vector the next step is the comparison. The feature
vector is then matched with the databases of feature vectors of a known person. If the difference
between them is close then it means that the face is matched. The difference is according to the

set threshold which is known as the tolerance level in our case the tolerance level is 0.3.

This technique can be applied using image processing techniques such as haar but the main

reason for using machine learning is that it can help out with two main things:

1. Derivation of Feature Vector: Listing all the classes of the features is an extensive and
tedious job as an enormous number of classes exist. ML algorithms can tremendously

help us out as it intelligently makes use of such secondary features.

23

2. Matching the Algorithm: A ML algorithm intelligently matches the new images feature

vector with the predefined feature vectors in the corpus

Several python deep learning libraries are used which assist us in implementing the ML

functionality in our program.

6.2.3 Libraries Utilized:

o Face_recognition

o Numpy

o OpenCV

o Python Imaging Library (PIL)

o Image and ImageDraw (from PIL)

6.2.4 Face_recognition

The main aim of using the face_recogntion library is matching i.e to check the similarity of the
input face to the stored pictures list. It also yields a numerical measurement that corresponds to
the similarity amidst the input face and all known faces list. Criteria for selection set is that the
lower the number obtained, the more similar the faces. A threshold level is also set known as the

tolerance level.

6.2.5 OpenCV and its Prerequisites:

OpenCV is an open-source library of python whose main focus is real-time computer vision. It
includes attributes like image processing, object detection, face detection, etc. The functionality
that OpenCV performs is to facilitate the face_recognition library with a deep learning network.

To use OpenCV, CUDA and cuDNN support are required. CUDA stands for Compute Unified

Device Architecture and it refers to 2 things:

1. The CUDA Architecture: A parallel GPU architecture.
2. The CUDA Software Platform And Programming Model: A type of APl wused to

program GPUs for general purpose processing.

24

CUDA is a vital part as it enables Its user to speed up different intensive calculations by utilizing

the GPU for parallel processing.

cuDNN refers to CUDA Deep Neural Network. It represents a deep learning library used for
GPU acceleration and is based upon CUDA.

The main difference between CUDA and cuDNN is that CUDA is similar to a workbench which
has many tools inside it whereas cuDNN is one of its tools. Hence, to run a deep neural network
based on CuDNN, we must first install CUDA. The JetPack already has in-built support for
CUDA and cuDNN.

Other prerequisites for OpenCV include:
o Dlib

o Cmake
Additionally, the JetPack in-built support for OpenCV too as well which just needs to be

activated. The main purpose of using openCV is to utilize the GPU for the deep learning.

OpenCV by default comes with a pre-trained Haar cascades but currently we are not using this in
our model. We are using the more accurate, deep learning-based face detector which can be
found in the official release of OpenCV in GitHub.

6.3 Results:

Figure 10 Wajiha Jawwad Figure 11 Pervaz Alam

25

Figure 12 Simra Kausar Raja Figure 13 M. Zargham Baig

26

CHAPTER 7:
IMAGE CAPTIONING

7.1 Introduction

Image Captioning refers to generating a textual description for a given image. Basically, its
purpose is to take an image as input and produces a relevant caption as output against it. In our
project, we have given a video input and the program takes its frames into account. With the
emergence of Deep Learning, along with numerous datasets also available, this technique has
evolved significantly. The motivation to understand image captioning lies in its real-world
scenario applications. Aid to blind people is the most important application because a product
can be made for such people that guides them while navigating with their surrounding
environment without the assistance of someone else. This can be accomplished by first

converting the real-time scene around them into a textual caption and then convert it into audio.

7.2 Algorithm

There are 2 major parts of our algorithm. First is while looking at an image we are forming the
description as we are seeing the image, secondly, at the same time, we are looking to create a
meaningful sequence of words. The first part is handled by Convolutional Neural Networks and

the second is handled by Recurrent Neural Networks.
7.2.1 Convolutional Neural Networks (CNN)

CNN are a type of neural network (already discussed in section 6.2.1) that analyzes visual
imagery in a grid-like topology. It performs both generative and descriptive tasks when used in
combination with recommender systems and natural language processing (NLP). There are
multiple layers present in a CNN. These layers are generally input, output and hidden layers.
These include multiple types of layers as discussed below.

e Layer:1 Convolutional Layer, this layer performs the convolution of information with a

filter/kernels so that specific features can be detected on an image.

27

1(1/1(0|0
0]1]1]11]|0 413|4
olof[i[s]1] [2[4]3
0{0(1,)1(0,] 2(3|4

o[1]1[a]o,
iaige Convolved
Feature

Figure 14 Example of convolved feature [13]

e Layer: Activation Layer, it harnesses the Rectified Linear Unit, also known as RelLu
which refers to rectifier function. It is multiplied with the convoluted input with the intent
to extend the non-linearity among the network.

e Layer:3 Pooling Layer, this layer reduces the size of the input so that a reduced number
of parameters to be computed. It basically down-samples the features. It utilizes a non-
overlapping filter of 2x2 accompanying a stride of 2 that returns the max value of
features. Purpose of max filter is to give the max value inside the features inside the

region.

117
- -

Convolved Pooled
feature feature

Max Pooling
2x2 j
stride 2 D ’
26x26x32 13x13x32

Figure 15 Example of pooling layers working [13]

28

e Layer:4 Fully Connected Layer, this layer connects all inputs from one layer to the next
layer activation units. This layer includes flattening which enables the user to learn new
nonlinear combinations of features and combine these features together for building a

model.

(X
7
A

(-
3

w ‘/
\ ‘ ' output layer

hidden layer 1 hidden layer 2

O
<

)

input layer

Figure 16 Example of connecting layers working [13]

Ultimately, the result achieved is that of an activation function that will help classify the output.

7.2.2 Recurrent Neural Networks (RNN)

RNN is of neural network that saves the output of a particular layer and feeds that output as input
in the next step to predict the output of the next layer while using sequential data or time-series
data. They have a Hidden Layer or Internal Memory which retains information about the

sequence and previous inputs.

- ok

B

Input Layer Hidden Layers Output Layer Recurrent Neural Network

Figure 17 Converting Feed-Forward NN to RNN [15]

29

7.3 Algorithm Concept:

First, we will import the necessary libraries. Using libraries is necessary as they are collections

of prewritten code that users can use to optimize a task.

7.3.1 Importing Libraries

The libraries used in our code are:
o Tensorflow
o Matplot
o Numpy
o JSON
o pyttsx3

o cv2
import tensorflow as tf

TensorFlow is a foundation library used to create Deep Learning models directly.

import matplotlib.pyplot as plt

Used to generate plots and graphs of attention for visualizing on what features our model

is focusing on while captioning them.

import numpy as np

NumPy is used to perform a wide variety of mathematical operations on arrays in a fast and
efficient way by manipulating numerical data inside them.

import json

JSON is used for storing and exchanging data between Python objects and JavaScript object

notation strings.

import pyttsx3

30

This library provides an engine that gives text-to-speech conversion functionality. Its detailed

functionality is already discussed in section

import cv2

OpenCV is used to provide various functions for image and video processing. Its prerequires are

already discussed in section 6.2.5.
7.3.2 GPU Configuration

Used to configure the GPU (Graphic Processing Unit) memory for TensorFlow otherwise
TensorFlow will allocate all of the available GPU memory when it is started. So, we have
allocated GPU memory.

config = tf.compat.vl.ConfigProto()

config.gpv_options.allow_growth=True
sess = tf.compat.vl.Session(config=config)

7.3.3 Capturing Live Camera Feed

cap = cv2.VideoCapture(Q)

Used to video capture live objects from the camera. The ‘0’ specifies that we are taking a feed

from the webcam.

ret, frame = cap.read()
we can retrieve frame by frame from the video feed.
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

OpenCV actually reads colors as BGR (Blue Green Red), where most models read as RGB (Red

Green Blue), so we convert the frames as such.

31

7.3.4 Loading the frames

First, we will convert the frames into Mobile Net V2’s expected format by resizing the image to
299px by 299px

Next, preprocess the images using the preprocess_input method to normalize the image so that it
contains pixels in the range of -1 to 1, which is meant to adequate your image to the format that

our model requires.

def load_image(frame):
img = tf.image.resize(frame, (299, 299))
img = tf.keras.applications.mobilenet_v2.preprocess_input(img)
return img

7.3.5 Initialize MobileNetV2 and load the pretrained ImageNet weights

image_model = tf.keras.applications.MobileNetV2(include_top=False, input_shape=(224,224,3),
weights='imagenet')

This function returns a Keras image classification model, which is our base CNN, loaded with
weights pre-trained on ImageNet i.e., an image database.

7.3.6 Feature extraction

image_features_extract_model = tf.keras.Model(new_input, hidden_layer)

The CNN is performing feature extraction whose purpose is to compress the information in the
original image frames into smaller dimensions. Since it is encoding the information of the
image here the CNN acts as an encoder. The image_features_extract_model is our deep CNN

encoder, its purpose is to learn the features from the input image.

32

7.3.7 Tokenize the captions

The captions of a pre-trained model are already tokenized. This gives us a vocabulary of all of
the unique words in the available dataset.
We have limited the vocabulary size of words to the top 5,000 words in order to save memory.

The mapping file is used with 5000 unique word-to-index mappings and vice versa.

with open('tokenizer.json') as T:
data = json.load(T)
tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(data)

7.4 Model: MobileNetV2

We are using a pre-trained model: MobileNetV2 or transfer learning to customize this model
according to our needs. MobileNet model is TensorFlow’s mobile computer vision model which
employs depthwise separable convolutions. MobileNet refers to a class of CNN which has been
open-sourced. It notably lowers the amount of parameters resulting in a more lightweight, low-
latency deep neural networks which are ideal for our edge device. The major contrast among
MobileNet architecture and a typical CNN is that in place of a single 3x3 convolution layer
ensued by batch normalization and ReLU, MobileNets splits the convolution resulting in a 3x3
depth-wise convolution with the addition of 1x1 pointwise convolution. MobileNetV2 is similar
to MobileNet with the exception that it has inverted residual blocks with bottlenecking features

resulting in a more reduced parameter count.

It consists of 2 major parts: Encoder and Decoder. The parts from which we have to extract the
features, out of the lowermost convolutional layer present in MobileNet yielding an initial vector
of 8x8%2048 dimension. We have to diminish it to a shape of 64x2048. This diminished vector is
then transited through the CNN Encoder (constitutes of a single fully connected layer). Finally,
RNN (here GRU), the decoder, is responsible to forecast the next word of the image and connect

them together.

33

7.4.1 Encoder

Previously, we had extracted the features and then passed them to our encoder. The job of the
encoder is to pass those features over a fully connected layer and we have added a linear dense
layer after it so that our model can handle tedious and complex features. The encoder will return

the generated string that goes into the Decoder afterward to process.

class CNN_Encoder(tf.keras.Model):
def __init__(self, embedding_dim):
super (CNN_Encoder, self).__init__()
self.fc = tf.keras.layers.Dense(embedding_dim)
def call(self, x):

X = self.fc(x)
X = tf.nn.relu(x)
return x

encoder = CNN_Encoder(embedding_dim)

7.4.2 Decoder

The Decoder is our Natural Language Processing (NLP) Model. For the captions to be
generated we have used GRU (Gated Recurrent Units) because it has slightly less complexity in
structure as compared to LSTM (Long Short-Term Memory). LSTM layer in this case would
have been complex and it would not be deployable on the processor. GRU is used here because
we want quick and decent accuracy, also scenarios where infrastructure is an issue just like our
processor.

A Single layer of GRU is used followed by two dense layers. Since this is a time series problem
where we need to predict the next string based on its connection with the previous string, the
addition of dense layers itself is not so efficient so we have added a forced learning attention

model.

34

class RNN_Decoder(tf.keras.Model):
def __init__(self, embedding_dim, units, vocab_size):
super(RNN_Decoder, self).__init__()
selT.units = units

self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
selfT.gru = tf.keras.layers.GRU(selT.units,
return_sequences=True,
return_state=Truve,
recurrent_initializer='glorot_uniform')
tf.keras.layers.Dense(self.units)
tf.keras.layers.Dense(vocab_size)

self.fcl
self.fc2

self.attention = BahdanavAttention(self.units)

decoder = RNN_Decoder(embedding_dim, units, vocab_size)

7.4.3 Attention Mechanism

In every sequence of text words, outputs from previous words are used as inputs, in combination
with new sequence words. This gives the RNN networks a feature of memory that makes
captions more context-aware. RNNs become computationally complex if more layers are simply
added on, so generally, in limited memory scenarios, attention models come to help in selecting
the most relevant words.

class BahdanavAttention(tf.keras.Model):
def __init__(self, units):
super (BahdanauAttention, self).__init__()
selT.W1l = tf.Keras.layers.Dense(units)
self.W2 = tf.keras.layers.Dense(units)
self.V = tf.keras.layers.Dense(1)

The Bahdanau Attention or Additive Attention model refers to taking the floating-point value

from the dense layers and is predicting the correct token. This mechanism learns to align and

35

translate jointly, therefore, performing a linear combination of encoder states and decoder states.
With the help of few dense layers, it is training such a network that is converting the floating-
point input to an integer token which is associated with the previously generated target words.

Thus, acts as a forced teacher model.

Encoder Decoder

nx | Recurrent layer i _1[i Recurrent layer | Xn

| Embedding | | Attenon | [Embedding
SouTrces Targets

Figure 18 Layers in RNN encoder-decoder model with Bahdanau attention [14]

7.4.4 Evaluate

Now for the part when we run our model with input frames coming from the live feed, we

fundamentally run the evaluate function whose jobs are as follows

The decoder is called with batch size =1 because we are providing one frame at a time.

hidden = decoder.reset_state(batch_size=1)

The preprocessed image that is given as an input here has a 3-dimensional matrix i.e. [height,
width, channels (RGB)], but to give it as an input to the model we need to increase another

dimension that is done by wrapping around it another dimension by expand_dim.

temp_input = tf.expand_dims(load_image(image), 8)

The expanded dimensional image is passed through the image_features_extract_model and its

features are extracted in the variable img_tensor_val

36

img_tensor_val = image_features_extract_model(temp_input)

The encoder features are called and saved in features variable

features = encoder(img_tensor_val)

Then the features, hidden and img_tensor_val variables are passed through a loop to predict the

exact token against the string words

The tokenizer returns the string values to the evaluate function, and we are saving the function

output in a variable named ‘result’

result, _ = evaluvate(img)

Then the strings are joined together to form the caption

result = ' '.join(result)

7.5 Text to speech

Lastly, the generated caption has to be converted into audio, which is done first by initializing an

engine using the pyttsx3 library. The pyttsx3 has been discussed in detail in section 3.5

engine = pyttsx3.init()

Lastly, we pass the result variable that contains our caption to the engine and use the ‘say’

function so it generates audio that can be listened through the headphones

engine.say(result)

37

7.6 Results

2021-05-26 11:22:40.186833: 1 tensorflow/strean_executor /cuda/cuda_gpu_sxecutor .
€C:1005] AnG4 does mot support WUMA - returning MW node zero

2WIL-05-26 11:22:40.106908: [tensorflow/core/common_runtine/gpu/opu_device.cc:1
G88] Adding vislble gpu devices: @

2021-05-26 11:22:40.100584: | tensorflow/core/common_runtine/gpu/opy_device.cc:l
287] Device intercoanect Streantxecutor with strempth 1 sdge matrix:

2021-085-26 11:22:40.107927: § tensor Mow/core/common_runtine/gpu/gpu_device.cc:1
293) ®

20719526 11:22:40.0070%1: | tensar Flow/core/common_runt Une/gpu/opu_device.crs)
We) 0 N
W21-05-26 11:22:40.107355: 1 tensorflow/stresn_executor/cuds/cods_gpa_emecutor.
CCI1005) ARRGS does MOT SUPPOrT MUMA - returnisg MFA nede rero
2021-05-20 131:22:40.107631: 1 t«mwnc-[nrm_uocutulcmlalo_.o_m-r.
CC:1005) ARMOA does NOT SuUpPOrt MUMA . returning MUMA node rece
I023-05-20 11:22:40.107749:; 1 tmsorﬂulcuoltm_mt\m
432) Created Tensorflow device (/Job:1ocalhast/replica: o/ tas device: 9 wit
“» phystcal GPU (device: O, nane: WYIDIA Togra X1, pct bus LU4:
9, compute capablility: 5.3)
11122:47.471663: | tmwﬂc-lnfeu[nxut.r/puuun/dnuunu 1o
der.cci49)] Suxceisfully opeced dynanic Wtbrary Libcudon.so.8 N
M21-05-26 11:22:57.002106: I temsorflew,

/Atrean_executor /plets 'Seloult fdso la
ader.cc149) Seccessfully opeced dynamic WUhrary uu«u.?...c:"' e
imu A% & roos with n\l-m“mnp(lluuohﬂwh—n“ ,

Figure 20 Running Image Captioning Model and Output

The caption displayed is given in the form of audio output to the user. The displayed image is a
backend display for the developer.

38

CHAPTER 8:
CURRENCY RECOGNITION

8.1 Processing Flow:

Pakistani currency notes of PKR.10, 20, 50, 100, 500, 1000, 5000 are identified using the

machine learning approach. The steps involved are as follows:

8.2 Using Machine Learning Algorithm (YOLO V5)

It is an ML procedure, which utilizes convolutional neural organizations for the discovery of
articles. YOLO, an acronym for You Only Look Once, is one of the most efficient object
detection methods available. Despite the fact that it isn't the most precise object detection
technique but is one of the robust algorithms available which is very suitable for the purpose of

real-time recognition on an edge device.

In contrast with recognition procedures, the detection algorithm's goal isn't just to forecast class
labels but also to detect the position of objects. As a result, it can detect several items within an
image in addition to classifying them into a category. The architecture of YOLO is like FCNN
(fully convolutional neural network) where an image (nxn) is given as input and a prediction
(mxm) is given as output.

This Algorithm has modeled detection as a regression problem which is further explained in
Section 8.1.1.2. It makes use of a single neural network to a given image; it implies that this
network separates the image into regions, or an SxS grid and predicts each region's bounding
boxes and probability. To anticipate the bounding box confidence for the boxes and class c
probabilities, the algorithm uses features from the full image.,. These bounding boxes are
weighted by the predicted probabilities. These predictions are processed as

SxSx(B*5+C)tensor

If the object's centre is within a grid cell, then detecting the object is the job of the grid cell.

39

Every grid cell makes a prediction regarding two things:
o The B bounding boxes.
o Those boxes' Confidence scores

The model's confidence score indicates how certain it is that this box contains an object. and also
how accurately the box is predicted by YOLO. Formally, it is defined as
Prob(Obj) * IOU

If that cell has no objects in it, then its confidence score will be zero. If Not, we would like the

confidence value to be equivalent to the (1.0.U) between the predicted box and the. ground truth

Every bounding box comprises of five predictions, which are:
o Xand Y coordinates, width w, height h

o Confidence
The (X, y) coordinates refer to the middle of the box in relation to the boundaries of the grid cell.
The width and height are calculated using the complete image as a reference. Lastly, the
confidence prediction characterizes the intersection over the union between the predicted box
and the true box. Each grid cell also predicts the C conditional probabilities for a class:

Prob(Class |Object)

These probabilities are written on the grid cell comprising the object Per grid cell, Only one set

of class probabilities is predicted.no matter the amount of boxes B.

The class-specific confidence scores for each box are calculated by multiplying conditional class

probabilities and individual box confidence predictions during testing.:

Prob (Class | Object) * Prob (Object) * IOU = Prob (Class) * IOU

This score is the final confidence score written.

40

8.2.1 Network Architecture and Training

There are 24 convolutional layers of the YOLO network are followed by two fully linked layers.
We will use 1x1 reduction layers followed by 3x3 convolutional layers instead of employing

inception modules.

mf |
3|
:‘I— e I \
31- } 28|, KL A
2] h N7 7 \ N N7
n2 88 i 3 3 J 7% a
a 4) 7 7
3 w2 256 52 1024 1024 024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
7x7xb4-52 Ix3Ix192 1x1x128 1x1x256] 4 1x1x512 x2 3x3x1024
Maxpool Layer Maxpool Layer Ix3Ix256 3x3x512 3x3x1024 3x3x1024
2x252 2x2-52 1x1x256 Ix1x512 3x3x1024
Ix3x512 Ix3x1024 3x3x102452
Maxpool Layer Maxpool Layer
2x242 2x242

Figure 21 YOLO Architecture [10]

Since we are using fast YOLO in our project a convolutional neural network with fewer layers
i.e 9 instead of 24 and fewer filters in those layers is going to be implemented. Except for the
size of the network, all The parameters for both training and testing are the same. For Fast
YOLO and YOLO.

Our model's output is optimized for the sum-squared error. To reduce model instability caused
by weighing localization error equal with the classification error, we have increased the loss
obtained via bounding box coordinate predictions and decreased the losing confidence

predictions for boxes without any objects. We have employed 2 parameters:

Acoord =5
Anoobj =5

41

Multiple bounding boxes per grid cell can be actively predicted by YOLO but an issue arises that
during training just one bounding box predictor is required for every object hence we have
assigned one predictor liable for predicting an object, whose prediction contains the highest
current IOU with the ground truth. This results in specialization among the bounding box
predictors. Every predictor improves its ability to anticipate specific sizes, aspect ratios, or object

classifications., therefore enhancing our overall recall.

8.2.2 Linear Regression:

The linear regression allows the building of a model that predicts the value of new data, based on

the training data used to train our model.

Population Random
Slope Independent Error

Coefficient Variable term

D 7
Y =By +B,X +¢€

Linear component Random Error
component

Population

Y intercept
Dependent
Variable —__

Figure 22 Eq of Linear Regression [11]

The Y-variable is the dependent variable or our response which we intend to predict. This

enables us to create a model with many features i.e X variables to predict values in Y.

8.3 Data Set Gathering

We gathered images by manually clicking pictures from a 12-megapixel digital camera.
Approximately 600 to 1000 pictures were taken for each banknote with different angles and

diverse backgrounds to make our dataset more versatile.

42

B X R

IMG_20210327_1 @ 2 IMG_20210327_1 @ A IMG_20210327_1 @ 2 IMG_20210327_1 IMG_20210327_1 IMG_20210327_1 @ ~ IMG_20210327_1 IMG_20210327_1
94329.jpg 94331.jpg 94334.jpg 94339,jpg 94345.jpg 94347 jpg 94403 .jpg 94409.jpg

R v
> & Yo

IMG_20210327_1 IMG_20210327_1 327_ IMG_20210327_1 IMG_20210327_1 IMG_20210327_1 & ~ IMG_20210327_1 IMG_20210327_1
94414.jpg 94432.jpg J 94535.jpg 94546.jpg 94600.jpg 94614.jpg 94620.jpg

m.o e =~ B

=3

IMG_20210327_1 @ 2 IMG_20210327_1 IMG_20210327_1 @& 2 IMG_20210327_1 @ 2 IMG_20210327_1 @& 2 IMG_20210327_1 @ 2 IMG_20210327_1 IMG_20210327_1
95155.jpg 95158.jpg 95221.jpg 95226.jpg 95231.,jpg 95234.jpg 95242.jpg 95249.jpg

s " L E
! o4 b m _} . L;&

IMG_20210327_1 & ~ IMG_20210327_1 IMG_. 0327_1 & “ IMG_20210327_1 @& = IMG_20210327_1 & * IMG_2021 IMG_20210327_1 IMG_20210327_1
95257.jpg 95300.jpg 95305.jpg 95310.jpg 95316.jpg 95319.jpg 95324.jpg 95337.jpg

Figure 23 Sample of Data set of Rs.10

8.4 Data Pre-processing

Data pre-processing is that part of our project where we filter out the data which is either blurry
or irrelevant. This step must be done manually as each image has to be analyzed and afterwards a
decision is made on whether that image must be kept in the data set or not. Some of the few
points which were kept in mind during Data Pre-processing were:

o Clear picture with avoiding motion blur

o Currency notes should aptly fit the screen; They should not go beyond the screen.

o Acquire pictures from different angles and distances

8.5 Data Annotation

Afterwards, all the images were annotated by using an open-source software “Label.Img”. it
refers to marking or labeling the data. We have used the parallel rectangles approach to mark our

data. When the picture is manually labeled and saved in the respective folder then a text(txt) file

43

of YOLO format appears within the same folder which contains the image having the same
name. A file referred to as ""classes.txt" is also saved within that folder. "‘classes.txt'" contains

the list of class names that our YOLO label refers to.

H i H i B B

IMG_20210327_1 IMG_20210327_1 @ 1 IMG_20210327_1 @ "1 IMG_20210327_1 @ “ IMG_20210327_1 @ " IMG /umwl» @ 4 IMG_20210327_1 @ 1 IMG_20210327_1
95724.txt 95732.jpg 95732.txt 95733,jpg CLYEER 95735.jpg 95735.txt 95746.jpg

IMG_20210327_1 @& IMG_20210327 1 @& IMG_20210327_1 v IMG_20210327 1 @& IMG_20210327 1 @& IMG_20210327_ 1 @& IMG_20210327 1 @& IMG_20210327_1
95746.txt 95747 jpg 95747 txt 95748.jpg 95748.txt 95757.jpg 95757.txt 95840.jpg

® .-@.m.mz

IMG_20210327_1 IMG_20210327_1 IMG_20210327_1 @ " IMG_20210327 2 @& " IMG_20210327_2 @& " IMG_20210327 2 @ " IMG_20210327 2 @& ' IMG_20210327_2
95840.txt 95842 .jpg 95842 txt 01152, jpg 01152.txt 01159.jpg 01159.txt 01206.jpg

& &
o | | 6

IMG_20210327_2 IMG_20210327_2 IMG_20210327_2 @ . IMG_20210327_2 @ ' IMG_20210327_2 @ “ IMG_20210327_2 @ “ IMG_20210327_2
01206.txt 01214.jpg 01214.txt 01221,jpg 01221.txt 01225.pg 01225.txt

Figure 24 Data set with Classes Txt

8.6 Data Augmentation

The current dataset which we have acquired has 600 to 1000 pictures but these are not sufficient
for our model training. In order to achieve a dataset that bears better results a technique known as

Data Augmentation must be performed.

In this step, our dataset is expanded in size using morphological operations. Augmentation is
such a strategy that allows the user to notably expand the diversity of training data, without the
need of gathering new data. Several data augmentation techniques include cropping, padding,
horizontal flipping, etc to train large neural networks. In order to train a deep learning model, we

require many images per class i.e. minimum of 600 images per class for decent accuracy.

44

Afterwards, the dataset is divided into two parts namely training set and test set. In this project,
we divided the dataset with a ratio of about 70:30. i.e. 70% of images were placed in the training

set while 30% were placed into the test set. The 5 steps done in data augmentation were:

Zoom to the Randomly clip Random
uniform size or expanded rotate

Zoom to the

uniform size

U

Random color
adjustment

Figure 25 Steps of Augmentation

8.7 Software Prerequisites

The software required for the implementation of the currency recognition includes:

8.7.1 Python 3.9.0

The major software requirement for this project is a python 3.9 installation on your operating

system. It can be done by visiting the official website of python.

8.7.2 Anaconda Distribution

The first step of working with image processing on Python is to install the Anaconda distribution

from their official website given as

45

https://www.anaconda.com/

8.7.3 Visual Studio code

After installing the anaconda distribution, launch visual studio code, and wait for its installation.
Visual Studio Code’s main use iS as a source-code editor. It is an essential source-code editor
used for various functionalities such as debugging, optimizing code, embedded Git and other

version controlling, code refactoring and much more.

8.8 Preparation of Machine Learning Model

8.8.1 TensorFlow

TensorFlow refers to a programming library available in open-source. It is mainly for Al and can
be employed across various undertakings but its main focus is on preparing and deduction of
neural networks. It may also be referred to as a representative numerical library hooked into
differentiable programming and dataflow.

8.8.2 YAML

YAML is a comprehensible information serialization standard that can be utilized related to all
programming dialects and is frequently used to compose design records.

To start training a Yolo V5 model we would need two YAML files.

The first YAML is to specify:

o The location of your training
o Location of your validation data
o The number of classes (sorts of items) that you need to distinguish

o The names of the classes they belong to

The second YAML is to indicate the entire model setup. We can change the organization design

in this progression on the basis that we need it; yet we will go with the default one.

46

https://www.anaconda.com/

We are equipped to train ourdata with the help of these 2 YAML files i.e
data.yaml and custom_yolovbs.yaml (given in Appendix D)

To begin training, we must execute the training command with these subsequent options:

. img: characterize input picture size

. batch: decide group(batch) size

. epochs: characterize the quantity of preparing ages. (Note: default=3000)
. data: set the way or the path to our yaml record/file

. cfg: indicate our model setup

. weights: indicate a custom way to loads.

. name: result names

. nosave: only save the last designated spot

. cache: store pictures for quicker preparing

8.9 Using The Model To Make Predictions

This deep learning model thus produced will be used to make predictions on new data. An

example of this is shown below.

Figure 27 Rs. 10 Figure 26 Rs.20

20 0.51

47

Figure 28 Rs. 50 Figure 29 Rs. 500

o0 0.599 500 0.73

Figure 30 Rs. 5000 Figure 31 Rs.100

100 0.52

000 0.51

48

Figure 32 Rs.1000

1000 0.69

—
T L,

This feature of our model will be used in our final product while taking frames from a video.

8.10 Accuracy of Deep Learning Algorithm

After the development of the deep learning algorithm, the accuracy on the test set came out to be
80% i.e., about 80% of banknotes from the test set were recognized correctly. Afterwards, the

algorithm was also tested manually on new unseen data.

49

CHAPTER 9:
RECOMMENDATIONS AND CONCLUSIONS

9.1 Recommendations

In future work following features can be accommodated:

e Instead of a portable stick, the device can be made so it can be simply attached to the
clothes.

e Further features and functionalities can be added in order to make it more efficient e.g.
detection of various things like stairs, doors, windows, car detection etc.

e Instead of the Jetson Nano kit, a more advanced development board i.e., Jetson Xavier
NX and Jetson Xavier AGX can be used for faster processing.

e GSM system can be mounted in order to send a message about the location of the user to
his relatives.

e Voice recognition can be added as another feature that can be done.
9.2 Conclusion

We have been able to make this device portable, wearable, unique, low power, cost

effective and easy to use. It is capable to help blind people perform their daily chores more
efficiently and independently. We have successfully implemented the concepts of digital
image processing, circuit designing, coding/programming in python language and
prototyping. It is a multi-functional system that successfully performs the function of
obstacle detection in the path of the user using an array of ultrasonic sensors, face
recognition, determines the number of people in front of the user by face detection scheme,
identifies paper currency using a camera and it also monitors user's health conditions

using pulse and temperature sensors. The outputs of the respective functions are given to

the user through an audio signal via headphones/speakers.

Therefore, through this project we have integrated our theoretical knowledge with practicality
and gained further insight and refined our skills in all the fields mentioned above. The

major part of this project consists of concepts involving artificial intelligence, deep learning,

machine learning and sensors.

50

APPENDICES

51

APPENDIX A
APPROVED SYNOPSIS

VISION-Z

Extended Title: Artificial Intelligence Based Aiding Device for Visually Impaired People

Brief Description of The Project / Thesis with Salient Specifications:
A multifunctional aiding device for visually impaired people which detects obstacles, recognize various
objects and monitors healthcare

Scope of Work:
Design, implementation, and development of a visual aiding system

Academic Objectives:
This project will provide hands-on experience in the following courses:
e Deep Learning Algorithms
e Image Processing
e Embedded Systems
e Programming Techniques
e Structure Designing

Application / End Goal Objectives:
Al based standalone device aiding daily functionality of blind people

Previous Work Done on The Subject:
e Vision Pi
e Laser Canes, Braille printers, Infrared based obstacle detection and Text readers

Material Resources Required:
We will require Jetson Nano in concurrence with Arduino interfaced with different sensors, incorporation
of deep learning-based object detection and recognition. Programming Languages I-e Python, Arduino

No of Students Required: 4
Group Members: NC SIMRA KAUSAR RAJA, NC WAJIHA JAWWAD, ASC PERVAZ ALAM, NC
ZARGHAM BAIG

Special Skills Required:

Circuit design and analysis skills
Programming skills

Deep learning, Computer Vision
Technical documentation writing skills

Table 2 Approved Synopsis

52

APPENDIX B
PROJECT TIMELINE

Month Work Done

Sep Project Synopsis and Approval

Oct Literature Review

Nov Nano Installation and Setup, Installation and Setup of OpenCv

Dec Camera Integration with Nano, Integrating various sensors with Arduino.eg ultra-
sonic sensors, temperature sensor etc.

Jan Gathering Data Set, managing the data set and training on yolo model.
Integration of Arduino with Nano.

Feb Currency Recognition, Facial Recognition and testing all models

Mar Image captioning, Testing Sensors and Hardware interfacing

Apr Arduino output, Audio output, Final assembly and Testing

May Thesis write up and finalization

Table 3 Project Timeline

53

APPENDIX C
COST BRAKDOWN

Name of Equipment Cost-estimate
Jetson Nano 25000PKR
MicroSD Card 1350 PKR
Arduino 1250 PKR
Pulse Sensor 1350 PKR
Temperature Sensor 550 PKR
Ultrasonic Sensor 350 PKR
Keypad 150 PKR
Camera 1000 PKR
Headphones 750 PKR
Blind cane 800 PKR
Power Bank 3000 PKR
Total 35,550 PKR

Table 4 Cost Breakdown

54

APPENDIX D:
CODES

Code for Facial Recognition

import face recognition
from PIL import Image, ImageDraw
import numpy as np

import cv2

image of pervaz = face recognition.load image file('known/Pervaz.jpg')

pervaz face encoding = face recognition.face encodings(image of pervaz)[0]

image of simra = face recognition.load image file('known/Simra.jpg')

simra_face encoding = face recognition.face encodings(image of simra)[0]

image of wajiha = face recognition.load image file('known/Wajiha.jpg')

wajiha face encoding = face recognition.face encodings(image of wajiha)[0]

image of zargham = face recognition.load image file('known/Zargham.jpg')

zargham face encoding = face recognition.face encodings(image of zargham)[0]

55

Create arrays of encodings and names
known face encodings = [

pervaz face encoding,

simra_face encoding,

wajiha face encoding,

zargham face encoding

known_face names = [
”pel"VﬂZ-",
"Simra"
"Wajiha",

"zargham"

Load test image to find faces in

test image = face recognition.load image file('./unknown/a (30).jpg")

Find faces in test image

face locations = face recognition.face locations(test image)

face encodings = face recognition.face encodings(test image, face locations)

Convert to PIL format

pil image = Image.fromarray(test image)

Create a ImageDraw instance

draw = ImageDraw.Draw(pil image)
Loop through faces in test image

for(top, right, bottom, left), face encoding in zip(face locations, face encodings):

matches = face recognition.compare faces(known face encodings, face encoding)

56

name = "Unknown Person"

If match
if True in matches:
first match index = matches.index(True)

name = known_face names[first match index]

Draw box

draw.rectangle(((left, top), (right, bottom)), outline=(255,255,0))

Draw label

text width, text height = draw.textsize(name)

draw.rectangle(((left.bottom - text height - 10), (right, bottom)), fill=(255,255,0),
outline=(255,255,0))

draw.text((left + 6, bottom - text_height - 5), name, fill=(0,0,0))

name = "Unknown Person"

If match
if True in matches:
first match index = matches.index(True)

name = known_face names[first match index]

Draw box

draw.rectangle(((left, top), (right, bottom)), outline=(255,255,0))

Draw label

text width, text height = draw.textsize(name)

draw.rectangle(((left,bottom - text height - 10), (right, bottom)), {fill=(255,255,0),
outline=(255,255,0))

draw.text((left + 6, bottom - text height - 5), name, fill=(0,0,0))

57

del draw

Display image

pil image.show()

image = np.array(pil image)
cv2.imshow("Results", image)
cv2.waitKey(0)

cv2.destroyAllWindows()

Save image

pil_image.save('identify.jpg’)

Code for Image Captioning

import tensorflow as tf

You'll generate plots of attention in order to see which parts of an image
our model focuses on during captioning

import matplotlib.pyplot as plt

import collections

import random

import numpy as np

import 0s

import time

import json

from PIL import Image

import pyttsx3

import cv2

config = tf.compat.v1.ConfigProto()
config.gpu options.allow growth=True

58

sess = tf.compat.v1.Session(config=config)

def'load image(frame):
img = tf.image.resize(frame, (299, 299))
img = tf.keras.applications.inception v3.preprocess_input(img)

return img

image model = tf.keras.applications.InceptionV3(include top=False,
weights='imagenet')
new_input = image model.input

hidden layer = image model.layers[-1].output

image features extract model = tf. keras.Model(new_input, hidden layer)

with open('tokenizer.json') as f:
data = json.load(f)

tokenizer = tf keras.preprocessing.text.tokenizer from json(data)

tokenizer.word_index['<pad>'] =0

tokenizer.index word[0] = '<pad>'

top_k=30000

BATCH_SIZE =128

BUFFER_SIZE = 1000

embedding_dim = 256

units = 512

vocab size=top k+1

num_steps = len(img name train) // BATCH_SIZE

Shape of the vector extracted from InceptionV3 is (64, 2048)
These two variables represent that vector shape

features shape = 2048

attention features shape = 64

59

class BahdanauAttention(tf keras.Model):
def init (self, units):
super(BahdanauAttention, self). init ()
self. W1 = tf keras.layers.Dense(units)
self. W2 = tf keras.layers.Dense(units)
self.V = tf keras.layers.Dense(1)

def call(self, features, hidden):
features(CNN_encoder output) shape == (batch_size, 64, embedding dim)

hidden shape == (batch_size, hidden_size)
hidden with time axis shape == (batch_size, 1, hidden_size)
hidden with time axis = tf.expand dims(hidden, 1)

attention hidden layer shape == (batch_size, 64, units)
attention hidden layer = (tf.nn.tanh(self. W1(features) +
self W2(hidden with time axis)))

score shape == (batch_size, 64, 1)
This gives you an unnormalized score for each image feature.

score = self. V(attention hidden layer)

attention weights shape = (batch_size, 64, 1)

attention weights = tf.nn.softmax(score, axis=1)
context vector shape after sum = (batch_size, hidden_size)
context vector = attention weights * features

context vector = tf.reduce sum(context vector, axis=1)

return context vector, attention weights

#1In[|:

60

class CNN_Encoder(tf keras.Model):
Since you have already extracted the features and dumped it
This encoder passes those features through a Fully connected layer
def it (self, embedding dim):
super(CNN_Encoder, self). init ()
shape after fc = (batch_size, 64, embedding dim)
self.fc = tf.keras.layers.Dense(embedding dim)

def call(self, x):
x = self.fc(x)
x = tfnn.relu(x)

return X

#1In[]:

class RNN_Decoder(tf keras.Model):

def init (self, embedding dim, units, vocab size):

def _init_ (self, embedding_dim, units, vocab_size):

super(RNN_Decoder, self). init ()

self.units = units

self.embedding = tf keras.layers. Embedding(vocab_size, embedding dim)
self.gru = tf keras.layers.GRU(self.units,

return_sequences=True,

return_state=True,

recurrent initializer='glorot uniform")
self.fcl = tf.keras.layers.Dense(self units)

self.fc2 = tf keras.layers.Dense(vocab_size)

self.attention = BahdanauAttention(self.units)

def call(self, x, features, hidden):

defining aftention as a separate model

61

context vector, attention weights = self.attention(features, hidden)

x shape after passing through embedding == (batch_size, 1, embedding dim)
x = self.embedding(x)

x shape after concatenation == (batch_size, 1, embedding dim + hidden_size)

x = tf.concat([tf.expand dims(context vector, 1), x], axis=-1)

passing the concatenated vector to the GRU
output, state = self.gru(x)

shape == (batch_size, max_length, hidden_size)
x = self.fc1(output)

x shape == (batch_size * max_length, hidden size)
x = tf.reshape(x, (-1, x.shape[2]))

output shape == (batch_size * max_length, vocab)

x = self.fc2(x)

return x, state, attention weights

defreset state(self, batch_size):

return tf.zeros((batch size, self.units))

#1In[]:

encoder = CNN_Encoder(embedding dim)

decoder = RNN_ Decoder(embedding dim, units, vocab_size)

#1In[]:

optimizer = tf.keras.optimizers.Adam()

62

loss_object = tf.keras.losses.SparseCategorical Crossentropy(

from logits=True, reduction="none")

def loss_function(real, pred):
mask = tf.math.logical not(tf. math.equal(real, 0))

loss = loss_object(real, pred)

mask = tf.cast(mask, dtype=loss .dtype)

loss *=mask

return tf.reduce mean(loss)

Checkpoint

#1In[|:

checkpoint path = "./checkpoints/train"
ckpt = tf.train.Checkpoint(encoder=encoder,
decoder=decoder,
optimizer=optimizer)
ckpt manager = tf.train.CheckpointManager(ckpt, checkpoint path, max to keep=5)
ckpt.restore(ckpt manager.latest checkpoint)

max_length = 52

def evaluate(image):

attention plot = np.zeros((max_length, attention features shape))

63

hidden = decoder.reset state(batch size=1)

temp input = tf.expand dims(load image(image), 0)

img_tensor val = image features extract model(temp input)

img_tensor val = tf.reshape(img tensor val, (img_ tensor val.shape[0],
-1,

img_tensor val.shape[3]))

features = encoder(img_tensor val)

dec input = tf.expand dims([tokenizer.word index['<start>']], 0)

result =[]
for i in range(max_length):
predictions, hidden, attention weights = decoder(dec input,

features,

hidden)

attention plot[i] = tf.reshape(attention weights, (-1,)).numpy()

predicted 1d = tf.random.categorical(predictions, 1)[0][0].numpy/()
result.append(tokenizer.index word|[predicted id])

if tokenizer.index word[predicted 1d] == "<end>":

return result, attention plot

dec input = tf.lexpand dims([predicted id], 0)

attention plot = attention plot[:len(result), :]
return result, attention_plot

video name = 'img.mp4'

64

cap = cv2.VideoCapture(video name)
engine = pyttsx3.init()
while(True):

Capture frame-by-frame

ret, frame = cap.read()

Our operations on the frame come here

img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result, = evaluate(img)

result =" ".join(result)

print(result)

Display the resulting frame

cv2.imshow('frame',frame)

engine.say(result)

engine.runAndWait()
cv2.1mshow('frame',frame)
engine.say(result)
engine.runAndWait()

if cv2.waitKey(1) & 0xFF == ord('q'):
break

When everything done, release the capture
cap.release()

cv2.destroyAllWindows()

YAML file for YOLO for Currency Recognition

65

Hyperparameters for COCO training from scratch

python train.py --batch 40 --cfg yolovSm.yaml --weights " --data coco.yaml --img 640 --epochs
300

Ir0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
Irf: 0.2 # final OneCyclelLR learning rate (IrQ * Irf)
momentum: 0.937 # SGD momentum/Adam betal
weight decay: 0.0005 # optimizer weight decay Se-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_Ir: 0.1 # warmup initial bias Ir

box: 0.05 # box loss gain

cls: 0.5 #cls loss gain

cls pw: 1.0 # cls BCELoss positive weight

obj: 1.0 # obj loss gain (scale with pixels)

obj pw: 1.0 # obj BCELoss positive weight

iou t: 0.20 # IoU training threshold

anchor t: 4.0 # anchor-multiple threshold

anchors: 3 # anchors per output layer (0 to ignore)

fl gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.5 # image HSV-Hue augmentation (fraction)

hsv s: 0.7 # image HSV-Saturation augmentation (fraction)

hsv_v: 0.4 # image HSV-Value augmentation (fraction)

degrees: 60.0 # image rotation (+/- deg)

translate: 0.3 # image translation (+/- fraction)

scale: 0.5 # image scale (+/- gain)

shear: 0.2 # image shear (+/- deg)

perspective: 0.001 # image perspective (+/- fraction), range 0-0.001
flipud: 0.5 # image flip up-down (probability)

fliplr: 0.5 # image flip left-right (probability)

mosaic: 1.0 # image mosaic (probability)

mixup: 0.0 # image mixup (probability)

YAML File for Fine Tuning

66

Hyperparameters for VOC finetuning
python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50

See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials

Hyperparameter Evolution Results

Generations: 306

P R mAP5mAP5:95 box obj cls

Metrics: 0.6 0936 0.896 0.684 0.0115 0.00805 0.00146

Ir0: 0.0032
Irf: 0.12

momentum: 0.843
weight decay: 0.00036
warmup_epochs: 2.0
warmup momentum: 0.5
warmup_bias_Ir: 0.05
box: 0.0296

cls: 0.243

cls pw: 0.631

obj: 0.301

obj pw: 0911

ou_t: 0.2

anchor t: 2.91

anchors: 3.63

fl gamma: 0.0

hsv_h: 0.0138

hsv_s: 0.664

hsv_v: 0.464

degrees: 0.373

67

translate: 0.245
scale: 0.898
shear: 0.602
perspective: 0.0
flipud: 0.00856
fliplr: 0.5
mosaic: 1.0
mixup: 0.243

YAML File for Data

train: yolodata/train

val: yolodata/val
nc: 7

names: ['10','20', '50', '100', '500, '1000", '5000']

Ir0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
Irf: 0.2 # final OneCycleLR learning rate (1r0 * Irf)
momentum: 0.937 # SGD momentum/Adam betal
weight decay: 0.0005 # optimizer weight decay Se-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup momentum: 0.8 # warmup initial momentum
warmup_bias Ir: 0.1 # warmup initial bias Ir

box: 0.05 # box loss gain

cls: 0.5 #cls loss gain

cls pw: 1.0 # cls BCELoss positive weight

obj: 1.0 # obj loss gain (scale with pixels)

obj pw: 1.0 # obj BCELoss positive weight

iou_t: 0.20 # IoU training threshold

anchor t: 4.0 # anchor-multiple threshold

anchors: 3 # anchors per output layer (0 to ignore)

68

fl gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv _h: 0.15 # image HSV-Hue augmentation (fraction)

hsv s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv v: 0.4 # image HSV-Value augmentation (fraction)

degrees: 60.0 # image rotation (+/- deg)

translate: 0.4 # image translation (+/- fraction)

scale: 0.5 # image scale (+/- gain)

shear: 0.3 # image shear (+/- deg)

perspective: 0.1 # image perspective (+/- fraction), range 0-0.001
flipud: 0.5 # image flip up-down (probability)

fliplr: 0.5 # image flip left-right (probability)

mosaic: 1.0 # image mosaic (probability)

mixup: 0.5 # image mixup (probability)

Code for Object Detection

#include <Servo.h>.

// Defines Tirg and Echo pins of the Ultrasonic Sensor

const int trigPin = 10;

const int echoPin = 11;

// ' Variables for the duration and the distance

long duration;

int distance;

Servo myServo; // Creates a servo object for controlling the servo motor

void setup() {
pinMode(trigPin, OUTPUT); // Sets the trigPin as an Output
pinMode(echoPin, INPUT); // Sets the echoPin as an Input
Serial.begin(9600):
myServo.attach(12); // Defines on which pin is the servo motor attached

}
void loop() {

69

/I rotates the servo motor from 15 to 165 degrees
for(int i=15;1<=165;i++){
myServo.write(i);
delay(30);
distance = calculateDistance();// Calls a function for calculating the distance measured by the

Ultrasonic sensor for each degree

Serial.print(i); // Sends the current degree into the Serial Port
Serial.print(","); // Sends addition character right next to the previous value needed later in the
Processing IDE for indexing
Serial.print(distance); // Sends the distance value into the Serial Port
Serial.print("."); // Sends addition character right next to the previous value needed later in the
Processing IDE for indexing
}
// Repeats the previous lines from 165 to 15 degrees
for(int i=165;i>15;i--) {
myServo.write(i);
delay(30);
distance = calculateDistance():
Serial.print(i);
Serial.print(",");
Serial.print(distance);
Serial.print(".");
}
i

/! Function for calculating the distance measured by the Ultrasonic sensor

int calculateDistance()

digitalWrite(trigPin, LOW);

delayMicroseconds(2):

/I Sets the trigPin on HIGH state for 10 micro seconds
digitalWrite(trigPin, HIGH):

70

delayMicroseconds(10).

digitalWrite(trigPin, LOW);

duration = pulseIn(echoPin, HIGH); // Reads the echoPin, returns the sound wave travel time in
microseconds

distance= duration*0.034/2;

return distance;

}

Code for Jetson Nano

m-‘.:km:-loomls[urojxts pythoa3 projects.py

> 1; currency

»>> 2: inage_captioning
»>>» 3; Face Recognition
>»> 41 Hearg Beat

»»» Enter:

Figure 33 Backend Display

import subprocess
import os

import pyautogui
import pyttsx3

engine = pyttsx3.init()
project = input("\n>>> 1: currency \n>>> 2: image captioning \n>>> 31: Face Recognition

(video) \n>>> 32: Face Recognition (webcam) \n>>>4: Sensors \n>>> Enter: ")
if project ="1":

os.chdir("yolo/")
subprocess.run(["python3", "detect.py", "--source", "1.mp4", "--weights", "best.pt"])

71

if project == "2":
os.chdir("ic_mobilenet/")

subprocess.run(["python3", "evaluate_caption.py"])

if project =="31":
os.chdir("face_rec/")

subprocess.run(["python3", "video.py"])

if project == "32":
os.chdir("face_rec/")

subprocess.run(["python3", "webcam.py"])

if project == "4":

print("PulseSensor")

print(">>> S with AO of arduino \n>>> vcc+ with 3.3V of arduino \n>>> vcc- with ground of
arduino \n")

print("Temperature sensor")

print(">>>Temperature sensor DS18B20 \n>>> D with 2 of arduino \n>>> vcc+ with 3.3V of
arduino \n>>> vcc- with ground of arduino \n")

print("UltraSonic™)

print(">>>UltraSonic HC-SR04 \n>>> ECHO with ~10 of arduino \n>>> trg with ~9 of

aurdino \n>>> vcc+ with 3.3V of arduino \n>>> vce- with ground of arduino \n")

os.chdir("Sensors/")

engine.say(subprocess.run(["arduino”, "--upload", "sensors.ino", "--port", "/dev/ttyUSB0"]))
engine.runAndWait()

subprocess.run(["minicom”, "-D", "/dev/ttyUSBQ", "-b", "9600"])
pyautogui.press([‘ctrl',;'a’,'x’','enter'])

print(*\n")

if project =="0":

72

pyautogui.hotkey(ctrl’, 'z")
pyautogui.press([‘ctrl',;'a’,'x’,'enter'])
print("\n")

73

APPENDIX E :
FINAL DELIVERABLE

74

BIBLOGRAPHY

[1]. Cardin, S., Thalmann, D., & Vexo, F. (2007). A wearable system for mobility improvement
of visually impaired people. The Visual Computer, 23(2), 109-118.

[2]. MacNamara, S., & Lacey, G. (2000, April). A smart walker for the frail visually impaired. In
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics
and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 2, pp. 1354-1359). IEEE.
[3]. Kim, C. G., & Song, B. S. (2007, April). Design of a wearable walking-guide system for the
blind. In Proceedings of the 1st international convention on Rehabilitation engineering &
assistive technology: in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation
Meeting (pp. 118-122)

[4]. Z6llner, M., Huber, S., Jetter, H. C., & Reiterer, H. (2011, September). NAVI-a proof-of-
concept of a mobile navigational aid for visually impaired based on the Microsoft Kinect. In IFIP
Conference on Human-Computer Interaction (pp. 584-587). Springer, Berlin, Heidelberg.

[5]. Innet, S., & Ritnoom, N. (2009, February). An application of infrared sensors for electronic
white stick. In 2008 International Symposium on Intelligent Signal Processing and
Communications Systems (pp. 1-4). IEEE.

[6]. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 779-788).

[7]. Josh, H., Yong, B., & Kleeman, L. (2011, December). A real-time fpga-based vision system
for a bionic eye. In Proceedings of Australasian Conference on Robotics and Automation
(ACRA).

[8]. Batavia, P. H., & Singh, S. (2001, May). Obstacle detection using adaptive color
segmentation and color stereo homography. In Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No. 01CH37164) (Vol. 1, pp. 705-710). IEEE.
[9]. Jain, P., & Awasthy, M. (2014). Automatic Obstacle Detection using Image Segmentation.
International Journal of Emerging Technology and Advanced Engineering, 4(3).

79

75

REFERENCES

[10]. YOLO — You only look once, real time object detection explained (2017). Available at:
https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-
492dc9230006 (Accessed: 7 June 2021).

[11]. Linear Regression in Python (2017). Available at: https://towardsdatascience.com/linear-
regression-in-python-9a1f5f000606 (Accessed: 7 June 2021).

[12]. Brownlee, J. (2019) A Gentle Introduction to Deep Learning for Face Recognition,
Machine Learning Mastery. Available at: https://machinelearningmastery.com/introduction-to-
deep-learning-for-face-recognition/ (Accessed: 7 June 2021).

[13].Introduction to how CNNs Work (2019). Available at:
https://medium.datadriveninvestor.com/introduction-to-how-cnns-work-77e0e4cde99b
(Accessed: 7 June 2021).

[14]. Bahdanau Attention — Dive into Deep Learning 0.16.5 documentation (2021). Available
at: https://d2l.ai/chapter_attention-mechanisms/bahdanau-attention.html (Accessed: 7 June
2021).

[15]. Recurrent Neural Network (RNN) Tutorial for Beginners (2021). Awvailable at:
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn (Accessed: 7 June 2021).

76

thesis vision Z

ORIGIMALITY REPORT

126 96 4 8

SIMILARITY INDEX INTERMNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Submitted to Higher Education Commission 4%
Pakistan

Student Paper

Joseph Redmon, Santosh Divvala, Ross 1 %
Girshick, Ali Farhadi. "You Only Look Once:

Unified, Real-Time Object Detection", 2016

|IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016

Publication

3 :mw.tensorﬂow.org 1 %
nternet Source
poECIne <1
Blbstiercom <Tw
o [<1

-

Submitted to British University in Egypt
Student Paper ty gyp { 1 U

77

Ashwini B Yadav, Leena Bindal, V. U {1
" Namhakumar, K Namitha, H Harsha. "Design %
and development of smart assistive device for
visually impaired people”, 2016 IEEE
International Conference on Recent Trends in
Electronics, Information & Communication
Technology (RTEICT), 2016
Publication
M www.elprocus.com
Internet SDurI':E)E' { 1 %
e www. maxbotix.com
Internet Source { 1 %
. Submitted to University of Southampton
Student Paper ty p { 1 %
B Submitted to La Trobe Universi
Student Paper ty { 1 %
E tensorflow.google.cn < 1
Internet Source %
Submitt.ed to Nanyang Technological {1 o
University
Student Paper
. Submitted to University of Sydne
15 Student Paper y y y { 1 %
A epdf.tips
16 IntErnet EDLFJJFEE { 1 %

78

=

speakerdeck.com

Internet Source

<Tw

B

Submitted to Ganpat University

Student Paper

<1y

Bing Yu, Yang Li, Chao Ping Chen, Nizamuddin
Maitlo, Jiagi Chen, Wenbo Zhang, Lantian Mi.
"30-4: Semantic Simultaneous Localization
and Mapping for Augmented Reality", SID
Symposium Digest of Technical Papers, 2018

Publication

<7

Alexy Bhowmick, Saurabh Prakash, Rukmani
Bhagat, Vijay Prasad, Shyamanta M. Hazarika.
"Chapter 16 IntelliNavi: Navigation for Blind
Based on Kinect and Machine Learning”,
Springer Science and Business Media LLC,
2014

Publication

B
—

yingrenn.blogspot.com

Internet Source

<7

22

Submitted to Institute of Research &
Postgraduate Studies, Universiti Kuala
Lumpur

Student Paper

<Tw

Suet-Peng Yong, Yoon-Chow Yeong. "Human
Object Detection in Forest with Deep Learning
based on Drone's Vision", 2018 4th

79

International Conference on Computer and
Information Sciences (ICCOINS), 2018

Publication

I Submitted to University of Central Lancashire

Student Paper y { 1 %

e thonprogramming.net

<2 Et}::rnet SDUEE g g {1 %

B Submitted to Akdeniz Universit

26 Student Paper y { 1 %

j¥] Submitted to Imperla.l ?Gllege of Science, {1 o
Technology and Medicine
Student Paper

N Submitted to Melbourne Institute of

28 < lw
Technology
Student Paper

I Submitted to Softwarica College Of IT & E- {1 %
Commerce
Student Paper

My Submitted to University of Northumbria at {1 %
Newcastle
Student Paper

B Submitted to University of Sheffield

31 Student Paper ty { 1 %

N www.dabapps.com

Internet Source pp {1 %

80

C. Stamate, G.D. Magoulas, S. Kueppers, E.
Nomikou et al. "The cloudUPDRS app: A
medical device for the clinical assessment of
Parkinson’'s Disease", Pervasive and Mobhile
Computing, 2018

Publication

Submitted to Far Eastern University

Student Paper

<1y

Rohit Ghosh, Omar Smadi. "Automated
Detection and Classification of Pavement
Distresses using 3D Pavement Surface Images
and Deep Learning"”, Transportation Research

Record: Journal of the Transportation
Research Board, 2021

Publication

<Tw

Tingling Xu, Bingsong Wang, Hua Liu, Haidong
Wang et al. "Prevalence and causes of vision
loss in China from 1990 to 2019: findings from
the Global Burden of Disease Study 2019",
The Lancet Public Health, 2020

Publication

(%]
]

github.com

Internet Source

<7

B
co

Yuchuan Du, Ning Pan, Zihao Xu, Fuwen Deng,
Yu Shen, Hua Kang. "Pavement distress
detection and classification based on YOLO

81

<1y

network”, International Journal of Pavement
Engineering, 2020

Publication

dspace-auk.edu-kw <Tw
ﬁﬂiggti.rgottingham.ac.uk <1 %
Jedumcom <Tw
ES:EL?.ESmidia'mm <1 %

Exclude quotes Off Exclude matches Off
Exclude bibliography Off

82

