

VISION-Z: AI BASED AIDING DEVICE FOR VISUALLY

IMPAIRED AND BLIND PEOPLE

SIMRA KAUSAR RAJA

WAJIHA JAWWAD

M. ZARGHAM BAIG

PERVAZ ALAM

Supervisor

Brig. Dr. Abdul Ghafoor

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology,

in partial fulfillment for the requirements of B.E Degree in Electrical Engineering

 June 2021

By

SIMRA KAUSAR RAJA

WAJIHA JAWWAD

M. ZARGHAM BAIG

PERVAZ ALAM

Supervisor

Brig. Dr. Abdul Ghafoor

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology,

in partial fulfillment for the requirements of B.E Degree in Electrical Engineering

 June 2021

CERTIFICATE OF CORRECTIONS & APPROVAL

Certified that work contained in this thesis titled “AI Based Aiding Device For Visually Impaired

And Blind People” carried out by Simra Kausar Raja, Wajiha Jawwad, M. Zargham Baig, Pervaz

Alam under the supervision of Brig Dr. Abdul Ghafoor for partial fulfillment of Degree of

Bachelors of Electrical Engineering, in Military College of Signals, National University of

Sciences and Technology, Islamabad during the academic year 2020-2021 is correct and

approved. The material that has been used from other sources it has been properly acknowledged

/ referred.

Approved by

Project Supervisor

 Brig. Dr. Abdul Ghafoor

Date: 15TH JUNE 2021

DECLARATION

No portion of work presented in this thesis has been submitted in support of another award or

qualification in either this institute or anywhere else.

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Signature of Supervisor

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this

work at every step and for every new thought which You setup in my mind to improve it. Indeed,

I could have done nothing without Your priceless help and guidance. Whosoever helped me

throughout the course of my thesis, whether my parents or any other individual was Your will, so

indeed none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Abdul Ghafoor and co-

supervisor Dr. Mohsin Riaz (Comsats) for his help throughout the thesis.

 I would also like to pay special thanks to Naveed Mazhar for his tremendous support and

cooperation. Each time I got stuck in something, he came up with the solution. Without his help I

wouldn’t have been able to complete my thesis. I appreciate his patience and guidance

throughout the whole thesis.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment.

Abstract

Traditionally, a visually impaired person uses a white cane as a tool for directing them while

moving or walking. Although, this cane is useful, it cannot guarantee high level of protection of

blind person away from all obstacles and help them in self-navigating in complex environments.

Mostly such handheld devices aim at utilizing the sensory ability of the person.

Smart Assistive devices are the current technological development in finding easier navigation

solutions for visually impaired people, as these devices provide solutions that work in both

indoor and outdoor environments leading to a much-improved life quality.

This research focuses on a wearable assistive device for the blind. This project introduces a smart

assistive device that provides complete autonomy to the visually impaired people by providing

detection and recognition of objects and people around them. It also monitors the health of the

person. This multipurpose system is designed to help the blind person to navigate alone safely

and to avoid any obstacles that may be encountered, whether fixed or mobile, to prevent any

possible accident. The device provides audio output for every functionality. The system is

designed to be convenient and accessible, so that visually impaired person can operate it easily.

By this project, we aim to provide a unique, cost effective and completely upgraded system for

visually impaired people.

Key Words: Visually impaired people, Smart Assistive devices, Navigation

Table of Contents

CERTIFICATE OF CORRECTIONS & APPROVAL ... iii

DECLARATION.. iv

Plagiarism Certificate (Turnitin Report).. v

Acknowledgements .. vi

Abstract ... viii

Table of Contents ... ix

List of Figures ... xiii

List of Tables ... xv

CHAPTER: 1 INTRODUCTION .. 1

1.1 Overview: ... 1

1.2 Background and Motivation ... 1

1.3 Scope and Deliverables .. 2

CHAPTER: 2 LITERATURE REVIEW .. 3

1.4 Use of Background study ... 4

CHAPTER: 3 DESIGN AND SPECIFICATIONS .. 5

3.1 Project Description and Salient Features ... 5

3.2 Setting up the NVIDIA Jetson Nano Developer Kit .. 7

3.2.1 Specifications Overview: .. 7

3.2.2 Basic Setup: .. 7

3.2.3 Prerequisites For Python ... 8

3.3 Increasing Swap Memory... 9

3.4 Peripherals Interfacing ... 9

3.4.1 PyAuto GUI .. 9

3.4.2 Interfacing Arduino to Jetson Nano .. 10

3.4.3 Interfacing Keypad to Jetson Nano ... 11

3.4.4 Interfacing Camera to Jetson Nano ... 11

3.5 Speech Output with Jetson Nano ... 12

CHAPTER 4: OBSTACLE DETECTION .. 13

4.1 Ultrasonic Sensor ... 13

4.1.1 Connecting Ultrasonic Sensor to Arduino .. 14

4.1.2 Compilation and Code Execution ... 14

CHAPTER 5: HEALTH MONITORING SYSTEM.. 16

5.1 Temperature sensor .. 16

5.1.1 DS18B20 Pin Configuration ... 16

5.2 Working Principle: ... 17

5.3 Pulse Sensor: .. 19

CHAPTER 6: FACE RECOGNITION SYSTEM .. 21

6.1 Introduction .. 21

6.2 Algorithm ... 21

6.2.1 Neural Networks ... 22

6.2.2 Processing Flow .. 22

6.2.3 Libraries Utilized: ... 24

6.2.4 Face_recognition ... 24

6.2.5 OpenCV and it’s Prerequisites: ... 24

6.3 Results: ... 25

CHAPTER 7: IMAGE CAPTIONING ... 27

7.1 Introduction .. 27

7.2 Algorithm ... 27

7.2.1 Convolutional Neural Networks (CNN) ... 27

7.2.2 Recurrent Neural Networks (RNN) .. 29

7.3 Algorithm Concept: .. 30

7.3.1 Importing Libraries ... 30

7.3.2 GPU Configuration ... 31

7.3.3 Capturing Live Camera Feed .. 31

7.3.4 Loading the frames ... 32

7.3.5 Initialize MobileNetV2 and load the pretrained ImageNet weights 32

7.3.6 Feature extraction.. 32

7.3.7 Tokenize the captions ... 33

7.4 Model: MobileNetV2 ... 33

7.4.1 Encoder ... 34

7.4.2 Decoder ... 34

7.4.3 Attention Mechanism .. 35

7.4.4 Evaluate... 36

7.5 Text to speech... 37

7.6 Results .. 38

CHAPTER 8: CURRENCY RECOGNITION ... 39

8.1 Processing Flow: .. 39

8.2 Using Machine Learning Algorithm (YOLO V5).. 39

8.2.1 Network Architecture and Training .. 41

8.2.2 Linear Regression: .. 42

8.3 Data Set Gathering ... 42

8.4 Data Pre-processing.. 43

8.5 Data Annotation ... 43

8.6 Data Augmentation .. 44

8.7 Software Prerequisites .. 45

8.7.1 Python 3.9.0 .. 45

8.7.2 Anaconda Distribution .. 45

8.7.3 Visual Studio code .. 46

8.8 Preparation of Machine Learning Model ... 46

8.8.1 TensorFlow ... 46

8.8.2 YAML ... 46

8.9 Using The Model To Make Predictions ... 47

8.10 Accuracy of Deep Learning Algorithm .. 49

CHAPTER 9: RECOMMENDATIONS AND CONCLUSIONS .. 50

9.1 Recommendations .. 50

9.2 Conclusion .. 50

APPENDIX A APPROVED SYNOPSIS .. 52

APPENDIX B PROJECT TIMELINE ... 53

APPENDIX C COST BRAKDOWN ... 54

APPENDIX D CODES ... 55

APPENDIX E FINAL DELIVERABLE ... 74

BIBLOGRAPHY... 75

REFERENCES .. 76

List of Figures

Figure 1 Project as a System ... 6

Figure 2 Project Block Diagram ... 6

Figure 3 HC-SR04 .. 13

Figure 4 Arduino Circuit Diagram .. 14

Figure 5 Temperature Sensor Circuit Diagram ... 16

Figure 6 DS18B20 .. 17

Figure 7 Circuit Diagram for Pulse Sensor ... 19

Figure 8 Pulse Sensor Pin Configuration .. 19

Figure 9 Facial Recognition Processing Flow [12]... 22

Figure 10 Wajiha Jawwad ... 25

Figure 11 Pervaz Alam ... 25

Figure 12 Simra Kausar Raja Figure 13 M. Zargham Baig ... 26

Figure 14 Example of convolved feature [13] .. 28

Figure 15 Example of pooling layers working [13] .. 28

Figure 16 Example of connecting layers working [13] .. 29

Figure 17 Converting Feed-Forward NN to RNN [15] .. 29

Figure 18 Layers in RNN encoder-decoder model with Bahdanau attention [14] 36

Figure 19 Input .. 38

Figure 20 Running Image Captioning Model and Output .. 38

Figure 21 YOLO Architecture [10] .. 41

Figure 22 Eq of Linear Regression [11] ... 42

Figure 23 Sample of Data set of Rs.10 ... 43

Figure 24 Data set with Classes Txt ... 44

Figure 25 Steps of Augmentation ... 45

Figure 26 Rs.20 ... 47

Figure 27 Rs. 10 .. 47

Figure 28 Rs. 50 .. 48

Figure 29 Rs. 500 .. 48

Figure 30 Rs. 5000 .. 48

https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392183
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392190
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392191
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392205
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392206
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392207
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392208
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392209

Figure 31 Rs.100 ... 48

Figure 32 Rs.1000 ... 49

Figure 33 Backend Display ... 71

https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392210
https://nustedupk0-my.sharepoint.com/personal/sraja_bete54mcs_student_nust_edu_pk/Documents/FYP/THESIS/Thesis%20FINAL.docx#_Toc75392211

List of Tables

Table 1 Specs Overview ... 7

Table 2 Approved Synopsis .. 52

Table 3 Project Timeline ... 53

Table 4 Cost Breakdown ... 54

1

CHAPTER: 1

INTRODUCTION

This chapter provides a comprehensive introduction of the project “VISION Z – AI Based

Aiding Device for Visually Impaired People”.

1.1 Overview:

Right now, visually impaired individuals face many difficulties and a common one is when they

involve in self-navigation in environments that are new or complex for them. They do not have

the ability to self-navigate without making contact with the surrounding using an aiding object or

listen to the surrounding environment. This is the main focus of this project which addresses this

issue by providing a better portable and wearable device for them to become autonomous in their

daily living lives.

1.2 Background and Motivation

Out of the world’s 7.79 billion population, an estimated 49.1 million are blind ,221.4 million

people have moderate visual impairment, and 33.6 million people have severe visual

impairments till date. The estimated number of blind persons has increased from 34.4 million in

1990 to 49.1 million in 2020 which is a 42.9% increase.

Analysis of data from all these countries over the world says that there are more than 200 million

people with moderate to severe vision impairment out of which approximately 49 million are

completely blind. Also, according to some research, the number of blind people across the world

is set to triple within the next four decades the worst affected areas for visual impairment are in

South and East Asia. In Pakistan only from the last studies, we know that 1.12 million people are

blind, 1.09 million people had severe vision loss and 6.79 million people had moderate vision

loss. Looking at these global and local figures the burden of vision loss is becoming hard to

2

tackle.

When we look at existing solutions for such people on the market some of them are outdated,

some are too expensive keeping in mind the low and middle-income people and most of them

offer singular and limited functionality.

Such impairment can notably affect a person's life. Visually impaired people should be able to

communicate with the world around them seamlessly and effortlessly, with a smart assistive

device with handheld control that brings the surroundings to them in an audible form.

1.3 Scope and Deliverables

We propose an AI-based recognition and detection system incorporated with a group of sensors

that provides multiple functionalities. This device is wearable and portable which makes it easy

for the person to perform daily routine tasks independently. This device is a mid-range solution,

which is not too expensive and is kept as economical as possible without compromising its

functionality too much making it affordable. It includes using deep learning algorithms and

libraries used in python language for recognition and detection. Its processing unit is the Nvidia

Jetson Nano developer kit used in concurrence with Arduino Uno board, USB camera, USB

headphones mounted along with a temperature and pulse rate sensor. Its functionalities include

obstacle detection via a multitude of ultrasonic sensors in the path view of the user. Known

people in front of the user are recognized through a face recognition scheme and anyone elsewise

as unknown. Identification of Pakistani paper currency notes is done using a currency

recognition scheme. The device will use an image classifying model for image captioning of the

surrounding. The thus developed codes will be integrated into the processor and tested via a live

USB camera feed. All output, in the end, is provided to the user as audio through USB

headphones based on the functionality the user selects through the keyboard/keypad at that time.

In conclusion, the goal of this project is to act as a secondary vision in audible form for the

visually impaired person. This is achieved by incorporating both our software and hardware

skills and implementing them practically in a system.

3

CHAPTER: 2

LITERATURE REVIEW

Various systems are developed to reduce the problems faced by impaired people. One of the

models is developed in [1].

In this model obstacle is detected by implementing multi-sonar system. In 2000, a tiny mobility

design is used for impaired people. This design was based with wheels [2].

In 2007 designed a microprocessor and a PDA called Design of a Wearable Walking Guide

System for the Blind. This design does not have a very vast scope because of its very limited

functionality [3].

We provided a concept for a mobile navigation aid that uses Microsoft Kinect and optical marker

tracking to help visually impaired people navigate the building. This is the result of a student

project and is totally based on lower-cost hardware and software. It gives none stop tactile

information about a person's waist, gives an impression of the person's surroundings and warns

of objects. [4].

Blind people use white sticks as a tool to guide them while moving. also, the white cane is

useful, it is not fully guaranteed to protect the blinds from various objects. This article presents

an obstacle avoidance method that uses an electronic cane as a walking tool for obstacle

avoidance practitioners. It uses infrared sensors to detect obstacles on the way. With the help of

various obstacles [5].

Introduce YOLO, which is a new method. Previous work will reuse classification technique to

perform detection. Whereas in yolo we frame the object detection into a regression problem of

by using grid boxes and compare class probabilities [6].

This article presents the FPGA which is a real-time vision system that simulates this method.

This is cheaper mobile system consisting of a CMOS camera. The deployment technic used in

this article are suitable for other smart mobile sensors and machine vision applications such as

the power, speed and the latency are important factors [7].

4

Batavia et all discussed a technique that is the combination of two techniques: adaptive color

segmentation and stereo-based color homograph. That algorithm is specifically suitable for such

surroundings where the terrain is relatively flat, and the colors are same [8].

In 2014,” automatic obstacle detection using image segmentation” by Pankaj Jain and Dr Mohan

Awasthy implemented the method by dividing it into two parts: segmenting the obstacles

containing images, and then finding the obstacles from those obstacles containing images [9].

1.4 Use of Background study

These documents are about obstacle detection and object recognition. Each document focuses on

a particular aspect of the project, discussing the positives and negatives, and then suggesting the

most appropriate method or algorithm. These background studies not only highlight many of the

problems encountered by developers in the past, but also suggest what improvements can be

made in terms of functionality and cost effectiveness in the future.

5

 CHAPTER: 3

DESIGN AND SPECIFICATIONS

3.1 Project Description and Salient Features

Vision Z is an amalgamate of AI technology which has inculcated a multitude of features with

the goal to provide assistance to blind and visually impaired people. This would ultimately help

them in self-navigation of their surroundings. It is composed of six main modules, which are:

✓ Facial Recognition

✓ Image captioning

✓ Currency Detection

✓ Object Detection

✓ Health Monitoring

✓ Audio Output

The edge device which we are making use of is the Nvidia Jetson Nano A1 Development Kit.

It’s a videlicet GPU-powered compact computer upon which we have deployed our whole

project. Our device is controlled by the user itself who decides which functionality he wants to

utilize at the moment.

One can use the facial recognition feature which is used to detect and identify people. It can also

be used to describe the current surroundings of the user using the image captioning feature.

Output results are given through audio which proves to be very beneficial for a user who is

visually impaired or blind. It even has currency detection which will identify the current

Pakistani currency present with the user. Another useful capability offered by Vision-Z is that it

detects different kinds of obstacles which are in the path of the blind or the visually impaired

person with the help of ultrasonic sensors. Health monitoring for the user is also available which

gives the pulse rate and the temperature of the user using the pulse sensor and the temperature

sensor.

6

Figure 1 Project as a System

The diagram below is depicting a schematic form of the general arrangement of the different

peripherals and sensors of our project.

Figure 2 Project Block Diagram

7

3.2 Setting up the NVIDIA Jetson Nano Developer Kit

Jetson Nano is an A1-based developer kit that is a compact yet sturdy edge device or computer

that enables the user to execute several neural networks in parallel. This edge computing device

is GPU-enabled and is an excellent candidate for the applications of AI and deep learning

applications like speech processing, object detection, image classification, and segmentation, and

many more.

3.2.1 Specifications Overview:

Table 1 Specs Overview

GPU 128-CORE, MAXWELL BASED ARCHITECTURE

CPU QUAD-CORE ARM A57 @ 1.43 GHZ

STORAGE MICROSD CARD

MEMORY 4 GB RAM, 64-BIT LPDDR4 25.6 GB/S

USB 4X USB 3.0, USB 2.0 MICRO-B

OTHERS GPIO, UART, I2C, I2S, SPI

DISPLAY HDMI AND DISPLAY PORT

MECHANICAL 69 MM X 45 MM, 260-PIN EDGE CONNECTOR

The official OS on which the Jetson Nano operates is the Linux4Tegra, which is based on

Ubuntu 18.04. The SDK supported by NVIDIA Jetson Nano is called JetPack.

3.2.2 Basic Setup:

The steps in setting up our edge device are:

o Download the Jetson Nano Developer Kit SD Card Image from the Jetson Download

Center (The Official Source).

8

o Flash it to the microSD card using the Etcher Software (a software which writes nano

program image onto the SD card).

o Now we will load the microSD card by inserting it inside the SD card slot.

o Now we can connect the power source to our nano, which will automatically boot up our

system.

3.2.3 Prerequisites For Python

We type the following commands for the installation of python prerequisites :

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install git cmake python3-dev nano

sudo apt-get install libhdf5-serial-dev hdf5-tools libhdf5-dev zlib1g-dev zip libjpeg8-dev

Now we have to install pip3. Pip is a tool used for installing python packages from Python

Package Index.

sudo apt-get install python3-pip

sudo pip3 install -U pip testresources setuptools

sudo pip install virtualenv virtualenvwrapper

The next the next step is to set up a virtual environment for Python so that we have a completely

isolated virtual environment for our project. To set up a python virtual environment we will use

the virtualenv. It’s a python tool that enables its users to build isolated environments in python.

mkvirtualenv ml -p python3

workon ml

9

Now we just have to download python v3 and install it.

3.3 Increasing Swap Memory

Memory swapping is vital for our project. It is such a computer technology which permits an OS

to provide additional memory to an executing application or a process than it is present in the

physical RAM. Memory swapping is done when RAM space is limited or exhausted. The OS

utilizes memory swapping to get additional memory from the secondary memory which, in our

case, is the microSD card.

In Jetson Nano, to swap portions we require to build a swapfile. Currently, the Nano has a RAM

space limited to 4GB that will not be adequate to compile all our AI models.

By default, there is 2GB of swap memory, but it is still not enough to fulfill the needs of our

project. Hence, we’ll set up a swapfile to increase the swap memory from 2 GB to

6 GB. Afterwards, we must reboot our system to confirm that the swapfile is executing aptly.

3.4 Peripherals Interfacing

Since a multitude of sensors is utilized to perform the various functions, hence they must be

interfaced first with the Jetson Nano. All the health and ultrasonic sensors are connected to the

Arduino. It processes the data from the sensors and redirects it to the Jetson Nano for further

processing. For interfacing, the Arduino to Jetson Nano, coding in python language is to be

done. Programming and interfacing the sensors to Arduino is done using the Arduino IDE.

We are making use of a keypad to control and select the different tasks required. each button

corresponds to a certain task.

The Jetson Nano is programmed in Python using a specific library audio library to give the

speech output. The audio output is given through the speakers or wireless headphones to user.

3.4.1 PyAuto GUI

It’s a GUI automation Python module with cross-platform support automatically enabled. It

allows python to control the mouse and keyboard, and other peripherals for GUI automation

tasks. To install it we use the command:

10

pip install pyautogui

3.4.2 Interfacing Arduino to Jetson Nano

We are working with Arduino along with Jetson Nano because we need to retrieve sensory data

from the Arduino and serially send that to the main processor. The method we are adopting for

the interfacing is to connect your Arduino simply via a USB cable using Python.

First, connect your Arduino with Jetson Nano through the USB cable.

After that access, we will open the command terminal on Jetson Nano and type in the following

command.

An Output received from the /dev/ttyACM0, implies that the Arduino has been configured to

Nano and will now be recognizable by it because ttyACM0 is an indication of the connection

between two USB devices.

Afterwards we need to install PySerial which is a library that provides support for serial

connections between devices. For installation type in the following command

Now the library is installed so we can import it later on. Opening the Arduino IDE and write the

following

Create a python file with the following code

11

On running this python script, serial communication between Arduino and Jetson Nano will start.

3.4.3 Interfacing Keypad to Jetson Nano

We have used a numeric keypad to select the functionalities. To user can select the options he

requires on his demand by pressing the specified keys. The keypad has a USB 2.0 port attached

with plug and play feature, hence making its interfacing simple and clear.

3.4.4 Interfacing Camera to Jetson Nano

We are working with a camera along with Jetson Nano because we need a live camera feed as

input to all our models i.e., face recognition, currency recognition and image captioning models.

The way adopted for the camera interfacing is to connect the camera via its USB connector.

The camera used for all live feed is the Philips Real CMOS S988 USB camera. The Philips

CMOS supports still images as well as HD videos with additional several resolutions included

such as 1080p@30FPS, 720p@60FPS, and VGA90 but we are using the 30 FPS. The main edge

which we have while using this camera is that it is USB 2.0 supported and has a plug-and-play

feature.

12

3.5 Speech Output with Jetson Nano

For the audio output, we are employing a python text to speech library known as pyttsx3. The

main advantage to using this is that it works offline and provides support for multiple Text to

Speech engines including: -

o sapi5

o nsss

o espeak

This library has three fundamental parts which are

o The Engine Factory

o The Engine Interface

o The Voice Metadata

The pyttsx3 library includes the pyttsx3.init() factory function which refers to a pyttsx3.Engine ;

this is the main engine or the engine factory for our text to speech. Amid the construction, the

engine initializes a pyttsx3.driver.DriverProxy object whose primary responsibility is to load a

speech engine driver enacting from the pyttsx3.drivers module. The Engine Interface provides

application access to text-to-speech synthesis whereas the pyttsx3.voice.Voice is the voice

metadata which holds information about a speech synthesizer voice. After the construction, the

application utilizes the engine object to register the event callbacks, controlling the event queue,

production of speech, initializing and stopping event loops and other important functionalities.

13

CHAPTER 4:

OBSTACLE DETECTION

4.1 Ultrasonic Sensor

Ultrasonic sensor is such equipment or sensor which is utilized in measuring the distance to an

object or an obstacle with the help of ultrasonic sound waves. It utilizes a transducer to send and

receive ultrasonic pulses. Through the reflection time of pulses, we come to know about the

object's position. A distinct echo pattern is produced when high-frequency sound waves are

reflected from boundaries or edges.

The working principle upon which this sensor is based is fairly simple. An ultrasonic pulse

(40kHz) is transmitted in the air and if an obstacle/object is encountered then the pulse is

reflected back to it. The distance of the object is obtained by calculating the travel time period

and the speed of sound.

The formula used is simply the speed formula

Speed=Distance/Time

we need to calculate time, so it becomes

Time=Distance/Speed

Distance is 2 meters (1 meter to travel forward and 1 to reflect back) and speed is 343m/s.

By using the above time equation:

The speed of sound in air is 343 m/s and since we are detecting any obstacle in 1-meter range so

that would t=2/343 which nearly 4 milliseconds period between transmitter and receiver.

Figure 3 HC-SR04

14

If the receiver detects the wave after 4 milliseconds of the wave being transmitted, then that

means there is some obstacle within 1 meter.

4.1.1 Connecting Ultrasonic Sensor to Arduino

We used an Arduino. Firstly, we need to connect the ultrasonic sensor with the Arduino.

Figure 4 Arduino Circuit Diagram

To type our code in the Nano we have to first install Arduino Sketch coding. After typing the

code we will compile it and forward it to the Arduino board.

 Plug Arduino into the USB cable and into the nano. Once we upload Arduino, we can then

compile and activate the code.

4.1.2 Compilation and Code Execution

The code used in our device gives the distance (in cm) to the closest object/obstacle.

15

16

CHAPTER 5:

HEALTH MONITORING SYSTEM

5.1 Temperature sensor

DS18B20 is a temperature sensor that provides 9-to-12-digit temperature readings. These values

show the temperature of a specific device. The communication of this sensor can be completed

through the single-wire bus protocol, which uses the data line to communicate with the internal

microprocessor. Furthermore, it obtains its power from the data line hence no external power

source is required. The range from which the temperature can be calculated is from -55°C to

+125°C.

Figure 5 Temperature Sensor Circuit Diagram

5.1.1 DS18B20 Pin Configuration

17

Figure 6 DS18B20

Pin 1: Ground terminal

Pin 2: Power supply (Vcc) from 3.5V to 5V

Pin 3: Data pin: It provides temperature value, which communicates using the single-wired

method.

5.2 Working Principle:

DS18B20 has three pins, which are power, data, and ground terminals. We connect the sensor's

power and ground terminals to the Arduino's power and ground and the sensor's data pin to the

Arduino's digital I \/ O pin 2. Then we can use our code to calculate the user's temperature. To

get the temperature measurement, we need to issue a command. When received by the sensor, it

will initiate a data dialog and all measured values are stored in the sensor's RAM. We can read it

to get data or write to it to specify the resolution of the sensor. To read the data, we issue a

command and receive 9 bytes of data. Then use the following formula to determine the

temperature.

Temperature = ((high byte << 8) low byte) * 0.0625

Then convert this value to Fahrenheit and display it to the user.

The code for this is:

18

19

5.3 Pulse Sensor:

Figure 7 Circuit Diagram for Pulse Sensor

Pulse wave refers to a change in volume of a blood vessel that ensues while the heart starts

pumping the blood. The pulse sensor is such a device that detects as well as monitors the change

in volume. Output is obtained from the pulse sensor when the user connects his fingertip to it.

The sensor consists of 24 inches’ color code wire, ear clip, Velcro Dots-2 transparent stickers-3.

Figure 8 Pulse Sensor Pin Configuration

Pulse sensor is open source, with plug-and-play hardware. It effortlessly integrates real-time

heart rate information into our project. The sensor consists of two circuits which act similar to an

optical amplifier with noise eliminating too. Due to these circuits, pulse reading is very easy and

fast. The sips at 5v power draw just 4mA.

Basically, the pulse sensor consists of three pins which are GND, VCC and SIGNAL. The black

wire is the ground terminal, the red is the supply wire, and the third purple is the output signal

wire

After connection, we use the VCC pin and GND pin to supply power. The pulse sensor operating

voltage is 5V or 3.3V. First, we connect the sensor to an Arduino, then we can run the code.

20

The Arduino code for this sensor is:

21

CHAPTER 6:

FACE RECOGNITION SYSTEM

6.1 Introduction

Facial recognition insinuates the detection and identification of a person. Whenever the user

requires this functionality, he will press the dedicated button for it which in turn invokes it. The

faces are detected using the mounted camera with the help of Jetson Nano. The result is then

shared in the form of audio given via the headphones.

Face recognition harnesses the machine learning (ML) algorithms and deep learning. ML can be

regarded as a sub-branch of AI in which the system learns to identify data and make decisions

based on a provided dataset. Deep learning is referred to as a sub-branch of ML which employs

ML algorithms and data sets to train/instruct its deep neural networks for enhanced accuracy.

Our system is set up in such a manner that almost any task can be completed or automated with

minimal human intervention.

NVIDIA Jetson Nano developer kit has a Mobile Industry Processor Interface (MIPI) powered

Camera Serial Interface (CSI) port. It can support several camera modules like the Raspberry Pi

camera and others. The camera used in our device is the Philips CMOS, model s988, which is

compact yet suitable for machine learning and computer vision applications like facial

recognition. Our device supports facial recognition for four persons.

6.2 Algorithm

The main scheme on which the facial recognition model works is Machine Learning and Deep

Learning. The main difference between ML and DL is that ML makes use of different algorithms

to learn from the data set and make well-informed decisions based on what it has learned

whereas DL organizes the algorithms in such a manner that they form an Artificial Neural

Network (ANN) which has the ability to learn and educate itself and additionally make its own

decisions intelligently.

22

6.2.1 Neural Networks

They are a series of algorithms that identify relationships and patterns in data. ANN has similar

functionality like that of a human. It is made up of hundreds and/or thousands, sometimes

millions of artificial neurons known as the processing units. They are interlinked to each other

with the help of nodes. Traditionally, all the inputs and outputs are independent of each other. It

employs a set of learning algorithms known as backpropagation to learn regarding the

information fed in it and produce a result or output.

The main advantage of using backpropagation is that the network can also work backward i.e it

can go from the output unit back to the input unit to adjust weights of the connections between

its units hence producing the lowest possible error between the actual and the desired outcome.

6.2.2 Processing Flow

Data acts as the main fuel since ML algorithm learns from these enormous data set. These

datasets are used to educate the deep neural networks. The main phases that the ML algorithm

undergoes for facial recognition are :

Figure 9 Facial Recognition Processing Flow [12]

o Face Detection : Locating faces in an image.

o Face Alignment: Adjusting or normalizing the faces found.

23

o Feature Measurement and Extraction: The algorithm uses data to identify different

patterns and features from the face to form a feature vector. ML algorithm also decides

which classes are to be and which are relatively close. This process is known as

embedding.

o Face Recognition or Feature Matching: ML algorithm will match the feature vector of

the input face against the feature vector of known faces in the database. If the difference

between them is close then it means that the face is matched.

The algorithm uses data to identify different patterns and form a feature vector. It implies that

input is in the form of an image and the output is in the form of a feature vector. A feature vector

is regarded as an N-dimensional vector containing numbers, that manifest the different features

of the image or generally the object. Embedding is the formation of such a vector that contains

data of features which are semantically close to each other. The main classes formed in our

feature vector are:

1. Height of face

2. Width of face

3. The average color of the face (R, G, B)

4. Width of lips

5. Height of nose

6. Other Secondary classes

Once every image is encoded into a feature vector the next step is the comparison. The feature

vector is then matched with the databases of feature vectors of a known person. If the difference

between them is close then it means that the face is matched. The difference is according to the

set threshold which is known as the tolerance level in our case the tolerance level is 0.3.

This technique can be applied using image processing techniques such as haar but the main

reason for using machine learning is that it can help out with two main things:

1. Derivation of Feature Vector: Listing all the classes of the features is an extensive and

tedious job as an enormous number of classes exist. ML algorithms can tremendously

help us out as it intelligently makes use of such secondary features.

24

2. Matching the Algorithm: A ML algorithm intelligently matches the new images feature

vector with the predefined feature vectors in the corpus

Several python deep learning libraries are used which assist us in implementing the ML

functionality in our program.

6.2.3 Libraries Utilized:

o Face_recognition

o Numpy

o OpenCV

o Python Imaging Library (PIL)

o Image and ImageDraw (from PIL)

6.2.4 Face_recognition

The main aim of using the face_recogntion library is matching i.e to check the similarity of the

input face to the stored pictures list. It also yields a numerical measurement that corresponds to

the similarity amidst the input face and all known faces list. Criteria for selection set is that the

lower the number obtained, the more similar the faces. A threshold level is also set known as the

tolerance level.

6.2.5 OpenCV and its Prerequisites:

OpenCV is an open-source library of python whose main focus is real-time computer vision. It

includes attributes like image processing, object detection, face detection, etc. The functionality

that OpenCV performs is to facilitate the face_recognition library with a deep learning network.

To use OpenCV, CUDA and cuDNN support are required. CUDA stands for Compute Unified

Device Architecture and it refers to 2 things:

1. The CUDA Architecture: A parallel GPU architecture.

2. The CUDA Software Platform And Programming Model: A type of API used to

program GPUs for general purpose processing.

25

CUDA is a vital part as it enables Its user to speed up different intensive calculations by utilizing

the GPU for parallel processing.

cuDNN refers to CUDA Deep Neural Network. It represents a deep learning library used for

GPU acceleration and is based upon CUDA.

The main difference between CUDA and cuDNN is that CUDA is similar to a workbench which

has many tools inside it whereas cuDNN is one of its tools. Hence, to run a deep neural network

based on CuDNN, we must first install CUDA. The JetPack already has in-built support for

CUDA and cuDNN.

Other prerequisites for OpenCV include:

o Dlib

o Cmake

Additionally, the JetPack in-built support for OpenCV too as well which just needs to be

activated. The main purpose of using openCV is to utilize the GPU for the deep learning.

OpenCV by default comes with a pre-trained Haar cascades but currently we are not using this in

our model. We are using the more accurate, deep learning-based face detector which can be

found in the official release of OpenCV in GitHub.

6.3 Results:

Figure 10 Wajiha Jawwad Figure 11 Pervaz Alam

26

Figure 12 Simra Kausar Raja Figure 13 M. Zargham Baig

27

CHAPTER 7:

IMAGE CAPTIONING

7.1 Introduction

Image Captioning refers to generating a textual description for a given image. Basically, its

purpose is to take an image as input and produces a relevant caption as output against it. In our

project, we have given a video input and the program takes its frames into account. With the

emergence of Deep Learning, along with numerous datasets also available, this technique has

evolved significantly. The motivation to understand image captioning lies in its real-world

scenario applications. Aid to blind people is the most important application because a product

can be made for such people that guides them while navigating with their surrounding

environment without the assistance of someone else. This can be accomplished by first

converting the real-time scene around them into a textual caption and then convert it into audio.

7.2 Algorithm

There are 2 major parts of our algorithm. First is while looking at an image we are forming the

description as we are seeing the image, secondly, at the same time, we are looking to create a

meaningful sequence of words. The first part is handled by Convolutional Neural Networks and

the second is handled by Recurrent Neural Networks.

7.2.1 Convolutional Neural Networks (CNN)

CNN are a type of neural network (already discussed in section 6.2.1) that analyzes visual

imagery in a grid-like topology. It performs both generative and descriptive tasks when used in

combination with recommender systems and natural language processing (NLP). There are

multiple layers present in a CNN. These layers are generally input, output and hidden layers.

These include multiple types of layers as discussed below.

• Layer:1 Convolutional Layer, this layer performs the convolution of information with a

filter/kernels so that specific features can be detected on an image.

28

Figure 14 Example of convolved feature [13]

• Layer: Activation Layer, it harnesses the Rectified Linear Unit, also known as ReLu

which refers to rectifier function. It is multiplied with the convoluted input with the intent

to extend the non-linearity among the network.

• Layer:3 Pooling Layer, this layer reduces the size of the input so that a reduced number

of parameters to be computed. It basically down-samples the features. It utilizes a non-

overlapping filter of 2x2 accompanying a stride of 2 that returns the max value of

features. Purpose of max filter is to give the max value inside the features inside the

region.

Figure 15 Example of pooling layers working [13]

29

• Layer:4 Fully Connected Layer, this layer connects all inputs from one layer to the next

layer activation units. This layer includes flattening which enables the user to learn new

nonlinear combinations of features and combine these features together for building a

model.

Figure 16 Example of connecting layers working [13]

Ultimately, the result achieved is that of an activation function that will help classify the output.

7.2.2 Recurrent Neural Networks (RNN)

RNN is of neural network that saves the output of a particular layer and feeds that output as input

in the next step to predict the output of the next layer while using sequential data or time-series

data. They have a Hidden Layer or Internal Memory which retains information about the

sequence and previous inputs.

Figure 17 Converting Feed-Forward NN to RNN [15]

30

7.3 Algorithm Concept:

First, we will import the necessary libraries. Using libraries is necessary as they are collections

of prewritten code that users can use to optimize a task.

7.3.1 Importing Libraries

The libraries used in our code are:

o Tensorflow

o Matplot

o Numpy

o JSON

o pyttsx3

o cv2

TensorFlow is a foundation library used to create Deep Learning models directly.

Used to generate plots and graphs of attention for visualizing on what features our model

is focusing on while captioning them.

NumPy is used to perform a wide variety of mathematical operations on arrays in a fast and

efficient way by manipulating numerical data inside them.

JSON is used for storing and exchanging data between Python objects and JavaScript object

notation strings.

31

This library provides an engine that gives text-to-speech conversion functionality. Its detailed

functionality is already discussed in section

OpenCV is used to provide various functions for image and video processing. Its prerequires are

already discussed in section 6.2.5.

7.3.2 GPU Configuration

Used to configure the GPU (Graphic Processing Unit) memory for TensorFlow otherwise

TensorFlow will allocate all of the available GPU memory when it is started. So, we have

allocated GPU memory.

7.3.3 Capturing Live Camera Feed

Used to video capture live objects from the camera. The ‘0’ specifies that we are taking a feed

from the webcam.

we can retrieve frame by frame from the video feed.

OpenCV actually reads colors as BGR (Blue Green Red), where most models read as RGB (Red

Green Blue), so we convert the frames as such.

32

7.3.4 Loading the frames

First, we will convert the frames into Mobile Net V2’s expected format by resizing the image to

299px by 299px

Next, preprocess the images using the preprocess_input method to normalize the image so that it

contains pixels in the range of -1 to 1, which is meant to adequate your image to the format that

our model requires.

7.3.5 Initialize MobileNetV2 and load the pretrained ImageNet weights

This function returns a Keras image classification model, which is our base CNN, loaded with

weights pre-trained on ImageNet i.e., an image database.

7.3.6 Feature extraction

The CNN is performing feature extraction whose purpose is to compress the information in the

original image frames into smaller dimensions. Since it is encoding the information of the

image here the CNN acts as an encoder. The image_features_extract_model is our deep CNN

encoder, its purpose is to learn the features from the input image.

33

7.3.7 Tokenize the captions

The captions of a pre-trained model are already tokenized. This gives us a vocabulary of all of

the unique words in the available dataset.

We have limited the vocabulary size of words to the top 5,000 words in order to save memory.

The mapping file is used with 5000 unique word-to-index mappings and vice versa.

7.4 Model: MobileNetV2

We are using a pre-trained model: MobileNetV2 or transfer learning to customize this model

according to our needs. MobileNet model is TensorFlow’s mobile computer vision model which

employs depthwise separable convolutions. MobileNet refers to a class of CNN which has been

open-sourced. It notably lowers the amount of parameters resulting in a more lightweight, low-

latency deep neural networks which are ideal for our edge device. The major contrast among

MobileNet architecture and a typical CNN is that in place of a single 3x3 convolution layer

ensued by batch normalization and ReLU, MobileNets splits the convolution resulting in a 3x3

depth-wise convolution with the addition of 1x1 pointwise convolution. MobileNetV2 is similar

to MobileNet with the exception that it has inverted residual blocks with bottlenecking features

resulting in a more reduced parameter count.

It consists of 2 major parts: Encoder and Decoder. The parts from which we have to extract the

features, out of the lowermost convolutional layer present in MobileNet yielding an initial vector

of 8×8×2048 dimension. We have to diminish it to a shape of 64x2048. This diminished vector is

then transited through the CNN Encoder (constitutes of a single fully connected layer). Finally,

RNN (here GRU), the decoder, is responsible to forecast the next word of the image and connect

them together.

34

7.4.1 Encoder

Previously, we had extracted the features and then passed them to our encoder. The job of the

encoder is to pass those features over a fully connected layer and we have added a linear dense

layer after it so that our model can handle tedious and complex features. The encoder will return

the generated string that goes into the Decoder afterward to process.

7.4.2 Decoder

The Decoder is our Natural Language Processing (NLP) Model. For the captions to be

generated we have used GRU (Gated Recurrent Units) because it has slightly less complexity in

structure as compared to LSTM (Long Short-Term Memory). LSTM layer in this case would

have been complex and it would not be deployable on the processor. GRU is used here because

we want quick and decent accuracy, also scenarios where infrastructure is an issue just like our

processor.

A Single layer of GRU is used followed by two dense layers. Since this is a time series problem

where we need to predict the next string based on its connection with the previous string, the

addition of dense layers itself is not so efficient so we have added a forced learning attention

model.

35

7.4.3 Attention Mechanism

In every sequence of text words, outputs from previous words are used as inputs, in combination

with new sequence words. This gives the RNN networks a feature of memory that makes

captions more context-aware. RNNs become computationally complex if more layers are simply

added on, so generally, in limited memory scenarios, attention models come to help in selecting

the most relevant words.

The Bahdanau Attention or Additive Attention model refers to taking the floating-point value

from the dense layers and is predicting the correct token. This mechanism learns to align and

36

translate jointly, therefore, performing a linear combination of encoder states and decoder states.

With the help of few dense layers, it is training such a network that is converting the floating-

point input to an integer token which is associated with the previously generated target words.

Thus, acts as a forced teacher model.

Figure 18 Layers in RNN encoder-decoder model with Bahdanau attention [14]

7.4.4 Evaluate

Now for the part when we run our model with input frames coming from the live feed, we

fundamentally run the evaluate function whose jobs are as follows

The decoder is called with batch size =1 because we are providing one frame at a time.

The preprocessed image that is given as an input here has a 3-dimensional matrix i.e. [height,

width, channels (RGB)], but to give it as an input to the model we need to increase another

dimension that is done by wrapping around it another dimension by expand_dim.

The expanded dimensional image is passed through the image_features_extract_model and its

features are extracted in the variable img_tensor_val

37

The encoder features are called and saved in features variable

Then the features, hidden and img_tensor_val variables are passed through a loop to predict the

exact token against the string words

The tokenizer returns the string values to the evaluate function, and we are saving the function

output in a variable named ‘result’

Then the strings are joined together to form the caption

7.5 Text to speech

Lastly, the generated caption has to be converted into audio, which is done first by initializing an

engine using the pyttsx3 library. The pyttsx3 has been discussed in detail in section 3.5

Lastly, we pass the result variable that contains our caption to the engine and use the ‘say’

function so it generates audio that can be listened through the headphones

38

7.6 Results

Figure 19 Input

Figure 20 Running Image Captioning Model and Output

The caption displayed is given in the form of audio output to the user. The displayed image is a

backend display for the developer.

39

CHAPTER 8:

CURRENCY RECOGNITION

8.1 Processing Flow:

Pakistani currency notes of PKR.10, 20, 50, 100, 500, 1000, 5000 are identified using the

machine learning approach. The steps involved are as follows:

8.2 Using Machine Learning Algorithm (YOLO V5)

It is an ML procedure, which utilizes convolutional neural organizations for the discovery of

articles. YOLO, an acronym for You Only Look Once, is one of the most efficient object

detection methods available. Despite the fact that it isn't the most precise object detection

technique but is one of the robust algorithms available which is very suitable for the purpose of

real-time recognition on an edge device.

In contrast with recognition procedures, the detection algorithm's goal isn't just to forecast class

labels but also to detect the position of objects. As a result, it can detect several items within an

image in addition to classifying them into a category. The architecture of YOLO is like FCNN

(fully convolutional neural network) where an image (nxn) is given as input and a prediction

(mxm) is given as output.

This Algorithm has modeled detection as a regression problem which is further explained in

Section 8.1.1.2. It makes use of a single neural network to a given image; it implies that this

network separates the image into regions, or an SxS grid and predicts each region's bounding

boxes and probability. To anticipate the bounding box confidence for the boxes and class c

probabilities, the algorithm uses features from the full image.,. These bounding boxes are

weighted by the predicted probabilities. These predictions are processed as

S x S x (B * 5 + C) tensor

If the object's centre is within a grid cell, then detecting the object is the job of the grid cell.

40

Every grid cell makes a prediction regarding two things:

o The B bounding boxes.

o Those boxes' Confidence scores

The model's confidence score indicates how certain it is that this box contains an object. and also

how accurately the box is predicted by YOLO. Formally, it is defined as

Prob(Obj)∗ lOU

If that cell has no objects in it, then its confidence score will be zero. If Not, we would like the

confidence value to be equivalent to the (I.O.U) between the predicted box and the. ground truth

Every bounding box comprises of five predictions, which are:

o X and Y coordinates, width w, height h

o Confidence

The (x, y) coordinates refer to the middle of the box in relation to the boundaries of the grid cell.

The width and height are calculated using the complete image as a reference. Lastly, the

confidence prediction characterizes the intersection over the union between the predicted box

and the true box. Each grid cell also predicts the C conditional probabilities for a class:

Prob(Class |Object)

These probabilities are written on the grid cell comprising the object Per grid cell, Only one set

of class probabilities is predicted.no matter the amount of boxes B.

The class-specific confidence scores for each box are calculated by multiplying conditional class

probabilities and individual box confidence predictions during testing.:

Prob (Class | Object)∗ Prob (Object)∗ IOU = Prob (Class)∗ IOU

This score is the final confidence score written.

41

8.2.1 Network Architecture and Training

There are 24 convolutional layers of the YOLO network are followed by two fully linked layers.

We will use 1x1 reduction layers followed by 3x3 convolutional layers instead of employing

inception modules.

Figure 21 YOLO Architecture [10]

Since we are using fast YOLO in our project a convolutional neural network with fewer layers

i.e 9 instead of 24 and fewer filters in those layers is going to be implemented. Except for the

size of the network, all The parameters for both training and testing are the same. For Fast

YOLO and YOLO.

Our model's output is optimized for the sum-squared error. To reduce model instability caused

by weighing localization error equal with the classification error, we have increased the loss

obtained via bounding box coordinate predictions and decreased the losing confidence

predictions for boxes without any objects. We have employed 2 parameters:

λcoord = 5

λnoobj = 5

42

Multiple bounding boxes per grid cell can be actively predicted by YOLO but an issue arises that

during training just one bounding box predictor is required for every object hence we have

assigned one predictor liable for predicting an object, whose prediction contains the highest

current IOU with the ground truth. This results in specialization among the bounding box

predictors. Every predictor improves its ability to anticipate specific sizes, aspect ratios, or object

classifications., therefore enhancing our overall recall.

8.2.2 Linear Regression:

The linear regression allows the building of a model that predicts the value of new data, based on

the training data used to train our model.

Figure 22 Eq of Linear Regression [11]

The Y-variable is the dependent variable or our response which we intend to predict. This

enables us to create a model with many features i.e X variables to predict values in Y.

8.3 Data Set Gathering

We gathered images by manually clicking pictures from a 12-megapixel digital camera.

Approximately 600 to 1000 pictures were taken for each banknote with different angles and

diverse backgrounds to make our dataset more versatile.

43

Figure 23 Sample of Data set of Rs.10

8.4 Data Pre-processing

Data pre-processing is that part of our project where we filter out the data which is either blurry

or irrelevant. This step must be done manually as each image has to be analyzed and afterwards a

decision is made on whether that image must be kept in the data set or not. Some of the few

points which were kept in mind during Data Pre-processing were:

o Clear picture with avoiding motion blur

o Currency notes should aptly fit the screen; They should not go beyond the screen.

o Acquire pictures from different angles and distances

8.5 Data Annotation

Afterwards, all the images were annotated by using an open-source software “Label.Img”. it

refers to marking or labeling the data. We have used the parallel rectangles approach to mark our

data. When the picture is manually labeled and saved in the respective folder then a text(txt) file

44

of YOLO format appears within the same folder which contains the image having the same

name. A file referred to as "classes.txt" is also saved within that folder. "classes.txt" contains

the list of class names that our YOLO label refers to.

Figure 24 Data set with Classes Txt

8.6 Data Augmentation

The current dataset which we have acquired has 600 to 1000 pictures but these are not sufficient

for our model training. In order to achieve a dataset that bears better results a technique known as

Data Augmentation must be performed.

In this step, our dataset is expanded in size using morphological operations. Augmentation is

such a strategy that allows the user to notably expand the diversity of training data, without the

need of gathering new data. Several data augmentation techniques include cropping, padding,

horizontal flipping, etc to train large neural networks. In order to train a deep learning model, we

require many images per class i.e. minimum of 600 images per class for decent accuracy.

45

Afterwards, the dataset is divided into two parts namely training set and test set. In this project,

we divided the dataset with a ratio of about 70:30. i.e. 70% of images were placed in the training

set while 30% were placed into the test set. The 5 steps done in data augmentation were:

Figure 25 Steps of Augmentation

8.7 Software Prerequisites

The software required for the implementation of the currency recognition includes:

8.7.1 Python 3.9.0

The major software requirement for this project is a python 3.9 installation on your operating

system. It can be done by visiting the official website of python.

8.7.2 Anaconda Distribution

The first step of working with image processing on Python is to install the Anaconda distribution

from their official website given as

46

https://www.anaconda.com/

8.7.3 Visual Studio code

After installing the anaconda distribution, launch visual studio code, and wait for its installation.

Visual Studio Code’s main use is as a source-code editor. It is an essential source-code editor

used for various functionalities such as debugging, optimizing code, embedded Git and other

version controlling, code refactoring and much more.

8.8 Preparation of Machine Learning Model

8.8.1 TensorFlow

TensorFlow refers to a programming library available in open-source. It is mainly for AI and can

be employed across various undertakings but its main focus is on preparing and deduction of

neural networks. It may also be referred to as a representative numerical library hooked into

differentiable programming and dataflow.

8.8.2 YAML

YAML is a comprehensible information serialization standard that can be utilized related to all

programming dialects and is frequently used to compose design records.

To start training a Yolo V5 model we would need two YAML files.

The first YAML is to specify:

o The location of your training

o Location of your validation data

o The number of classes (sorts of items) that you need to distinguish

o The names of the classes they belong to

The second YAML is to indicate the entire model setup. We can change the organization design

in this progression on the basis that we need it; yet we will go with the default one.

https://www.anaconda.com/

47

We are equipped to train our data with the help of these 2 YAML files i.e

data.yaml and custom_yolov5s.yaml (given in Appendix D)

To begin training, we must execute the training command with these subsequent options:

• img: characterize input picture size

• batch: decide group(batch) size

• epochs: characterize the quantity of preparing ages. (Note: default=3000)

• data: set the way or the path to our yaml record/file

• cfg: indicate our model setup

• weights: indicate a custom way to loads.

• name: result names

• nosave: only save the last designated spot

• cache: store pictures for quicker preparing

8.9 Using The Model To Make Predictions

This deep learning model thus produced will be used to make predictions on new data. An

example of this is shown below.

Figure 27 Rs. 10 Figure 26 Rs.20

48

F

F

F

Figure 28 Rs. 50 Figure 29 Rs. 500

Figure 30 Rs. 5000 Figure 31 Rs.100

49

This feature of our model will be used in our final product while taking frames from a video.

8.10 Accuracy of Deep Learning Algorithm

After the development of the deep learning algorithm, the accuracy on the test set came out to be

80% i.e., about 80% of banknotes from the test set were recognized correctly. Afterwards, the

algorithm was also tested manually on new unseen data.

Figure 32 Rs.1000

50

CHAPTER 9:

RECOMMENDATIONS AND CONCLUSIONS

9.1 Recommendations

In future work following features can be accommodated:

• Instead of a portable stick, the device can be made so it can be simply attached to the

clothes.

• Further features and functionalities can be added in order to make it more efficient e.g.

detection of various things like stairs, doors, windows, car detection etc.

• Instead of the Jetson Nano kit, a more advanced development board i.e., Jetson Xavier

NX and Jetson Xavier AGX can be used for faster processing.

• GSM system can be mounted in order to send a message about the location of the user to

his relatives.

• Voice recognition can be added as another feature that can be done.

9.2 Conclusion

We have been able to make this device portable, wearable, unique, low power, cost

effective and easy to use. It is capable to help blind people perform their daily chores more

efficiently and independently. We have successfully implemented the concepts of digital

image processing, circuit designing, coding/programming in python language and

prototyping. It is a multi-functional system that successfully performs the function of

obstacle detection in the path of the user using an array of ultrasonic sensors, face

recognition, determines the number of people in front of the user by face detection scheme,

identifies paper currency using a camera and it also monitors user's health conditions

using pulse and temperature sensors. The outputs of the respective functions are given to

the user through an audio signal via headphones/speakers.

Therefore, through this project we have integrated our theoretical knowledge with practicality

and gained further insight and refined our skills in all the fields mentioned above. The

major part of this project consists of concepts involving artificial intelligence, deep learning,

machine learning and sensors.

51

APPENDICES

52

APPENDIX A

APPROVED SYNOPSIS

VISION-Z

Extended Title: Artificial Intelligence Based Aiding Device for Visually Impaired People

Brief Description of The Project / Thesis with Salient Specifications:

A multifunctional aiding device for visually impaired people which detects obstacles, recognize various

objects and monitors healthcare

Scope of Work:

Design, implementation, and development of a visual aiding system

Academic Objectives:

 This project will provide hands-on experience in the following courses:

• Deep Learning Algorithms

• Image Processing

• Embedded Systems

• Programming Techniques

• Structure Designing

Application / End Goal Objectives:

AI based standalone device aiding daily functionality of blind people

Previous Work Done on The Subject:

• Vision Pi

• Laser Canes, Braille printers, Infrared based obstacle detection and Text readers

Material Resources Required:

We will require Jetson Nano in concurrence with Arduino interfaced with different sensors, incorporation

of deep learning-based object detection and recognition. Programming Languages I-e Python, Arduino

No of Students Required: 4

Group Members: NC SIMRA KAUSAR RAJA, NC WAJIHA JAWWAD, ASC PERVAZ ALAM, NC

ZARGHAM BAIG

Special Skills Required:

• Circuit design and analysis skills

• Programming skills

• Deep learning, Computer Vision

• Technical documentation writing skills

Table 2 Approved Synopsis

53

APPENDIX B

PROJECT TIMELINE

Month Work Done

Sep Project Synopsis and Approval

Oct Literature Review

Nov Nano Installation and Setup, Installation and Setup of OpenCv

Dec Camera Integration with Nano, Integrating various sensors with Arduino.eg ultra-

sonic sensors, temperature sensor etc.

Jan Gathering Data Set, managing the data set and training on yolo model.

Integration of Arduino with Nano.

Feb Currency Recognition, Facial Recognition and testing all models

Mar Image captioning, Testing Sensors and Hardware interfacing

Apr Arduino output, Audio output, Final assembly and Testing

May Thesis write up and finalization

Table 3 Project Timeline

54

APPENDIX C

COST BRAKDOWN

Table 4 Cost Breakdown

Name of Equipment Cost-estimate

Jetson Nano 25000PKR

MicroSD Card 1350 PKR

Arduino 1250 PKR

Pulse Sensor 1350 PKR

Temperature Sensor 550 PKR

Ultrasonic Sensor 350 PKR

Keypad 150 PKR

Camera 1000 PKR

Headphones 750 PKR

Blind cane 800 PKR

Power Bank 3000 PKR

Total 35,550 PKR

55

APPENDIX D:

CODES

Code for Facial Recognition

56

57

58

Code for Image Captioning

59

60

61

62

63

64

65

YAML file for YOLO for Currency Recognition

66

YAML File for Fine Tuning

67

Hyperparameters for VOC finetuning

python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50

See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials

Hyperparameter Evolution Results

Generations: 306

P R mAP.5 mAP.5:.95 box obj cls

Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146

lr0: 0.0032

hsv_v: 0.464

degrees: 0.373

68

translate: 0.245

scale: 0.898

shear: 0.602

perspective: 0.0

flipud: 0.00856

fliplr: 0.5

mosaic: 1.0

mixup: 0.243

YAML File for Data

train: yolodata/train

val: yolodata/val

anchors: 3 # anchors per output layer (0 to ignore)

69

Code for Object Detection

70

71

Code for Jetson Nano

Figure 33 Backend Display

72

if project == "2":

 os.chdir("ic_mobilenet/")

 subprocess.run(["python3", "evaluate_caption.py"])

if project == "31":

 os.chdir("face_rec/")

 subprocess.run(["python3", "video.py"])

if project == "32":

 os.chdir("face_rec/")

 subprocess.run(["python3", "webcam.py"])

if project == "4":

 print("PulseSensor")

 print(">>> S with A0 of arduino \n>>> vcc+ with 3.3V of arduino \n>>> vcc- with ground of

arduino \n")

 print("Temperature sensor")

 print(">>>Temperature sensor DS18B20 \n>>> D with 2 of arduino \n>>> vcc+ with 3.3V of

arduino \n>>> vcc- with ground of arduino \n")

 print("UltraSonic")

 print(">>>UltraSonic HC-SR04 \n>>> ECHO with ~10 of arduino \n>>> trg with ~9 of

aurdino \n>>> vcc+ with 3.3V of arduino \n>>> vcc- with ground of arduino \n")

 os.chdir("Sensors/")

 engine.say(subprocess.run(["arduino", "--upload", "sensors.ino", "--port", "/dev/ttyUSB0"]))

 engine.runAndWait()

 subprocess.run(["minicom", "-D", "/dev/ttyUSB0", "-b", "9600"])

 pyautogui.press(['ctrl','a','x','enter'])

 print("\n")

if project == "0":

73

 pyautogui.hotkey('ctrl', 'z')

 pyautogui.press(['ctrl','a','x','enter'])

 print("\n")

74

APPENDIX E :

FINAL DELIVERABLE

75

BIBLOGRAPHY

[1]. Cardin, S., Thalmann, D., & Vexo, F. (2007). A wearable system for mobility improvement

of visually impaired people. The Visual Computer, 23(2), 109-118.

[2]. MacNamara, S., & Lacey, G. (2000, April). A smart walker for the frail visually impaired. In

Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics

and Automation. Symposia Proceedings (Cat. No. 00CH37065) (Vol. 2, pp. 1354-1359). IEEE.

[3]. Kim, C. G., & Song, B. S. (2007, April). Design of a wearable walking-guide system for the

blind. In Proceedings of the 1st international convention on Rehabilitation engineering &

assistive technology: in conjunction with 1st Tan Tock Seng Hospital Neurorehabilitation

Meeting (pp. 118-122)

[4]. Zöllner, M., Huber, S., Jetter, H. C., & Reiterer, H. (2011, September). NAVI–a proof-of-

concept of a mobile navigational aid for visually impaired based on the Microsoft Kinect. In IFIP

Conference on Human-Computer Interaction (pp. 584-587). Springer, Berlin, Heidelberg.

[5]. Innet, S., & Ritnoom, N. (2009, February). An application of infrared sensors for electronic

white stick. In 2008 International Symposium on Intelligent Signal Processing and

Communications Systems (pp. 1-4). IEEE.

[6]. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 779-788).

[7]. Josh, H., Yong, B., & Kleeman, L. (2011, December). A real-time fpga-based vision system

for a bionic eye. In Proceedings of Australasian Conference on Robotics and Automation

(ACRA).

[8]. Batavia, P. H., & Singh, S. (2001, May). Obstacle detection using adaptive color

segmentation and color stereo homography. In Proceedings 2001 ICRA. IEEE International

Conference on Robotics and Automation (Cat. No. 01CH37164) (Vol. 1, pp. 705-710). IEEE.

[9]. Jain, P., & Awasthy, M. (2014). Automatic Obstacle Detection using Image Segmentation.

International Journal of Emerging Technology and Advanced Engineering, 4(3).

79

76

REFERENCES

[10]. YOLO — You only look once, real time object detection explained (2017). Available at:

https://towardsdatascience.com/yolo-you-only-look-once-real-time-object-detection-explained-

492dc9230006 (Accessed: 7 June 2021).

[11]. Linear Regression in Python (2017). Available at: https://towardsdatascience.com/linear-

regression-in-python-9a1f5f000606 (Accessed: 7 June 2021).

[12]. Brownlee, J. (2019) A Gentle Introduction to Deep Learning for Face Recognition,

Machine Learning Mastery. Available at: https://machinelearningmastery.com/introduction-to-

deep-learning-for-face-recognition/ (Accessed: 7 June 2021).

[13].Introduction to how CNNs Work (2019). Available at:

https://medium.datadriveninvestor.com/introduction-to-how-cnns-work-77e0e4cde99b

(Accessed: 7 June 2021).

[14]. Bahdanau Attention — Dive into Deep Learning 0.16.5 documentation (2021). Available

at: https://d2l.ai/chapter_attention-mechanisms/bahdanau-attention.html (Accessed: 7 June

2021).

[15]. Recurrent Neural Network (RNN) Tutorial for Beginners (2021). Available at:

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn (Accessed: 7 June 2021).

77

78

79

80

81

82

