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Introduction

In their daily practice, professional engineers are often confronted with problems
involving complex physical phenomena. Whether they have to analyze the behavior
of a product or optimize an implementation process, modeling these phenomena often
makes it possible to solve these problems:

– by gaining access to the physical magnitudes characterizing the product and the
consequences of their modification,

– by highlighting the main parameters of the process and thus its optimal
conditions of use.

Physical modeling seems to be the key point when an engineer is thinking of how
to solve a scientific problem. Generally speaking, modeling follows these three steps:

1) identifying the essential physical phenomena related to the behavior of a
product or process within a given context,

2) defining the mathematical equations (domain of study, partial differential
equation(s), boundary conditions and stresses, initial conditions, etc.) governing these
phenomena,

3) validating the equations with respect to the necessary data which must be
available or accessible by means of measurements as well as the results provided,
which must be reliable and reproducible.

The first two points need commenting upon. Firstly, physical modeling has
to meet a set objective. It is then obvious that several modeling methods are
possible to meet a similar objective. The most relevant model is the simplest one
making it possible to meet the set objective. Modeling is first and foremost making
(simplifying) assumptions. Some are obvious. For instance, it is unnecessary to take
into account heat radiation phenomena in low temperature applications; a mean
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exchange coefficient, independent of the temperature, will be sufficient. In other
cases, it is far more difficult. For example, how can we define the analyzed field
and include the behavior of the parts not addressed by means of carefully selected
boundary conditions? This is exactly where the professional engineer’s contribution
comes in. We will come back to this later on.

The last point of this definition is about the model input data and results. The
selection of input data (availability, validity, etc.) often guides the users in the choice
of their modeling methods. It is unnecessary, for instance, to use very sophisticated
metallurgical transformation models if sufficiently accurate data on the processed
material are not available. Result reliability and reproducibility guide the users in the
choice and use of the model solution method. The aim of this method (numerical or
analytical) is to determine a solution of the problem with minimum approximation. It
is obvious that an accurate analytical solution will always be given priority; however,
the growing complexity of the model often leads today’s users towards approximate
numerical solutions. Moreover, commercial numerical simulation software often
includes the functions and models required for industrial applications, thus making
it possible to take full advantage of the progress of information technology (rapid
calculation, memory resources, graphic visual aids, etc.). Consider for instance the
boundary value problem related to steady state heat exchanges in a solid occupying a
limited field (equation [1.8]), which reveals:

– a volumetric heat source Q most often resulting from other physical phenomena
such as the Joule effect in conduction heating or induction heating applications. Is it
necessary to model these phenomena by adding the corresponding partial differential
equations to the heat equation? This is not certain but then we require simple analytical
models to evaluate Q;

– a surface density of the heat flux q applied to a portion of the solid boundary,
reflecting the heat exchange between this solid and the outside medium. This can
be for instance heat radiation towards an infinite medium or a liquid flow into
a quenching bath. Here again, is it necessary to include those phenomena in the
modeling process with the addition of complementary equations? It depends on the
application considered and the feasibility of such an approach. However, if, whatever
the reason, fine modeling of these phenomena was not envisaged, other approaches
would then be necessary to determine the boundary conditions. These could be, for
instance, simplified analytical models;

– a temperature prescribed on the other portion of the solid boundary. This
condition is a limit case of the previous condition. As a matter of fact, either the solid
is steeped at this spot in a fluid with a very high exchange coefficient so as to prescribe
the fluid temperature on the corresponding boundary, or the user has a measurement.
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Experimental measurements will frequently be used to determine the missing
input data, but these will be obtained by alternative routes as the data required for
modeling are often inaccessible to direct measurements. The methods called inverse
methods have developed significantly over the last few years. They are able to
couple physical modeling with accessible magnitude experimental measurements by
adjusting iteratively an input data until the whole set of calculated results are as close
as possible to the measurements.

It is tempting to say after these comments that the easiest model to elaborate is one
in which all influential physical phenomena are finely modeled. This is partly true;
however:

– Are we really in a position to define the mathematical equations governing these
phenomena with a sufficient degree of accuracy to make it worthwhile?

– Are we certain that we are able to have the data required to feed these models
all the more so that these models will frequently require unusual data on a different
scale, which is thus hardly accessible? Using inverse methods may solve this type of
difficulty.

– Will it not be often more difficult to interpret the results than with a simpler
model given the amount of information to process? Indeed, will it not be necessary
to conduct a posteriori the analysis which will not have been carried out a priori to
eliminate insignificant results?

In fact, everything depends on the problem to solve. Moreover at which point of
the domain of study considered should we stop? First, we will take into consideration
all the symmetries presented by the problem for which the corresponding boundary
conditions are written clearly from a mathematical point of view:

– revolution symmetry: the most productive one as it allows us to carry out 3D
analysis on a plane model representing a meridian section of the studied structure,

– symmetry to a plane: very commonly used,

– anti-symmetry to a plane: less natural and often forgotten,

– periodicity conditions on a repetitive structure.

The relevance of a 3D model will then be questioned. If it is true that calculation
software and computers make it easy to carry out this type of analysis, a 2D (and
even 1D) model is often sufficient (in the case of a repetitive structure in one direction
for example) and therefore preferable as the analysis and interpretation of results will
always be easier with a 2D than with a 3D model. In all other cases, restricting the
domain of study will lead to the definition of appropriate boundary conditions.
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It is therefore in the interest of the engineers in charge of physical modeling to
think in detail about the relevance of their choices and assumptions. It is the price
to pay to take maximum advantage of their models. In any case, before reaching the
intensive exploitation stage, it is imperative to ensure the model prediction quality by
comparing it with the results of one experiment (at least!).

Most often, analytical methods cannot be applied to the solution of the
mathematical equations governing a set of physical phenomena, except if major
assumptions reducing the modeling validity are made. The analog method takes
advantage of the fact that conduction heat exchanges and electrical conduction
phenomena are governed by the same equations. It is thus possible to study
conduction heat exchanges by means of more easily accessible measurements carried
out on a similar electrical device. However, the field of application of this method is
far too restrictive. Therefore, numerical techniques whose use is made possible by the
performance of today’s computers are used to determine an approximate solution of
the set of mathematical equations governing the problem.

The finite difference method which replaces partial derivatives with finite
differences at different points of a grid is highly regarded by mechanical engineers.
The discrete equation system obtained can also be interpreted as resulting from a
complex electrical diagram combining resistances and capacities. This technique is
hardly possible with complex geometries.

The finite volume method is also highly regarded by mechanical and thermal
engineers. It is based upon a previous division of the geometric domain of study into
element volumes. On each element volume, the thermal balance equations are solved.
This method is particularly efficient in the case of structured geometries. It is widely
used in thermal science and fluid mechanics, but more rarely in other disciplines.

Among the various numerical techniques available today, the finite element
method [TOU 81, ZIE 91] is the most widespread owing to:

– its general fields of application (thermal, electromagnetic sciences, solid
mechanics, fluid mechanics, etc.),

– its capacity to treat problems with complex geometries,

– its easy implementation.

This can be done as follows:

1) mesh-geometry: the geometric domain to be analyzed, most often resulting
from CAD geometric modeling, is divided into a set of element sub-domains (finite
elements) interconnected by nodes;
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2) solution: the continuous functions sought (the temperature in a heat conduction
problem) are replaced with a set of values estimated at the mesh nodes. This
approximation, applied to an integral formulation of the problem, leads to a system
of equations (linear or non-linear) whose number is equal to the number of values to
be estimated;

3) analysis-interpretation of results: at this point, other results can be calculated
(for instance, the heat flux density) from those obtained by the direct solution of the
equation system. They are then analyzed and interpreted by the user, by means of very
efficient graphic visualization resources.

The success of the finite element method is largely due to the significant progress
of information technologies, both from a numerical point of view (rapid calculation,
memory size available) and from a graphic point of view (3D visual resources). Today
a large amount of software makes use of this method. They offer a growing number
of functions and are increasingly user-friendly. It should be noted that calculation
software displays clear and user-friendly interfaces nowadays and can be used by
non-specialist engineers.

However, this apparent facility should not conceal the fact that, whatever the
numerical method adopted, the discretization phase impairs the properties of the
initial continuous model. Some phenomena present in the continuous model could be
erased by the numerical model if we do not pay attention. The meshing phase in the
finite element method is therefore very important and it is the user’s know-how that
will produce a quality approximate solution.

Therefore, the aim of this book is to present the basis and application of the finite
element method to the solution of industrial thermal problems. It consists of three
parts which the reader may possibly complete by reading a number of books related
to this field [COM 94, RED 94, LEW 96, MIN 06].

Part 1, dedicated to the solution of steady state heat conduction problems,
introduces the finite element method. Starting with the partial derivative problem
and the related boundary conditions, various formulations upon which various
discretization methods are based, are presented.

Part 2 extends the field of application of the method to transient state conduction
problems, the most common non-linearities and transport phenomena (diffusion
convection problems).

The last part, Part 3, deals with coupled problems:

– coupled by boundary conditions: radiation problems, fluid and structure coupling
in a piping system,
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– including additional state variables: thermometallurgical coupling,

– coupled by partial differential equations: electrothermal coupling,
magnetothermal coupling and thermochemical coupling.

This book is a survey of the various thermal problems which professional engineers
may have to simulate. The methods presented will allow readers to use in the best way
possible a calculation software and design new calculation modules so as to complete
their work.



PART 1

Steady State Conduction
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Introduction

In this part we introduce the finite element method in the simplest field of thermal
science: steady state conduction. We therefore consider a solid Ω undergoing thermal
loads and try to determine the temperature field T (−→x ) in this solid, when it is in
equilibrium with the external environment. In this part, it is assumed that no quantity
involved depends on time. Thermal loads are therefore constant and the solid is
motionless. The equilibrium state sought corresponds to a steady state. Besides, we
will restrict our study to the linear case in which the mathematical field is clearly
identified. The finite element method is introduced according to the following three
steps.

Firstly, the physical problem to solve is analyzed from a mathematical point of
view. This leads to a series of three problems (equations [1.8], [1.10] and [1.13]).
Problem [1.8] is a partial differential equation resulting directly from physical
modeling with its boundary conditions. Problem [1.10] turns this partial differential
equation into a variational equation by means of the weighted residual method.
Finally, problem [1.13], often called weak form, is the basis of the finite element
method.

It is possible to find an approximate solution to each of the three problems [1.8],
[1.10] and [1.13]. For this purpose, several methods are used. Each of them will be
illustrated by a work example: an induction-heated plate. We will use a physical model
to describe this example, then seek approximate solutions (the temperature field) of
problems [1.8], [1.10] and [1.13] related to this physical model.

Chapter 2 deals with the finite element method. This method is based upon the
weak form described in Chapter 1. The approximation used is called finite element
approximation. It consists of discretizing the geometry (the mesh) and approximating
the temperatures sought (nodal approximation). This step makes it possible to write
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the problem to solve in a discretized form, which is very appropriate for a computer
numerical solution. In this chapter, the various steps of the finite element method will
be illustrated by a new work example: thermal conduction in a plate with holes.

In Chapter 3, we introduce isoparametric finite elements starting from the notion of
the reference element. This makes it possible to develop simple and rapid methods for
the calculation of the element quantities involved in the discrete problem formulation.
The major types of isoparametric elements are also described in detail in this chapter.



Chapter 1

Problem Formulation

1.1. Physical modeling

In this chapter we describe the different steps of physical modeling leading in the
next section to a boundary value problem. These steps are:

1) writing the equation expressing the solid thermal equilibrium,

2) introducing the Fourier law connecting the heat flux to the temperature gradient,

3) formulating boundary conditions.

1.1.1. Thermal equilibrium equation

Figure 1.1 illustrates a homogenous solid Ω. In order to write that this solid is in
thermal equilibrium, consider any portion ΩA related to this solid and write that the
heat produced on that portion is equal to the heat flux coming out of it, i.e.:

∀ΩA,

∫
ΩA

Qdv =
∫

∂ΩA

−→
φ · −→n ds [1.1]

In this equation,
−→
φ is a vector characterizing the heat flux surface density (in

W/m2) coming out of ΩA through its boundary ∂ΩA, −→n is the outward unit normal
to this surface, and Q is a scalar representing an internal heat volumetric source (in
W/m3) in ΩA. Among the physical phenomena represented by this volumetric term,
we can include Joule effect heating (conduction or induction), heat dissipation by
plastic deformation, etc.
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Ω

Ω

φ

n

A

Figure 1.1. Solid thermal equilibrium

If the divergence theorem is now applied (integration by parts) to the surface
integral of equation [1.1], i.e.:∫

∂ΩA

−→
φ · −→n ds =

∫
ΩA

div
(−→
φ
)
dv

it is possible to write the thermal equilibrium of any portion ΩA of the solid, Ω, in
Figure 1.1 as follows:

∀ΩA,

∫
ΩA

(
Q − div

(−→
φ
))

dv = 0

If this equation is verified in any domain ΩA of the solid Ω we obtain the partial
differential equation governing the thermal equilibrium:

Q − div
(−→
φ
)

= 0 at any point of Ω [1.2]

1.1.2. Fourier law

The law connecting the heat flux density to the temperature field must satisfy the
second principle of thermodynamics. In this book, we will not deal with the details
of continuum thermodynamics. For that purpose, the reader should consult books
related to this discipline. Here we will deal with the simplest law, the Fourier law,
connecting linearly the heat flux density to the local temperature gradient. This is
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written
−→
φ = −λ

−−→
grad(T ), where λ is a positive scalar called thermal conductivity.

A temperature variation according to a space direction (i.e. a component of
−−→
grad(T ))

will generate a heat flux in the same direction but inverted (i.e. from hot to cold).

The thermal conductivity of a material may be a function of the local temperature
and the space direction in which thermal transfer occurs. In this book we will therefore
use a law which is more general than the one described above:

−→
φ = −λ.

−−→
grad(T ) [1.3]

In this equation, λ is a symmetric second-order tensor in which each component
λij , possibly as a function of temperature, produces the influence of a thermal gradient
in the direction j on the heat flux density in the direction i. These components make
up the thermal conductivity matrix. In the case of isotropic materials (similar thermal
conductivity in all space directions), this matrix comes down to λ = λI , where I is
the identity matrix, and we go back to our initial expression. If we now insert Fourier
law [1.3] into equilibrium equation [1.2], this becomes:

div
(
λ · −−→grad(T )

)
+ Q = 0 at any point of Ω [1.4]

The equation obtained is a partial differential equation in T . Indeed, the
temperature field sought is a function T (−→x ), where −→x characterizes the position of a
point in the solid Ω. For example, in Cartesian coordinates (x, y, z), and in the case
of an isotropic material whose thermal conductivity λ is independent of temperature,
this equation can be written as follows:

λ

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
+ Q = 0 at any point of Ω

1.1.3. Boundary conditions

In order to solve partial differential equation [1.4] expressing the thermal
equilibrium of the solid Ω, it is necessary to add boundary conditions. Those
conditions express the connection of Ω with the external environment. This
connection is generally represented on Ω boundary either by a known flux density−→
φ · −→n , or by a known temperature T .

A known flux density condition q on the portion ∂Ωq of Ω boundary is generally
written as follows:

−→
φ · −→n =

(− λ · −−→grad(T )
) · −→n = −q(T ) at any point of ∂Ωq [1.5]
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where −→n is the outward unit normal at the point considered and q is the flux density
entering Ω at this point, this density possibly being a function of the temperature T at
the same point. This type of condition is used to represent, for instance:

– convection exchanges of the form q(T ) = h(Text − T ), where h is a local heat
exchange coefficient (in W/m2/K) and Text is the external environment temperature
(Fourier condition),

– radiation exchanges in an infinite environment q(T ) = σε(T 4
∞ −T 4) where σ is

Stefan constant (σ = 5, 67·10−8 W/m2/K4), ε is the emissivity of the surface assumed
to be “gray”, T is the Kelvin temperature at the point considered, and T∞ is the Kelvin
temperature of the infinite environment.

When the surface flux density q is not a function of the temperature, this boundary
condition is called the Neuman condition. It is used for instance to represent:

– an adiabadicity condition (q = 0),

– a symmetry condition (q = 0 in the symmetry plane).

A temperature condition Td known on a portion ∂ΩT of Ω boundary is written as
follows:

T = Td at any point of ∂ΩT [1.6]

This type of condition, known as the Dirichlet condition, is in fact a convection
exchange limit case, with a very high heat exchange coefficient h and Td equal
to the temperature of the external environment. It is generally used when local
experimental temperature measurements are available. It can also be used to represent
an anti-symmetry condition, but this is not very frequent in practice.

1.2. Mathematical analysis

For a thermal problem to accept a unique solution in a steady state (problem
correctly posed), it is necessary:

– to prescribe at any point of the boundary ∂Ω of Ω either a known flux density
condition (equation [1.5]), or a known temperature condition (equation [1.6]),

– to prescribe at one point at least of ∂Ω either a known temperature condition or
a Fourier condition.

The boundary ∂Ω can then be broken down into a portion ∂Ωq on which a flux
condition is applied, and a portion ∂ΩT on which the temperature is known. These
two portions must satisfy the following conditions:

∂ΩT ∩ ∂Ωq = ∅ and ∂ΩT ∪ ∂Ωq = ∂Ω [1.7]
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The boundary value problem expressing the equilibrium of the solid Ω can then be
written as: ∣∣∣∣∣∣∣∣∣∣∣∣∣

Find T (−→x ) at any point −→x ∈ Ω such that:

R(T ) = div
(
λ · −−→grad(T )

)
+ Q = 0 in Ω(

λ · −−→grad(T )
) · −→n = q on ∂Ωq

T = Td on ∂ΩT

[1.8]

The term R(T ) involved in this problem is said to be residual. It is a quantity
to cancel in the solid Ω while satisfying the boundary conditions representing the
connections of the solid with the external environment.

It is possible to work directly on problem [1.8] to determine the temperature
field for T (−→x ) satisfying the thermal equilibrium of the solid. This can be done in
a few simple cases in an analytical way, but in most cases, only an approximate
solution can be determined. The finite difference method is the first possibility to
obtain an approximation of problem [1.8]. In this case, the first- and second-order
partial derivatives appearing are evaluated from the first terms of a Taylor sequence
development of the temperature field.

1.2.1. Weighted residual method

In problem [1.8] we have to cancel a scalar residual R(T ) at any point −→x of the
solid Ω. First, note that if a temperature field T (−→x ) cancels this residual, then for any
function ψ(−→x ): ∫

Ω

ψR(T )dv = 0 [1.9]

The functions ψ(−→x ) introduced by this method are called weighting functions.
The only condition required for these functions is to give a sense to equation [1.9].
These functions will then have to be integrable on Ω. The set of weighting functions
ψ(−→x ) will be written Eψ .

With regard to the temperature field T (−→x ) sought, it also has to give a sense to
equation [1.9]. Due to the expression of the residual R(T ) these functions, called
admissible, are to have second-order partial derivatives integrable over Ω. The set of
admissible functions T (−→x ) will be written ET .
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The weighted residual method therefore produces the following problem
formulation: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find T ∈ ET such that for any ψ ∈ Eψ:∫
Ω

ψ
(
div

(
λ · −−→grad(T )

)
+ Q

)
dv = 0

(
λ · −−→grad(T )

) · −→n = q on ∂Ωq

T = Td on ∂ΩT

[1.10]

It is obvious that, if a temperature field is the solution of [1.8], then it is also the
solution of [1.10], whatever Eψ is. On the contrary, a temperature field which is the
solution of problem [1.10] depends on the choice of the sets of functions ET and Eψ .

Problem [1.10] is ideal for seeking an approximation of the temperature field
T (−→x ). For this purpose, it is sufficient to choose particular spaces Eψ and ET . Partial
differential equation [1.4] is then no longer satisfied at any point of Ω; it is only
satisfied in the sense of equation [1.10]. Point collocation and sub-domain collocation
methods are based upon formulation [1.10].

Point collocation consists of defining a finite number n of points in the solid Ω with
coordinates −→x 1, . . . ,

−→x n, and choosing for Eψ the set of Dirac distributions related
to them:

Eψ =
{
δ−→x i

, i = 1, . . . , n
}

The resolution of problem [1.10] then comes down to seeking a function T (−→x )
which can be differentiated twice, satisfying the boundary conditions, and canceling
the residual at each point −→x i of Ω:∫

Ω

δ−→x i
R(T )dv = R(T )

∣∣−→x =−→x i
= 0 for i = 1, . . . , n

For example, if T (−→x ) is chosen in a polynomial form, the resolution of these
equations allows us to determine the polynomial coefficients. The quality of the
solution obtained with this method depends directly on the form selected for
the temperature field (set ET ) and the choice of collocation points (number and
positions).



Problem Formulation 27

Sub-domain collocation is the basis of the finite volume method. It consists of
dividing the solid Ω into element volumes Ωi with no intersection, and in such a way
that their union forms Ω. Then, the following weighting functions are selected:

Eψ =

{
ψi/ψi(−→x ) =

∣∣∣∣ 1 if −→x ∈ Ωi

0 otherwise

}

The resolution of problem [1.10] then comes down to seeking a solution T (−→x )
satisfying the thermal equilibrium on each element volume or control volume Ωi. As
a matter of fact, using this type of weighting function makes it possible to write on
each control volume: ∫

Ω

ψiR(T )dv =
∫

Ωi

R(T )dv = 0

With the divergence theorem and Fourier law [1.3], this equation can be expressed
as follows:

∀i,

∫
Ωi

Qdv =
∫

∂Ωi

−→
φ · −→n ds

Then we go back to equation [1.1], which must be satisfied for a particular set of
sub-domains Ωi. This equilibrium equation is the basis of the finite volume method.
The temperature is then often assumed to be homogenous in an element volume. The
heat fluxes coming out of the volume are then calculated, in each direction, from local
laws using the temperatures of adjacent volumes.

1.2.2. Weak integral formulation

The weak integral formulation of problem [1.10] is introduced when the volume
integral equation involved has a specific form. If the divergence theorem (integration
by parts) is applied to this integral equation, we can write:∫

Ω

ψ
(
div

(
λ · −−→grad(T )

))
dv

=
∫

Ω

div
(
ψ
(
λ · −−→grad(T )

))
dv −

∫
Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv

=
∫

∂Ω

ψ
(
λ · −−→grad(T )

) · −→n ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv
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The temperature field sought must now be such that, for any weighting function ψ

of Eψ , the following equations must be satisfied:


∫
Ω

ψQ dv +
∫

∂Ω

ψ
(
λ · −−→grad(T )

) · −→n ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv = 0

(
λ · −−→grad(T )

) · −→n = q on ∂Ωq

T = Td on ∂ΩT

We see that no more second derivatives of the temperature field appear in the
problem formulation. The regularity required on T to give a sense to the problem has
therefore been lowered; that is the reason why it is called a weak integral formulation.
On the contrary, the regularity required for functions ψ has increased since first
derivatives of these functions have appeared. The same regularity is required for
functions of ET and Eψ . A detailed mathematical analysis, which will not be
performed here, makes it possible to demonstrate that these regularity conditions
correspond to Sobolev’s first space H1(Ω), which gathers the functions square
integrable on Ω and whose first derivatives are also square integrable on Ω.

An important step toward the weak integral formulation of the problem consists of
inserting the boundary conditions on ∂ΩT into the space of admissible functions ET .
This is done by defining:

ET =
{
T ∈ H1(Ω)/T = Td on ∂ΩT

}
[1.11]

Dirichlet boundary conditions (prescribed temperature) are therefore directly
inserted into the solution space. These conditions are said to be essential for the
problem formulation.

Besides, we select weighting functions canceling one another on ∂ΩT . Thus, these
functions ψ can be considered to be admissible variations of functions of ET . Indeed,
if T ∈ET , then for any ψ of Eψ , T+ψ∈ET . The following space Eψ is then defined:

Eψ =
{
ψ ∈ H1(Ω)/ψ = 0 on ∂ΩT

}
[1.12]

Taking into consideration the flux boundary conditions (on ∂Ωq) and the previous
definition of Eψ , the surface integral term appearing when integration by parts is
applied becomes:∫

∂Ω

ψ
(
λ · −−→grad(T )

) · −→n ds =
∫

∂ΩT

ψ
(
λ · −−→grad(T )

) · −→n ds

+
∫

∂Ωq

ψ
(
λ · −−→grad(T )

) · −→n ds =
∫

∂Ωq

ψq ds
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Now problem [1.10] to be solved can be written as follows:∣∣∣∣∣∣∣∣∣∣

Find T ∈ ET (defined by equation [1.11]) such that

for any ψ ∈ Eψ (defined by equation [1.12]):∫
Ω

ψQ dv +
∫

∂Ωq

ψq ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv = 0

[1.13]

The flux boundary conditions are included in the function to cancel in problem
[1.13]. They are said to be natural boundary conditions for the formulation.

Problem [1.13] defined in this way now offers a continuous mathematical
framework for seeking a solution. It can be demonstrated that it is equivalent to
boundary value problem [1.8] but is far more appropriate to seek approximate
solutions. Indeed the only obligation required for the solution T (−→x ) is to belong
to the space ET , i.e. to belong to H1(Ω) (square integrable function whose first
derivatives are square integrable), and to satisfy the essential boundary conditions
T = Td on ∂ΩT .

As weighting functions ψ of Eψ can be assimilated to admissible variations of
functions ET , it is easy to demonstrate that, in linear cases (λ independent of T , Q

and q linear according to T ), problem [1.13] is equivalent to the minimization problem
of a functional Π(T ). In particular, when Q and q are independent of T , this functional
equation is written as follows:∣∣∣∣∣∣∣

Find T ∈ ET minimizing the functional equation:

Π(T ) =
1
2

∫
Ω

−−→
gradT (T ) · λ · −−→grad(T )dv −

∫
Ω

TQ dv −
∫

∂Ωq

Tq ds
[1.14]

Minimizing Π then comes down to finding T of ET such that, for any admissible
variation δT in Eψ , the corresponding variation δΠ of Π vanishes. This is expressed
as follows:∣∣∣∣∣∣∣

For any δT ∈ Eψ:

δΠ =
∫

Ω

−−→
gradT (δT ) · λ · −−→grad(T )dv −

∫
Ω

δTQ dv −
∫

∂Ωq

δTq ds = 0

We then go back to problem [1.13].

Approximation methods consist of constructing an approximate solution of
problem [1.13] by working in the sub-spaces En

T and En
ψ of ET and Eψ of finite
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dimension n. By constructing Eψ , a particular element T ∗ of ET makes it possible to
express all the elements of this space in the form T = T ∗ + ψ, where ψ is an element
of Eψ . The Galerkin method [GAL 15] makes use of this property when it considers
a space En

T defined from the space En
ψ as follows:

En
T =

{
T/T = T ∗ + ψ with ψ ∈ En

ψ

}
The Galerkin method then consists of replacing continuous problem [1.13] with

the following discrete problem (of dimension n):∣∣∣∣∣∣∣
Find T ∈ En

T such that for any ψ ∈ En
ψ:∫

Ω

ψQ dv +
∫

∂Ωq

ψq(T )ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv = 0

[1.15]

It is obvious that if we increase the dimension n of spaces En
T and En

ψ , it is
possible to construct a series of approximate solutions. It is demonstrated that this
series converges to the solution of continuous problem [1.13] when n tends to infinity.

1.3. Working example

In this section, we will deal with the example of a metal plate heated by induction.
The aim is to illustrate the application of physical modeling and mathematical analysis
processes used in the previous sections to a real case. Physical modeling will allow us
to specify the assumptions made and the equations used. Then we will examine the
various solution methods:

– direct methods based upon partial differential equations and boundary conditions
resulting from physical modeling (problem [1.8]). Here we will restrict our study to
the analytical integration model and its approximation by the finite element method;

– collocation methods based upon problem [1.10] obtained by the weighted
residual method. We will restrict our study to point and sub-domain collocation
methods;

– the Galerkin method resulting from the weak integral form of problem [1.13].
We will study a polynomial approximation of the temperature field then a piecewise
linear approximation of this field (finite element method).

1.3.1. Physical modeling

The work example considered in this chapter is that of an induction heated
plate. It is illustrated in Figure 1.2. Its physical modeling can be performed at
different levels. In this chapter, we will restrict our study to a 1D thermal analysis
of the plate thickness. A line of length E (the plate thickness) represents the solid.
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Heat conduction is only considered in the direction x. The corresponding thermal
conductivity is written λ and assumed to be constant.

plate

inductor

x T

0

E

E-P Q(x)

Td

convection

modeling

Figure 1.2. Work example: induction heated plate

On the bottom part of the plate (x = 0), the temperature is assumed to be
known and equal to a constant value Td. On the top part of the plate, a constant heat
exchange coefficient H is used to represent the plate convection exchanges with the
external environment, whose temperature is equal to Text = Td. Induction heating is
represented by the following heat volumetric density:

Q = Q(x) = Q0e
x−E

P

where Q0 corresponds to the heating volumetric power (in W/m3) at x = E, and
in which P is a characteristic heating depth (depending in particular on the inductor
frequency). Low frequency heating for instance will be represented by a high value
of P , and will therefore tend to heat the solid “in its volume”. On the contrary, high
frequency heating will concentrate the power on the plate surface (skin effect). This
effect is used by the induction hardening process. A graphic representation of the
temperature field obtained by various methods is given in this section. To do so, we
have used the following values for the parameters:

– plate thickness: E = 0.1 m;

– material thermal conductivity: λ = 30 W/m/K;

– heat exchange coefficient at x = E: H = 2,000 W/m2/K;

– temperature at x = 0 and of the external environment: Td = 20°C;

– heating parameters: Q0 = 5.107 W/m3 and P = 0.02 m.
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1.3.2. Direct methods

The thermal equilibrium in the plate is governed by problem [1.8] which, in this
case, is written as follows:



λ
d2T

dx2
+ Q(x) = 0 for 0 ≤ x ≤ E

λ
dT

dx
= H

(
Td − T (x)

)
at x = E

T (x) = Td at x = 0

1.3.2.1. Analytical integration

It is possible to integrate this differential equation analytically. We then obtain
the exact solution of the problem, i.e. the temperature field T (x) which satisfies the
thermal equilibrium and the boundary conditions:

T (x) = Td +
Q0P

λ + EH

(
1 +

PH

λ

(
1 − e−

E
P

))
x +

Q0P
2

λ
e−

E
P

(
1 − e

x
P

)

The temperature field obtained is illustrated in Figure 1.3. It is obvious that, since
an analytical solution exists in this working example, it is preferable to any other.
However, in order to illustrate approximation methods, we are going to apply them to
this example, then compare the solutions obtained with this analytical solution.

Figure 1.3. Working example: analytical solution
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1.3.2.2. The finite difference method

To obtain an approximate solution of the initial differential equation, we discretize
axis Ox between x = 0 and x = E by defining n + 1 equidistant points with x-axis
xi = ih (with h = E/n and i = 0, 1, . . . , n). Then, with Ti being the temperature
at the x-axis point xi, an approximation of T second derivatives at the solid internal
points i = 1, . . . , n − 1 can be obtained as follows:

d2T

dx2

∣∣∣∣
x=xi

=
Ti+1 − 2Ti + Ti−1

h2

Finally, the temperatures at the boundary points with x-axes x = x0 = 0 and
x = xn = E are obtained by applying the boundary conditions. At x = 0, the
temperature T0 is known, its value is Td. At x = E, the incoming flux can be expressed
as λ(Tn − Tn−1)/e, which makes it possible to write:(

1 +
hH

λ

)
Tn − Tn−1 =

hH

λ
Td

The problem to solve is thus expressed in the form of a linear system whose
unknowns are the temperatures Ti:




1 0 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 0
0 0 0 · · · 2 −1

0 0 0 · · · −1 1 +
hH

λ







T0

T1

T2

· · ·
Tn−2

Tn−1

Tn




=




Td

h2

λ
Q
(
x1

)
h2

λ
Q
(
x2

)
· · ·

h2

λ
Q
(
xn−2

)
h2

λ
Q
(
xn−1

)
hH

λ
Td




The solution of this linear system produces an approximate solution of problem
[1.8] in our working example. This approximate solution is given by a discrete set of
values Ti. Each Ti corresponds to an approximate value of the temperature at the point
with x-axis xi. It should be noted that the finite difference method gives a solution only
for points with x-axis xi. It gives no a priori indication of the form of the solution
beyond these points. In practice, it is advised to construct an approximate solution on
the whole domain with a linear interpolation of the solution on each interval.
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Figure 1.4. Working example: the finite difference method

Figure 1.4 gives the approximate solutions obtained by finite differences with a
number n of discretization segments equal to 10, 20 and 50. It is established that,
when n increases, the approximate solution tends slowly to the analytical solution.

The finite difference method is relatively easy to implement in cases with simple
geometries (1D, 2D or 3D). For instance, in the 3D case, the calculation points
are distributed on a Cartesian grid whose main directions are axes Ox, Oy and
Oz. However, the problem is far more complicated when the grid does not make
it possible to give a good representation of the geometry or write the boundary
conditions correctly. In that case, curvilinear finite difference methods can be used.

1.3.3. Collocation methods

Collocation methods are based upon problem [1.10] resulting from problem [1.8]
by applying the weighted residual method. In this working example, problem [1.10]
is expressed as follows:



Find T ∈ ET such that for any ψ ∈ Eψ:∫ E

0

ψ

(
λ

d2T

dx2
+ Q(x)

)
dx = 0

λ
dT

dx
= H

(
Td − T

)
at x = E

T = Td at x = 0
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1.3.3.1. Point collocation

In order to obtain an approximate solution of the initial differential problem, we
discretize axis Ox between x = 0 and x = E by defining n + 1 equidistant points
with x-axis xi = ih (with h = E/n and i = 0, . . . , n), and for Eψ , we select the set
of Dirac distributions corresponding to those points. The solution to the problem then
comes down to seeking a function T (x) which can be differentiated twice, satisfying
the boundary conditions and canceling the residual at each point xi. This produces the
n + 3 equations: 



λ
d2T

dx2
+ Q(x) = 0 at x = x0, . . . , xn

λ
dT

dx
= H

(
Td − T

)
at x = xn

T = Td at x = x0

For instance, choose for ET the space of n + 2 degree polynomials. The function
T will then be expressed as T (x) = a0 + a1x + a2x

2 + · · · + an+2x
n+2, with n + 3

coefficients to determine. We obtain a linear system in ai, of n + 3 equations with
n + 3 unknowns:




0 0 · · · (n + 2)(n + 1)xn
0

0 0 · · · (n + 2)(n + 1)xn
1

...
...

...

0 0 · · · (n + 2)(n + 1)xn
n

H

λ
1 +

H

λ
xn · · ·

(
n + 2 +

H

λ
xn

)
xn+1

n

1 0 0 · · · 0







a0

a1

...

an

an+1

an+2




=




−Q(x0)
λ

−Q(x1)
λ

...

−Q(xn)
λ

H

λ
Td

Td




The solution of this linear system yields coefficients ai of the polynomial used as
the approximation of the function T (x) sought. Figure 1.5 gives the approximations
obtained with a number of collocation points equal to 3 (n = 2), 4 (n = 3) and 6
(n = 5). We can see that with only 6 points, the solution obtained practically coincides
with the analytical solution in this case. However, in this case a 7-degree polynomial
is necessary. In 2D or 3D, the number of coefficients to determine would soon become
very high, making this situation ill-suited to the linear system solution.
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Figure 1.5. Working example: point collocation

1.3.3.2. Sub-domain collocation

Axis Ox is divided into n control volumes. These are segments of length h = E/n.
They are limited by points xi−1 = (i − 1)h and xi = ih (with i = 1, . . . , n). If
we make Ti the temperature (assumed to be constant) in the segment [xi−1, xi] it is
possible to calculate the first and second derivatives with a finite difference scheme
between the segment centers. We then obtain a linear system on the temperatures Ti

of each of the n element segments:




1 0 · · · 0 0
−1 2 · · · 0 0
0 −1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 2 −1

0 0 · · · −1 1 +
hH

λ







T1

T2

T3

· · ·
Tn−1

Tn




=




Td

h

λ

∫ x2

x1

Q(x)dx

h

λ

∫ x3

x2

Q(x)dx

· · ·
h

λ

∫ xn−1

xn−2

Q(x)dx

hH

λ
Td




Figure 1.6 illustrates the sub-domain collocation method applied to our working
example, with respectively 20, 50 and 100 segments. It should be noted that the
approximate solution tends to the analytical solution when the number of segments
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Figure 1.6. Working example: sub-domain collocation

increases. This method is the basis of the finite volume method, which is widely used
in thermal science. It combines a simple formulation, like finite differences, with the
very physical notion of thermal equilibrium per element volume.

1.3.4. Galerkin method

The Galerkin method is based upon the weak integral form [1.13] of the problem
to solve. In this work example, problem [1.13] is expressed as follows:∣∣∣∣∣∣∣

Find T ∈ ET such that for any ψ ∈ Eψ:∫ E

0

ψ(x)Q(x)dx + Hψ(E)
(
Td − T (E)

)− λ

∫ E

0

dψ

dx

dT

dx
dx = 0

Spaces ET and Eψ are defined as follows:

Eψ =
{
ψ ∈ H1

(
[0, E]

)
/ψ(0) = 0

}
ET =

{
T ∈ H1

(
[0, E]

)
/T (0) = Td

}
The Galerkin method consists of selecting finite spaces En

ψ and En
T , of size n,

instead of spaces Eψ and ET .

1.3.4.1. Polynomial functions

Here we will consider space En
ψ generated by the n monomials xi (i = 1, . . . , n).

In order to satisfy the condition ψ = 0 on the boundary ∂ΩT (here x = 0), the
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elements ψ of En
ψ will be expressed with n parameters as follows:

ψ(x) =
i=n∑
i=1

bix
i

The quantity to cancel in the discrete problem then becomes:

i=n∑
i=1

bi

(∫ E

0

xiQ(x)dx + HEi
(
Td − T (E)

)− λ

∫ E

0

ixi−1 dT

dx
dx

)
= 0

As this quantity must be equal to zero for any function ψ ofEn
ψ , i.e. for any set of

components bi, the n quantities between brackets, functions of T , must be equal to
zero. This produces n equations in T .

To generate the space En
T of admissible functions, the temperature field T (x)

is expressed as the sum of a particular admissible function T0(x) = Td and an
element En

ψ . Therefore, the temperature field is sought in the following form, where
ai represents the n parameters to determine:

T (x) = Td +
n∑

j=1

ajx
j

The n equations finally become the linear functions of the n unknowns ai in the
form:

n∑
j=1

(
HEi+j + λ

∫ E

0

ijxi+j−2dx

)
aj =

∫ E

0

xiQ(x)dx

Figure 1.7 illustrates the temperature field obtained with this method for 2-, 3- and
4-degree polynomials. We can see that the approximate solution converges toward the
analytical solution when the polynomial degree increases.

The major advantage of this method is that the matrix and the load vector of the
system to solve have general expressions, added to which, the matrix is symmetric.
Conversely, these quantities include integral equations whose analytical estimation
may be complex. Their numerical estimation is certainly possible, but generates new
approximations. In our example, the integral equations have been estimated from their
analytical forms. Moreover, the matrix is full. Applying this method to 2D or 3D cases
presupposes that one is capable of constructing a polynomial approximation satisfying
the essential boundary conditions, which does not happen very frequently in practice.
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Figure 1.7. Working example: polynomial approximation

1.3.4.2. Piecewise linear functions

Starting with the discretization of segment [0, E] performed from n + 1 points,
with x-axis xi = ih with h = E/n and i = 0, . . . , n, we can consider for En

ψ the
space of continuous functions varying linearly on each interval [xi, xi+1]. It is easy to
demonstrate that this space is generated by the n + 1 following functions Ni(x) (this
is expressed as x−1 = −h and xn+1 = E + h):

Ni(x) =




x − xi−1

h
if xi−1 ≤ x ≤ xi

xi+1 − x

h
if xi ≤ x ≤ xi+1

0 if not

In order to satisfy the condition ψ = 0, at x = 0, the functions of space En
ψ will

then be expressed as follows:

ψ(x) =
n∑

i=1

Ni(x)ψi

Space En
ψ is therefore of the dimension n. A function ψ of this space will be

characterized by its n parameters ψ1, ψ2, . . . , ψn, corresponding to the values taken
by the function respectively at the points x1, x2, . . . , xn. Between these points, the
function ψ is obtained by linear interpolation. The quantity to cancel in the discrete
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Figure 1.8. Generating piecewise linear functions

problem now becomes:

i=n∑
i=1

ψi

(∫ E

0

Ni(x)Q(x)dx + HNi(E)
(
Td − T (E)

)− λ

∫ E

0

dNi

dx

dT

dx
dx

)
= 0

As this quantity must be equal to zero for any function ψ, and hence for any set of
components ψi, the term between brackets in this equation must be equal to zero for
any index i.

We now introduce a particular admissible solution T ∗(x) = N0(x)Td to express
any function of space En

T as follows:

T (x) = N0(x)Td +
n∑

i=1

Ni(x)Ti

The approximate solution selected is then a piecewise linear function. Its value
is Td at x = x0 = 0, Ti at x = xi (for i = 1, . . . , n), and is obtained by linear
interpolation between two consecutive points. When such a function is inserted into
the quantity to cancel, we finally obtain a linear system of the following type:

j=n∑
j=1

KijTj = Fi

whose unknowns are temperatures T1, . . . , Tn. The terms Kij of the matrix and Fi of
the load vector of this linear system are expressed analytically as follows:


Kij = λ

∫ E

0

dNi

dx

dNj

dx
dx + HNi(E)Nj(E)

Fi =
∫ E

0

(
Ni(x)Q(x) − λ

dNi

dx

dN0

dx
Td

)
dx + HNi(x)N0(x)Td



Problem Formulation 41

Figure 1.9. Working example: piecewise linear approximation

Figure 1.9 illustrates the approximate solution in the case of 5, 10 and 20 segments
distributed on axis Ox (between x = 0 and x = E). We can see that this solution tends
rapidly toward the analytical solution when the number of discretization segments
increases.

The approximation used here is a finite element approximation. It has the same
advantages as a polynomial approximation (symmetric matrix, general and specific
expression of the matrix and load vector), but has none of the drawbacks mentioned
before. Indeed the calculation of integral equations included in the linear system is
much easier. Specifically, the integrations involved in the expression of the terms Kij

and Fi can be restricted to the only fields in which the function to integrate is not equal
to zero. For instance, for the diagonal terms of the matrix [Kij ] we obtain:

Kii = λ

∫ xi+1

xi−1

dNi

dx

2

dx + HN2
i (E)

Moreover, it should be noted here that matrix [Kij ] is sparse.

In this example, the integral equations have been calculated in an analytical way.
We will see later on in this book that effective numerical methods make it possible to
estimate these integral equations accurately and rapidly.
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Chapter 2

The Finite Element Method

2.1. Finite element approximation

Finite element approximation consists of dividing (or meshing) the geometric
domain of study into element domains or finite elements. The approximation is built
upon each element domain from the function values at certain specific points, called
nodes, while ensuring certain regularity conditions of the global approximation on
the whole domain. This type of approximation is also called sub-domain nodal
approximation. If the division, or meshing, performed includes a total of nt nodes,
then the problem includes nt unknowns representing the values taken by the function
T (−→x ) at each node.

2.1.1. Mesh

Divide (discretize) a solid Ω into m element domains, termed Ωe, called finite
elements and satisfying the following two conditions:

– the union of the m element domains Ωe makes up the solid Ω;

– the intersection of two different element domains is void.

The major advantage of this type of discretization is that each element domain
Ωe can be expressed in a simple geometric form (2D triangle or quadrangle, 3D
tetrahedron, hexahedron, etc.). These domains are interconnected by nodes. The set
of these element domains is called a mesh of the domain Ω. In this book, the total
number of mesh nodes will be written nt.
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node

element

boundary

Figure 2.1. Mesh example of a domain Ω

Figure 2.1 illustrates the example of a mesh constructed on a 2D domain Ω. In that
figure we can see that the triangular elements used give a polyhedric approximation of
the domain boundary. To improve that approximation, we can, for example, increase
the number of elements. In the next chapter, we will see that there are also elements
with curved boundaries, making it possible to obtain a very good approximation of the
boundary of the domain studied.

In a mesh, the nodes and elements are numbered. The nt nodes included in the
mesh are numbered sequentially from 1 to nt, following their order of creation, during
discretization for instance. This numbering process is called global numbering. Then
we will designate:

– {T} the vector including the nt temperatures at the mesh nodes in a column;

– 〈ψ〉 the vector including the nt weighting function values at the mesh nodes on
a line.

For each element e we now write ne the number of nodes corresponding to it.
These nodes are numbered locally from 1 to ne. Thus:

– {T e} will be the vector including in a column the ne node temperatures of the
element e,

– 〈ψe〉 will be the vector including on a line the ne weighting function values at
the nodes of the element e.

The global and local numbering methods of the mesh nodes are illustrated in
Figure 2.2. They must now be interconnected. This is done by means of a matrix,
[Ae], which makes it possible to move from the vectors {T} or 〈ψ〉 (of dimension nt)
to the vectors {T e} or 〈ψe〉 (of dimension ne):

{T e} = [Ae] · {T} and 〈ψe〉 = 〈ψ〉 · [Ae]T [2.1]
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1

2

3

4

5

6

7

8

9

4 3

e

e=1

e=4e=2

e=3

1 2

global numbering local numbering

Figure 2.2. Numbering example in a mesh

The matrix [Ae] has ne lines and nt columns. Each term Ae
ij equals 1 if the

node numbered (globally) j on the whole structure coincides with the node numbered
(locally) i on element e and 0 otherwise. In Figure 2.2, the previous equation is written
as follows for the node temperatures of element 1:




T 1
1

T 1
2

T 1
3

T 1
4


︸ ︷︷ ︸

{T 1}

=




010000000
000010000
000100000
100000000




︸ ︷︷ ︸
[A1]

·




T1

T2

T3

T4

T5

T6

T7

T8

T9


︸ ︷︷ ︸

{T}

Likewise, the element node weighting functions are expressed as follows:

〈
ψ1

1 ψ1
2 ψ1

3 ψ1
4

〉︸ ︷︷ ︸
〈ψ1〉

=
〈
ψ1 ψ2 · · · ψ8 ψ9

〉︸ ︷︷ ︸
〈ψ〉

·




0001
1000
0000
0010
0100
0000
0000
0000
0000




︸ ︷︷ ︸
[A1]T
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2.1.2. Nodal approximation

The quantities involved in the problem to be solved are now estimated in each
element e from the values they take at the nodes corresponding to that element. If we
define Ωe = Ωe ∪ ∂Ωe (inside of the element plus its boundary), we now write for
each element e, T (−→x ) and ψ(−→x ) in the form:

∀−→x ∈ Ωe, T (−→x ) =
ne∑
i=1

Ne
i (−→x )T e

i = 〈Ne
1 (−→x ), . . . , Ne

ne(−→x )〉 ·



T e
1

· · ·
T e

ne




= 〈Ne(−→x )〉 · {T e}

[2.2]

∀−→x ∈ Ωe, ψ(−→x ) =
ne∑
i=1

ψe
i N

e
i (−→x ) = 〈ψe

1, . . . , ψ
e
ne〉 ·




Ne
1 (−→x )
· · ·

Ne
ne(−→x )




= 〈ψe〉 · {Ne(−→x )}

[2.3]

In equations [2.2] and [2.3], T e
i and ψe

i respectively represent the temperature and
the value of the weighting function at node number i (local numbering) of element e.

The functions Ne
i (−→x ) introduced are known functions, making it possible to

interpolate the temperature in element e from the node values. Ne
i is the interpolation

function, or basis function, or shape function corresponding to the node i (local
numbering) of element e, {Ne} is the vector of dimension ne including in a column
all the functions corresponding to element e, and 〈Ne〉 is the vector including them
on a line.

Note that it is equally possible to write ψ(−→x ) = 〈Ne(−→x )〉 · {ψe} or ψ(−→x ) =
〈ψe〉 · {Ne(−→x )}. The choice of the second form is prompted by the fact that the
parameters corresponding to the weighting functions will then be written as a line
vector 〈ψ〉.

For instance, in the case of element 1 in Figure 2.2, it will be possible to use
the following expressions to approximate the temperature and weighting functions in
element 1:

T (x, y) =
〈
N1

1 (x, y) N1
2 (x, y) N1

3 (x, y) N1
4 (x, y)

〉︸ ︷︷ ︸
〈N1〉

·




T 1
1

T 1
2

T 1
3

T 1
4


︸ ︷︷ ︸

{T 1}
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ψ(x, y) =
〈
ψ1

1 ψ1
2 ψ1

3 ψ1
4

〉︸ ︷︷ ︸
〈ψ1〉

·




N1
1 (x, y)

N1
2 (x, y)

N1
3 (x, y)

N1
4 (x, y)


︸ ︷︷ ︸

{N1}

It is obvious that the nodal approximations defined by equations [2.2] and [2.3]
are continuously differentiable inside each element e (as long as the interpolation
functions are). In order to generate continuous approximations in the whole domain Ω
we make use of shape functions satisfying the following two continuity conditions:

1) if −→x j is the position of the node j of element e, then Ne
i (−→x j) = 1 if i = j and

0 otherwise;

2) for any point indexed −→x located on a face or an edge of element e which does
not include node i, then Ne

i (−→x ) = 0.

An approximation with shape functions satisfying these conditions is said to be a
conform approximation. It makes it possible to generate continuous functions in the
whole domain Ω. We demonstrate that, if the functions Ne

i are differentiable in Ωe,
these conditions are sufficient to allow the approximation to belong to space H1(Ω).
More regular approximations can be constructed, for example with conditions on the
derivative connections between the elements. These will not be dealt with in this book.

It is important to note at this point that nodal approximation makes it possible not
only to estimate a function in an element from its node values, but also to calculate its
gradient, thus:

∀−→x ∈ Ωe,
−−→
grad(T (−→x )) =

ne∑
i=1

−−→
grad(Ne

i (−→x ))T e
i

=
〈−−→
grad(Ne

1 ), . . . ,
−−→
grad(Ne

ne)
〉
·




T e
1
...

T e
ne




=
〈−−→
grad(Ne(−→x ))

〉
· {T e}

[2.4]

∀−→x ∈ Ωe,
−−→
gradT (ψ(−→x )) =

ne∑
i=1

ψe
i

−−→
gradT (Ne

i (−→x ))
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= 〈ψe
1, . . . , ψ

e
ne〉 ·




−−→
gradT (Ne

1 )
...

−−→
gradT (Ne

ne)




= 〈ψe〉 ·
{−−→

gradT (Ne(−→x ))
}

[2.5]

In equation [2.4],
〈−−→
grad(Ne)

〉
is a vector including ne terms on a line. These

terms are gradients
−−→
grad(Ne

i ), with a number of terms equal to the dimension of the

problem dealt with. In equation [2.5],
{−−→
gradT (Ne)

}
is a vector including ne terms in

a column. These terms are transposed gradients
−−→
gradT (Ne

i ), with a number of terms
equal to the dimension of the problem dealt with. For example, with a 2D element in
Figure 2.2, if we consider a Cartesian coordinate system (x, y), it will be possible to
estimate the temperature gradient and the weighting function gradient in element 1 as
follows:




∂T

∂x

∂T

∂y




︸ ︷︷ ︸
−−→
grad(T )

=

〈


∂N1
1

∂x

∂N1
1

∂y







∂N1
2

∂x

∂N1
2

∂y







∂N1
3

∂x

∂N1
3

∂y







∂N1
4

∂x

∂N1
4

∂y



〉

︸ ︷︷ ︸〈−−→
grad(N1)

〉

·




T 1
1

T 1
2

T 1
3

T 1
4


︸ ︷︷ ︸

{T 1}

(
∂ψ

∂x

∂ψ

∂y

)
︸ ︷︷ ︸

−−→
gradT (ψ)

=
〈
ψ1

1 ψ1
2 ψ1

3 ψ1
4

〉︸ ︷︷ ︸
〈ψ1〉

·




(
∂N1

1

∂x

∂N1
1

∂y

)
(

∂N1
2

∂x

∂N1
2

∂y

)
(

∂N1
3

∂x

∂N1
3

∂y

)
(

∂N1
4

∂x

∂N1
4

∂y

)


︸ ︷︷ ︸{−−→

gradT (N1)
}

Finally, note that if the temperature field approximation is performed by
continuous construction on the whole domain Ω, that of its gradient, and hence the
heat flux density, is not so a priori.

2.2. Discrete problem formulation

In the previous chapter, we saw that it was possible to approximate continuous
problem [1.13] with a discrete problem (Galerkin method, equation [1.15]). To this
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end, we define two spaces En
ψ and En

T of dimension n, to replace respectively spaces
Eψ (weighting functions) and ET (admissible functions).

The finite element method is based upon the sub-domain nodal approximation of
the functions ψ and T . First, we will decompose the integral equations for the entire
solid Ω appearing in [1.15] as a sum of integral functions on the element domains Ωe,
then introduce the nodal approximation of the functions ψ and T inside each element.
This will lead us to define element quantities corresponding to each element of the
mesh. Then we will perform the assembly operation, the goal of which is to form
a global system to solve. This global system will be the same dimension nt as the
number of nodes used for the mesh. The insertion of the essential boundary conditions
(on T ) into this global system will then be studied in detail.

2.2.1. Element quantities

If we apply nodal approximation [2.3] to the weighting functions ψ(−→x ) in discrete
problem [1.15], the quantities involved can be written as follows:

∫
Ω

ψQ dv =
m∑

e=1

〈ψe〉 ·
∫

Ωe

{Ne}Qdv

∫
∂Ωq

ψq ds =
m∑

e=1

〈ψe〉 ·
∫

∂Ωe∩∂Ωq

{Ne} q ds

∫
Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv =

m∑
e=1

〈ψe〉 ·
∫

Ωe

{−−→
gradT (Ne)

}
· λ · −−→grad(T )dv

If these expressions are transferred into equation [1.15], the quantity to cancel then
becomes:∫

Ω

ψQ dv +
∫

∂Ωq

ψq ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv =

m∑
e=1

〈ψe〉 · {Re(T )}

where the vector {Re(T )}, specific to each element e, is called element residual. If
we apply nodal approximation [2.2] to the temperature field, this element residual is
expressed according to the nodal temperatures {T e}, as follows:

{Re(T )} =
∫

Ωe

{Ne}Qdv +
∫

∂Ωe∩∂Ωq

{Ne} q ds

−
∫

Ωe

{−−→
gradT (Ne)

}
· λ ·

〈−−→
grad(Ne)

〉
{T e} dv

[2.6]



50 Finite Element Simulation of Heat Transfer

The element residual is a fundamental quantity resulting from the finite element
method. In this section, we have restricted our study to the so-called linear cases. A
linear case is characterized by the fact that the element residual can be expressed
linearly according to the node temperatures of the corresponding element, i.e.
according to the vector {T e}. Equation [2.6] shows that the element residual is a
linear function of the node temperatures of the corresponding element if:

– the thermal conductivity of the material (matrix λ) is not temperature-dependent;

– the term Q, the volumetric heat source, is a temperature-independent function
(as a matter of fact, it could vary linearly with the temperature, but as far as we know,
this type of variation does not correspond to any physical example);

– the heat flux q applied to the boundary ∂Ωq of the solid is a linear function
of the temperature (for instance q = h(Text − T ) + q0, where h and q0 are
temperature-independent).

Then it is possible to write:

{Re(T )} = {F e} − [Ke] · {T e}

In this equation, [Ke] is a square matrix of dimension ne × ne. This is called
an element matrix. It is also called an element conductance matrix, because we will
see that the main contribution comes from thermal conductivity. It is also called an
element stiffness matrix, an irritating term for thermal scientists but revealing the
origins of the finite element method in mechanical engineering. The vector {F e} in
this equation includes ne terms in a column. It is called an element load vector.

The element matrix [Ke] and the element load vector {F e} are written as follows:

[Ke] = [Λe]+[He] with:




[Λe]=
∫

Ωe

{−−→
gradT (Ne) · λ ·

〈−−→
grad(Ne)

〉
dv
}

[He]=
∫

∂Ωe∩∂Ωq

{Ne}h 〈Ne〉 ds

[2.7]

{F e} =
∫

Ωe

{Ne}Qdv +
∫

∂Ωe∩∂Ωq

{Ne} (hText + q0

)
ds [2.8]

In these general expressions, note that:

– the matrix and element load vector are obtained by integration on the
corresponding domain Ωe. In Chapter 3, we will introduce an efficient numerical
method (Gauss method) which makes it possible to evaluate these integral equations
accurately;
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– the element matrix [Ke] is symmetric. As a matter of fact, the general term Ke
ij

of this matrix is expressed as follows:

Ke
ij =

∫
Ωe

(−−→
gradT (Ne

i ) · λ · −−→grad(Ne
j )

)
dv +

∫
∂Ωe∩∂Ωq

Ne
i hNe

j ds

2.2.2. Assembly

One of the major advantages of the finite element method is that it highlights
element quantities, which are therefore calculated in the corresponding element only.
However, the temperature field sought is related to the whole environment studied.
Thus, the assembly operation consists of turning these element quantities into global
quantities so as to construct the equation system to solve.

We saw that the quantity to cancel in the discrete problem resulting from [1.13]
was determined according to an element residual, {Re}, whose general expression
is given by equation [2.6]. If we now use equation [2.1], applied to the weighting
functions, this quantity to cancel can be expressed as follows:

m∑
e=1

〈ψe〉 · {Re(T )} = 〈ψ〉 ·
m∑

e=1

[Ae]T · {Re(T )} = 〈ψ〉 · {R(T )} = 0 [2.9]

In this equation, 〈ψ〉 is a vector of dimension nt, including on a line the weighting
function values ψ at the mesh nodes. With regard to the vector {R(T )} it is also
of dimension nt and includes in a column nt functions of T resulting from the
element residual assembly at each node. This vector is said to be residual. Since the
above expression must be equal to zero whatever the weighting functions ψ, the nt

components of the residual vector must be equal to zero. This is written as follows:

{R(T )} =
m∑

e=1

[Ae]T · {Re(T )} = {0}

In fact, we will see later that the insertion of the essential boundary conditions may
lead to either not canceling certain components of that residual vector or modifying
its expression.

In the linear case, the element residual is written linearly according to the
temperatures. Indeed if we use equation [2.1] once more, but this time applied to the
nodal temperatures, we obtain:

{R(T )} =
m∑

e=1

[Ae]T · {Re(T )} = {F} − [K] · {T} [2.10]
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In this equation, [K] is a square matrix of dimension nt × nt, which is obtained
by assembling the element matrices [Ke]. It is called a global matrix or a conductance
matrix or a stiffness matrix (after mechanical engineering once again):

[K] =
m∑

e=1

[Ae]T · [Ke] · [Ae] [2.11]

Likewise, {F} is a vector of dimension nt, which is obtained by assembling the
element quantities {F e}. It is called a load vector or stress global vector:

{F} =
m∑

e=1

[Ae]T · {F e} [2.12]

Canceling the global residual components leads us to solve the following linear
system (of dimension nt):

[K] · {T} = {F}

In Chapter 3, we will see that inserting essential boundary conditions modifies
either the linear system dimension or the matrix and load vector of that system.

Figure 2.3 illustrates the construction of [K] and {F} by assembling the matrices
and element load vectors as in the case of the mesh in Figure 2.2:

– the component Kij of [K] corresponds to nodes i and j. It alone incorporates
the contribution of elements including nodes i and j. For instance, the component K55

receives contributions from the element matrices of elements 1, 2, 3 and 4 because all
these elements include node 5. On the contrary, only element 3 which includes nodes 5
and 7 brings a contribution to the component K75. Finally many components Kij are
equal to zero because no element incorporates the corresponding nodes (for example
K37 = 0);

– the component Fi of {F} corresponds to node i. It includes the contributions of
all the elements including node i. For instance, F6 receives the contributions of the
element load vectors of elements 2 and 4 which contain node 6.

It can be noted that the solution of the previous linear system minimizes the
following quadratic form:

Π∗ =
1
2
〈T 〉 · [K] · {T} − 〈T 〉 · {F}

This quadratic form corresponds to the discretization of the functional Π
introduced in formulation [1.14].
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1 1 1 1
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1 1 1 1

2 22 2 2
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2 2 2 2
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3 3 3 3 3

3 3 3 3

3 3 3 3 3

3 3 3 3 3

4 4 4 4

4 4 4 4 4

4 4 4 4 4

4 4 4 4 4

Figure 2.3. Example of an assembly on a simple mesh (contributions of the elements
to the global matrix and load vector)

2.3. Solution

In the previous section, we obtained a discrete formulation of the quantity to cancel
in continuous problem [1.13]. In the linear case, this formulation leads to the solution
of a linear system related to the temperatures at the mesh nodes. In this section, we
list the main methods used to insert the essential (temperature) boundary conditions
into the system to solve, then detail a few techniques for storing and solving the linear
system obtained and end with an analysis of results.

2.3.1. Application of temperature boundary conditions

Reconsider equation [2.9], with, in the linear case, expression [2.10] for the
residual {R(T )}. We obtain:

〈ψ〉 · ( {F} − [K] · {T} ) = 0 [2.13]

In this equation, the nodal temperature vector {T} is of dimension nt. Likewise,
〈ψ〉 is a vector of dimension nt, including all the nodal parameters of the weighting
functions.
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It is important to note at this point that, among the nt nodes of the mesh used, some
are located on the boundary ∂ΩT of the solid, in which the temperature T is known
and in which the weighting functions ψ are therefore equal to zero. If we designate n∗

the number of mesh nodes located on that boundary, it is convenient to partition the
nodal vectors 〈ψ〉 and {T} as follows:

〈ψ〉 =
〈〈ψc〉 〈ψl〉

〉
, {T} =

{
{Tc}
{Tl}

}

We have gathered from the first components of the vectors 〈ψ〉 and {T} the
n∗ nodal quantities known a priori (vectors 〈ψc〉 and {Tc}). In order to cancel the
weighting functions ψ on the domain boundary ∂ΩT , it is sufficient to cancel their
values at the nodes of the boundary ∂ΩT , values gathered in vector 〈ψc〉. Likewise,
for a function T to be admissible, it is sufficient to give it the temperature values
known at the nodes of the boundary ∂ΩT which can be expressed as {Tc} = {Td}.
In fact this natural course of action is not the one generally used in finite element
software, while linear vectors and systems are never partitioned in this way (with
the n∗ components numbered first). This expression is introduced to simplify the
presentation of the different methods used to apply the temperature boundary
conditions.

If the same partitioning method is used for the matrix [K] and the load vector {F}
of the problem to solve, equation [2.13] can eventually be rewritten as follows:

〈〈ψc〉 〈ψl〉〉 ·
({

{Fc}
{Fl}

}
−

[
[Kcc] [Kcl]

[Kcl]
T [Kll]

]
·
{
{Tc}
{Tl}

})
= 0 [2.14]

As this equation must be satisfied whatever the vector 〈ψl〉 and with 〈ψc〉 = 〈0〉,
this leads to the following linear system, of nt − n∗ equations, for nt − n∗ unknowns
(nodal vector {Tl}):

[Kll] · {Tl} = {Fl} − [Kcl]
T · {Td} [2.15]

The resolution of this system yields the unknown nodal vector {Tl} and hence the
temperature at any point of Ω by making use of the shape functions. This specific
method, called the elimination method, is rarely used in computer codes.

We might think that, as we know n∗ nodal temperatures (at the nodes of ∂ΩT ),
the physical problem contains only nt − n∗ unknowns (vector {Tl}). As a matter of
fact, this is not the case. We introduce concurrently to n∗ known nodal temperatures
n∗ additional unknowns corresponding to the heat flux prescribed by the external
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environment in order to satisfy the condition {Tc} = {Td}. Those n∗ additional
unknowns correspond to the reactions of the external environment at the nodes where
the temperature is prescribed; they are gathered in the vector {rc}.

The introduction of the vector {rc} now allows us to constitute the linear system
to solve, in which the number of unknowns is nt (the components of the vectors {Tl}
and {rc}) as follows:{

{Fc} + {rc}
{Fl}

}
−

[
[Kcc] [Kcl]

[Kcl]
T [Kll]

]
·
{
{Tc}
{Tl}

}
= 0 [2.16]

Whatever the method used to take into consideration the (temperature) essential
boundary conditions, the resolution of the problem yields the unknown nodal vector
{Tl} by satisfying the condition {Tc} = {Td}. This makes it possible to obtain the
temperature field T (−→x ) by nodal approximation.

The penalty method is the most widely used in computer codes to determine the
essential conditions {Tc} = {Td}. Applying those conditions to certain nodes of a
boundary comes down to assuming that at this point the solid is plunged in a fluid
at the corresponding temperature, with a very high heat transfer coefficient which
will be written P here. This comes down to replacing the (temperature) essential
boundary conditions with (node) flux conditions, by using the following expression
for the external environment reactions at these points:

{rc} = P
( {Td} − {Tc}

)
With this expression, use equation [2.16], with the vectors {Tl} and {Tc} (i.e. all

the components of the unknown nodal vector {T}) as unknowns:[
[Kcc] + P [I] [Kcl]

[Kcl]
T [Kll]

]
·
{
{Tc}
{Tl}

}
=

{
{Fc} + P {Td}

{Fl}

}
[2.17]

The penalty method therefore consists of adding P on the diagonal of the matrix
[Kcc] and P {Tc} to the vector {Fc}. In equation [2.17], [I] represents the identity
matrix and, in practice, a value P 
 Max(Kij) is selected. This leads to a linear
system with predominant terms on the diagonal. In addition to its good numerical
stability, this linear system has the advantage of solving a system of similar dimension,
whatever the temperature boundary conditions used. The dimension of this system is
always equal to the number of mesh nodes.

Another method is commonly used in computer codes. It is called Lagrange
multipliers and consists of introducing an unknown vector {λc}, of dimension



56 Finite Element Simulation of Heat Transfer

n∗, into the function to cancel. This unknown vector will be compensated by n∗

additional equations {Tc} = {Td}. The system to solve therefore includes nt + n∗

equations, for nt + n∗ unknowns (vectors {Tc}, {Tl} and {λc}):




[Kcc] −k [I] [Kcl]

−k [I] 0 0

[Kcl]
T 0 [Kll]


 ·




{Tc}
1
k
{λc}
{Tl}


 =




{Fc}
−k {Td}
{Fl}


 [2.18]

A factor k is introduced into equation [2.18]. This factor is homogenous with a
thermal conductivity and allows us to condition the system properly (for its numerical
solution). Each node value included in the vector {λc} plays the role of a Lagrange
multiplier corresponding to a prescribed temperature condition. System [2.18] can
then be obtained directly (with k = 1) by solving the following saddle point problem:

Max
λ≥0

(
Min

T

(
1
2
〈T 〉 · [K] · {T} − 〈T 〉 · {F} +

( 〈T 〉 − 〈Td〉
) · {λc}

))

It can be noted that the system to solve in equation [2.18] is always symmetric
(as it is with other methods). One difficulty of this type of method, combined with
pivot methods used to solve the linear system, is that it reveals diagonal terms equal
to zero in the first member matrix. This difficulty can be overcome by numbering the
equations to solve. This method also has the drawback of increasing the size of the
linear system to solve.

In the case of Lagrange multipliers, the external environment reactions required
to satisfy the condition {Tc} = {Td} i.e. the vector {rc} components, coincide with
Lagrange multipliers {λc}.

2.3.2. Linear system solution

The matrices involved in linear systems [2.15], [2.17] and [2.18] are generally
large. Indeed, it is common today to process models including several tens and even
hundreds of thousands of nodes.

In order to solve the linear system, it is necessary to use the method best adapted
to the problem being dealt with. Most of the time, the size of the problem and the
accuracy desired in its resolution will be the key factors in the choice of the solution
method to use. The problem size is now a major factor, all the more so as a matrix
storage method is related to each solution method (see next section) and the problem
size a computer is capable of processing is directly limited by its memory space.
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A comprehensive description of all existing methods would go beyond the scope
of this book. We will therefore restrict our study to the most common methods used
in academic and industrial computer codes. Interested readers are invited to consult
specialized books such as [CIA 82].

Consider therefore a linear equation system similar to that obtained by the finite
element technique. This system is as follows:

[A] · {x} = {b} [2.19]

where {x} represents the unknowns vector, [A] the matrix and {b} the load vector.
The system size (number of unknowns and number of equations) will be written n.
This size, as well as the expression of {x}, [A] and {b} according to the quantities
defined in this book, depends on the method used to apply the temperature boundary
conditions:

– with an elimination method, we have a system of dimension n = nt−n∗, that is,
total number of nodes minus the number of nodes at which the temperature is known,
where the components are expressed according to equation [2.15]:∣∣∣∣∣∣∣∣

[A] = [Kll]

{x} = {Tl}
{b} = {Fl} − [Kcl]

T · {Td}

– with a penalty method, the system is of dimension n = nt, the total number of
nodes, and equation [2.17] allows us to express the system components as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[A] =

[
[Kcc] + P [I] [Kcl]

[Kcl]
T [Kll]

]

{x} =

{
{Tc}
{Tl}

}

{b} =

{
{Fc} + P {Td}

{Fl}

}

– with a Lagrange multiplier method, the linear system dimension becomes n =
nt + n∗, total number of nodes plus the number of nodes at which the temperature is
known, and the components are written according to equation [2.18]:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[A] =




[Kcc] −k [I] [Kcl]

−k [I] 0 0

[Kcl]
T 0 [Kll]




{x} =




{Tc}
1
k
{λc}
{Tl}




{b} =




{Fc}
−k {Td}
{Fl}




The solution of system [2.19] is simply written {x} = [A]−1 · {b}. However,
contrary to what this expression might suggest, computing {x} never requires us to
calculate the inverted matrix [A]. As a matter of fact, computing an inverted matrix of
dimension n × n requires the solution of n linear systems.

Globally, linear system solution methods are arranged into 2 classes:

– direct methods (Gauss, Cholesky, etc.),

– iterative methods (Jacobi, Gauss-Seidel, conjugate gradients, etc.).

2.3.2.1. Direct methods

The general principle of direct methods is to transform the initial equation system
into a system with the same solution but whose resolution is simpler. Among the
whole set of direct methods, the Gauss method is probably the most popular one. It is
a general method which is applied to symmetric or non-symmetric matrices, providing
that these matrices can be inverted, of course. It consists of two steps:

– an elimination step which triangulates system [2.19],

– a second step to solve the triangular system obtained.

The triangulation of system [2.19], of dimension n, is performed in n−1 steps. At
each step, an equivalent linear system is constructed by eliminating the terms under
the diagonal of an additional column of the matrix. Let [A](1) = [A], {b}(1) = {b},
and let [A](i) and {b}(i), respectively be the matrix and load vector of the equivalent
linear system obtained after i − 1 steps; [A](i) is written as follows:
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[A](i) =




A
(i)
11 · · · A

(i)
1i · · · A

(i)
1n

. . .
...

...

0 A
(i)
ii · · · A

(i)
in

...
...

A
(i)
ni · · · A

(i)
nn




Matrix [A](i+1) and load vector {b}(i+1) in the following step are then obtained
by:

[A](i+1) = [E](i) · [A](i)

{b}(i+1) = [E](i) · {b}(i)
with [E](i) =




1
. . . 0

1

−A
(i)
i+1,i

A
(i)
ii

1

0
... 0

. . .

−A
(i)
ni

A
(i)
ii

1




It is clear that this operation is possible only if the terms A
(i)
ii (called pivots) are

not equal to zero. If matrix [K] is singular, we will necessarily have a pivot equal to
zero even if [K] can be inverted. As a demonstration, examine the following system
of 2 equations with 2 unknowns:[

0 1
2 0

]
.

{
T1

T2

}
=

{
100
100

}

It is obvious that the first pivot encountered with the Gauss method is equal to
zero, whereas the system admits the unique solution T1 = 50, T2 = 100. To perform
the triangulation, it is then necessary to replace the equation considered with one of
the following. (Generally speaking, to obtain the highest possible solution accuracy,
it will be sensible to process at each step the equation with the pivot whose absolute
value is highest.)

As a matter of fact, the Gauss method comes down to factorizing the matrix of
system [2.19] as follows:

[A] = [L] · [U ]
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where [L] is a lower triangular matrix and [U ] an upper triangular matrix. The matrix
[U ] coincides with the triangular matrix obtained by the elimination process described

previously and [L] =
[
E(1)

]−1 · [E(2)
]−1 · · · [E(n)

]−1
. The solution of a linear

system with the Gauss method requires about 2n3

3 arithmetic operations. When the
matrix of system [2.19] is symmetric positive definite as is the case in heat conduction
linear problems, it will be wise to choose the Cholesky method which requires only
about n3

3 arithmetic operations. This method consists of factorizing [A] as follows:

[A] = [L] · [L]T

Matrix [L] is a lower triangular matrix whose elements are computed gradually.
We first calculate L11 =

√
A11 then, for i = 2, . . . , n,Li1 = Ai1

L11
. The Lip being then

assumed to be calculated for p = 1, . . . , j − 1 and i = p + 1, . . . , n, we calculate
consecutively:

Ljj =

√√√√Ajj −
j−1∑
p=1

L2
jp

∀i = j + 1, . . . , n, Lij =

√
Aij −

∑j−1
p=1 LipLjp

Ljj

2.3.2.2. Iterative methods

Iterative methods give the solution of system [2.19] as the limit of a series of
vectors {x}(i). They are very efficient at processing problems of a large size insofar
as they require less data than direct methods, as will be seen in the next section.

The general principle of these methods is to factorize the matrix [A] of system
[2.19] as follows:

[A] = [M ] − [N ]

then to approximate the solution iteratively by solving, at each iteration, the system:

[M ] · {x}(i+1) = [N ] · {x}(i) + {b}

Matrix [M ] will be chosen so that the solution is simple. The Jacobi method, the
Gauss-Seidel method and the over-relaxation method operate on this principle and
correspond to specific choices of matrices [M ] and [N ].
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Now assume [A] to be symmetric positive definite and spend some time on the
conjugate gradient method. In this method, we consider the function f which relates
the following scalar to any vector {x}:

f({x}) =
1
2
〈x〉 · [A] · {x} − 〈x〉 · {b}

It is easy to note that the solution sought for linear system [2.19] coincides with
the minimizing vector f . The conjugate gradient method consists of approximating
step by step the solution by minimizing the function f at each iteration in a particular
direction, called descent direction. Consider {u}(i), an arbitrary vector for the
moment, as the direction of the iteration i. The iterated {x}(i+1) is chosen as
{x}(i+1) = {x}(i) + α(i) {u}(i), and α(i) is determined in such a way that {x}(i+1)

minimizes f in the direction {u}(i). We find:

α(i) =
〈u〉(i) · {r}(i)

〈u〉(i) · [A] · {u}(i)

where {r}(i) = {b} − [A] · {x(i)
}

is the residual vector of iteration i.

Starting with a test vector {x}(0) and a descent direction {u}(0) = {r}(0), the
vector {u}(i) is constructed at each iteration so that 〈u〉(i) · [A] · {u}(i−1) = 0. For this
purpose, we write {u}(i) = {r}(i) + β(i) {u}(i−1). We then demonstrate by recursion
that we have:

∀k = 1, . . . , i − 1,



〈r〉(i) · {u}(k) = 0

〈r〉(i) · {r}(k) = 0

〈u〉(i) · [A] · {u}(k) = 0

According to the latter relationship, we say that the consecutive descent directions
are [A]-combined. We eventually obtain:

{u}(i) = {r}(i) − 〈r〉(i) · [A] · {u}(i−1)

〈u〉(i−1) · [A] · {u}(i−1)
{u}(i−1)

= {r}(i) +
〈r〉(i) · {r}(i)

〈r〉(i−1) · {r}(i−1)
{u}(i−1)

The conjugate gradient method converges to the solution in, at most, n iterations.
In this sense it can be considered to be a direct method. Various pre-conditioning
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methods make it possible to obtain an accurate solution with a relatively small number
of iterations. This method is extended to the case of matrices which are not positive
definite symmetric.

2.3.3. Storing the linear system matrix

In practice, the matrix of the linear system to solve is stored by means of a method
using its properties. For example, if it is symmetric, it will be sufficient to store only
the upper triangular part. If, in addition, it is “sparse” (i.e. it includes a great number
of terms equal to zero), which is the case with the finite element method, the following
methods are generally used:

– the skyline storage of a matrix is the most widely used method in computer
codes. The matrix is stored in columns (or lines) variable in length. It is particularly
well-adapted to linear system direct solution methods (Gauss, Choleski, etc.), which
consist of triangulating the matrix. Figure 2.4 illustrates the storage of the matrix [K]
resulting from the assembly of Figure 2.3. It should be noted that only the terms of the
upper part of the matrix have been stored. The maximum number of terms stored per
line on a symmetric matrix is half the bandwidth. In Figure 2.4, the half bandwidth
equals 5, whereas the number of nodes is 9. We can show that generally speaking the
half bandwidth is equal to the maximum difference between the node numbers of a
same element, increased by 1. In Figure 2.4, we obtain for instance (5 − 1) + 1 = 5
considering element 1. If we renumber the mesh nodes in a sensible way, it is possible
to replace certain lines and columns in the matrix so as to reduce the bandwidth of
the matrix stored. This renumbering operation is very important from a practical point
of view. Indeed it allows us to substantially reduce the number of terms to store and
to accelerate the solution process. If b is the system half bandwidth, then this method
involves the storage of a number of values equal to about b times the matrix dimension
to which it is necessary to add a pointer per line (or column) giving its length. As
b is globally proportional to the matrix dimension, the number of terms to store is
proportional to the square of the problem dimension;

– the sparse or compact storage of a matrix is used mainly when an iterative
solution method (Jacobi, Gauss-Seidel, conjugate gradients, etc.) of the linear system
is employed. This method stores only the matrix terms different from zero. To illustrate
this storage method, consider the mesh in Figure 2.4. We see that the maximum
number of non-vanishing terms on a line of the matrix is equal to 9. This number
corresponds to the maximum number of nodes connected to one node, which is
reached here at node 5. If we refine the discretization, by dividing our rectangle
into 10 × 10 elements, we see that the maximum number of nodes connected to a
same node, and hence of terms different from zero on a matrix line, remains equal
to 9. Therefore, the number of terms different from zero to store is proportional to
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Figure 2.4. Example of skyline storage

the number of nodes (equal to knt). The proportionality factor k is given by the
mean number of nodes connected to a given node (in the order of 9 in our example).
According to the type of elements, the value of this factor ranges from 8 to 20 on a
2D mesh and 20 to 80 in 3D cases. However, for each term different from zero, it
is necessary to store its value and position in the matrix (line and column numbers).
Finally the number of terms to store is proportional to nt and equal to 3knt, which
makes this storage method particularly efficient for large equation systems.

2.3.4. Analysis of results

Solving a steady state heat conduction problem by means of the finite element
method leads to a vector {T} including the temperatures calculated at the mesh nodes.
This vector makes it possible to calculate a temperature field at any point of the domain
of study by using the nodal approximation and therefore the shape functions. It also
enables us to calculate the temperature gradient field with the shape function gradients.

In order to obtain that result, the method involves the calculation of element
quantities obtained by numerical integration with the Gauss method (see Chapter 3).
As a consequence, the variables involved in element quantities are calculated in each
element of the mesh, at the integration points (Gauss points). The results obtained
during analysis can then be arranged into two categories and they are not used in the
same way:
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– the values calculated at the nodes (nodal quantities), which in our case are the
temperatures. If the temperature field nodal approximation (equation [2.2]) is used,
the temperature at each point of the solid in thermal equilibrium can be calculated.
This can be visualized by drawing the temperature variation along a curve crossing
the solid or temperature contour lines or surfaces. Figure 2.12 illustrates the drawing
of temperature contour lines;

– the values calculated at the element integration points (see section 3.2) are those
involved in element quantities. In our case, it is essentially the temperature gradient
and heat flux density

−→
φ which can be derived from Fourier’s law [1.3]:

−−→
grad(T ) =

〈−−→
grad(Ne)

〉
· {T e}

−→
φ = −λ

−−→
grad(T )

As seen in section 2.1, the heat flux density approximation, which is proportional
to the thermal gradient according to Fourier’s law [1.3], is not continuous on all
the domain Ω. From a physical point of view, the heat flux density is continuous
in a homogenous environment. Therefore, it may be interesting to construct an
approximation of the heat flux density on the whole domain from the values calculated
at the element integration points. To do so, it is traditional to use the finite element
approximation from nodal values of that density. These nodal values can be obtained
in several different ways, for instance:

– by extrapolating at the nodes of each element the values calculated at the
integration points, then computing the mean node values obtained;

– by smoothing according to the method described hereafter.

In addition to obtaining a more accurate approximation, this method allows us to
use the same isovalue drawing tools as those used for the temperature field.

2.3.4.1. Smoothing the heat flux density

Among the quantities estimated at the mesh integration points, we have selected
the heat flux density

−→
φ to illustrate a smoothing method.

As mentioned above, a fairly natural way of smoothing these quantities consists of
using the finite element approximation used for the analysis. We then have to seek a
field

−→
Φ(−→x ) in the form of a nodal approximation:

∀−→x ∈ Ωe,



−→
Φ(−→x ) =

ne∑
i=1

Ne
i (−→x )

−→
Φ e

i = 〈Ne〉 ·
{−→

Φ e
}

{−→
Φ e

}
= [Ae] ·

{−→
Φ
}
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In this equation, Ωe is an element domain (a mesh element), ne is the number of
nodes of this element, 〈Ne〉 is a vector including its ne shape functions on a line, and

{−→Φ e} is a vector including in a column the ne node values of Ωe of the heat flux
density vector (the number of components of that vector depends on the geometric
size of the problem dealt with). Besides, [Ae] is the matrix connecting the vector of

local unknowns, {−→Φ e}, to the vector {−→Φ} including in a column the nodal values of
all the heat flux density components.

Therefore, the objective is to determine the nodal values included in the vector
{−→Φ} from the field

−→
φ calculated from the nodal temperatures. These values are

calculated in order to minimize the following error function:

F =
∫

Ω

(−→
φ −−→

Φ
) · (−→φ −−→

Φ
)
dv

It should be noted at this point that the error functional F does not necessarily
result from an integration on the whole domain studied. It is possible to restrict the
integration to a portion of the domain here. This is necessary when, for instance, the
environment is composed of the discrete assembly of several materials (for example,
coated metal sheet). In this case, the thermal gradient is no longer continuous at the
interface between the two materials.

If we simply state that the variation δF of F implied by any variation δ
−→
Φ of

−→
Φ ,

at
−→
φ fixed, is equal to zero, we obtain:

δF = −2
∫

Ω

δ
−→
Φ · (−→φ −−→

Φ
)
dv = 0

If we use the nodal approximation to express
−→
Φ and δ

−→
Φ , we finally obtain the

following linear system to solve:

[L] ·
{−→

Φ
}

=
{−→

S
}

[2.20]

In that system only the load vector {−→S } involves the heat flux density estimated
at the integration points. That load vector is expressed in the form of the assembly of
element quantities {−→S e}:

{−→
S
}

=
m∑

e=1

[Ae]T ·
{−→

S e
}

with
{−→

S e
}

=
∫

Ωe

{Ne}−→φ dv
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It will then be possible to calculate the element quantities
{−→

S e
}

by means of the
Gauss integration scheme, which directly uses the heat flux densities known at the
integration points.

Matrix [L] of the system to solve for smoothing is in fact independent of the
quantities to smooth. It is also expressed as the assembly of element quantities [Le]:

[L] =
m∑

e=1

[Ae]T · [Le] · [Ae] with [Le] =
∫

Ωe

{Ne} · 〈Ne〉 dv

Note in equation [2.20] that smoothing heat flux densities requires, in a 3D
analysis the solution of a linear system including 3nt equations for 3nt unknowns
(nt is the number of mesh nodes). This is a priori more costly than the original
analysis. However, it can be noted that matrix [L] has a very special form, similar to
the thermal capacitance matrix encountered in transient analyses (see Part 2). In the
case of transient analyses, it is common to use approximate capacitance matrices
in a lumped diagonal form because it dramatically simplifies the calculations while
producing acceptable results.

By operating here in the same way, matrix [L] is replaced with a lumped diagonal
matrix

[
Ld

]
obtained in this instance by transferring on the diagonal the sum of the

terms on each line (δij is the Kronecker symbol):

Ld
ij = δij

nt∑
k=1

Lik

It is obvious that the solution of system [2.20] is then immediate.

This method is applicable to any value calculated at the integration points (thermal
gradient, flux, phase proportions, etc.). It may lead to node values greater than those
actually calculated at the integration points. This may be a problem when the physical
values involved are limited (phase proportions for instance are to range from 0 to 1).
It is then necessary to introduce physical boundaries into the minimization problem.

2.3.4.2. Result accuracy

It is very important to underline at this point that the finite element method is a
technique for the approximate solution of the problem encountered. Among the many
sources of error appearing during the numerical simulation of a physical problem, we
will focus in this book on those always present during finite element analysis:

– errors in physical data input (material properties, boundary conditions and
stresses);



The Finite Element Method 67

– geometric errors due to mesh representation;

– numerical errors (element quantity integration and linear system solution);

– discretization errors (nodal approximation).

The most important errors are probably related to input data. Indeed, the material’s
physical properties or boundary conditions are very often known to an approximation
of 10%. It is then futile to try and refine a mesh to gain 5% on the numerical result
accuracy.

Geometric errors result from the inability of the mesh to accurately represent the
geometry of the object considered. It is therefore necessary for the user of finite
element calculation software to create the mesh best adapted to the physical problem
and geometry studied. Only geometric details superfluous to the physical model
considered can be eliminated.

Numerical errors related to the finite element method are mainly due to the
integration diagram used to calculate the element quantities and to the method used
to solve the linear system obtained. Numerical integration errors occurring when
calculating element quantities are generally negligible when one does not depart from
the traditional integration scheme (see Chapter 3). Numerical errors in the solution
can easily be evaluated by calculating, after resolution, the residual:

{Rl} = {Fl} − [Kll] · {Tl} − [Kcl]
T · {Td}

Strictly speaking, the norm of {Rl} must be equal to zero. In practice it must be
very small compared with the values of the loads applied or the norm of the vector {rc}
giving the heat fluxes calculated at the nodes where the temperature was prescribed.

Before beginning a discretization error calculation, it is possible to check a few
element items, in particular by ensuring that the flux density calculated at the domain
boundary satisfies accurately enough the flux boundary conditions (i.e.

−→
φ · −→n = −q

on ∂Ωq).

It is difficult to evaluate with accuracy the discretization error made. There are
methods to do so, however. The finite elements presented in this book guarantee
the temperature field continuity on the whole domain of study Ω but not that of its
derivatives (in particular the temperature gradient and heat flux density). The methods
to evaluate the approximation error are generally based upon the quantification of
these discontinuities (for example, the heat flux density) on the element boundaries.

Applied to thermal science, the a posteriori most widespread error evaluation
method in computer codes [ZIE 87] consists of:
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1) constructing a continuous heat flux density field on the whole domain from the
densities calculated directly at the integration points;

2) quantifying the deviation between these continuous fields and the fields actually
calculated.

For example, it is possible to use the above method to construct a continuous heat
flux density field. Then it is possible to define an error Ee on each element as follows
(V e is the volume occupied by Ωe and V that occupied by Ω):

Ee =

√√√√ 1
V e

∫
Ωe

∥∥−→φ −−→
Φ
∥∥2

dv

1
V

∫
Ω

∥∥−→Φ∥∥2
dv

[2.21]

Generally speaking, in order to reduce the discretization error, it will be necessary
to finely mesh an area with high temperature gradient or heat flux density variations.
There are two main methods to increase accuracy in the solution obtained:

– method h (the most common), which consists of increasing the number of nodes
by reducing the mesh size in high gradient variation areas;

– method p, which consists of increasing gradually the approximation degree while
adding degrees of freedom to the problem.

2.4. Working example

In this section, the objective is to illustrate the notions reviewed in this chapter on
a 2D example. To do so, we consider the solid in Figure 2.5, inside which runs a heat

convection
exchanges

convection
exchangesx

y

z

Figure 2.5. Working example
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Figure 2.6. Working example: 2D diagram

carrying fluid at temperature Tint. The exchange coefficient between the heat carrying
fluid and the solid is assumed to be high enough to consider the temperature to be
constant and equal to Tint inside the solid. On its external wall, an exchange with the
environment at temperature Text is represented by a convection flux. The exchange
coefficient is written h and assumed to be constant. Now it is necessary to determine
the temperature field in the solid according to Tint, Text, h, and the heat conductivity
λ of the material assumed to be isotropic and constant.

The problem is represented by a 2D section (with unit thickness) of the solid along
axis Oz. The problem symmetries make it possible to restrict the study to one-eighth
of that section. Figure 2.6 illustrates this representation. The physical process to model
is therefore the thermal equilibrium section. By taking the symmetric conditions into
consideration, we obtain:



λ

(
∂2T

∂x2
+

∂2T

∂y2

)
= 0 in Ω

T = Tint on Γ1

λ
∂T

∂x
= h

(
Text − T

)
on Γ2

−−→
grad(T ) · −→n 3 = −∂T

∂y
= 0 on Γ3

−−→
grad(T ) · −→n 4 = −

√
2

2

(
∂T

∂x
− ∂T

∂y

)
= 0 on Γ4
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Figure 2.7. Working example: mesh

This problem will be addressed with the finite element method. After constructing
the mesh, we will calculate the element quantities, make the assembly, apply the
temperature boundary conditions (on Γ1) and solve the problem.

2.4.1. Finite element approximation

2.4.1.1. Mesh

The mesh is constructed by means of first order triangular elements (with three
nodes). To do so, we use in this instance:

– an angle division in p angle sector π/4p;

– a division of the radiuses obtained into p segments of equal length.

Thus, we obtain n = (p + 1)2 nodes and m = 2p2 triangular finite elements. This
is described in Figure 2.7 in the case p = 4, i.e. 25 nodes and 32 elements. The local
numbering of the elements is also described in this figure. If we now number globally
the nodes “radius after radius”, then “from left to right”, a node will be characterized
by an index I referring to the angular sector, varying from 1 to p + 1, and an index
J referring to its position compared with the origin, varying from 1 to p + 1. It will
always be possible to determine the global number i of a node (varying from 1 to
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n = (p + 1)2) by means of an angular index I and a distance index J in the form
i = (I − 1)(p + 1) + J . The coordinates of node i will then be:∣∣∣∣∣∣∣∣

xi = R cos αI +
J − 1

p

(
a − R cos αI

)
yi = R sin αI +

J − 1
p

(
a − R sin αI

) with αI =
π

4p
(I − 1)

If we number the elements in the same way, an element will be characterized by an
index K referring to the angular sector, varying from 1 to p, and an index L referring
to its position compared with the origin, varying from 1 to p. If we differentiate the
“lower” triangles (with the odd index e) from the “upper” triangles (with the even
index e), the connectivities are written as follows:

– for the elements e = 2p(K − 1) + 2L − 1 (“lower” triangles), the connected
nodes have numbers (K − 1)(p + 1) + L, K(p + 1) + L + 1 and K(p + 1) + L;

– for the elements e = 2p(K − 1) + 2L (“upper” triangles), the connected nodes
have numbers (K − 1)(p + 1) + L, (K − 1)(p + 1) + L + 1 and K(p + 1) + L + 1.

This numbering method makes it possible to index the nodes in the mesh and
construct for each element e the matrix [Ae] locating it. For example, for element 19,
in Figure 2.7, that matrix has 3 lines and 25 columns. Its only terms different from
zero are A19

1,12 = 1, A19
2,13 = 1 and A19

3,17 = 1.

2.4.1.2. Nodal approximation

The nodal approximation will now be performed with the shape functions
Ne(x, y) satisfying the conditions mentioned in section 2.1. If i, j and k are the
local numbers of the nodes making element e, then the triplet (i, j, k) is an even
permutation of (1, 2, 3), and, for instance, Ne

i (x, y) must equal 1 at nodes i and 0 on
the segment connecting nodes j and k. This is illustrated by Figure 2.8. From three
points with coordinates (xi,yi), (xj ,yj) and (xk,yk), it is possible to define a linear
function equal to 1 at the first node and 0 on the segment connecting the other two.
That linear function is the shape function Ne

i of node i (local numbering) of element
e. It is expressed as Ne

i (x, y) = ae
i x + be

i y + ce
i , where the coefficients ae

i , be
i and ce

i ,
depend on the coordinates of the nodes forming element e in the following form:



ae
i =

yj − yk(
yi − yj

)(
xk − xj

)− (
xi − xj

)(
yk − yj

)
be
i =

xk − xj(
yi − yj

)(
xk − xj

)− (
xi − xj

)(
yk − yj

)
ce
i =

xj

(
yk − yj

)− yj

(
xk − xj

)(
yi − yj

)(
xk − xj

)− (
xi − xj

)(
yk − yj

)
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Ni
e(x,y)
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0
node i

node j

node k

Figure 2.8. Working example: shape function Ne
i (x, y)

2.4.2. Discrete problem formulation

2.4.2.1. Element quantities

In order to estimate the element quantities, we select an element e. Its surface is
termed Se. It is obtained from the coordinates of nodes i, j and k, belonging to the
element by the following expression:

Se =
1
2

∣∣(xj − xi

)(
yk − yi

)− (
yj − yi

)(
xk − xi

)∣∣
The components of the element matrix [Ke] and of the load vector {F e} of element

e are given by the general formulae previously obtained. In this working example, the
zero flux conditions (on Γ3 and Γ4) only yield zero terms in the load vector. Besides,
as we considered a unit thickness for the representation in Figure 2.6, the volume and
surface integrals become respectively surface and contour integrals. We finally obtain:


Ke

ij = λ

∫
Se

(
∂Ne

i

∂x

∂Ne
j

∂x
+

∂Ne
i

∂y

∂Ne
j

∂y

)
ds + h

∫
∂Se∩Γ2

Ne
i Ne

j dl

F e
i = hText

∫
∂Se∩Γ2

Ne
i dl

In this equation, note that the first term of [Ke], related to the thermal conductivity,
can be expressed directly for any element e in the form λSe(aiaj + bibj). On
the contrary, the second term and the vector {F e}, which are the contributions of
convection exchanges (coefficient h), are more difficult to determine.
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Figure 2.9. Working example: skin elements on Γ2

An intelligent means of estimating the terms due to convection exchanges (terms of
Ke

ij and F e
i involving an integration on Se ∩Γ2) is to introduce an additional mesh on

the boundary Γ2 on which these conditions are applied. That additional mesh is often
referred to as a skin mesh. In this 2D example, it would be made of two-noded linear
elements, with coordinates (x1, y1) and (x2, y2). Then by changing the variables, as
described in Figure 2.9, it is possible to characterize the position of a point on this
element with a parameter ξ varying from −1 to 1 as follows:

{
x(ξ) = N1(ξ)x1 + N2(ξ)x2

y(ξ) = N1(ξ)y1 + N2(ξ)y2

with




N1(ξ) =
1 − ξ

2

N2(ξ) =
1 + ξ

2

Now if we term Le the length of the skin element corresponding to the surface
element e, we note that dl2 = dx2 + dy2 = Le2

4 dξ2, i.e. dl = Le

2 dξ, and it is possible
to write the contribution of each skin element as follows:

h

∫ Le

0

Ne
i Ne

j dl =
hLe

2

∫ 1

−1

Ni(ξ)Nj(ξ)dξ

hText

∫ Le

0

Ne
i dl =

hLeText

2

∫ 1

−1

Ni(ξ)dξ

This makes it possible to fully define the element matrices and load vectors for
each element e as follows:

– if element e has no common edge with Γ2, then:

[Ke] = λSe


 a2

1 + b2
1 a1a2 + b1b2 a1a3 + b1b3

a1a2 + b1b2 a2
2 + b2

2 a2a3 + b2b3

a1a3 + b1b3 a2a3 + b2b3 a2
3 + b2

3




{F e} =




0
0
0



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– if element e has a common edge with Γ2, then this edge is carried by the locally
numbered nodes 2 and 3, and we obtain:

[Ke] = λSe




a2
1 + b2

1 a1a2 + b1b2 a1a3 + b1b3

a1a2 + b1b2 a2
2 + b2

2 +
hLe

3λSe
a2a3 + b2b3 +

hLe

6λSe

a1a3 + b1b3 a2a3 + b2b3 +
hLe

6λSe
a2
3 + b2

3 +
hLe

3λSe




{F e} = hLeText




0
1
2
1
2




2.4.2.2. Assembly

Figure 2.10 illustrates the assembly operation for the calculation of the
components K13,13 and K3,8 of the global matrix. The local node numbering method
described in Figure 2.7 was used.

y
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node 13
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K13,13=K33+K33+K22+K22+K11+K11
12 13 14 19 20 21

K3,8=K23+K13
4 5

Figure 2.10. Working example: assembling the terms, K13,13

and K3,8, of the global matrix
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[K] = {F}=

× × × × × ×
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× × ×× ×
× ×
× × ×
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× × ×

× × × ×

×
×
×

×

×
×
×

×

×

×
×

half bandwidth

× vanishing term
eventually non-vanishing term

Figure 2.11. Working example: assembling the global matrix and load vector

By performing the assembly with p = 4 (as in Figure 2.7), we finally obtain a
global matrix and load vector whose terms different from zero are given in Figure
2.11. In this figure, we can note that the half bandwidth is equal to 6.

2.4.3. Solution

2.4.3.1. Application of boundary conditions

In order to apply the boundary conditions, we will only use the penalty method
here. According to this method, a high constant P is added to the diagonal components
of the matrix [K] corresponding to the nodes located on the boundary Γ1. Likewise, a
constant PTint is added to the components of the load vector {F} referring to the same
nodes. In the case p = 4 these nodes have numbers 1, 6, 11, 16 and 21. The application
of the essential boundary conditions then involves the following modifications:

K1,1 −→ K1,1 + P F1 −→ F1 + PTint

K6,6 −→ K6,6 + P F6 −→ F6 + PTint

K11,11 −→ K11,11 + P F11 −→ F11 + PTint

K16,16 −→ K16,16 + P F16 −→ F16 + PTint

K21,21 −→ K21,21 + P F21 −→ F21 + PTint

It may be noted that the global matrix [K] described in Figure 2.11 cannot be
inverted. In fact, without any temperature boundary conditions, there is an infinite
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Figure 2.12. Drawing isotemperatures
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Figure 2.13. Drawing isoflux values in the direction x

number of solutions, all of them being separate from each other with a uniform
temperature field (T constant in Ω). In this example, the temperature boundary
conditions are therefore necessary to obtain a single solution.
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2.4.3.2. Solution

This section requires the creation of a short computer program incorporating the
methods described in this chapter. This program is easy to write. Therefore, we invite
the reader to do this, as an exercise, in order to check the temperature field obtained.
We have used existing software to perform this thermal analysis. Figures 2.12 and 2.13
have been made with the following data:

– geometry: R = 2 mm, a = 6 mm;

– thermal conductivity: λ = 0.03 W/mm/K;

– boundary conditions: Tint = 100°C, Text = 20°C, H = 0.01 W/m2/K.

Figure 2.12 gives the temperature field, while Figure 2.13 gives the thermal flux in
direction x.
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Chapter 3

Isoparametric Finite Elements

3.1. DeÞ nitions

In Chapter 2, we introduced the major principles of finite element approximation
leading to an approximate solution of continuous problem [1.13] by solving an
equation system. This approximate solution is defined by a set of nodal values
gathered in the vector {T}. The temperature at any point of the mesh is then obtained
by interpolation inside each element (equation [2.2]).

This section concerns the description of isoparametric elements which are by far
the most widely used elements in most computer codes. In order to introduce them,
the concept of a reference element is presented. This notion makes it possible to
define any element by means of a simple geometric transformation. The isoparametric
elements use a geometric transformation defined by the element node location and
the reference element’s shape functions. Finally there will be a presentation of the
properties required by the interpolation functions so that the approximate solution
obtained by the finite element method leads to the continuous solution when the mesh
is refined.

3.1.1. Reference element

The construction of the shape functions of complex geometric elements is not
always straightforward. For convenience, the notion of a reference element is used.
A reference element is a very simple element, indexed in a reference space, which can
be transformed into an actual element by means of a simple geometric transformation
(Figure 3.1).
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x

y
ξ

η
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1-1

-1

0

(ξ,η)

(x,y)

actual elementreference element

Figure 3.1. Reference element and actual element

The geometric transformation of a reference element is defined by means of
the actual element’s geometric nodes. It is a priori appropriate to differentiate the
geometric nodes from the interpolation nodes of the element. Indeed, the geometric
nodes of an element characterize its shape and location in the mesh while the
interpolation nodes carry the problem unknowns (the temperatures in the present
instance).

In practice, it is common to use a linear geometric transformation in relation to
the coordinates of the geometric nodes. Thus, if element e includes pe geometric
nodes with coordinates −→x e

i (with i = 1, . . . , pe), then the position −→x of any point

of the element will be obtained from the position
−→
ξ of the corresponding point in the

reference element as follows:

−→x (
−→
ξ ) =

pe∑
i=1

Ge
i (
−→
ξ )−→x e

i [3.1]

The functions Ge
i are called geometric transformation functions. They take a scalar

value and act on the coordinates
−→
ξ of a point on the reference element.

The geometric transformation serves the following purposes:

– to be bijective; which means that the Jacobian of the transformation must keep a
constant sign and never be equal to zero inside an element;

– match the geometric nodes of the reference and actual elements. This is true
with the condition Ge

i (
−→
ξ j) = 1 if i = j and 0 if i �= j, where

−→
ξ j represents the

coordinates of the geometric node j in the reference element;

– match the boundaries of the reference and actual elements.
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Figure 3.2. “Linear triangle” element

The similarity of relationship [3.1] with relationship [2.2] is obvious. Relationship
[3.1] can thus be considered to be a nodal approximation of the geometry.

Now examine in detail three examples of elements constructed from a reference
element. For simplification purposes, we will examine the 2D case only. The reader
will find the characteristics of other elements at the end of this chapter.

3.1.1.1. Triangular element with linear transformation functions

Figure 3.2 represents the case of a triangle element. Three geometric nodes are
used. In this case, the coordinates of a point are written

−→
ξ = (ξ, η) in the reference

space and −→x = (x, y) in the actual space. Consider the geometric transformation
functions defined by the three top nodes:

Ge
1(ξ, η) = 1 − ξ − η

Ge
2(ξ, η) = ξ

Ge
3(ξ, η) = η

Then the coordinates (x, y) of any point in the actual element can be obtained from
the nodes 1 (x1, y1), 2 (x2, y2) and 3 (x3, y3) in the form:

x(ξ, η) = (1 − ξ − η)x1 + ξx2 + ηx3

y(ξ, η) = (1 − ξ − η)y1 + ξy2 + ηy3

In these expressions, ξ and η represent the coordinates of the corresponding
point in the reference element (Figure 3.1). It is easy to see that this transformation
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matches the nodes and boundaries of the reference and actual elements. Furthermore,
the Jacobian J is written:

J =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂x

∂η

∂y

∂ξ

∂y

∂η

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣x2 − x1 x3 − x1

y2 − y1 y3 − y1

∣∣∣∣∣
=

(
x2 − x1

)(
y3 − y1

)− (
x3 − x1

)(
y2 − y1

)

Note that the Jacobian transformation is constant. It is the component according to
Oz of the cross product between −→x 2 − −→x 1 and −→x 3 − −→x 1. Therefore, this Jacobian
will not be equal to zero as long as the three geometric nodes of the triangle are not
aligned.

3.1.1.2. Quadrangle element with linear transformation functions

Figure 3.3 represents the case of a quadrangle using four geometric nodes. The
geometric transformation functions selected are:

Ge
1(ξ, η) =

1
4
(1 − ξ)(1 − η)

Ge
2(ξ, η) =

1
4
(1 + ξ)(1 − η)

Ge
3(ξ, η) =

1
4
(1 + ξ)(1 + η)

Ge
4(ξ, η) =

1
4
(1 − ξ)(1 + η)

Then the coordinates (x, y) of any point in the actual element are obtained from
the nodes 1 (x1, y1), 2 (x2, y2), 3 (x3, y3) and 4 (x4, y4) in the form:

x(ξ, η) =
1
4
(1 − ξ)(1 − η)x1 +

1
4
(1 + ξ)(1 − η)x2

+
1
4
(1 + ξ)(1 + η)x3 +

1
4
(1 − ξ)(1 + η)x4

y(ξ, η) =
1
4
(1 − ξ)(1 − η)y1 +

1
4
(1 + ξ)(1 − η)y2

+
1
4
(1 + ξ)(1 + η)y3 +

1
4
(1 − ξ)(1 + η)y4
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Figure 3.3. “Linear quadrangle” element

In these expressions, ξ and η represent the coordinates of the corresponding point
in the reference element (Figure 3.1). Here again, note that this transformation matches
the geometric nodes and sides of the reference and actual elements.

Following on from the results obtained for the linear triangle, it is easy to
demonstrate that, if Vi is the component according to Oz of the cross product
between −→x j − −→x i and −→x k − −→x i, where nodes j and k are next to node i obtained
by anticlockwise and clockwise rotation respectively in the reference element, then
the Jacobian transformation is written as follows:

J(ξ, η) =
4∑

i=1

Ge
i (ξ, η)Vi

Thus, given the definition of the geometric transformation functions, the Jacobian
will keep a constant sign in the whole actual element if the Vi all have the same sign. In
Figure 3.3, the geometric nodes of the reference and actual elements are numbered in
the trigonometric sense. All the Vi are therefore positive since all the actual quadrangle
angles are strictly between 0◦ and 180◦. The corresponding Jacobian is therefore
positive in all of the actual element. It is never equal to zero and the transformation is
therefore bijective.

Conversely, if one of the quadrangle angle values had been greater than 180◦, then
the corresponding term Vi would have been negative, and the Jacobian sign would
have changed inside the actual element. This is illustrated by Figure 3.4. In this case
the transformation is no longer bijective and the element cannot be used. The angles
of a linear quadrangle must therefore range strictly from 0◦ to 180◦.
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correct case incorrect case

Figure 3.4. Condition of non-singularity of the quadrangle element

3.1.1.3. Quadrangle element with quadratic transformation functions

Figure 3.5 represents the case of a quadrangle using eight geometric nodes. The
geometric transformation functions selected are:

Ge
1(ξ, η) = −1

4
(1 − ξ)(1 − η)(1 + ξ + η)

Ge
2(ξ, η) =

1
2
(1 − ξ2)(1 − η)

Ge
3(ξ, η) = −1

4
(1 + ξ)(1 − η)(1 − ξ + η)

Ge
4(ξ, η) =

1
2
(1 + ξ)(1 − η2)

Ge
5(ξ, η) = −1

4
(1 + ξ)(1 + η)(1 − ξ − η)

Ge
6(ξ, η) =

1
2
(1 − ξ2)(1 + η)

Ge
7(ξ, η) = −1

4
(1 − ξ)(1 + η)(1 + ξ − η)

Ge
8(ξ, η) =

1
2
(1 − ξ)(1 − η2)

This geometric transformation does match the nodes and sides of the reference and
actual elements. Indeed, consider for instance in Figure 3.5 the straight segment of the
reference element formed by nodes 1, 2 and 3. Any point on this segment is defined
by −1 ≤ ξ ≤ 1 and η = −1. The only functions different from zero are Ge

1, Ge
2 and

Ge
3. Restricted to this segment the geometric transformation becomes:

x(ξ) = −1
2
ξ(1 − ξ)x1 +

(
1 − ξ2

)
x2 +

1
2
ξ(1 + ξ)x3

y(ξ) = −1
2
ξ(1 − ξ)y1 +

(
1 − ξ2

)
y2 +

1
2
ξ(1 + ξ)y3
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Figure 3.5. Quadrangle element with quadratic transformation functions

In the equations, (x1, y1), (x2, y2) and (x3, y3) are the coordinates of node
numbers 1, 2 and 3 of the actual element. The straight segment of the reference
element is transformed into a curve parameterized by ξ giving the coordinates (x, y)
of the points of this curve in the actual element.

3.1.2. Isoparametric elements

We have just examined the geometric construction of a finite element from a
reference element. This construction is based upon the definition of a bijective
transformation between the reference element and the actual element from the
location of geometric nodes. This transformation is defined by means of geometric
transformation functions. Through this geometric transformation, it is now possible
to substitute the approximation on the actual element for the approximation on the
reference element. By calling Ne

i (
−→
ξ ) the shape functions of the reference element (i

varying from 1 to the number of interpolation nodes), the approximation inside the
actual element is completely defined by:

– the bijective geometric transformation connecting any point −→x of the actual
element to a single point

−→
ξ of the reference element as follows:

−→x (
−→
ξ ) =

pe∑
i=1

Ge
i (
−→
ξ )−→x e

i

– the nodal approximation of the temperature in the reference element, which is
written as follows:

T (
−→
ξ ) =

ne∑
i=1

Ne
i (
−→
ξ )T e

i
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This approach is obviously interesting. As the reference elements are
geometrically very simple (triangle, square, cube unit, etc.), it is easy to determine the
shape functions Ne

i (
−→
ξ ) as well as the geometric transformation functions Ge

i (
−→
ξ ).

The elements most commonly used in computer codes use geometric nodes and
geometric transformation functions respectively similar to the reference element
interpolation nodes and shape functions. They are termed isoparametric elements.
Other types of elements are sometimes used. Subparametric elements have fewer
geometric nodes than interpolation nodes. On the contrary, superparametric elements
have more geometric nodes than interpolation nodes.

Later on in this chapter as well as in the whole book, we will deal with
isoparametric elements only. In this case, the number of geometric and interpolation
nodes in an element e are equal, pe = ne, and the geometric transformation functions
of the reference element are such that Ge

i (
−→
ξ ) = Ne

i (
−→
ξ ). The nodal temperature

approximation (equation [2.2]) can then be written for any mesh element Ωe as
follows:

∀−→x ∈ Ωe, T (−→x ) =
ne∑
i=1

Ne
i

(−→x (
−→
ξ )

)
T e

i

=
〈
Ne

i

(−→x (
−→
ξ )

)〉 · {T e}

Actually, the Ne
i (−→x (

−→
ξ )) can be formulated Ne

i (
−→
ξ ). However, it is appropriate to

bear in mind the fact that the interpolation functions on the reference element and on
the actual element are different. They can be deduced from one another by changing
the variables between the coordinates −→x and

−→
ξ .

For instance, in the case of an eight-noded quadrangle, the interpolation functions
Ne

i will be written for the reference element as follows:

Ne
1 (ξ, η) = −1

4
(1 − ξ)(1 − η)(1 + ξ + η)

Ne
2 (ξ, η) =

1
2
(
1 − ξ2

)
(1 − η)

Ne
3 (ξ, η) = −1

4
(1 + ξ)(1 − η)(1 − ξ + η)

Ne
4 (ξ, η) =

1
2
(1 + ξ)

(
1 − η2

)
Ne

5 (ξ, η) = −1
4
(1 + ξ)(1 + η)(1 − ξ − η)
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Figure 3.6. Interpolation functions of a reference eight-noded quadrangle

Ne
6 (ξ, η) =

1
2
(
1 − ξ2

)
(1 + η)

Ne
7 (ξ, η) = −1

4
(1 − ξ)(1 + η)(1 + ξ − η)

Ne
8 (ξ, η) =

1
2
(1 − ξ)

(
1 − η2

)
These functions are represented in Figure 3.6 for both types of node present in the

element. Thus, a corner node (node 1 for instance) is distinguished from an midside
node located in the middle of a segment (node 2 for instance). Note that interpolation
functions vanish for nodes different from the one they are attached to, and more
generally, on all the sides of the element which does not include this node.

It is important to note at this point that the location of midside nodes in a second
order (or upper) isoparametric element may substantially modify the temperature
approximation on the actual element.

For instance, in the case of a 1D second-order element, the three nodes are defined
in the reference element by ξ equal to −1, 0 and 1. Given the shape functions of this
element (see Table 3.3), the temperature approximation in the reference element is
written in the form of a second degree polynomial in ξ:

∀ξ ∈ [−1, 1], T (ξ) = T2 + ξ
T3 − T1

2
+ ξ2 T1 − 2T2 + T3

2

By choosing an index centered on the actual element and writing x1 = −a and
x3 = a, the geometric transformation from the reference element to the actual element
is written (Figure 3.7):

∀ξ ∈ [−1, 1], x(ξ) = x2(1 − ξ2) + aξ
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Figure 3.7. Locating the midside node of a 1D three-noded element
in the middle (a) or on the quarter (b) of the segment

Now examine the following situations:

– the midside node (number 2) is located in the middle of the segment (Figure
3.7a), i.e. x2 = 0,

– the midside node (number 2) is located on the quarter of the segment (Figure
3.7b), i.e. x2 = −a/2.

In the first instance (x2 = 0), the geometric transformation from the reference
element to the actual element is defined by x = ξa. Proportionality between x and
ξ then leads to approximating the temperature on the actual element in the form of a
second degree polynomial in x:

∀x ∈ [−a, a], T (x) = T2 + x
T3 − T1

2a
+ x2 T1 − 2T2 + T3

2a2

In the second instance, the geometric transformation becomes x = (ξ2 +2ξ−1)a
2 .

The inversion of this relationship gives two possible solutions for ξ according to x. We
retain the formula with values of ξ going from −1 to 1, i.e. ξ = −1 +

√
2 + 2x/a.

This expression leads to an approximation of the temperature on the actual element as
follows:

∀x ∈ [−a, a], T (x) = T1 +
(− 3T1 + 4T2 − T3

)√x + a

2a

+
(
2T1 − 4T2 + 2T3

)x + a

2a

This expression now involves such terms as
√

(x + a)/2a. This temperature
approximation is now very different from that obtained when the midside node is
located in the middle of the segment. In this case, the temperature gradient obtained
by derivation with respect to x, and hence the heat flux density, tends to infinity as
one gets near node 1 (x tending to −a).
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Therefore, it is necessary to be very careful when locating midside nodes on the
sides of elements. Especially with second-order elements, we will try to locate the
middle node on the perpendicular bisector of the segment connecting the corner nodes.
Another location for the midside node must be restricted to very specific cases. For
example, in linear elastic fracture mechanics, it is possible to reproduce the crack tip
singular stress field by using a mesh radiating from this tip and moving the midside
nodes to the quarter of the segments connecting the corner nodes.

3.1.3. Interpolation function properties

The finite element method makes it possible to obtain an approximate solution of
problem [1.13] in the form of a vector {T} including the temperatures on the mesh
nodes. Then the temperature at any point is obtained by nodal approximation. A few
convergence conditions of the approximate solution to the continuous solution will be
given hereafter.

For the approximate solution to converge toward the solution of continuous
problem [1.13] when the number of nodes increases, it is necessary for the nodal
temperature approximation defined by equation [2.2] to belong to the set ET of
admissible solutions of the continuous problem, which means that:

– inside each element, the temperature field nodal approximation, hence the
interpolation functions, have to be sufficiently regular. In our case, this approximation
must be class at least C1, that is to say such that its first derivatives are continuous;

– on the boundary between two elements, the nodal temperature field
approximation must be continuous. The finite elements satisfying this condition are
said to conform or compatible. Some elements, said to be incompatible, contravene
this condition. The integral form of the problem then includes additional terms
showing the function jumps on the element boundaries. The convergences of the
approximate solution toward the continuous solution can only be ensured if these
additional terms are bound and tend to zero when the element size itself tends to
zero. This type of element is fairly often found in mechanics (some shell elements
in particular), but very rarely in thermal science. Finally note that the continuous
condition for compatible elements is valid for the temperature field only, not for its
gradient. As a general rule, the temperature gradient is discontinuous on the boundary
between two elements;

– as the mesh is refined, the approximate temperature solution and its first
derivatives must tend toward constants (the values taken by the continuous solution).
As in practice polynomial interpolation functions are used, this condition means that
the approximate polynomial basis inside each element has to be complete at order 1,
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that is to say it includes terms in x in a 1D problem, in x and y in 2D, and in x, y

and z in 3D. In fact, using a complete polynomial basis of the order p + 1 ensures the
convergence of the temperature field derivatives up to the order p.

The first condition is easily satisfied by choosing polynomial interpolation
functions while the second condition will be satisfied by choosing interpolation
functions Ne

i equal to zero on any side or face of the reference element not including
node i.

The third condition forces the approximate polynomial basis to be complete
at the order 1, which means that inside each element Ωe the nodal approximation
can be written at the first order next to a point in the form T (−→x ) = T0 + −→a · −→x .
If this development is applied to the node with coordinates −→x e

i , we obtain
T e

i = T0 + −→a · −→x e
i . If in the nodal approximation the node temperatures T e

i are
substituted for the expression above, it is possible to write simultaneously:



T
(−→x (

−→
ξ )

)
= T0 + −→a · −→x (

−→
ξ )

T
(−→x (

−→
ξ )

)
=

ne∑
i=1

Ne
i (
−→
ξ )T e

i

= T0

ne∑
i=1

Ne
i (
−→
ξ ) + −→a ·

ne∑
i=1

Ne
i (
−→
ξ )−→x e

i

= T0

ne∑
i=1

Ne
i (
−→
ξ ) + −→a · −→x (

−→
ξ )

Therefore, the third condition will be satisfied as soon as:

ne∑
i=1

Ne
i (
−→
ξ ) = 1

It is possible to mix several types of finite elements in the same analysis. However,
these elements must be compatible to satisfy the temperature continuity condition.

For instance, it is not advised to combine isoparametric elements whose faces or
segments have different node numbers, as illustrated in Figure 3.8.

3.2. Calculation of element quantities

The matrices and element vectors obtained by equations [2.6], [2.7] and [2.8]
are written in the form of integrals over the volume Ωe or surface ∂Ωe of an actual
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Figure 3.8. Mixing isoparametric elements

element e. In order to calculate these integrals, it is convenient to work on the reference
element with the geometric transformation making it possible to move from the actual
coordinates −→x to the reference coordinates

−→
ξ . For this purpose the Jacobian matrix

of this transformation J is used; it is defined from its tangent linear application to a
given point:

−→x = −→x (
−→
ξ ) =⇒ d−→x = J · d−→ξ with J = grad

ξ
(−→x )

In this equation, the operator grad
ξ
() designates the gradient in the coordinate

system
−→
ξ . For example, in a Cartesian 3D case, written as follows: −→x = (x, y, z) and−→

ξ = (ξ, η, ζ), we obtain:

J =




∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ




Firstly, we will express the element quantities in the reference frame related to
the element e under consideration. Then we will note that these quantities can be
numerically evaluated in a very accurate way by means of the Gauss method. Finally
we will illustrate this method on 1D, 2D and 3D reference elements.

3.2.1. Expression in the reference frame

The fundamental quantity to calculate during a finite element analysis is the
element residual {Re} (equation [2.6]). This quantity is the result of the integration
on element Ωe or on its boundary ∂Ωe of functions involving:

– the thermal conductivity matrix λ;

– the heat production volumetric term Q;



92 Finite Element Simulation of Heat Transfer

– the flux q entering through the boundary ∂Ωq;

– the geometric characteristics of the element through its interpolation functions
Ne

i and their gradients
−−→
grad(Ne

i ).

In order to turn an integral on Ωe into an integral on the reference element, it
is appropriate to transport these quantities by means of the (bijective) geometric
transformation connecting the coordinates −→x of a point on Ωe to the coordinates

−→
ξ

of the corresponding point in the reference element.

The transport of those quantities which are explicit functions of the location −→x of
the point on Ωe is easy to perform. It is sufficient to replace −→x with its expression
according to

−→
ξ (equation [3.1] applied to an isoparametric element). It is, however,

more difficult to transport the interpolation function gradients. It is necessary to use
the Jacobian transformation matrix. In fact the derivation rule of composed functions
allows us to write, in the case of Cartesian coordinates, by designating −→x = (x, y, z)
and

−→
ξ = (ξ, η, ζ):

(
∂Ne

i

∂ξ

∂Ne
i

∂η

∂Ne
i

∂ζ

)
︸ ︷︷ ︸

−−→
gradT

ξ (Ne
i )

=
(

∂Ne
i

∂x

∂Ne
i

∂y

∂Ne
i

∂z

)
︸ ︷︷ ︸

−−→
gradT (Ne

i )

·




∂x

∂ξ

∂x

∂η

∂x

∂ζ

∂y

∂ξ

∂y

∂η

∂y

∂ζ

∂z

∂ξ

∂z

∂η

∂z

∂ζ




︸ ︷︷ ︸
J

In general, the terms involved in the expression of element quantities and including
the gradient operator can be written as follows:


−−→
gradT (Ne

i ) =
−−→
gradT

ξ (Ne
i ) · J−1

−−→
grad(Ne

i ) = J−T · −−→gradξ(Ne
i )

[3.2]

In this equation, J−1 is the inverse Jacobian matrix, and J−T is the transposed
inverse Jacobian matrix.

The last step for transporting element quantities toward the reference element is
the transformation of the volume element dv. If dv0 designates the volume element in
the reference element coordinate system, then we obtain:

dv = J dv0

where J is the Jacobian matrix determinant, also called the Jacobian.
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With these results, the element residual {Re} can be expressed for each element
e, in the form of integrals on the volume or surfaces of the reference element
Ω0 corresponding to it. For instance, the linear case in the previous chapter, in
which the element residual was expressed linearly according to the element node
temperatures (equation [2.10]), corresponded to a heat conductance matrix λ and a
volumetric term Q independent of the temperature, and a flux q appears as follows:
q = q0 + h(Text − T ). This residual becomes:

{Re} =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

( ∫
Ω0

{Ne}QJ dv0 +
∫

∂Ω0
q

{Ne} (q0 + hText

)
Js ds0

)
︸ ︷︷ ︸

{F e}

−




∫
Ω0

{−−→
gradT

ξ (Ne)
}
· J−1 · λ · J−T ·

〈−−→
gradξ(Ne)

〉
J dv0

+
∫

∂Ω0
q

{Ne}h 〈Ne〉 Js ds0




︸ ︷︷ ︸
[Ke]=[Λe]+[He]

· {T e}

In this expression, Ω0 represents the reference element corresponding to the actual
element e, ∂Ω0

q is the face of the reference element corresponding to that of the actual
element on which the flux q is applied, ds0 is the surface element corresponding to
that face, and Js is the determinant of that face transport Jacobian matrix.

Note therefore that the calculation of element quantities comes down to the
calculation of integrals of type

∫
Ω0 f(

−→
ξ )dv0. Generally speaking, these integrals

cannot be calculated analytically. Numerical integration techniques are then used.

3.2.2. Gaussian quadrature

Numerical integration consists of replacing an integral with a sum of contributions
on a finite number ng of points with coordinates

−→
ξ k (with k = 1, . . . , ng):

∫
Ω0

f(
−→
ξ )dv0 ≡

ng∑
k=1

wkf(
−→
ξ k)

In this equation,
−→
ξ k locates the position of the integration point number k, and wk

is the weight of this point contribution to the integral value.

The Gauss method (Gaussian quadrature) is different from other methods
essentially because both the integration point coordinates and weights are determined
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to obtain maximum accuracy. They are calculated in order to minimize the
approximation error in the integration of a polynomial function p(

−→
ξ ) interpolating

the function f(
−→
ξ ) at those points.

3.2.2.1. 1D numerical integration

In the 1D case, the reference element is always characterized by ξ varying from
−1 to 1. The integration of a function f(

−→
ξ ) on the reference volume Ω0 can then be

written as:

I =
∫

Ω0
f(
−→
ξ ) dv0 =

∫ 1

−1

f(ξ) dξ

The evaluation of the integral I depends on the calculation of an approximating
integral I:

I =
∫ 1

−1

p(ξ) dξ

where p(ξ) is a polynomial interpolating function f(ξ) on ng points. It is obvious
that the approximation I depends directly on the number and location of interpolation
points of f(ξ).

Assume first that the positions of the integration points are known, and write them
ξ1, . . . , ξng

. The polynomial p(ξ) interpolating the function f(ξ) on these points can
then be expressed in the form of a linear combination of Lagrange polynomials Lk(ξ),
satisfying the condition Lk(ξj) = δkj :

p(ξ) =
ng∑

k=1

Lk(ξ)f(ξk)

Lk(ξ) =
(ξ − ξ1) · · · (ξ − ξk−1)(ξ − ξk+1) · · · (ξ − ξng

)
(ξk − ξ1) · · · (ξk − ξk−1)(ξk − ξk+1) · · · (ξk − ξng

)

If we now insert this polynomial expression into the approximating integral I , we
obtain a formula in which the weights wk of the contribution of each integration point
ξk to the integral I can be calculated analytically according to the locations of these
points:

I =
ng∑

k=1

(∫ 1

−1

Lk(ξ)dξ

)
︸ ︷︷ ︸

wk

f
(
ξk

)
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The a priori choice of the integration point locations ξk can be made in various
ways. For instance, in the Newton-Cotes integration method, the points ξk are evenly
distributed in the form ξk = −1 + 2 k−1

ng−1 on the segment [−1, 1]. It is demonstrated
that this method, like all those a priori setting values ξk, allows us to integrate
accurately any polynomial function f(ξ) of a degree less than or equal to ng − 1.

In the Gauss method, the position ξk of the integration points is also optimized to
ensure a more accurate estimation. In this case, we therefore obtain 2ng parameters
to optimize (ng positions ξk and ng weights wk), which makes it possible to integrate
accurately with the same number of points any polynomial function f(ξ) of a degree
less than or equal to 2ng − 1. For instance, a 3-degree polynomial will be accurately
integrated with 2 points by the Gauss method, whereas 4 will be necessary with the
Newton-Cotes method. This method makes it possible to obtain the same accuracy by
substantially reducing the number of points where the function to integrate has to be
estimated, which reduces the calculation time.

In order to calculate the optimal positions of the integration points ξk, the
expression of the interpolation polynomial p(ξ) is enhanced with ng additional terms
in the form: 


p(ξ) =

ng∑
k=1

Lk(ξ)f(ξk) +
ng∑

k=1

αkξk−1q(ξ)

q(ξ) =
ng∏
l=1

(
ξ − ξl

)

Note in this equation that p(ξ) is now a polynomial of degree 2ng − 1 with 2ng

parameters (the ξk and the αk). Moreover, this polynomial always coincides with
function f(ξ) at the points ξk, since q(ξk) = 0.

Now the integral I approximating I is written as follows:

I =
ng∑

k=1

(∫ 1

−1

Lk(ξ)dξ

)
f
(
ξk

)
+

ng∑
k=1

(∫ 1

−1

ξk−1q(ξ)dξ

)
αk

Since the integration is to be exact for any polynomial of a degree less than or
equal to 2ng − 1, the integral I must be independent of the coefficients αk, which
leads us to choose the ξk so that:

∀l = 1, . . . , ng,

∫ 1

−1

ξl−1q(ξ)dξ = 0
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For instance, if we decide to choose two integration points ξ1 and ξ2, then the
location of these points will be determined with q(ξ) = (ξ − ξ1)(ξ − ξ2):


∫ 1

−1

(
ξ − ξ1

)(
ξ − ξ2

)
dξ = 0

∫ 1

−1

ξ
(
ξ − ξ1

)(
ξ − ξ2

)
dξ = 0

=⇒




2
3

+ 2ξ1ξ2 = 0

2
3
(
ξ1 + ξ2

)
= 0

=⇒




ξ1 = −
√

3
3

ξ2 =
√

3
3

The calculation of weights w1 and w2 corresponding to the integration points then
generates: 


w1 =

∫ 1

−1

L1(ξ)dξ =
∫ 1

−1

ξ − ξ2

ξ1 − ξ2
dξ = 1

w2 =
∫ 1

−1

L2(ξ)dξ =
∫ 1

−1

ξ − ξ1

ξ2 − ξ1
dξ = 1

More generally speaking, Table 3.1 gives the integration point locations and
corresponding weights for the Gaussian quadratures mostly used in computer codes.

ng positions ξk wk

1 ξ 0.0 2.0

2 ξ ±0.57735 02691 89626 1.0

3 ξ

-0.77459 66692 41483

0.0

+0.77459 66692 41483

0.55555 55555 55556

0.88888 88888 88889

0.55555 55555 55556

4 ξ
±0.86113 63115 94053

±0.33998 10435 84856

0.34785 48451 37454

0.65214 51548 62546

Table 3.1. 1D Gauss integration points and weights

The number of integration points in an element depends on the complexity of the
functions to integrate on that element for the calculation of element quantities. For
instance, for a 1D two-noded element, the interpolation functions are linear (see Table
3.3) and a single integration point will be sufficient to accurately integrate the element
quantities (as well as their gradients, of course). However, the element quantities
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Figure 3.9. Gauss method induced error

require other functions such as the volumetric heat source Q. If these functions do
not vary linearly according to the space coordinates, then this method will introduce
an error in the estimation of these element quantities. Figure 3.9 illustrates this error
in the working example of Chapter 1, with a discretization on five finite elements.

3.2.2.2. 2D and 3D numerical integration

Extending the Gauss integration method to 2D or 3D elements is relatively
easy with square or cubic geometries. In such a case, the integration directions are
independent and it is possible to write:

∫ 1

−1

∫ 1

−1

f(ξ, η) dξ dη ≈
nξ

g∑
k=1

nη
g∑

l=1

wξ
kwη

l f
(
ξk, ηl

)
∫ 1

−1

∫ 1

−1

∫ 1

−1

f(ξ, η, ζ) dξ dη dζ ≈
nξ

g∑
k=1

nη
g∑

l=1

nζ
g∑

m=1

wξ
kwη

l wζ
mf

(
ξk, ηl, ζm

)

The point numbers (nξ
g, n

η
g , nζ

g), their coordinates (ξk, ηl, ζm) and their weights

(wξ
k, wη

l , wζ
m) are obtained from the results of section 3.2.2.1 applied in the

corresponding direction.
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ng positions ξk ηk wk

1
ξ

η

ξ1=0.33333 33333 33333 η1 = ξ1 w1=0.5

3
ξ

η
ξ1=0.16666 66666 667
ξ2=0.66666 66666 667

ξ3 = ξ1

η1 = ξ1
η2 = ξ1
η3 = ξ2

w1=0.16666 66666 667
w2 = w1

w3 = w1

7
ξ

η

ξ1=0.10128 65073 235
ξ2=0.79742 69853 531

ξ3 = ξ1
ξ4=0.47014 20641 051

ξ5 = ξ4
ξ6=0.05971 58717 898
ξ7=0.33333 33333 333

η1 = ξ1
η2 = ξ1
η3 = ξ2
η4 = ξ6
η5 = ξ4
η6 = ξ4
η7 = ξ7

w1=0.06296 95902 724
w2 = w1

w3 = w1

w4=0.066197 07639 425
w5 = w4

w6 = w4

w7=0.1125

Table 3.2. Gauss integration schemes for triangles

Type Geometry Interpolation functions

Linear
element

with two nodes ξ

N1(ξ) =
1 − ξ

2

N2(ξ) =
1 + ξ

2

Quadratic element
with three nodes ξ

N1(ξ) =
1

2
ξ(ξ − 1)

N2(ξ) = 1 − ξ2

N3(ξ) =
1

2
ξ(ξ + 1)

Cubic element
with four nodes ξ

N1(ξ) =
9

16
(ξ − 1)

(
1

9
− ξ2

)

N2(ξ) =
27

16
(ξ2 − 1)

(
ξ − 1

3

)

N3(ξ) =
27

16
(1 − ξ2)

(
ξ +

1

3

)

N4(ξ) =
9

16
(ξ + 1)

(
ξ2 − 1

9

)

Table 3.3. Most common 1D finite elements

For other types of elements (triangle, tetrahedron, wedge, etc.), it is impossible to
act in the same way. A great deal of research work has enabled us to determine several
numerical schemes, the most common of which appear in Table 3.2 for a triangle.
These schemes can then be combined to construct new schemes adapted to tetrahedra
and wedges (Table 3.5).



Isoparametric Finite Elements 99

Type Geometry Interpolation functions

Linear element
with three nodes
(triangle)

ξ

η
N1(ξ, η) = 1 − ξ − η

N2(ξ, η) = ξ

N3(ξ, η) = η

Quadratic element
with six nodes
(triangle)

ξ

η

N1(ξ, η) = −α(1 − 2α)

N2(ξ, η) = 4ξα

N3(ξ, η) = −ξ(1 − 2ξ)

N4(ξ, η) = 4ξη

N5(ξ, η) = −η(1 − 2η)

N6(ξ, η) = 4ηα

(with α = 1 − ξ − η)

Linear element
with four nodes
(quadrangle)

ξ

η

N1(ξ, η) =
1

4
(1 − ξ)(1 − η)

N2(ξ, η) =
1

4
(1 + ξ)(1 − η)

N3(ξ, η) =
1

4
(1 + ξ)(1 + η)

N4(ξ, η) =
1

4
(1 − ξ)(1 + η)

Quadratic element
with eight nodes
(quadrangle)

ξ

η

N1(ξ, η) = −1

4
(1 − ξ)(1 − η)(1 + ξ + η)

N2(ξ, η) =
1

2
(1 − ξ2)(1 − η)

N3(ξ, η) = −1

4
(1 + ξ)(1 − η)(1 − ξ + η)

N4(ξ, η) =
1

2
(1 + ξ)(1 − η2)

N5(ξ, η) = −1

4
(1 + ξ)(1 + η)(1 − ξ − η)

N6(ξ, η) =
1

2
(1 − ξ2)(1 + η)

N7(ξ, η) = −1

4
(1 − ξ)(1 + η)(1 + ξ − η)

N8(ξ, η) =
1

2
(1 − ξ)(1 − η2)

Table 3.4. Most common 2D finite elements

3.3. Some Þ nite elements

In this section, we will deal only with the most commonly used reference elements,
for which the geometry, local node numbering and interpolation functions are
specified. The 1D elements are in Table 3.3. The four-noded cubic element is hardly
used. The 2D elements are in Table 3.4. Some of them are widely used in this chapter
(the three-noded triangle for instance). Finally, Table 3.5 includes a few 3D elements.
There are others, such as the 15-noded wedge or the 20-noded cube (quadratic
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interpolation). There are also elements mixing a quadratic interpolation in one or two
directions with a linear interpolation in the remaining directions. The interpolation
functions are then obtained by applying the relationships presented in this chapter.

Type Geometry Interpolation functions

Linear element
with four nodes
(tetrahedron)

ξ

η

ζ N1(ξ, η, ζ) = 1 − ξ − η − ζ

N2(ξ, η, ζ) = ξ

N3(ξ, η, ζ) = η

N3(ξ, η, ζ) = ζ

Quadratic element
with ten nodes
(tetrahedron)

ξ

η

ζ

N1(ξ, η, ζ) = −α(1 − 2α)

N2(ξ, η, ζ) = 4ξα

N3(ξ, η, ζ) = −ξ(1 − 2ξ)

N4(ξ, η, ζ) = 4ξη

N5(ξ, η, ζ) = −η(1 − 2η)

N6(ξ, η, ζ) = 4ηα

N7(ξ, η, ζ) = 4ζα

N8(ξ, η, ζ) = 4ξζ

N9(ξ, η, ζ) = 4ηζ

N10(ξ, η, ζ) = −ζ(1 − 2ζ)

(with α = 1 − ξ − η − ζ)

Linear element
with six nodes
(wedge) ξ

η
ζ

N1(ξ, η, ζ) =
1

2
(1 − ξ − η)(1 − ζ)

N2(ξ, η, ζ) =
1

2
ξ(1 − ζ)

N3(ξ, η, ζ) =
1

2
η(1 − ζ)

N4(ξ, η, ζ) =
1

2
(1 − ξ − η)(1 + ζ)

N5(ξ, η, ζ) =
1

2
ξ(1 + ζ)

N6(ξ, η, ζ) =
1

2
η(1 + ζ)

Linear element
with eight nodes
(hexahedron)

ξ

η

ζ

N1(ξ, η, ζ) =
1

8
(1 − ξ)(1 − η)(1 − ζ)

N2(ξ, η, ζ) =
1

8
(1 + ξ)(1 − η)(1 − ζ)

N3(ξ, η, ζ) =
1

8
(1 + ξ)(1 + η)(1 − ζ)

N4(ξ, η, ζ) =
1

8
(1 − ξ)(1 + η)(1 − ζ)

N5(ξ, η, ζ) =
1

8
(1 − ξ)(1 − η)(1 + ζ)

N6(ξ, η, ζ) =
1

8
(1 + ξ)(1 − η)(1 + ζ)

N7(ξ, η, ζ) =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N8(ξ, η, ζ) =
1

8
(1 − ξ)(1 + η)(1 + ζ)

Table 3.5. Most common 3D finite elements
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Introduction

Part 1 of this book dealt with the detailed description of the finite element method
using, to this end, the simple case of steady state conduction. This allowed us to
introduce the basic physical models used in thermal science (thermal balance, Fourier
law, etc.), then show how the finite element method can be used to solve a particular
problem.

In Part 2, complementary notions will be introduced and their consequences for
the finite element method will be shown. These concepts are:

– the transient state;

– non-linearities;

– transport phenomena.

The study of transient heat conduction requires consideration of the thermal
capacitance of materials. Indeed, a solid undergoing a thermal load does not instantly
reach a steady state. The temperature in the solid varies over time. In order to obtain
this variation, the finite element method must be coupled with a time integration
scheme.

The behavior of a material in the steady or transient state is rarely linear. As a
matter of fact, its thermal conductivity is often temperature-dependent. Moreover, the
boundary conditions and the loads applied to a solid are often non-linear. For example,
the heat exchange coefficient between a solid and an external medium often depends
on the local temperature of the solid surface. The traditional methods of solving
non-linear thermal problems in the steady or transient state will be described.

Transport phenomena are present when the solid is no longer assumed to be
motionless as a result of the thermal loads it is subjected to. Such is the case when
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a welding operation is simulated, the heat source moving along the weld seal. A
solution in a reference frame related to that source will have to take into consideration
the relative movement of the solid. Transport phenomena also introduce numerical
instabilities and the remedial methods for this will be described.



Chapter 4

Transient Heat Conduction

4.1. Problem formulation

Transient heat conduction involves time. In order to apply the finite element
method to the numerical simulation of this phenomenon, we use a course of action
similar to that introduced in Chapters 1 and 2. This method leads us to a time
differential system for the temperatures at the mesh nodes.

4.1.1. The continuous problem

If we perform the energy balance as in [RAP 98] for instance, the left-hand term of
the steady state equilibrium equation [1.4], i.e. div(λ ·−−→grad(T ))+Q, appears to be the
heat brought to a volume element of the solid Ω. The first principle of thermodynamics
specifies that this heat produces an internal energy change on the domain over time.
That internal energy change, equal to zero in the steady state, can be expressed here
as ρḢ , where ρ is the material volumetric mass and Ḣ the variation over time of its
specific (i.e. per mass unit) enthalpy H . Equilibrium equation [1.4] thus becomes:

div
(
λ · −−→grad(T )

)
+ Q = ρḢ at any point of Ω [4.1]

In this case, the boundary conditions applied to the solid are similar to those
mentioned in the steady state, i.e:

– an input flux q known on a portion ∂Ωq of Ω boundary;

– a known temperature Td on the other portion ∂ΩT of that boundary.
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However, in transient states, these boundary conditions may change over time, as
well as the source term Q. It follows from this that the boundary value problem of
transient heat conduction is expressed as:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find T (−→x , t) at any point −→x ∈ Ω verifying:

at t = 0:

T (−→x , 0) = T0(−→x )

at any instant t ∈ ]0, tf [:

R(T, t) = div
(
λ · −−→grad(T )

)
+ Q(T, t) − ρḢ(T, t) = 0 in Ω(

λ · −−→grad(T )
) · −→n = q on ∂Ωq

T = Td on ∂ΩT

}
with ∂Ωq ∪ ∂ΩT = ∂Ω

[4.2]

The term R(T, t) present in this problem is called residual, as in the steady state.
It is a quantity to cancel at any point of the solid Ω, and at any instant of the study,
i.e. between instants t = 0 and t = tf , while satisfying at these instants the boundary
conditions illustrating the exchanges of the solid with the external environment. These
boundary conditions are applied on the boundary ∂Ω of the solid Ω, and we must check
that ∂Ωq ∪ ∂ΩT = ∂Ω.

Conversely, in this boundary value problem an initial condition appears, the initial
temperature field T0(−→x ) in the solid, as well as the enthalpy derivative with respect
to time. We could therefore think of applying a time finite element approximation
by using the initial conditions as boundary conditions. However, time variations are
treated differently from space variations in most computer codes. The finite element
approximation is only used for space variations, time integration requiring a finite
difference technique like the one described in section 4.2.

If a method similar to that of Chapter 1 is applied to space variations, the following
weak integral formulation is obtained, where the spaces ET and Eψ are those defined
by equations [1.11] and [1.12]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find T : t ∈ [0, tf [ −→ T (−→x , t) ∈ ET such that:

at t = 0:

T (−→x , 0) = T0(−→x )

for t ∈ ]0, tf [ and for any ψ ∈ Eψ:∫
Ω

ψ(Q − ρḢ)dv +
∫

∂Ωq

ψq ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T ) dv = 0

[4.3]
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The Galerkin method constructs at any instant a temperature approximation by
reasoning on n-dimensional spaces En

T and En
ψ . Continuous problem [4.3] is then

approximated by the following discrete problem (of dimension n):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find T : t ∈ [0, tf [ −→ T (−→x , t) ∈ En
T such that:

at t = 0:

T (−→x , 0) = T0(−→x )

for t ∈ ]0, tf [ and for any ψ ∈ En
ψ:∫

Ω

ψ(Q − ρḢ)dv +
∫

∂Ωq

ψq ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T ) dv = 0

[4.4]

4.1.2. Finite element approximation

In discrete problem [4.4], the temperature field T (−→x , t) is estimated inside each
element e of a mesh, and at any instant t, from the values it takes at the nodes
corresponding to that element, at that same instant, while the weighting functions
ψ(−→x ) are estimated as in the steady state:

∀−→x ∈ Ωe, ∀t ∈ [0, tf [, T (−→x , t) =
ne∑
i=1

Ne
i (−→x )T e

i (t)

= 〈Ne
1 (−→x ), . . . , Ne

ne(−→x )〉 ·



T e
1 (t)
· · ·

T e
ne(t)




= 〈Ne(−→x )〉 · {T e(t)}

[4.5]

∀−→x ∈ Ωe, ∀t ∈ [0, tf [, ψ(−→x ) =
ne∑
i=1

ψeNe
i (−→x )

= 〈ψe
1, . . . , ψ

e
ne〉 ·




Ne
1 (−→x )

...

Ne
ne(−→x )




= 〈ψe〉 · {Ne(−→x )}

[4.6]

In equations [4.5] and [4.6], T e
i (t) and ψe

i respectively represent the temperature at
instant t, and the weighting function value at the node number i (local numbering) of
element e. The shape functions introduced, Ne

i (−→x ), are estimated similarly to those
described in the previous chapters.
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If nodal approximation [4.6] is applied to the weighting functions ψ(−→x ) in the
discrete problem [4.4], the quantities involved in that problem can be written as
follows: ∫

Ω

ψ(Q − ρḢ)dv =
m∑

e=1

〈ψe〉 ·
∫

Ωe

{Ne} (Q − ρḢ)dv

∫
∂Ωq

ψq ds =
m∑

e=1

〈ψe〉 ·
∫

∂Ωe∩∂Ωq

{Ne} q ds

∫
Ω

−−→
gradT (ψ) · λ · −−→grad(T ) dv =

m∑
e=1

〈ψe〉 ·
∫

Ωe

{−−→
gradT (Ne)

}
· λ · −−→grad(T ) dv

If these expressions are transferred into equation [4.4], the quantity to cancel
becomes: ∣∣∣∣∣∣∣∣∣

∫
Ω

ψ(Q − ρḢ)dv +
∫

∂Ωq

ψq ds

−
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T ) dv

=
m∑

e=1

〈ψe〉 · {Re(T, t)}

where the vector {Re(T, t)}, specific to each element e, is called the element residual,
and is written according to the temperature field T (−→x , t) and time t as:

{Re(T, t)} =

∣∣∣∣∣∣∣∣∣

∫
Ωe

{Ne} (Q − ρḢ)dv +
∫

∂Ωe∩∂Ωq

{Ne} q ds

−
∫

Ωe

{−−→
gradT (Ne)

}
· λ · −−→grad(T ) dv

[4.7]

In order to estimate the element residual, it is necessary to express the variation rate
of the material enthalpy, Ḣ , according to temperature and time. In many instances, the
material enthalpy depends on temperature only. The material specific heat C = dH

dT

can then be introduced to write ρḢ = ρCṪ . Term Ṫ can then be approximated by a
nodal approximation (equation [4.5]) as:

∀−→x ∈ Ωe, ∀t ∈ [0, tf [, Ṫ (−→x , t) =
ne∑
i=1

Ne
i (−→x )Ṫ e

i

= 〈Ne(−→x )〉 ·
{

Ṫ e
} [4.8]
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In this equation, the vector {Ṫ e} includes in a column the temperature change rates
at the nodes of element e. If these expressions are inserted into the element residual
(equation [4.7]), we obtain:

{Re(T, t)} =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
Ωe

{Ne}Qdv +
∫

∂Ωe∩∂Ωq

{Ne} q ds

−
(∫

Ωe

ρC {Ne} 〈Ne〉 dv

)
·
{

Ṫ e
}

−
∫

Ωe

{−−→
gradT (Ne)

}
· λ · −−→grad(T ) dv

Note that this expression differs from the steady state (equation [2.6] in Chapter
2) only by adding a term representing the quantity ρḢ into the thermal balance
(equation [4.1]). That term produces the definition of a new element matrix, called the
capacitance matrix, heat capacity matrix or element mass matrix. It is a symmetric
matrix which is written as:

[Ce] =
∫

Ωe

ρC {Ne} 〈Ne〉 dv

Further on in this chapter, as in Part 1, we will restrict our study to the linear case to
fully express the element residual and its assembly. Non-linearities will be addressed
in the next chapter.

4.1.3. Linear case

If the results of Part 1 are used, we see that the element residual will be expressed
linearly according to the problem unknowns if:

– the material heat conductivity λ does not depend on the temperature;

– the term Q, the heat volumetric source, is independent of the temperature (in
fact, as in the steady state, it could depend on it linearly, but as far as we know, this
corresponds to no physical instance);

– the heat flux q applied to the solid boundary ∂Ωq is a linear function of the
temperature (i.e. q = h(Text − T ) + q0, where h and q0 are independent of the
temperature);

– the material volumetric mass ρ and specific heat C are independent of the
temperature.

This element residual will then be expressed as:

{Re(T )} = {F e} − [Ce] ·
{

Ṫ e
}
− [Ke] · {T e}
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The element terms: load vector {F e}, capacitance matrix [Ce] and conductance
matrix [Ke] are written as follows:

{F e} =
∫ e

Ω

{Ne}Qdv +
∫

∂Ωe∩∂Ωq

{Ne} (q0 + hText)ds [4.9]

[Ce] =
∫

Ωe

ρC {Ne} 〈Ne〉 dv [4.10]

[Ke] = [Λe]+[He] with:




[Λe]=
∫

Ωe

{−−→
gradT (Ne)

}
· λ ·

〈−−→
grad(Ne)

〉
dv

[He]=
∫

∂Ωe∩∂Ωq

{Ne}h 〈Ne〉 ds

[4.11]

Finally it is possible to assemble the element quantities as in the steady case, which
allows the global problem of the following nodal residual to cancel:

{R} = {F} − [C] ·
{

Ṫ
}
− [K] · {T} [4.12]

In this equation, the capacitance and conductance global matrices [C] and [K], as
well as the load vector {F}, are obtained by traditional assembly operations:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{F} =
m∑

e=1

[Ae]T · {F e}

[C] =
m∑

e=1

[Ae]T · [Ce] · [Ae]

[K] =
m∑

e=1

[Ae]T · [Ke] · [Ae]

[4.13]

Solving a transient heat conduction problem leads us to solve a first order
differential system with respect to time:

[C] ·
{

Ṫ
}

+ [K] · {T} = {F} [4.14]

It is appropriate to note at this point that this differential equation does not take
account of the essential boundary conditions (known temperature), which are to be
inserted as the solution is in progress. Inserting these boundary conditions can be
done in the same way as in the steady case. We will not go into the details here.



Transient Heat Conduction 111

4.2. Time integration

The integration of differential system [4.14] gives the time evolution of the
temperatures at the mesh nodes and, by means of a nodal approximation, the
temperature and its gradient at any point of the solid. To do so, it is simple to use a
time-stepping solution method for [4.14] by means, for example, of an implicit finite
difference scheme. The temperature change rate at the mesh nodes is written as:

{
Ṫ (t + ∆t)

}
=

{T (t + ∆t)} − {T (t)}
∆t

The column vector {F} and the matrices [C] and [K] being known at instant
t + ∆t, as well as the nodal temperatures at instant t (i.e. vector {T (t)}), the nodal
temperatures at instant t + ∆t are obtained by solving differential system [4.14] at
t + ∆t. This yields:(

[C] + ∆t [K]
) · {T (t + ∆t)} = ∆t {F} + [C] · {T (t)}

Finally, when using such a method, we start with an initial condition at t = 0 (i.e.
temperature {T (0)}), then estimate the solution at each instant by consecutive time
steps ∆t. This is a space approximate solution (by the finite element method) and a
time approximate solution (by the finite difference method). It should be noted that
the time step ∆t may change during the analysis process.

We will now describe other numerical methods to integrate this system over time.

4.2.1. Modal method

The modal method seeks a solution to the transient heat conduction problem as
follows:

T (−→x , t) =
n∑

k=1

βk(t)τk(−→x ) [4.15]

where the n functions τk(−→x ) form a basis of the space of admissible solutions (En
T ).

Applying the finite element method then leads us to look for a solution to the
differential system of the form:

{T (t)} =
n∑

k=1

βk(t) {τk} = 〈{τ1} , . . . , {τn}〉 ·




β1(t)
...

βn(t)


 [4.16]
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where the n vectors {τk} are a basis of Rn, called the modal basis. The modal method
determines a modal basis then expresses the system to solve on that basis to obtain the
solution in that basis.

4.2.1.1. Determining the modal basis

To determine the modal basis, differential system [4.14] with no load vector is
considered:

[C] ·
{

Ṫ
}

+ [K] · {T} = 0 [4.17]

We are then tempted to seek solutions of the form {T (t)} = {τ} e−αt, so that this
system becomes: (

[K] − α [C]
) · {τ} = 0 [4.18]

Matrix [C], being symmetric positive definite, can be decomposed as [C] = [L] ·
[L]T , where [L] is a lower triangular matrix. It would have been possible to choose
to decompose matrix [K] as well. Choosing [C] here is preferable since [K] is not
necessarily defined. This decomposition produces the system ([K] − α [L] · [L]T ) ·
{τ} = 0 which, multiplied on the left by [L]−1, yields:(

[L]−1 · [K] · [L]−T − α [I]
)
[L]T · {τ} = 0

In this equation, [L]−T represents the transpose of the inverse of matrix [L]. We
therefore go back to the solution of an eigenvalue problem whose general form is
written as:

(
[A] − α [I]

) · {Ψ} = 0 with




[A] = [L]−1 · [K] · [L]−T

[I] : identity matrix

{Ψ} = [L]T · {τ}
[4.19]

Matrix [A] being symmetric, this problem admits n real eigenvalues α1, . . . ,

αk, . . . , αn. To each eigenvalue αk corresponds an eigenvector {Ψk} which can be
written as {Ψk} = [L]T · {τk}. If we reverse the process which led us from system
[4.18] to system [4.19], it is easy to demonstrate that the vectors {τk} satisfy the
following condition:

[K] · {τk} = αk [C] · {τk} [4.20]
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Matrix [C] being symmetric positive definite and matrix [K] symmetric but only
positive semi-definite, we can write:

〈τk〉 · [K] · {τk}︸ ︷︷ ︸
≥0

= αk 〈τk〉 · [C] · {τk}︸ ︷︷ ︸
>0

We deduce that the n real eigenvalues αk are positive or equal to zero:

0 ≤ α1 ≤ α2 ≤ · · · ≤ αn

To define the eigenvectors in a single way, it is necessary to norm them. Several
norms are able to do so; the most traditional are:

– The infinite norm: Maxi=1···n(τki).

– The [C]-norm: 〈τk〉 · [C] · {τk}.

Now consider 2 vectors {τj} and {τk}, corresponding to 2 different eigenvalues
αj �= αk. It is then possible to determine equation [4.20] for each value and derive:

〈τk〉 · [K] · {τj} = αj 〈τk〉 · [C] · {τj}
〈τj〉 · [K] · {τk} = αk 〈τj〉 · [C] · {τk}

Given the symmetry of the matrices [K] and [C], we can write:

〈τk〉 · [K] · {τj} = 〈τj〉 · [K] · {τk}
〈τk〉 · [C] · {τj} = 〈τj〉 · [C] · {τk}

From the above equations, we can derive:(
αj − αk

) 〈τk〉 · [C] · {τj} = 0

then:

〈τk〉 · [K] · {τj} = 〈τk〉 · [C] · {τj} = 0 [4.21]

In the multiple mode case, i.e. if the eigenspace corresponding to an eigenvalue αk

is of a dimension strictly greater than 1, we can construct an orthogonal basis of that
space in the sense of the scalar product L({τj} , {τk}) = 〈τj〉 · [C] · {τk}. It is obvious
that equation [4.21] remains valid.
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Equation [4.21] thus shows that the {τk} for k = 1 . . . n form an orthonormal
basis of Rn called a modal basis.

We write:

cj = 〈τj〉 · [C] · {τj}
kj = 〈τj〉 · [K] · {τj}

[4.22]

As in mechanics, we can call cj and kj respectively generalized capacitance and
conductivity. Note that kj and cj verify αj = kj

cj
.

The description of the calculation methods of eigenvalues and vectors is not dealt
with in this book. It is possible for interested readers to consult [ZIE 91] or [BAT 96].

4.2.1.2. Projection on the modal basis

We therefore seek a solution of the differential system in the form given by [4.16],
where ({τk})k=1...n is the modal basis. By projecting the differential system onto each
vector {τj}, we obtain:

〈τj〉 · [C] ·
n∑

k=1

β̇k(t) {τk} + 〈τj〉 · [K]

·
n∑

k=1

βk(t) {τk} = 〈τj〉 · {F (t)}

Given [4.21] and [4.22], we then obtain n first order differential equations, each
now including only one unknown βj :

cj β̇j(t) + kjβj(t) = fj(t) with fj(t) = 〈τj〉 · {F (t)} [4.23]

To integrate equation [4.23] over time, we can use one of the direct integration
algorithms presented hereafter. It is equally possible to use the analytical solution of
equation [4.23] which is written:

βj(t) = e−αj(t−t0)

(
βj

(
t0
)

+
1
cj

∫ t

t0

eαj(s−t0)fj(s)ds

)
[4.24]

where βj(t0) is the initial solution obtained from the initial temperature by:

βj(t0) = 〈τj〉 {T (t0)}
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Most of the time, the right-hand side of [4.24] cannot be calculated analytically.
However, it is possible to calculate a time-stepping solution by assuming that, on each
time step, fj(t) of [4.23] varies linearly. For each time step, we obtain:

βj(t + ∆t) = βj(t)e−αj∆t +
fj(t + ∆t)

kj

(
1 +

e−αj∆t − 1
αj∆t

)

− fj(t)
kj

(
e−αj∆t +

e−αj∆t − 1
αj∆t

)

In practice, it is unnecessary to consider a modal basis including all the problem
eigenmodes. Only the n′ first modes corresponding to the lowest eigenvalues and
allowing us to give an accurate representation of the temperature are necessary. The
number of differential equations [4.23] is consequently reduced.

The use of this method, also designated modal superposition method, requires on
the one hand the calculation of the n′ first eigenmodes and eigenvalues and on the
other hand the integration of n′ uncoupled differential equations [4.23].

This method is widely used in mechanics, but fairly rarely in thermal science.

4.2.2. Direct time integration

We consider the following first order differential equation which we will try to
integrate over time:

u̇(t) = g(u, t) [4.25]

In equation [4.25], if we refer to equation [4.23], we see that u represents the
projection of the nodal temperature vector onto a vector {τj} of the modal basis,
and g(u, t) = 1

cj
(fj(t) − kju(t)). In the general case of differential system [4.12], u

represents the nodal temperature vector {T} and g the vector [C]−1 ({F}−[K]·{T}).

Direct integration algorithms make it possible to integrate an equation like [4.25]
step by step over time. Thus, to calculate the quantities at instant t + ∆t, we assume
all the quantities at the previous instants (t, t − ∆t, etc.) to be known and apply
a numerical scheme to replace the differential equation with an algebraic equation
whose unknowns are the velocities at t + ∆t.

There is a large number of integration schemes of differential equation [4.25].
Among the most widely used are the generalized central difference algorithm and the
generalized trapezoidal rule.
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t t+∆tτ time

velocity

u(t)
.

u(τ)
.

u(t+∆t)
.

(a) generalized central differences

t t+∆tτ time

velocity

u(t)
.
u(τ)
.

u(t+∆t)
.

(b) generalized trapezoidal rule

Figure 4.1. Time integration schemes: (a) generalized central difference method
and (b) generalized trapezoidal rule

The generalized central difference algorithm (Figure 4.1a) assumes that the
velocity u̇ is constant over each time interval [t, t + ∆t] and equal to the value at an
intermediate instant t + ν∆t (with 0 ≤ ν ≤ 1):

u(t + ∆t) − u(t)
∆t

= u̇(t + ν∆t) = g
(
u(t + ν∆t), t + ν∆t

)
[4.26]

In the generalized trapezoidal algorithm (Figure 4.1b), the velocity u̇ is also
assumed to be constant, but is obtained as a weighted mean velocity of the velocities
at times t and t + ∆t. With 0 ≤ ν ≤ 1 we obtain:

u(t + ∆t) − u(t)
∆t

= (1 − ν)u̇(t) + νu̇(t + ∆t)

= (1 − ν)g(u(t), t) + νg
(
u(t + ∆t), t + ∆t

) [4.27]

Actually, these two families of numerical schemes are very close. They even
coincide when the function g is a linear function of u, as is the case in linear
conduction. In non-linear cases, the slight differences can be seen in Figure 4.1.

In the above numerical schemes, u(t+∆t) is the unknown. It is obvious that if the
right-hand side of [4.26] or [4.27] is independent of this unknown, then we directly
(or explicitly) obtain u(t + ∆t) = u(t) + g(u(t), t)∆t. Then the numerical scheme is
called explicit.

For the numerical scheme families considered here, only the case ν = 0
corresponds to an explicit scheme, designated as an Euler explicit scheme. In the
case ν = 1, we obtain an Euler implicit scheme. The intermediate algorithms
corresponding to 0 < ν < 1 are said to be semi-implicit. The central difference
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method (also called the Crank-Nicolson algorithm) corresponds to equation [4.26]
with ν = 1/2 and the trapezoidal rule to equation [4.27] with ν = 1/2.

To apply the generalized central difference scheme to the transient heat conduction
problem, we start again with equation [4.14] which is considered at instant t + ν∆t:

[Cν ] ·
{

Ṫν

}
+ [Kν ] · {Tν} = {Fν}

In the above equation, index ν is used to locate the quantities evaluated at instant
t+ν∆t. Unless otherwise indicated, this index will be used later on. In addition, index
0 will be used for quantities evaluated at t and index 1, for those evaluated at t + ∆t.

The variable change rate {T} being assumed to be constant over the time interval
considered, we can write:

{Tν} = {T (t + ν∆t)} = (1 − ν) {T0} + ν {T1}

In that expression, vector {T0} is known (it is the one at instant t), whereas
vector {T1} is the one we are trying to determine. Inserting this expression into the
differential equation to solve then gives the following equation linear system:(

1
∆t

[Cν ] + ν [Kν ]
)
· {T1} =

(
1

∆t
[Cν ] − (1 − ν) [Kν ]

)
· {T0} + {Fν}︸ ︷︷ ︸

Gν

[4.28]

The solution of this linear system allows us to obtain {T1}, i.e. the temperatures
at the mesh nodes at instant t + ∆t, from vector {T0}, i.e. the temperatures at the
mesh nodes at instant t. In the linear case being dealt with here, the other vectors and
matrices involved are not time-dependent.

Now apply the generalized trapezoidal scheme to equation [4.14] considered at
instant t + ∆t:

[C1] ·
{

Ṫ1

}
+ [K1] · {T1} = {F1}

We obtain:

(
1

∆t
[C1] + ν [K1]

)
· {T1} =

∣∣∣∣∣∣∣∣∣∣

1
∆t

[C1] · {T0}

+ (1 − ν) [C1] ·
{

Ṫ0

}
+ ν {F1}

[4.29]
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The generalized trapezoidal scheme requires at each instant vector {T0} and vector
{Ṫ0} which is calculated gradually by means of formula [4.27]. At the initial instant,
{Ṫ0} is calculated by solving equation [4.14] at that instant, the initial temperature
vector {T0} being assumed to be known.

Equations [4.28] and [4.29] do highlight the differences between both algorithm
families, resulting mainly, in non-linear cases, from the fact that the quantities
involved are not evaluated at the same instant (t + ν∆t for the generalized central
difference algorithm and t + ∆t for the generalized trapezoidal algorithm).

Consider again equation [4.28] in the case of the Euler explicit scheme
corresponding to ν = 0. We then obtain the following system:

1
∆t

[C0] · {T1} = {G0} with {G0} =
(

1
∆t

[C0] − [K0]
)
· {T0} + {F0} [4.30]

The matrix to inverse is simply [C0], the capacitance matrix, resulting from
the assembly of the element capacitance matrices [Ce] calculated at instant t. The
conductance matrix [K0] is not involved in this matrix to inverse, but only in the load
vector.

The strict application of the finite element method produces a capacitance matrix
[C0], symmetric and sparse, with non-diagonal terms different from zero. [C0] is called
a consistent capacitance matrix (with the finite element formulation). However, in
order to facilitate the inversion of the linear system obtained, matrix [C0] is made
diagonal. This operation keeps the model’s total capacitance while eliminating the
coupling terms between two nodes. All the thermal capacitance is then transferred to
the diagonal terms of the matrix. In fact, with this technique, the specific heat is no
longer distributed evenly in the material volume but is lumped at the mesh nodes.

The most common lumping technique transfers on the diagonal the sum of the
terms of each line:

[C0] =


C11 C12 · · ·

C21 C22 · · ·
· · · · · · · · ·




=⇒ [C0] ≈

C11 + C12 + · · · 0 0

0 C21 + C22 + · · · 0
0 0 · · ·



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This approximation considerably simplifies the solution of linear system [4.30]
as it is reduced to n scalar equations yielding the components of {T1} directly. The
problem unknowns at instant t + ∆t are thus obtained explicitly without solving a
linear system. Furthermore, storing the matrix only requires storing the n diagonal
terms.

However, the explicit scheme has a major drawback. The algorithm is
conditionally stable, i.e. the time step must never exceed a limit value. How to obtain
this limit value is described in the next section. That is the reason why it is restricted
to strongly non-linear problems, involving rapid phenomena already requiring, for
physical reasons, very small time steps.

When an implicit or semi-implicit scheme (0 < ν ≤ 1) is used, the temperatures
at the mesh nodes at instant t+∆t (i.e. vector {T1}) are obtained by solving equation
system [4.28]. When the problem is linear, matrices [Cν ] and [Kν ] involved in the
system are independent of the temperature. Therefore, they are constant over time,
and the matrix to invert in equation system [4.28] is determined by the time step ∆t.
The assembly and triangulation of this matrix will only be necessary when the time
step ∆t is modified during the calculation process.

Implicit schemes are more complicated to process than explicit schemes. However,
their stability conditions are less severe. This explains why they are frequently used in
thermal science.

4.2.3. Accuracy and stability of a direct integration algorithm

In order to analyze the stability and accuracy of the integration schemes presented
in section 4.2.2, we will cover the linear case only, and assume that the time step
used, ∆t, is constant. Thus, we can designate with index p the quantities estimated at
instant p∆t. {T0} thus gives the temperatures at the mesh nodes at t = 0, {Tp} the
temperatures estimated at t = p∆t, and {Tp+ν} those estimated at t = (p + ν)∆t,
i.e. during the time interval, [p∆t, (p + 1)∆t], with 0 ≤ ν ≤ 1. Besides, restricting
the study to the linear case allows us to write matrices [Cν ] and [Kν ] as [C] and [K],
since they are constant.

Now it is important to differentiate the accuracy and stability conditions of an
algorithm:

– the algorithm accuracy is given by the truncation error made in formula [4.26]
or [4.27];

– the stability is the capacity of an algorithm to reduce or amplify the errors made
during the consecutive time steps.
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4.2.3.1. Accuracy

The variation of a quantity u during a time step is approximated as:

up+1 − up

∆t
=

{
u̇p+ν in the central difference method

(1 − ν)u̇p + νu̇p+1 in the trapezoidal rule

In order to evaluate the truncation error made with the generalized central
difference method, the following Taylor series expansions are written:


up+1 = up+ν + (1 − ν)∆tu̇p+ν + (1 − ν)2

∆t2

2
üp+ν + O(

∆t3
)

up = up+ν − ν∆tu̇p+ν + ν2 ∆t2

2
üp+ν + O(

∆t3
)

By subtracting these two expressions then dividing the result by ∆t, we obtain:

up+1 − up

∆t
− u̇p+ν = (1 − 2ν)

∆t

2
üp+ν + O(

∆t2
)

Likewise, the truncation error made with the generalized trapezoidal rule can be
obtained from the following Taylor series expansions:


up+1 = up + ∆tu̇p +

∆t2

2
üp + O(

∆t3
)

u̇p+1 = u̇p + ∆tüp + O(
∆t2

)
From these expressions we immediately find that:

up+1 − up

∆t
− (

(1 − ν)u̇p + νu̇p+1

)
=

(
1
2
− ν

)
∆tüp + O(

∆t2
)

We can see that both families produce first order algorithms when ν �= 1
2 . The

numerical schemes are said to be coherent at order 1 for differential equation [4.25].
This means that the errors in the velocity u̇ are in the order of ∆t. When ν = 1

2 , the
algorithm is coherent at order 2 and the errors made are in the order of ∆t2.

The conclusion of this might be that the Crank-Nicolson algorithm (ν = 1
2 ) is, in

any case, the best possible choice. In fact, it is not so obvious, for, as will be seen later
on, this scheme produces oscillating solutions when the time step is too great. With
strong non-linearities, like those resulting from state changes for example, the Euler
implicit algorithm is generally preferred.
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4.2.3.2. Stability

We have just seen that at each time step, the solution obtained is erroneous.
Imagine these errors aggregated in the case of Euler implicit algorithm (ν = 1).
We saw previously that this algorithm is coherent at order 1. Therefore, there is a
constant such that: ∣∣∣∣up+1 − up

∆t
− u̇p+1

∣∣∣∣ ≤ k∆t

The error would then be less than the product Nk∆t where N represents the
number of time steps performed.

Unfortunately, these are not the only errors that add up because numerical scheme
[4.26] or [4.27], uses numerical values up which are also erroneous. The numerical
scheme may therefore amplify the errors to the point of producing an unacceptable
solution. We say that a numerical scheme is stable if the error amplification is bounded,
i.e. if the very solution of the discretized problem is bounded. We can demonstrate that
if a numerical scheme is coherent and stable, then the numerical solution converges
toward the continuous solution when the time step tends to 0.

In order to analyze the algorithm stability condition, it is useful to consider the
eigenvector basis. We therefore consider the linear conduction case and go back to
equation [4.23], which is re-written as:

β̇j(t) + αjβj(t) =
1
cj

fj(t) [4.31]

Applying the generalized central difference algorithm to the equation above over
the interval [p∆t, (p + 1)∆t]; we obtain:(

1
∆t

+ ναj

)(
βj

)
p+1

=
(

1
∆t

− (1 − ν)αj

)(
βj

)
p

+
1
cj

(
fj

)
p+ν

which, once rearranged, becomes:

(
βj

)
p+1

=
1 − (1 − ν)αj∆t

1 + ναj∆t

(
βj

)
p

+
∆t

1 + ναj∆t

1
cj

(
fj

)
p+ν

[4.32]

By recurrence this relationship yields (βj)p+1 as a function of (βj)0. The
algorithm will be stable if all the (βj)p+1 remain bounded, regardless of j and p. The
algorithm stability condition is therefore written as:

∀j,

∣∣∣∣1 − (1 − ν)αj∆t

1 + ναj∆t

∣∣∣∣ ≤ 1, i.e. ∀j, (1 − 2ν)αj∆t ≤ 2



122 Finite Element Simulation of Heat Transfer

From this relationship it can be deduced that if 1/2 ≤ ν ≤ 1, then the scheme
used is unconditionally stable. On the contrary, if 0 ≤ ν < 1/2, then the scheme
is conditionally stable, and the time step used, ∆t, must be less than or equal to the
critical stability step, ∆tsta:

∆t ≤ ∆tsta with ∆tsta =
2

(1 − 2ν)αmax
[4.33]

where αmax represents the greatest eigenvalue.

When going back to relationship [4.32], it is clear that the solution oscillates when
1−(1−ν)αj∆t

1+ναj∆t < 0. A non-oscillation condition of the solution over time can be derived
from this. This condition is written as:

∀j,
1 − (1 − ν)αi∆t

1 + ναj∆t
≥ 0, i.e. ∆t ≤ ∆tosc

with ∆tosc =
1

(1 − ν)αmax

[4.34]

We can see that relationship [4.34] is always satisfied for the Euler implicit
algorithm. Therefore, this algorithm never produces an oscillating solution, whatever
the time step value.

4.2.3.3. Simplified analysis of the stability condition

Relationship [4.33] gives the stability condition in a stringent manner. However, to
be applied practically, this relationship requires a previous calculation of the problem
eigenvalues and modes, which increases the global cost of the analysis. Thus, it is
useful to have a stability condition generated by a simplified analysis.

To do so, we consider a 1D case with no source term and a regular mesh composed
of n 2-noded elements of length e. The complete mesh thus consists of n + 1 nodes.
Besides, we consider a capacitance thermal matrix lumped by means of the technique
described in section 4.2.3.2. It is then easy to obtain:

[Ke] =
λ

e

[
1 −1
−1 1

]
=⇒ [K] =

λ

e




1 −1 0 · · · · · · · · ·
−1 2 −1 0 · · · · · ·
0 −1 2 −1 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 −1 2 −1
· · · · · · · · · 0 −1 1



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[Ce] = ρCe

[
1/2 0
0 1/2

]
=⇒ [C] = ρCe




1/2 0 0 · · · · · · · · ·
0 1 0 0 · · · · · ·
0 0 1 0 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 0 1 0
· · · · · · · · · · · · 0 1/2




The generic equation corresponding to node 1 < j < n + 1 is written as:

ρCeṪj +
λ

e

(− Tj−1 + 2Tj − Tj+1

)
= 0

Applying the generalized central difference algorithm then yields, after a few
mathematical manipulations:

(
Tj

)
p+1

− (
Tj

)
p

+ Fo


 (1 − ν)

(
− (

Tj−1

)
p

+ 2
(
Tj

)
p
− (

Tj+1

)
p

)
+ ν

(
− (

Tj−1

)
p+1

+ 2
(
Tj

)
p+1

− (
Tj+1

)
p+1

)

 = 0

[4.35]

where Fo is the Fourier number:

Fo =
λ∆t

ρCe2
[4.36]

To study the stability, the Fourier method is used here. This method analyzes the
amplitude variation of each term of the Fourier series development of a disturbance
of the initial solution. We therefore consider a disturbance in the form

∑
l V

l(t)eilx,
i being the complex number such that i2 = −1, and we study the variation of the lth

harmonic V l when equation [4.35] is applied to it.

If we term xj the x-coordinate of node j and given that xj−1 = xj − e and
xj+1 = xj + e, we obtain:

((
V l

)
p+1

− (
V l

)
p

)
eilxj + Fo


 (1 − ν)

(
V l

)
p

(− e−ile + 2 − eile
)

+ ν
(
V l

)
p+1

(− e−ile + 2 − eile
)

 eilxj = 0

from which we derive:(
V l

)
p+1(

V l
)
p

=
1 + 4Fo(ν − 1) sin2 (le/2)

1 + 4Foν sin2 (le/2)
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It is obvious that the stability condition, also called the von Neumann condition, is
written as: ∣∣∣∣1 + 4Fo(ν − 1) sin2 (le/2)

1 + 4Foν sin2 (le/2)

∣∣∣∣ ≤ 1

For this condition to be satisfied whatever the harmonic l considered, it is sufficient
that:

(1 − 2ν)Fo ≤ 1
2

[4.37]

Of course, for 1/2 ≤ ν ≤ 1, condition [4.37] is always satisfied. In the other cases,
the stability time step derived from [4.37] is given by:

∆tsta =
ρCe2

2λ(1 − 2ν)
[4.38]

This stability condition is only approximated. It is valid only in the conditions
considered to establish it. In 2D and 3D cases, and for elements of the same size in
the 2 or 3 directions, it is possible to demonstrate that the stability condition related
to the Euler explicit scheme is written respectively as Fo ≤ 1

4 and Fo ≤ 1
6 . When

all the elements are not the same size (which is the most common case), the stability
criterion must be calculated with the smallest element.

4.2.4. Practical complementary rules

We have just seen that, for reasons of stability or non-oscillation of the solution
over time, the time step ∆t used when simulating heat exchanges with finite elements,
was always to remain less than two limit values (∆tsta defined by equation [4.33]
and ∆tosc defined by equation [4.34]). In this section, a few complementary rules
to choose this time step ∆t are given. These complementary rules illustrate the fact
that the choice of the time step depends not only on the time integration algorithm
selected (value of ν in particular) and the material properties (eigenvalues of the
matrix [C]−1 [K]) but also on the mesh chosen to represent the structure on which
the simulation is performed.

4.2.4.1. Space oscillations during thermal shock simulation

In the case of a thermal shock, if the terms of the capacitance matrix [C] are not
lumped on the diagonal, the simulation time step must remain greater than a value
∆ts, so as to avoid the appearance of space oscillations of the solution during the
initial moments of the calculation process. This phenomenon will be illustrated on a
1D problem.



Transient Heat Conduction 125

1

x

n+1ii-1 i+1 n

e=1/n

0 1

Figure 4.2. Mesh of the segment [0, 1] with n elements

Consider the case of a body initially at homogenous temperature, put in sudden
contact with another body at a different temperature (thermal shock problem). To
represent this thermal shock without losing the general characteristic of the results
obtained, the following 1D problem is used:

Find T (x, t) satisfying at each instant t:

∀x ∈ ]0, 1[, ρCṪ = λ
∂2T

∂x2

∂T

∂x
(0, t) = 0

T (1, t) = 1

with the initial condition:

∀x ∈ [0, 1[, T (x, 0) = 0

To solve this finite element problem, the segment [0, 1] is divided into n first
order elements (with linear interpolation) of length e = 1/n (Figure 4.2). The mesh
obtained includes n + 1 nodes. The resolution of the problem leads us to seek the
vector {T} including the nodal values of the temperature field at each instant (Ti is
the temperature value at node i at that instant), and satisfying:

[C] ·
{

Ṫ
}

+ [K] · {T} = {0} with

{
Tn+1 = 1 for any t > 0
Ti = 0 at t = 0 for any 1 ≤ i ≤ n

Conductance matrix [K] and capacitance matrix [C] can easily be calculated from
the element matrices:

[Ke] =
λ

e

[
1 −1
−1 1

]
=⇒ [K] =

λ

e




1 −1 0 · · · · · · · · ·
−1 2 −1 0 · · · · · ·
0 −1 2 −1 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 −1 2 −1
· · · · · · · · · 0 −1 1



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[Ce] =
ρCe

6

[
2 1
1 2

]
=⇒ [C] =

ρCe

6




2 1 0 · · · · · · · · ·
1 4 1 0 · · · · · ·
0 1 4 1 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 1 4 1
· · · · · · · · · · · · 1 2




The generic equation at one node 2 ≤ i ≤ n is then written as:

Ṫi−1 + 4Ṫi + Ṫi+1 +
6Fo

∆t

(− Ti−1 + 2Ti − Ti+1

)
= 0

Now we will apply the generalized trapezoidal algorithm to estimate the
temperatures Ti at the beginning of the thermal shock at t = ∆t. By writing the
previous equation at time ∆t, and considering that the terms Ti and Ṫi are equal to
zero at t = 0, we get Ṫi = Ti/ν∆t for each index i and obtain:

Ti = A
(
Ti−1 + Ti+1

)
with A =

6Foν − 1
4 + 12Foν

If we write Di = Ti −Ti−1, we see that the above equation is satisfied in the same
manner by these quantities, i.e:

Di = A
(
Di−1 + Di+1

)
In order to avoid space oscillations of the solution, Figure 4.3 suggests that all the

Di must have the same sign. We derive from this a non-oscillation condition of the
solution which is written A ≥ 0, i.e.:

6νFo ≥ 1 =⇒ ∆t ≥ ∆ts with ∆ts =
ρCe2

6λν
[4.39]

If condition [4.39] is not satisfied, then the solution obtained will produce space
oscillations contrary to physical laws. In fact, this condition must be generally
considered as a constraint on the size e of the first element affected by the thermal
shock. This constraint gives the element maximum size according to the time step
used:

e ≤ emax with emax =

√
6λν∆t

ρC
[4.40]
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T
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1

xi-1 xi+1xi

Di+1

Di

Figure 4.3. General aspect of the problem solution

Consider a capacitance matrix obtained by lumping the thermal capacitance on
the nodes (see section above). In our simple example, this comes down to using the
following matrix [C]:

[C] ≈ ρCe

6




3 0 0 · · · · · · · · ·
0 6 0 0 · · · · · ·
0 0 6 0 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 0 6 0
· · · · · · · · · · · · 0 3




If the same method as before is used, the following relationship is then obtained:

Ti = A′(Ti−1 + Ti+1

)
with A′ =

6Foν

6 + 12Foν

The constant A′ thus defined remains always positive or equal to zero, so that
the solution obtained does not oscillate, whatever the time step ∆t used. In fact, this
lumped approximation of the capacitance matrix consists of introducing an additional
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conduction term. Indeed, the constant A′ can easily be expressed in the same form as
the constant A previously defined, but by means of a modified thermal conductivity:

A′ =
6Fo′ν − 1
4 + 12Fo′ν

with Fo′ =
λ′∆t

ρCe2
and λ′ = λ +

ρCe2

6ν∆t

4.2.4.2. Discrete maximum principle

We saw that in thermal shock problems, space oscillations of the solution could
appear if the time step chosen was less than a value ∆ts. In fact for time steps
∆t<∆ts, the discrete maximum principle is no longer satisfied.

Generally speaking, it is reported that a function defined in a domain Ω, as the
solution of a boundary value problem, satisfies the maximum principle if it reaches its
maximum on the boundary ∂Ω of Ω.

In practice, the temperature satisfies the maximum principle in many thermal
problems. For instance, we can list the three following situations:

– in steady state conduction problems, if temperature boundary conditions alone
are applied, the temperature is maximum on Ω boundary;

– in the case of transient heat conduction, with no internal heat source, the
maximum temperature is reached at the initial instant or on the boundary;

– for a solid heated in a bath by means of an exchange coefficient, the temperature
of the solid is bounded by that of the bath.

The first two examples are still valid for diffusion-convection problems.

When the continuous problem is discretized it is termed the discrete maximum
principle. The satisfaction of this principle ensures that the discretized solution has
the same bounds as the exact solution of the continuous problem. Indeed, the discrete
maximum principle is a simple principle which any discrete system must satisfy for
its solution to make sense from a physical point of view.

The finite element discretization of the continuous problem does not necessarily
produce systems satisfying the discrete maximum principle. We saw an example
earlier with the thermal shock problem and we will see another with the
diffusion-convection problem.
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As was seen in the previous chapters, after the possible application of a time
integration algorithm in transient problems, the finite element method leads to the
solution, at each time step, of a linear system of the type:

[A] · {T} = {Q}

where vector {T} includes the unknown temperatures and [A] and {Q} depend on the
problem being dealt with.

It must be emphasized that the above linear system includes the boundary
conditions with prescribed temperature.

Sufficient conditions for matrix [A] to satisfy the discrete maximum principle were
proposed by Ciarlet [CIA 70]. They are the following:

– C1: the matrix [A] is invertible and has a dominant diagonal;

– C2: all the diagonal terms of [A] are positive and the non-diagonal terms are
negative or equal to zero.

Consider once again the thermal shock problem dealt with in the previous section.
Matrix [A] in this case is the following:

[A] = [K] +
1

ν∆t
[C]

[A] =
ρCe

6ν∆t




a b 0 · · · · · · 0

b 2a b
. . .

...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . . b 2a b

0 · · · · · · 0 b a




with

a = 6νFo + 2 b = −6νFo + 1

Matrix [A] above is invertible and has a dominant diagonal. All the diagonal terms
are positive, but the non-diagonal terms are not necessarily negative or equal to zero.
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For condition C2 to be satisfied, we must have:

b ≤ 0 ⇐⇒ ∆t ≥ ∆ts with ∆ts =
ρCe2

6λν

With such a condition, the discrete maximum principle is satisfied.

We can also check that conditions C1 and C2 are always satisfied when a diagonal
specific heat matrix is used.

Here the analysis was carried out in a 1D theoretical case by means of first order
finite elements. In 2D and 3D cases, and for isoparametric finite elements of a higher
order, it is necessary to study matrix [A]. This is all the more difficult as the Fourier
number changes from one element to the other.

The discrete maximum principle combined with the finite element method has
been extensively studied, especially by Lobo and Emery [LOB 93, LOB 95], for
thermal shock problems with convective or radiative boundary conditions. The
authors suggest the use of certain types of preferable elements.

The main elements they recommend are the following:

– first order elements with a lumped capacitance matrix. In a transient problem,
with first order elements, the capacitance matrix brings a positive contribution to
the non-diagonal terms of the matrix [A] = [K] + 1

ν∆t [C]. Using a lumped
capacitance matrix eliminates this problem and gives great efficiency to this type
of element. Introducing thermal exchange conditions by means of an exchange
coefficient produces the same type of problem;

– high order (quadratic or cubic) isoparametric elements make it possible to satisfy
the discrete maximum principle over a wider range of the Fourier number. This is due
to the fact that the positive contribution of the mass matrix to the non-diagonal terms
of [A] is distributed over a larger number of terms.

The authors also recommend first order elements modified by the addition of
second order terms to satisfy the discrete maximum principle and of C1 elements
as well. However, the scope of application and efficiency of these elements are rather
limited. Moreover, these elements are generally not present in major computer codes.

4.2.4.3. Initial temperatures during thermal contact simulation

The thermal contact problem occurs when casting processes are simulated. To
illustrate this, a simple 1D example will be used as in the previous section.
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e1 e2
x

medium 1

λ1 ρ1 C1

initial temperature: T1

medium 2

λ2 ρ2 C2

initial temperature: T2

Figure 4.4. Mesh of the media for the thermal contact study

Consider two media initially at homogenous temperatures T1 and T2, being put in
sudden contact at instant t = 0. In order to calculate the transient thermal states with
the finite element method, a mesh consisting of first order elements and uniform in
each of the two media (Figure 4.4) is constructed. e1 and e2 will denote the sizes of
the elements in media 1 and 2.

The contact is assumed to be perfect, so that the mesh is continuous when passing
between the two media 1 and 2. The main problem in this type of simulation is to
choose the initial temperature at the interface node between the two media.

If the media are large enough to behave as if they were infinite, then the problem
has an analytical solution [CAR 59]. In this case, the temperature at the contact node
is known to remain constant and takes the following value:

Tc =
b1T1 + b2T2

b1 + b2
with b1 =

√
λ1ρ1C1 and b2 =

√
λ2ρ2C2

In this equation, b1 and b2 represent the thermal effusivity of media 1 and 2
respectively.

Choosing Tc as the initial value of the contact temperature is not always the best
choice. In order to calculate the temperature to use, which will be written T ′

c, we start
with the initial distribution (at t = 0) of the temperatures in both media, resulting from
the finite element discretization. This distribution is illustrated in Figure 4.5.

The only exchanges possible, when both media are in contact, are related to the two
media only. If the temperature T ′

c at the contact node is to be physically acceptable,
it must reproduce the fact that the quantity of heat gained by one medium is equal to
that lost by the other medium. By writing Qi the quantity of heat gained by medium i
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e1 e2

x

medium 1

λ1 ρ1 C1

medium 2

λ2 ρ2 C2

T

T2

Tc

T1

Figure 4.5. Initial temperature distribution

between instants −ε and 0 (ε > 0, so that instant −ε represents the instant immediately
before contact), we obtain:

Qi =
∫ 0

−ε

∫
Ωi

ρiCiṪ dx dt =
∫

Ωi

ρiCi

(
T (x, 0) − T (x,−ε)

)
dx

Given that the temperatures at instant −ε are T1 in medium 1 and T2 in medium 2,
that the function T (x, 0) is linear in x due to the elements used, and assuming that the
characteristics of the media are homogenous and are not temperature-dependent, the
quantity of heat Qi can be written as follows:

Qi =
1
2
ρiCiei

(
T ′

c − Ti

)
The thermal balance between the two media prescribes Q1 + Q2 = 0, which

produces the following expression for the contact temperature:

T ′
c =

ρ1C1e1T1 + ρ2C2e2T2

ρ1C1e1 + ρ2C2e2

This physically coherent value of the contact node temperature is significantly
different from the theoretical value Tc obtained for infinite media. In fact, it is possible
to choose the sizes of the elements close to the contact, e1 and e2, such that Tc and T ′

c

coincide. To do so, it is sufficient that the ratios of the coefficients bi (producing Tc)
to ρiCiei (producing T ′

c) of each medium are equal. The following mesh criterion is
obtained:

e2

e1
=

√√√√ λ2
ρ2C2

λ1
ρ1C1
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This criterion is also written Fo1 = Fo2, where Foi is a Fourier number, defined
by equation [4.36,] corresponding to the medium i.

According to this criterion, the square ratio of the sizes of the first elements in
media 1 and 2 must be equal to the ratio of the thermal diffusivity of these media. This
criterion can also be obtained directly, and in a more general framework, by writing
Ṫ = 0 at t = 0 at the interface level, from the discretized equations. By choosing
Tc as the temperature at the contact node, and satisfying that criterion when meshing
these two media in contact, a physically coherent value is used, because it satisfies the
thermal balance between both media.

In the case of the solidification of a cast iron piece in a sand mold, hence a sand-cast
iron interface (a traditional casting problem) the criterion established produces very
different element sizes on each side of the interface [BER 86]. Indeed, consider the
following mean characteristics of the two media:

– λ1 = 0.4 W/m/K, ρ1 = 1,500 kg/m3 and C1 = 1,150 J/kg/K for sand
(medium 1);

– λ2 = 40 W/m/K, ρ2 = 7,500 kg/m3 and C2 = 820 J/kg/K for cast iron
(medium 2).

Applying the criterion produces e2/e1 = 5.3. If it is not satisfied, we can show
that:

– if e2/e1<5.3, then the metal cooling process slows down, and the contact
temperature becomes greater than the analytical value Tc;

– if e2/e1 > 5.3, then the cast iron cooling process accelerates, and the contact
temperature becomes less than the analytical value Tc.

We have established this mesh criterion in a simple 1D case. It is easily extended
to 2D and 3D cases. On each side of the interface, the mesh must necessarily be in
the form of regular layers whose thicknesses are in a ratio satisfying the criterion.
For instance, in the case of the cast iron-sand interface, the first layer regularity on
each side of the interface is a strict obligation, otherwise it will significantly affect
the positions of the hot points. Indeed, the local cooling kinetics will depend on the
satisfaction or the non-satisfaction of this criterion.

Some computer codes include meshing procedures, enabling them to make
successive layers of elements with controlled thicknesses on each side of the
interface. It is then possible to satisfy the criterion previously established. Figure
4.6 illustrates a 2D mesh example performed from the layer mesher of the software
SY STUSTM .
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Figure 4.6. Mesh of a casting and its mold

One way of obtaining, with certainty, and independently of the mesh used,
physically coherent initial conditions at the interface of a perfect thermal contact
consists of:

– assuming first of all that both media are at the same initial temperature, that of
medium T1, for instance;

– calculating the energy required to bring medium 2 to temperature T2;

– prescribing that energy as an internal heat source distributed in the volume of the
elements representing medium 2 for a very short time.
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Very short time means the time allowing no significant gradient to settle down
beyond the first layer of elements on each side of the interface. The interface
temperature then adjusts itself to the local value T ′

c which will coincide with the
value Tc if the element thicknesses satisfy the criterion.

Another way of dealing with thermal interfaces is to perform two separate meshes,
and introduce on the interface a thermal contact resistance. The interface heat flux will
then be given locally according to the temperatures of each medium obtained by nodal
approximation. If T1 is the local temperature of medium 1, and T2 that of medium 2,
then the heat flux Q1 gained by medium 1 is equal to Q1 = (T2−T1)/Rc, whereas that
gained by medium 2 is equal to Q2 = −Q1 = (T1−T2)/Rc. In these expressions, Rc

is a characteristic introduced for the interface, often called thermal contact resistance.
If a very low value is used for Rc, the situation is close to that of a perfect contact.

4.3. Working example

The aim of this section is to illustrate with a simple example the notions
introduced in this chapter to simulate transient heat conduction in a solid. To do so,
the induction heating example used to illustrate the formulation of the steady state
conduction problem is considered again. Firstly, the physical modeling process used
in this example and its finite element approximation are studied in depth, then a few
numerical applications are performed to illustrate the notions seen in this chapter.

4.3.1. Physical modeling and approximation

The induction heating of a plate is illustrated in Figure 4.7. In Part 1 of this book,
this example was dealt with using a heating volumetric term Q and an exchange
coefficient h independent of time and the steady state corresponding to those
conditions was sought. Here, a thermal capacitance of the material is introduced and

plate

inductor

x T

0

E

E-P Q(x)

Td

convection

modeling

Figure 4.7. Working example: plate induction quenching
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the study of transient states allows us to use the heating term Q and cooling term h as
functions of time. The volumetric heat source is expressed as Q(x, t) = Q0(t)e

x−E
P ,

where only the term Q0(t) is a function of time. The exchange coefficient h will
simply be written as h(t) for the moment.

In this example, for convenience, we choose physical properties λ, ρ and C

independent of temperature. The solution of the thermal conduction problem in the
plate consists, in the transient state, of seeking a temperature field T (x, t) which
verifies at any point x ∈ [0, E] and at any instant t:



λ
∂2T

∂x2
+ Q(x, t) = ρCṪ (x, t)

λ
∂T

∂x
= h(t)

(
Td − T (x, t)

)
in x = E

T (x, t) = Td at x = 0

T (x, t) = T0 at t = 0

We added to this equation the term T0 which represents the initial plate temperature
(at t = 0). This temperature is assumed to be constant over time at point x = 0. On
the contrary, the external temperature at point x = E was set at Td.

To solve the problem, the finite element method is used. To do so, we discretize
axis 0x in Figure 4.7 between 0 and E by means of n+1 nodes at uniform distances of
e = E/n. The node coordinates are xi = ie, with i = 0, 1, . . . , n. It is now possible to
choose the type of element. We select n two-noded isoparametric elements with linear
interpolation. We term Ωi = [xi−1, xi], with i = 1, 2, . . . , n, the domain occupied by
element i. With this discretization, the following nodal approximation is used for the
temperatures:

∀x ∈ Ωi, ∀t ≥ 0, T (x, t) = N i
1(x)T i

1(t)

+ N i
2(x)T i

2(t) with




N i
1(x) =

xi − x

e

N i
2(x) =

x − xi−1

e

In that case, the assembly of thermal conductance and capacitance matrices, and
that of the element load vector, produces the following expressions for matrices [K]
and [C] and for vector {F}:
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[K] =
λ

e




1 −1 0 · · · · · · · · · 0
−1 2 −1 0 · · · · · · · · ·
0 −1 2 −1 0 · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 −1 2 −1 0
· · · · · · · · · 0 −1 2 −1
0 · · · · · · · · · 0 −1 1




+ h(t)




0 · · · · · · 0
· · · · · · · · · · · ·
· · · · · · 0 0
0 · · · 0 1




[C] =
ρCe

6




2 1 0 · · · · · · · · · 0
1 4 1 0 · · · · · · · · ·
0 1 4 1 0 · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · 0 1 4 1 0
· · · · · · · · · 0 1 4 1
0 · · · · · · · · · 0 1 2




{F} = Q0(t)




−P 2

e

(
e

x0−E
P − e

x1−E
P

)
+ Pe

x1−E
P

−P 2

e

(
2e2

x1−E
P − e

x0−E
P − e

x2−E
P

)
−P 2

e

(
2e2

x2−E
P − e

x1−E
P − e

x3−E
P

)
· · ·

−P 2

e

(
2e2

xn−1−E

P − e
xn−2−E

P − e
xn−E

P

)
−P 2

e

(
2e2 xn−E

P − e
xn−1−E

P − e
xn+1−E

P

)
−P 2

e

(
e

xn+1−E

P − e
xn−E

P

)
+ Pe

xn+1−E

P




+ h(t)




0
0
0
· · ·
0
0
Td




The integrals involved here were calculated analytically. We have deliberately
emphasized in these expressions the presence of the two time functions Q0(t) and
h(t), which are used to model induction heating. Only the capacitance matrix is not
time-dependent in this example.

Now it is necessary to seek the temperature change at the n nodes over time. Indeed
the temperature of node 0 is known: it is constant and equal to Td. The problem to
solve is written:



138 Finite Element Simulation of Heat Transfer

Find at each instant t the nodal temperature vector {T (t)} such that:
[K(t)] · {T (t)} + [C] ·

{
Ṫ (t)

}
= {F (t)}

{T (0)} = {T0}

To obtain the variation of the temperature vector at the nodes {T (t)} it is now
necessary to choose a time integration scheme. The generalized trapezoidal rule will

be used. Thus, over time, if we know the temperature vector at time t, {T (t)},
{

Ṫ (τ)
}

at any instant τ ∈ [t, t + ∆t] is expressed as (see equation [4.27]):

∀τ ∈ [t, t + ∆t],
{

Ṫ (τ)
}

=
{T (t + ∆t)} − {T (t)}

∆t

= (1 − ν)
{

Ṫ (t)
}

+ ν
{

Ṫ (t + ∆t)
}

with 0 ≤ ν ≤ 1

In practice, the previous expression is used to express the quantity {Ṫ (t+∆t)} as
follows: {

Ṫ (t + ∆t)
}

= −1 − ν

ν

{
Ṫ (t)

}
+

1
ν∆t

({T (t + ∆t)} − {T (t)})

The problem to solve at instant t + ∆t is therefore written:

Knowing {T (t)} and
{

Ṫ (t)
}

, find the vector {T (t + ∆t)} such that:


([C] + ν∆t [K(t + ∆t)]). {T (t + ∆t)} =

∣∣∣∣∣∣
[C] . {T (t)} + ν∆t {F (t + ∆t)}
+ (1 − ν)∆t [C] .

{
Ṫ (t)

}
T0(t + ∆t) = Td

Note here that the matrix involved in this linear system can be written with the
addition of ∆ts defined by equation [4.39]:

[C] + ν∆t [K] =
ρCe

6




2 +
∆t

∆ts
1 − ∆t

∆ts
0 · · · 0

1 − ∆t

∆ts
4 + 2

∆t

∆ts
1 − ∆t

∆ts
0 · · ·

0 · · · · · · · · · 0

· · · 0 1 − ∆t

∆ts
4 + 2

∆t

∆ts
1 − ∆t

∆ts

0 · · · 0 1 − ∆t

∆ts
2 +

∆t

∆ts



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The non-diagonal terms of this matrix will change signs according to the ratio
of the time step used ∆t to the minimum time step to use ∆ts. In practice, the
capacitance matrix [C] is approximated by a lumped matrix, obtained by transferring
on the diagonal the sum of the terms on each line. This produces the following
expression for the matrix involved in the linear system to solve:

[C] + ν∆t [K] ≈ ρCe

6




3 +
∆t

∆ts
− ∆t

∆ts
0 · · · 0

− ∆t

∆ts
6 + 2

∆t

∆ts
− ∆t

∆ts
0 · · ·

0 · · · · · · · · · 0

· · · 0 − ∆t

∆ts
6 + 2

∆t

∆ts
− ∆t

∆ts

0 · · · 0 − ∆t

∆ts
3 +

∆t

∆ts




In that expression, whatever the time step ∆t chosen, no term of the matrix changes
signs. It follows that there will be no significant change in the result (no numerical
instability) when the time step ∆t is modified.

4.3.2. Numerical applications

The numerical applications shown in this book are used to illustrate the notions
introduced in this chapter. To do so, we have chosen some fixed values, and others
which will change. The fixed values are the following:

– plate thickness: E = 0.1 m;

– number of finite elements: n = 10;

– material thermal conductivity: λ = 30 W/m/K;

– external medium temperature: Td = 20°C;

– induction heating depth: P = 0.02 m;

– volumetric mass: ρ = 7,800 Kg/m3;

– specific heat: C = 500 J/Kg/K.

The aim of the first simulation is to show that the simple introduction of the
capacitance term without modifying the other data with respect to the steady state
calculation, only delays the implementation of the steady state. Indeed, Figure 4.8
shows a calculation performed with:
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Figure 4.8. Variation of the temperature profile over time

– a constant exchange coefficient: H = 2,000 W/m2/K;

– a constant heating power: Q0 = 5.107 W/m3;

– a plate initial temperature: T0 = 20°C;

– a time integration scheme (trapezoidal rule): ν = 0.5;

– a constant time step: ∆t = 1 s.

In this figure, we note that the temperature profile changes gradually from a
constant value T0 at t = 0 toward the steady state profile (calculated in the first part
of this book) for an “infinite” time. Indeed, after a fairly long time, the temperature
does not change over time, so that {Ṫ} = {0} in the differential equation to solve.
The solution is then obtained in the steady state.

The second simulation illustrates the limit time step ∆ts highlighted in the
previous equations. To do so, we have restricted our study to the cooling phase, starting
with a high initial temperature:

– a constant exchange coefficient: H = 10,000 W/m2/K;

– a heating power equal to zero: Q0 = 0;

– a plate initial temperature: T0 = 700°C;

– a time integration scheme: ν = 1.
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Figure 4.9. Plate quenching – temperature profile at t = ∆t
for ∆t = 1.3 s and ∆t = 13 s

We can see in Figure 4.9 that the solution obtained after the first time increment
depends on the time step chosen. With ∆t = 13 s, the solution is relatively conform to
physics, whereas with ∆t = 1.3 s there are oscillations contrary to physics. In fact the
threshold time step in this example being ∆ts = ρCe2

6λ ≈ 2.166 s, using a time step
lower than this value produces space oscillations.

The last simulation shows that our simple model makes it possible to represent an
induction quenching sequence. Indeed, induction quenching consists of two phases.
First, the plate is heated rapidly by induction, so that the convection exchanges are
negligible. Then the heating system is turned off and the plate is cooled abruptly, for
instance with an atomized jet of water projected onto the face x = E. This can be
illustrated as follows:

– between instants t = 0 and t = t0, the heating period is given by Q0(t) = Q0

and h(t) = 0. An exchange coefficient equal to zero comes down to assume that
there is no exchange in x = E, between the piece and the external medium. This is
a simplification of the problem of course, in which the exchange is considered to be
small enough to be neglected;

– from instant t = t0, the quenching period is given by Q0(t) = 0 and h(t) = H .
The value of H will depend on the quenching medium considered (air, water, atomized
water, etc.).



142 Finite Element Simulation of Heat Transfer

Figure 4.10. Induction quenching – temperature profile over time

The numerical values used are the following:

– constant exchange coefficient (when it is different from zero): H =
6,000 W/m2/K;

– heating power (when it is different from zero): Q0 = 2.108 W/m3;

– plate initial temperature: T0 = 20°C;

– time integration scheme: ν = 1;

– heating time: t0 = 15 s.

Figure 4.10 is a good illustration of the temperature profiles obtained during
induction quenching. The heating phase produces a gradual increase of the
temperature at the plate surface (in x = E) and a positive thermal gradient. This
thermal gradient strongly depends on the depth P introduced to model induction
heating. This depth depends on the induction current frequency. A high frequency
will produce surface heating and a high thermal gradient (low value of P ), whereas
a lower frequency will heat the plate in its thickness (high value of P ) with a lower
thermal gradient as well. Then the quenching phase produces rapid cooling of the
surface, and a local sign change in the thermal gradient. The cooling rapidity depends
directly on the thermal exchange coefficient H .



Chapter 5

Non-linearities

5.1. Formulation and solution techniques

In the previous chapters, we introduced the finite element method applied to the
solution of permanent or transient heat conduction problems. Generally speaking
we assumed that the thermal and physical properties of the materials concerned did
not depend on the temperature and restricted our analysis to boundary conditions
expressed linearly according to the temperature by means of a constant exchange
coefficient. Applying the finite element method then leads to the solution, possibly at
different moments, of a linear equation system. We then speak of a linear problem
solution.

Practically speaking, the various parameters (thermal and physical properties,
boundary conditions, etc.) involved in mathematical modeling are rarely expressed
so simply. Such is the case when the application to simulate covers an extensive
temperature range or involves phase changes. The problem formulation no longer
produces a linear equation system and the solution techniques have to be appropriate.

5.1.1. Formulation

The finite element method applied to a thermal conduction problem leads to the
cancelation of a residual vector {R(T )} obtained by assembling element residuals
{Re(T )} (equation [2.6] in Part 1 of this book for the steady state, equation [4.7] in
Part 2 for the transient state):

{R(T )} =
m∑

e=1

[Ae]T · {Re(T )} = {0} [5.1]
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In a linear problem, we saw that this residual can be expressed as follows:
{R(T )} = {F} − [K] · {T} (steady state)

{R(T )} = {F} − [K] · {T} − [C] ·
{

Ṫ
}

(transient state)

In these expressions, the thermal conductance matrix [K], the capacitance matrix
[C] and the load vector {F} are independent of the temperature. It follows that in this
case the finite element method leads to the solution of linear equation systems. In the
transient state case, this system is obtained after applying a time integration scheme
such as that of generalized central differences.

When, for instance, the thermal conductivity λ or the specific heat C depend on
temperature, matrices [K] and [C] also depend on temperature and the residual vector
becomes a non-linear function of the nodal temperature vector {T} which can be
written as follows:

{R(T )} = {F} − [K(T )] · {T} (steady state)

{R(T )} = {F} − [K(T )] · {T} − [C(T )] ·
{

Ṫ
}

(transient state)

We then obtain a non-linear equation system whose unknowns are the temperatures
at the mesh nodes.

In fact, strictly speaking, the size of the non-linear system to solve [5.1] is not
always exactly equal to the number of mesh nodes. Indeed, as in the linear case,
the temperatures of certain nodes can be prescribed. This is even necessary in the
case of a steady state problem to obtain a single solution. In the non-linear case,
the application techniques for this type of condition are the same as those already
introduced in Part 1 of this book. Therefore, we will not mention this aspect hereafter
and assume that the non-linear system [5.1] is expressed in the form of n equations
with n unknowns, where n is the number of mesh nodes, possibly reduced with the
elimination method by the number of nodes at which the temperature is known, or
increased by this number of nodes with the Lagrange multipliers method.

5.1.2. Non-linear equation system solution methods

In order to solve equation [5.1], most computer codes follow two steps. In the first,
they try to predict the solution and in the second, they solve the non-linear equation
system iteratively as indicated in Figure 5.1 using the prediction of step one as an
initial estimation.
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estimation (prediction): {T }(0)

convergence
test

||{R}(it)|| < ε

{T}(it+1) = {T}(it) + {∆T}(it)

(iteration it)

solution

correction of the temperature vector

calculation of residual vector:  (it ){R}

Figure 5.1. Non-linear equation system solution principle

The estimation {T}(0) plays an important part in the iterative process
convergence. In a steady state problem, it is difficult to obtain a reliable estimation
in all possible cases. Conversely, an estimation can be obtained at any moment in
a transient problem from the solutions at the previous moments. For instance, it is
possible to choose a linear extrapolation of the values calculated at the two previous
time steps {T (t − ∆t)} and {T (t)}:

{T}(0) = {T (t + ∆t)}(0) = 2 {T (t)} − {T (t − ∆t)}

or a quadratic extrapolation of the values calculated at the three previous steps
{T (t − 2∆t)}, {T (t − ∆t)} and {T (t)}:

{T}(0) = {T (t + ∆t)}(0) = 3({T (t)} − {T (t − ∆t)}) + {T (t − 2∆t)}

At each iteration it of the process described in Figure 5.1, we have an estimation of
the solution {T}(it). Then the residual vector {R}(it) corresponding to it is calculated.

A convergence test is then carried out by comparing the norm of the residual
{R}(it) with a threshold value εR given by the user. The norm considered can be
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the Euclidian norm (root-sum square of each component of the vector), but some
computer codes give other measurements like the vector’s largest component in
absolute value (called the “infinite norm”). If the residual vector norm is less than the
limit value prescribed by the user, the algorithm is then considered to have converged.

If not, a correction {∆T}(it) of the nodal temperature vector is calculated in order
to approximate the optimal solution. This correction is obtained by solving a linear
system of the following type:

[M ](it) · {∆T}(it) = {R}(it) [5.2]

In this equation, [M ](it) is a matrix of dimension n× n depending on the solution
method used, as will be seen in the next section. The nodal temperature vector is then
updated as follows before being used during the iteration it + 1:

{T}(it+1) = {T}(it) + {∆T}(it) [5.3]

If, during these iterations, the norm of the vector {∆T}(it) is less than a threshold
εT defined by the user, most computer codes consider that the iterative process has
converged. However, we must bear in mind that the only reliable convergence indicator
is the residual norm value. As a matter of fact, from a mathematical point of view,
the condition ‖ {∆T}(it) ‖ ≤ εT shows that the sequence made up with {T}(it) is a
Cauchy sequence. Moreover, we know that in Rn, any Cauchy sequence converges.
However, the criterion ‖ {∆T}(it) ‖ ≤ εT does not indicate that the sequence of
{T}(it) is very close to its limit. In all cases, it would be wise to check that the value
of the residual vector norm is small enough to be acceptable.

It is important to note that the choice of the matrix [M ](it) in equation [5.2] does
not interfere with the solution quality but only with the speed at which it can be
obtained. In fact there is no method guaranteeing the convergence of the iterative
process in all cases. Therefore, choosing the best method to solve [5.1] as effectively
as possible is not simple. This is all the more difficult as the number of iterations is
not the only criterion. The time required for assembling [M ](it) and solving linear
system [5.2] has a part to play as well. The user will always choose a strategy for
solving a given problem, according to his/her experience and the nature of this
problem (non-linearities of thermal and physical properties, phase change problem,
thermal radiation, etc.).

The main methods are illustrated in Figure 5.2 for a problem with one degree of
freedom. The reader may go into the detail of this point with the help of specialized
books [DEN 76].
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T

R
Newton-Raphson

method

T

R
modified

Newton-Raphson
method:

tangent matrix kept constant
during two iterations

T

R
Substitution

method

T

R
BFGS
method

Figure 5.2. Most common methods for the solution of a non-linear equation

5.1.2.1. Newton-Raphson method

This method consists of determining the temperature correction from a first order
Taylor expansion of the residual in the vicinity of the current solution, which means
that the residual can be differentiated close to the solution sought:

Ri = R
(it)
i +

n∑
j=1

∂Ri

∂Tj

(
Tj − T

(it)
j

)

In that expansion, the components of the matrix involved are the partial derivatives
of the components of the residual vector, with respect to the components of the vector’s
nodal temperatures calculated for {T} = {T}(it). A linear approximation of the
residual close to the current solution is therefore obtained. The correction {∆T}(it) is
calculated in order to cancel this approximation of the residual:

{R}(it) +
[
∂R

∂T

](it)

· {∆T}(it) = {0}
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The method therefore consists of selecting as matrix [M ](it) the tangent matrix of
the non-linear system to solve. This tangent matrix is obtained at each iteration by
assembling element tangent matrices:

[M ] =
m∑

e=1

[Ae]T · [Me] · [Ae] with Me
ij = −∂Re

i

∂T e
j

The Newton-Raphson method converges in a quadratic way. To demonstrate this,
consider the non-linear scalar equation r(u) = 0, where r is a derivable function
near the solution. Now apply Newton-Raphson’s iterative process. In this case, the
recurrence relationship between two consecutive estimations gives:

u(it+1) = u(it) − r(it)

r′(it)
with r(it) = r

(
u(it)

)
and r′(it) =

dr

du

(
u(it)

)
Denoting by e(it) = u(it) − u the error obtained during the iteration (it), u being

the exact solution, we obtain:

e(it+1) = e(it) − r(it)

r′(it)

Now assume the function r to be derivable twice near the solution. A development
of r near u(it) then gives:

r(u) = r(it) + r′(it)(u − u(it)) +
1
2
r′′(it)(u − u(it))2 + · · ·

= r(it) − r′(it)e(it) +
1
2
r′′(it)e(it)2 + · · ·

= 0

hence

e(it) − r(it)

r′(it)
=

1
2
e(it)2 r′′(it)

r′(it)
+ · · ·

i.e., if we restrict our operation to the second-order terms:

e(it+1) =
1
2
e(it)2 r′(it)

r′′(it)
with r′′(it) =

d2r

du2
(u(it))

Therefore, there is a constant k > 0 such that e(it+1) = ke(it)2, hence the
quadratic convergence.
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The Newton-Raphson method therefore converges with, in general, relatively few
iterations. However, the assembly of it requires matrix [M ]it as well as the solution
of a new linear system of type [5.2] at each iteration. It is therefore very costly from
a practical point of view and must be reserved for strongly non-linear problems for
which it has been impossible to reach convergence with another method.

Variants of this method, called modified Newton methods, keep the matrix [M ](it)

constant during a certain number of iterations, before recalculating it. The assembly
of [M ](it) is then performed only for certain iterations. Moreover, using a direct
method based upon the matrix triangulation to solve linear system [5.2] can appear
to be particularly efficient insofar as triangulation is performed only when the matrix
is modified. The adverse effect is that the convergence domain of these methods is
restricted compared with the Newton-Raphson method. In addition, these methods
require more iterations to converge than the Newton-Raphson method does.

5.1.2.2. Substitution method

In a large number of situations, the residual vector can be written as follows:

{R(T )} = {F (T )} − [M(T )] · {T} [5.4]

Such is the case of steady state or transient heat conduction problems, for which
we have: 


[M(T )] = [K(T )] (steady state)

[M(T )] = [K(T )] − 1
ν∆t

[C(T )] (transient state)

The substitution method consists of taking matrix
[
M(T (it))

]
for matrix [M ](it).

By combining equations [5.2], [5.3] and [5.4], we demonstrate that this method
comes down to choosing {T}(it+1) as follows:

{T}(it+1) =
[
M(T (it))

]−1

·
{

F (T (it))
}

[5.5]

The substitution method can also be considered as a fixed point method.
Sometimes it is also called the Picard iterative method.

Like the Newton-Raphson method, it requires the assembly and solution of a
linear system at each iteration and is therefore very costly. Its interest lies in the
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fact that the matrix [M ](it) calculated in this way is generally symmetric whereas
the tangent matrix calculated in the Newton-Raphson method is not necessarily so,
which generates additional storage and solution costs.

5.1.2.3. Quasi-Newton methods

Quasi-Newton methods generalize to non-linear equation systems the secant
iterative method well-known for solving a non-linear equation of the type f(x) = 0.

The principle of these methods is to replace the tangent matrix with an
approximation which can be obtained more simply. The aim is to obtain convergence
properties close to those of the Newton-Raphson method while avoiding the assembly
and possibly the triangulation of a linear system at each iteration. Generally speaking,
rather than construct an approximate tangent matrix, it is preferable to directly seek
an approximation of its inverse.

Therefore, we will seek a matrix [S](it) = ([M ](it))−1 satisfying the following
(secant) condition:

{T}(it) − {T}(it−1) = [S](it) · ( {R}(it−1) − {R}(it) ) [5.6]

On the other hand, we prescribe that two consecutive matrices [M ](it−1) and
[M ](it) differ only in the direction {∆T}(it−1) = {T}(it) − {T}(it−1). Therefore,
we have:

∀ {U} such that 〈∆T 〉(it−1) · {U} = 0,

[M ](it) · {U} = [M ](it−1) · {U}
[5.7]

Allow {∆R}(it−1) = {R}(it−1) − {R}(it) and seek [S](it) as follows:

[S](it) =
(
[I] + [A](it)

) · [S](it−1) [5.8]

where [I] is the identity matrix.

It is easy to demonstrate that condition [5.7] then becomes:

∀ {U} such that 〈∆T 〉(it−1) · {U} = 0, [A](it) · {U} = {0} [5.9]
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which leads us to write:

[A](it) = {W}(it−1) · 〈∆T 〉(it−1)

where {W}(it−1) is a vector which is still to be determined.

Considering equation [5.6] again, we obtain:

{∆T}(it−1) =
(
[I] + {W}(it−1) · 〈∆T 〉(it−1) ) · [S](it−1) · {∆R}(it−1)

from which we immediately derive:

{W}(it−1) =
{∆T}(it−1) − [S](it−1) · {∆R}(it−1)

〈∆T 〉(it−1) · [S](it−1) · {∆R}(it−1)
[5.10]

The correction {∆T}(it) to make to the nodal temperature vector {T}(it) is then
written as follows, considering [5.2] and [5.8]:

{∆T}(it) =
(
[I] + {W}(it−1) · 〈∆T 〉(it−1) ) · [S](it−1) · {R}(it) [5.11]

Among the various existing quasi-Newton methods, the BFGS method is known
to be one of the most efficient. Matrices [S](it) are calculated so that:

– if [S](it−1) is symmetric, then so is [S](it);

– if [S](it−1) is positive definite, then so is [S](it).

By assuming [S](1) to be positive definite, matrices [S](it) can be sought as
follows:

[S](it) =
(
[I] + {W}(it−1) 〈V 〉(it−1) ) · [S](it−1)

· ( [I] + {V }(it−1) 〈W 〉(it−1) ) [5.12]

If the same course of action as above is taken, it is then demonstrated that:

{W}(it−1) =
{∆T}(it−1)

〈∆R〉(it−1) · {∆T}(it−1)

{V }(it−1) = {R}(it) − 〈∆R〉(it−1) · {∆T}(it−1)

〈∆T 〉(it−1) · {R}(it−1)
{R}(it−1)
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The temperature correction {∆T}(it) is written as follows:

{∆T}(it) =

(
1∏

k=it−1

(
[I] + {W}(k) 〈V 〉(k)

))
· [S](1)

·
(

it−1∏
k=1

(
[I] + {V }(k) 〈W 〉(k)

))
· {R}(it)

[5.13]

In the equation above, it is obvious that the calculation of the temperature
correction does not require a linear system solution or even the explicit calculation of
matrices [S](it). This makes the method particularly efficient in practical cases. If the
computer code includes the BFGS method, it is most certainly the method to use first
and foremost to solve any non-linear problem.

5.1.3. Line search method

Once {∆T}(it) has been obtained by means of equation [5.2], the line search
method consists of trying to cancel the residual in that direction. By considering the
1D vectorial space generated by direction {∆T}(it), this comes down to canceling the
projection of the residual {R} in that space, i.e. canceling the scalar function f of the
scalar variable α as follows:

f(α) =
n∑

i=1

∆T
(it)
i R

(it)
i

(
{T}(it) + α {∆T}(it)

)

Function f being a non-linear function with real values, we seek α such that
f(α) = 0 by means of a secant iterative method. At each iteration (k), a new value of
α is obtained by:

α(k+1) = α(k) − α(k) − α(k−1)

f
(
α(k)

)− f
(
α(k−1)

)f
(
α(k)

)

The process stops when |f(α(k))| ≤ η|f(0)|, or when |α(k+1) − α(k)| ≤ δ, the
coefficients η and δ being thresholds defined by the user.

Note that this method is substantially more costly as it requires a new estimation
of the residual vector at each iteration (k) of the line search problem solution. This
method is often combined with quasi-Newton or modified Newton methods.
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A similar method, called the under-relaxation method, is sometimes used to solve
non-linear systems. It consists of reducing the modification of the unknown to a
fraction of the quantity {∆T}(it) calculated by equation [5.2], so as to satisfy an
additional condition (for instance, all the components of the unknown must remain
positive) or to better control strong variations in the solution.

5.2. Traditional non-linearities

As mentioned earlier on in this chapter, traditional non-linearities in a thermal
conduction problem are:

– physical properties depending on the temperature;

– flux boundary conditions or a volumetric heat source depending on the
temperature.

With regard to physical properties, we saw in previous chapters that the problem
becomes non-linear as soon as the thermal conductivity λ, the volumetric mass ρ, or
the mass heat C, of the material is a function of the temperature. In the case of flux q

boundary conditions or the volumetric heat source Q, the problem remains linear as
long as these very functions remain linear according to the temperature.

There are other causes for the non-linearity of the problem. For example, the
case of the thermal contact processed with a contact resistance most often leads to a
non-linear problem. In this section, we will restrict our study to classic non-linearities.

5.2.1. Physical properties

The case of temperature-dependent physical properties is relatively simple.

In the case of a temperature-dependent thermal conductivity, λ(T ), the term
involved in the element residual expression for steady state or transient cases is:

R
(λ)
i = −

∫
Ωe

−−→
gradT (Ne

i ) · λ(T ) · −−→grad(T ) dv

= −
∑

j

(∫
Ωe

−−→
gradT (Ne

i ) · λ(T ) · −−→grad(Ne
j ) dv

)
T e

j

which is no longer a linear function of the vector {T e} including the node
temperatures of element Ωe.
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If, for example, a Newton-Raphson method is used for the solution, we obtain a
tangent matrix including the following term:

M
(λ)
ij = −∂R

(λ)
i

∂T e
j

=



∫

Ωe

−−→
gradT (Ne

i ) · λ · −−→grad(Ne
j ) dv

+
∫

Ωe

−−→
gradT (Ne

i ) · dλ

dT
· −−→grad(T )Ne

j dv

In addition to a part similar to that already encountered in the linear case, we can
note in this expression the appearance of a second term due to the fact that the thermal
conductivity changes with the temperature. This term is not symmetric to indices i and
j and so as to avoid the necessity of processing non-symmetric matrices that require
appropriate storage and solution methods, the term is neglected. This comes down to
considering the part related to thermal conductivity as a “substitution type” matrix.
This approximation is all the more reasonable as the non-linearity introduced by the
temperature-dependent conductivity is generally weak.

In the case of a transient calculation, the volumetric mass ρ and the specific heat
capacity C of the material can also depend on the temperature. In that case, the product
ρC involved in the element residual expression is a function of the temperature and
the term involved is:

R
(ρC)
i = −

∫
Ωe

Ne
i ρ(T )C(T )Ṫ dv

If a generalized trapezoidal rule is used to integrate the differential equation system
obtained between instants t and t + ∆t, we obtain:

Ṫ (t + ∆t) = −1 − ν

ν
Ṫ (t) +

1
ν∆t

(
T (t + ∆t) − T (t)

)
with ν ∈ ]0, 1]

It follows from this that the residual parts in which the product ρC is involved are
written as follows (if we write T = T (t + ∆t)):

R
(ρC)
i (t + ∆t) =




1 − ν

ν

∫
Ωe

Ne
i ρ(T )C(T )Ṫ (t) dv

− 1
ν∆t

∫
Ωe

Ne
i ρ(T )C(T )

(
T − T (t)

)
dv
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If, for instance, a Newton-Raphson method is used to solve the non-linear equation
system obtained, a tangent matrix is calculated in which the contribution of the product
ρC will be involved as follows:

M
(ρC)
ij = −∂R

(ρC)
i

∂T e
j

=




1
ν∆t

∫
Ωe

ρCNe
i Ne

j dv

+
∫

Ωe

Ne
i

∂(ρC)
∂T

(
− 1 − ν

ν
Ṫ (t) +

1
ν∆t

(
T − T (t)

))
Ne

j dv

Note that this expression is composed of two symmetric terms at i and j. In
fact, these terms can be calculated in the computer codes. Indeed, they produce no
dissymmetry in the tangent matrix. Moreover, specific temperature-dependent heat
changes may be relatively significant. Such is the case when phase change latent heat
is represented via an equivalent specific heat capacity (see section 5.2.3).

5.2.2. Flux or volumetric heat source boundary conditions

The surface flux densities q on the boundary ∂Ωq of the solid, as well as the
volumetric heat source term Q, may be temperature-dependent in a non-linear way.
In that case, the problem to solve is non-linear as well. Among the problems to be
considered are:

– the interactions between a coolant and a material. In the case of steel water
quenching, such interactions are often modeled by an exchange coefficient varying
strongly in a non-linear way according to the temperature of the piece surface. To
illustrate this variation, we can say that this coefficient is low when the surface
temperature is high (calefaction state), then increases abruptly when the burnout film
is pierced by liquid droplets coming to the surface (nucleate boiling state), and finally
decreases again when the surface temperature goes under the boiling temperature of
the water (convection state);

– the material radiation effects toward an external environment, often expressed
by an equivalent exchange coefficient varying strongly according to the temperature.
These effects are important when the solid temperature is typically above 300°C. They
are covered in detail in Chapter 7;

– the Curie transition point during steel induction heating. Above that temperature,
the induction effect on the material volume changes substantially, so that the
volumetric heat source used becomes a strongly non-linear function of the
temperature.
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When the flux density on the boundary ∂Ωq of the solid and/or the volumetric
heat source become non-linear functions of the temperature, i.e. q(T ) and Q(T ), the
corresponding terms in the element residual also become non-linear:

R
(Q)
i =

∫
Ωe

Ne
i Q(T )dv

R
(q)
i =

∫
∂Ωe∩∂Ωq

Ne
i q(T )ds

Using a tangent matrix for the solution then leads to considering the variation of q

and Q with the temperature. This is expressed as follows:

M
(Q)
ij = −∂R

(Q)
i

∂T e
j

= −
∫

Ωe

Ne
i

∂Q

∂T
Ne

j dv

M
(q)
ij = −∂R

(q)
i

∂T e
j

= −
∫

∂Ωe∩∂Ωq

Ne
i

∂q

∂T
Ne

j ds

These expressions create no particular problem for the solution. They keep the
tangent matrix symmetric.

For instance, in the case of radiation exchange in an infinite environment, we have
q(T ) = σε(T 4

∞ − T 4), where ε is the wall emissivity and σ the Stefan constant. The
tangent matrix is written as follows:

M
(q)
ij =

∫
∂Ωe∩∂Ωq

4σεT 3Ne
i Ne

j ds

A substitution matrix can also be defined by writing q(T ) = σε(T 2
∞ + T 2)(T∞ +

T )(T∞ − T ). This comes down to defining an equivalent exchange coefficient
H(T ) = σε(T 2

∞ + T 2)(T∞ + T ). The substitution matrix is written as follows:

M
(q)
ij =

∫
∂Ωe∩∂Ωq

σε
(
T 2
∞ + T 2

)(
T∞ + T

)
Ne

i Ne
j ds

Using such a matrix is of no significant interest in this case, insofar as the tangent
matrix, which is more efficient, is already symmetric.
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5.2.3. Modeling state changes

State change problems are traditional in thermal science. To make things clear, a
solidification problem will be examined hereafter.

When dealing with a pure substance, starting with the liquid state, solidification
occurs at a given temperature expressed as Tf . Then a Stefan problem has to be treated;
the equations to solve are written as follows:

– in the domain occupied by the liquid phase Ωl

ρlCl
∂T

∂t
− div

(
λl
−−→
grad(T )

)
= 0

– in the domain occupied by the solid phase Ωs

ρsCs
∂T

∂t
− div

(
λs

−−→
grad(T )

)
= 0

– at the liquid-solid interface

Tl = Ts = Tf [5.14]

λs

(
∂T

∂ns/l

)
s

− λl

(
∂T

∂ns/l

)
l

= (ρL)s/lVs/l [5.15]

In the above equations, indices l and s correspond respectively to the liquid phase
and to the solid phase, ns/l represents the norm at the liquid/solid interface from the
solid to the liquid, (ρL)s/l is the fusion/solidification latent heat per volume unit and
Vs/l the normal component of the liquid/solid interface moving speed.

The numerical solution of such a problem requires front tracking methods. These
can be combined with various numerical methods like the boundary integral equation
method, which is particularly interesting since only the mobile interface is meshed, or
the finite element method. The finite element formulation of such a problem requires
remeshing techniques. At each moment, the mesh is composed of 2 sub-domains, one
for the liquid and the other for the solid, interconnected by a set of nodes located on
the mobile interface. For each sub-domain, in addition to the classic capacitance and
conduction terms, the problem formulation reveals a transport term (see Chapter 6)
related to the movements of the nodes located on the mobile interface. The interface
position is updated by solving equations [5.14] and [5.15].
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However, for most metal alloys used in industry, solidification does not occur at
a given temperature but on a range [Ts, Tl], Ts and Tl representing respectively the
solidus and liquidus temperatures. The interface between the two phases is no longer
clear. The transformation takes place in an intermediate zone called a mushy zone.
The phase change latent heat can then be introduced as a source term as follows:

Q = (ρL)s/l
dfs

dt
[5.16]

where fs represents the volumetric fraction of the solid. In the solidification case, fs

is generally assumed to depend on the temperature only, as follows:

fs =




1 if T ≤ Ts

T − Tl

Ts − Tl
if Ts < T < Tl

0 if T ≥ Tl

If we assume that we operate in a constant stress environment, we can introduce
the volumetric enthalpy H of the medium with:

H(T ) = (ρL)s/l

(
1 − fs

)
+

∫ T

Tref

ρCdT ′ [5.17]

It is obvious that equation [5.17] immediately gives:

Ḣ =
dH

dT
Ṫ = −(ρL)s/lḟs + ρCṪ

so that the heat equation with the source term [5.16] can now be written:

Ḣ − div
(
λ · −−→grad(T )

)
= 0 [5.18]

5.2.3.1. Equivalent specific heat method

Starting with equation [5.17], we can formally define an equivalent specific heat
with:

Ceq =
1
ρ

dH

dT
= C − (ρL)s/l

ρ

dfs

dT
[5.19]
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TTlTs

HCeq

Figure 5.3. Enthalpy and equivalent specific heat

In fact the equivalent specific heat is the usual specific heat modified for
Ts < T < Tl so as to include the state change latent heat. Equation [5.18] can now
be written in the usual way:

ρCeqṪ − div
(−→

λ · −−→grad(T )
)

= 0 [5.20]

The advantage of this method is its simplicity. The phase change is treated
as a non-linearity of physical properties. However, it may create some numerical
difficulties related to the abrupt changes of Ceq at temperatures Ts and Tl, as
illustrated in Figure 5.3. Besides the real consideration of the latent heat requires an
accurate integration of Ceq(T ) and, consequently, imposes very small time steps.
One way of reducing these inaccuracies is to smooth the specific heat on a wider
temperature interval [T ′

s, T
′
l ]. In that case however, we have to ensure that:

∫ T ′
l

T ′
s

ρCeq dT = H
(
T ′

l

)− H
(
T ′

s

)

The time step chosen for the analysis will have to be small enough to integrate the
above equation accurately.

To avoid the problems mentioned above, some authors ([COM 74, LEW 87])
operate in a different way. Starting with the fact that enthalpy is a more regular
function of the temperature than the specific heat, they suggest we estimate an
equivalent specific heat from the enthalpy and temperature space variations.
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A nodal approximation of enthalpy, similar in nature to that of temperature, is first
made from the enthalpy values at the nodes directly deduced from the temperature
values:

H =
ne∑
i=1

Ne
i (−→x )Hi

The relationship:

ρCeq =
dH

dT

is then approximated with one of the following formulae:

ρCeq ≈ 1
3

3∑
i=1

∂H/∂xi

∂T/∂xi

or otherwise, according to [LEM 81]:

ρCeq ≈
(∑3

i=1

(
∂H/∂xi

)2
)1/2

(∑3
i=1

(
∂T/∂xi

)2
)1/2

However, it has been demonstrated [MOR 78] that such an approximation was
unnecessary and an estimation of ρCeq at instant n∆t with:

ρCeq ≈ Hn − Hn−1

Tn − Tn−1

yields excellent results. Enthalpy solution methods are addressed here. In [DAL 86] a
comparative study of the various methods for the solution of solidification problems
will be found.

5.2.3.2. Enthalpy solution method

Actually, it is not necessary to use a specific heat. Rather than apply a time
integration algorithm such as [4.26] or [4.27] to the term Ṫ of equation [5.20], it is
possible to treat the term Ḣ of equation [5.18] directly. Equation [5.18] thus becomes,
after applying an implicit Euler algorithm:

H(T ) − H0

∆t
− div

(−→
λ (T ) · −−→grad(T )

)
= 0 [5.21]
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an equation where H = H(T ) is the enthalpy at t+∆t and H0 = H(T0), the enthalpy
at instant t.

The finite element method applied to the solution of equation [5.21] then produces
the following expression of the element residual:

Re
i = −

∫
Ωe

−−→
gradT (Ne

i ) · −→λ (T ) · −−→grad(T ) dv

−
∫

Ωe

Ne
i

H(T ) − H0

∆t
dv

The enthalpy H is now directly involved in the expression of the element residual
via the term:

R
(H)
i = −

∫
Ωe

Ne
i

H(T ) − H0

∆t
dv [5.22]

Then the problem can be solved with one of the methods introduced in section
5.1.2. When a Newton-Raphson method is used, the contribution to the tangent matrix
introduced by the enthalpy term is the following:

M
(H)
ij = −∂R

(H)
i

∂T e
j

=
1

∆t

∫
Ωe

Ne
i

dH(T )
dT

Ne
j dv [5.23]

It is obvious that the difference between the enthalpy method and the equivalent
specific heat method results from the discretization of the term Ḣ . The enthalpy
change taken into consideration by the enthalpy method is accurate:∫ t+∆t

t

Ḣ dt′ = H − H0

whereas it is only approximated with the equivalent specific heat method:∫ t+∆t

t

Ḣ dt′ = Ceq(T )
(
T − T0

)

Therefore, the enthalpy method is more accurate.

However, using an enthalpy approximation requires storing the enthalpy H , as
well as Ḣ when using an algorithm with 0 < ν < 1, at each integration point of
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the elements. Besides, with traditional Gauss integration schemes, we may obtain
oscillating solutions as the discrete maximum principle might not be satisfied. As
seen in Chapter 4 concerning transient heat conduction, one way of eliminating these
oscillations with first order elements, is to use a lumped capacitance matrix. In the
case of the enthalpy approximation, this comes down to use a scheme in which the
integration points would be located at the element nodes to integrate terms [5.22] and
[5.23].

We recommend the use of first order finite elements and Euler implicit algorithm
for state change problems.

5.3. A temperature-enthalpy formulation

In fact, the methods presented previously do not allow us to deal with the
isothermal phase change (Figure 5.4). Indeed, in this case, TM being the temperature
of transformation, H(TM ) and dH

dT (TM ) are not defined. On the other hand, each
enthalpy value has a corresponding unique temperature value. Let us denote by
T = Θ(H) the function giving temperature from enthalpy. Therefore, the problem
needs to be reformulated using enthalpy instead of temperature.

With that aim, Droux ([DES 87, DRO 90]) proposes an explicit finite element
procedure considering enthalpy as a nodal unknown:

H − H0

∆t
− div

(−→
λ (T0) · −−→grad(T0)

)
= 0 [5.24]

where H0 and H represent enthalpy at time t and t+∆t respectively and T0 = Θ(H0).

H

TTM

Figure 5.4. Isothermal phase change
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The application of this explicit approach for modeling casting or welding processes
leads to the use of a very large number of time steps for calculation, which can be
reduced using an implicit algorithm:

H − H0

∆t
− div

(−→
λ

dΘ
dH

(H) · −−→grad(H)
)

= 0 [5.25]

The temperature does not appear in this formulation. Therefore, the boundary
conditions need to be defined from the enthalpy H .

5.3.1. Mathematical formulation

To avoid the difficulties mentioned above, we suggest the use of formulation where
both temperature and enthalpy are unknown ([FEU 07]). The problem is to find the
temperature field and the enthalpy field solution of:

Ḣ − div
(
λ · −−→grad(T )

)
= 0 in Ω [5.26]

T − Θ(H) = 0 in Ω [5.27]

with classical boundary conditions:

T = Td on ∂ΩT [5.28]

T − λ
∂T

∂n
= q on ∂Ωq [5.29]

Temperature and enthalpy are expressed from a nodal approximation:

T = 〈Ne〉 · {T e} [5.30]

H = 〈Ne〉 · {He} which also gives Ḣ = 〈Ne〉 ·
{

Ḣe
}

[5.31]

Insofar as the same approximation scheme is used for both temperature and
enthalpy and due to the strong non-linearity of the enthalpy-temperature relationship,
equation [5.27] cannot be solved in a strong sense. Therefore, to obtain the finite
element formulation of the problem, both equations [5.26] and [5.27] must be
solved in a weak sense. Thus, both equations are classically first multiplied by the
shape functions and then integrated over the whole domain Ω. After integrating the
first equation by parts, including boundary conditions, and substituting the nodal
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approximations into the Galerkin weighted residual form of [5.26] and [5.27], we
obtain a non-linear semi-discrete system of equations giving the residual vector at
each instant: 

{RT } = [K] · {T} + [M ] ·
{

Ḣ
}
− {F} = {0}

{RH} = [M ] · {T} − {G} = {0}
[5.31a]

{T} and {H} are the vectors containing the nodal values of temperature and
enthalpy. Matrices [K], [M ] and vectors {F}, {G} are obtained from an assembly
process of element quantities defined as follows:

[Ke] =
∫

Ωe

{−−→
gradT (Ne)

}
λ
〈−−→
grad(Ne)

〉
dv

[Me] =
∫

Ωe

{Ne} 〈Ne〉 dv

{F e} =
∫

∂Ωe∩∂Ωq

{Ne} q ds

{Ge} =
∫

Ωe

{Ne}Θ(H)dv

[5.32]

Matrix [M ] is usually arbitrarily lumped at the nodes, resulting in a diagonal matrix
[M∗]. This can be achieved by applying a row-sum technique:

M∗
ij = δij

∑
k

Mik [5.33]

The non-linear semi-discrete equation system [5.31a] therefore becomes:
{RT } = [K] · {T} + [M∗] ·

{
Ḣ

}
− {F} = {0}

{RH} = [M∗] · {T} − {G} = {0}
[5.33a]

System [5.33a] is solved step by step in time. Let us apply for example an implicit
Euler backward algorithm on the enthalpy:

H = H0 + Ḣ∆t [5.34]



Non-linearities 165

where H0 and H are the enthalpy at time t and t + ∆t and Ḣ , the enthalpy rate at
time t + ∆t. At each time step t + ∆t, the nodal unknown values {T} and {Ḣ} can
be obtained using an iterative procedure like the Newton-Raphson method. Therefore,
at each iteration it, we have to solve the following linear system of equations:

[
[K] [M∗]

[M∗] −∆t [Q]

](it)

·



{∆T}{
∆Ḣ

}



(it)

= −
{
{RT }
{RH}

}(it)

[5.35]

where [Q] results from the assembly of element matrices [Qe] defined by:

[Qe] =
∫

Ωe

∂Θ
∂H

({Ne} 〈Ne〉)dv [5.36]

The second equation of [5.35] gives:

{∆T}(it) = [M∗]−1 ·
(
∆t [Q](it) ·

{
∆Ḣ

}(it)

− {RH}(it)
)

[5.37]

Because matrix [M∗] is lumped, equation [5.37] gives {∆T}(it) explicitly as a
function of {∆Ḣ}(it). Taking account of equation [5.37], the first equation of [5.35]
now gives {∆Ḣ}(it) as the solution of the following symmetric linear system of
equations: (

∆t [K](it) · [M∗]−1 · [Q](it) + [M∗]
)
· {∆Ḣ

}(it)

= [K](it) · [M∗]−1 · {RH}(it) − {RT }(it)
[5.38]

Once {∆Ḣ}(it) has been determined, equation [5.37] gives {∆T}(it) and the
solution is updated by setting:

{ {T}{
Ḣ

}
}(it+1)

=

{ {T}{
Ḣ

}
}(it)

+

{ {∆T}{
∆Ḣ

}
}(it)

[5.39]

The iterative process is continued until convergence.

One drawback of the methods using enthalpy as the unknown comes from the fact
that enthalpy is not continuous at the boundary between two materials. Therefore, to
perform calculations on multi-material models, which is necessary for example for
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Figure 5.5. Temperature variation at x = 1 for different
time steps (40 elements, from [FEU 07])

casting applications, it is essential to include thermal contact elements ensuring the
continuity of temperature and an enthalpy jump at the interface between two different
materials.

5.3.2. Example

Figures 5.5 and 5.6 give the results of a non-dimensional example similar to that
proposed by Morgan et al. ([MOR 78]) and consisting of a unidirectional isothermal
phase change in a semi infinite body. The specific heat (C), the mass density (ρ) and
the thermal conductivity (λ) are set to 1. An isothermal phase change takes place at
0°C and the latent heat of transformation is assumed to be equal to 20. The length
of the mesh, assumed to be equal to 4, has been chosen big enough to represent
a semi-infinite body for the first seconds of simulation. Three meshes have been
considered, consisting of a subdivision into 40, 20 and 8 8-noded hexahedral elements.
The initial temperature and enthalpy at all the nodes are assumed to be equal to the
temperature of transformation T = 0 and H = 20 respectively. For t > 0, the
temperature at x = 0 is set equal to −20. To ensure a correct convergence, ∂Θ

∂H should
not be less than or equal to zero. It is therefore assumed to be equal to ε = 10−4 for
0 ≤ H ≤ 20.
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Figure 5.6. Temperature profile at t = 1 s for different meshes
(∆t = 0.1 s, from [FEU 07])

The results obtained with the method presented above are compared with analytical
results given in [CAR 59]. Figure 5.5 shows the influence of the time step on the
computed temperature at x = 1 and Figure 5.6 demonstrates the influence of the
mesh on the temperature profile at time t = 1. The very good agreement between the
analytical solution and the numerical results obtained with different time steps and
mesh sizes shows the efficiency of the method.
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Chapter 6

Transport Phenomena

6.1. Highlighting instabilities

In this chapter, either a liquid medium or a mobile solid medium will be
considered. The velocity field in the material is assumed to be known. The case of
a mobile solid, which is a new extension of Part 1 of this book, is frequent enough
in practice. For instance, welding, cutting or surface thermal treatment processes
may involve a heat source moving at a given velocity (laser beam, electron beam,
etc.), or otherwise the whole solid is moving across heating and cooling areas (line
thermal treatment, continuous casting, etc.). In all cases, the thermal problem will
be addressed in a framework of reference related to the stresses (heat source, etc.).
Therefore, the solid is moving.

First, we will highlight the term to add to the thermal balance in order to take
account for this movement. Then we will demonstrate by means of a simple 1D case
that the traditional solution techniques produce spatial instabilities in the solution. In
the last sections, a method commonly used in computer codes to solve these so-called
convection-diffusion problems will be described.

6.1.1. Thermal balance

When the medium is moving, the temperature field sought, T (−→x , t), is written
T (−→x (t), t). Indeed, the position −→x of each material point is here a function of time.
It follows that the temperature change over time is written as:

Ṫ =
∂T

∂t
+
−−→
grad(T ) · d−→x

dt
=

∂T

∂t
+ −→v · −−→grad(T )
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In this equation, −→v represents the velocity of the points of the solid. Of course,
this velocity is a priori a function of the position of point −→x and time t. From this
result, it is possible to gather the thermal balance which must be satisfied at any point
of the solid Ω:

div
(
λ · −−→grad(T )

)
+ Q − ρC−→v · −−→grad(T ) = ρC

∂T

∂t
in Ω

In this chapter, our study will be restricted to the calculation of the steady state.
In the stress-related frame of reference (heat or cooling source), the steady state
corresponds to the condition ∂T

∂t = 0. This finally produces the following equation:

div
(
λ · −−→grad(T )

)
+ Q − ρC−→v · −−→grad(T ) = 0 in Ω [6.1]

In this type of problem, the boundary conditions are similar to those of a steady
state, where flux q is prescribed on a boundary ∂Ωq of the solid, and temperature Td

is known on the other portion ∂ΩT .

The finite element method applied to this equation and these boundary conditions
obviously leads to the calculation of an element residual {Re}. As in the transient
state case, this residual will be linear according to temperature if:

– the thermal conductivity λ and material product ρC are independent of
temperature;

– the volumetric heat source Q varies linearly according to the temperature: Q =
aQT + bQ;

– the surface flux density q varies linearly according to the temperature: q =
aqT + bq.

In this case, the element residual is written {Re} = [Ke] . {T e} − {F e}, where
the load vector {F e} and conductance matrix [Ke] are written as:

Ke
ij =




∫
Ωe

−−→
gradT (Ne

i ) · λ · −−→grad(Ne
j ) dv −

∫
Ωe

Ne
i aQNe

j dv

−
∫

∂Ωq∩Ωe

Ne
i aqN

e
j ds −

∫
Ωe

Ne
i ρC−→v · −−→grad(Ne

j ) dv

[6.2]

F e
i =

∫
Ωe

Ne
i bQ dv +

∫
∂Ωq∩Ωe

Ne
i bq ds [6.3]
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In these expressions, we can see that the element matrix [Ke] is not symmetric.
The non-symmetric term is the transport term:

T e
ij =

∫
Ωe

Ne
i ρC−→v · −−→grad(Ne

j ) dv

In a non-linear case, the tangent matrix involved would be non-symmetric too,
because of the presence of the transport term. Moreover, this term cannot be neglected,
as it is the only term taking into account the movement of the solid or fluid.

6.1.2. Treating a simple case

Applying the classic finite element method to the diffusion-convection problem
produces instabilities. In order to highlight them, consider a fluid with physical
properties, λ, ρ and C, running at constant speed, v, in a pipe. The problem is
assumed to be 1D, the flowing direction is written x, and the temperature field T (x)
corresponding to the steady state is calculated. A temperature T = 0 is prescribed at
the pipe entry (x = 0), and T = 1 at the exit (x = 1). The temperature field T (x) is
therefore the solution of the following boundary value problem:


ρCv

dT

dx
− λ

d2T

dx2
= 0 for 0 ≤ x ≤ 1

T (0) = 0

T (1) = 1

This problem has a simple analytical solution:

T (x) =
1 − eαx

1 − eα
with α =

ρCv

λ
[6.4]

In order to obtain a finite element solution, the weighted residual method is
applied, at first by introducing weighting functions ψ, then a partial integration
involving a temperature second derivative so as to end up with the weak formulation
of the continuous problem:


Find T (x) such that T (0) = 0, T (1) = 1, and for any ψ:

λ

∫ 1

0

dψ

dx

dT

dx
dx + ρCv

∫ 1

0

ψ(x)
dT

dx
dx = 0
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Consider a mesh obtained by the regular division of the segment [0, 1] into n linear
interpolation elements, of length h = 1/n. On each element Ωe = [xe, xe+1] (with
e = 1, . . . , n) two linear interpolation functions, Ne

1 = (xe+1 − x)/h (corresponding
to the node with x-axis xe) and Ne

2 = (x − xe)/h (corresponding to the node with
x-axis xe+1) are defined. The element quantity calculation is then relatively simple.
We obtain: 


Ke

ij = λ

∫
Ωe

dNe
i

dx

dNe
j

dx
dx + ρCv

∫
Ωe

Ne
i (x)

dNe
j

dx
dx

F e
i = 0

By analytically calculating the integrals involved, the following element quantities
are obtained: 


[Ke] =

λ

h

[
1 −1

−1 1

]
+

ρCv

2

[
−1 1

−1 1

]

{F e} =

{
0

0

}

Likewise, the assembly is relatively simple in this case and produces the following
matrices:

[K] =
λ

h




1 −1 0
−1 2 −1

. . .

−1 2 −1
0 −1 1


 +

ρCv

2




−1 1 0
−1 0 1

. . .

−1 0 1
0 −1 1




and:

{F} =




0
0
...

0
0




The generic equation at a node i such that 2 ≤ i ≤ n is written as:

∀i = 2, . . . , n,
λ

h

(− Ti−1 + 2Ti − Ti+1

)
+

ρCv

2
(− Ti−1 + Ti+1

)
= 0 [6.5]
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This equation clearly reveals a Peclet number P related to an element:

P =
ρCvh

λ
[6.6]

Indeed, the solution of this generic equation can be written as:

Ti+1 − Ti = A
(
Ti − Ti−1

)
= · · · = Ai−1

(
T2 − T1

)
with A =

1 + P
2

1 − P
2

Coefficient A defined by this equation tends to infinity for a Peclet number
P = 2, and changes signs on either side of this value. Therefore, physically realistic
solutions will be obtained only for values of A positive or equal to zero, i.e. for Peclet
numbers P ≤ 2. For Peclet numbers greater than 2, the solution will produce spatial
oscillations.

By consecutively applying the conditions T1 = 0 and Tn+1 = 1 to the generic
solution, we obtain:

Ti =
(
Ai−2 + Ai−3 + · · · + A + 1

)
T2 =

1 − Ai−1

1 − A
T2

Tn+1 =
1 − An

1 − A
T2 = 1 =⇒ T2 =

1 − A

1 − An

The finite element solution can finally be written in a general way according to
Peclet number P :

∀i = 1, . . . , n + 1, Ti =
1 − Ai−1

1 − An
with A =

1 + P
2

1 − P
2

[6.7]

Figure 6.1 illustrates the influence of Peclet number P on the solution of this
example. To do so, a value α = ρCv

λ = 30 was used and the variation of P was
obtained by modifying the discretization parameter h by the consecutive use of 30,
15, then 10 elements.

We can see that for values P < 2, the finite element approximate solution is
relatively close to the analytical solution. On the contrary, when Peclet number P

becomes greater than 2, the approximate solution produces spatial oscillations, due to
the sign change of the coefficient A. If P = 2, coefficient A tends to infinity. In this
case, a complete solution produces temperatures equal to zero at all the mesh nodes,
except for node number n + 1, where the condition Tn+1 = 1 is satisfied.
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Figure 6.1. Temperature profiles obtained with P = 1, P = 2 and P = 3

6.2. Resolution techniques

With the classic finite element resolution, the solution obtained is only valid for
low Peclet numbers P . Now, this number depends on the material physical properties
(λ, ρ and C), the solid or fluid velocity v, and the length of the element h in its
movement direction (equation [6.6]). For a given material and mesh, the classic finite
element method is applicable only if the solid or fluid velocity v is low enough. If not,
finer elements have to be used to reduce h, hence Peclet number P .

Specific resolution techniques for this type of problem have been implemented.
In the case of finite differences, it is the upwind technique, which is described in
section 6.2.1. This technique numerically solves a diffusion-convection problem
with a high Peclet number. To adapt it to the finite element method, it is possible
to use a Petrov-Galerkin variational formulation. This method is termed the
Streamline-Upwind-Petrov-Galerkin (SUPG) method. This formulation is described
in section 6.2.2.
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6.2.1. Upwind technique

Numerical mathematicians using the finite difference method are very familiar
with the spatial oscillation phenomenon in diffusion-convection. In fact, in the
example above, the equations obtained by means of this method with centered
difference schemes and a similar discretization are:


T1 = 0

∀i = 2, . . . , n, − λ

h2

(
Ti+1 − 2Ti + Ti−1

)
+

ρCv

2h

(
Ti+1 − Ti−1

)
= 0

Tn+1 = 1

These equations are strictly identical to those obtained by the finite element method
and therefore produce the same spatial oscillation problems for high Peclet numbers
P . In order to rectify this, it is possible to write an off-centered difference scheme that
estimates the first and second derivatives involved in the physical model:

dT

dx

∣∣∣∣
x=xi

=
Ti+1 − Ti

h

d2T

dx2

∣∣∣∣
x=xi

=
1
h

(
dT

dx

∣∣∣∣
x=xi+1

− dT

dx

∣∣∣∣
x=xi

)
=

Ti+2 − 2Ti+1 + Ti

h2

Using this off-centered scheme on nodes i = 1, . . . , n − 1 produces the following
equations:


T1 = 0

∀i = 1, . . . , n − 1, − λ

h2

(
Ti+2 − 2Ti+1 + Ti

)
+

ρCv

h

(
Ti+1 − Ti

)
= 0

Tn+1 = 1

The solution is written as:

∀i = 1, . . . , n + 1, Ti =
1 − Ai−1

1 − An
with A = 1 + P = 1 +

ρCvh

λ
[6.8]

Figure 6.2 shows the solutions obtained with this method for Peclet numbers P

equal to 1, 2 or 3 obtained as before (Figure 6.1). It is possible to verify that the
solution no longer oscillates for the high values of P .
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Figure 6.2. Temperature profiles obtained with an off-centered scheme

In order to compare the centered scheme (equation [6.7]) with the off-centered
scheme (equation [6.8]), we analyze the generic equations Ec

i and Ed
i derived in both

cases. We obtain:

Ec
i =

λ

h

(− Ti−1 + 2Ti − Ti+1

)
+

1
2
ρCv

(− Ti−1 + Ti+1

)
= 0

Ed
i =

λ

h

(− Ti−1 + 2Ti − Ti+1

)
+ ρCv

(− Ti−1 + Ti

)
= 0

The first terms of Ec
i and Ed

i correspond to the discretizations of the conduction
term, and the second terms to those of the convection term. If these expressions are
analyzed in-depth, we can note that:

Ed
i = Ec

i +
1
2
ρCv

(− Ti−1 + 2Ti − Ti+1

)

The off-centered scheme therefore corresponds to a centered scheme in which
more weight would have been given to conduction. Indeed, we obtain Ed

i again by
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replacing inside Ec
i the thermal conduction λ with an equivalent conduction λ′ such

that:

λ′ = λ

(
1 +

ρCvh

2λ

)
= λ

(
1 +

P

2

)

This result is used to establish the finite element formulations corresponding to the
off-centered scheme.

6.2.2. SUPG method

In order to apply the upwind technique to finite elements, it is possible to use
a Petrov-Galerkin method, which uses discontinuous weighting functions on the
element boundaries. In this section, the Petrov-Galerkin method will be illustrated
on the simple 1D example of the previous sections. To do so, the weighted residual
method is applied to the problem to solve to obtain:


ρCv

∫ 1

0
ψ(x)dT

dx dx − λ

∫ 1

0

ψ(x)
d2T

dx2
dx = 0

T (0) = 0

T (1) = 1

Make each weighting function ψ as the sum of a continuous function β on the
segment [0, 1] and a discontinuous function γ on the element boundaries:

∀x ∈ [0, 1], ψ(x) = β(x) + γ(x)

We obtain:

ρCv

∫ 1

0

(
β(x) + γ(x)

)dT

dx
dx − λ

∫ 1

0

β(x)
d2T

dx2
dx − λ

∫ 1

0

γ(x)
d2T

dx2
dx = 0

Apply an integration by parts on the second term of this equation. We obtain:

∫ 1

0

β(x)
d2T

dx2
dx =

[
β(x)

dT

dx

]1

0

−
∫ 1

0

dβ

dx

dT

dx
dx

Finally, by choosing functions β equal to zero in x = 0 and x = 1 (i.e. at the places
where essential boundary conditions are applied), the global problem to solve, derived
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from the weighted residual method and an integration by parts of the continuous terms
of the weighting functions, becomes:


Find T (x) such that T (0) = 0, T (1) = 1, and for any β(x) and γ(x):

λ

∫ 1

0

(
dβ

dx

dT

dx
− γ(x)

d2T

dx2

)
dx + ρCv

∫ 1

0

(
β(x) + γ(x)

)dT

dx
dx = 0

[6.9]

The finite element discretization is based upon the regular division of the segment
[0, 1] into n linear interpolation elements, of length h = 1/n. On each element
Ωe = [xe, xe+1], with e = 1, . . . , n, two interpolation functions Ne

1 = (xe+1 − x)/h

(corresponding to the node with x-axis xe) and Ne
2 = (x−xe)/h (corresponding to the

node with x-axis xe+1) are defined in a traditional way. However, these interpolation
functions will only be used for the continuous fields, i.e. functions T and β. The
functions γ inside each element Ωe will be defined from two functions He

1(x) and
He

2(x) which will be specified later on. Therefore, we obtain:

∀x ∈ Ωe,


T (x) = Ne

1 (x)T e
1 + Ne

2 (x)T e
2

ψ(x) =
(
Ne

1 (x) + He
1(x)

)
ψe

1 +
(
Ne

2 (x) + He
2(x)

)
ψe

2

Discretized equation [6.9] then leads us to solve the system [K] · {T} = {F},
where the matrix [K] and load vector {F} are obtained as usual by assembling element
quantities [Ke] and {F e}. By noting that, in this example, the interpolation functions
Ne

i (x) are linear and therefore their second derivative to x is equal to zero, we obtain:


Ke
ij = λ

∫
Ωe

dNe
i

dx

dNe
j

dx
dx + ρCv

∫
Ωe

(
Ne

i (x)
dNe

j

dx
+ He

i (x)
dNe

j

dx

)
dx

F e
i = 0

In the expression of the terms Ke
ij the second integral involves the functions He

i .
Hughes and Brooks [HUG 82] suggest we take as interpolation functions:

He
i (x) =

1
2
ξh

dNe
i

dx

where ξ is an adjustable parameter and h the element length. This option uses the
result obtained at the end of the previous section and gives more weight to thermal
conduction. In fact, the components of the matrix [Ke] are now written as:

Ke
ij = λ

(
1 + ξ

P

2

)∫
Ωe

dNe
i

dx

dNe
j

dx
dx + ρCv

∫
Ωe

Ne
i (x)

dNe
j

dx
dx
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In this equation, Peclet number P defined by equation [6.6] appears. In addition,
note that this expression is similar to that derived from the classic approach, providing
that the thermal conductivity λ is replaced with the following equivalent conductivity
λ′:

λ′ = λ

(
1 + ξ

P

2

)

If this equivalent thermal conductivity λ′ is used, it is again possible to write
generic equation [6.5] of the problem to solve using the finite element method. This
generic equation becomes:

∀i = 2, . . . , n,
λ′

h

(− Ti−1 + 2Ti − Ti+1

)
+

ρCv

2
(− Ti−1 + Ti+1

)
= 0

If the same method is used to solve the global system (with the boundary
conditions T0 = 0 and Tn+1 = 1), the general solution of equation [6.7] is expressed
as follows, according to Peclet number P and the coefficient ξ:

∀i = 1, . . . , n + 1, Ti =
1 − Ai−1

1 − An
with A =

1 + P
2 (ξ + 1)

1 + P
2 (ξ − 1)

[6.10]

Next, it is necessary to adjust this parameter ξ so as to avoid oscillations
(coefficient A negative), and obtain the most accurate possible solution.

In the simple case addressed here, equation [6.4] yields the analytical solution of
the problem. In particular, at the mesh nodes with x-axes xi = (i−1)h, this analytical
solution can be expressed as follows (P is the problem Peclet number):

∀i = 1, . . . , n + 1, Ti =
1 − e(i−1)P

1 − enP
[6.11]

The comparison of equations [6.11] and [6.10] leads us to choose a coefficient
A = eP . Indeed, in this case, the finite element solution will be accurate at the mesh
nodes and the coefficient A will always be positive. Then the following optimal value
will be obtained for ξ:

ξopt =
eP + 1
eP − 1

− 2
P
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Figure 6.3. Temperature profile obtained with a Petrov-Galerkin formulation
and an optimal coefficient ξ

Figure 6.3 gives the solution obtained analytically with the finite element method,
for P = 1, P = 2 and P = 3. The solution does not oscillate anymore and coincides
with the analytical solution at the mesh nodes. The discrepancies between both
approaches are only due to the linear nodal approximation used.

The optimal value of the coefficient ξ obtained here is only valid in the simple case
under consideration. Now it is necessary to address the general case, to check whether
a similar approach can be appropriate.

6.2.3. 2D and 3D Petrov-Galerkin formulation

The Petrov-Galerkin method illustrated in the example above can be used in
the general case of a 2D or 3D diffusion-convection problem, as well as with any
interpolation functions Ne

i . Here again, the functions used to define the discontinuous
part γ of the weighting functions ψ will be termed He

i and Ne
i those used for their

continuous part β and for the temperature field T . In the linear case, the system to
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solve is of the type [K] · {T} = {F} where the matrix [K] and vector {F} result
from the assembly of the element quantities [Ke] and {F e} whose general terms are:

Ke
ij =

∫
Ωe

−−→
gradT (Ne

i ) · λ.
−−→
grad(Ne

j )dv +
∫

Ωe

ρC(Ne
i + He

i )−→v · −−→grad(Ne
j )dv

−
∫

Ωe

He
i div

(
λ · −−→grad(Ne

j )
)
dv

F e
i =

∫
Ωe

(Ne
i + He

i )Qdv +
∫

∂Ωq∩∂Ωe

Ne
i qds

Obtaining these element quantities results from the application of the weighted
residual method and the divergence theorem to get a weak formulation of the
continuous problem. However, the divergence theorem can only be applied here on
the terms involving the continuous part β of the weighting functions. In matrix [Ke]
there are terms including second derivatives of the shape functions Ne

i . However,
these terms are often neglected. They are equal to zero for linear interpolation
elements and a constant thermal conductivity.

Thus, the Petrov-Galerkin method defines a working context for the finite element
solution of a diffusion-convection problem. The quality of approximate solutions will
be directly related to the choice of functions He

i . As in the 1D case above, Hughes and
Brooks [HUG 82, BRO 82] suggest the following functions:

He
i = τ div

(
Ne

i
−→v )

In this equation, τ is an adjustable parameter. Now in the 1D case, we had
He

i (x) = 1
2ξh

dNe
i

dx , i.e. τ = 1
2ξ h

v , where v is the velocity in the direction x. It is
possible to extend this result to the 2D and 3D cases as follows:

τ =
ξhξ

−→v · −→u ξ + ηhη
−→v · −→u η

2−→v · −→v (2D case)

τ =
ξhξ

−→v · −→u ξ + ηhη
−→v · −→u η + ζhζ

−→v · −→u ζ

2−→v · −→v (3D case)

In these equations, ξ, η and ζ are adjustable parameters, and hξ, hη and hζ are
lengths characteristic of the element in the three reference directions −→u ξ, −→u η and −→u ζ

(Figure 6.4). Considering the results obtained in the previous example, it is possible
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Figure 6.4. Diagram of the 2D upwind technique principle

for example to choose as adjustable parameters, in the case of an isotropic thermal
conductivity λ:



ξ =
ePξ + 1
ePξ − 1

− 2
Pξ

η =
ePη + 1
ePη − 1

− 2
Pη

ζ =
ePζ + 1
ePζ − 1

− 2
Pζ

with




Pξ =
ρChξ

λ
−→v · −→u ξ

Pη =
ρChη

λ
−→v · −→u η

Pζ =
ρChζ

λ
−→v · −→u ζ

In these expressions, the Peclet number related to each reference direction of
the element under consideration appears. The method presented therefore makes
it possible to extend to 2D and 3D the off-centered scheme introduced in the 1D
example. The off-centering operation is carried out in the flow direction. The values
of ξ, η and ζ thus defined correspond to optimal 1D values, for which the numerical
and analytical solutions coincide at the mesh nodes. However, this is rarely the case
when the flow is more complex, as in 2D or 3D.
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Introduction

Consider again the boundary value problem governing heat diffusion in a solid
occupying a bounded domain Ω, with the boundary ∂Ω, with initial conditions on T :

ρ
dH

dt
− div

(
λ · −−→grad(T )

)− Q = 0 in Ω

(
λ · −−→grad(T )

) · −→n = q on ∂Ωq

T = Td on ∂ΩT


 with ∂Ω = ∂Ωq ∪ ∂ΩT

The finite element method applied to this problem produces an element residual
{Re(T )} (equation [2.6] in Part 1 of this book for the steady state, equation [4.7] in
Part 2 for the transient state), then performs the assembly to obtain a global residual
{R(T )} to cancel:

{R(T )} =
m∑

e=1

[Ae]T · {Re(T )} = 0

As already seen in Chapter 5, this equation is solved by an iterative method. For
instance, the Newton-Raphson method solves at each iteration it the following linear
system, so as to obtain the nodal vector {T}(it+1) of the next iteration temperatures:

{R}(it) +
[
∂R

∂T

](it)

· ( {T}(it+1) − {T}(it) ) = 0

For instance, iterations are performed in order to obtain a norm of the residual
vector {R}(it) less than a precision threshold set by the user. In this equation, the
tangent matrix is obtained by assembling element tangent matrices.
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The boundary value problem contains a large amount of coupling relationships
with other physical phenomena. The material physical properties ρ, H and λ may thus
depend on the temperature, but also the chemical composition or other state variables
such as those describing the microstructure (phase proportions, grain size, etc.) or
the pressure. The internal heat source Q involves other physical phenomena. They
can be the Joule effect in conduction heating or induction heating applications, or
plastic dissipation in forming applications. Here again, the problem involves new state
variables, but this term can also express radiation exchanges in a participative medium
like glass at certain temperatures. It then depends only on the temperature field in the
solid, but will produce coupling phenomena on distances longer than those involved
in the diffusion phenomena alone. The boundary conditions such as the prescribed
thermal flux density q or the exchange coefficient h and the external temperature are
also due to complementary physical phenomena. These phenomena may also involve
other state variables (for example, those governing a fluid bath flow in the vicinity of
the wall) or not, as in the case of thermal radiation in a chamber, but this will produce
additional coupling phenomena on the temperature field at the surface of the chamber.
Generally speaking, coupled problems can be arranged into three categories:

1) The first category includes problems involving similar state variables. Such
is the case of coupled diffusion and radiation heat exchanges. The diffusion-related
tangent matrix then couples all the nodes involved in these phenomena (for example,
all the nodes at the surface of the chamber in the case of thermal radiation in a
chamber). The result is a very significant increase of the non-zero terms on each line
of the tangent matrix, the destruction of its band structure, and therefore a very high
increase of the solution time. However, as already seen in the solution of non-linear
problems, it is not necessary to use a real tangent matrix to solve this equation. It
would be sufficient to introduce a partial radiation contribution into the tangent matrix,
which does not destroy the good structure of the matrix related to diffusion exchanges.
However, this method will inevitably require a larger number of iterations and, in some
cases, will not allow any convergence.

2) The second category includes problems involving different state variables.
However, additional state variables are governed by time ordinary differential
equations so that they can be calculated locally. For instance, structural
transformations are governed by equations depending on the (local) temperature,
each phase (local) proportion and time. These equations are then solved at each
finite element integration point and the dependent magnitudes are updated for the
calculation of element quantities.

3) The third category includes problems involving different state variables whose
changes are governed by boundary value problems. Boundary value problems may



Introduction 187

be related to the same domain of study Ω as is generally the case for electrothermal
coupling applied to conduction heating, or not, as in induction heating where modeling
magnetic dynamic phenomena requires us to consider air as the domain of study.

For the problems belonging to the third category, two (or several) non-linear
systems must be solved at each time step. If for instance the vector of nodal unknowns
related to the coupling is termed {α}, and {S} is the residual obtained by applying
the finite element method to the physical model governing these unknown changes, at
each time step, the following equation has to be solved:

{R({T} , {α})} = {0}
{S({T} , {α})} = {0}

Note that in this equation, vectors {T} and {α} do not necessarily have the same
number of components, as the physical phenomena involved are not necessarily related
to the same domains of study and therefore their solution may be based upon different
meshes. If these physical phenomena are weakly coupled, it is possible to find an
approximate solution of the problem by replacing the first equation {α} with its value
obtained at the previous time step, then solving this equation alone to determine {T},
and the second equation alone to determine {α}. If the two problems are strongly
coupled, then both equations have to be solved at the same time. To do so, an iterative
procedure can be used.

If {T}(it) and {α}(it) are the solutions obtained after it iterations, a better solution
can be obtained by solving consecutively:{

R({T}(it+1)
, {α}(it))

}
= {0}

to obtain {T}(it+1), then:{
S({T}(it+1)

, {α}(it+1))
}

= {0}

to obtain {α}(it+1), and so on and so forth until the norms of vectors {R} and {S}
reach the accuracy thresholds required.

The major advantage of this method is that both physical problems can use
different meshes. It is then necessary to have an algorithm for the transport of physical
quantities from one mesh to the other. Moreover, this method does not require a
specific formulation of the coupling as the problems are solved consecutively. It
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makes it possible to use different numerical methods to solve each system. It is finally
well-adapted to boundary condition coupling.

Of course it is possible to solve the problem globally and directly by means of a
Newton-Raphson method. Starting with {T}(it) and {α}(it), {T}(it+1) and {α}(it+1)

are obtained by the resolution of:

{
{R}(it)

{S}(it)

}
+



[
∂R

∂T

](it) [
∂R

∂α

](it)

[
∂S

∂T

](it) [
∂S

∂α

](it)


 ·

{
{T}(it+1) − {T}(it)

{α}(it+1) − {α}(it)

}
=

{
{0}
{0}

}

This iterative process a priori converges faster than the previous one. However, this
method is more complicated because it requires the development of specific elements
and generally produces non-symmetric matrices. It will be restricted to particular cases
for which the previous convergence method is not possible.



Chapter 7

Radiation Exchanges in a Chamber

7.1. Modeling radiative heat exchanges in a cavity

Heat radiation becomes an important mode of heat transfer as soon as high
temperatures (higher than 300°C) are involved, as is the case for heat exchanges in a
heat treatment furnace. Generally speaking, such exchanges are strongly non-linear
and difficult to take into consideration in finite element modeling, because they
couple the radiative surfaces. This results in an increase of the memory space
necessary for calculation, and long calculation times.

The most commonly used methods to solve heat radiation problems assume
isothermal zones, for the equations governing radiation exchanged heat fluxes
are well-known and this assumption is particularly well-adapted to finite
element modeling [SIE 81]. These methods can be considered to be specific
cases of variational approximations in which special shape functions are used
[KEA 88, LOB 95, BRE 90].

However, the coupled resolution of diffusion and radiation equations creates some
difficulties [KEA 88, ENG 91, SOR 90]. One method is to solve consecutively, at each
iteration, the systems describing radiation and diffusion exchanges. Radiation fluxes
are calculated from the previous iteration temperatures and transferred into the finite
element system to calculate new temperatures. The explicit character of this coupling
requires the use of very tiny time increments for the simulation of transient phenomena
and bans this method for steady solutions. However, the advantage of this method lies
in the fact that it satisfies the discrete maximum principle [LOB 95], and therefore
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avoids spatial oscillations of the solution which may occur in problems where the
radiation phenomenon is paramount.

For more general cases, the problems related to diffusion and radiation exchanges
are treated simultaneously [KEA 88, ENG 91, SOR 90, BOR 90, BER 01]. At
each iteration, the solution of the non-linear problem involves a matrix including a
contribution of the radiative phenomena. This contribution destroys the band structure
of the matrix resulting from the diffusion phenomena and makes it non-symmetric.

In this section, the equations governing radiation exchanges are described first,
then a coupling method often used in finite element computer codes is introduced.

7.1.1. Posing the problem

Consider a cavity whose surface consists of f plane surfaces (Figure 7.1) and seek
an expression of the heat flux locally received by each surface under the action of the
radiation inside the cavity. It can be noted that the approximation of the cavity surface
by a set of plane surfaces results from the finite element mesh. Besides, the assumption
of gray bodies is made. It is therefore assumed that the radiance of each plane surface
is independent of the direction and the monochromatic emission factor is independent
of the wavelength.

Figure 7.1. Discretized cavity



Radiation Exchanges in a Chamber 191

For each plane surface a, its surface is termed Sa, its emission coefficient (or
absorption coefficient) εa, and its reflection coefficient ρa, (ρa = 1 − εa). The
assumption of so-called isothermal zones is made. It is therefore assumed that each
plane surface has a uniform temperature written T a, expressed in Kelvin, and it is
recalled that:

– the proper emittance of a gray plane surface a is given by:

Ma = σεaT
4

a

where σ is a Stefan constant which is equal to 5.67.10−8 W/m2/K4;

– the view factor Fab from a plane surface a to another plane surface b is the energy
fraction leaving the plane surface a reaching the plane surface b. The view factors Fab

satisfy the conditions:

SaFab = SbFab and for any a,
f∑

b=1

Fab = 1 [7.1]

For each plane surface a it is now necessary to define an apparent emittance or
radiosity Ra such as the energy density escaping the plane surface:

Ra = σεaT
4

a︸ ︷︷ ︸
proper emission

+
(
1 − εa

)
Ha︸ ︷︷ ︸

reflected portion
of incident energy

[7.2]

The incident flux density on a, Ha, is obtained by figuring the following
relationship:

SaHa︸ ︷︷ ︸
energy

incident on a

=
f∑

b=1

Fab︸︷︷︸
fraction

arriving on a

SbRb︸ ︷︷ ︸
energy

leaving b

= Sa

f∑
b=1

FabRb [7.3]

The net flux density received by the plane surface a, qa is then expressed as:

qa = εaHa︸ ︷︷ ︸
absorbed part of
incident energy

− σεaT
4

a︸ ︷︷ ︸
proper emission

This expression, combined with equation [7.2], gives:

qa =
εa

1 − εa

(
Ra − σT

4

a

)
[7.4]
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The combination of equations [7.2] and [7.3] produces a linear system of f

equations with f unknowns, making it possible to determine the plane surface
radiosities. We obtain:

f∑
b=1

(
δab −

(
1 − εa

)
Fab

)
Rb = σεaT

4

a

In this equation, δab represents the Kronecker symbol (δab = 1 if a = b and 0
otherwise). The linear system reveals a non-symmetric matrix with δab − (1− εa)Fab

as general term. In order to facilitate the numerical resolution of this system, it is
made symmetric. To do so, it is assumed that the cavity surface consists of very gray
plane surfaces (εa �= 1) numbered from 1 to g, and very black surfaces (εa = 1)
numbered from g + 1 to f . The radiosity of a black plane surface being equal to its
proper emittance, while for any gray plane surface a the previous system is written:

g∑
b=1

(
δab −

(
1 − εa

)
Fab

)
Rb = σεaT

4

a +
(
1 − εa

) f∑
b=g+1

FabσT
4

b

If the two members of the equation are multiplied by Sa/(1 − εa), the following
symmetric linear system of g equations for g unknowns is finally obtained:

g∑
b=1

(
Sa

1 − εa
δab − SaFab

)
︸ ︷︷ ︸

Gab

Rb = σ
εaSa

1 − εa
T

4

a +
f∑

b=g+1

SaFabσT
4

b [7.5]

The gray surface radiosities are determined by the solution of this symmetric linear
system (Gba = Gab). If Lab is the general term of the inverse matrix of the Gab, the
radiosity of a gray surface a can be expressed as:

Ra =
g∑

b=1

Lab

(
σ

εbSb

1 − εb
T

4

b +
f∑

c=g+1

SbFbcσT
4

c

)
[7.6]

It is now possible to note that the sum of the terms on the same line of the matrix
formed by the Gab is equal to:

g∑
b=1

Gab =
Sa

1 − εa
−

g∑
b=1

SaFab =
εaSa

1 − εa
+

f∑
b=g+1

SaFab
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By considering this sum as the product of a matrix whose general term is Gab by
a vector including only 1, the equation above can be written as an equation system
which, after inversion, gives the following relationship between the terms Lab:

g∑
b=1

Lab

(
εbSb

1 − εb
+

f∑
c=g+1

SbFbc

)
= 1 for any gray plane surface a.

Finally, by transferring this relationship and equation [7.6] into the expression of
the net flux received qa (equation [7.4]), we obtain for any gray plane surface a:

qa =
1
Sa

f∑
b=1,b
=a

σDab

(
T

4

b − T
4

a

)
[7.7]

In this equation, the terms Dab are expressed as (a is a gray plane surface):

Dab =




εaSa

1 − εa
Lab

εbSb

1 − εb
if b is gray

εaSa

1 − εa

g∑
c=1

LacScFcb if b is black

In the case of a black plane surface a, the expression obtained for the net flux
received is the same. The terms Dab are then expressed as:

Dab =




SaFab +
g∑

c=1

g∑
d=1

SaFacLcdSdFdb if b is black

εbSb

1 − εb

g∑
c=1

LcbSaFac if b is gray

It can be noted that the matrix whose general term is Dab is symmetric. The method
above therefore allows for an analytical expression of the net flux received by each
gray or black plane surface making up the cavity surface. There are several advantages
to this method. First, it is applied regardless of the surface emissivities. Then, when
the surface emissivities are independent of temperature, it only requires the inversion
of a symmetric matrix whose order is equal to the number of gray plane surfaces. The
calculation of this matrix and of the view factors is made in a pre-treatment phase.
Finally, the expression of the net flux received by each plane surface makes it possible
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Figure 7.2. View factor between two plane surfaces

to include a contribution due to the heat radiation into the first member matrix of the
problem coupling diffusion and radiation.

7.1.2. Calculation of view factors

The view factor between two plane surfaces is given by the following expression
(Figure 7.2):

Fab =
1

πSa

∫
Sa

∫
Sb

cos αa cos αb

r2
ab

dsa dsb [7.8]

Several calculation techniques may be used. In a 2D case, Hottel’s crossed string
method [SIE 81] uses equation [7.1] in a quadrangle (Figure 7.3). It is easy to obtain:

– for two adjacent plane surfaces (for example, 1 and 2 in Figure 7.3):

S1F12 =
1
2
(
S1 + S2 − S5

)
– for two non-adjacent plane surfaces (for example, 1 and 3 in Figure 7.3):

S1F13 =
1
2
(
S5 + S6 − S2 − S4

)
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Figure 7.3. The crossed string method

In a 3D case1, one possibility is to use Gauss numerical integration, which consists
of replacing the integrals involved in expression [7.8] with a discrete sum on all the
integration points of plane surfaces a and b. This method is described in detail in Part
1 of this book. We obtain:

saFab =
1
π

ng
a∑

i=1

ng
b∑

j=1

−−−→
Gi

aGj
b ·

(−→
ni

a −
−→
nj

b

)
∥∥−−−→Gi

aGj
b

∥∥4
wi

awj
bν

ij
ab

In this equation, Gi
a, wi

a,
−→
ni

a (Gj
b, w

j
b ,
−→
nj

b) represent respectively an integration
point, the related weight and the unit normal to the plane surface a (plane surface b).
The coefficient νij

ab takes the value 1 if the integration points are visible, and 0 should
this be otherwise.

This technique does not enable us to accurately calculate (except if a large number
of integration points are used) the view factors; however, it is naturally included in
a finite element computer code and makes it possible to address any type of convex
or non-convex cavity. Figures 7.4 and 7.5 give the accuracy expected in classic
configurations.

These element cases are extremely interesting for the user as they give very useful
information for determining the cavity surface discretization. It can be noted that for a
reasonable discretization, the resulting accuracy is satisfactory. For 2 parallel planes,

1. Axisymmetric cases are particularly interesting and complicated to address. The reader may
refer to [CHU 82].
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Figure 7.4. Calculation error of the view factor between two opposite plane surfaces
with 4 and 9 Gauss points per plane surface
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Figure 7.5. Calculation error of the view factor between two orthogonal plane surfaces
with 4 and 9 Gauss points per plane surface

the error is less than 5% as soon as c
l > 0.387 for elements with 9 integration points

and c
l > 0.583 with elements with 4 integration points. However, this method does

not enable us to accurately calculate of the view factor between two plane surfaces
with a common edge (c = 0 in 7.5).
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The calculation of the view factor between two spheres makes it possible to
validate this technique in the case of a non-convex cavity. Consider an inner sphere
of radius 1 and an outer sphere of radius 2, each sphere being meshed with 96
quadrangles with 4 integration points and 32 triangles with 1 integration point. The
sum of the view factors being calculated, related to each element, remains in the
range of 0.9978 ≤ ∑f

b=1 Fab ≤ 1.014, which produces an error of less than 1.4%.
Moreover, the view factor sought, from the inner sphere to the outer sphere, is
equal to 0.25024, compared with a theoretical factor equal to 0.25, which is very
satisfactory. In practice, above all in the case of a non-convex cavity, it is generally
preferable to rectify the view factors after calculation, so as to satisfy equation [7.1]
for each of the plane surfaces. It is therefore advisable to take the following iterative
option. If F

(k)
ab are the view factors obtained after k iterations, the following sequence

is defined:

F
(k+1)
ab =

1
2

(
1

φ
(k)
a

+
1

φ
(k)
b

)
F

(k)
ab with φ(k)

a =
f∑

b=1

F
(k)
ab

It is demonstrated that this sequence converges, and at the convergence, for any
plane surface a, we find that φa = 1.

Other view factor calculation techniques may be used (contour integrals, Monte
Carlo method, etc.). These calculations are often parts of specialized programs
[CHU 82, SHA 85]. The reader will find in [EME 91] a comparative study of the
various calculation methods available.

7.1.3. Diffusion-radiation coupling

Assume a cavity surface meshed with f skin finite elements, each element a

representing a plane surface Sa. In order to take the action of heat radiation inside
the cavity into consideration, it is sufficient to add to the residual expression the
contribution of the corresponding heat flux density qa. This contribution is written
as:

{Rr} =
f∑

a=1

[Aa]T · {Ra
r} with {Ra

r} =
∫

Sa

{Na} qa ds [7.9]

where [Aa] represents the location matrix and Na the shape functions corresponding
to element a.

We could stop at this point. However, heat radiation problems produce significant
non-linearities and it is wise to insert a contribution due to these effects into the
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iterative matrix [M ](it) corresponding to the non-linear system to solve. The additional
term {Rr} influences only the nodes attached to the cavity surface and only depends
on these node temperatures. The contribution [Mr] to the matrix [M ](it) is therefore
a square matrix of dimension nr × nr, where nr represents the cavity’s number of
nodes.

Consider {Tr} the temperature vector of the nodes attached to the cavity surface. In
the case of radiative exchanges, the term {Rr} depends on all the temperatures of the
cavity surface nodes, and hence on all the components of {Tr}. It follows that matrix
[Mr] is full and its assembly will significantly increase the bandwidth of global matrix
[M ](it). Another method often used is to assemble only the terms of [Mr] included in
the band structure of matrix [M ](it) corresponding to diffusion phenomena.

Two types of radiation matrix [Mr] to assemble in [M ](it) at each resolution
iteration can be considered:

– a real tangent matrix:

[Mr] = −
[
∂Rr

∂Tr

]

– a substitution matrix:

[Mr] = −
[
δRr

δTr

]

7.1.3.1. Tangent matrix

Reconsidering the expression of the heat flux density qa given by equation [7.7],
we obtain:

[Mr] =
∂

∂ {Tr}

(
f∑

a=1

[Aa]T ·
∫

Sa

{Na} 1
Sa

f∑
b=1, b 
=a

Dabσ
(
T

4

a − T
4

b

)
ds

)

Then the mean temperature of a plane surface is defined with the finite element
method nodal approximation:

T a =
1
Sa

∫
Sa

T ds =
1
Sa

〈∫
Sa

Nads

〉
· {T a} [7.10]
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It is then easily demonstrated that the matrix2 [Mr] consists of the element blocks[
Mab

r

]
influencing only the nodes of the plane surfaces a and b:

[Mr] =
f∑

a,b=1

[Aa]T · [Mab
r

] · [Ab
]

with




[Maa
r ] =

4σT
3

a

S2
a

(
f∑

b=1, b 
=a

Dab

){∫
Sa

Na ds

}〈∫
Sa

Na ds

〉

[
Mab

r

]
= −4σT

3

bDab

SaSb

{∫
Sa

Na ds

}〈∫
Sb

N b ds

〉
for b �= a

[7.11]

The tangent radiation matrix obtained by matrix assembly has the drawback of
being non-symmetric.

7.1.3.2. Substitution matrix

Expression [7.9] of {Rr} can be written taking into consideration expression [7.7]:

{Rr} = −
f∑

a=1

1
Sa

∫
Sa

{Na}
∑

b=1, b 
=a

Dabσ
(
T

2

a + T
2

b

)(
T a + T b

)
︸ ︷︷ ︸

hab

(
T a − T b

)
ds

The quantity hab in the previous equation is similar to an exchange coefficient
between two plane surfaces a and b. Given equation [7.10] defining a plane surface
mean temperature, {Rr} can be written as {Rr} = − [Mr] · {Tr}, where the matrix
[Mr] is a substitution matrix which is written as:

[Mr] =
f∑

a,b=1

[Aa]T · [Mab
r

] · [Ab
]

with




[Maa
r ] =

1
S2

a

(
f∑

b
=a

hab

){∫
Sa

Na ds

}〈∫
Sa

Na ds

〉

[
Mab

r

]
=

hab

SaSb

{∫
Sa

Na ds

}〈∫
Sb

N b ds

〉
for b �= a

2. The possible temperature-dependence of heat emissivities is neglected for the calculation of
the tangent operator.
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As above, the matrices
[
Mab

r

]
are element blocks influencing only the nodes

attached to the plane surfaces a and b. It is easy to demonstrate that the symmetry of
the Dab leads to that of the hab, and consequently the symmetry of [Mr] thus defined.
This is a major advantage of this method.

7.2. Examples

Two application examples are addressed in this section:

– radiation between two walls, which will validate the method presented in the
section above;

– cylinder quenching, which uses symmetry relationships to simplify the global
problem [BER 01].

7.2.1. Radiation between two walls

Consider the abstract 1D example in Figure 7.6. The walls are assumed to have a
thermal conductivity λ = 1.5 W/m/K. The analytical solution is obtained, in the steady
state, by equalizing the set of flux densities involved, i.e. the conduction between the
surfaces A and B, the conduction between the surfaces C and D, and the radiation
between the surfaces B and C. If φr is the radiated flux density, we obtain:

−λ
TB − TA

xB − xA
= φr = −λ

TD − TC

xD − xC

It is easily demonstrated that if F represents the view factor between the surfaces
B and C, then the radiation flux density between these two surfaces is written:

φr = Kσ
(
T 4

B − T 4
A

)
with K =

FεBεC

1 − F 2
(
1 − εB

)(
1 − εC

)
The mesh used for the calculations is regularly divided, every 0.05 m, in the

direction x. Five solution strategies are examined:

– NC (no radiation contribution) method: the conduction matrix alone is used to
make the iterations;

– PS (partial substitution) method: the radiation contribution is introduced as a
substitution matrix, with consideration of only those terms belonging to the band
structure corresponding to the diffusion finite elements;

– TS (total substitution) method: the radiation contribution is taken into
consideration by means of the symmetric substitution matrix;
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Figure 7.6. Radiation exchange between two walls

– TM (tangent matrix) method: the radiation contribution is taken into
consideration by means of the tangent matrix (non-symmetric);

– BFGS method: the BFGS method is used.

In all cases, the iterative calculation is interrupted as soon as the largest residual
component (in absolute value) becomes less than 0.01 W, or as soon as that of the
temperature difference is less than 0.01°C. Different couples (εA, εB) are tested; all
the results are in Table 7.1.

As could be expected, it is with the real tangent matrix that convergence is fastest
(in number of iterations). The substitution matrix produces convergence too, without
using a non-symmetric solver. In practice, these methods very significantly increase
the bandwidth of the first member matrix used to make the iterations and, as a
consequence, the analysis cost.

The conduction matrix alone does not produce convergence generally. Introducing
a radiation partial contribution, without destroying the matrix band structure, has
produced convergence in all cases (often with a large number of iterations, if truth
be told). The BFGS method seems to be the most efficient.
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εB εC TB (°C) TC (°C) method iterations

0.1 0.3 204.4 897.8 PC 14

SP 9

ST 4

MT 3

0.4 1 581.2 709.4 PC ∞
SP 41

ST 6

MT 4

0.01 0.2 19.06 990.5 PC 4

SP 4

ST 3

MT 3

1 1 630.9 684.6 PC ∞
SP 93

ST 5

MT 4

BFGS 12

0.2 0.2 599.5 700.3 PC ∞
+0.0008T +0.0008T SP 45

ST 7

MT 6

BFGS 13

Table 7.1. Work example – number of iterations at the convergence

The example considered here is much more difficult than it first appears. On the
one hand, the calculation of a steady state is much more difficult to make than that
of a transient state where the phenomena are regularized over time. On the other
hand, the example deals with two conductive regions which are only coupled by
the radiative exchanges. This coupling is only inserted into the first member matrix
when a radiation contribution by means of a substitution matrix or a tangent matrix
is considered. That is the reason why the methods using them converge in fewer
iterations.
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Generally speaking, it is recommended to treat diffusion-radiation problems with
the BFGS method. Using a substitution matrix will be restricted to cases in which
the latter does not converge. Using the tangent matrix, in addition to the hopeless
cases in which none of the methods above would have produced a solution, will be
recommended in cases where the first member matrix is already non-symmetric in
nature, for example, as is the case of diffusion-convection problems.

7.2.2. Cylinder quenching

Consider here the case of five cylinders at the initial temperature of 900°C, which
are cooled in a chamber whose walls and top surface are assumed to be at the constant
temperature of 200°C, with an emissivity of 1 (black body), and whose bottom surface
is at 60°C, with an emissivity of 0.6. The cylinder emissivity is assumed to be equal
to 0.9.

We added to the radiative exchanges convection exchanges on the cylinder
surfaces, with a convection coefficient h = 10 Wm−2K−1, and a temperature equal
to that of the chamber walls, 200°C. The thermal properties of the cylinders are
λ = 40 Wm−1K−1 and ρC = 4.7.106 Jm−3K−1.

The numerical simulation of this problem takes the symmetries into consideration
by means of the formulation described in detail in [BER 01]. In order to illustrate
the influence of symmetries on calculation times, we have made two calculations
with two meshes presented in Figure 7.7. The first image represents the complete
structure, without the chamber walls. It altogether consists of 2, 761 nodes, 2, 400 3D
isoparametric elements. Furthermore, 1, 720 2D elements were added to illustrate the
radiative exchanges in the chamber. In the second image, the problem symmetries lead
us to model only one-eighth of the whole structure. The mesh used for the calculation
then includes only 437 nodes, 300 3D elements and 215 2D elements.

The view factors Fab between each surface and the chamber walls are calculated
only once at the beginning of the analysis. The transient calculation is made with a
time step of 20 s between the initial moment and 60 s, then a step of 60 s between
moments 60 s and 600 s. The solution was calculated with a tangent matrix restricted
to the assembly of the terms [Maa

r ] in equation [7.11]. The convergence was set at
10−5 W on the residual maximum component (in absolute value), or at 10−2°C on the
maximum temperature variation (in absolute value) between two iterations.

Figure 7.8 gives the temperature distribution on the cylinder surfaces at t = 240 s.
We see that the reduced model gives the same distribution as the full model, whereas
the calculation times were as follows:
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Figure 7.7. Mesh used for the calculation, from [BER 01]

Figure 7.8. Temperature distribution at t = 240 s, excerpt from [BER 01]
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– on the full model, 669 s for the view factors, 25 s for the calculation of
the radiation contribution to the tangent matrix, and 54 s for the transient thermal
calculation,

– on the reduced model (one eighth on account of symmetries), 79 s for the view
factors, 0.07 s for the calculation of the radiation contribution to the tangent matrix,
and 5 s for the transient thermal calculation.

These results show how important it is to use the symmetries of a problem when
it is modeled, with a view to its numerical simulation. Additionally, using a partial
tangent matrix (radiation contribution restricted to the terms [Maa

r ] in equation [7.11])
was not very prejudicial, for the convergence of the solution process (at each time step)
was obtained with a maximum of five iterations. Finally, the following points can be
noted:

– as expected, the calculation of the view factors takes nine times as long as when
the problem symmetries are not considered. Indeed, it is demonstrated that the method
used here to take the symmetries into consideration reduces the time for the calculation
of the view factors by a ratio Nsym + 1 where Nsym is the number of times when the
simulation model has to be duplicated to obtain the real model (here, Nsym = 8);

– in both cases, the calculation time of the radiation contribution to the tangent
matrix is negligible compared with that of the view factor calculation;

– of course, the transient thermal calculation time is significantly reduced when
the problem symmetries are used.
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Chapter 8

Fluid-Structure Coupling in a Pipe

8.1. Modeling the ß uid

Many industrial applications are related to heat exchanges. Modeling such devices
requires the correct consideration of the heat exchanges between the heat-carrying
fluid and the wall. This problem is all the more difficult since the temperature of the
fluid, because of its exchanges with the wall, changes as it moves along. Modeling
must therefore make it possible to calculate these temperature changes and take into
consideration the fluid local temperature in the complex heat exchanges occurring with
the wall. This is a presentation of the physical interaction model and its mathematical
formulation, leading axiomatically to a use of the finite element method. Finally, we
will deal with the elements creating the fluid-structure coupling [BER 98].

8.1.1. Physical model and mathematical formulation

Modeling consists of representing the heat-carrying fluid with a set of 1D
elements and solving a diffusion-convection problem in these elements by means of
the technique introduced in Chapter 6. The heat exchanges between the fluid and
the wall are supported by 2D elements and involve the fluid temperature and wall
temperature.

The pipe is therefore subdivided into macro-elements. Each macro-element
combines:

– a 2-noded 1D fluid element;

– a set of 2D elements representing the structure wall and supporting the heat
exchange conditions between the fluid and the wall (exchange elements).
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2D element supporting heat exchange

macro-element

fluid element

Figure 8.1. Description of the pipe

The macro-element mathematical formulation is based upon the following
assumptions:

– A1: the fluid flow is assumed to be steady and 1D. The flow direction is given
by the direction of the elements representing the fluid;

– A2: the fluid mass flow ṁ is assumed to be constant along the pipe, but may
possibly vary over time;

– A3: inside each macro-element, heat exchanges can only occur between the fluid
element and the set of exchange elements corresponding to the macro-element. The
heat flux density received locally by the wall can thus be written as:

φ
(
Tp, T f

)
= h

(
T f − Tp

)
[8.1]

where Tp, T f and h represent respectively the wall temperature, the fluid mean
temperature (in the fluid element) and the exchange coefficient between fluid and wall.

In practice, the heat flux density received locally by the wall will be calculated
at each integration point of the exchange elements. The wall temperature under
consideration will therefore be the one calculated at each integration point. Moreover,
the expression of h depends on the heat exchange conditions (natural convection,
forced convection or mixed convection) and may depend on Tp and T f . The
expression of h results from a Nusselt number by means of various empirical
relationships between numbers without dimension, which are functions of the
convection type (natural, forced, mixed, etc.), and possible phase changes in the
heat-carrying fluid (vaporization, etc.), among others.
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The heat equation, considering assumptions A1 and A2, is written as:

ṁ

Sf
Cf

∂Tf

∂l
− ∂

∂l

(
λf

∂Tf

∂l

)
− q = 0 [8.2]

In this equation, l represents the curvilinear x-axis, Sf the pipe section, Cf the
specific heat, λf the fluid thermal conductivity, and q the heat flux received per fluid
volume unit. The quantity q is assumed to be constant in each fluid element. As seen
in Chapter 6, using a classic Galerkin method to formulate the finite elements from
equation [8.2] produces spatial oscillations of the solution when the Peclet number
is greater than a critical value (2 for first order elements). It is obvious that such a
limitation is not acceptable for modeling heat exchangers. To avoid these oscillations,
a SUPG method can be used. This approach produces the following equation system
for the fluid: (

[Kf ] + [Uf ] + [Df ]
) · {Tf} = {Ff} [8.3]

In this equation, [Kf ] represents the classic conductance matrix (obtained as
assembly of the element conductance matrices in the fluid), {Tf} represents the fluid
nodal temperature vector, whereas [Uf ], [Df ] and {Ff} are obtained by assembling
on the fluid elements Ωe

f the following element quantities:

Ue
f ij

=
∫

Ωe
f

(
Ne

i + He
i

)
ṁCf

∂Ne
j

∂l
dl [8.4]

De
f ij

= −Sf

∫
Ωe

f

He
i

∂

∂l

(
λf

∂Ne
j

∂l

)
dl [8.5]

F e
f i

= Sf

∫
Ωe

f

(
Ne

i + He
i

)
q dl [8.6]

The functions Ne
i and He

i appearing in these equations represent respectively the
shape function and the disturbance function corresponding to node i of element e.
It can be noted that, for first order elements and a constant thermal conductivity,
[Df ] = 0.

Considering assumption A3 and equation [8.1], the thermal balance inside a
macro-element is written as follows:

qVf +
∑

exchange elements

∫
element

h
(
T f − Tp

)
ds = 0
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The first term of this equation represents the heat flux received by the fluid (Vf is
the fluid element volume). The second term represents the heat flux received by the
structure. From this equation the expression of the quantity q is directly derived:

q = − 1
Vf

∑
exchange elements

∫
element

h
(
T f − Tp

)
ds [8.7]

8.1.2. Modeling the coupling

The equation system to solve for the solid structure can, in the steady state, be
written:

[Ks] · {Ts} = {Fs} [8.8]

In this equation, [Ks] is the traditional thermal conductance matrix of the solid,
{Ts} is the unknown (temperature) vector corresponding to the solid structure and
{Fs} is the load vector. If, for convenience, it is assumed that the solid structure
exchanges heat only with the fluid flowing in the pipe, it is possible to write:

{Fs} =
∑

macro-elements m − e

[
Am−e

]T · {Fm−e
s

}
[8.9]

In this equation, matrix [Am−e] is the assembly matrix described in the first chapter
of this book, applied to the macro-element m − e. Load vector {Fs} therefore results
from the contributions of all the macro-elements m − e, contributions which can be
written as follows: {

Fm−e
s

}
=

∑
exchange elements e

[Ae]T {Qe
s} [8.10]

Again, in this equation, assembly matrix [Ae] is that described in Chapter 1. The
components Qe

si of element term {Qe
s} are finally written:

Qe
si =

∫
Ωe

Ne
i h

(
T f − Tp

)
ds [8.11]

Inside each exchange element, Tp is given by the classic finite element
approximation, where T e

j is the temperature of node number j of element e (local
numbering):

Tp(−→x ) =
ne∑

j=1

Ne
j (−→x )T e

j
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T f is the fluid’s mean temperature. It is obtained, like the average of temperatures
Tf1 and Tf2, at the two nodes of the fluid element:

T f =
Tf1 + Tf2

2

The non-linear problem composed of equations [8.3] and [8.8] coupled by
equations [8.6], [8.7] and [8.11] can be solved by means of a Newton-Raphson
iterative method. Equations [8.3] and [8.8] are written as:

{R} =

{
Rs

Rf

}
=

{
Fs

Ff

}
−

[
Ks 0
0 Kf + Uf + Df

]
·
{

Ts

Tf

}
[8.12]

At each resolution iteration (k), a better solution is obtained by solving a linear
system (see Chapter 5). The process is repeated until the norm (Euclidian, for instance)
of the residual {R} becomes less than the desired accuracy. Equation [8.12] can also
be written:

{R} =
∑

macro-elements

[
Am−e

]T {
Rm−e

}−
[
Ks 0
0 0

]
·
{

Ts

Tf

}

In this equation, {Rm−e} represents the contribution of the macro-element m − e

to the residual:

{
Rm−e

}
=

{
Fm−e

s

Fm−e
f

}
−

[
0 0
0 Km−e

f + Um−e
f + Dm−e

f

]
·
{

Tm−e
s

Tm−e
f

}
[8.13]

In this expression, {Fm−e
s } is defined by equation [8.10], whereas {Fm−e

f },

[Km−e
f ], [Um−e

f ] and [Dm−e
f ] are the load vector and element matrices of the only

fluid element corresponding to the macro-element m− e. The terms [Um−e
f ], [Dm−e

f ]
and {Fm−e

f } are given by equations [8.4], [8.5] and [8.6]. Finally, the terms {Tm−e
s }

and {Tm−e
f } are the restrictions of the vectors {Ts} and {Tf} at the only nodes

connected to the macro-element m − e.

The contribution [Km−e] of each macro-element to the tangent matrix [KT ] of the
global system is directly derived from equation [8.13]:

[
Km−e

T

]
=



−∂Fm−e

s

∂Tm−e
s

−∂Fm−e
s

∂Tm−e
f

−∂Fm−e
f

∂Tm−e
s

Km−e
f + Um−e

f + Dm−e
f − ∂Fm−e

f

∂Tm−e
f



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In this equation, it can be noted that the matrix
[
Km−e

T

]
is not symmetric.

8.2. Example

The example given here is that of the auxiliary sprinkling line of a vapor generator
in a 1,300 MW PWR nuclear plant. It is a security system designed to remedy a failure
in the primary pumps, by injecting water to keep the pressure constant and equal to
17.13 bars in the circuit. We first describe the physical and geometric modeling used,
then analyze a few results.

8.2.1. Physical and geometric modeling

The geometry is very simple here. It is a 51.1 m long pipe modeled with 1,200
volumetric elements. The exchange with the fluid is represented by 100 fluid-structure
coupling macro-elements (Figure 8.2). The geometric and physical specifications
used for the simulation are the following, considering that the pipe is assumed to be
adiabatic on the outer wall:

– pipe dimensions: 51.1 m long, 60.3 mm in internal diameter, 8.7 mm thick,

– initial temperature: 20°C,

51.1 m

Figure 8.2. Sprinkling pipe mesh
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– pipe specifications: conductivity 15 W/m/°C, volumetric mass 7,800 Kg/m3,
specific heat capacity 500 J/Kg/°C,

– water specifications: conductivity 0.603 W/m/°C, volumetric mass 1,000 Kg/m3,
specific heat capacity 4,180 J/Kg/°C,

– mass flow rate: 12 tonnes/hour,

– exchange coefficient: 10,400 W/m2/°C.

8.2.2. Results

Figure 8.3 gives the water temperature variation in the pipe, over time, at the entry
and exit. It can be noted that the water injected under pressure at the entry reaches at
the exit a temperature of 280°C after about 150 s.

in out

time (s)
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m

p
er
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ur

e
(°

C
)

Figure 8.3. Temperature variation over time, at the sprinkler entry and exit
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Chapter 9

Thermometallurgical Coupling

9.1. Modeling phase changes

This chapter deals with the interactions between heat exchanges and phase changes
in a solid material. The first section is a description of the most common models used
to describe the variations of phase proportions in a material undergoing thermal cycles
[LEB 84, FER 85, INO 85]. To do so, differential equations governing each phase
change are figured first, followed by the method to integrate them numerically along
any thermal path. Eventually, the case of multiple transformations which may occur
simultaneously will be dealt with.

9.1.1. Rate of phase changes

Solid state phase change models usually distinguish two types of transformation:

– those governed by diffusion, described by Avrami kinetics [AVR 40a, AVR 40b,
AVR 41],

– those of the martensitic type, represented by the Koistinen-Marburger law
[KOI 59].

9.1.1.1. Avrami kinetics

Avrami kinetics used to represent diffusion phase changes result from the extended
volume concept [AVR 40a, AVR 40b, AVR 41]. In Figure 9.1, the extended volume Ve

is obtained by considering that the new phase germination may occur anywhere in the
material. Its variation velocity is therefore proportional to the new phase germ creation
rate, Ṅ , and the mean volume of these germs, vg. The variation velocity of the phase
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Figure 9.1. Extended volume concept

proportion formed is in turn proportional to the extended volume variation velocity
V̇e, as well as to the phase proportion left for transformation. Thus, we obtain:

ṗ = (P − p)V̇e

In this equation, P designates the maximum phase proportion that can be formed,
i.e. that which will be produced at the end of the transformation process.

The classic form of Avrami kinetics is obtained with the previous equation. For
this purpose, it has to be integrated at a constant temperature (temperature contour
path), and use a power law for the extended volume variation velocity:

V̇e = nfV
n−1

n
e =⇒ p = P

(
1 − e−(ft)n)

Here, f and n are parameters of the phase change kinetics, at the temperature
under consideration. If the same expression is kept for V̇e, it is also possible to define
with the previous equations the variation velocity ṗ of the phase proportion p. This
variation speed is written as follows, considering that the parameters P , f and n may
be temperature-dependent:

ṗ = nf(P − p)
[

ln
(

P

P − p

)]n−1
n

[9.1]
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9.1.1.2. Martensitic kinetics

The martensitic transformation occurs instantly. Martensitic kinetics therefore
involve only the temperature, and are represented by the Koistinen-Marburger law
[KOI 59]. According to this law, the (martensitic) phase proportion p formed at
temperature T is given by:

p(T ) =

{
0 for T > Ms

1 − eb(T−Ms) for T ≤ Ms

Here, b is a homogenous kinetic factor, unlike temperature, and Ms (martensite
start) is the temperature at the beginning of the transformation. These coefficients
may depend on the material. For instance, in the case of steel, Ms is a function of the
transformed austenite carbon content.

As with Avrami kinetics, martensitic transformation kinetics can be figured in the
differential form. This is done by deriving the previous equation with respect to time.
We obtain:

ṗ =

{
0 for T > Ms or Ṫ ≥ 0

−b(1 − p)Ṫ otherwise
[9.2]

It can be noted that this equation can be written like equation [9.1]. To do so, it is
sufficient to choose in this equation n = 1, P = 1, and a frequency f depending on
the thermal path:

f =

{
0 when T > Ms or Ṫ ≥ 0

−bṪ otherwise

9.1.2. Numerical integration

Different methods can be used to integrate equations [9.1] and [9.2]. For instance,
in the case of Avrami kinetics, the thermal path can be divided into a series of
temperature contour plateaus, of length ∆t, along which it is possible to apply an
integrated form of the kinetics (Figure 9.2 [PUM 48, FER 85]). However, it is also
possible to perform a classic numerical integration, with time steps ∆t, with a second
order Runge-Kutta method (Figure 9.3 [LEB 84]).

In the case of Figure 9.2, a dummy time t∗ is introduced to take into consideration
the phase transformation already formed at the beginning of the time increment. The
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t
t+∆t

t*
t*+∆t

time (t)

temperature (T)

phase proportion (p)

1 2

3
4

T(t)

T(t+∆t)

thermal path

isothermal evolution p(t)

Figure 9.2. Numerical integration of a phase proportion along a thermal path
with the dummy time concept

value of t∗ is the time that would have been required to form a phase proportion p(t)
from zero, at temperature T (t + ∆t) of the temperature contour plateau (point 2 of
Figure 9.2). This dummy time is obtained in the following form, all the parameters
being estimated at temperature T (t + ∆t):

p(t) = P
(
1 − e(ft∗)n)

or t∗ =
1
f

[
ln

(
P

P − p(t)

)] 1
n

The dummy time t∗ thus obtained is then used as the starting point of a
temperature contour transformation occurring at a temperature T (t + ∆t). The final
phase proportion is therefore obtained analytically:

p(t + ∆t) = P
(
1 − e(f(t∗+∆t))n)

In the case of Figure 9.3, intermediate points are introduced by the classic second
order Runge-Kutta scheme to integrate equations [9.1] or [9.2] along the thermal
path T (t). Point 2 is obtained by choosing a constant variation velocity of the phase
proportion, on a temperature contour variation curve at temperature T (t). This point is
used to construct point 2′, which represents a phase proportion similar to that of point
2, but on the temperature contour variation curve of p corresponding to temperature
T (t + ∆t). Point 3 is then obtained like point 2, but with the variation velocity of p

obtained at point 2′. Finally, the last point, 4, is obtained by calculating the mean value
of the phase proportions obtained at points 2 and 3. Note that in Figure 9.3 this point
is not located on the phase proportion or temperature contour variation curves. For
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Figure 9.3. Numerical integration of a phase proportion along a thermal path
with a second order Runge-Kutta scheme

instance, let ṗ(p, t) be the phase proportion variation velocity obtained by equation
[9.1], for a common proportion p, and with parameters P , f and n estimated at instant
t of the thermal path (at temperature T (t)). The second order Runge-Kutta method
then gives the phase proportion at instant t + ∆t by estimating consecutively the
following quantities:



ṗ1 = ṗ(p(t), t)

p2 = p(t) + ṗ1∆t

ṗ2′ = ṗ(p2, t + ∆t)

p3 = p(t) + ṗ2′∆t

then p(t + ∆t) =
1
2
(
p2 + p3

)

This can be written globally as:

p(t + ∆t) = p(t) +
1
2
(
ṗ(p(t), t) + ṗ(p(t) + ṗ(p(t), t)∆t, t + ∆t)

)
The Runge-Kutta method makes it possible to integrate, with the same method,

the Avrami and martensitic kinetics, providing that the latter are formulated like
Avrami kinetics with n = 1, P = 1 and a frequency f depending on the thermal
path. Hereafter, therefore, general formulation [9.1] will be used for all possible
phase changes. If it is of the Avrami kinetics type, the parameters n, P and f of this
formulation will be temperature-dependent. If it is the martensitic type kinetics, we
will choose n = 1, P = 1, and a frequency f depending on the temperature variation
velocity (heating or cooling) and the value of Ms (see section 9.1.1).
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9.1.3. The case of several phase changes

Actually, several different phases may be present in the material. For instance,
in low-carbon steel, we can find austenite, ferrite, perlite, bainite and martensite,
i.e. five phases, and transformations between these phases may occur in a similar
volume element. In that case, if pi designates the phase’s common proportion i, then
it is possible to define a driving force Eij of the transformation i → j of the form
Eij = Pij(pi + pj) − pj , where Pij is the maximal proportion of phase j which can
be obtained from phase i. It should be noted at this point that, if the driving force Eij

is positive, then the driving force Eji (corresponding to the transformation j → i) is
negative. These driving forces therefore indicate the transformation direction between
phases i and j.

The problem of transformations between several phases can now be solved
[LEB 84, FOR 00b]:

– for each transformation i → j, by substituting p into pj

pi+pj
in differential

equation [9.1],

– by considering that the variation of the phase proportion j, ṗj , results from all
the possible transformations i → j and j → i, which are assumed to be independent
of one another.

With this method, it is possible to write:

ṗj =
∑
i
=j

Aij [9.3]

where Aij can be considered to be the reaction activity between phases i and j. This
activity is obtained from equation [9.1] as:

Aij =




nijfijEij

[
ln

(
1 + pj

Eij

)]nij−1
nij

if Eij > 0 (reaction i → j)

−njifjiEji

[
ln

(
1 + pi

Eji

)]nji−1
nji

if Eji > 0 (reaction j → i)

0 otherwise

[9.4]

The parameters Pij , nij and fij of this equation depend on the transformation
under consideration. Note finally that the activities Aij given by equation [9.4] make
up an antisymmetric matrix. Indeed, as Aij represents the phase proportion i which
is transformed into phase j per time unit, we obtain Aij + Aji = 0. One of the
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consequences is that the sum of all the matrix terms is zero, which expresses the
conservation of the phase proportions since the sum of their variation velocities is
equal to zero.

Another model was suggested for steel and inserted into various calculation
software [WAE 94]. By making p1, p2 and p3 the common proportions of ferrite,
perlite and bainite, and Ms the temperature of initial martensite transformation, for
these phases the model equations are written as:



ṗ1 = f1

(
T, Ṫ , p1, p2, p3,Ms, d

)
ṗ2 = f2

(
T, Ṫ , p1, p2, p3,Ms, d

)
ṗ3 = f3

(
T, Ṫ , p1, p2, p3,Ms, d

)
Ms = Ms

(
p1, p2, p3, d

)

Martensitic transformation is described by equation [9.2]. Functions f1, f2,
f3 and Ms are not made explicit, but calculated point after point from the states
(T, Ṫ , p1, p2, p3,Ms, d) corresponding to the continuous cooling transformation
diagram (or CCT diagram) of the shade treated. As a consequence, the model is
very close to this diagram and is no longer very accurate when the cooling conditions
depart from those of the diagram. Its major advantage, however, is that it is easy to
identify.

9.1.4. Modeling the coupling

Strong coupling between thermal and metallurgical phenomena is relatively
well-known. Phase changes are time- and temperature-dependent, and produce in turn
temperature changes (exothermic and endothermic reactions). Generally speaking,
the heat equation must be solved to obtain the temperature field in a domain Ω
subjected to temperature or flux density thermal boundary conditions. This problem
can be formulated as follows:


div

(
λ · −−→grad(T )

)
+ Q − ρḢ = 0 in Ω

T = Td on ∂ΩT(
λ · −−→grad(T )

) · −→n = q on ∂Ωq

with ∂Ω = ∂ΩT ∪ ∂Ωq

[9.5]

In this equation, Q is an internal heat source, q a flux surface density entering
Ω, and λ, ρ and H represent respectively the thermal conductivity, the volumetric
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mass and the specific enthalpy of the material. The material properties λ, ρ and H are
temperature- and phase proportion-dependent. They are generally obtained from linear
mixture laws on the corresponding properties of each phase i, λi, ρi and Hi which are
temperature-dependent only. If N is the total number of phases, we therefore write:



λ
(
p1, . . . , pN , T

)
=

N∑
i=1

piλi(T )

ρ
(
p1, . . . , pN , T

)
=

N∑
i=1

piρi(T )

H
(
p1, . . . , pN , T

)
=

N∑
i=1

piHi(T )

[9.6]

It follows that the enthalpy variation velocity involved in heat equation [9.5] is
written:

Ḣ = Ṫ
N∑

i=1

piCi +
N∑

i=1

ṗiHi with Ci =
dHi

dT
[9.7]

In this equation, Ci represents the heat capacity of phase i, and the terms ṗi can
be obtained from equations [9.3] and [9.4]. The first term of equation [9.7] involves
the phase mixture heat capacity,

∑N
i=1 piCi. The second term represents the latent

heat effects. Indeed, the curves Hi(T ) giving the enthalpy of the phases i according to
the temperature, are different, not only in their slopes, representing the phase heat
capacities, but also in their y-axes at the origin, which includes these latent heat
effects. This is illustrated by Figure 9.4.

Inserting equation [9.7] into [9.5] makes it possible to treat heat exchange
problems, including phase changes, on complex geometries. For this purpose, the
finite element method can be used. Before showing a few examples, we will deal
with the case of phase transformation diagrams, which can be simulated to validate
the parameters included in the expression of the activities of equation [9.4].

9.2. Examples

In this section, we give a few examples of numerical process simulations in which
thermal and metallurgical aspects are strongly coupled. The initial focus will be on
phase transformation diagrams, which are used to obtain the parameters of the phase
change laws used. Later, we give the example of the simulation of steel quenching.
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Figure 9.4. Typical variation of the thermal conductivity λ and the enthalpy H of phases α
(ferrite) and phase γ (austenite) in low carbon-steel, according to temperature

9.2.1. Phase transformation diagrams

Metal and alloy transformation diagrams give the boundaries of the stability and
phase change domains. Time is on the x-axis and temperature on the y-axis. There
are two major types of metal and alloy phase transformation diagrams. IT diagrams
(isothermal transformation diagram) are obtained by keeping a test tube at high
temperature, called austenitizing temperature, for a certain time, called austenitizing
time, before cooling it suddenly and keeping it at a constant temperature. The
variation of austenite transformation is measured from the constant temperature.
CCT diagrams are obtained with controlled thermal cycles. The test tube is kept at
a high temperature, also called austenitizing temperature, for a certain time, also
called austenitizing time, then continuously cooled down to ambient temperature.
The variation of austenite transformation is measured during the cooling process.

Figures 9.5 and 9.6 give examples of IT and CCT diagrams obtained on steel with
0.35% carbon, 1% chromium, and 0.2% molybdenum. The austenitizing temperature
is 850°C. The austenitizing time is 30 mn. In the IT diagram, there is a dotted line. It
represents the temperature under which a martensitic transformation independent of
time occurs. In the CCT diagram, note that, on each cooling curve, the percentage of
transformed austenite is mentioned after each passage into a phase change domain. At
the end of the cooling process, the test tube hardness is given.

The IT and CCT diagrams must be used to obtain the coefficients of phase
change laws used during numerical simulation. For this purpose, setting methods were
developed [PON 94], and some simple transformations can be set manually:
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Figure 9.5. Example of IT diagram obtained on steel with 0.35% carbon,
1% chromium and 0.2% molybdenum, from [BÉN 84]

– martensitic transformation only requires the initial transformation temperature
Ms and the kinetic parameter b (see equation [9.2]). The temperature Ms is directly
read in the IT or CTT diagrams. For instance we obtain 335°C in Figure 9.5. The
kinetic parameter b does not depend greatly on the steel chemical composition. A
value of 0.011°C−1 is often used;

– with an IT diagram, the transformation kinetics given by equation [9.1] can
be integrated at a constant temperature to obtain the classic Avrami relationship
[AVR 40a, AVR 40b, AVR 41]:

p = P
(
1 − e−(ft)n)
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Figure 9.6. Example of CCT diagram obtained on steel with 0.35% carbon,
1% chromium and 0.2% molybdenum, from [BÉN 84]

In this equation, P , n and f are three parameters which can be determined at any
temperature with the IT diagram. P is the phase proportion obtained after an infinite
time, and this relationship gives:

ln
(

ln
P

P − p

)
= n ln f + n ln t

It follows that by plotting at each temperature the quantity ln(ln(P/(P − p)))
according to ln(t), we obtain a straight line whose slope corresponds to the parameter
n and the y-axis at the origin gives the parameter f .
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Figure 9.5 illustrates how to obtain the perlite transformation parameters at
different temperatures with an IT diagram. From equation [9.1] we find P = 1 and
n = 3 at any temperature and a frequency f varying significantly according to the
temperature, from 0 to 0.45 s−1. The variation of this frequency is given by the
right-hand diagram in Figure 9.5. The left-hand diagram in this figure gives the IT
diagram used for the setting, and particularly the initial and final transformation times
at temperatures 400°C, 500°C, 600°C and 700°C.

It is also possible to obtain the parameters of the transformation described in Figure
9.6 from the CCT diagram of steel. For this purpose, it is possible for instance to
assume a particular form of the frequency f of the transformation according to the
temperature. Figure 9.6 suggests the choice of a Gaussian function:

f =

{
f0e

−((T−T0)/∆Ti)
2

if T ≤ T0

f0e
−((T−T0)/∆Ts)2 if T ≥ T0

In this function, the parameters f0, T0, ∆Ti and ∆Ts must be determined.
Then, assuming P and n to be constant, a setting algorithm based on the
Levenberg-Marquardt method [LEV 44] is applied.

Figures 9.7 and 9.8 give the results obtained by perlitic transformation in steel with
0.8% carbon. The left-hand CCT diagram is the experimental diagram, with initial and
final transformation times, and the perlite quantity formed, for four cooling velocities,
80°C/s, 50°C/s, 8°C/s and 0.8°C/s. The transformation parameters obtained are P =1,
f0 = 0.347 s−1, T0 = 593°C, ∆Ti = 122°C, ∆Ts = 67°C and n = 2.78. The
right-hand CTT diagram was recalculated with these parameters. Note that it is fairly
close to the experimental diagram, represented by the dotted lines.
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Figure 9.7. Obtaining perlite transformation parameters in steel with 0.8% carbon
from an IT diagram, from [PON 94]
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Figure 9.8. Obtaining perlite transformation parameters in steel with 0.8% carbon
from a CTT diagram, from [PON 94]

9.2.2. Steel quenching

This section examines an example of steel distortion tracking during cooling
[CLA 02]. Figure 9.9 gives the geometry of the piece used. The cylindrical symmetry
makes it possible to perform calculations on a meridian section of the piece in the

Figure 9.9. Geometry and mesh used for tracking distortions in steel quenching (sizes in mm)
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Figure 9.10. Thermocouple position and theoretical and experimental variation
of the local temperatures in the cylinder during the cooling process

axisymmetric calculation configuration. Three bores with increasing diameters were
regularly distributed on the cylinder height. They enable us to create different local
thermal kinetics, and hence generate local distortion variations.

The cylinder of Figure 9.9 undergoes gas quenching with nitrogen injected
vertically at a pressure of 5 bars. Figure 9.10 illustrates the quenching and the
different thermal kinetics in agreement with the bores in the cylinder. Four
temperatures are measured by thermocouple (T1 to T4). They were used to set the
thermal exchange coefficient representing the heat extracted by the gas moving along
the sample. The results of numerical simulations are also given in this figure. They
were carried out on austenitic stainless steel, with no phase change during cooling.
Note the good calculation-experiment agreement with an error always less than 10°C.

When the piece is cooling down, a camera is used to film its shape variation. It
is thus possible to plot the shape variation of the austenitic stainless steel cylinder
during the gas quenching operation (Figure 9.11). Note once again that experiment
and calculations are in good agreement. This is mainly due to the good representation
of the local thermal paths and the absence of phase changes.

In order to test the influence of phase changes, experiments and simulations
were performed on steel 30CrNiMo8 with phase changes. The same heat exchange
coefficient as for stainless steel was used. The thermal paths followed at the top
and bottom of the piece were plotted on the CCT diagram of that steel. Figure 9.12
gives these thermal paths and the microstructure obtained. Note that the only phase
transformation taking place is the austenite-martensite transformation.

Figure 9.13 represents the shape variation of a 30CrNiMo8 steel cylinder during
cooling. It is easy to note the influence of the phase change on the diameter. Indeed,
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Figure 9.11. Shape variation of an austenitic stainless steel
cylinder during cooling
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Figure 9.12. CCT diagram of steel 30CrNiMo8 – extremity thermal paths in the cylinder
and corresponding final micro-structures

the structure of martensite being less compact than that of austenite, a local expansion
occurs during the phase change, together with plastification called transformation
plasticity [LEB 89b].



230 Finite Element Simulation of Heat Transfer

D0

D-D0 (mm)
-0.1 0 0.1 0.2 0.3

simulation
experiment

35s

55s
110s

185s

335s

end

Figure 9.13. Shape variation of a 30CrNiMo8 steel cylinder during cooling

In Figure 9.13, experiment and simulation are in fairly good agreement. In
particular, it is possible to make a good prediction of the final shape of the cylinder
after quenching. If, without a phase change, it comes back to its initial shape when
the thermal gradients are not sufficient to plasticize the material, when phase changes
occur, the cylinder’s initial shape is no longer rectilinear on the outside, even
without any traditional plastification. This illustrates the presence of transformation
plasticity. The plastic deformation of materials (traditional during phase changes)
is not addressed in this book. The reader may refer to specialized books or articles
[HIL 78, LEB 86, LEB 89b, LEB 89a, DEN 97, BES 01].



Chapter 10

Thermochemical Coupling

10.1. Finite element simulation of simultaneous diffusion and precipitation

Thermochemical treatments are widely used to improve the mechanical properties
of metallic components. For example, in the case of steel, high temperature diffusion
of carbon and/or nitrogen leads to an increased hardness near the surface, as well
as to local compressive residual stresses. Both contribute to an increased component
lifetime. Modeling diffusion can be considered relatively straightforward, since the
governing equations are well-established, and are very similar to those described in
the previous chapters of this book. However, we must account for the fact that during
diffusion, precipitation may occur and modify the kinetics of diffusion. For example,
in the case of steel, carbides and/or nitrides can form during the diffusion of carbon
and/or nitrogen. This precipitation contributes to the improvement in the mechanical
properties of the treated component.

The aim of this chapter is to describe a model aimed at predicting the local amount
of chemical elements in a metallic component, during a thermochemical treatment.
This model takes into account the diffusion and precipitation of these elements during
the treatment, and has been incorporated into a commercial finite element computer
code [FOR 95, FOR 00a, BER 03]. The application of the finite element method to
simulate simultaneous diffusion and precipitation in metals is first recalled. Then
we focus on the method used to incorporate precipitation into diffusion equations,
and on the numerical scheme used to solve the global problem. Finally, numerical
applications which illustrate the approach proposed are expounded.
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10.1.1. Governing equations

We consider N chemical elements that can diffuse in a single matrix phase.
For steels, the matrix consists of one major chemical element, iron, while alloying
elements that can diffuse are mainly carbon, nitrogen, titanium or aluminum. These
elements can combine together or with the matrix so as to form M precipitates.
The chemical composition of the precipitates is characterized by stoichiometric
coefficients siα, each giving the number of atoms of element i contained in precipitate
α. Throughout this chapter, Latin indices refer to chemical elements (i = 1, . . . , N ),
whereas Greek subscripts denote precipitates (α = 1, . . . , M ). The total fraction of
element i, in all its forms (dissolved in the matrix or enclosed in a precipitate), is
denoted by fT

i , while the part dissolved in the matrix is fD
i . If pα denotes the fraction

of precipitate α, the conservation of any element’s atoms i can be expressed as:

fT
i = fD

i +
M∑

α=1

siαpα [10.1]

It should be noted that we could choose to deal with mass fractions instead of
molar fractions. In this case, we must introduce the atomic mass mi of element i and
the molecular mass mα of precipitate α. Then the fT

i , fD
i and pα in equation [10.1]

and the sequel must be replaced by fT
i /mi, fD

i /mi and pα/mα respectively. The
activity ai of element i in the matrix is now introduced as a function of its dissolved
fraction fD

i as follows:

ai = γif
D
i [10.2]

In this equation, γi denotes the thermodynamic coefficient of element i. In the
case of a dilute solution, i.e. for small fractions fD

i , a first order approximation of
these coefficients can be used:

ln
(
γi

)
= ln

(
γ0

i

)
+

N∑
j=1

eijf
D
j [10.3]

In this equation, γ0
i is Henry’s coefficient and the eij the Wagner interaction

parameters. Henry’s coefficient can be made temperature-dependent using an
Arrhenius law. According to equations [10.2] and [10.3], thermodynamic coefficients
can be calculated from given activities, by a Newton-like method, together with their
partial derivatives with respect to these activities. Diffusion is assumed to take place
only in the matrix (diffusion inside precipitates is neglected). According to Fick’s first
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law, the flux density
−→
φ i of element i is assumed to be proportional to the gradient of

its activity:

−→
φ i = −Di

γi

−−→
grad(ai) [10.4]

In this equation, Di is the diffusion coefficient of element i inside the matrix.
It depends on the temperature through an Arrhenius function. It should be noted
that equation [10.4] does not imply that cross-diffusion is neglected. Since the
thermodynamic coefficients γi depend on the activities (equation [10.3]), the flux
density

−→
φ i can be expressed as a function of the dissolved fractions by:

−→
φ i =

N∑
j=1

−Dij
−−→
grad(fD

j ) with Dij = Di

(
δij + fD

i eij

)
[10.5]

Thus, cross-diffusion is governed by the Wagner interaction coefficients eij

introduced in equation [10.3]. According to the above equations, Fick’s second law
relates the change rate of the total fraction of each element i to its activity as follows:

ḟT
i = div

(
Di

γi

−−→
grad(ai)

)
[10.6]

In order to integrate equation [10.6] in a given domain Ω, it is necessary to
define boundary conditions (on ∂Ω) for the activities. A general expression for these
boundary conditions is for each element i:

Di

γi

−−→
grad(ai) · −→n = Ji + hi

(
ae

i − ai

)
[10.7]

In this equation, −→n is the outward normal unit vector of the boundary, Ji is a
prescribed flux density, ae

i is an external activity and hi is a film transfer coefficient.
Using this equation, we can obtain the following boundary conditions:

– a prescribed flux density Ji, with hi = 0;

– a prescribed activity ae
i , with Ji = 0 and a very high value of hi;

– a film transfer with Ji = 0.

When N chemical elements are considered in Ω, equations [10.6] and [10.7] form
a set of differential equations, with boundary conditions, which can be solved by using
different methods. Among these methods, the finite element technique appears to be
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the most suitable for complex shapes of the domain Ω, whereas a finite difference
approximation is sufficient for 1D calculations (i.e. when diffusion is assumed to occur
in only one direction). In this book, we focus on the finite element approach used
to approximate the solution of equations [10.6] and [10.7], which appear to be very
similar to those obtained in thermal analyses.

10.1.2. Finite element formulation

The finite element method applies to a weak formulation of the boundary value
problem [10.6]-[10.7], which can be written for each chemical element. According to
this formulation, it is necessary to find ai : t ∈ ]0, T [ → ai(x, y, z, t) ∈ V such that
ai(·, t = 0) = a0

i and:

∀ψi ∈ V,

∫
∂Ω

ψi

(
Ji + hi

(
ae

i − ai

))
ds

−
∫

Ω

−−→
grad(ψi)

Di

γi

−−→
grad(ai) dv −

∫
Ω

ψiḟ
T
i dv = 0

[10.8]

In this formulation, ]0, T [ is a given time interval, a0
i is an initial condition and V

is a suitable functional space containing the test functions ψi. In order to build a finite
element approximation for ai, the domain Ω is divided into elements Ωe connected by
nodes. In each element Ωe, a spatial approximation of ai and its gradient is used:

∀−→x ∈ Ωe,




ai(−→x ) =
∑

p

Ne
p (−→x )aip

−−→
grad(ai(−→x )) =

∑
p

−−→
grad(Ne

p (−→x ))aip

[10.9]

In this equation, aip is the activity of element i at node p of element Ωe, and
Ne

p (−→x ) is the shape function associated with node p of element Ωe. Equation [10.9]
can also be applied to the test functions ψi. This leads to an approximation of the
functional space. Then, by applying equation [10.8], we must find {a} : t ∈ ]0, T [ →
{a(t)} such that:

{R(a(t), t)} =
m∑

e=1

[Ae] · {Re(a(t), t)} = {0} [10.10]

At any instant t, the residual vector {R(a(t), t)} is a function of the unknown
vector {a(t)}. Both have N × n components, where n is the number of nodes of the
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whole structure. {R(a(t), t)} is obtained by assembling all element residual vectors
{Re(a(t), t)}, the component of which reads, for chemical element i and node p:

Re
ip =

∫
∂Ωe∩∂Ω

Ne
p

(
Ji + hi

(
ae

i − ai

))
ds

−
∫

Ωe

−−→
grad(Ne

p )
Di

γi

−−→
grad(ai) dv −

∫
Ω

Ne
p ḟT

i dv

[10.11]

It can be seen in equation [10.11] that the element residual vector {Re} involves
the time derivative of the total fraction of each chemical element. We approximate this
time derivative using the generalized trapezoidal rule. Therefore, it is assumed that for
each interval of integration [t, t + ∆t]:

fT
i (t + ∆t) − fT

i (t)
∆t

= (1 − ν)ḟT
i (t)

+ νḟT
i (t + ∆t) with 0 ≤ ν ≤ 1

[10.12]

A value ν = 1/2 in equation [10.12] corresponds to the trapezoidal rule, which
is the most accurate algorithm. Nevertheless, in the case of discontinuous time
derivatives, the implicit Euler scheme (ν = 1) is generally preferred. According to
this equation, the component of an element residual vector at node p, for chemical
element i, and at time t + ∆t, reads:

Re
ip =

∫
∂Ωe∩∂Ω

Ne
p

(
Ji + hi

(
ae

i − ai

))
ds −

∫
Ωe

−−→
grad(Ne

p )
Di

γi

−−→
grad(ai) dv

−
∫

Ωe

Ne
p

(
1

ν∆t

(
fT

i (t + ∆t) − fT
i (t)

)− 1 − ν

ν
ḟT

i (t)
)

dv

[10.13]

Starting from known quantities at time t, the activities of all elements at all the
nodes of the structure, at time t + ∆t, result simultaneously from the solution of
equation [10.10]. This solution is found by means of an iterative Newton procedure,
which involves a global tangent matrix [K] obtained by assembling tangent element
matrices [Ke]. The components of these tangent element matrices are:

Ke
ipjq = −∂Re

ip

∂ajq
= −

∫
Ωe

Di

γ2
i

∂γi

∂aj
Ne

q

−−→
grad(Ne

p )
−−→
grad(ai) dv

+
∫

Ωe

Di

γi
δij

−−→
grad(Ne

p )
−−→
grad(Ne

q ) dv
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+
∫

Ωe

1
ν∆t

∂fT
i

∂aj
Ne

pNe
q dv

+
∫

∂Ω∩∂Ωe

hiδijN
e
pNe

q ds [10.14]

In this equation, the partial derivatives of the thermodynamic coefficient γi and
the total fraction fT

i of element i (at time t + ∆t), with respect to the activity aj of
element j, have to be estimated. The former is derived from equation [10.3], whereas
the latter is approximated by neglecting the variation of the precipitate fraction with
respect to the activities. According to equations [10.1] and [10.2], this gives:

∂fT
i

∂aj
≈ 1

γi

(
δij − fD

i

∂γi

∂aj

)
[10.15]

The main problem when solving the above equations is to estimate the total
fraction of a chemical element as a function of its dissolved fraction (or its activity).
This is done using equation [10.1], which involves the fractions of precipitates
pα. The aim of the next section is to describe the procedure used to incorporate
precipitation into this equation.

10.2. Calculation of precipitation

10.2.1. Mathematical formulation

Starting from instant t, and thus assuming the fractions of precipitates at this time
to be known, we want to estimate these fractions at time t + ∆t. For this purpose,
we first calculate an “equilibrium fraction” of precipitate, Pα, that would form if no
diffusion were present for a large period of time. Then we use a kinetic law, which
represents the time-dependent evolution of the precipitate fraction from its value at
time t, to its value at time t + ∆t, towards the equilibrium value Pα.

The equilibrium fractions Pα are calculated by applying the law of mass action,
which can be formulated as follows:


Pα = 0 if

N∏
i=1

Asiα
i < Kα

Pα ≥ 0 if
N∏

i=1

Asiα
i = Kα

[10.16]
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According to this equation, precipitation occurs only when the solubility product
Kα is reached by the “equilibrium activities” of the elements Ai. These activities are
obtained from the total fraction fT

i of element i by the following relationship:

Ai = ΓiF
D
i with




FD
i = fT

i −
M∑

α=1

siαPα

Γi = γ0
i e

∑N
j=1 eijF D

j

[10.17]

The solubility products Kα and the stoichiometric coefficients siα in equation
[10.16] are given as characteristics of the precipitates. The solubility products can
be made temperature-dependent using the Arrhenius law. The Γi and FD

i terms
appearing in equation [10.17] are respectively the thermodynamic coefficient and the
dissolved fraction of element i, both expressed in equilibrium, i.e. without diffusion
during a large period of time. For convenience, the law of mass action [10.16] can be
formulated for all the precipitates that may be produced in the material as:


Pα ≥ 0

Qα = ln
(
Kα

)− N∑
i=1




ln
(
γ0

i

)
+

N∑
j=1

eij

(
fT

j −
M∑

β=1

sjβPβ

)

+ ln

(
fT

i −
M∑

β=1

siβPβ

)

 ≥ 0

M∑
α=1

QαPα = 0

[10.18]

Equation [10.18] must be solved for a given set of total fractions fT
i , and for given

material characteristics γ0
i , eij , siα and Kα. It turns out that in these equations Qα is

a non-linear function of the Pα. Equation [10.18] can thus be considered as defining a
non-linear complementarity problem [KAR 72, LEM 80]. Starting with the Pα values
calculated at time t, and from Pα = 0 (α = 1, . . . , M) at t = 0, the following steps
are used to solve this problem at time t + ∆t:

– Qα(P1, . . . , PM ) = 0 is solved for each precipitate for which Pα �= 0. This leads
to a new set of Pα values. A Newton method is used, which verifies the condition that
the FD

i terms must remain positive.

– The Qα(P1, . . . , PM ) are calculated for each precipitate for which Pα = 0. This
leads to a new set of Qα values.
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– If all the Pα and Qα values obtained from the previous steps are non-negative,
then the solution is reached, otherwise (i) the negative Pα are set to zero, (ii) the Pα

corresponding to a negative Qα are set to a non-vanishing value, and we go back to
the first step.

The kinetic law introduced to account for the time-dependence of precipitation is
based on a Johnson-Mehl-Avrami-Kolmogorov law, so that the precipitate fraction is
given by:

pα = Pα

(
1 − e−(ft)n)

[10.19]

In this equation, n and f are two parameters which characterize this kinetics. Thus,
knowing pα(t), the precipitate fraction at time t + ∆t is:

pα(t + ∆t) =




Pα

(
1 − e−(f(t0+δt))n)

with t0 =
1
f

[
ln

(
Pα

Pα − pα(t)

)]1/n

if pα(t) < Pα

pα(t) − (
pα(t) − Pα

)(
1 − e−(ft)n)

if pα(t) ≥ Pα

[10.20]

It should be noted that when the calculated equilibrium value Pα(t) is less than the
current value pα(t), the precipitate is currently being dissolved in the matrix and the
exponent n of the kinetics is set to 1 (no nucleation period).

10.2.2. Numerical scheme

At any instant t + ∆t, iterations are performed using a Newton-like method to
determine the local activity ai of each chemical element i in the domain. If x(k)

denotes the value of any variable x obtained at the end of the kth iteration, then the
following scheme is used at each iteration (k) to incorporate precipitation into the
diffusion model:

– The total fraction of chemical element i, f
T (k)
i , is calculated by means of

equations [10.1] and [10.2] with the current values of the activities a
(k)
i and

thermodynamic coefficients γ
(k)
i , and with the precipitate fractions obtained at the

end of the previous iteration p
(k−1)
α (for the first iteration, the precipitate fractions are

taken from the previous time step).

– The equilibrium fractions of precipitates, P
(k)
α , are calculated by means of

equation [10.18] with the total fractions f
T (k)
i . Kinetics laws [10.20] then give the

precipitate fractions p
(k)
α .
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– The total fraction of chemical element i, fT (k)
i , is modified according to equation

[10.1], with the new precipitate fractions p
(k)
α , before estimating the residual vector of

equation [10.10] and eventually going back to a new iteration.

According to the scheme presented above, convergence of the global Newton
method cannot be achieved if the precipitate fractions calculated present a large
variation between two successive iterations. Thus precipitation is treated numerically
by a so-called fixed-point method.

10.3. Examples

10.3.1. Calculation of a phase diagram

In order to validate the method used to estimate the equilibrium fractions of
precipitates Pα (equation [10.18]), the phase diagram of a micro-alloyed steel
containing Ti, Mn, S and C as alloying elements can be estimated. Within this steel,
the precipitates that may appear and form phases at 1, 200°C are TiS, TiC, Ti4C2S2

and MnS. Table 10.1 gives the data used for the chemical elements, whereas Table
10.2 gives those associated with the precipitates.

Element Ti Mn S C

Atomic mass 47.900 54.938 32.064 12.011

Henry’s coefficient 1. 1. 1. 1.

Wagner parameters 0. 0. 0. 0.

Total mass fraction (%) 0 to 0.1 0.2 0 to 0.01 0.003

Table 10.1. Data used for the chemical elements involved in the phase diagram

Precipitate TiS T iC Ti4C2S2 MnS

Molecular mass 79.964 59.911 279.75 87.002

Solubility product 4.835310−5 5.355110−3 3.9510−17 6.403910−4

Table 10.2. Characteristics of the precipitates involved in the phase diagram

Figure 10.1 gives the phase diagram calculated from the data in Tables 10.1 and
10.2. This diagram was obtained by solving equations [10.18] at various points, and
by detecting the domains where precipitates appear. It can be seen in this figure that
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MnS

TiS

Ti 4C 2S 2

Figure 10.1. Recalculated phase diagram of a micro-alloyed steel

the TiC precipitate does not appear within the variation range used for the chemical
elements. Moreover, the number of precipitates meets the Gibbs law. Finally, this
diagram is in good agreement with the experiment. This validates equations [10.18],
together with the numerical scheme used to solve them.

10.3.2. Carbon diffusion in a titanium steel

In order to validate the method used to model simultaneous diffusion and
precipitation, we can calculate carbon diffusion in a steel containing titanium. The
data used for the calculation are given in Table 10.3. They apply to a cylinder with a
10 mm radius. Diffusion of carbon and titanium is assumed to take place only in the
radial direction, and the possibility of the appearance of a TiC precipitate is taken
into account. It can be seen in this table that the calculations were performed with the
following assumptions:

– Henry’s coefficients of the elements are set to 1, and Wagner’s coefficients
vanish. This means that we assume that the activities of the elements and their
dissolved fractions are equal. Moreover, it is assumed that the elements do not interact
during diffusion.

– The initial mass fractions of carbon and titanium are set to 0.2% and 0.01%
respectively. Then the steel specimen is placed into a furnace. The carbon activity in
the atmosphere of the furnace is set to 1, and a film transfer coefficient of 0.0001
is used to represent the carbon flux density entering into the specimen during the
treatment.
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Element C Ti Precipitate TiC

Atomic mass 12.011 47.900 Molecular mass 59, 911

Wagner parameters 0. 0. Frequency factor (s−1) 0.1

Initial activity (%) 0.2 0.01 Exponent 1.

Film transfer coefficient 0.0001 0.

Activity in the furnace (%) 1. 0.

Diffusion coefficient (mm2/s) 4.8710−7 510−7

Table 10.3. Data used for the simulation of carbon diffusion in a titanium steel

– A kinetic law with a frequency factor of 0.1 s−1 and an exponent of 1 is used for
the TiC precipitate.

Figure 10.2 gives the distribution of the total, dissolved and precipitated, fractions
of Ti along the radius, near the surface of the cylinder. It can be seen in this figure
that carbon diffusion has led to the precipitation of TiC near the surface. Since the
precipitate is made of Ti and C, the dissolved fraction of Ti is lowered, leading to a
gradient of its activity, and thus to diffusion of this element. This diffusion then leads
to an increase in the fraction of the TiC precipitate, so that in this case precipitation
is governed by the mobility of titanium in the steel matrix, as well as by the kinetics
of precipitation.

Figure 10.2. Variation of the fraction of Ti along the cylinder radius,
after 4 hours’ treatment
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Chapter 11

Electrothermal Coupling

11.1. Electrokinetic modeling

Here we deal with the case of a high-intensity current applied to a material, causing
the heating of that material by means of the Joule effect, thus coupling it with thermal
aspects. In resistance welding applications, given the current frequency (50Hz), the
dynamic effects (induced currents) are negligible and the electric currents can be
calculated by means of an electrokinetic model.

Here we give the equations governing the electrokinetic phenomena involved in
the material, their resolution by the finite element method and their coupling with
thermal phenomena.

11.1.1. Weak formulation

In a domain Ω, applying an electric field
−→
E produces an electric current whose

density termed
−→
J is given by the Ohm law,

−→
J = σ · −→E , where the symmetric

tensor σ represents the electric conductivity of the material. When this conductivity
is identical in all directions, then σ = σI , where I is the identity tensor and the
scalar σ represents this conductivity. In electrokinetics, the electric field

−→
E is such

that
−→
rot(

−→
E ) =

−→
0 . It is therefore derived from a scalar potential V , for instance of the

form
−→
E = −−−→

grad(V ). The current density in the material is thus proportional to the
electric potential gradient:

−→
J = −σ.

−−→
grad(V )
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This equation is the material’s electrokinetic behavior law. It is similar to Fourier’s
law of thermal transfer. If the current conservation inside any domain Ω is then
written, without any possible volume current production, it is simple to determine the
electrokinetic conservation equation:

div
(−→
J
)

= 0 at any point of Ω

Using these two equations, and applying current density or potential boundary
conditions produces the following system to solve, which is very similar to the one
encountered in steady state heating in Chapter 1:

Find V (−→x ) such that:




div
(
σ · −−→grad(V )

)
=0 for any −→x ∈Ω

V =Vd on ∂ΩV

−−→
J · −→n =

(
σ · −−→grad(V )

) · −→n =j on ∂Ωj

[11.1]

We define −→n as the outward norm to the domain Ω, ∂ΩV as the boundary of Ω on
which the potential V is known, and ∂Ωj as the boundary of Ω where the entry current
density is known. Note that, as in thermal science, it is necessary to know at any point
of the boundary ∂Ω of the domain Ω either the exiting current potential or density, so
that ∂ΩV ∪ ∂Ωj = ∂Ω and ∂ΩV ∩ ∂Ωj = ∅. If the same procedure as that described
in Chapter 1 of this book for steady state heating is followed, it is possible to give a
weak formulation of problem [11.1]:∣∣∣∣∣∣∣∣

Find V ∈ EV such that for any V ∗ ∈ EV ∗ :∫
∂Ωj

V ∗j ds −
∫

Ω

−−→
gradT (V ∗) · σ · −−→grad(V ) dv = 0

[11.2]

We insert into this system the set EV of solutions satisfying the essential boundary
conditions V = Vd on ∂ΩV , and the set EV ∗ of test functions V ∗ equal to zero on
that same boundary.

11.1.2. Modeling the coupling

The boundary value problem governing electrothermal coupling in a domain Ω
consists of juxtaposing the boundary value problem related to heat diffusion with the
problem related to electrokinetic phenomena. Both problems are coupled by:

– the power dissipated by the Joule effect, incorporated as an internal source term
in the heat equation;

– the temperature dependence of electrical properties.
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The power dissipated by the Joule effect per material volume unit is of the form
P =

−→
E ·−→J . It follows that the volumetric source term Q involved in the heat problem

can be written directly according to the potential field V (−→x ), the solution of the
electrokinetic problem:

Q =
−−→
gradT (V ) · σ · −−→grad(V ) [11.3]

The temperature field T (−→x ) and the electric potential field V (−→x ) are therefore
obtained by coupling the two related weak formulations. The thermal calculation
being performed in the transient state, and hence with a time-dependent temperature
field, the electrokinetic potential will also be time-dependent. The temperature field
T (−→x , t) and the potential field V (−→x , t) will be obtained at any instant t between 0
and tf by solving the following problem:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Find T : t ∈ [0, tf [ −→ T (−→x , t) ∈ ET ,

Find V : t ∈ [0, tf [ −→ V (−→x , t) ∈ EV such that:

at t = 0: T (−→x , 0) = T0(−→x ) and V (−→x , 0) = V0(−→x )

for t ∈ ]0, tf [, for any ψ ∈ Eψ and for any V ∗ ∈ EV ∗ :∫
Ω

ψ(Q − ρḢ)dv +
∫

∂Ωq

ψq ds −
∫

Ω

−−→
gradT (ψ) · λ · −−→grad(T )dv = 0

∫
∂Ωj

V ∗j ds −
∫

Ω

−−→
gradT (V ∗) · σ · −−→grad(V ) dv = 0

[11.4]

Over time, the natural boundary conditions provide the heat flux density q entering
via ∂Ωq and the current density j entering via ∂Ωj . Similarly, the essential boundary
conditions are those making it possible to define the sets ET and EV according to the
temperatures Td and the potentials Vd prescribed, as well as the sets Eψ and EV ∗ of
the weighting functions:

ET =
{
T ∈ H1(Ω)/T = Td on ∂ΩT

}
Eψ =

{
ψ ∈ H1(Ω)/ψ = 0 on ∂ΩT

}
EV =

{
V ∈ H1(Ω)/V = Vd on ∂ΩV

}
EV ∗ =

{
V ∗ ∈ H1(Ω)/V ∗ = 0 on ∂ΩV

}
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In problem [11.4], it must be noted that:

– the volumetric mass ρ, the thermal conductivity (symmetric) tensor λ and the
electrical conductivity (symmetric) tensor σ depend on temperature T ;

– the enthalpy H is a function of temperature and time. This term also makes it
possible to insert latent heat effects related to phase changes (see Chapter 9);

– the volumetric source term Q is given by relationship [11.3]. It represents the
power dissipated by the Joule effect and depends at each instant on the electric
potential field;

– as was seen in the previous parts of this book, the heat flux density q can
take different forms to express a convection or radiation exchange with the external
environment;

– the current density j can be expressed from the electric resistance R of an
interface, possibly a function of the temperature, with a medium of potential V∞ in
the form J = (1/R)(V∞ − V ).

11.1.3. Solving the coupled problem

In order to solve coupled problem [11.4], we could use a staggered approach where
the electrokinetic and thermal problems would be treated independently. However, the
importance of the coupling between such phenomena implies us to prefer an approach
where the problems are treated together. To obtain the finite element formulation
of this problem, a Galerkin approach is used, with the temperatures T (−→x , t) and
potentials V (−→x , t) as unknown fields.

Consider a single mesh for the electrokinetic and thermal problems, including
n nodes and m elements Ωe. Inside each element, the temperature and the electric
potential use the same approximation scheme:

∀−→x ∈ Ωe, ∀t ∈ [0, tf ],

{
T (−→x , t) = 〈Ne(−→x )〉 · {T e(t)}
V (−→x , t) = 〈Ne(−→x )〉 · {V e(t)}

[11.5]

The problem now has 2n unknowns: the temperature and the electric potential at
all the mesh nodes. In this instance an implicit Euler algorithm to discretize the time
derivative of the enthalpy H of [11.4]. The finite element method then leads us to solve
at each time step a system of 2n equations with 2n unknowns, which can be written
as: {

{RT }
{RV }

}
=

{
{0}
{0}

}
[11.6]
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In the above equation, {RT } represents the residual vector at instant t related to
the thermal problem and {RV } the vector related to the electrokinetic problem. They
are both obtained by assembling element residuals:

{RT } =
m∑

e=1

[Ae]T · {Re
T }

{RV } =
m∑

e=1

[Ae]T · {Re
V }

The element residuals are easily obtained from the results of previous chapters,
they are written:

{Re
T } =

∫
Ωe

{Ne}−−→gradT (V ) · σ · −−→grad(V ) dv +
∫

∂Ωe∩∂Ωq

{Ne} q ds

−
∫

Ωe

{Ne} ρ
H − H0

∆t
dv −

∫
Ωe

{−−→
gradT (Ne)

}
· λ · −−→grad(T ) dv

[11.7]

{Re
V } =

∫
∂Ωe∩∂Ωj

{Ne} j ds −
∫

Ωe

{−−→
gradT (Ne)

}
· σ · −−→grad(V )dv [11.8]

The resolution of system [11.6] can be performed with a Newton-Raphston
method. This method involves a tangent matrix, where the different sub-matrices are
obtained by assembling element matrices, as follows:

{KT } =

[
[KTT ] [KTV ]
[KV T ] [KV V ]

]
with




[KTT ] =
m∑

e=1

[Ae]T · [Ke
TT ] · [Ae]

[KTV ] =
m∑

e=1

[Ae]T · [Ke
TV ] · [Ae]

[KV T ] =
m∑

e=1

[Ae]T · [Ke
V T ] · [Ae]

[KV V ] =
m∑

e=1

[Ae]T · [Ke
V V ] · [Ae]

Note that the global matrix [KT ] is non-symmetric. This is practically always
the case when several coupled problems are treated together. The components of the
element matrices from the previous equations are written:
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(
Ke

TT

)
ij

= −
∫

Ωe

Ne
i

−−→
gradT (V ) · dσ

dT
· −−→grad(V )Ne

j dv −
∫

∂Ωe∩∂Ωq

Ne
i

dq

dT
Ne

j ds

+
∫

Ωe

Ne
i

1
∆t

d(ρH)
dT

Ne
j dv +

∫
Ωe

−−→
gradT (Ne

i ) · dλ

dT
· −−→grad(T )Ne

j dv

+
∫

Ωe

−−→
gradT (Ne

i ) · λ · −−→grad(Ne
j ) dv

(
Ke

TV

)
ij

= −2
∫

Ωe

Ne
i

−−→
gradT (V ) · σ · −−→grad(Ne

j ) dv

(
Ke

V T

)
ij

= −
∫

∂Ωe∩∂Ωj

Ne
i

∂j

∂T
Ne

j ds +
∫

Ωe

−−→
gradT (Ne

i ) · dσ

dT
· −−→grad(V )Ne

j dv

(
Ke

V V

)
ij

= −
∫

∂Ωe∩∂Ωj

Ne
i

∂j

∂V
Ne

j ds +
∫

Ωe

−−→
gradT (Ne

i ) · σ · −−→grad(Ne
j ) dv

11.2. Resistance welding

The passage of electric currents through a conductive material generates power
dissipation via the Joule effect. This principle is particularly used in resistance welding
processes. They are very commonly used in the car industry because of their capacity
to assemble thin metal sheets.

Figure 11.1 introduces the general principle of spot resistance welding. Two copper
electrodes are placed on both sides of the sheets to be assembled and are strongly
pressed on them to facilitate contact. A high intensity current melts the metal at the
sheet interface. The current used is generally a 50 Hz alternative current. As a result,

i

i

Figure 11.1. Spot resistance welding – principle diagram
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the dynamic effects (induced currents) are negligible and the electric currents can be
calculated by means of an electrokinetic model.

The simulation of spot resistance welding is of particular interest to study the size
of the molten core according to the operational procedure or analyze the electrode
lifetime [FEU 06]. Resistance welding involves strongly coupled mechanical,
thermometallurgical and electrokinetic phenomena. The electrodes for instance help
hold together the sheets being assembled during the solidification phase of the liquid
core. The thermometallurgical aspects are covered in Chapter 9. Our study is here
restricted to the thermal and electrokinetic aspects; treating the mechanical problems
would require developments outside the scope of this book.

First, the model implementation for simulating this process is described. A
thermal and electric contact management method is given. Then the results obtained
are analyzed to demonstrate the capability of the finite element method to simulate
this type of process and thus offer an insight into the local temperatures reached, the
material structure after welding, etc.

11.2.1. Implementing the model

Figure 11.2 illustrates the mesh used to simulate the welding of three metal sheets
1.2 mm, 0.8 mm and 0.8 mm thick. Note the presence of a large number of contacts
between each electrode and a metal sheet on the one hand, and the three metal sheets
welded together on the other hand.

Figure 11.2. Mesh used
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integration point (i) q(i), j(i)

T(i), V(i)

subsurface w (i)

T (i),V (i)

Figure 11.3. Contact management

Figure 11.3 illustrates the method used to manage the electric and thermal contacts.
It is based upon a Gauss numerical integration scheme [BAT 96] applied to contact
elements [JAO 98, BEL 99].

Consider two meshed surfaces in contact and evaluate the current density and
the heat flux density entering locally (i.e. at each integration point of the elements)
into each of the surfaces. Consider therefore an integration point (i) of an element
belonging to one of the opposite surfaces, and term w(i), T (i) and V (i), respectively
the weight of the integration point (i) in the Gauss scheme, the temperature and

the electric potential at that point (Figure 11.3). Moreover, T
(i)

and V
(i)

represent
respectively the temperature and the electric potential on the element opposite the
integration point (belonging to the other surface).

The current density j(i) entering through the subsurface w(i) related to the
integration point (i) can be written according to the contact’s electric resistance R as:

j(i) =
1
R

(
V

(i) − V (i)
)

The thermal flux density q(i) received by the subsurface w(i) related to the
integration point (i) can be decomposed into two parts:

q(i) = K
(
T

(i) − T (i)
)

+ p(i)

The first term uses a thermal exchange coefficient K (inverse of a contact thermal
resistance) to illustrate the thermal exchanges at the interface. Of course, coefficient
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K depends on the properties of that interface, and in that expression it is assumed that
the interface has no thermal capacitance.

The second term of the previous equation represents the thermal power dissipated
by the Joule effect at the interface. Given the expression of j(i), the total power

dissipated at the interface will be P (i) = (V (i)−V
(i)

)2/R, and each opposite surface
will receive only part of that power. If f (i) is the fraction received by the subsurface
w(i), then the thermal flux density received by that surface is written:

q(i) = K
(
T

(i) − T (i)
)

+
f (i)

R

(
V

(i) − V (i)
)2

The expressions of q(i) and j(i) above are then inserted into the expressions of the
global residuals to cancel to solve the coupled problem.

The Gaussian method makes it possible to take into good consideration the thermal
flux q and current j local densities. However, corrective terms are inserted to satisfy
the global flux conservation [FEU 04].

11.2.2. Results

Figure 11.4 gives the temperature fields calculated at the end of the heating process
in the case of three soft steel sheets welded together. Note the presence of a liquid

ISOVALUES
Temperature
Time 0.34s
Deformed x 1

Figure 11.4. Plotted temperature contour curves
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melted zone heat affected zone

Figure 11.5. Comparing experiment with calculation

core in the center, which is in good agreement with the experiment, as illustrated by
Figure 11.5, in which the temperature contour corresponding to the steel liquidus was
superimposed on top of a micrographic section.

During the calculation process, thermometallurgical coupling was performed
with the method described in Chapter 9. In Figure 11.5, the temperature contour
corresponding to the steel transformation point Ac1 (initial austenitizing temperature)
was superimposed on top of the micrographic section. Once again there is a fairly
good agreement with the experiment.

This finite element numerical simulation of a complex process, involving
thermometallurgical phenomena and contact problems, demonstrates that the method
is highly appropriate for this type of approach. Numerical simulations make it
possible on the one hand to make progress in the command of the process, i.e. the
knowledge of relevant parameters, and on the other hand, to perform tests that enable
us to optimize the heating sequence according to the liquid core desired.



Chapter 12

Magnetothermal Coupling

12.1. Introduction

Any electric conductor placed in a time-varying magnetic field is the base
of eddy-currents that dissipate power through the Joule effect. This power is
concentrated at the surface of the component, in a very small thickness which
depends on the electric conductivity and magnetic permeability of the material, but
also on the frequency of the currents. Induction hardening processes take advantage
of this effect because it is therefore possible to control the thickness of the treated
layer.

Induction hardening of steel components is performed in two steps. First, an
induction heating stage puts the surface of the piece in an austenitic state. Then a
cooling stage involving heat conduction through the piece and an external shower
enables metallurgical transformations in the heat affected zone in order to form hard
structures.

The numerical simulation of this process is of major interest to control and
quantify the thickness of the treated layer, the superficial hardness and the residual
distortions in order to avoid a final machining which could annihilate the benefits of
the treatment. Moreover, such processes often lead to compressive residual stresses at
the surface which improve the fatigue behavior of the mechanical component. The
complete modeling of the induction hardening process rests upon the solution of
coupled electromagnetic, thermal, metallurgical and mechanical problems, as shown
in Figure 12.1. In what follows, we will focus on the modeling of induction heating.
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Electromagnetism

Metallurgy
Heat transfer

conduction, c onvection, radiation

Mechanics

power loss
(Joule  effect) temperatures

temperatures

latent heat
phase proportions

Phase
proportions stresses temperatures

Plastic
dissipation

Figure 12.1. Couplings between physical phenomena involved by the induction
hardening process

The modeling of induction heating rests upon the resolution of a magnetodynamic
problem and a problem of heat transfer coupled by:

– the power dissipated by the Joule effect on the one hand;

– the dependence of the electromagnetic properties with temperature on the other
hand.

12.2. Magnetic vector potential formulation for magnetodynamics

Magnetodynamic phenomena are governed by the following Maxwell’s equations:

−−→
curl(

−→
H ) =

−→
J (Maxwell-Ampère’s equation) [12.1]

−−→
curl(

−→
E ) = −∂

−→
B

∂t
(Maxwell-Faraday’s equation) [12.2]

div
(−→
B

)
= 0 (Maxwell-Gauss’s equation) [12.3]

with the following constitutive equations:

−→
H = ν(‖−→B‖, T )

−→
B (Magnetization law) [12.4]

−→
J = σ(T )

−→
E (Ohm’s law) [12.5]

In the equations above,
−→
H ,

−→
J ,

−→
E and

−→
B represent the magnetic field, the electric

current density, the electric field and the magnetic flux density vector respectively.
In equation [12.4], ν is the magnetic reluctivity (the inverse of the magnetic
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Figure 12.2. Typical magnetization curves B(H, T ) for steel

permeability). Taking account of the magnetic field magnitude involved by induction
heating applications, hysteresis loops are neglected. In equation [12.5], σ is the
electric conductivity. We can note in Figures 12.2 and 12.3 that the electromagnetic
properties strongly depend on temperature T .

From equation [12.3], let us now introduce the magnetic vector potential
−→
A such

that:

−→
B =

−−→
curl(

−→
A ) [12.6]

To ensure the uniqueness of the magnetic vector potential, an additional equation
on div

(−→
A
)

must be introduced, for example:

div
(−→
A
)

= 0 (Coulomb gauge) [12.7]

Equation [12.2] then gives:

−→
E = −∂

−→
A

∂t
−−−→

grad(V0) [12.8]

where V0 is the electric scalar potential.
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σ Ω

Figure 12.3. Typical temperature-dependent electric conductivity σ(T ) for steel

Here again, in order to define V0 uniquely, we must introduce the following
additional equation derived from equation [12.1]:

div
(−→
J
)

= 0 [12.9]

which, with equations [12.5], [12.8] and [12.7], gives: div
(
(σ
−−→
grad(V0))

)
= 0.

The vector potential formulation supposes that equation [12.9] is satisfied a priori.
It can be shown that this equation is automatically verified for 2D and axisymmetric
cases as defined below. Therefore, using equations [12.4], [12.5], [12.6] and [12.8],
equation [12.1] finally becomes:

σ
∂
−→
A

∂t
+
−−→
curl(ν

−−→
curl(A)) + σ

−−→
grad(V0) = 0 [12.10]

So, the magnetic vector potential must be the solution of equations [12.7] and
[12.10]. We must note that equations [12.7] and [12.10] hold in the whole space. Due
to air, the spatial domain on which the solution of both equations must be found is not
bounded except for symmetry reasons. Let us now consider the case of a geometry
obtained by the translation of a cross-section along the z-axis direction and suppose
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that the source current (
−→
J0 = −σ

−−→
grad(V0)) is also directed along the z-axis and only

depends on x and y coordinates:

−→
J0 = j0(x, y, t)−→ez [12.11]

In this case, it can be shown that the problem is reduced to a 2D problem because
the vector potential now has only one non-zero component:

−→
A = a(x, y, t)−→ez [12.12]

Similarly, in the case of axisymmetric geometries and a circumferential source
current:

−→
J0 = j0(r, z, t)−→eθ [12.13]

the problem is reduced to an axisymmetric problem and the vector potential can be
written:

−→
A = a(r, z, t)−→eθ [12.14]

We can note that the gauge condition (equation [12.7]) is automatically satisfied
in both cases. Therefore, the magnetic vector potential now has to be the solution of
equation [12.10] only [MEU 08].

12.3. Coupled Þ nite element-boundary element method

The idea of coupling the finite element method (FEM) and the boundary element
method (BEM) to benefit from the advantages of both methods is rather old [ZIE 77,
ATL 78]. It finds here a rather natural application [FET 97, PAS 03b]. Let us subdivide
the physical space into a domain Ω1 made up of conductors (possibly traversed by
sources of current) and a domain Ω2 constituted by air (Figure 12.4).

Let us call Γ the common border between Ω1 and Ω2. The problem to be solved in
the air (Ω2) is reduced to:

−−→
curl(ν0

−−→
curl(

−→
A )) = 0 [12.15]

div
(−→
A
)

= 0 [12.16]
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FEM domain

BEM domain

∞Γ

(FEM-BEM boundary)

Γ

Figure 12.4. Coupling between FEM and BEM domains

with the following boundary conditions:

−→
A = 0 to infinity on Γ∞ [12.17]

continuity of
−→
A and div

(−→
A
)

on Γ [12.18]

−→
h 1 =

−→
H ×−→n 1 = −−→

h 2 = −−→
H ×−→n 2 on Γ [12.19]

where −→n 1 and −→n 2 are the units normal to Γ outside Ω1 and Ω2 respectively and
ν0 = 1

µ0
.
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Consider a mesh of Ω1 including n nodes and a compatible mesh of the border Γ
including b nodes. Moreover, suppose that

−→
h 1 in equation [12.19] is defined from

nodal values {H1} (b components) by using the shape functions of the elements
located on the border Γ.

12.3.1. Finite element formulation

The weak formulation associated with equations [12.10] and [12.7] is obtained by
using the following relation, where the

−→
A∗ vectors are weighting functions associated

with
−→
A :∫

Ω1

−→
A∗ · −−→curl(ν

−−→
curl(

−→
A )) dv =

∫
Ω1

−−→
curl(

−→
A∗) · ν−−→curl(

−→
A ) dv

+
∫

Γ

−→
A∗ · (−→n 1 ∧ ν

−−→
curl(

−→
A )

)
ds

[12.20]

The following weak formulation can thus be easily derived:

Find
−→
A : t ∈ ]0, T [ �−→ −→

A (−→x , t) ∈ V such that

−→
A (−→x , 0) =

−→
A0(−→x ) and for any

−→
A∗ ∈ V :

∫
Ω1

−→
A∗ · σ∂

−→
A

∂t
dv +

∫
Ω1

−−→
curl(

−→
A∗) · ν−−→curl(

−→
A ) dv

=
∫

Ω1

−→
A∗ · −→J0 dv +

∫
Γ

−→
A∗ · −→h 1 ds

[12.21]

In the above equation, ]0, T [ is a given time interval (one or more periods of the

source current),
−→
A0(−→x ) an initial condition and V the functional space of admissible

functions i.e. satisfying equation [12.7] and the conditions of regularity necessary to
give a sense to equation [12.21].

Let us now consider axisymmetric geometries and the circumferential source
current. In this case, the source current and the magnetic vector potential are given
by equations [12.13] and [12.14] respectively. We can note that we also have−→
h 1 = h1

−→eθ and
−→
h 2 = h2

−→eθ . The gauge condition is automatically satisfied and
we obtain curl

−→
A = 1

r

−−→
grad(ra) × −→eθ . This formula encourages us to seek a nodal
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approximation of ra rather than a. The finite element discretization of variational
equation [12.21] then leads to the following system of equations:

[C] ·
{

Ȧ
}

+ {R} − [T ] · {H1} = {J0} [12.22]

{A} contains the nodal values of ra, [C] is a n× n matrix, {R} is a n-component
vector, [T ] is a n × b rectangle matrix and {J0} is a n-component vector containing
the nodal values equivalent to the source current. [C], {R}, [T ] and {J0} are obtained
from an assembly process from the following element vectors and matrices:

[Ce] =
∫

Ωe

σ

r2
{Ne} · 〈Ne〉 dv

{Re} =
∫

Ωe

{−−→
curlT (Ne)

}
· ν

〈−−→
curl(Ne)

〉
· {Ae} dv

[T e] =
∫

∂Ωe∩Γ

1
r
{Ne} · 〈Ne〉 ds

{Je
0} =

∫
Ωe

J0

r
{Ne} dv

[12.23]

where 〈−−→curl(Ne)〉 =
〈

1
r

−−→
grad(Ne

1 ) ×−→eθ , . . . , 1
r

−−→
grad(Ne

ne) ×−→eθ

〉
is the matrix giving−−→

curl(
−→
A ) from nodal values of ra. Note that {Re} can be a non-linear function of {A}

since ν is ‖−→B‖-dependent, and hence depends on
−→
A via equation [12.4].

12.3.2. Boundary element formulation

Equation [12.15] multiplied by a scalar weight function ψ(r, z), then integrated
over Ω2 leads, after some mathematical handling and taking account of equations
[12.16] and [12.17], to the following integral equation:∫

Ω2

ν0∆ψ
−→
A dv =

∫
Γ

(
ν0

(−−→
grad(ψ) · −→n2

)−→
A − ψν0

−−→
curl(

−→
A ) ×−→n2

)
ds

−
∫

Γ

(
ν0

(−−→
grad(ψ) · −→A)−→n2 − ν0

(−→
A · −→n2

)−−→
grad(ψ)

)
ds

[12.24]

Considering the axisymmetric case, we obtain
−−→
grad(ψ).

−→
A = 0 and

−→
A.−→n2 = 0.

Moreover, taking equation [12.19] into account, equation [12.24] thus becomes:∫
Ω2

ν0∆ψa dv =
∫

Γ

(
ν0

(−−→
grad(ψ) · −→n2

)
a − ψh2

)
ds [12.25]
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Considering weighting functions ψp as the solution of Poisson’s equation for a unit
load located at point −→xp: ∆ψp + δ(−→x −−→xp) = 0 (δ Dirac’s distribution) with ψp = 0
at infinity ([BRE 92]), equation [12.25] becomes at each node i of the border Γ:

ν0
ci

2π
ai =

∫
Γ

ψih2 ds −
∫

Γ

ν0
∂ψi

∂n
a ds [12.26]

In this equation, ci is the inside angle at node i (ci = π for a very smooth
boundary). Using the mesh of Γ previously introduced for the discretization of
equation [12.26], we finally obtain:

[H] · {A2} − [G] · {H2} = 0 [12.27]

where [H] and [G] are b × b component matrices with Hij = ν0
ci

2πri
δij +∫

Γ
ν0

∂ψi

∂n
1
r Ne

j ds and Gij =
∫
Γ

ψiN
e
j ds, and where {A2} is a b-component vector

containing the nodal values of ra at the nodes of Γ.

12.3.3. FEM-BEM coupling

Equation [12.19] gives:

{H1} = −{H2} [12.28]

Equation [12.22] combined with equations [12.27] and [12.28] becomes:

[C] ·
{

Ȧ
}

+ {R} + [T ] · [G]−1 · [H] · {A2} = {J0} [12.29]

The non-symmetric matrix [T ] · [G]−1 · [H] appears as the contribution of air
to the system of equations [12.29]. The system of differential equations [12.29] can
thus be solved by a method of direct integration (implicit Euler or central differences
for example) together with a Newton-Raphson method to find the solution at each
time-step.

12.4. A harmonic balance method for the magnetodynamic problem

In practice, the source current is always sinusoidal. However, due to the
non-linearity of the magnetization law, induced electromagnetic fields contain higher
order harmonics. Rather than solve equation [12.29] by a direct method step by step
over time, a harmonic balance method can be used [YAM 88a, YAM 88b, LU 95,
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TER 84]. This method consists of calculating the first terms of the development in a
Fourier series of the magnetic vector potential:

−→
A (−→x , t) =

∑
k=1,3,...

(−−→
Akc(−→x ) cos(kωt) +

−−→
Aks(−→x ) sin(kωt)

)
[12.30]

where ω = 2π
τ represents the pulsation of the source current and τ , the period.

Equation [12.10] is then projected on to the basis of chosen functions of time. The
equations to solve are now written:

for l = 1, 3, . . .




∫ τ

0

(
σ

∂
−→
A

∂t
+
−−→
curl(ν

−−→
curl(A)) −−→

J0

)
cos(lωt)dt=0

∫ τ

0

(
σ

∂
−→
A

∂t
+
−−→
curl(ν

−−→
curl(A)) −−→

J0

)
sin(lωt)dt=0

[12.31]

We obtain a new problem, where the unknowns are now the fields
−−→
Akc(−→x ) and−−→

Aks(−→x ) for k = 1, 3, . . . , m, m being the order of the last harmonic considered.
The FEM applied to equations [12.31] in the axisymmetric cases leads us to solve the
following system of non-linear equations:



...

{Rlc({Alc} , {Als} , . . .)}
{Rls({Alc} , {Als} , . . .)}

...




= 0 [12.32]

In these equations, the element terms are calculated as follows for each element e

of Ω1:

{Re
lc(· · · )} = −

∫ e

Ω

{Ne} lσω

r2
〈Ne〉 · {Ae

ls} dv +
∫ e

Ω

1
r
{Ne} Je

0 lcdv

−
∑

k=1,3,...

∫ e

Ω

{−−→
curlT (Ne)

}
· νlc,kc ·

〈−−→
curl(Ne)

〉
· {Ae

kc} dv

−
∑

k=1,3,...

∫ e

Ω

{−−→
curlT (Ne)

}
· νlc,ks ·

〈−−→
curl(Ne)

〉
· {Ae

ks} dv

[12.33]
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{Re
ls(· · · )} =

∫ e

Ω

{Ne} lσω

r2
〈Ne〉 · {Ae

lc} dv +
∫ e

Ω

1
r
{Ne} Je

0 lsdv

−
∑

k=1,3,...

∫ e

Ω

{−−→
curlT (Ne)

}T

· νls,kc ·
〈−−→
curl(Ne)

〉
· {Ae

kc} dv

−
∑

k=1,3,...

∫ e

Ω

{−−→
curlT (Ne)

}T

· νls,ks ·
〈−−→
curl(Ne)

〉
· {Ae

ks} dv

[12.34]

For example, we have νls,ks =
∫ τ

0
ν(‖−−→curl(A)‖)cos(lωt)sin(kωt)dt. As

mentioned previously, {Akc} and {Aks} contain the nodal values of rakc and raks

respectively.

The generalization of the coupling between the finite element method and
the boundary element method does not create any particular problem. Equations
[12.15]-[12.19] must now be solved for each harmonic considered. We thus obtain
m+1 systems of equations of the [12.27] type:

[H] · {Akc2} − [G] · {Hkc2} = 0

[H] · {Aks2} − [G] · {Hks2} = 0
[12.35]

The coupling is obtained by considering each element of Γ:

{Re
lc} =

∫
Se

1
r
{Ne} · 〈Ne〉 ds · {Hlc1}

{Re
ls} =

∫
Se

1
r
{Ne} · 〈Ne〉 ds · {Hls1}

[12.36]

with {Hkc2} = −{Hkc1} and {Hks2} = −{Hks1} for k = 1, 3, . . . , m.

12.5. Coupling magnetodynamics with heat transfer

12.5.1. Iterative coupling

The main difficulty arising from the numerical simulation of couplings between
magnetodynamics and heat transfer is related to time constants of both phenomena,
which differ considerably. Indeed, the frequency of currents usually utilized with
induction heating applications are in the order of magnitude of a few tens of kHz.
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Figure 12.5. Iterative procedure for coupling magnetodynamics
with heat transfer

Compared to these frequencies, thermal phenomena vary very slowly. It is therefore
impossible to solve the problem using a direct method where the magnetic vector
potential field and the temperature field are computed together simultaneously at
each time step. Such an approach would need time steps in the order of 10−6 s
(time step needed for the calculation of electromagnetic fields). This would lead to
unreasonable computational times and, moreover, to serious numerical problems, the
very small temperature variations during a time step being potentially drowned in
calculation errors. On the other hand, it is completely justified to solve the problem
using an iterative procedure where magnetodynamics and thermal problems are
solved successively, as shown in Figure 12.5 [CHA 97, BER 00].

The power dissipated through the Joule effect resulting from magnetodynamics
analysis is then considered on average over a period of the source current in the
thermal analysis:

Q(−→x ) =
1
στ

∫ τ

0

−→
J (−→x , t)2dt [12.37]
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where
−→
J =

−→
J0−σ ∂

−→
A

∂t and τ represent the total electric current density and the period
of the source current respectively.

It is clear that such a method leads to costly calculations that are not always
compatible with industrial objectives. In addition to non-linearities associated with
magnetodynamics and thermal problems, the modeling of the induction heating
process introduces two other non-linearities that must be accounted for:

– The non-linearity and the temperature dependence of the magnetization law that
can be represented for example by the Frohlich-Kenelly model [BOS 78, CHA 97]:

−→
B =

(
µ0 +

B0

‖−→H‖ + Hα

)−→
H [12.38]

where µ0 is the void permeability, and B0 and Hα are two parameters depending on
temperature.

– The transition of the behavior of steel at the Curie point. The Curie point
is the temperature above which ferromagnetic materials such as steel lose their
ferromagnetic ability. Below the Curie point, the material is ferromagnetic and the
magnetization curve is very non-linear, as shown in Figure 12.2. Above the Curie
point, the material is paramagnetic and we simply obtain

−→
B = µ0

−→
H . In addition

to the magnetic effects, the passage of the Curie point is accompanied by an intense
variation of the specific heat.

12.5.2. A direct method for magnetothermal coupling

The use of a harmonic balance method enables us to treat the magnetothermal
coupling by a direct method [FET 91, PAS 03a]. Indeed, we only have to define a
finite element including m + 2 degrees of freedom: the cosine and sine parts of the
m+1

2 harmonics of the magnetic vector potential and the temperature. The element
residual vector of such a finite element is given by equations [12.33] and [12.34] for
the magnetodynamics part. For the thermal part, we obtain:

{Re
T } =

∫
Ωe

{Ne} 1
2σ

m∑
k=1,3,...

(
J2

kc + J2
ks

)
dv +

∫
Ωe

{Ne} ρ
H − H0

∆t
dv

−
∫

Ωe

{−−→
gradT (Ne)

}
· λ · −−→grad(T )dv

[12.39]

Note that in equation [12.39], H0 and H represent the enthalpy (and not the
magnetic field) at time t and t+∆t respectively. Combined with the coupling between
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finite elements and boundary elements, we obtain a method specially suited to the
modeling of surface induction hardening processes involving moving parts.

12.6. Application: induction hardening of a steel cylinder

Now consider the superficial heat treatment of a cylindrical steel bar. The heating
is ensured by a toric copper inductor fed with tension (frequency = 50 Hz) and the
cooling by a shower, the device moving axially along the cylinder in order to treat the
whole surface (Figure 12.6).

A B

18 mm

10 mm

56 mm

Steel
part

Shower

Inductor

Inductor
trajectory

Figure 12.6. Induction hardening device
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The device has a symmetry of revolution so that the phenomena can be studied on
a meridian cut in an axisymmetric option of calculation.

The mesh of the cylinder includes 1,200 elements and 1,271 nodes and the air
is taken into account by the boundary element method as described above. The
inductor is fed during 3.2 s during which it moves over a 64 mm length (length of the
cylinder). The thermometallurgical analysis uses a time step of 0.05 s corresponding
to a 1 mm displacement of the inductor. Each displacement of the inductor requires a
new calculation of the BEM quantities associated with the air. The shower follows
the inductor at a distance of 20 mm from it. Its action continues after cutting off the
inductor current during 5.8 s, then the cylinder is entirely cooled in a bath. Steel at
20°C consists of ferrite. During the heating phase, this ferrite can be transformed
into austenite which will be able to be transformed into ferrite, pearlite, bainite or
martensite during cooling. The conditions of simulation as well as the physical
properties of materials and the coefficients of the laws used are detailed in [PAS 03a]
and will not be recalled here.

Five different simulations were carried out. These simulations differ only
in the heating phase. In all cases, the simulation of cooling is based on a
traditional thermometallurgical analysis. The first simulation uses an indirect
method of resolution of the coupling between the magnetodynamic and
thermometallurgical phenomena as described in section 12.5.1. The time integration
of the magnetodynamic phenomena is based on the trapezoidal rule and is carried out
over 3 periods of the inductor current (approximately 100 time steps per period) in
order to reach the periodic state. The second and the third simulations are carried out
with the direct method described in section 12.5.2. The harmonic balance method
is used here with 1 harmonic for simulation 2 and 2 harmonics for simulation 3.
Simulations 4 and 5 use an indirect approach with a harmonic balance method with 1
(simulation 4) or 2 harmonics (simulation 5).

Figure 12.7 gives the distributions of temperature and austenite proportion
obtained during the displacement of the inductor. The difference in temperature
calculated by simulations 1 and 3 on a line joining points A and B (Figure 12.6)
remains lower than 27.5°C for maximum temperatures reached about 1,300°C. If we
consider simulation 2, the difference passes to 50.5°C which remains acceptable on
account of the resolution time saved with this method. Indeed, simulation 2 seems to
be the most efficient insofar as it is the one that provides by far the best compromise
between accuracy of results and computation time (see Table 12.1). Table 12.1 shows
in addition that, with the harmonic balance method, the choice of a direct resolution
method for the magnetothermal coupling is preferable to that of an indirect method.
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Figure 12.7. Temperature (left) and austenite proportion
(right) distributions at time 2.15 s

Simulation 1 2 3 4 5

Magnetothermal indirect direct direct indirect indirect

coupling method method method method method

Magnetodynamics Transient 1 harmonic 2 harmonics 1 harmonic 2 harmonics

model calculation

Over 3 periods

CPU 17 h 1 h 35 m 8 h 11 m 4 h 31 m 20 h 58 m

Table 12.1. Times of resolution for the different simulations
(PC Pentium IV 1.7 GHz RAM = 512 MO)
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A
accuracy

discretization error, 67
activity, 232
admissible

functions, 25
assembly, 52, 110, 209
Avrami kinetics, 215

B
bandwidth, 62
basis function, 46
boundary conditions

Dirichlet, 24
essential, 28
Fourier, 24
Neuman, 24

boundary element method
boundary elements, 260
FEM-BEM coupling, 261

C
CCT diagram, 223
central difference method, 116
compact

storing, 62
conform approximation, 47, 89

compatible elements, 89
consistent capacitance matrix, 118
contact electric resistance, 246

contact thermal resistance, 250
convection, 24, 208

D
diffusion-convection, 169

instabilities, 171
SUPG method, 174, 209
upwind, 174

direct time integration
Crank-Nicolson algorithm, 117
explicit algorithm, 116
implicit algorithm, 116
Runge-Kutta method, 217
semi-implicit algorithm, 116
trapezoidal rule, 116, 138

discrete maximum principle, 128, 189
divergence theorem, 22

integration by parts, 22

E
electric contact, 249
electromagnetic fields

electric current density, 254
electric field, 254
electric scalar potential, 255
magnetic field, 254
magnetic flux density vector, 254
magnetic vector potential, 255

element conductance matrix, 50
element load vector, 50
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element matrix, 50
capacitance matrix, 109
stiffness matrix, 50
tangent matrix, 148, 154, 161

element residual, 49, 108
enthalpy method, 160, 162

F
Fourier law, 22
Fourier number, 123

G
Galerkin method, 30, 48, 107
gas quenching, 228
global

numbering, 44

H
harmonic balance method, 261
heat flux, 21, 155

I
induction heat treatment, 253, 266
interpolation function, 46
inverse method, 226
isoparametric formulation

actual element, 80
geometric transformation, 80
isoparametric element, 86
reference element, 79

IT diagram, 223

J
Jacobian, 80, 92
Jacobian matrix, 91
Joule effect, 254

L
Lagrange polynomials, 94
linear system

conjugate gradient method, 61
Gauss method, 58
Gauss-Seidel method, 60
Jacobi method, 60
over-relaxation method, 60

linear sytem
Choleski method, 60

load vector, 52
local numbering, 44
lumped matrix, 164

M
magnetodynamics, 254

vector potential formulation, 256
martensitic kinetics, 217
Maxwell’s equations, 254
meshing, 43

elements, 43
nodes, 43

modal method, 111
eigenvalue problem, 112
modal basis, 112
modal superposition, 115

N
natural

boundary conditions, 29
nodal approximation, 43, 46, 71, 81, 85,

108, 198
non-linear system

BFGS method, 151
convergence test, 145
fixed point method, 149
line search method, 152
modified Newton method, 149
Newton-Raphson method, 147
Picard iterative method, 149
quadratic convergence, 148
quasi-Newton method, 150
secant method, 150, 152
substitution method, 149, 198
under-relaxation method, 153

numerical integration
Gauss method, 93, 250
Gauss point, 63
Newton-Cotes method, 95

P
Peclet number, 173
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Petrov-Galerkin method, 177
phase change

equivalent specific heat, 158
front tracking method, 157
latent heat, 158, 222
mushy zone, 158
solid state, 215
solidification, 157
state change, 157

physical properties
absorption coefficient, 191
diffusion coefficient, 233
electric conductivity, 243, 255, 256
emission coefficient, 191
emittance, 191
enthalpy, 105, 246
Henry’s coefficient, 232
magnetic permeability, 255
magnetic reluctivity, 254
magnetization law, 254, 255
Ohm’s law, 255
reflection coefficient, 191
specific heat, 108
thermal conductivity, 23, 109, 153, 221,

246
thermal diffusivity, 133
thermal effusivity, 131
volumetric enthalpy, 158
volumetric mass, 105
Wagner interaction, 232

precipitation, 232
prescribed temperature

elimination method, 54
Lagrange multipliers, 55
penalty method, 55

R
radiation, 24, 156
radiation matrix, 198
radiosity, 191
residual, 25, 51, 106

resolution methods
finite differences, 25
finite volumes, 27
point collocation, 26
sub-domain collocation, 26

result
accuracy, 66

S
setting algorithm, 226
shape functions, 46
skin mesh, 73
skyline storage, 62
smoothing, 64
solution error

accuracy, 67
sparse

storage, 62
stability, 121

Fourier method, 123
von Neumann condition, 124

Stefan constant, 24, 191
Stefan problem, 157

T
tangent matrix, 148, 211, 247
temperature contour, 64
thermal contact, 249
thermal contact resistance, 135
true approximation

continuity conditions, 47

V
view factor, 191, 194

Hottel’s crossed strings, 194
numerical integration, 195

volumetric heat source, 155
volumetric source, 21, 109, 245

W
weighting functions, 25
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