

Automatic Seed Sowing Robot

Author

Capt Rana Farid Riaz

00000241073

Maj Malik Muhammad Saddam

00000241073

Capt Muhammad Hamza Bin Zahid

00000241054

Capt Muhammad Kamran

00000241067

Supervisor

Col (R) Attiq Ahmad

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology,

in partial fulfillment for the requirements of B.E Degree in Electrical Engineering

 June, 2021

CERTIFICATE OF CORRECTIONS & APPROVAL

Certified that work contained in this thesis titled “Automatic Seed Sowing Robot” carried out by

Rana Farid Riaz, Muhammad Hamza Bin Zahid, Malik Muhammad Saddam and Muhammad

Kamran under the supervision of Col (R) Attiq Ahmad for partial fulfillment of Degree of

Bachelors of Electrical Engineering, in Military College of Signals, National University of

Sciences and Technology, Islamabad during the academic year 2019-2021 is correct and

approved. The material that has been used from other sources it has been properly acknowledged

/ referred.

Approved by

Supervisor

 Date: _________________

DECLARATION

No portion of work presented in this thesis has been submitted in support of

another award or qualification in either this institute or anywhere else.

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Rana Farid Riaz

00000241073

Muhammad Hamza Bin Zahid

00000241054

Malik Muhammad Saddam

00000241073

Muhammad Kamran

00000241067

Signature of Supervisor

Acknowledgements

We are thankful to our Creator Allah Subhana-Watala to have guided us throughout this

work at every step and for every new thought which we setup in our minds to improve it. Indeed

we could have done nothing without His priceless help and guidance. Whosoever helped me

throughout the course of my thesis, whether my parents or any other individual was His will, so

indeed none be worthy of praise but Him.

We are profusely thankful to our beloved parents who raised us when we were not

capable of walking and continued to support us throughout in every aspect of our life.

We would also like to express special thanks to our supervisor Col (R) Attiq Ahmad for

his help throughout our thesis. Without his help we wouldn’t have been able to complete our

thesis. We appreciate his patience and guidance throughout the whole thesis.

Finally, we would like to express our gratitude to all faculty members and individuals

who have rendered valuable assistance to our study.

Dedicated to our exceptional parents and adored siblings whose

tremendous support and cooperation led us to this accomplishment.

Abstract

Agriculture is the mainstay of Pakistan's economy. It is also an important source of foreign

exchange earnings and stimulates growth in other sectors. The government is focusing on

supporting small and marginalized farmers and promote small scale innovative technologies to

promote growth in this sector. According to the 6th Population and Housing Census of Pakistan

2017, the country’s population is growing at the rate of 2.4 percent per annum. This rapid

increase in population is raising demand for agricultural products. There are vast gaps between

the acquired and actual output of production, which suffers due to a lack of appropriate

technology, use of inputs at improper times and unavailability of water and sometimes over

watering which not only negatively affects the production but also significantly reduces the

fertility of soil as well. Another one of the greatest problem is the wastage of seed during sowing

season. The present government is focused on developing this sector and in this connection initiated a

number of measures such as crop diversification, efficient use of water and promotion of high value crops

including biotechnology. But the problem of seed wastage is still persistent and very less importance is

given to this issue. Another problem that we are facing is use of extensive manpower in lieu of low

production. Our production do not meet the manpower ratio we use in this sector. One of the main reason

is lack of use of technology in this sector.

To overcome this issue, we have analyzed the issue and proposed a prototype of Automatic Seed

Sowing Robot. The robot is a sample for further improvements hence the paper can be read in this

perspective. Use of robot in this area will not only curtail the wastage of seed but also reduce the

manpower significantly. As our government is working on promoting small scale farming, keeping in

view, Automatic Seed Sowing robot is the solution. This modal can also be replicated on a bigger scale

with modification to be used in large fields and in sowing of different types of seeds.

Table of Contents

	
CERTIFICATE OF CORRECTIONS & APPROVAL .. ii

DECLARATION ... iii

Plagiarism Certificate (Turnitin Report) ..iv

Acknowledgements .. v

Abstract ... vii

Table of Contents ... viii

List of Figures .. x

List of Tables ...xi

CHAPTER 1: INTRODUCTION... 1

1.1 Scope and Motivation .. 1

1.2 Design and Devices .. 1

1.2.1 Chassis ... 2

1.2.2 Wheels ... 2

1.2.3 Drive/ Steering Mechanism ... 3

1.2.4 Seed Sowing Mechanism ... 3

1.2.5 Devices .. 4

CHAPTER 2: WORKING METHODOLOGY .. 8

2.1 Robot Localization ... 8

2.1.1 Inertial Measurement Unit ... 9

2.1.2 Wheel Encoder ... 10

2.1.3 Global Positioning System ... 12

2.2 Localization Data Fusion ... 13

2.2.1 Robot Operating System (ROS)... 13

2.2.2 Node... 14

2.2.3 Topic .. 14

2.2.4 Robot Localization Package .. 14

2.2.5 Extended Kalman’s Filter .. 14

2.3 Obstacle Avoidance ... 15

2.4 Robot’s Movement and Control ... 15

Chapter 3: Graphic User Interface and Integration with Robot ... 17

3.1 Development of GUI .. 17

3.2 GUI – Fire Base Interface .. 19

3.2.1 Firebase Authentication ... 21

Appendices ... 22

Appendix ‘A’ .. 22

Appendix ‘B’ .. 27

Appendix ‘C’ .. 32

Appendix ‘D’ .. 40

Appendix ‘E’ .. 41

Appendix ‘F’ .. 44

Appendix ‘G’ .. 47

Appendix ‘H’ .. 53

Annex ‘I’ ... 57

REFERENCES .. 58

List of Figures

Figure 1 - Chassis ... 2
Figure 2 – Specially Designed Wheel ... 2
Figure 3 – Gear Set .. 3
Figure 4 – Seed Sowing Mechanism ... 4
Figure 5 – Raspberry Pi .. 4
Figure 6 – MPU 9250 ... 5
Figure 7 – IBT 2H .. 5
Figure 8 – NEO – 6M GPS .. 6
Figure 9 – HC- SR04 ... 6
Figure 10 – Moisture Sensor ... 7
Figure 11 - IR Sensor ... 7
Figure 12 - ROS Operation ... 8
Figure 13 - Robot Localization ... 9
Figure 14 – Wheel Encoder ... 11
Figure 15 – Distance Calculation .. 11
Figure 16 - Distance Calculation .. 12
Figure 17 - Obstacle Avoidance Scheme .. 15
Figure 18 - Point to Point Distance Calculation .. 16
Figure 19 – MIT App Developer .. 17
Figure 20 - GUI .. 17
Figure 21 - GUI .. 18
Figure 22 - GUI .. 18
Figure 23 - GUI .. 19
Figure 24 - GUI .. 19
Figure 25 - GUI .. 19
Figure 26 - GUI Authentication .. 20
Figure 27 - GUI Working .. 21

List of Tables

Table 1 – NMEA Message Format ... 13

1
Footnote may be given with Font size 10 of Times New Roman.

CHAPTER 1: INTRODUCTION

Pakistan is an agrarian country. Agriculture has a significant role in shaping our

economy. Agriculture contributed around 22% to its GDP in 2019 whereas it employed 42% of

Pakistan’s labor force. Comparison of agricultural share in GDP and use of labor for this

contribution reflects that there is a dire need to increase the agricultural yield with respect to the

manpower being used.

1.1 Scope and Motivation

Automatic Seed Sowing Robot is a prototype for seed sowing in a prepared field. It plays

a major role in reducing manpower being used for seed sowing and in reduction of seed wastage.

The robot is equipped with various devices and sensors for high precision and analysis of

environment before seed sowing. It can be operated via android app, capable of avoiding

obstacles and sow the seed according to the particular requirement of the seed. The robot sows

the seeds as per the requirement of the desired crop keeping in view the inter seed and inter lane

distances and depth. The chassis of the robot is a 4 wheeler vehicle made up of iron bars.

Wheels of the robot is made up of iron which help it in movement in a muddy field. It operates

on the principle of differential drive. Being a prototype, the robot is capable of carrying 2 kg of

seeds.

The Automatic Seed Sowing Robot which we have chosen for our project is a robot

whose aim is to reduce the use of manpower in seed sowing process and curtail the wastage of

time and seed.

1.2 Design and Devices

Our proposed seed sowing robot is a 4 wheeler vehicle made up of iron and aluminum.

The proposed chassis and wheels of the robot have been specially designed after repeated

experimentation on a prepared field. Various types of robot designed were considered and trials

were performed by the group on the desired terrain. After a detailed analysis and consideration

the subsequent design has been proposed in this paper. Merits and de merits of various designs,

components and parts which have been used and those which have not been considered suitable

for this system is also discussed in coming paragraphs.

2
Footnote may be given with Font size 10 of Times New Roman.

1.2.1 Chassis

The proposed material of chassis can be aluminum.

Aluminum being light weight offers reduced weight of robot.

But, the use of aluminum as a chassis material results in

increased cost of construction due to expensive raw material.

Assembling and labor cost of aluminum chassis is also high

due to lack of skillful manpower.

 On contrary, Iron chassis is cost effective due to

cheaper and easily available raw material and easily available manpower for its construction.

Hence, in our proposed design, the robot housed the electronic circuitry and seed sowing

mechanism on a 1.5 x 2.5 ft iron chassis. The shaft of the wheels are made up of aluminum to

reduce the weight of the robot and facile movement of robot. Iron angle bars are installed in the

middle of the structure of support the wheel shafts and bear the weight of robot. The design

provides the ground clearance of 4 inches.

1.2.2 Wheels

The initially proposed design of the robot consisted of

plastic tires. These tires are easily available in market, are cost

effective and light weight. But these type of tires/ wheels lack

grip in muddy terrains. The same very problem arises by the use

of air filled rubber tires. This types of tires also pose the

problem of punctures when driven in fields and rugged terrain.

Trails have been made by this group on plastic and rubber

wheels which lack grip in a prepared muddy terrain.

To resolve this problem, we have designed the custom

made iron wheels for this robot. We have taken into

consideration the working of tractor in a field. The rear wheels

of this robot are analogous to the tires of a tractor. The proposed

wheels are now made up of iron, having diameter of 10 inches. The rear wheels have specially

made skewers on its circumference to grip the ground and push or pull the robot in desired

direction.

Figure 2 – Specially
Designed Wheel

Figure 1 - Chassis

3
Footnote may be given with Font size 10 of Times New Roman.

1.2.3 Drive/ Steering Mechanism

The robot works on the principle of differential drive hence, two motors along with chains

and spur gear sets have been used for both left and right wheels. Both the wheels can

independently be driven either forward or

backward. The robot can be steered in any

direction and can be turned on any angle just by

the variation in the speed of both motors. The

point at which the robot rotates about is called

Instantaneous Center of Curvature.

The spur gear set used in the robot is a

commonly used in motor bikes. The drive gears

of the robot have 14 teeth whereas the driven

gears have 41 teeth. The gear ratio can be found by dividing the number of teeth on drive gear to

the number of teeth on driven teeth. Hence the gear ratio of our robot is 1:2.92.

1.2.4 Seed Sowing Mechanism

The robot proposed in this paper is a prototype which is designed for the crops whose seed

sowing is performed by throwing. These crops include wheat, corn and cotton et cetra. These crops do not

require in depth sowing of seed. Seed is generally sown in a depth on 1 inch. Seed sowing has further two

parts:

1.2.4.1 Ploughing Mechanism

Before the seed is sown in the ground, an adequate space is made in the mud to throw the seed

and then cover it from the mud. For this purpose, we have incorporated a nut and a long bolt in the

structure. Nut of the mechanism is welded on the front of robot. Bolt is then tightened in the nut. The

length of the bolt can be adjusted both manually and automatically. For the automatic operation, bolt is

driven through a belt and servo motor. When the servo motor rotate the bolt in clockwise direction, it

moves deep inside the ground. On counter clockwise movement, the bolt moves upwards. An Iron angle

is aligned to this nut and bolt and is installed at the rear end of robot. When the robot moves, the bolt

makes the space for the seed to be sown. Sowing mechanism throws the seed in space and angle cover the

seed with soil.

Figure 3 – Gear Set

4
Footnote may be given with Font size 10 of Times New Roman.

1.2.4.2 Sowing Mechanism

Sowing mechanism consist of funnels and the stepper

motors. The assembly is housed in a wooden structure. Funnels

can take two different type of seed. Seed up to 2 kg can be

stored in the funnels. At the bottom end of the funnels, wooden

disc has been installed. Shafts of the stepper motor in engraved

in the wooden disc which rotates the disc and throw the seed

according to our requirement. The disc with its one complete revolution throws two seeds. Two

more funnels are also installed below this arrangement and are connected to pipes. These funnels

collect the seed thrown from the wooden disc and with the help of pipes, lay them on the desired

location.

1.2.5 Devices

The Mechanical structure of the Automatic Seed Sowing Robot has been interfaced with

the electronic circuitry especially designed for this purpose. The block diagram of the system is

shown below followed by brief of the devices/ sensors used.

1.2.5.1 Raspberry Pi 4 Model B

Raspberry Pi is a low cost

and small sized computer which is

capable of performing every task

that a desktop computer can do.

Raspberry Pi 4 Model B is the first

variant of the 4th Generation of

Raspberry Pi computers/ micro

controllers. The micro controller is

just 3.4 x 2.2 x 0.4 inches in

dimension and weighs only

40grams. It comes with Broadcom BCM2711B0 quad-core ARM processor and the 4K-capable

Figure 5 – Raspberry Pi

Figure 4 – Seed Sowing
Mechanism

5
Footnote may be given with Font size 10 of Times New Roman.

Broadcom Video Core VI video processor. The variant also has upgraded 3.0 USB ports and

Type C ports for power. The Pi provides ports for Ethernet, Wifi and Bluetooth. In addition to

these common ports, the Pi 4 also provides Camera Serial interface (CSI), Display Serial

Interface and Micro SD card slot to enhance the storage capacity.

The most important feature of Raspberry Pi 4 Model B in the 4 Pin GPIO header. These

I/O pins provide direct access to connect external devices.

1.2.5.2 MPU 9250

MPU 9250 is a 9 axis Motion

Processing Unit. It is system in package

(SiP) that contains a 3-axis

Accelerometer, 3-axis Gyroscope and a 3-

axis Magnetometer. It also contain Digital

Motion Processor which makes it capable

to process complex motion fusion

algorithms. MPU-9250directly provides

complete 9-axis Motion Fusion output.

The prime advantage of this SiP is the low

power consumption. The device operate on 6.4 µA making it easy for use in circuits. It consists

of 3 Analog to digital converters (ADC) for digitizing the outputs of accelerometer, gyroscope

and magnetometer each. The device provides data in 3 axis about acceleration, angular velocity

and magnetic strength. Microcontroller can be connected to

MPU9250 easily by using I2C or SPI serial bus interface.

1.2.5.3 IBT - 2H Motor Driver

 IBT – 2H is a high power module used as a motor driver.

The module consists of 2 BTS 7960 chips and features logic level

inputs, protection against over temperature, short circuit, over

current and slew rate adjustments. The module has the following

specifications:

 Input voltage: 6-27 V DC

Figure 6 – MPU 9250

Figure 7 – IBT 2H

6
Footnote may be given with Font size 10 of Times New Roman.

 Max Current: 43 A

 Control I/P Level: 3.3-5 V

 Duty Cycle: 0-100%

1.2.5.4 NEO – 6M GPS Receiver

 NEO – 6M GPS module is a GPS receiver with a built in

ceramic antenna. The module has a strong satellite search

capabilities. One can monitor the status of the module through

power and signal indicators. The module consists of built in

EPROM in which configuration settings are stored. The module

also has TTL level serial interface and can be connected easily to

the microcontroller using TTL to USB adapter. The module

generates a default NMEA data message which is used in most of

the applications. The module has the following specifications:

 Operating Voltage: 3-5V

 Positing Accuracy: 2.5 m

 Refresh Rate: 5Hz Max

 Protocol: NMEA (Default)/ UBX Binary

1.2.5.5 HC-SR04 Sensor

HC-SR04 is a 4-pin module used to

detect the obstacles and calculating short range

distances. The module works on the principle

of ultrasonic waves having ultrasonic

transmitter and receiver. The transmitter

transmits the ultrasonic wave and receiver

detects the reflection of the wave in case of

any obstacle.

The sensor can be used with both microprocessor and microcontroller platforms like

aurdino and raspberry pi. The module take 5v input from Vcc and and gnd pins. Current

consumed by the sensor is 15mA, hence it can be directly connected on board. Trigger and Echo

Figure 8 – NEO – 6M GPS

Figure 9 – HC- SR04

7
Footnote may be given with Font size 10 of Times New Roman.

Pins in the sensor are I/O pins and can be connected to the microcontroller easily. For

measurement and detection, trigger pin should be high for at least 10µs.

1.2.5.6 Moisture Detection Sensor

The working of the soil moisture sensor is simple. The

fork-shaped probe with two exposed conductors, acts as

a variable resistor (just like a potentiometer) whose resistance

varies according to the water content in the soil. This

resistance is inversely proportional to the soil moisture:

 The more water in the soil means better conductivity and

will result in a lower resistance.

 The less water in the soil means poor conductivity and will result in a higher resistance.

The sensor produces an output voltage according to the resistance, which by measuring we can

determine the moisture level.

1.2.5.7 IR Sensor

Widely used in motor speed detection, pulse count, the

position limit, etc. This IR speed module sensor with the

comparator LM393, we can calculate the speed of rotation of the

wheels of our robot. If we place a ring gear that rotates attached to

our wheel. It could also be used as an optical switch.

Figure 11 - IR Sensor

Figure 10 – Moisture Sensor

8
Footnote may be given with Font size 10 of Times New Roman.

CHAPTER 2: WORKING METHODOLOGY

The robot is equipped with various devices and sensors for high precision and analysis of

environment before seed sowing. It can be operated via android app, capable of avoiding

obstacles and sow the seed according to the particular requirement of the seed. All the activities

of robot are performed simultaneously by different nodes of Robot Operating System. ROS is

capable of coordinating and performing different tasks simultaneously. The overall operation of

ROS is shown is the figure.

Figure 12 - ROS Operation

2.1 Robot Localization

Automatic seed sowing robot is a prototype for seed sowing. The robot works

autonomously in a field by taking latitude and longitudes as inputs. On turning the robot on, the

robot localize itself. Localization of robot denotes the Robot’s capability to establish its own

location and orientation. It is one of the fundamental concept in robotics automation as the

knowledge of robot’s own location is very important in making future decisions. In our robot, the

localization is made possible with the use of three different types of sources. A block diagram of

robot localization is shown in the figure and explained in subsequent headings.

9
Footnote may be given with Font size 10 of Times New Roman.

Figure 13 - Robot Localization

2.1.1 Inertial Measurement Unit

In seed sowing, continues tracking of robot’s position with respect to the targeted plotted

map is required along with high precision of maximum 1 meter. This technology is called

SLAM, Simultaneous Localization and Mapping. The robot builds up the map of seed sowing

while tracking its own position with respect to build up map. To enhance the precision of

localization, we have used Inertial Measurement Unit (IMU). For this purpose, we have used

MPU 9250. It is a 9-axis motion processing unit. The IMU produce output in 3-axis each about

acceleration, angular velocity and magnetic strength. From this data we have calculated the Yaw,

Pitch and Roll by using Madgwick Algorithm. IMU data along with Wheel encoder data are

fused by using Extended Kalman Filter to obtain filtered odometery. C

2.1.1.1 Madgwick Filter

An IMU is a sensor suite complete with an accelerometer and gyroscope plus a

Magnetometer. All three of these sensors measure physical qualities of Earth's fields or

orientation due to angular momentum. Alone, these sensors have faults that the other sensors can

make up for. The goal is to build an inertial measurement unit that will be able to sensor fuse an

accelerometer, gyroscope, and optionally a magnetometer to provide roll, pitch, and yaw angles

10
Footnote may be given with Font size 10 of Times New Roman.

relative to the frame of Earth. The Madgwick Filter fuses the IMU data. It does this by using

gradient descent to optimize a Quaternion that orients accelerometer data to a known reference of

gravity. This quaternion is weighted and integrated with the gyroscope quaternion and previous

orientation. This result is normalized and converted to Euler angles. Code is attached in annex

‘B’.

Gyroscope Model:

ω=ŵ+bg+ng

Here, ω is the measured angular velocity from the gyro, ŵ is the latent ideal angular velocity we

wish to recover, bg is the gyro bias which changes with time and other factors like

temperature, ng is the white gaussian gyro noise.The gyro bias is modelled as

ḃg = bbg(t)∼N(0,Qg), where

Qg is the covariance matrix which models gyro noise.

Accelerometer Model:

a=RT(â−g)+ba+na
Here, a is the measured acceleration from the accelerometer, â is the latent ideal acceleration we

wish to recover, R is the orientation of the sensor in the world frame, g is the acceleration due to

gravity in the world frame, ba is the accelerometer bias which changes with time and other

factors like temperature, na is the the white gaussian accelerometer noise.

The accelerometer bias is modelled as

ḃa=bba(t)∼N(0,Qa)

where Qa is the covariance matrix which models accelerometer noise.

2.1.2 Wheel Encoder

Another technique employed to refine the precision and track the actual position of robot,

we have used the wheel encoder. Wheel encoder is an IR sensor which is used to count the

revolution of the wheel. As our proposed robot is working on the principle of differential drive,

11
Footnote may be given with Font size 10 of Times New Roman.

the number of revolution that both wheels undergo should

be equal in order to drive the robot in straight line. Else if

the both wheels have different velocities, the robot tends to

turn in some direction. In order to evaluate the velocity and

revolution of the wheel, we have installed specially

designed hand-made encoder wheel with the drive gears of

motors. The feedback encoder tracks how much a wheel

rotates. Given that information and wheel radius, we can

find out that how much a wheel has moved and how fast it

is moving. The diameter of wheel is 8 cm. The 360 degrees

of the circle is divided in 20 hollow segments. Every

segment is of 5 degrees and is separated by 13 degrees from others. The encoder wheels rotate

between the IR sensors which count the change in state of wheel. The transmitter of IR sensor

transmit the infrared rays which is being received at receiver end. When IR is blocked by the

wheel, it counts the change in state. This change in state

is then cut into half to count only the number of hollow

segments. When the number of ticks of left and right

wheel are known, we can compute position and

orientation of robot.

Now, we calculate how much a robot turn using

wheel encoder. Let,

c= circumference of wheel= distance covered in

one revolution

q= number of encoder ticks per revolution

Slt = encoder tick for left wheel at time t

dl = Distance covered by left wheel, then

݈݀ ൌ
ሺ݈ܵݐ െ ݐሺ݈ݏ െ 1ሻ

ݍ
∗ ܿ

Similarly for right wheel

ݎ݀ ൌ
ሺܵݐݎ െ ݐሺݎݏ െ 1ሻ

ݍ
∗ ܿ

Figure 14 – Wheel Encoder

Figure 15 – Distance Calculation

12
Footnote may be given with Font size 10 of Times New Roman.

Consider the movement of robot shown in the

figure. A robot turn from its initial position to the

position shown in the diagram. Let,

Rw= Distance between wheel and centre

R = Radius of curved path

∆θ = Change in orientation

Now we calculate the distance covered by the center of robot and both wheels.

dl = R∆θ

d = (R+Rw) ∆θ

dr = (R+2 Rw) ∆θ

Now, we generally do not know the value of d and ∆θ. We only know dr and dl from encoders

and Rw from robot modal. So let’s find out ∆θ.

 dl == R∆θ

dr = (R+2 Rw) ∆θ

∆θ Rw =
ௗିோ∆

ଶ

∆θ =
ௗିௗ

ଶோ௪

Now we have the expressions for d and ∆θ, so we can find out d which comes out to be

 ݀ ൌ 	
ௗାௗ

ଶ

Fusion of wheel encoder’s data and IMU gives us the position of the robot according to

the local frame of reference. Code is attached in annex ‘C’.

2.1.3 Global Positioning System

In the proposed robot, global localization is made possible with the use of GPS Receiver

NEO 6M having accuracy up to 2.5 m. Each satellite transmits µwave signal towards earth.

Receiver on earth use these signals to estimate their speed, location, direction and time. This

information is then processed by receiver to determine the latitude, longitude, speed, altitude and

time.

Figure 16 - Distance Calculation

13
Footnote may be given with Font size 10 of Times New Roman.

The GPS gives the output in standard NMEA format. An example of NMEA format is as

follow:

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A

All NMEA messages start with the $ character, and each data field is separated by a

comma.

Field Meaning

0 Message ID $GPRMC

1 UTC of position fix

2 Status A=active or V=void

3 Latitude

4 Longitude

5 Speed over the ground in knots

6 Track angle in degrees (True)

7 Date

8 Magnetic variation in degrees

9 The checksum data, always begins with *

Table 1 – NMEA Message Format

The data provided by GPS is subscribed by Nav Sat Node of ROS. The output of this

node is again subscribed by the ekf node along with the filtered odometry published by the

fusion of IMU and Wheel encoders data. Ekf node again fuse the data from both nodes and

provides the position of the robot globally. Code is attached in annex ‘D’.

2.2 Localization Data Fusion

2.2.1 Robot Operating System (ROS)

 Robot operating system is a set of tools and software libraries which aims to make the

complex robotic operation easy. The basic function of the ROS is to run a number of executable

files simultaneously that are able to exchange data synchronously or asynchronously. For

example, ROS get the data from the robot sensors at set frequency, retrieve that data, pass it to

data processing and in return control the motors according to desired function.

14
Footnote may be given with Font size 10 of Times New Roman.

2.2.2 Node

Node is an executable which uses ROS to communicate with other nodes. Every node

that start working, declare itself to Master. Nodes communicate with each other by publishing

and subscribing messages. They also exchange request and response messages as a part of ROS

service call. These are defined as srv files.

2.2.3 Topic

The data in ROS is called a topic. A topic defines the types of messages that will be

published about that topic. The nodes that sends data publish the topic name and the type of

message to be sent. The actual data is published by the node. Nodes can publish messages to

a topic as well as subscribe to a topic to receive messages.

2.2.4 Robot Localization Package

It is a collection of state estimation nodes. Each node is a state estimator of the robot that

is moving in a 3 dimensional space. In our proposed robot, we have used ekf (Extended

Kalman’s Filter) localization node for state estimation. This package also provide us nav sat

node which enable us to integrate the data of GPS also. These nodes allow the user to fuse the

data of multiple sensors together. Hence they do not restrict the number of inputs. Moreover,

these nodes provide continues estimation. The state estimation begins with the reception of even

a single measurement. If there is a delay in sensor data, the filter will continue to estimate the

state through internal motion model. Every state estimator node estimates the state in 15

dimensions: (X,Y,Z,roll,pitch,yaw,X˙,Y˙,Z˙,roll˙,pitch˙,yaw˙,X¨,Y¨,Z¨).

2.2.5 Extended Kalman’s Filter

The extended Kalman filter is utilized for nonlinear problems like bearing-angle target

tracking and terrain-referenced navigation (TRN). The Extended Kalman Filter (EKF) is an

extension of the classic Kalman Filter for non-linear systems where non-linearity are

approximated using the first or second order derivative. It is based on:

 linearizing dynamics and output functions at current estimate

 propagating an approximation of the conditional expectation and covariance

Consider φ : R n → R m

15
Footnote may be given with Font size 10 of Times New Roman.

Suppose E x = ¯x, E (x − x¯)(x − x¯) T = Σ x, and y = φ (x)

If Σ x is small, φ is not too nonlinear, y ≈ y˜ = φ(¯x) + Dφ(¯x)(x − x¯)

Approximation for mean and covariance of nonlinear function of random variable:

y¯ ≈ φ(¯x), Σ y ≈ Dφ(¯x)Σ xDφ(¯x) T

2.3 Obstacle Avoidance

The robot is capable of avoiding the

obstacle when it is en route to the field. During

this stage when the robot is not in seed sowing

mode, the robot uses it supersonic sensor for

the detection of obstacles. The transmitters

emit a high frequency ultrasonic sound, which

bounce off any nearby solid objects, and the

receiver listens for any return echo. That echo

is then processed by the control circuit to

calculate the time difference between the signal being transmitted and received. This time can

subsequently be used, along with some clever math, to calculate the distance between the sensor

and the reflecting object.

2.4 Robot’s Movement and Control

For the coordinating and controlling robot’s motion, we have designed various nodes in

ROS. These nodes are performing various functions simultaneously which helps in controlling

the Robot. Following nodes are being used in the ROS for functioning of our proposed robot.

ROS Node 1: This nodes subscribes to the topic of Robot localization package. It is connected

with application and publishes data on ROS. This node actually transfers input data from

application to ROS. Using the algorithm, the robot calculates the present and targeted location.

This node further publishes the Present and targeted location continuously which can be viewed

on GUI. Code is attached in annex ‘E’.

Field Planner Node: This node decides the target location of the robot. It moves the robot

towards its target. During movement within field it divides the field into small sub targets and

moves it in a matrix. This node publishes two type of commands, one is target and present

location with bearing. This data is subscribed by the command publish node. Second is seed

Figure 17 - Obstacle Avoidance Scheme

16
Footnote may be given with Font size 10 of Times New Roman.

sowing commands which is further subscribed by seed sowing node. Code is attached in annex

‘F’.

ROS Node Command: This node subscribe

to the topic of Present and targeted location from

Field Planner Node. After the brief calculation as

per the algorithm, it calculates the distance and

velocity required to reach the target location. The

distance between two points in a cartesian plane is

found by following formula.

݀ ൌ 	ඥሺݔଶ െ ଵሻଶݔ െ ሺݕଶ െ ଵሻଶݕ

 The node then publishes the velocities of the motors ranging from -1 to 1. Code is attached in

annex ‘G’.

ROS Node Motor Driver: This node subscribes to the velocities calculated by the Node

Command. The motors drive the robot in forward direction when velocity passed to them ranges

between 0-1. In case of velocities ranging between 0 to -1, the robot will move in backward

direction. Code is attached in annex ‘H’

ROS Node Seed Sowing: This node subscribe to the seed type and calculate the velocity of

stepper motors that are used in the seed sowing mechanism. The velocities are then published by

this node and operation of seed sowing is performed.

ROS Node Obstacle Detection: This node subscribe to the data provided by sensor HC-

SR04. This is an IR Sensor for detection of the obstacles which robot is en route to the field from

its starting position. In case of any obstacle, the node estimates the re-routing of the robot and

publish the data accordingly.

Figure 18 - Point to Point Distance
Calculation

17
Footnote may be given with Font size 10 of Times New Roman.

Chapter 3: Graphic User Interface and Integration with Robot

For digitized control of our robot system we have developed an android application which is

integrated with the robot system. Use of this application enables us to control our robot remotely,

get information about the robot’s location and state which can

be used for further decision making. It eliminate the need of the

operator to be in direct contact with the robot. Operator can

control the robot from the position of his own ease in a safer

manner away from harmful dust or venomous reptiles.

Moreover, the operation of robot from a distant location

decrease the fatigue of manpower.

It requires just a click on screen in order to use its

functionalities. GUI makes it very easy to be use by novice as it

is user friendly. It looks very attractive and multi colored.

3.1 Development of GUI

For the easy operation of the robot remotely, we have

specially designed an android application. The development of

this Graphical user interface and its interfacing with the robot’s

operation is described subsequently. We have use the GUI

builder MIT App Inventor for this purpose. MIT have two Figure 20 - GUI

Figure 19 – MIT App Developer

18
Footnote may be given with Font size 10 of Times New Roman.

different platforms. The first is the designer block. Developer

design the out lay of GUI in this arrangement. The second is

coding block. The coding block provides functionality to the

GUI (Blocks in Annex I). Without a GUI builder, a GUI must

be built by manually specifying each widget's parameters in

source-code, with no visual feedback until the program is run.

The main advantage of the app builder is that the user do not

need to write extensively large codes. The user just have to

design the screen graphically and the app builder will write the code for it. The user further

manipulates the code according to his own requirement.

 Now, we have created the application screens in different

alignments for different functions with the help of labels,

buttons, text boxes, clock, spinners and firebase extension.

First is the login screen. The application is designed for use in

mobile. Every action on the application screen is linked with

the data base. The user needs to sign up initially. Afterwards,

the user login to start the operation of robot. The main page of

the GUI offers different option to the user as shown in the

figure. The user can find present location, can operate the

robot manually, sow the seed automatically, reaches to the

targeted field and shows status of the robot.

Screen in figure allows the user to operate the robot manually. In case of any eventuality the

user can over take the autonomous operation of the robot and control the robot on his own wish

and will. Direction, rotation and speed of the robot can be controlled according to requirement.

The screen shown in the figure provides information to the user about robot’s present

location. The information includes latitude, longitude, bearings, altitude and temperature. The

information provided by the robot is very useful in further decision making and controlling the

operation of the robot.

Figure 21 - GUI

Figure 22 - GUI

19
Footnote may be given with Font size 10 of Times New Roman.

The shown screen of the GUI allow user to move the robot from

its initial position to the desired location of the field. This

feature is introduced keeping in mind the heavy weight of the

robot which restrict the user to move the robot manually. The

user inputs the latitude, longitude or the x, y coordinates of the

field or desired location. On entering the required inputs, the

robot will reach the targets destination. In case of any obstacle,

the robot will re-route itself as discussed in preceding chapter

and reach the desired location

Figure shows the screen

used to start the autonomous operation of the robot. The GUI

takes the Latitude, longitude, length and width of the field. Seed

type is also fed as an input to the GUI. The robot then plot the

sowing according to the requirements of the given seed type and

length and width of the field. Go button in the bottom is pressed

to start the operation of the robot.

The Shown robot screen shows the robot status either idle, seed

sowing or approaching the desired field.

3.2 GUI – Fire Base Interface

For interfacing the GUI with robot, we have used firebase. In our GUI development, we

have linked the Python 3 data with python 2. This is because the pyre base library is only

Figure 25 - GUI

Figure 24 - GUI

Figure 23 - GUI

20
Footnote may be given with Font size 10 of Times New Roman.

compatible with python 3. Therefore data can only be get from the GUI with the use of python 3.

On the other hand, ROS is only compatible with python 2. Therefore, to link the two, we have

used SQL database which is a built in database of python. Firebase offers authentication,

databases, real time database, storage and hosting services. It uses Real time database to store the

data and implement the function in real time. Firebase use the method of authentication to link

the built application in MIT with the Robot’s working. The Firebase Rea time Database lets you

build rich, collaborative applications by allowing secure access to the database directly from

client-side code. Data is persisted locally, and even while offline, real time events continue to

fire, giving the end user a responsive experience. When the device regains connection, the Real

time Database synchronizes the local data changes with the remote updates that occurred while

the client was offline, merging any conflicts automatically.

The Real time Database provides a flexible, expression-based rules language, called

Firebase Real time Database Security Rules, to define how your data should be structured and

when data can be read from or written to. When integrated with Firebase Authentication,

developers can define who has access to what data, and how they can access it.

The Real time Database is a No SQL database and as such has different optimizations

and functionality compared to a relational database. The Real time Database API is designed to

only allow operations that can be executed quickly. This enables you to build a great real time

experience that can serve millions of users without compromising on responsiveness.

Figure 26 - GUI Authentication

21
Footnote may be given with Font size 10 of Times New Roman.

3.2.1 Firebase Authentication

Most apps need to know the identity of a user. Knowing a user's identity allows an app to

securely save user data in the cloud and provide the same personalized experience across all of

the user's devices. Firebase Authentication provides backend services, easy-to-use SDKs, and

ready-made UI libraries to authenticate users to your app. The Firebase UI Auth component

implements best practices for authentication on mobile devices and websites, which can

maximize sign-in and sign-up conversion for your app. It also handles edge cases like account

recovery and account linking that can be security sensitive and error-prone to handle correctly.

Firebase UI can be easily customized to fit in with the rest of your app's visual style, and

it is open source, so you aren't constrained in realizing the user experience you want.

Figure 27 - GUI Working

22
Footnote may be given with Font size 10 of Times New Roman.

Appendices

Appendix ‘A’

import math
import time
import numpy as np
import rospy
from sensor_msgs.msg import Imu
from MadgwickAHRS import MadgwickAHRS
from mpu9250_i2c import mpu6050_conv, AK8963_conv

def sensor_msg_imu(accl_gyro, roll, pitch, yaw):
 quaternion = euler_to_quaternion(yaw, pitch, roll)
 imu = Imu()
 imu.header.frame_id = 'base_link'
 imu.header.stamp = rospy.Time.now()
 imu.orientation.x = quaternion[0]
 imu.orientation.y = quaternion[1]
 imu.orientation.z = quaternion[2]
 imu.orientation.w = quaternion[3]
 imu.linear_acceleration.x = (accl_gyro[0] * 9.8)
 imu.linear_acceleration.y = (accl_gyro[1] * 9.8)
 imu.linear_acceleration.z = (accl_gyro[2] * 9.8)
 imu.angular_velocity.x = (accl_gyro[3] * math.pi / 180)
 imu.angular_velocity.y = (accl_gyro[4] * math.pi / 180)
 imu.angular_velocity.z = (accl_gyro[5] * math.pi / 180)
 return imu
def euler_to_quaternion(roll, pitch, yaw):
 qx = np.sin(roll / 2) * np.cos(pitch / 2) * np.cos(yaw / 2) - np.cos(roll / 2) * np.sin(pitch / 2) * np.sin(
 yaw / 2)
 qy = np.cos(roll / 2) * np.sin(pitch / 2) * np.cos(yaw / 2) + np.sin(roll / 2) * np.cos(pitch / 2) * np.sin(
 yaw / 2)
 qz = np.cos(roll / 2) * np.cos(pitch / 2) * np.sin(yaw / 2) - np.sin(roll / 2) * np.sin(pitch / 2) * np.cos(
 yaw / 2)
 qw = np.cos(roll / 2) * np.cos(pitch / 2) * np.cos(yaw / 2) + np.sin(roll / 2) * np.sin(pitch / 2) * np.sin(
 yaw / 2)
 return [qx, qy, qz, qw]

time.sleep(1) # delay necessary to allow mpu9250 to settle
rospy.init_node('imu_data', anonymous=True)
pub = rospy.Publisher('/imu', Imu, queue_size=10)
pub.publish("Connection initiated")
euler = MadgwickAHRS()
while not rospy.is_shutdown():
 accl_gyro = mpu6050_conv()
 magno = AK8963_conv()
 euler.MadgwickAHRSupdate(
 gx=accl_gyro[3] * math.pi / 180.0,

23
Footnote may be given with Font size 10 of Times New Roman.

 gy=accl_gyro[4] * math.pi / 180.0,
 gz=accl_gyro[5] * math.pi / 180.0,
 ax=accl_gyro[0],
 ay=accl_gyro[1],
 az=accl_gyro[2],
 mx=magno[0] + 40,
 my=magno[1] + 40,
 mz=magno[0] + 40
)
 euler_roll = euler.GetRoll()
 euler_pitch = euler.GetPitch()
 euler_yaw = euler.GetYaw()
 imu_data = sensor_msg_imu(accl_gyro, euler_roll, euler_pitch, euler_yaw)
 rospy.sleep(0.1)
 pub.publish(imu_data)

MPU 9250

import smbus
import time
def MPU6050_start():
 # alter sample rate (stability)
 samp_rate_div = 0 # sample rate = 8 kHz/(1+samp_rate_div)
 bus.write_byte_data(MPU6050_ADDR, SMPLRT_DIV, samp_rate_div)
 time.sleep(0.1)
 # reset all sensors
 bus.write_byte_data(MPU6050_ADDR, PWR_MGMT_1, 0x00)
 time.sleep(0.1)
 # power management and crystal settings
 bus.write_byte_data(MPU6050_ADDR, PWR_MGMT_1, 0x01)
 time.sleep(0.1)
 # Write to Configuration register
 bus.write_byte_data(MPU6050_ADDR, CONFIG, 0)
 time.sleep(0.1)
 # Write to Gyro configuration register
 gyro_config_sel = [0b00000, 0b010000, 0b10000, 0b11000] # byte registers
 gyro_config_vals = [250.0, 500.0, 1000.0, 2000.0] # degrees/sec
 gyro_indx = 0
 bus.write_byte_data(MPU6050_ADDR, GYRO_CONFIG, int(gyro_config_sel[gyro_indx]))
 time.sleep(0.1)
 # Write to Accel configuration register
 accel_config_sel = [0b00000, 0b01000, 0b10000, 0b11000] # byte registers
 accel_config_vals = [2.0, 4.0, 8.0, 16.0] # g (g = 9.81 m/s^2)
 accel_indx = 0
 bus.write_byte_data(MPU6050_ADDR, ACCEL_CONFIG, int(accel_config_sel[accel_indx]))
 time.sleep(0.1)
 # interrupt register (related to overflow of data [FIFO])
 bus.write_byte_data(MPU6050_ADDR, INT_ENABLE, 1)
 time.sleep(0.1)
 return gyro_config_vals[gyro_indx], accel_config_vals[accel_indx]

24
Footnote may be given with Font size 10 of Times New Roman.

def read_raw_bits(register):
 # read accel and gyro values
 high = bus.read_byte_data(MPU6050_ADDR, register)
 low = bus.read_byte_data(MPU6050_ADDR, register + 1)

 # combine higha and low for unsigned bit value
 value = ((high << 8) | low)

 # convert to +- value
 if (value > 32768):
 value -= 65536
 return value

def mpu6050_conv():
 # raw acceleration bits
 acc_x = read_raw_bits(ACCEL_XOUT_H)
 acc_y = read_raw_bits(ACCEL_YOUT_H)
 acc_z = read_raw_bits(ACCEL_ZOUT_H)

 # raw temp bits
 ## t_val = read_raw_bits(TEMP_OUT_H) # uncomment to read temp

 # raw gyroscope bits
 gyro_x = read_raw_bits(GYRO_XOUT_H)
 gyro_y = read_raw_bits(GYRO_YOUT_H)
 gyro_z = read_raw_bits(GYRO_ZOUT_H)

 # convert to acceleration in g and gyro dps
 a_x = (acc_x / (2.0 ** 15.0)) * accel_sens
 a_y = (acc_y / (2.0 ** 15.0)) * accel_sens
 a_z = (acc_z / (2.0 ** 15.0)) * accel_sens

 w_x = (gyro_x / (2.0 ** 15.0)) * gyro_sens
 w_y = (gyro_y / (2.0 ** 15.0)) * gyro_sens
 w_z = (gyro_z / (2.0 ** 15.0)) * gyro_sens

 ## temp = ((t_val)/333.87)+21.0 # uncomment and add below in return
 return a_x, a_y, a_z, w_x, w_y, w_z

def AK8963_start():
 bus.write_byte_data(AK8963_ADDR, AK8963_CNTL, 0x00)
 time.sleep(0.1)
 AK8963_bit_res = 0b0001 # 0b0001 = 16-bit
 AK8963_samp_rate = 0b0110 # 0b0010 = 8 Hz, 0b0110 = 100 Hz
 AK8963_mode = (AK8963_bit_res << 4) + AK8963_samp_rate # bit conversion
 bus.write_byte_data(AK8963_ADDR, AK8963_CNTL, AK8963_mode)
 time.sleep(0.1)

def AK8963_reader(register):
 # read magnetometer values
 low = bus.read_byte_data(AK8963_ADDR, register - 1)
 high = bus.read_byte_data(AK8963_ADDR, register)
 # combine higha and low for unsigned bit value

25
Footnote may be given with Font size 10 of Times New Roman.

 value = ((high << 8) | low)
 # convert to +- value
 if (value > 32768):
 value -= 65536
 return value

def AK8963_conv():
 # raw magnetometer bits

 loop_count = 0
 while 1:
 mag_x = AK8963_reader(HXH)
 mag_y = AK8963_reader(HYH)
 mag_z = AK8963_reader(HZH)

 # the next line is needed for AK8963
 if bin(bus.read_byte_data(AK8963_ADDR, AK8963_ST2)) == '0b10000':
 break
 loop_count += 1

 # convert to acceleration in g and gyro dps
 m_x = (mag_x / (2.0 ** 15.0)) * mag_sens
 m_y = (mag_y / (2.0 ** 15.0)) * mag_sens
 m_z = (mag_z / (2.0 ** 15.0)) * mag_sens

 return m_x, m_y, m_z

MPU6050 Registers
MPU6050_ADDR = 0x68
PWR_MGMT_1 = 0x6B
SMPLRT_DIV = 0x19
CONFIG = 0x1A
GYRO_CONFIG = 0x1B
ACCEL_CONFIG = 0x1C
INT_ENABLE = 0x38
ACCEL_XOUT_H = 0x3B
ACCEL_YOUT_H = 0x3D
ACCEL_ZOUT_H = 0x3F
TEMP_OUT_H = 0x41
GYRO_XOUT_H = 0x43
GYRO_YOUT_H = 0x45
GYRO_ZOUT_H = 0x47
AK8963 registers
AK8963_ADDR = 0x0C
AK8963_ST1 = 0x02
HXH = 0x04
HYH = 0x06
HZH = 0x08
AK8963_ST2 = 0x09
AK8963_CNTL = 0x0A
mag_sens = 4900.0 # magnetometer sensitivity: 4800 uT

start I2C driver
bus = smbus.SMBus(1) # start comm with i2c bus

26
Footnote may be given with Font size 10 of Times New Roman.

gyro_sens, accel_sens = MPU6050_start() # instantiate gyro/accel
AK8963_start() # instantiate magnetometer

27
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘B’

import math
def invSqrt(x):
 import struct
 i = struct.unpack('>i', struct.pack('>f', x))[0]
 i = 0x5f3759df - (i >> 1)
 y = struct.unpack('>f', struct.pack('>i', i))[0]
 return y * (1.5 - 0.5 * x * y * y)

class MadgwickAHRS:

 def __init__(self, quaternion=None, beta=None):
 self.sampleFreq = 3.0 # sample frequency in Hz
 self.beta = 0.1 # 2 * proportional gain
 if quaternion is not None:
 self.quaternion = quaternion
 if beta is not None:
 self.beta = beta
 self.q0 = 1.0
 self.q1 = 0.0
 self.q2 = 0.0
 self.q3 = 0.0

 def MadgwickAHRSupdate(self, gx, gy, gz, ax, ay, az, mx, my, mz):
 # Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer

normalisation)
 # if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
 # MadgwickAHRSupdateIMU(gx, gy, gz, ax, ay, az)
 # return
 # }
 q0 = self.q0
 q1 = self.q1
 q2 = self.q2
 q3 = self.q3
 sampleFreq = self.sampleFreq
 beta = self.beta
 # Rate of change of quaternion from gyroscope
 qDot1 = 0.5 * (-q1 * gx - q2 * gy - q3 * gz)
 qDot2 = 0.5 * (q0 * gx + q2 * gz - q3 * gy)
 qDot3 = 0.5 * (q0 * gy - q1 * gz + q3 * gx)
 qDot4 = 0.5 * (q0 * gz + q1 * gy - q2 * gx)

 # Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer

normalisation)
 if ((ax != 0.0) and (ay != 0.0) and (az != 0.0)):
 # Normalise accelerometer measurement
 recipNorm = invSqrt(ax * ax + ay * ay + az * az)
 ax *= recipNorm
 ay *= recipNorm
 az *= recipNorm

 # Normalise magnetometer measurement
 recipNorm = invSqrt(mx * mx + my * my + mz * mz)

28
Footnote may be given with Font size 10 of Times New Roman.

 mx *= recipNorm
 my *= recipNorm
 mz *= recipNorm

 # Auxiliary variables to avoid repeated arithmetic
 _2q0mx = 2.0 * q0 * mx
 _2q0my = 2.0 * q0 * my
 _2q0mz = 2.0 * q0 * mz
 _2q1mx = 2.0 * q1 * mx
 _2q0 = 2.0 * q0
 _2q1 = 2.0 * q1
 _2q2 = 2.0 * q2
 _2q3 = 2.0 * q3
 _2q0q2 = 2.0 * q0 * q2
 _2q2q3 = 2.0 * q2 * q3
 q0q0 = q0 * q0
 q0q1 = q0 * q1
 q0q2 = q0 * q2
 q0q3 = q0 * q3
 q1q1 = q1 * q1
 q1q2 = q1 * q2
 q1q3 = q1 * q3
 q2q2 = q2 * q2
 q2q3 = q2 * q3
 q3q3 = q3 * q3

 # Reference direction of Earth's magnetic field
 hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 -

mx * q2q2 - mx * q3q3
 hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 *

mz * q3 - my * q3q3
 _2bx = math.sqrt(hx * hx + hy * hy)
 _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 -

mz * q2q2 + mz * q3q3
 _4bx = 2.0 * _2bx
 _4bz = 2.0 * _2bz

 # Gradient decent algorithm corrective step
 s0 = -_2q2 * (2.0 * q1q3 - _2q0q2 - ax) + _2q1 * (2.0 * q0q1 + _2q2q3 - ay) - _2bz * q2 * (
 _2bx * (0.5 - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (
 _2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (
 _2bx * (q0q2 + q1q3) + _2bz * (0.5 - q1q1 - q2q2) - mz)
 s1 = _2q3 * (2.0 * q1q3 - _2q0q2 - ax) + _2q0 * (2.0 * q0q1 + _2q2q3 - ay) - 4.0 * q1 * (
 1 - 2.0 * q1q1 - 2.0 * q2q2 - az) + _2bz * q3 * (
 _2bx * (0.5 - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (
 _2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (
 _2bx * (q0q2 + q1q3) + _2bz * (0.5 - q1q1 - q2q2) - mz)
 s2 = -_2q0 * (2.0 * q1q3 - _2q0q2 - ax) + _2q3 * (2.0 * q0q1 + _2q2q3 - ay) - 4.0 * q2 * (
 1 - 2.0 * q1q1 - 2.0 * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (
 _2bx * (0.5 - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (
 _2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (
 _2bx * (q0q2 + q1q3) + _2bz * (0.5 - q1q1 - q2q2) - mz)
 s3 = _2q1 * (2.0 * q1q3 - _2q0q2 - ax) + _2q2 * (2.0 * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz *

q1) * (
 _2bx * (0.5 - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (
 _2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (

29
Footnote may be given with Font size 10 of Times New Roman.

 _2bx * (q0q2 + q1q3) + _2bz * (0.5 - q1q1 - q2q2) - mz)
 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3) # normalise step magnitude
 s0 *= recipNorm
 s1 *= recipNorm
 s2 *= recipNorm
 s3 *= recipNorm

 # Apply feedback step
 qDot1 -= beta * s0
 qDot2 -= beta * s1
 qDot3 -= beta * s2
 qDot4 -= beta * s3

 # Integrate rate of change of quaternion to yield quaternion
 q0 += qDot1 * (1.0 / sampleFreq)
 q1 += qDot2 * (1.0 / sampleFreq)
 q2 += qDot3 * (1.0 / sampleFreq)
 q3 += qDot4 * (1.0 / sampleFreq)

 # Normalise quaternion
 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3)
 q0 *= recipNorm
 q1 *= recipNorm
 q2 *= recipNorm
 q3 *= recipNorm

 self.q0 = q0
 self.q1 = q1
 self.q2 = q2
 self.q3 = q3

 def MadgwickAHRSupdateIMU(self, gx, gy, gz, ax, ay, az):
 q0 = self.q0
 q1 = self.q1
 q2 = self.q2
 q3 = self.q3
 sampleFreq = self.sampleFreq
 beta = self.beta
 # Rate of change of quaternion from gyroscope
 qDot1 = 0.5 * (-q1 * gx - q2 * gy - q3 * gz)
 qDot2 = 0.5 * (q0 * gx + q2 * gz - q3 * gy)
 qDot3 = 0.5 * (q0 * gy - q1 * gz + q3 * gx)
 qDot4 = 0.5 * (q0 * gz + q1 * gy - q2 * gx)
 if ((ax != 0.0) and (ay != 0.0) and (az != 0.0)):
 # Normalise accelerometer measurement
 recipNorm = invSqrt(ax * ax + ay * ay + az * az)
 ax *= recipNorm
 ay *= recipNorm
 az *= recipNorm

 # Auxiliary variables to avoid repeated arithmetic
 _2q0 = 2.0 * q0
 _2q1 = 2.0 * q1
 _2q2 = 2.0 * q2
 _2q3 = 2.0 * q3
 _4q0 = 4.0 * q0

30
Footnote may be given with Font size 10 of Times New Roman.

 _4q1 = 4.0 * q1
 _4q2 = 4.0 * q2
 _8q1 = 8.0 * q1
 _8q2 = 8.0 * q2
 q0q0 = q0 * q0
 q1q1 = q1 * q1
 q2q2 = q2 * q2
 q3q3 = q3 * q3

 # Gradient decent algorithm corrective step
 s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay
 s1 = _4q1 * q3q3 - _2q3 * ax + 4.0 * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 +

_4q1 * az
 s2 = 4.0 * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 +

_4q2 * az
 s3 = 4.0 * q1q1 * q3 - _2q1 * ax + 4.0 * q2q2 * q3 - _2q2 * ay
 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3) # normalise step magnitude
 s0 *= recipNorm
 s1 *= recipNorm
 s2 *= recipNorm
 s3 *= recipNorm

 # Apply feedback step
 qDot1 -= beta * s0
 qDot2 -= beta * s1
 qDot3 -= beta * s2
 qDot4 -= beta * s3

 # Integrate rate of change of quaternion to yield quaternion
 q0 += qDot1 * (1.0 / sampleFreq)
 q1 += qDot2 * (1.0 / sampleFreq)
 q2 += qDot3 * (1.0 / sampleFreq)
 q3 += qDot4 * (1.0 / sampleFreq)

 # Normalise quaternion
 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3)
 q0 *= recipNorm
 q1 *= recipNorm
 q2 *= recipNorm
 q3 *= recipNorm

 self.q0 = q0
 self.q1 = q1
 self.q2 = q2
 self.q3 = q3

 def GetRoll(self):
 q0 = self.q0
 q1 = self.q1
 q2 = self.q2
 q3 = self.q3
 roll = math.atan2(q0 * q1 + q2 * q3, 0.5 - q1 * q1 - q2 * q2)
 roll = roll * 57.29578
 return roll

 def GetPitch(self):

31
Footnote may be given with Font size 10 of Times New Roman.

 q0 = self.q0
 q1 = self.q1
 q2 = self.q2
 q3 = self.q3
 pitch = math.asin(-2.0 * (q1 * q3 - q0 * q2))
 pitch = pitch * 57.29578
 return pitch

 def GetYaw(self):
 q0 = self.q0
 q1 = self.q1
 q2 = self.q2
 q3 = self.q3
 yaw = math.atan2(q1 * q2 + q0 * q3, 0.5 - q2 * q2 - q3 * q3)
 yaw = yaw * 57.29578 + 180.0
 return yaw

32
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘C’

Encoder Node

import rospy

from std_msgs.msg import Int16, String

from encoder_tick import encoder_ticks

def callback(data):

 motor_direction = data.data.split('/')

 ticks.update_motor_direction(motor_direction[0], motor_direction[1])

rospy.init_node('encoder', anonymous=True)

pub_l_wheel = rospy.Publisher('/lwheel', Int16, queue_size=10)

pub_r_wheel = rospy.Publisher('/rwheel', Int16, queue_size=10)

ticks = encoder_ticks(0, 0)

33
Footnote may be given with Font size 10 of Times New Roman.

if __name__ == '__main__':

 """ main """

 try:

 while not rospy.is_shutdown():

 pos_sub = rospy.Subscriber('motor_feedback', String, callback)

 rospy.sleep(0.1)

 l_wheel_ticks, r_wheel_ticks = ticks.get_value()

 print(ticks.get_value())

 l_wheel_ticks = Int16(l_wheel_ticks)

 r_wheel_ticks = Int16(r_wheel_ticks)

 pub_l_wheel.publish(l_wheel_ticks)

 pub_r_wheel.publish(r_wheel_ticks)

 rospy.sleep(0.5)

 except rospy.ROSInterruptException:

 pass

34
Footnote may be given with Font size 10 of Times New Roman.

Encoder Ticks

import time

from RPi import GPIO

class encoder_ticks():

 def __init__(self, left_motor, right_motor):

 self.left_encoder = 11

 self.right_encoder = 13

 self.left_counter = 0

 self.right_counter = 0

 self.left_motor_direction = left_motor

 self.right_motor_direction = right_motor

 self.last_state = 0

 GPIO.setmode(GPIO.BOARD)

35
Footnote may be given with Font size 10 of Times New Roman.

 GPIO.setup(self.left_encoder, GPIO.IN,

pull_up_down=GPIO.PUD_DOWN)

 GPIO.setup(self.right_encoder, GPIO.IN,

pull_up_down=GPIO.PUD_DOWN)

 GPIO.add_event_detect(self.left_encoder, GPIO.BOTH,

callback=self.my_callback)

 GPIO.add_event_detect(self.right_encoder, GPIO.BOTH,

callback=self.my_callback1)

 def my_callback(self, channel):

 if GPIO.input(self.left_encoder) != self.last_state:

 if self.left_motor_direction == '1':

 self.left_counter += 1

 elif self.left_motor_direction == '-1':

 self.left_counter -= 1

 def my_callback1(self, channel):

 if GPIO.input(self.right_encoder) != self.last_state:

 if self.right_motor_direction == '1':

36
Footnote may be given with Font size 10 of Times New Roman.

 self.right_counter += 1

 elif self.right_motor_direction == '-1':

 self.right_counter -= 1

 def get_value(self):

 return self.left_counter, self.right_counter

 def reset(self):

 self.left_counter = 0

 self.right_counter = 0

 def update_motor_direction(self, left_motor, right_motor):

 self.left_motor_direction = left_motor

 self.right_motor_direction = right_motor

Wheel Odometry

#!/usr/bin/env python

import rospy
from math import sin, cos, pi
from geometry_msgs.msg import Quaternion
from geometry_msgs.msg import Twist

37
Footnote may be given with Font size 10 of Times New Roman.

from nav_msgs.msg import Odometry
from tf.broadcaster import TransformBroadcaster
from std_msgs.msg import Int16

class DiffTf:

 def __init__(self):
 rospy.init_node("raw_odometry")
 self.nodename = rospy.get_name()
 rospy.loginfo("-I- %s started" % self.nodename)

 #### parameters #######
 self.rate = rospy.get_param('~rate', 10.0) # the rate at which to publish the transform
 self.ticks_meter = float(
 rospy.get_param('ticks_meter', 72)) # The number of wheel encoder ticks per meter of travel
 self.base_width = float(rospy.get_param('~base_width', 0.53)) # The wheel base width in meters

 self.base_frame_id = rospy.get_param('~base_frame_id', 'base_link') # the name of the base frame of the robot
 self.odom_frame_id = rospy.get_param('~odom_frame_id', 'odom') # the name of the odometry reference
frame

 self.encoder_min = rospy.get_param('encoder_min', -32768)
 self.encoder_max = rospy.get_param('encoder_max', 32768)
 self.encoder_low_wrap = rospy.get_param('wheel_low_wrap',
 (self.encoder_max - self.encoder_min) * 0.3 + self.encoder_min)
 self.encoder_high_wrap = rospy.get_param('wheel_high_wrap',
 (self.encoder_max - self.encoder_min) * 0.7 + self.encoder_min)

 self.t_delta = rospy.Duration(1.0 / self.rate)
 self.t_next = rospy.Time.now() + self.t_delta

 # internal data
 self.enc_left = None # wheel encoder readings
 self.enc_right = None
 self.left = 0 # actual values coming back from robot
 self.right = 0
 self.lmult = 0
 self.rmult = 0
 self.prev_lencoder = 0
 self.prev_rencoder = 0
 self.x = 0 # position in xy plane
 self.y = 0
 self.th = 0
 self.dx = 0 # speeds in x/rotation
 self.dr = 0
 self.then = rospy.Time.now()

 # subscriptions
 rospy.Subscriber("lwheel", Int16, self.lwheelCallback)
 rospy.Subscriber("rwheel", Int16, self.rwheelCallback)
 self.odomPub = rospy.Publisher("odom", Odometry, queue_size=10)
 self.odomBroadcaster = TransformBroadcaster()

 def spin(self):
 r = rospy.Rate(self.rate)
 while not rospy.is_shutdown():

38
Footnote may be given with Font size 10 of Times New Roman.

 self.update()
 r.sleep()

 def update(self):
 now = rospy.Time.now()
 if now > self.t_next:
 elapsed = now - self.then
 self.then = now
 elapsed = elapsed.to_sec()

 # calculate odometry
 if self.enc_left == None:
 d_left = 0
 d_right = 0
 else:
 d_left = (self.left - self.enc_left) / self.ticks_meter
 d_right = (self.right - self.enc_right) / self.ticks_meter
 self.enc_left = self.left
 self.enc_right = self.right

 # distance traveled is the average of the two wheels
 d = (d_left + d_right) / 2
 # this approximation works (in radians) for small angles
 th = (d_right - d_left) / self.base_width
 # calculate velocities
 self.dx = d / elapsed
 self.dr = th / elapsed

 if (d != 0):
 # calculate distance traveled in x and y
 x = cos(th) * d
 y = -sin(th) * d
 # calculate the final position of the robot
 self.x = self.x + (cos(self.th) * x - sin(self.th) * y)
 self.y = self.y + (sin(self.th) * x + cos(self.th) * y)
 if (th != 0):
 self.th = self.th + th

 # publish the odom information
 quaternion = Quaternion()
 quaternion.x = 0.0
 quaternion.y = 0.0
 quaternion.z = sin(self.th / 2)
 quaternion.w = cos(self.th / 2)
 self.odomBroadcaster.sendTransform(
 (self.x, self.y, 0),
 (quaternion.x, quaternion.y, quaternion.z, quaternion.w),
 rospy.Time.now(),
 self.base_frame_id,
 self.odom_frame_id
)

 odom = Odometry()
 odom.header.stamp = now
 odom.header.frame_id = self.odom_frame_id
 odom.pose.pose.position.x = self.x

39
Footnote may be given with Font size 10 of Times New Roman.

 odom.pose.pose.position.y = self.y
 odom.pose.pose.position.z = 0
 odom.pose.pose.orientation = quaternion
 odom.child_frame_id = self.base_frame_id
 odom.twist.twist.linear.x = self.dx
 odom.twist.twist.linear.y = 0
 odom.twist.twist.angular.z = self.dr
 self.odomPub.publish(odom)

 def lwheelCallback(self, msg):
 enc = msg.data
 if (enc < self.encoder_low_wrap and self.prev_lencoder > self.encoder_high_wrap):
 self.lmult = self.lmult + 1

 if (enc > self.encoder_high_wrap and self.prev_lencoder < self.encoder_low_wrap):
 self.lmult = self.lmult - 1

 self.left = 1.0 * (enc + self.lmult * (self.encoder_max - self.encoder_min))
 self.prev_lencoder = enc

 def rwheelCallback(self, msg):
 enc = msg.data
 if (enc < self.encoder_low_wrap and self.prev_rencoder > self.encoder_high_wrap):
 self.rmult = self.rmult + 1

 if (enc > self.encoder_high_wrap and self.prev_rencoder < self.encoder_low_wrap):
 self.rmult = self.rmult - 1

 self.right = 1.0 * (enc + self.rmult * (self.encoder_max - self.encoder_min))
 self.prev_rencoder = enc

if __name__ == '__main__':
 """ main """
 try:
 diffTf = DiffTf()
 diffTf.spin()
 except rospy.ROSInterruptException:
 pass

40
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘D’

import serial
import time
import string
import pynmea2
import rospy
from sensor_msgs.msg import NavSatFix

rospy.init_node('GPS', anonymous=True)
pub1 = rospy.Publisher('/sensor_msg/NavSatFix', NavSatFix, queue_size=5)
port = "/dev/ttyAMA0"
while not rospy.is_shutdown():
 ser = serial.Serial(port, baudrate=9600, timeout=0.5)
 dataout = pynmea2.NMEAStreamReader()
 newdata = ser.readline()

 if newdata[0:6] == "$GPRMC":
 newmsg = pynmea2.parse(newdata)
 lat = newmsg.latitude
 lng = newmsg.longitude
 gps = "Latitude=" + str(lat) + "and Longitude=" + str(lng)
 print(gps)
 gpsmsg = NavSatFix()
 gpsmsg.header.stamp = rospy.Time.now()
 gpsmsg.header.frame_id = "gps"
 gpsmsg.latitude = lat
 gpsmsg.longitude = lng
 pub1.publish(gpsmsg)

41
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘E’

ROS Node 1
import rospy
from std_msgs.msg import String

from sq_update import sq_update_down

sql1 = sq_update_down()
global status
status = 0
rospy.init_node('app_link', anonymous=True)
pub1 = rospy.Publisher('/field_work', String, queue_size=5)

def set_to_tgt(x, y):
 goal = '{}/{:.2f}/{:.2f}/Nil/{:.2f}/{:.2f}'.format(0, 0.0, 0.0, x, y)
 return goal

def set_to_fd(x, y, l, w, s):
 goal = '{}/{:.2f}/{:.2f}/{}/{:.2f}/{:.2f}'.format(1, l, w, s, x, y)
 return goal

SLite communication methods
def update_current_loc_sq(la, lo, brg, alt, tem):
 sql1.update('PresentLocationLat', 'Present lat', la)
 sql1.update('PresentLocationLong', 'Present Long', lo)
 sql1.update('PresentLocationB', 'Present Bearing', brg)
 sql1.update('PresentLocationA', 'Present Altitude', alt)
 sql1.update('PresentLocationT', 'Present Temp', tem)

def update_status_sq(tgt_la, tgt_lo, disp, seed, area_c, area_r, approx_t):
 sql1.update('Robot Status', 'Status', status)
 if status == 1:
 sql1.update('Robot Status tgt Loc', 'Target Latitude', tgt_la)
 sql1.update('Robot Status tgt Loc', 'Target Longitude', tgt_lo)
 sql1.update('Robot Status tgt Loc', 'Displacement', disp)
 elif status == 2:
 sql1.update('Robot Status to fd', 'Field Latitude', tgt_la)
 sql1.update('Robot Status to fd', 'Field Longitude', tgt_lo)
 sql1.update('Robot Status to fd', 'Displacement', disp)
 elif status == 3:
 sql1.update('Robot Status in fd', 'Seed Sown', seed)
 sql1.update('Robot Status in fd', 'Area Covered', area_c)
 sql1.update('Robot Status in fd', 'Area Remaining', area_r)
 sql1.update('Robot Status in fd', 'Approx time', approx_t)

def get_tgt_loc_sq():

42
Footnote may be given with Font size 10 of Times New Roman.

 x_raw = sql1.read('Target_Locationx', 'x axis in field')
 x = float(x_raw[0])
 y_raw = sql1.read('Target_Locationy', 'y axis in field')
 y = float(y_raw[0])
 if x == 0 and y == 0:
 x_raw = sql1.read('Target_Locationlat', 'Latitude in field')
 x = float(x_raw[0])
 y_raw = sql1.read('Target_LocationLong', 'Longitude in field')
 y = float(y_raw[0])
 return x, y

def get_seed_loc_sq():
 x_raw = sql1.read('Seed_Typelat', 'Latitude')
 x = float(x_raw[0])
 y_raw = sql1.read('Seed_Typelong', 'Longitude')
 y = float(y_raw[0])
 len_raw = sql1.read('Seed_TypeLen', 'Length')
 len = float(len_raw[0])
 width_raw = sql1.read('Seed_Typew', 'Width')
 width = float(width_raw[0])
 seed = sql1.read('Seed_Type_s', 'Seed')
 return x, y, len, width, seed[0]

while not rospy.is_shutdown():
 # get present location data from ROS and update in database
 lat = 2
 lon = 3
 bearing = 4
 altitude = 507
 temp = 32
 update_current_loc_sq(lat, lon, bearing, altitude, temp)

 # get status from ROS and update in database
 tgt_lat = 5
 tgt_lon = 6
 displace = 7
 no_of_seed = 8
 area_cov = 119
 area_rem = 678
 approx_time = 76
 update_status_sq(tgt_lat, tgt_lon, displace, no_of_seed, area_cov, area_rem, approx_time)

 # get target from app through database and send it to ROS
 target = sql1.read('Target_Locationgo', 'go')
 target_flag = float(target[0])
 if target_flag == 1:
 x_tgt, y_tgt = get_tgt_loc_sq()
 print(x_tgt, y_tgt)
 # publish tgt on ROS
 work = set_to_tgt(x_tgt, y_tgt)
 pub1.publish(work)
 field = sql1.read('Seed_Typego', 'go')
 field_flag = float(field[0])
 if field_flag == 1:

43
Footnote may be given with Font size 10 of Times New Roman.

 x_fd, y_fd, len_fd, width_fd, seed_type = get_seed_loc_sq()
 print('field', x_fd, y_fd, len_fd, width_fd, seed_type)
 # publish field data on ROS
 work = set_to_fd(x_fd, y_fd, len_fd, width_fd, seed_type)
 pub1.publish(work)

 rospy.sleep(0.1)
 print("Working")

44
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘F’

Field Planner Node
import time
import rospy
from std_msgs.msg import String
from nav_msgs.msg import Odometry

def callback(data):
 global field_data
 field_data = data.data.split('/')

def pose(data):
 print(2)
 global present_loc
 present_loc = data

def seed_spacing_selection(seed):
 if seed == 'wheat':
 return 0.17
 elif seed == 'onion':
 return 0.06
 elif seed == 'sorghum':
 return 0.12
 elif seed == 'soy_bean':
 return 0.08
 else:
 return 0

noinspection SpellCheckingInspection
def seed_location(leng, wid, seed):
 sp = seed_spacing_selection(seed)
 x = present_loc.pose.pose.position.x
 a = present_loc.pose.pose.position.y
 leng += present_loc.pose.pose.position.x
 wid += present_loc.pose.pose.position.y
 fwd = True
 turn = False
 while x <= leng:
 if not turn:
 if fwd:
 y = a + wid - sp
 fwd = False
 else:
 y = a + sp
 fwd = True
 # set data in pose_data format
 q_x = float(present_loc.pose.pose.orientation.x)
 q_y = float(present_loc.pose.pose.orientation.y)
 q_z = float(present_loc.pose.pose.orientation.z)

45
Footnote may be given with Font size 10 of Times New Roman.

 q_w = float(present_loc.pose.pose.orientation.w)
 euler = quaternion_to_euler(q_x, q_y, q_z, q_w)
 goal = '{:.2f}/{:.2f}/{:.2f}/{:.2f}/{:.2f}'.format(x, y, present_loc.pose.pose.position.x,
present_loc.pose.pose.position.y, euler[2])
 pub1.publish(goal)
 # set data in seed_sowing format
 if not turn:
 go = 'sow/{:.2f}/{:.2f}/'.format(abs(present_loc.pose.pose.position.y - y), sp)
 pub2.publish(go)
 else:
 go = 'idle/{:.2f}/{:.2f}/'.format(abs(present_loc.pose.pose.position.y - y), sp)
 pub2.publish(go)
 # check if reached to goal iterate it
 rospy.sleep(1)
 while True:
 if x == present_loc[0] and y == present_loc[1]:
 break
 turn = not turn
 x += sp

def go_to_target(tgt_x, tgt_y):
 tgt_x = float(tgt_x)
 tgt_y = float(tgt_y)
 p_x = float(present_loc.pose.pose.position.x)
 p_y = float(present_loc.pose.pose.position.y)
 q_x = float(present_loc.pose.pose.orientation.x)
 q_y = float(present_loc.pose.pose.orientation.y)
 q_z = float(present_loc.pose.pose.orientation.z)
 q_w = float(present_loc.pose.pose.orientation.w)
 euler = quaternion_to_euler(q_x, q_y, q_z, q_w)
 goal = '{:.2f}/{:.2f}/{:.2f}/{:.2f}/{:.2f}'.format(tgt_x, tgt_y, p_x, p_y, euler[2])
 print(goal)
 pub1.publish(goal)

def quaternion_to_euler(x, y, z, w):
 import math
 t0 = +2.0 * (w * x + y * z)
 t1 = +1.0 - 2.0 * (x * x + y * y)
 X = math.degrees(math.atan2(t0, t1))

 t2 = +2.0 * (w * y - z * x)
 t2 = +1.0 if t2 > +1.0 else t2
 t2 = -1.0 if t2 < -1.0 else t2
 Y = math.degrees(math.asin(t2))

 t3 = +2.0 * (w * z + x * y)
 t4 = +1.0 - 2.0 * (y * y + z * z)
 Z = math.degrees(math.atan2(t3, t4))

 return X, Y, Z

rospy.init_node('field_planner', anonymous=True)
pub1 = rospy.Publisher('/pose_data', String, queue_size=5)

46
Footnote may be given with Font size 10 of Times New Roman.

pub2 = rospy.Publisher('/seed_sowing', String, queue_size=5)
pub3 = rospy.Publisher('/robot_status', String, queue_size=5)
global field_data
field_data = [2, 0, 0, 'nil', 0, 0]
global present_loc
get confirmation to start field work with field parameters
while not rospy.is_shutdown():
 field_sub = rospy.Subscriber('field_work', String, callback)
 rospy.sleep(0.5)
 location = rospy.Subscriber('odometry/filtered', Odometry, pose)
 rospy.sleep(0.1)
 condition = field_data[0]
 print(condition)
 if condition == '1':
 print('in field')
 field_length = float(field_data[1])
 field_width = float(field_data[2])
 seed_type = field_data[3]
 tgt_x = float(field_data[4])
 tgt_y = float(field_data[5])
 if present_loc.pose.pose.position.x != tgt_x and present_loc.pose.pose.position.y != tgt_y:
 stat = '3'
 pub3.publish(stat)
 go_to_target(tgt_x, tgt_y)
 stat = '4'
 pub3.publish(stat)
 seed_location(field_length, field_width, seed_type)
 elif condition == '0':
 print('to field')
 target_x = float(field_data[4])
 target_y = float(field_data[5])
 stat = '1'
 pub3.publish(stat)
 go_to_target(target_x, target_y)
 else:
 print('no command received')
 stat = '0'
 pub3.publish(stat)

47
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘G’

Node Command
Command Publish

from goal_controller import GoalController
from controller import Controller
from pose import Pose

import rospy
from std_msgs.msg import String

def callback(data):
 global pose_data
 pose_data = data.data.split('/')

making objects
current_position = Pose()
target_goal = Pose()
goal_info = GoalController()
R5 = Controller()
#R5.setWheelSeparation(5)
#R5.setMaxMotorSpeed(1)
#R5.setTicksPerMeter(1000)
rospy.init_node('controller', anonymous=True)
pub1 = rospy.Publisher('/command2', String, queue_size=5)
pub1.publish("Connection initiated")

while not rospy.is_shutdown():
 pos_sub = rospy.Subscriber('pose_data', String, callback)
 rospy.sleep(1)
 target_goal.x = float(pose_data[0])
 target_goal.y = float(pose_data[1])
 current_position.x = float(pose_data[2])
 current_position.y = float(pose_data[3])
 current_position.theta = float(pose_data[4])

 desired_speeds = goal_info.get_velocity(current_position, target_goal, 3)
 lin = desired_speeds.xVel
 ang = desired_speeds.thetaVel

 speed = R5.getSpeeds(lin, ang)

 if speed.left < 0:
 if speed.right < 0:
 cmd = 'Set/{:.2f}/{:.2f}/R5/Reserve'.format(speed.left, speed.right)
 elif speed.right >= 0:
 cmd = 'Set/{:.2f}/{:.2f}/R5/LEFT'.format(speed.left, speed.right)
 elif speed.left > 0:
 if speed.right > 0:
 cmd = 'Set/{:.2f}/{:.2f}/R5/Forward'.format(speed.left, speed.right)
 elif speed.right <= 0:
 cmd = 'Set/{:.2f}/{:.2f}/R5/RIGHT'.format(speed.left, speed.right)

48
Footnote may be given with Font size 10 of Times New Roman.

 else:
 cmd = 'Set/{:.2f}/{:.2f}/R5/STOP'

 #print(cmd)
 print(speed.left, speed.right)

 # do whatever you want here
 pub1.publish(cmd)
 rospy.sleep(1) # sleep for one second

Controller

from __future__ import division

#import rospy

class MotorCommand:
 """Holds motor control commands for a differential-drive robot.
 """

 def __init__(self):
 self.left = 0
 self.right = 0

class Controller:
 """Determines motor speeds to accomplish a desired motion.
 """

 def __init__(self):
 # Set the max motor speed to a very large value so that it
 # is, essentially, unbound.
 self.maxMotorSpeed = 1 # ticks/s
 self.ticksPerMeter = 100
 self.wheelSeparation = 5

 def getSpeeds(self, linearSpeed, angularSpeed):
 tickRate = linearSpeed * self.ticksPerMeter
 diffTicks = angularSpeed * self.wheelSeparation * self.ticksPerMeter

 speeds = MotorCommand()
 speeds.left = tickRate - diffTicks
 speeds.right = tickRate + diffTicks

 # Adjust speeds if they exceed the maximum.
 if max(abs(speeds.left), abs(speeds.right)) > self.maxMotorSpeed:
 factor = self.maxMotorSpeed / max(abs(speeds.left), abs(speeds.right))
 speeds.left *= factor
 speeds.right *= factor

 #speeds.left = int(speeds.left)
 #speeds.right = int(speeds.right)
 return speeds

49
Footnote may be given with Font size 10 of Times New Roman.

 def setWheelSeparation(self, separation):
 self.wheelSeparation = separation

 def setMaxMotorSpeed(self, limit):
 self.maxMotorSpeed = limit

 def setTicksPerMeter(self, ticks):
 self.ticksPerMeter = ticks

Goal Controller
from __future__ import division, print_function
from math import pi, sqrt, sin, cos, atan2
from pose import Pose
#import rospy

class GoalController:
 """Finds linear and angular velocities necessary to drive toward
 a goal pose.
 """

 def __init__(self):
 self.kP = 3
 self.kA = 8
 self.kB = -1.5
 self.max_linear_speed = 10
 self.min_linear_speed = 0
 self.max_angular_speed = 3
 self.min_angular_speed = 0
 self.max_linear_acceleration = 10
 self.max_angular_acceleration = 10
 self.linear_tolerance = 0.025 # 2.5cm
 self.angular_tolerance = 3/180*pi # 3 degrees
 self.forward_movement_only = False

 def set_constants(self, kP, kA, kB):
 self.kP = kP
 self.kA = kA
 self.kB = kB

 def set_max_linear_speed(self, speed):
 self.max_linear_speed = speed

 def set_min_linear_speed(self, speed):
 self.min_linear_speed = speed

 def set_max_angular_speed(self, speed):
 self.max_angular_speed = speed

 def set_min_angular_speed(self, speed):
 self.min_angular_speed = speed

 def set_max_linear_acceleration(self, accel):
 self.max_linear_acceleration = accel

 def set_max_angular_acceleration(self, accel):
 self.max_angular_acceleration = accel

50
Footnote may be given with Font size 10 of Times New Roman.

 def set_linear_tolerance(self, tolerance):
 self.linear_tolerance = tolerance

 def set_angular_tolerance(self, tolerance):
 self.angular_tolerance = tolerance

 def set_forward_movement_only(self, forward_only):
 self.forward_movement_only = forward_only

 def get_goal_distance(self, cur, goal):
 if goal is None:
 return 0
 diffX = cur.x - goal.x
 diffY = cur.y - goal.y
 return sqrt(diffX*diffX + diffY*diffY)

 def at_goal(self, cur, goal):
 if goal is None:
 return True
 d = self.get_goal_distance(cur, goal)
 dTh = abs(self.normalize_pi(cur.theta - goal.theta))
 return d < self.linear_tolerance and dTh < self.angular_tolerance

 def get_velocity(self, cur, goal, dT):
 desired = Pose()

 goal_heading = atan2(goal.y - cur.y, goal.x - cur.x)
 a = -cur.theta + goal_heading

 # In Automomous Mobile Robots, they assume theta_G=0. So for
 # the error in heading, we have to adjust theta based on the
 # (possibly non-zero) goal theta.
 theta = self.normalize_pi(cur.theta - goal.theta)
 b = -theta - a

 # rospy.loginfo('cur=%f goal=%f a=%f b=%f', cur.theta, goal_heading,
 # a, b)

 d = self.get_goal_distance(cur, goal)
 if self.forward_movement_only:
 direction = 1
 a = self.normalize_pi(a)
 b = self.normalize_pi(b)
 else:
 direction = self.sign(cos(a))
 a = self.normalize_half_pi(a)
 b = self.normalize_half_pi(b)

 # rospy.loginfo('After normalization, a=%f b=%f', a, b)

 if abs(d) < self.linear_tolerance:
 desired.xVel = 0
 desired.thetaVel = self.kB * theta
 else:
 desired.xVel = self.kP * d * direction

51
Footnote may be given with Font size 10 of Times New Roman.

 desired.thetaVel = self.kA*a + self.kB*b

 # Adjust velocities if X velocity is too high.
 if abs(desired.xVel) > self.max_linear_speed:
 ratio = self.max_linear_speed / abs(desired.xVel)
 desired.xVel *= ratio
 desired.thetaVel *= ratio

 # Adjust velocities if turning velocity too high.
 if abs(desired.thetaVel) > self.max_angular_speed:
 ratio = self.max_angular_speed / abs(desired.thetaVel)
 desired.xVel *= ratio
 desired.thetaVel *= ratio

 # TBD: Adjust velocities if linear or angular acceleration
 # too high.

 # Adjust velocities if too low, so robot does not stall.
 if abs(desired.xVel) > 0 and abs(desired.xVel) < self.min_linear_speed:
 ratio = self.min_linear_speed / abs(desired.xVel)
 desired.xVel *= ratio
 desired.thetaVel *= ratio
 elif desired.xVel==0 and abs(desired.thetaVel) < self.min_angular_speed:
 ratio = self.min_angular_speed / abs(desired.thetaVel)
 desired.xVel *= ratio
 desired.thetaVel *= ratio

 return desired

 def normalize_half_pi(self, alpha):
 alpha = self.normalize_pi(alpha)
 if alpha > pi/2:
 return alpha - pi
 elif alpha < -pi/2:
 return alpha + pi
 else:
 return alpha

 def normalize_pi(self, alpha):
 while alpha > pi:
 alpha -= 2*pi
 while alpha < -pi:
 alpha += 2*pi
 return alpha

 def sign(self, x):
 if x >= 0:
 return 1
 else:
 return -1

Pose
from __future__ import division

class Pose:

52
Footnote may be given with Font size 10 of Times New Roman.

 def __init__(self):
 self.x = 0
 self.y = 0
 self.theta = 0
 self.xVel = 0
 self.yVel = 0
 self.thetaVel = 0

 def __str__(self):
 return str({'x': self.x, 'y': self.y, 'theta': self.theta,
 'xVel': self.xVel, 'yVel': self.yVel,
 'thetaVel': self.thetaVel})

53
Footnote may be given with Font size 10 of Times New Roman.

Appendix ‘H’

ROS Node Motor Driver
Motor Controller

import time
import rospy
from std_msgs.msg import String

from motor_drive import motor_driver

global CheckCrash
global NewCommand
global driveLeft_motor
global driveRight_motor
Forward = 1
Reverse = 2
Stop = 0
Right_Left = 3
Non_Stop = -1
Non_Crash = -2

def callback(data):
 global CheckCrash
 global NewCommand
 if data.data.find(‘Off’) > -1:
 CheckCrash = Stop
 print(“Stop”)
 else:
 if data.data.find(‘/Forward’) > -1:
 CheckCrash = Forward
 print(“Forward”)
 if data.data.find(‘/Reserve’) > -1:
 CheckCrash = Reverse
 print(“Reverse”)
 if data.data.find(‘None’) > -1:
 CheckCrash = Right_Left
 print(“None”)
 NewCommand = True
 move_robot(data.data)

def move_robot(command):
 global driveLeft_motor
 global driveRight_motor

 if command.startswith(“Set”):
 # Motor power setting: Set/driveLeft_motor/driveRight_motor
 parts = command.split(‘/’)
 if len(parts) > 0:
 try:
 driveLeft_motor = float(parts[1])
 driveRight_motor = float(parts[2])
 except:

54
Footnote may be given with Font size 10 of Times New Roman.

 # Bad values
 driveRight_motor = 0.0
 driveLeft_motor = 0.0
 else:
 # Bad message
 driveRight_motor = 0.0
 driveLeft_motor = 0.0
 if parts[0]>0:
 left = 1
 elif parts[0]<0:
 left = -1
 if parts[1]>0:
 right = 1
 elif parts[1]<0:
 right = -1
 feedback = ‘{}/{}’.format(left,right)
 pub.publish(feedback)

 drive.driver(driveLeft_motor, driveRight_motor)

Init node
rospy.init_node(‘control_node3’, anonymous=True)
pub = rospy.Publisher(‘/motor_feedback’, String, queue_size=5)

time.sleep(1)
CheckCrash = Stop
NewCommand = False
driveRight_motor = 0.0
driveLeft_motor = 0.0
drive = motor_driver()

Run the GetCommands until we are told to close
try:
 print(‘Press CTRL+C to terminate the controller’)
 time.sleep(2)
 subscriber = rospy.Subscriber(“command2”, String, callback)
 rospy.spin()
except KeyboardInterrupt:
 # CTRL+C exit
 print(‘\nUser shutdown’)

Motor Driver
import RPi.GPIO as GPIO

class motor_driver:
 def __init__(self):
 self.left_motor_fr = 33
 self.left_motor_rv = 35
 self.right_motor_fr = 12
 self.right_motor_rv = 32
 GPIO.setmode(GPIO.BOARD)
 GPIO.setwarnings(False)
 self.initial_setup()

 def driver(self, left_v, right_v):
 if left_v > 1:

55
Footnote may be given with Font size 10 of Times New Roman.

 left_v = 1
 elif left_v < -1:
 left_v = -1
 if right_v > 1:
 right_v = 1
 elif right_v < -1:
 right_v = -1
 if left_v == 0 and right_v == 0:
 self.stop()
 elif left_v > 0 and right_v > 0:
 self.forward(left_v, right_v)
 elif left_v < 0 and right_v < 0:
 self.reverse(left_v, right_v)
 elif left_v < 0 and right_v > 0:
 self.turn_left(left_v, right_v)
 elif left_v > 0 and right_v < 0:
 self.turn_right(left_v, right_v)

 def initial_setup(self):
 GPIO.setup(self.left_motor_fr, GPIO.OUT)
 GPIO.setup(self.left_motor_rv, GPIO.OUT)
 GPIO.setup(self.right_motor_fr, GPIO.OUT)
 GPIO.setup(self.right_motor_rv, GPIO.OUT)
 self.left_motor_pwm_fr = GPIO.PWM(self.left_motor_fr, 1000)
 self.left_motor_pwm_rv = GPIO.PWM(self.left_motor_rv, 1000)
 self.right_motor_pwm_fr = GPIO.PWM(self.right_motor_fr, 1000)
 self.right_motor_pwm_rv = GPIO.PWM(self.right_motor_rv, 1000)
 self.left_motor_pwm_fr.start(0)
 self.left_motor_pwm_rv.start(0)
 self.right_motor_pwm_fr.start(0)
 self.right_motor_pwm_rv.start(0)

 def stop(self):
 self.left_motor_pwm_fr.start(0)
 self.left_motor_pwm_rv.start(0)
 self.right_motor_pwm_fr.start(0)
 self.right_motor_pwm_rv.start(0)

 def forward(self, x, y):
 self.left_motor_pwm_fr.start(x*100)
 self.left_motor_pwm_rv.start(0)
 self.right_motor_pwm_fr.start(y*100)
 self.right_motor_pwm_rv.start(0)

 def reverse(self, x, y):
 self.left_motor_pwm_fr.start(0)
 self.left_motor_pwm_rv.start(abs(x)*100)
 self.right_motor_pwm_fr.start(0)
 self.right_motor_pwm_rv.start(abs(y)*100)

 def turn_left(self, x, y):
 self.left_motor_pwm_fr.start(0)
 self.left_motor_pwm_rv.start(abs(x) * 100)
 self.right_motor_pwm_fr.start(y * 100)
 self.right_motor_pwm_rv.start(0)

56
Footnote may be given with Font size 10 of Times New Roman.

 def turn_right(self, x, y):
 self.left_motor_pwm_fr.start(x * 100)
 self.left_motor_pwm_rv.start(0)
 self.right_motor_pwm_fr.start(0)
 self.right_motor_pwm_rv.start(abs(y) * 100)

57
Footnote may be given with Font size 10 of Times New Roman.

Annex ‘I’

58
Footnote may be given with Font size 10 of Times New Roman.

REFERENCES

[1] Seed Sowing Machine by Alessandro Lupi & Fedrico Lucca - 2016

[2] Automatic Seed Sowing Robot by Abdul Rehman & Ahmed Akbar – Theme College of

Engineering, India - 2017

[3] Automatic Seed Sowing robot by Vidya Yadave, Punam Bhosale & Jyoti Shinde –

IRJET 2019

[4] https://appinventor.mit.edu/

[5] https://firebase.google.com/

[6] https://www.ros.org/

