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List of Symbols

Microscopic Dynamics

N Number of particles in the system.
DC Cartesian dimensions of the system – usually three.
D Accessible phase space domain
𝐪 NDC-dimensional vector, representing the particle positions.
𝐩 NDC-dimensional vector, representing the particle momenta.
𝚪 2NDC-dimensional phase space vector, representing all q’s

and p’s.
𝛿V𝚪(St𝚪) Very small volume element of phase space centered on

St𝚪 ≡ exp[iL(𝚪)t]𝚪.
p(𝛿V𝚪(𝚪); t) Probability of observing sets of trajectories inside 𝛿V𝚪(𝚪) at

time t.
d(St𝚪) Infinitesimal phase space volume centered on St𝚪.
p+∕−(t) Probability that the time-integrated dissipation function is

plus/minus over the time interval (0,t).
MT Time reversal map MT (𝐪,𝐩) ≡ (𝐪,−𝐩)MT

.
MK Kawasaki or K-map of phase space vector for planar Couette

flow, MK (x, y, z, px, py, pz, �̇�) ≡ (x,−y, z,−px, py,−pz, �̇�)MK
,

where �̇� ≡ 𝜕ux∕𝜕y is the xy component of the strain rate
tensor.

L f -Liouvillean.
exp[−iL(𝚪)t] … f -propagator.
L p-Liouvillean.
exp[iL(𝚪)t] p-propagator.
St p-propagator.
K(𝐩) Peculiar kinetic energy.
Φ(𝐪) Interparticle potential energy.
𝜙i,j(rij) Pair potential of particle i with particle j.
𝐫ij ≡ 𝐫j − 𝐫i Position vector from particle i to particle j.
rij ≡ |𝐫j − 𝐫i| Distance between particles i and j.
𝐅ij Force on particle i due to particle j



X List of Symbols

∇𝐪 ≡ (𝜕∕𝜕𝐪1, … , 𝜕∕𝜕𝐪N .
H0(𝚪) Internal energy, H0 = K + Φ.
H(𝚪) Hamiltonian at phase vector 𝚪.
g(𝚪) Deviation function – even in the momenta.
HE Extended Hamiltonian for Nosé–Hoover dynamics.
Kth Peculiar kinetic energy of thermostatted particles

= DCNthkBTth∕2 + O(1), where Tth is the kinetic temperate of
the thermostat. If the system is isokinetic, Tth = T – see
thermodynamic variables below.

Nth Number of thermostatted particles.
𝛼 Gaussian or Nosé–Hoover thermostat or ergostat

multiplier.
𝜏 Time constant.
Q̇th∕soi Rate of transfer of heat to the thermostat/system of

interest.
Λ Phase space expansion factor.
Si Switch function.
𝐉(𝚪) Dissipative flux.
𝐅e Dissipative external field.
m Particle mass.
T ≡ 𝜕�̇�(𝚪)∕𝜕𝚪 Stability matrix.
expL Time-ordered exponential operator, latest times to left.

𝚵(𝚪; t) Tangent vector propagator ≡ expL

(
∫

t

0
ds T (Ss𝚪)

)
.

𝜆i ith Lyapunov exponent.
𝜆max∕min Largest/smallest Lyapunov exponent for steady or

equilibrium state.

Statistical Mechanics

At Time average of some phase variable, A(𝚪).⟨A(t)⟩ Ensemble average of A at time t, on a time-evolved path.
f (𝚪; t) Time-dependent phase space distribution function.⟨· · ·⟩𝜇c Equilibrium microcanonical ensemble average.⟨· · ·⟩c Equilibrium canonical ensemble average,
fc(𝚪) Equilibrium canonical distribution.
f𝜇c(𝚪) Equilibrium microcanonical distribution.
Λ Phase space expansion factor.
Ω(St1𝚪; t2) The instantaneous dissipation function, at time t1 on a phase

space trajectory that started at phase 𝚪 and defined with
respect to the distribution function at time t2.
Ω(St1𝚪; 0) ≡ Ω(St1𝚪),

Ω(St1𝚪) Ω(St1𝚪) ≡ Ω(St1𝚪; 0) .
𝐫 Three-dimensional position vector.



List of Symbols XI

𝐮(𝐫, t) Three-dimensional local fluid streaming velocity, at Cartesian
position r and time t.

SG(t) Fine-grained Gibbs entropy,

≡ −kB∫D
d𝚪 f (𝚪; t) ln(f (𝚪; t))

equilibrium
⇒ kB ln(Z𝜇c).

Z Partition function – normalization for the equilibrium phase
space distribution.

Zc Canonical partition function.
Z𝜇c Microcanonical partition function.

Mechanical Variables

Q Heat of thermostat.
V Volume of system of interest.
U Internal energy, U = ⟨H0⟩ of the system of interest.
W Work performed on system of interest.
Y Purely dissipative generalized dimensionless work.
X Generalized dimensionless work.

Thermodynamic Variables

T Equilibrium temperature the system will relax to if it is so
allowed.

𝛽 Boltzmann factor (reciprocal temperature) ≡ 1∕kBT .
Sir Irreversible calorimetric entropy, defined by

ΔSir ≡ ∫ dt Q̇(t)∕T(t), where T(t) is the instantaneous
equilibrium temperature the system would relax to if it was so
allowed. In Section 5.7, we show that the Gibbs entropy and
the irreversible calorimetric entropy are equal, up to an
additive constant.

Seq ≡ S The calorimetric entropy defined in classical

thermodynamics as ΔSeq ≡ ΔS≡qs∫
2

1
dt Q̇(t)∕T(t), where T

is equilibrium temperature of the system. This entropy is a
state function.

A Helmholtz free energy; = −kBT ln (Zc) = U − TSeq.
Ane Nonequilibrium Helmholtz free energy; = U − TSir. This is

not a state function.⟨Σ(t)⟩ Total entropy production – only defined in the weak field
limit close to equilibrium.

G0 Zero-frequency elastic shear modulus.
G∞ Infinite-frequency shear modulus.
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Transport

𝛾 Strain (note: 𝛾 is sometimes used to fix the system’s total
momentum).

𝛿𝛾 Small strain..
γ Strain rate.
Pxy xy element of the pressure tensor.
−⟨Pxy⟩ xy element of the ensemble averaged stress tensor.
𝜂0+ Limiting zero-frequency shear viscosity of a solid.
𝜂 Zero-frequency shear viscosity of a fluid.
𝜏M Maxwell relaxation time.
𝐉(𝚪) Dissipative flux.
J⊥(ky, t) Wavector dependent transverse momentum density.
𝜂M(t) Maxwell model memory function for shear viscosity.
𝜂M Zero-frequency shear viscosity of a Maxwell fluid.

Mathematics

Θ(t) Heaviside step function at t = 0.
∀ For all.
∀! For almost all. The exceptions have zero measure.
𝜆 Arbitrary scaling parameter.
F̃(s) Laplace transform of F(t).
F̂(s) Anti-Laplace transform of F(t).

∮P
Cyclic integral of a periodic function.

qs∫
b

a
Quasi-static integral from a to b.

DKY Kaplan–Yorke dimension of a nonequilibrium steady state.

Note: Upper case subscripts/superscripts indicate people. Lower case is used in most
other cases. Subscripts are preferred to superscripts so as to not confuse powers
with superscripts. Italics are used for algebraic initials. Nonitalics for word ini-
tials. (e.g., T-mixing not T-mixing because T stands for Transient, N-particle not
N-particle.)
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1
Introduction

The instantaneous reversal of the motion of every moving particle of a
system causes the system to move backwards, each particle along its path
and at the same speed as before…

(Thomson, 1874)

Until very recently, the foundations of statistical mechanics were far from satis-
factory (Evans, Searles, and Williams, 2009a). Textbooks approach the derivation
of the canonical distribution in one of two ways. A common approach is to postu-
late a microscopic definition for the entropy and then to show that the standard
canonical distribution function can be obtained by maximizing the entropy sub-
ject to the constraints that the distribution function should be normalized and
that the average energy is constant. The choice of the second constraint is com-
pletely subjective due to the fact that, at equilibrium, the average of every phase
function is fixed. The choice of the microscopic expression for the entropy is also
ad hoc. This “derivation” is therefore flawed.

The second approach begins with Boltzmann’s postulate of equal a priori
probability in phase space for the microcanonical ensemble and then derives
an expression for the most probable distribution of states in a small subsystem
within that much larger microcanonical system. A variation of this approach is to
simply postulate a microscopic expression for the Helmholtz free energy via the
partition function.

The so-called Loschmidt paradox, which so puzzled Boltzmann and his con-
temporaries, remained unresolved for 119 years after it was first raised. All the
equations of motion in mechanics (both classical and quantum) and electrody-
namics are time-reversal-symmetric. Time reversibility of the classical equations
of motion is trivial to demonstrate. Consider Newton’s equations of motion for the
positions 𝐪i of N identical particles subject to interatomic forces 𝐅i(𝐪1,… ,𝐪N ):

m
d2𝐪i(t)

dt2 = 𝐅i(𝐪), i = 1,… ,N (1.1)

As Loschmidt and Kelvin (separately) noticed (Loschmidt, 1876; Thomson,
1874), time reversal t → −t leaves Eq. (1.1) unaltered since (−1)2 = 1. This means
that if 𝐪(t); −𝜏 < t < 𝜏 is a solution of the equations of motion, then so too is
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2 1 Introduction

𝐪(−t) ∶ −𝜏 < t < 𝜏 . Changing the direction of time inverts every velocity – as
per Kelvin’s quote above.

The Loschmidt Paradox can be stated quite simply. If all the laws of physics are
time-reversal-symmetric, how can one prove a time-asymmetric law like the sec-
ond “Law” of thermodynamics that states that the entropy of the Universe “tends
to a maximum” (Clausius, 1865; Clausius, 1872). Although there have been many
attempts over the last century to resolve this paradox, the matter was not really
settled until the first proof of a fluctuation theorem in 1994 (Evans and Searles,
1994).

A less well-known problem concerns Clausius’ inequality itself. In some ways,
this is an even more fundamental problem because it concerns thermodynamics
rather than statistical mechanics. Clausius’ inequality for the heat Qth transferred
to a thermal reservoir states that the cyclic integral ∮ dQth∕T ≥ 0. When this
inequality is, in fact, an equality (the process is quasi-static), we have the usual
argument that ∫ dQth∕Tth is a state function and represents the change in the
equilibrium entropy of the reservoir, Sth and T th is the equilibrium thermody-
namic temperature of that reservoir or set of reservoirs. Clausius went on to apply
his inequality to the system of interest (soi) and thermal reservoir (th). Indeed, in
his original papers he does not distinguish between the two systems.

Now comes the difficulty: when we have a strict inequality ∮ dQ∕T > 0, either
the system of interest or the reservoir (or both) is (or are) not in true thermody-
namic equilibrium (the process is not quasi-static). In this case, what is the tem-
perature? Clausius only defined the temperature for quasi-static or equilibrium
processes where the entropy is a state function. In the case of a strict inequality,
∫ dQ∕T is not a state function. It is path- and/or history-dependent.

For quasi-static processes (only!), the change in equilibrium entropies of two
equilibrium states can be obtained by considering ∫ dQth∕Tth for a reversible (i.e.,
infinitely slow) pathway between the two equilibrium states. However, if the initial
or final states are out of equilibrium or if the pathway connecting the two states is
irreversible, the entropy that Clausius defined is ill-defined and so too is the tem-
perature: T ≡ 𝜕U∕𝜕S|V , where U is the internal energy, S the (undefined) entropy,
and V the volume. This means that the Clausius inequality ∮ dQ∕T > 0 is without
meaning.

Clausius is famous for his declaration:

The energy of the Universe is constant. The entropy tends to a maximum.
(Clausius, 1865, 1872)

He did not recognize the fact that he only defined the entropy (and temperature)
for reversible processes. This particular difficulty was first discussed in the late
nineteenth century by Bertrand (1887) and early in the twentieth century by Orr
(1904), Orr (1905), Planck (1905), and Buckingham (1905).

“There are three things in Prof. Orr’s article (Orr, 1904) which stand out as of
particular importance. (1) He says in substance, though with great moderation,
that all proofs of the theorem … when the integral is taken round an irreversible
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cycle, are rubbish.” Buckingham later discusses problems with writing textbooks
while being aware at the time, of some of the difficulties mentioned above. Buck-
ingham continues: “The question how a treatise should be written is not so easily
answered. … I do not know of a single book which today deserves the title of
‘Treatise on Thermodynamics’.” He concluded: “We must leave the question of
the proper method for a treatise to the future when the difficulties which now
beset us may have vanished.” (Buckingham, 1905)

In 1905, Planck responded to Orr (Planck, 1905) agreeing with Orr’s concerns
on the definition of temperature and saying in part that: “If a process takes place so
violently that one can no longer define temperature … , then the usual definition
of entropy is inapplicable.”

These particular difficulties were only exacerbated in 1902 with the publication
(and subsequent circulation) of Gibbs’ seminal treatise “Elementary Principles
in Statistical Mechanics” (Gibbs, 1981). In his treatise, Gibbs showed that the
microscopic expression he identified at equilibrium, as the thermodynamic
entropy SG(t) ≡ −kB ∫ d𝚪 f (𝚪; t) ln[ f (𝚪; t)], where f (𝚪; t) is the N-particle phase
space distribution function at time t, is in fact a constant of the motion for
autonomous Hamiltonian dynamics! If the initial distribution was not the equi-
librium distribution, the Gibbs entropy did not, as Clausius claimed, increase in
time until it reached its maximum and the system was effectively in equilibrium.
For these systems, the Gibbs’ entropy is simply a constant independent of time.

After Boltzmann’s death, this distressing state of affairs was reviewed without
satisfactory resolution by the Ehrenfests in 1911 (Ehrenfest and Ehrenfest, 1990).
(Paul Ehrenfest was a student of Boltzmann.) Indeed ,in the Preface to the
(English) Translation, Tatiana Ehrenfest confides: “At the time the article was
written [1911], most physicists were still under the spell of the derivation by
Clausius of the existence of an integrating factor for the … heat … it became
clear to me afterwards, that the existence of an integrating factor has to do only
with the differentials dx1, dx2,… , dxn of the equilibrium [T. Ehrenfest’s italics]
parameters dx1, dx2,… , dxn, and is completely independent of the direction
of time … Nevertheless even today [1959] many physicists are still following
Clausius, and for them the second law of thermodynamics is still identical with
the statement that entropy can only increase.”

The Ehrenfests’ article did point out that away from equilibrium entropy was
problematic and that for autonomous Hamiltonian systems the entropy defined
by Gibbs was indeed a constant of the motion. In Ehrenfest and Ehrenfest (1990,
p. 54), they agree with Gibbs that, “From Liouville’s theorem, Eqs. (26) and (26’),
it follows immediately that the quantity 𝜎 [i.e., SG above] … remains exactly con-
stant during the mixing process.” They go on to discuss Gibbs’ flawed attempts
to resolve the paradox by defining a coarse-grained entropy. This quantity’s time
dependence is determined by the grain size and is thus not an objective property
of the physical system of interest.

The theory of the relaxation to equilibrium has also been fraught with diffi-
culties (Evans, Searles, and Williams, 2009a). First, there was no mathematical
definition of equilibrium! The first reasonably general approach to this problem is
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summarized in the Boltzmann H-theorem. Beginning with the definition of the H-
function, Boltzmann proved that the Boltzmann equation for the time evolution
of the single particle probability density implies, for uniform ideal gases, a mono-
tonic decrease of the H-function in time (Boltzmann, 1872) – see the review by
Lebowitz (1993) for a modern discussion of Boltzmann’s ideas.

However, there are at least two problems with Boltzmann’s treatment. First,
the Boltzmann equation is valid only for an ideal gas. Second, and more prob-
lematic, unlike Newton’s equations, Hamilton’s principle, or the time-dependent
Schrödinger equation, the Boltzmann equation itself is not time-reversal-
symmetric. It is therefore completely unsurprising that the Boltzmann equation
predicts a time-irreversible result, namely the Boltzmann H-theorem.

This leads to a second version of the irreversibility paradox (at least for ideal
gases): how can the time-irreversible Boltzmann equation, which leads easily to
the time irreversible Boltzmann H-theorem, be derived exactly for ideal gases
from time-reversible Newton’s equations? This issue was also discussed, without
resolution, in the Ehrenfest encyclopedia article (Ehrenfest and Ehrenfest, 1990).

Since our new proof of how macroscopic irreversibility arises from time-
reversible microscopic dynamics is valid for all densities, we do not need to
directly answer this question in this book. We do make the comment, however,
that it is thought that in the ideal gas limit, the Boltzmann equation is exact, but
its detailed derivation is beyond the scope of this present book.1)

The 1930s saw significant progress in ergodic theory with a proof that for a
finite, autonomous Hamiltonian system, whose dynamics preserves a mixing
microcanonical equilibrium distribution (i.e., a distribution that is uniform over
the constant energy phase space hypersurface), averages of physical properties
must, in the long-time limit, approach those obtained with respect to that
equilibrium microcanonical distribution, regardless of the initial distribution
(Sinai, 1976). Later in this book we will give a generalization of the ergodic theory
proof. We consider finite systems with autonomous dynamics that are mixing
with respect to some possibly thermostatted and/or barostatted equilibrium
distribution that is also a solution to the dynamics considered. We show that for
such systems, at sufficiently long times, averages of physical phase functions will
approach, to arbitrary accuracy, the equilibrium averages taken over their mixing
equilibrium distributions, irrespective of the initial distribution.

These proofs are, however, not very revealing. They tell us almost nothing of
the relaxation process, only that it takes place. Relaxation is inferred rather than
elucidated.

We go on to discuss a new set of theorems and results that, when taken
together, provide a completely new approach to establishing the foundations of
classical statistical thermodynamics and simultaneously resolving all the issues
mentioned above. Each of these theorems is consistent with time-reversible,

1) In Chapter 9, we do make some comments on the relationship between Boltzmann’s assumption of
molecular chaos (stosszahlansatz in German) and the axiom of causality. It is this assumption that
breaks time reversal symmetry in the Boltzmann equation.
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deterministic dynamics. Indeed, time reversibility of the underlying equations of
motion is the key component to proving these theorems. We do comment that
there are stochastic and/or quantum versions of some of the theorems. Each of
these theorems is exact for systems of arbitrary size: taking the thermodynamic
limit is not required. The theorems are valid for arbitrary temperatures and
densities. The theorems are exact arbitrarily near to, or far from, equilibrium.
Assumptions about being arbitrarily close to equilibrium, so that the response of
systems to external forces is linear, are not required. In the process of deriving
these theorems, the so-called “Laws” of thermodynamics cease to be unprovable
“Laws” and instead become mathematical theorems.

The first step toward understanding how macroscopic irreversibility arises from
microscopically time-reversible dynamics came in 1993 when Evans, Cohen, and
Morriss (1993) proposed the first so-called fluctuation relation. By generalizing
concepts from the theory of unstable periodic orbits in low-dimensional systems,
these authors proposed a heuristic, asymptotic argument for the relative proba-
bility of seeing sets of trajectories and their conjugate sets of antitrajectories in
nonequilibrium steady states maintained at constant internal energy. In the fol-
lowing year, Evans and Searles (1994) published the first mathematical proof of a
fluctuation theorem. A generalized and detailed proof of the Evans–Searles fluc-
tuation theorem is given in Chapter 3. This proof concerns the relative probability
of fluctuations in sign of a quantity now known as the time-averaged dissipation
function. Unsurprisingly, fluctuation theorems lead to many new results. This is
what the present book sets out to describe. It used to be said that there are very
few exact results that are known for nonequilibrium many-body systems. This is
no longer the case.

In Chapter 3, we prove the second law inequality (Searles and Evans, 2004), and
the nonequilibrium partition identity (Morriss and Evans, 1985; Carberry et al.,
2004; Evans and Searles, 1995). These are simple mathematical consequences of
the fluctuation theorem. The second law inequality is, in fact, a generalization of
the second “Law” of thermodynamics that is valid for finite, even small systems,
observed for finite, even short, times. Classical thermodynamics applies to only
large, in principle infinite, systems either at equilibrium or in the infinitely slow,
or quasi-static, limit.

Dissipation was first explicitly defined in 2000 by Searles and Evans (2000a),
although it was, of course, implicit in the earlier proofs of the Evans–Searles fluc-
tuation theorems in 1994, et seq. It is also implicit in many of Lord Kelvin’s papers
in the late nineteenth century. The dissipation function has many properties, but
its original definition directly involved sets of trajectories and their conjugate sets
of time-reversed antitrajectories. For classical N-particle systems, the specifica-
tion of all the coordinates and momenta of all the atoms in the system completely
describes the microstate of a classical system. We define the phase space vector
𝚪 = (𝐪1,… ,𝐪N ,𝐩1,… ,𝐩N ) of the positions 𝐪i and momenta 𝐩i of the N particles.
We imagine an infinitesimal set of phases inside an infinitesimal volume dV𝚪(𝚪)
in phase space. For simplicity, we assume that the system is autonomous (i.e., the
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equations of motion for all the particles, �̇�(𝚪, t), do not refer explicitly to time
�̇�(𝚪); any external fields are time-independent).

As time evolves, this set will trace out an infinitesimal tube in phase space. We
follow this tube for a time interval (0, t). At time t, an initial phase space vector 𝚪
has evolved to the position St𝚪, where St is the phase space–time evolution opera-
tor. If we take the set of phase points inside the infinitesimal volume dV𝚪(St𝚪) and
reverse all the momenta leaving all the particle positions unchanged, we have the
phase vector MT St𝚪, where MT is a time-reversal mapping: MT (𝐪,𝐩) = (𝐪,−𝐩).

If we now imagine following the natural motion of this mapped set forward
in time from time t to 2t, we arrive at the phase point StMT St𝚪. Because the
equations of motion are time-reversal-symmetric, the final set of phase points will
have the same position coordinates but the opposite momenta to the original set
of time zero phases: StMT St𝚪=MT𝚪. This is the fundamental property of time-
reversible dynamics discussed in Kelvin’s quote at the beginning of this chapter.
This time reversibility property is exploited directly in the definition of the dissi-
pation function. We will give a more detailed description of reversibility using a
more precise notation in Chapter 2 – especially in Section 2.1.

The time integral of the dissipation function is simply defined as the natural
logarithm of the probability ratio of observing at time zero the conjugate sets of
trajectories inside phase space volumes 𝛿V𝚪(𝚪), 𝛿V𝚪(MT St𝚪):

lim
𝛿V𝚪→0

p(𝛿V𝚪(𝚪); 0)
p(𝛿V𝚪(MT St𝚪); 0)

≡ exp
[
∫

t

0
dsΩ (Ss𝚪)

]
(1.2)

The small phase space volume 𝛿V𝚪(𝚪) defines an initial set of phase space trajec-
tories. The volume 𝛿V𝚪(MT St𝚪) defines the conjugate set of the antitrajectories.
Going forward in time from 𝛿V𝚪(MT St𝚪) is like going backward in time from
𝛿V𝚪(St𝚪) except that all the momenta are reversed. For Eq. (1.2) to be well defined
requires that the system should be ergodically consistent, that is, if the numerator
is nonzero for initial phases inside some specified phase space domain D, then the
denominator must also be nonzero. This condition ensures that the dissipation
function is well defined everywhere inside the ostensible phase space domain, D.

As a historical remark, we can see from the definition, Eq. (1.2), that ergodic con-
sistency guarantees the existence of (almost all) conjugate phase space trajectory/
antitrajectory pairs. However, the mere existence of these pairs of trajectories by
no means implies that the probability ratio of observing infinitesimal sets of these
conjugate trajectory pairs is unity, as Loschmidt tried to imply. Once you have
written down Eq. (1.2) for the relative probability of seeing a set of trajectories and
its conjugate set of antitrajectories, it seems obvious that Loschmidt’s assertion of
both sides of Eq. (1.2) equaling unity is wrong. One must not make the mistake of
discussing individual conjugate phase space trajectories rather than conjugate sets
of trajectories. The probability of observing any individual phase space trajectory
is precisely zero! Their rephrasing of Eq. (1.2) would have been ill defined, leading
to zero divided by zero on the left-hand side.

We will see in Chapter 5 that an equilibrium state is characterized by a set
of equations of motion and a phase space distribution for which the dissipation
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function is identically zero everywhere in phase space. Thus, for equilibrium states
alone the probabilities of observing every infinitesimal set of trajectories and its
conjugate set of antitrajectories are identical. Loschmidt’s assertion is correct only
for equilibrium distributions. Indeed, this gives statistical thermodynamics, for
the first time, a mathematical definition of an equilibrium system.

Although the definition of the dissipation function may appear rather abstract
and mathematical, it turns out that in the linear regime close to equilibrium the
average of the dissipation function is equal to a quantity that is familiar in lin-
ear, irreversible thermodynamics, namely the spontaneous entropy production.
For systems that are driven by an applied dissipative field (e.g., an electrically con-
ducting system being driven by an electric field), the average dissipation is equal to
the average power dissipated in the system divided by the thermodynamic tem-
perature of the surrounding thermal reservoir to which the dissipated work, on
average, eventually relaxes. A notable aspect of our exposition is the fact that
except at equilibrium, entropy plays no role. This neatly bypasses the objections
of Bertrand, Orr, and Buckingham to the Clausius inequality for non-quasi-static
processes.

The first theorem that referred to dissipation was the Evans–Searles fluctua-
tion theorem (Evans and Searles, 1994) (FT). This theorem considers systems with
time-reversible dynamics where the initial distribution of phases is even in the
momenta and which satisfies the condition of ergodic consistency. It states that
for such systems the ratio of probabilities that the time-averaged dissipation func-
tion Ωt takes on an arbitrary value in the range A± dA, compared to the negative
of that value −A± dA satisfies the following equation

p(Ωt = A)

p(Ωt = −A)
= eAt (1.3)

where p(Ωt = A) represents the ratio of probabilities that the time-averaged dissi-
pation functionΩt takes on an arbitrary value in the range A± dA. This shows that
the probability of positive dissipation is exponentially more likely than negative
dissipation and, moreover, the argument of the exponential is extensive in both
the number of particles in the system N and the averaging time t. Equation (1.3)
has been confirmed both by molecular dynamics computer simulations and in
actual laboratory experiments. The first unambiguous laboratory demonstration
of a fluctuation relation was conducted in 2002 using a colloidal suspension and
optical tweezers (Wang et al., 2002).

A trivial consequence of the FT is the second law inequality, which states
that, if we average the response of repeated experiments on our system with
macroscopically identical initial conditions, the so-called ensemble average of
the time-averaged dissipation ⟨Ωt⟩ is nonnegative:

⟨Ωt⟩ ≥ 0, ∀t (1.4)

This does not imply that the instantaneous ensemble-averaged dissipation is
nonnegative. This ensemble-averaged instantaneous dissipation ⟨Ω(t)⟩ may be
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positive or negative, but it is, of course, positive more often than it is negative in
order to satisfy Eq. (1.4).

The second law inequality also shows that

Ω(𝚪) = 0, ∀𝚪 ∈ D ⇔ ⟨Ωt⟩ = 0 (1.5)

The proof is rather straightforward. Obviously, the left-hand side implies the right.
Does the right imply the left? Suppose the ensemble-averaged time integral of the
dissipation is not identically zero everywhere. Average the dissipation over some
possibly short time interval (0,t). Ergodic consistency implies the existence of con-
jugate sets of trajectories with opposite values for the time-averaged dissipation
±(A + dA). Applying the FT to each conjugate set with time-averaged dissipa-
tion ±(A + dA) shows that positive dissipation is exponentially more likely than
negative for each value of |A| that is observed. If we now average over all pos-
sible values for |A| for which there is nonzero dissipation, we see that ⟨Ωt⟩ > 0.
For any nonequilibrium system, the ensemble average of the time-integrated dis-
sipation must be strictly positive. So, if the dissipation is nonzero anywhere in
the allowed phase space and the system is ergodically consistent, then the time-
averaged, ensemble-average dissipation must be strictly positive. The only states
where the ensemble-averaged, time-averaged dissipation is zero are equilibrium
states where the instantaneous dissipation is identically zero everywhere in the
allowed phase space.

The recently discovered dissipation theorem (Evans, Searles, and Williams,
2008a,b) (Chapter 4) states that the ensemble average of an arbitrary, integrable
function of phase B(𝚪) is related to the time integrals of the correlation function
of the dissipation function with the phase variable:

⟨B(t)⟩ = ⟨B(0)⟩ + ∫
t

0
ds⟨B(s)Ω(0)⟩ (1.6)

The dynamics employed for evaluating all functions on both sides of Eq. (1.6)
employs natural system dynamics including any external fields and/or ther-
mostats. This result is valid arbitrarily far from equilibrium and for systems of
arbitrary size. In systems where an externally applied field is responsible for
driving the system out of equilibrium in the weak field regime where the response
to this field is linear, Eq. (1.6) reduces to the very well known Green–Kubo linear
response equations (Evans and Morriss, 1990).

Since the instantaneous average dissipation is zero for equilibrium systems,
Eq. (1.6) shows that, in the absence of an external field, ensemble averages of
phase function never change for systems at equilibrium. It turns out that for
equilibrium systems the equilibrium distribution itself never changes.

Together with the definition of dissipation, a second very important defi-
nition is that of an ΩT-mixing system. A system is said to be ΩT-mixing if
infinite time integrals of ensemble averages of phase variables B(𝚪), represent-
ing physical observables like pressure, stress, energy, and so on, multiplied
by the dissipation function and evaluated at time zero are convergent:
(limt→∞

|||∫ t
0 ds ⟨B (s) Ω(0)⟩||| = const < ∞). A system of harmonic oscillators
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with zero friction is obviously not ΩT-mixing. ΩT-mixing is a more physically
relevant condition than the mixing condition met in ergodic theory. From
Eq. (1.6), we see that, if an autonomous system is ΩT-mixing, then at long times
the ensemble average of physical phase functions become time-independent at
long times. At long times, ΩT-mixing systems must therefore relax either toward
nonequilibrium steady states or toward equilibrium states. No other possibilities
exist.

If the infinite time integral of ensemble averages of time correlation
functions of physical phase functions all A(𝚪) and B(𝚪) is finite (i.e.,
limt→∞

|||∫ t
0 ds ⟨A (0)B(s)⟩||| = const < ∞) when the ensemble average of A(𝚪)

is zero, that is, ⟨A(𝚪)⟩ = 0, then the system is termed T-mixing. Obviously
all T-mixing systems are ΩT-mixing. ΩT-mixing systems are not necessarily
T-mixing. Note that any phase function with a nonzero ensemble average (say
Ã(𝚪)) can be transformed into one with zero average, Ã(𝚪) − ⟨Ã(𝚪)⟩ = A(𝚪).

The dissipation function, ergodic consistency, and the T-mixing condition hold
over some specified phase space domain D. For example, while particle momenta
may be unbounded, the particle coordinates are usually defined only over a fixed
region of the physical space. A system is said to be physically ergodic over some
specified phase space domain if time averages of phase functions representing
physical observables taken along almost any phase space trajectory equal late-time
ensemble averages taken over any ensemble of initial states.

T-mixing systems must be physically ergodic over that specified phase space
domain. If they were not, we could easily construct time correlation functions of
physical observables that would never decay to zero. Any initial static correlation
between the phase functions would be preserved forever, thereby violating the
condition of T-mixing.

Physically, ergodic systems need not be ergodic over phase space. Different initial
phase space vectors generate, via their different trajectories, different noninter-
secting sets of phase space subdomains – one subdomain corresponding to each
phase space trajectory and parameterized by time (0, ∞). If the time average of
physical properties along each of the different trajectories is independent of the
particular trajectory, the system may be physically ergodic but not ergodic over
phase space. This could occur because each trajectory shadows the other trajec-
tories in a densely woven “mat.” In this book, we will deal almost exclusively with
physical ergodicity, which we will refer to simply as ergodicity. On the rare occa-
sions that we refer to ergodicity over phase space, we will make that explicit at the
time. Of course, if a system is ergodic over phase space, it must also be physically
ergodic.

The equilibrium relaxation theorem (Evans, Searles, and Williams, 2009a,b)
derived in Chapter 5 states that autonomous N-particle T-mixing systems
that may be isolated or perhaps interact with a heat bath and whose initial
distributions are even functions of the momenta will, at sufficiently long times,
relax toward a unique equilibrium state and that

lim
t→∞

⟨Ω(St𝚪)⟩ = 0, ∀𝚪 ∈ D (1.7)
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For various forms of thermostat or ergostat, the unique forms of these equilibrium
distributions can be determined explicitly using the various individual forms of
the equilibrium relaxation theorem. Since any reasonably smooth deviation from
the unique equilibrium dissipation causes the ensemble-averaged dissipation to
be positive, the only conclusion from Eq. (1.7) is that, in the infinite time limit, the
system apparently relaxes to its unique equilibrium distribution.

For constant energy dynamics, the equilibrium distribution is uniform over
the energy hypersurface2) in phase space. The equilibrium relaxation theorem
therefore gives a proof of Boltzmann’s postulate of equal a priori probability
for constant energy systems. The relaxation theorem does not imply that all
relaxation processes are monotonic in time (i.e., averages of phase functions
change monotonically). This is just as well, since experience shows that most
relaxation processes are not monotonic. For thermostatted systems where the
number of particles and the volume are fixed, the unique equilibrium distribution
is the well-known canonical distribution postulated by Boltzmann and Gibbs.

An interesting result that we obtain from the equilibrium relaxation theorems
is that relaxation to equilibrium cannot take place in finite time. In a sense,
the equilibrium distribution is never reached. It is only averages of physical
properties that approach, in the infinite time limit, the values one would obtain
from a true equilibrium distribution. The actual time dependent phase space
distribution becomes, at long times, ever more tightly folded upon itself. It
never becomes a smooth equilibrium distribution. However, as the equilibrium
relaxation theorems prove, the ensemble-averaged dissipation does go to zero
in the infinite time limit and in that infinite time limit the distribution must be
the unique smooth equilibrium distribution at least as can be ascertained by
computing averages of physical phase functions like the dissipation function.

Having determined the equilibrium distribution for systems in contact with a
heat reservoir, we show that the standard expression for the change in the calori-
metric entropy of the system of interest, 𝛥Ssoi = ∫ dQsoi∕T , where dQsoi is the
change in the heat added to the system of interest, is, in fact, for quasi-static
processes (processes carried out in the infinitely slow limit) a path- and history-
independent state function. We show that the so-called integrating factor for the
heat, namely 1∕T , which generates the corresponding state function, is in fact
unique. No other integrating factor (e.g., 1∕T3) can generate a state function from
the heat. The integrating factor comes directly from the form of the equilibrium
canonical distribution function, which is itself unique.

For macroscopic systems, we also derive the fundamental equation for the first
and second “laws” of thermodynamics. This equation relates changes in the inter-
nal energy U to the equilibrium temperature T appearing in the equilibrium phase
space distribution function, the change in the calorimetric entropy, the mechani-
cal pressure p, and the change in the volume dV :

dU = TdS − pdV (1.8)

2) The “hypersurface” is defined as lim
𝛿E→0

{𝚪 ∶ E < H(𝚪) < E + 𝛿E}.
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In Eq. (1.8), all quantities are for the system of interest. This macroscopic result
is obtained entirely from microscopic or molecular expressions for the various
variables.

We also show the identity (up to an arbitrary additive constant) of the Gibbs
entropy and the newly defined irreversible calorimetric entropy. The equivalence
of changes in the Gibbs and irreversible calorimetric entropies is valid even for
irreversible processes where (and unlike Clausius) we take the temperature at any
point in a process to be the equilibrium thermodynamic temperature the system
would relax to if it was so allowed. The nonequilibrium temperature is, in fact,
the equilibrium thermodynamic temperature of the underlying equilibrium state
toward which the nonequilibrium system is trying to relax.

The derivation of Eq. (1.8) for quasi-static processes (only) is completely consis-
tent with Tatiana Ehrenfest’s statement quoted above that, effectively, Eq. (1.8) is
“completely independent of the direction of time” (Ehrenfest and Ehrenfest, 1990).

In Chapter 6, we discuss the steady-state relaxation theorem. For systems that
are initially in equilibrium for the zero-field dynamics, if a dissipative field is then
applied to the system and it is T-mixing, the system will eventually relax to a physi-
cally ergodic, nonequilibrium steady state. At long times, time averages of physical
phase functions equal late-time ensemble averages. Further we will show that, if
the initial equilibrium distribution is perturbed by some reasonably smooth devi-
ation function (even in the particle momenta), the final steady state is independent
of the initial perturbation.

Also in Chapter 6, we discuss asymptotic steady-state fluctuation theorems
(Searles and Evans, 2000b; Williams, Searles, and Evans, 2006; Searles, Rondoni,
and Evans, 2007). For T-mixing systems, these steady-state fluctuation relations
are valid even for large deviations from the mean behavior of the system.

In Chapter 7, we describe more theoretical applications of the fluctuation, dis-
sipation, and relaxation theorems. A proof is given of the zeroth law of thermo-
dynamics (Evans, Williams, and Rondoni, 2012); a discussion is given of heat flow
and (Evans, Searles, and Williams, 2010) temperature quenches from the point of
view of nonequilibrium statistical mechanics. A discussion is given on the relax-
ation of a color field gradient in a system where the Hamiltonian is color blind. In
the linear response regime, as far as its Hamiltonian can sense, the system is in
equilibrium. Finally, we give a derivation of an instantaneous fluctuation theorem
(Petersen, Evans, and Williams, 2013).

In Chapter 8, we discuss the Crooks fluctuation relations (Crooks, 1998) and
the Jarzynski equality (Jarzynski, 1997). These relations show how equilibrium
free energy differences can be computed from nonequilibrium path integrals of
the work. Using various generalizations of these relations we give a mathemati-
cal proof of Clausius’ inequality for thermal reservoirs in contact with our system
of interest. We consider a set of large thermal reservoirs at a set of temperatures.
Because the reservoirs are large compared to the system of interest, they can be
regarded as being in thermodynamic equilibrium. We prove (Evans, Williams, and
Searles, 2011) for systems that have a periodic response to some cyclic proto-
col, the ensemble average of the cyclic time integral of the heat transferred to
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the reservoirs divided by the corresponding reservoir temperature is nonnega-
tive. Clausius proved his inequality by assuming the second law of thermodynam-
ics – the impossibility of constructing a perpetual motion machine of the second
kind. Our proof makes no such assumption. Since Clausius’ inequality is often
taken as the most fundamental statement of the second law, our proof constitutes
a direct proof of this statement of the second “Law.” We show that it is true only
if the system responds periodically to the cyclic protocol (not all systems do this
of course), and it is true only if we take the ensemble-averaged response. A single
cycle for an individual system, if it is small, may not satisfy Clausius’ inequality as
it applies to the reservoir.

We also show that, if the reservoirs are small and cannot be regarded as being
in thermodynamic equilibrium, the ensemble average of the cyclic integral for the
reservoir still satisfies Clausius’ inequality. Of course, it only applies if the system
responds periodically. At each point in the cycle, the temperature appearing in
our generalization of Clausius’ inequality is the equilibrium temperature that the
entire system would relax to, if the execution of the protocol is stopped and the
entire system is allowed to relax to equilibrium.

An immediate consequence of our proof of Clausius inequality for the reser-
voir is that the change in the entropy of the “universe”: dQth∕Tth + dQsoi∕Tsoi = 0,
where “soi” denotes the system of interest, which, by construction, is in thermal
contact with the thermal reservoir “th,” and is precisely zero. This result is valid
for both quasi-static and nonequilibrium processes far from equilibrium using the
irreversible calorimetric definition of the entropy. Since we have already proved
the equivalence of changes in the irreversible calorimetric and Gibbs entropies,
this new result is consistent with the observation made by Gibbs that the Gibbs
entropy for an autonomous Hamiltonian system is a constant of the motion. This,
of course, contradicts the claim by Clausius that the entropy of the “Universe”
tends to a maximum. Furthermore, because we give meaning to temperature far
from equilibrium, unlike Clausius’ original inequality our result is well defined
away from equilibrium and is immune to the criticisms made by Bertrand (1887),
Orr (1904), and Buckingham (1905) of the original Clausius inequality.

Entropy and dissipation are thus seen to be completely complementary. Away
from equilibrium, dissipation is the function that is central to all the theoretical
results while entropy plays only a trivial roll. At equilibrium or in the quasi-static
limit, dissipation is zero by definition, while entropy is one of the key quantities in
equilibrium thermodynamics.

In Chapter 9, we revisit the proof of the Evans–Searles FT and discuss the role
played therein by the axiom of causality (Evans and Searles, 1996). We prove that in
an anti-causal Universe there is an anti-second “Law” of thermodynamics and that
ultimately the explanation for the macroscopic irreversibility we see around us is
causality. In very few discussions of irreversibility is it realized that, if you apply a
time-reversal mapping to a system trajectory, not only do you reverse the direction
of the flow of heat and work but the causal response to some time-dependent
field becomes anti-causal! Fluxes respond to changes in field strength before those
changes occur!

If we watch a movie played backwards of macroscopic machines in motion, not
only will we see examples of “perpetual motion machines of the second kind” but
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we will also see a Universe where effect precedes the cause. The transient response
to a sudden application of a cause will have the opposite sign to that observed in
the forward movie, but that transient response will start before the change in the
cause has actually occurred!

For example, in a viscometer that is loaded with a viscoelastic fluid, the shear
stress in an anti-causal Universe not only has the opposite sign to that which it
has in our causal Universe but it will begin to respond (negatively) before a shear
rate is applied. Likewise, it will begin to decrease towards zero before, not after,
the strain rate has been set to zero!

In a causal Universe, one needs to compute the probabilities of events occurring
at a time t from the probabilities of prior events and not from the probabilities of
events at times later than t. This assumption of causality breaks the time rever-
sal symmetry of the whole system while retaining time-reversible equations of
motion.

The assumption of causality seems so ingrained and natural to the human way of
thinking that we often do not realize that it is an assumption. It is this assumption,
or rather it is the use of this axiom in the proofs of the Evans–Searles and Crooks
FTs, that breaks the symmetry of time and leads to the second law inequality rather
than an anti-second law inequality.

The principle of least action, which is completely time-reversal-symmetric,
does not contain sufficient information to prove any fluctuation theorem. The
equations of motion of mechanics must be supplemented with the axiom of
causality to predict the operation of machines, engines, and devices in the real
world. The axiom is constantly being applied without us even noticing, precisely
because it seems so natural. The response of a system (engine) at a given time
is obtained by convolving the response function for the system with the time-
dependent driving force backward over the past history and not over its future. The
underlying equations of motion themselves retain their time reversal symmetry.

A clear example of the unrecognized application of the axiom of causality
is in the Mori–Zwanzig projection operator formalism – see Zwanzig (2001,
Chapter 8). This formalism leads in the linear response limit, to an exact refor-
mulation of the response of a system to time-dependent dissipative fields in the
form of a frequency- and wave vector-dependent generalized Langevin equation.
In the time domain, the memory kernel associated with the generalized friction
coefficient is convolved backward in time with the time-dependent driving force.
This breaks the time reversal symmetry inherent in the equations of motion
themselves. The temporal convolution is over the half space that describes history
rather than the future. The spatial convolution, on the other hand, is over all
physical space: ±∞ in each Cartesian dimension.

The axiom of causality is also met in electrodynamics where Maxwell’s
equations permit two solutions for the vector potential: the advanced and the
retarded vector potential. In a well-known textbook, they state with little fanfare:
“We can now neglect the term V ′

2 … for it would make the effect appear before
the cause” Corson and Lorrain (1962, p. 445). Panofsky and Phillips (1969) are
a little more equivocal on the subject: “but only the minus sign appears to have
physical significance”; “the advanced potential … appears to violate elementary
notions of causality.”
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It is interesting to re-examine the Boltzmann equation in the light of these
observations. In writing the collision integral in the Boltzmann equation, it is
assumed that, before collisions of ideal gas atoms, the positions and momenta
are uncorrelated. After the collision there is correlation. The collision causes the
post-collisional correlation. The cause of correlation is the collision, which occurs
before the effect, which is correlation. In a causal Universe, the cause precedes the
effect. This is consistent with the assumption of molecular chaos: stosszahlansatz.

If one assumes that the positions and momenta are correlated before the colli-
sions, then one forms an anti-Boltzmann equation. This is exactly what one would
expect if the Universe was, in fact, anti-causal where the coordinates and momenta
before the collision are affected by the later collision. The effect precedes the cause,
which is the collision.

So in an anti-causal Universe, dilute gases would be described by this anti-
Boltzmann equation and the signs of all the transport coefficients (e.g., shear
viscosity or thermal conductivity, etc.) would be opposite to those predicted from
the Boltzmann equation. This reversal of signs of the transport coefficients for
the anti-Boltzmann equation was first pointed out by Cohen and Berlin (1960).
The connection between causality and stosszahlansatz is new.

Finally, we argue that in an anti-causal Universe where the future influences
the present, the inevitable presence of innately random quantum processes in the
future, or indeed the exercise of free will in the future by intelligent beings, makes
the present state of the Universe undefined. We argue that the only possible Uni-
verse where time increases is, in fact, causal. If time were to decrease rather than
increase, an anti-causal Universe would appear identical to our own. So ultimately
we live in the only possible Universe and the causal second “Law” behavior is, on
average, the only physically possible behavior.
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2
Introduction to Time-Reversible, Thermostatted Dynamical
Systems, and Statistical Mechanical Ensembles

I have found it convenient, instead of considering one system of material
particles, to consider a large number of systems similar to each other in
all respects, except the initial circumstances of the motion, which are sup-
posed to vary from system to system, the total energy being the same in all.

(Maxwell, 1879)

2.1
Time Reversibility in Dynamical Systems

Consider an isolated Hamiltonian system of interacting particles. The micro-
scopic state of the system is represented by a phase space vector of the coordinates
and canonical momenta of all the particles, in an exceedingly high dimensional
space – phase space – {𝐪1,𝐪2,… ,𝐪N ,𝐩1,… ,𝐩N} ≡ (𝐪,𝐩) ≡ 𝚪, where 𝐪i,𝐩i are
the position and conjugate momentum of the particle i. The equations of motion
for the system with an autonomous Hamiltonian H(𝐪,𝐩) are

�̇�i =
𝜕H(𝐪,𝐩)

𝜕𝐩i

�̇�i = −
𝜕H(𝐪,𝐩)

𝜕𝐪i
(2.1)

Definition
We define the time reversal mapping MT , … , as

[MT𝚪] ≡ 𝚪T ≡ [MT (𝐪,𝐩)] ≡ (𝐪,−𝐩) (2.2)

where the square brackets denote the fact that the time reversal operator, in this
case, only attacks the phase space vector to the right. In general, operators attack
anything that appears to their right (i.e., MT𝚪 = 𝚪T MT ).

The Hamiltonian for a system of interacting point particles, H(𝐪,𝐩) =∑
ip2

i ∕2m + Φ(𝐪), is even in their momenta. We see from the equations of motion

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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that

�̇� ≡ iL(𝚪)𝚪=
(
�̇� ⋅

𝜕

𝜕𝚪

)
𝚪 =

(
𝐩
m

⋅
𝜕

𝜕𝐪
− 𝜕Φ

𝜕𝐪
⋅
𝜕

𝜕𝐩

)
(𝐪,𝐩) = (𝐩∕m,− 𝜕Φ∕ 𝜕𝐪)

(2.3)

where iL … ≡ �̇� ⋅ 𝜕 … ∕𝜕𝚪 is the time derivative operator for phase functions,
and �̇� is given by the equations of motion (e.g., Eq. (2.1)).

Definition
We refer to iL(𝚪) as the p-Liouvillean or phase-Liouvillean.

The formal solution of Eq. (2.3) is

St𝚪 ≡ exp[iL(𝚪)t]𝚪 (2.4)

and
d
dt

(St𝚪) = iL(𝚪) exp[iL(𝚪)t]𝚪= iL(𝚪)St𝚪

= exp[iL(𝚪)t]iL(𝚪)𝚪= St�̇� (2.5)

Definition
We refer to exp[iL(𝚪)t] as the p-propagator or the phase space propagator.

If we apply the time reversal map to the p-Liouvillean, we see that

MT iL(𝚪) · · · ≡ MT
(
�̇� ⋅

𝜕

𝜕𝚪

)
· · ·=MT

(
𝐩
m

⋅
𝜕

𝜕𝐪
− 𝜕Φ

𝜕𝐪
⋅
𝜕

𝜕𝐩

)
…

=
(
− 𝐩

m
⋅
𝜕

𝜕𝐪
+ 𝜕Φ

𝜕𝐪
⋅
𝜕

𝜕𝐩

)
MT · · ·

= −iL(𝚪)MT · · · (2.6)

Using this result, we can apply the time reversal map to a propagated phase:

MT (exp[iL(𝚪)t]𝚪) = exp[−iL(𝚪)t]𝚪T (2.7)

Definition
Time reversible dynamics satisfies the equation

MT exp(iL(𝚪)t)MT exp(iL(𝚪)t)𝚪 = 𝚪 (2.8)

This is proved by the substitution of Eq. (2.7):

MT exp(iL(𝚪)t)MT exp(iL(𝚪)t)𝚪
= MT exp(iL(𝚪)t) exp(−iL(𝚪)t)𝚪T

= MT𝚪T = 𝚪 (2.9)

We will say in words what time reversibility entails. We start at a point in phase
space, and evolve that phase forward in time by an amount t; reverse the signs of
all the momenta, leaving the coordinates fixed; go forward in time using the same
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equations of motion for a duration t, and finally reverse all the momenta once
again; then we end up at the point in phase space where we originally started.

We will add a few remarks about the notation. The St notation in Eqs. (2.4) and
(2.5) for the propagator hides much subtlety. It is understood that it represents
the p-propagator for the phase vector to its immediate right. In more compli-
cated problems, such as those discussed in Eq. (2.9), the notation is ambiguous
and inadequate. Is St the p-propagator for 𝚪 or for MT𝚪? We will use it only for
the simplest of problems where there is no ambiguity. In these cases, the notation
is very compact.

If we take the solar system and reverse all the momenta and angular momenta
of the planets, then the resulting dynamics is also a solution of the equations of
motion. If you watch a movie of the planets going around the sun and then play that
movie backward, the resulting motion is still a solution of Hamilton’s equations of
motion and would not look un-physical.

However, if we do the same to the motion of a waterfall or a jet aircraft taking
off, although the time-reversed movie is still a solution of the dynamical equations
of motion, the time-reversed movie of a waterfall violates the second “Law” of
thermodynamics. The time-reversed movie of the jet plane would constitute a per-
petual motion machine of the second kind, thereby violating the second “Law” of
thermodynamics. This is the so-called irreversibility paradox first pointed out by
Kelvin and very shortly afterward by Loschmidt. The resolution of this paradox
forms one of the main themes of this book.

If we watch the time-reversed movie of the solar system, then while observing
the time-reversed planetary orbits (at least at a planetary length scale!) we would
not see anything that would violate the second “Law” of thermodynamics. Thus
the second “Law” of thermodynamics is somehow coupled to the complexity of the
system. Maxwell was the first to realize this point (see the quote at the beginning
of Chapter 3). As we will see, the fluctuation theorem proved in Chapter 3 will
resolve these apparent paradoxes. In the process, the fluctuation theorem obviates
the need for the second “Law” of thermodynamics.

2.2
Introduction to Time-Reversible, Thermostatted Dynamical Systems

Most systems of thermodynamic interest are not isolated. The vast majority of
engines, devices, and all biological organelles exchange heat back and forth with
their surroundings. These surroundings can often be viewed as being vastly larger
than the engine, or the system of interest.

Think of the operation of an automobile engine. Ultimately, the chemical energy
in the fuel is on average dissipated as heat to the surrounding atmosphere and
earth. In principle, the size of the surroundings can be expanded virtually without
limit. So, sufficiently far away from the system of interest, we can regard the
surroundings as being unperturbed by the system of interest and, as we shall see,
these unchanging surroundings can be regarded as being in a state of unchanging
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thermodynamic equilibrium. Later, we will learn how to treat cases where the
surroundings are of the same size as the system of interest and therefore may
also be out of equilibrium; but for the moment we will consider a nonequilibrium
system of interest in contact with a much larger equilibrium reservoir.

For the moment, we regard an equilibrium system as a quiescent stationary state
where, on average, no work is performed on the system and, on average, no net
heat flows into or out of the system. Later (Section 4.2 and Chapter 5), we will be
able to give a formal mathematical definition of an equilibrium system.

Because in Chapter 5 we will derive equilibrium relaxation theorems and
through them the form of the equilibrium distributions of the microstates for
an N-particle system, we will not employ any knowledge of that equilibrium
distribution prior to Chapter 5.

We assume that classical mechanics gives an adequate description of the
dynamics. We assume quantum and relativistic effects can be ignored. We also
assume that the total momentum of the system of interest and, separately, the
surroundings is zero. These systems are not in motion relative to each other or to
the observer.

Experimentally we can only control a small number of variables that specify
the macroscopic state of the system. We might only be able to control the system
energy or the average kinetic energy of all or some of the particles, the volume V ,
and the number of atoms N in the system, which we assume to be constant. There
is therefore an enormous range of microstates that are consistent with the small
number of macroscopic constraints.

In writing the microscopic equations of motion for the system, it will be conve-
nient to decompose the total system into two subsystems: the system of interest,
and the surroundings. As we have pointed out earlier, the surroundings may often
be regarded as being unperturbed by the system of interest. Conversely, provided
the surroundings are not moving with respect to either the observer or the system
of interest, and provided they have an unchanging distribution of microstates, the
precise details of the microscopic equations of motion, or indeed the nature of the
particles that constitute those surrounding systems, have no impact on the system
of interest. The surrounding particles are too far from the system of interest.

The operation of an automobile is unaffected by the microscopic details of the
road and atmosphere. Only a few macroscopic properties are important: average
chemical composition, temperature and pressure of the air, and so on.

A typical experiment of interest is conveniently summarized by the following
example. Consider an electrical conductor (e.g., a molten salt) subjected, at say
t = 0, to an applied electric field 𝐄. We wish to understand the behavior of this
system from an atomic or molecular point of view. As in a laboratory, the molten
salt is contained in a solid, electrically insulating conduction cell, and this cell is
allowed to exchange heat with the much larger surroundings, so that once the
system has reached a steady state, the average kinetic energy of the particles in
the system of interest is constant.

If we use purely Hamiltonian equations of motion, the entire system will even-
tually heat up. We will need to supplement the Hamiltonian equations of motion
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with some time-reversible non-Hamiltonian terms buried deep in the surround-
ings so that a true nonequilibrium steady state is possible. The work that is done on
the system is, on average, converted into heat, which is conducted through the sys-
tem of interest and the walls, eventually getting removed on average by these non-
Hamiltonian terms in the remote boundaries. Because these non-Hamiltonian
terms are physically remote from the system of interest, there is no way that the
system of interest can “know” how the heat is eventually removed.

The first time-reversible, deterministic thermostats and ergostats were invented
simultaneously but independently by Hoover, Ladd, and Moran (1982), and Evans
(1983) in the early 1980s. Prior to this development, there was no satisfactory
mathematical way of modeling thermostatted nonequilibrium steady states.

Definition
We could study the macroscopic behavior of the macroscopic system by taking
just one of the huge number of microstates that satisfy the macroscopic conditions
and then solving the equations of motion for this single microscopic trajectory. We
could then compute time averages At of a phase function A(𝚪):

At ≡ 1
t ∫

t

0
dsA(Ss𝚪) (2.10)

However, we would have to take care that our microscopic trajectory St𝚪 was a
typical trajectory, and that it did not behave in an exceptional way.

Definition
Perhaps a better way of understanding the macroscopic system would be to
select a set of N𝚪 initial phases (i.e., microstates) {𝚪j, j = 1,… ,N𝚪} distributed
according to the naturally occurring states that are consistent with the small
number of macro-constraints and compute the time-dependent properties
of the macroscopic system by taking a time-dependent ensemble average⟨A(t)⟩ of a phase function A(𝚪) over the ensemble of time-evolved phases⟨A(t)⟩ = lim

N𝚪→∞

∑N𝚪
j=1 A(St𝚪j)∕N𝚪.

Indeed, repeating the experiment with initial states that are consistent with the
specified initial conditions is often what an experimentalist does in the laboratory
(to within limits of experimental capacity to control the initial conditions). One
could then try to specify the initial phase space probability density consistent with
the known, small number of macroscopic conditions f (𝚪; 0), and try to understand
the time-dependent evolution of this density f (𝚪; t). Time-dependent averages of
phase functions could then be computed as a time-dependent ensemble average:

⟨A(t)⟩ = ∫ d𝚪A(𝚪)f (𝚪; t) =∫ d𝚪A(St𝚪)f (𝚪; 0) (2.11)

The equality of the average over the initial distribution with that taken over the
time-dependent distribution is guaranteed by the conservation of probability.
Although the concept of ensemble averaging seems natural and intuitive to
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experimental scientists, the use of ensembles has caused some problems and
misunderstandings from a more purely mathematical viewpoint.

Definition
A system is said to be time-stationary or simply stationary if the ensemble averages
appearing in Eq. (2.11) are independent of time: ⟨A(t)⟩ = ⟨A(t + Δ)⟩, ∀Δ > 0.

Definition
A stationary system is said to be physically ergodic if the time average of a phase
function representing a physical observable, along a trajectory that starts almost
anywhere in the ostensible phase space, ∀!𝚪 ∈ D, is equal to the ensemble average
taken over an ensemble of systems consistent with the small number of macro-
scopic constraints on the system.

lim
t→∞

⟨A(t)⟩ = lim
t→∞

At(𝚪) = lim
t→∞

1
t ∫

t

0
ds A(Ss𝚪), ∀!𝚪 ∈ D (2.12)

The system may be stationary for all values of time, or it may only be asymptotically
stationary in the limit of long time – as implied by our notation. In this text, this
is what is meant when a system is referred to as ergodic.

Experience shows that, for an isolated Hamiltonian system of interacting
particles with no applied dissipative fields, the system will usually relax to a
time-stationary state where time averages of almost all macroscopic variables
such as pressure or density become time-independent. That state is called the
state of microcanonical equilibrium. Similarly, if a Hamiltonian system free of
applied dissipative fields (such as the electric field for electrically conductive
systems) is allowed to exchange heat with a vastly larger heat bath which itself can
be considered to be at equilibrium, then at long times the Hamiltonian system
will be expected to relax to the canonical equilibrium state. Later, in Chapter 5 of
this book, we will (subject to some fairly simply stated mathematical conditions)
prove equilibrium relaxation theorems, which show that initial nonequilibrium
systems will at long times relax, perhaps nonmonotonically, toward a physically
ergodic state of thermodynamic equilibrium. Those same theorems also give
precise mathematical expressions for the equilibrium phase space distributions,
both canonical and microcanonical.

Ensembles are well known in equilibrium statistical mechanics, the concept
being first introduced by Boltzmann (1872) and later by Maxwell (1879). The use
of ensembles in nonequilibrium statistical mechanics is less widely known and
understood.1) In our analyses, it will often be convenient to choose the initial
ensemble that is represented by the set of phases {𝚪j, j = 1,… ,N𝚪} to be one of the
standard ensembles of equilibrium statistical mechanics. However, sometimes we
may wish to vary this somewhat. In any case, in all the examples we will consider,

1) For further background information on nonequilibrium statistical mechanics, see Evans and
Morriss (1990).
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the initial ensemble of phase vectors will be characterized by a known initial
N-particle distribution function f (𝚪; 0), which gives the probability f (𝚪; 0)d𝚪
that a member of the ensemble is within some infinitesimal neighborhood d𝚪
of a phase 𝚪 at time 0. By construction, the number of ensemble members is
conserved.

Consider an electric field, which, on average, does work on an electrically con-
ducting system, causing an electric current 𝐈 ≡ ∑

ci�̇�i to flow (ci is the electric
charge on particle i). To remove the complicating effects of local charge buildup
or surface electrolysis, we employ periodic boundary conditions in the direction
of the electric field. This will allow the current to flow forever and also allow for the
possibility of establishing a nonequilibrium time-stationary state, or a nonequilib-
rium steady state.

It is exceedingly important to remember that we are expressly excluding the case
where the system is an insulator and the field induces a polarization rather than a
current! The difference between an insulator and a conductor can be determined
only by the physics of the situation. If we subject solid sodium chloride to an elec-
tric field at room temperature, then the field induces a polarization that explicitly
changes the internal energy of the system (the expression for the internal energy
includes a term that is function of the field). Electrostatic potential energy is stored
in the system. It acts as a capacitor.

If we make the single change of increasing the temperature of sodium chlo-
ride to 1100 K, then sodium chloride melts and becomes an electrical conductor.
The electric field does not explicitly change the internal energy of the system. So
the difference between an insulator and a conductor cannot be determined from
the equations of motion! The difference can be in the initial conditions for the
equations of motion – in this case the initial energy or temperature. We will treat
the case where fields change the internal energy of the system in Chapter 8. Until
then, it is assumed that the external fields are purely dissipative and do not explic-
itly change the internal energy of systems.

Definition
If external fields are applied to the system of particles and the external field does
work on the system and if that work can be turned completely into heat that can
diffuse out of the system, the external field is termed a dissipative field. If the work
can be completely stored in the system in the form of potential energy, the external
field is termed nondissipative.

The electric field applied to solid sodium chloride is nondissipative because
application of a field results in energy being stored in the system. Another example
of a nondissipative field is application of strain to an elastic solid. The work is
stored in the intermolecular potential energy of the solid’s constituent molecules.

Considering the system of charged particles again, from experience we expect
that at an arbitrary time t after a dissipative field has been applied, the ensemble-
averaged electric current ⟨𝐈(t)⟩ will be in the direction of the field; the work
performed on the system by the field will be transformed into (or dissipated as)
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heat – Ohmic heating, ⟨𝐈(t)⟩ ⋅ 𝐄. It will frequently be the case that the electrical
conductor will be in contact with an electrically insulating heat reservoir that
fixes the average energy of the system so that, on average, heat flows from the
system of interest, the conduction cell, toward the much larger heat reservoir.
Nonetheless, all the particles in this system (conduction cell plus reservoir)
constitute a time-reversible dynamical system. The equations of motion, whether
quantum or classical, are time-reversal-symmetric.

We are interested in a number of problems suggested by this experiment:

1) How do we reconcile the Ohmic heating with the time reversibility of the
microscopic equations of motion? Why is there no possibility of Ohmic
cooling?

2) For a given initial phase 𝚪j that generates some time-dependent current
𝐈(St𝚪j), can we generate Loschmidt’s conjugate antitrajectory, which has a
time-reversed electric current with reversed time ordering?

3) Is there anything we can say about the deviations of the behavior of individual
ensemble members from the average behavior?

In noting these three questions, question 2 is slightly different from what is usu-
ally mentioned in textbooks that discuss reversibility. For the antitrajectory, not
only is the current of the opposite sign to that for its conjugate trajectory but also
the time-ordered fluctuations and transients must exhibit reversed time ordering.
The last temporal fluctuations that occur on a particular trajectory are, in fact, the
first fluctuations on its conjugate antitrajectory. This, as we will see in Chapter 9,
is hugely important.

Consider a classical system of N interacting particles in a three-dimensional vol-
ume V. Initially (at t = 0), the microstates of the system are distributed according to
a given normalized probability distribution function f (𝚪; 0). To apply our results
to realistic systems, we separate the N-particle system into a system of interest and
a wall thermostatting region containing Nth particles. Note: the total number of
wall particles is NW and the system of interest may contain unthermostatted wall
particles. Within the thermostat, particles are subject to a fictitious thermostat
or an ergostat. The thermostat employs a switch, Si = 1, 0, which controls how
many and which particles are thermostatted: Si = 0 if 1 ≤ i ≤ (N − Nth); Si = 1 if
(N − Nth + 1) ≤ i ≤ N ; and Nth ≤ NW . We define the thermostat kinetic energy

Kth ≡
N∑

i=1
Si

p2
i

2mi
(2.13)

and write the equations of motion for the composite N-particle system as

�̇�i =
𝐩i
mi

+ 𝐂i(𝚪) ⋅ 𝐅e

�̇�i = 𝐅i(𝐪) + 𝐃i(𝚪) ⋅ 𝐅e − Si(𝛼𝐩i + 𝐅th)

�̇� =
[ 2Kth

3NthkBTth
− 1

]
1
𝜏2 (2.14)
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where 𝐅i(𝐪) = −𝜕Φ(𝐪)∕𝜕𝐪i is the interatomic force on particle i, Φ(𝐪) is the inter-
particle potential energy, and 𝐂i(𝚪) and 𝐃i(𝚪) are tensorial phase functions that
couple the dissipative field to the system of interest. The other terms are explained
in the following paragraphs.

It needs to be noted that some external fields are odd under the time-reversal
map (e.g., the strain rate) while others are even (e.g., an electric field). In some
experimental or computer simulation circumstances, it may be inconvenient to
invert the sign of a dissipative field that is odd under MT . In such cases, other
mappings such as the Kawasaki map for shear flow – see Section 7.4 of Evans
and Morriss (1990) – may be used in place of the time-reversal map in order to
construct the conjugate antitrajectories with the sign of the dissipative field being
unchanged. Any means of generating the conjugate antitrajectories may be used
in place of the standard time-reversal map.

The term involving −Si𝛼𝐩i is a deterministic, time-reversible Nosé–Hoover
thermostat (Evans, 1985; Hoover, 1985), which is used to add or remove heat
from the particles in the reservoir region through introduction of an extra
degree of freedom described by 𝛼; Tth is a target parameter that controls the
time-averaged kinetic energy of the thermostatted particles; and 𝜏 is the time
constant for the integral feedback mechanism of the Nosé–Hoover thermostat.
If 2Kth > 3NthkBTth, then �̇� > 0 and the thermostat multiplier will increase,
implying that in the future more energy will be removed from the thermostatted
particles. Conversely, if 2Kth < 3NthkBTth, then �̇� < 0, implying that less energy
will be removed by the thermostat in the future. Thus the thermostat tends to
stabilize the average thermostat kinetic energy at the value K th = 3NthkBTth∕2.

It is a trivial matter to check that the Nosé–Hoover thermostatted equations
of motion are time-reversal-symmetric. From the third equation in Eq. (2.14), we
see that �̇� is even under time reversal. This means that 𝛼 is odd, implying that the
whole thermostatting term in the �̇� equation of motion is even as, of course, is the
force.

Assuming that the system comes to a nonequilibrium (stationary) steady
state where at long times time averages of smooth phase functions become
time-independent, we also expect there will be a time-independent value for the
thermostat multiplier lim

t→∞
⟨𝛼(t)⟩ = ⟨𝛼⟩∞ ⇒ lim

t→∞
⟨�̇�(t)⟩ = 0. From Eq. (2.14), we see

that in this steady state

lim
t→∞

1
t ∫

t

0
ds Kth(s) ≡ K th = 3NthkBTth∕2 (2.15)

In Chapter 5, we will prove that, if the dissipative field is in fact zero and the system
is T-mixing, the system described by Eq. (2.14) eventually comes to thermody-
namic equilibrium and the target temperature of the Nosé–Hoover thermostat,
Tth, is then identical to the equilibrium thermodynamic temperature of the sys-
tem. When the dissipative field is nonzero, the classically defined thermodynamic
temperature of the system of interest is, in fact, undefined. However, in this case,
if the thermal reservoirs are made arbitrarily large compared to the system of
interest, the thermal reservoirs will be hardly affected by the system of interest
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and Tth can be regarded as the equilibrium thermodynamic temperature of the
thermal reservoir. For an in-depth discussion of the Nosé-Hoover thermostat, see
Section 5.2 of Evans and Morriss (1990).

To model a realistic system, we can choose𝐂i(𝚪) = 𝟎 and𝐃i(𝚪) = 𝟎when Si = 1.
This means that the dissipative field cannot do work on the thermostatted parti-
cles. In Eq. (2.14), the fluctuating force𝐅th = (1∕Nth)

∑N
i=1 Si𝐅i, which ensures that

the macroscopic momentum of the thermostatted particles is a constant of the
motion, which we set to zero.

The Nosé–Hoover thermostat adds a degree of freedom to the phase space of
the system, and the extended phase space vector is 𝚪∗ ≡ (𝚪, 𝛼). However, in order
to simplify the notation, from here on we represent this implicitly using 𝚪.

Definition
If in the absence of the thermostatting terms, the equations of motion preserve the
phase space volume, Λad ≡ (𝜕∕𝜕𝚪) ⋅ �̇�ad = 0, and the system is said to satisfy the
condition known as the adiabatic incompressibility of phase space or AI𝚪, (Evans
and Morriss, 1990). All systems studied in this book satisfy this condition.

If we set Si = 1 for the particles in the surroundings (e.g., the walls) only, the
equations of motion for the thermostatted particles are supplemented with unnat-
ural thermostat and force terms, but the equations of motion for the particles
in the system of interest are quite natural. Equations (2.14) are time-reversible
and heat can be either absorbed or given out by the thermostat. Similar construc-
tions have been applied in various studies. Of course, if Si = 1 for all i, we obtain a
homogeneously thermostatted system, which is often studied (Evans and Morriss,
1990).

The model system could be quite realistic with only some particles subject to
the external field. For example, some particles might be charged in an electrical
conduction experiment while others may be chemically distinct, being solid at the
temperatures and densities under consideration. Furthermore, these particles may
form the thermal boundaries or walls which thermostat and “contain” the electri-
cally charged fluid particles inside a conduction cell. In this case, Si = 1 only for
wall particles and Si = 0 for all the fluid particles. This would provide a realistic
model of electrical conduction and is frequently used in nonequilibrium molecu-
lar dynamics (NEMD) computer simulations.

Definition
If we consider a group of atoms within some small volume 𝛿V centered on a posi-
tion r, the local mass density 𝜌(𝐫) is defined as (Evans and Morriss, 1990)

𝜌(𝐫) ≡ ∑
i∈𝛿V

mi∕𝛿V (2.16)

and the local streaming velocity u is defined by the equation∑
i∈𝛿V

𝐩i ≡ 𝜌(𝐫)𝐮(𝐫)𝛿V (2.17)
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where 𝐩i is the momentum of particle i, measured in the laboratory frame. Adjust-
ing the physical size of the volume 𝛿V adjusts the special resolution within which
we measure local properties.

It is worth pointing out that, if the streaming velocity varies significantly over
the range of the interatomic forces and/or if the streaming velocity varies signif-
icantly over microscopic relaxation times, it becomes impossible to define and
the hydrodynamic description given here simply breaks down. Examples include
shock waves and extremely turbulent flows.

Definition
If the momenta and velocities are computed relative to the local streaming velocity
(i.e., mi�̇�i − mi𝐮(𝐫i), �̇�i − 𝐮(𝐫i)), they are termed peculiar momenta and peculiar
velocities, respectively.

The use of peculiar momenta in the expressions for the kinetic temperature
and the internal energy is important. All thermodynamic variables must be inde-
pendent of the velocity of the frame of reference from which they are measured.
For instance, if we consider a glass of water in a moving train, the total energy
of the molecules comprising the glass of water is dependent on the velocity of
the train. However, the internal energy and the kinetic temperature are indepen-
dent of the motion of the train. All thermodynamic quantities must be evaluated
using momenta and velocities measured in the local streaming velocity frame of
reference. In writing Eq. (2.14), we chose a frame of reference where the total
momentum of the thermostat is initially zero, and define the fluctuating force 𝐅th
to make the momentum of the thermostat a constant of the motion. This means
that the average momentum of the entire system is also zero, ensuring that all the
momenta appearing in Eq. (2.14) are, in fact, peculiar.

Definition
For systems with no applied external field or for which the external field is purely
dissipative, the Hamiltonian H0 ≡ ∑

i∶Si=1
[
p2

i ∕2m + Φi (𝐪)
]

expressed in peculiar
momenta 𝐩i and where 𝚽i is the contribution to the interparticle energy from
particle i, has an average value, which is the thermodynamic internal energy of the
system. The internal energy is just the energy of the system with the local stream-
ing kinetic energy removed. It is also important to note that, because the processes
considered here are purely dissipative, the form of the Hamiltonian is independent
of the value of the dissipative field. The internal energy has no explicit dependence
on the external field. This is entirely analogous to autonomous Hamiltonians that
contain no explicit reference to time. In Chapter 8, we will discuss cases where the
field appears explicitly in the Hamiltonian.

This microscopic internal energy H0(𝚪) is completely mechanical – as the so-
called first “law” of thermodynamics shows. The definition of the internal energy
is valid even far from equilibrium provided the streaming velocity Eq. (2.17) is well
defined.

An alternative thermostatting mechanism is to choose the thermo-
stat multiplier 𝛼 to make either the internal energy of the thermostat
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H0 ≡ ∑
i∶Si=1

[
p2

i ∕2m + Φi (𝐪)
]
, or of the entire system a constant of the

motion. For this ergostatted dynamics, the thermostat multiplier 𝛼 is chosen as
the instantaneous solution to the equation

Ḣ0(𝚪) ≡ −𝐉(𝚪)V ⋅ 𝐅e − 2Kth(𝚪)𝛼(𝚪)
≡ −𝐉(𝚪)V ⋅ 𝐅e − Q̇th

= 0 (2.18)

Definition
The heat added to the thermostat per unit time Q̇th(t) is defined in Eq. (2.18).

[Aside
When the thermostat is overwhelmingly larger than the system of interest and
when it is in thermodynamic equilibrium, the thermostat increases its entropy at
a rate Ṡth = Q̇th∕Tth, where Tth is the equilibrium thermodynamic temperature of
the large thermostat.]

A third thermostatting mechanism is where we make the peculiar kinetic energy
of the thermostat

Kth ≡
Nth∑
i=1

Sip2
i ∕2m = (3Nth − 4)kBTth∕2 (2.19)

a constant of the motion; in which case, we speak of Gaussian isokinetic dynamics.
In Eq. (2.19), Nth =

∑
Si.

Definition
The quantity Tth defined by Eq. (2.19) is called the kinetic temperature of the ther-
mostat.

Both these latter thermostatting methods involve differential feedback, and the
equations of motion can be derived using Gauss’ principle of least constraint to fix
either the internal energy or the thermostat’s peculiar kinetic energy (Evans et al.,
1983). In both cases, the first two equalities of Eq. (2.14) still apply but the third
equality is replaced by an explicit expression for the multiplier. These Gaussian
thermostats were, in fact, the first time-reversible deterministic thermostats that
were proposed. Hoover et al. developed the isokinetic thermostat (Hoover, Ladd,
and Moran, 1982), while Evans (simultaneously, in the same week) developed the
ergostat (Evans, 1983). These thermostats were developed in order to construct
NEMD computer simulation algorithms for the study of nonequilibrium systems
and the calculation of transport coefficients (Evans and Morriss, 1990).

It is a trivial matter to check that these thermostats are time-reversal-
symmetric. We note from Eq. (2.18) that, as in the Nosé–Hoover thermostat, 𝛼 is
odd under time reversal.

One might wonder whether other mathematical forms are possible for these
Gaussian thermostats. Could one replace the thermostat term in the equation
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�̇� = 𝐅 − 𝛼𝐩with a so-called𝜇-thermostat, so �̇� = 𝐅 − 𝛼|p|𝜇−1𝐩, and choose 𝛼 to fix
either the kinetic energy, or following Gauss Principle,

∑|p|𝜇+1? It turns out that,
if 𝜇 ≠ 1, these systems can never relax to equilibrium (Bright, Evans, and Sear-
les, 2005; Evans, Searles, and Williams, 2010). If you consider the finite-difference
form of the equations of motion for 𝜇 thermostats, you can see that only when
𝜇 = 1 does the finite-difference form correspond to a rescaling of time so that in
rescaled time the thermostat kinetic energy is fixed. When 𝜇 ≠ 1, this time rescal-
ing profoundly alters the velocity distribution because the time rescaling factor is
dependent of the speed of the different individual particles. Nosé–Hoover ther-
mostats permit a greater range of choices for 𝜇; however, we do not consider these
𝜇 ≠ 1 thermostats any further.

Definition
The dissipative flux J due to the driving dissipative field Fe is defined as (Evans and
Morriss, 1990)

Ḣad
0 ≡ −𝐉(𝚪)V ⋅ 𝐅e ≡

∑[𝐩i
m

⋅ 𝐃i − 𝐅i ⋅ 𝐂i

]
⋅ 𝐅e (2.20)

Ḣad
0 is the adiabatic time derivative of the internal energy (i.e., it is computed with-

out the contributions from the thermostat), and V is the volume of the system.
As mentioned earlier, it is always assumed that the equations of motion for the

driven system satisfy the adiabatic incompressibility of phase space condition. In
Chapter 6, we will show in detail why the dissipative flux is so named.

Definition
The adiabatic time derivative of H0 (Ḣad

0 ) is, in fact, the work performed on the
system by the dissipative field because it is the total change of energy minus the
heat removed by the thermostat/ergostat.

Equation (2.18) is a statement of the first law of thermodynamics for an ergostat-
ted nonequilibrium system. The energy removed from (or added to) the system by
the ergostat must be balanced instantaneously by the work done on (or removed
from) the system by the external dissipative field Fe. For ergostatted dynamics,
we solve Eq. (2.18) for the ergostat multiplier and substitute this phase function
into the equations of motion. For isokinetic dynamics, we solve an equation that
is analogous to Eq. (2.18) but which ensures that the kinetic temperature of the
walls or system is fixed. The equations of motion (Eq. 2.14) are reversible if the
thermostat multiplier is defined in this way.

A simple example system is the case of electrical conductivity. There, we
could model the charged ions of a molten salt (𝐂i = 0, 𝐃i = ci𝐈, where ci is the
electric charge of particle i and 𝐈 is the identity matrix) subject to an electric
field 𝐅e = 𝐄. We could surround these ions with neutral atoms (ci = 0) of a solid
wall that contains the electrically conducting molten salt. Further, outside these
realistically modeled wall particles, we could then have a layer of thermostatted
or ergostatted, electrically neutral wall particles. These thermostatted particles
can be located arbitrarily far from the system of interest.
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One might object that our analysis is compromised by our use of these artifi-
cial (time-reversible) thermostats. Since, the thermostat can be made arbitrarily
remote from the system of physical interest, the system cannot “know” the pre-
cise details of how the heat is ultimately removed (Evans, Searles, and Williams,
2009). This means that the results obtained for the system using our simple math-
ematical thermostat must be the same as the those we would infer for the same
system surrounded (at a distance) by a real physical thermostat (say with a huge
heat capacity). These mathematical thermostats may be unrealistic, but in the
final analysis they are very convenient but ultimately irrelevant devices. Impor-
tantly, they allow us to do the mathematical bookkeeping that is necessary in the
study of systems that exchange heat with their surroundings. Ultimately, the work
that is, on average, performed on the system of interest is ultimately, on average,
transformed into heat, which is absorbed by an infinitely large system that can be
regarded as being arbitrarily close to thermodynamic equilibrium, and arbitrarily
far from the system of interest. That reservoir has a known kinetic temperature,
which, as we will see in Chapter 5, is the equilibrium thermodynamic temperature
of that reservoir. Again, as will be proved in Chapter 5, this kinetic temperature is
also the equilibrium temperature the entire system will relax to if it is allowed to
do so.

2.3
Example: Homogeneously Thermostatted SLLOD Equations for Planar Couette Flow

A very important dynamical system is the standard model for thermostatted
planar Couette flow – the so-called SLLOD equations for shear flow (Evans and
Morriss, 1984a). Consider N particles under shear. In this system, the external
field is the shear rate 𝜕ux∕dy = �̇�(t) (the y-gradient of the x-streaming velocity
ux(y)). The equations of motion for the particles are given by the so-called
homogeneously thermostatted SLLOD equations

�̇�i = 𝐩i∕m + 𝐢�̇�yi, �̇�i = 𝐅i − 𝐢�̇�pyi − 𝛼𝐩i (2.21)

Here, i is a unit vector in the positive x-direction. At low Reynolds numbers, where
a planar velocity profile is expected to be stable, the SLLOD momenta are, in fact,
peculiar momenta (i.e., they are measured relative to the average streaming veloc-
ity of the individual particles, 𝐮(𝐪i, t) = 𝐢�̇�yi).

As first pointed out by Evans and Morriss (1984a), the adiabatic SLLOD
equations of motion give an exact description of planar Couette flow arbitrarily
far from equilibrium (Evans and Morriss, 1984a,b). This is because the adiabatic
SLLOD equations for a step-function strain rate 𝜕ux(t)∕𝜕y = �̇�(t) = �̇�Θ(t) are
equivalent to Newton’s equations after the impulsive imposition of a linear
velocity gradient at t = 0 (i.e., d𝐪i(0+)∕dt = d𝐪i(0−)∕dt + 𝐢�̇�yi(0)) (Evans and
Morriss, 1984b). There is thus a remarkable subtlety in the SLLOD equations
of motion. If one starts at t = 0−, with a canonical ensemble of systems then at
t = 0+, the SLLOD equations of motion transform this initial ensemble into the
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local equilibrium ensemble for planar Couette flow at a shear rate �̇� (Daivis and
Todd, 2006).

Because the effects of thermostatting are asymptotically quadratic in the strain
rate, the homogeneously thermostatted SLLOD equations of motion give an exact
description of the linear response of a system to planar Couette flow – even a
time-dependent planar Couette flow. For a mathematical proof, see Evans and
Morriss (1990).

At low Reynolds numbers, the SLLOD momenta pi are peculiar momenta, and
𝛼 is determined using Gauss’s principle of least constraint to keep the internal
energy H0 =

∑
p2

i ∕2m + Φ(𝐪) fixed (Note: the internal energy is the sum of the
peculiar kinetic energy and the potential energy. It is not the sum of the laboratory
kinetic energy and the potential energy.). Thus, for our system Eq. (2.21)

Ḣ0 =
∑

�̇�i ⋅
𝜕K
𝜕𝐩i

+ �̇�i ⋅
𝜕Φ
𝜕𝐪i

=
∑(

−𝐢�̇�pyi ⋅
𝐩i
m

− 𝐢�̇�yi ⋅ 𝐅i

)
− 2K(𝐩)𝛼

= −�̇�
∑(pyipxi

m
+ yiFxi

)
− 2K(𝐩)𝛼 ≡ −�̇�Pxy(𝐪,𝐩)V − 2K(𝐩)𝛼 (2.22)

where Pxy is a well-known microscopic expression for the xy element of the pres-
sure tensor (Irving and Kirkwood, 1950) in a homogeneous system. We can fix the
microscopic internal energy of the system by choosing 𝛼 as

𝛼 = −Pxy(𝐪,𝐩)�̇�V∕2K(𝐩) (2.23)

From the equations of motion, we can then express the rate of change of internal
energy for isoenergetic SLLOD dynamics in terms of the rate at which work is
done on the system and the rate at which heat is extracted from the system:

Ḣ0(t) = −Pxy(t)�̇�V − 2K𝛼(t) = −Pxy(t)�̇�V − Q̇(t) = 0 (2.24)

Thus the ergostat increases the internal energy of the system at a rate −Q̇(t),
which is precisely and instantaneously equal to the rate at which work is expended
on the system by the shearing deformation, namely −Pxy(t)�̇�V . Incidentally, this
is precisely the viscous dissipation one finds for planar Couette flow from the
Navier–Stokes equations.

The corresponding isokinetic form for the thermostat multiplier is obtained by
setting K̇ = 0, which, using Eq. (2.21), gives

𝛼(t) =

N∑
i
𝐅i ⋅ 𝐩i − �̇�

N∑
i=1

pxipyi∕m

N∑
i=1

𝐩2
i ∕m

(2.25)

We note that, in the Nosé–Hoover thermostatted forms for the SLLOD equations,
�̇� is given, as usual, by Eq. (2.14).

If the thermostatted SLLOD system comes to a nonequilibrium steady state, the
time-averaged rate of shearing work that is performed by the shear on the system
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is equal to the time averaged rate at which heat is removed by the thermostat from
the system. If the system is ergostatted, this balance is achieved instantaneously.

Definition
The ergostatted and thermostatted SLLOD equations of motion (Eqs. (2.21)–2.23)
are time-reversible (if �̇� is fixed, MT should be replaced by the Kawasaki mapping:
MK (𝐪x,𝐪y,𝐩x,𝐩y) = (𝐪x,−𝐪y,−𝐩x,𝐩y) in Eq. (2.8)).

In the weak flow limit, these equations yield the correct Green–Kubo rela-
tion for the linear shear viscosity of a fluid (Evans and Morriss, 1984b). We have
also proved that in this limit the linear response obtained from the equations of
motion, or equivalently from the Green–Kubo relation, are identical to leading
order in N the number of particles.

In computer simulations, if one wants to carry out NEMD simulations one has
to supplement the SLLOD equations of motion with appropriate boundary con-
ditions – one cannot simulate infinite systems. If you start with a cubic periodic
system at t= 0, then the shear motion causes the unit cells immediately above and
below the primitive cell to slide to the right and left above and below the primitive
cell at constant speeds V 1∕3�̇� . At time t, these cells move to positions ±V 1∕3�̇�t.
The position of these cells affects the forces 𝐅i on the N particles in the primitive
cell. This means that for finite periodic systems the SLLOD equations of motion
as implemented are in fact non-autonomous!

In practice for the short range forces like Lennard-Jones or Weeks-Chandler-
Andersen (WCA) (Weeks, Chandler and Andersen (1971)) forces these
non-autonomous effects can be hard or nearly impossible to observe in three
dimensional systems where N ≥∼ 100 (Petravic, 2005; Bernardi, Brookes, and
Searles, 2014). In working with small systems, the nonautonomous effects can be
easily observed particularly close to the freezing density.

2.4
Phase Continuity Equation

We have introduced the phase space distribution function f (𝚪; t). It gives the prob-
ability per unit phase space volume of finding ensemble members near the phase
vector 𝚪 at time t.

There is a simple, exact equation of motion for this density. That equation
is called the phase continuity equation (Gibbs, 1981). (In most textbooks, this
equation is called the Liouville equation. In fact, Liouville’s 1838 paper (Liouville,
1838) does not refer to the phase space density at all.)

The proof of the phase continuity equation
df (𝚪; t)

dt
= −f (𝚪, t) 𝜕

𝜕𝚪
⋅ �̇�(𝚪) = −f (𝚪, t)Λ(𝚪) (2.26)

is identical to the proof of the mass continuity equation for a compressible fluid
in hydrodynamics (Evans and Morriss, 1990). Both equations express the fact that
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the total mass of a compressible fluid or the total number of ensemble members
in phase space is conserved. The total number N𝚪 of ensemble members inside an
enclosing phase space volume V𝚪 must be related to the total integrated flux taken
over the enclosing surface S𝚪:

dN𝚪
dt

= ∫V𝚪

d𝚪
𝜕f (𝚪; t)

𝜕t
= −∫S𝚪

d𝐒𝚪 ⋅ �̇�f (𝚪; t)

= −∫V𝚪

d𝚪 𝜕

𝜕𝚪
⋅ [�̇�f (𝚪; t)] (2.27)

Since this equation is true for arbitrary phase space volumes V𝚪, we see that

𝜕f (𝚪; t)
𝜕t

= − 𝜕

𝜕𝚪
⋅ [�̇�f (𝚪; t)]

= −f (𝚪; t) 𝜕

𝜕𝚪
⋅ �̇� − �̇� ⋅

𝜕f (𝚪; t)
𝜕𝚪

= −
(

𝜕

𝜕𝚪
⋅ �̇� + �̇� ⋅

𝜕

𝜕𝚪

)
f (𝚪; t) (2.28)

where the chain rule is used to obtain line 2. For isokinetic or isoenergetic systems
that have fixed total momentum in three Cartesian dimensions and satisfy AI𝚪, the
phase space expansion factor Λ is (see Appendix 2.A):

Λ ≡ 𝜕

𝜕𝚪
⋅ �̇� = −(3Nth − 4)𝛼 (2.29)

This equation is exact for any arbitrary system size. It does not contain any large
N approximations (see Appendix 2.A).

Definition
In order to carry out symbolic calculations of the time-dependent N-particle dis-
tribution function, it is convenient to define the f-Liouvillean L, where(

𝜕

𝜕𝚪
⋅ �̇� + �̇� ⋅

𝜕

𝜕𝚪

)
· · · ≡ iL · · · (2.30)

(We note in passing that, while Liouville never discussed phase space density as
required in the phase continuity equation, he did discuss, using very different
notation (Liouville, 1838), what we call the p-Liouvillean.) Using this operator, we
see that the phase continuity equation can be written as

𝜕f (𝚪; t)
𝜕t

= −iLf (𝚪; t) (2.31)

This equation has a formal solution

f (𝚪; t) = exp[−iLt]f (𝚪; 0) (2.32)

The correctness of this solution can be checked by differentiation.
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Proof of Eq. (2.26) is completed by using Eq. (2.28) to show
df (𝚪; t)

dt
=

𝜕f (𝚪; t)
𝜕t

+ �̇�(𝚪) ⋅
𝜕f (𝚪; t)
𝜕𝚪

= − 𝜕

𝜕𝚪
⋅ [�̇�(𝚪)f (𝚪; t)] + �̇�(𝚪) ⋅

𝜕f (𝚪; t)
𝜕𝚪

= −f (𝚪; t) 𝜕

𝜕𝚪
⋅ �̇�(𝚪) = −f (𝚪; t)Λ(𝚪), ∀𝚪 ∈ D (2.33)

If we set 𝚪 → St𝚪, we obtain
df (St𝚪; t)

dt
= −Λ(St𝚪)f (St𝚪; t) (2.34)

Definition
Equation (2.34) is termed the streaming or Lagrangian form of the phase continuity
equation. For a given initial phase 𝚪, Eq. (2.34) is a simple first-order ordinary
differential equation for the density along the phase space trajectory. Its solution
can be written as

f (St𝚪; t) = exp
[
−∫

t

0
dsΛ (Ss𝚪)

]
f (𝚪; 0) (2.35)

the correctness of which can easily be checked by differentiation: df (St𝚪; t)∕dt =
−Λ(St𝚪)f (St𝚪; t). So the distribution function at time t at the streamed position of
the phase vector originating at 𝚪 is related to the path integral of the phase space
expansion factor along the phase space trajectory.

We could also consider the time dependence of the measure of an infinitesimal
phase space volume dV𝚪(Ss𝚪) centered on the streamed position Ss𝚪 ∶ 0 ≤ s ≤ t
along the phase space trajectory. This phase space volume contains a fixed number
of ensemble members and obeys the following equation of motion:

dV𝚪(St𝚪) = exp
[
∫

t

0
dsΛ (Ss𝚪)

]
dV𝚪(𝚪) (2.36)

In nonequilibrium steady states, experience shows that the time-averaged value of
the thermostat multiplier is positive (we will prove this later using the fluctuation
theorem) and therefore the time-averaged phase space expansion factor is neg-
ative. This implies that, for almost every initial phase space vector, the streamed
density f (St𝚪; t) ∼ exp[(DC(Nth − 1))𝛼t]f (𝚪; 0) → +∞, ∀!𝚪 ∈ D, while the corre-
sponding streamed phase space volume goes to zero exponentially in time.

Definition
We are now in a position to compute the ensemble averages ⟨B(t)⟩ of an arbitrary
integrable phase function B(𝚪):

⟨B(t)⟩ ≡ ∫ d𝚪B(𝚪)f (𝚪; t) = ∫ d𝚪B(St𝚪)f (𝚪; 0) (2.37)
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Physically, this equation is rather obvious. We can formally prove the correctness
of this equation by noting that by integrating by parts (see Evans and Morriss
(1990, Eq. (3.53)):

∫ d𝚪 f (𝚪; t)iLB(𝚪) = −∫ d𝚪B(𝚪)iLf (𝚪; t) (2.38)

From the above equation, we deduce that

⟨B(t)⟩ = ∫ d𝚪B(𝚪)f (𝚪; t)

= ∫ d𝚪B(𝚪) exp[−iLt]f (𝚪; 0)

= ∫ d𝚪 f (𝚪; 0) exp[iLt]B(𝚪)

≡ ∫ d𝚪 f (𝚪; 0)B(St𝚪) (2.39)

We note that, if the system satisfies the AI𝚪 condition and if there are no ther-
mostats applied, then Λ = 0 and L = L; that is, the Liouville operator is Hermitian.
For thermostatted systems, the f- and p-Liouvilleans are not equal.

Finally, we note that all phase space integrals given above should be carried out
over some specified phase space domain. We have omitted this for simplicity, but
if one wants to verify these equations, for example, Eq. (2.38) by integrating by
parts, then the phase space domain is important.

2.5
Lyapunov Instability and Statistical Mechanics

In this section we give the briefest of introductions (Evans and Searles, 2002) to
a relatively new field of research. Many statements are made without proof. The
interested reader should consult the references cited in this section.

We include this material because without some knowledge of the dimensional
reduction processes in time-reversible deterministic steady states, the reader will
be puzzled by many apparent contradictions. How can it be that in a nonequilib-
rium steady state the Gibbs entropy is not time-independent but instead decreases
at a constant average rate toward negative infinity?

The Lyapunov exponents are used in dynamical systems theory to characterize
the stability of phase space trajectories. If one imagines two systems that evolve
in time from phase vectors 𝚪1,𝚪2 that are infinitesimally separated at time zero,|𝚪1 − 𝚪2| ≡ |𝛿𝚪1| → 0, then one can ask how the separation between these
two systems evolves in time. Oseledec’s theorem (see Evans and Morriss, 1990;
Ruelle, 1979) says that for nonintegrable systems under very general conditions
the separation vector asymptotically grows or shrinks exponentially in time.
This does not happen for integrable systems, but very few physical systems are
integrable. A system is said to be chaotic if the separation vector asymptotically
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grows exponentially with time. Most systems in Nature are chaotic: the world
weather and high Reynolds number flows are chaotic. In fact, all systems that
obey thermodynamics are chaotic.

In 1990, the first of a remarkable set of relationships between phase space
stability measures (i.e., Lyapunov exponents) and thermophysical properties was
discovered by Evans, Cohen, and Morriss (1990) and, separately and differently,
by Gaspard and Nicolis (1990). More recently, Lyapunov exponents have been
used to assign dynamical probabilities to the observation of phase space trajectory
segments (Gallavotti and Cohen, 1995a,b). This is something quite new to statisti-
cal mechanics, where hitherto probabilities had been given (only for equilibrium
systems!) on the basis of the value of the Hamiltonian (i.e., the weights are static).

Suppose the autonomous equations of motion are written as

�̇� = �̇�(𝚪) (2.40)

Definition
It is trivial to see that the equation of motion for an infinitesimal phase space sep-
aration vector d𝚪 can be written as:

d�̇� = T(𝚪)d𝚪 (2.41)

where T ≡ 𝜕�̇�(𝚪, t)∕𝜕𝚪 is the stability matrix for the flow.

Definition
The propagation of the tangent vectors is therefore given by

d(St𝚪) = 𝚵(𝚪; t) ⋅ d𝚪 (2.42)

where the tangent vector propagator is

𝚵(𝚪; t) = expL

(
∫

t

0
ds T (Ss𝚪)

)
(2.43)

and expL is a left time-ordered exponential (i.e., the sum in the exponent is time-
ordered with the latest times exp{limΔt→0 Δt[T(St𝚪) + T(St−Δt𝚪)+ · · · + T(𝚪)]} at
the left). We note that the stability matrices evaluated at different times do not
commute. The correctness of Eq. (2.42) can be checked by differentiation.

The number of Lyapunov exponents is equal to the dimension of the ostensible
phase space of the system. There are two ways of specifying this when there are
constants of the motion. In one case, the ostensible phase space can be considered
to be the full 2DCN-dimensional space, where DC is the Cartesian dimension of
the phase space and N is the number of particles, and although motion occurs
in a subspace of this, perturbations off that subspace (which do not satisfy the
constraints) are allowed in consideration of the Lyapunov spectrum or the phase
space expansion.

Another way is to assume that the ostensible phase is the hyperspace within
that 2DCN space defined by those constants of motion. Then perturbations off this
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hypersurface are not considered in the determination of the Lyapunov spectrum
or the phase space expansion. Of course, since the equations of motion of the
system remain the same irrespective of this treatment, this choice is irrelevant for
the physical properties of the system. However, it is relevant for properties such
as the Lyapunov exponents and phase space expansion. Selection of the approach
used is often based on the convenience of the mathematical or numerical analysis.
In this section on the Lyapunov exponents, it is more convenient to consider the
full 2DCN-dimensional space, although in other parts of the book the reduced
dimension is used.

If d𝚪i is an eigenvector of 𝚵T (𝚪; t)𝚵(𝚪; t) and if the Lyapunov exponents are
defined as{

𝜆i; i = 1,… , 2DCN
} ≡ lim

t→∞

1
2t

ln
(
eigenvalues

(
𝚵T (𝚪; t)𝚵(𝚪; t)

))
(2.44)

then the Lyapunov exponents describe the growth rates of the set of orthogonal
tangent vectors (eigenvectors of (𝚵T (t)𝚵(t))), {d𝚪i(t); i = 1, 2DCN},

lim
t→∞

1
2t

ln
|||d (

St𝚪i
)
⋅ d(St𝚪i)

|||||d𝚪i ⋅ d𝚪i
|| = lim

t→∞

1
2t

ln
|||d𝚪i

T𝚵T (t)𝚵(t)d𝚪i
|||||d𝚪i ⋅ d𝚪i

||
= 1

2t
ln

|||d𝚪i
T exp

[
2𝜆it

]
d𝚪i

|||||d𝚪i ⋅ d𝚪i
||

= 𝜆i, i = 1,… , 2DCN (2.45)

(Note: the transpose matrix not only transposes the rows and column but also
transposes time ordering 𝚵T (𝚪; t) = expR

(∫ t
0 ds TT (Ss𝚪)

)
.)

By convention, the exponents are ordered such that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆2DC N . It can
be shown that the Lyapunov exponents are independent of the metric used to mea-
sure phase space lengths. They are also independent, for T-mixing steady states
(see Chapter 6), of the initial position 𝚪 of the “mother” phase space trajectory.

In general, there will be a number of Lyapunov exponents that are zero. For
example, in an equilibrium system, there will 2DC zero exponents for each Carte-
sian momentum component that is conserved because momentum conservation
also means that the associated position of the center of mass of each Cartesian
coordinate is constant. In autonomous systems, there will be another zero expo-
nent associated with time translation invariance. In isokinetic or isoenergetic sys-
tems, there will each be another zero exponent associated with this additional
constant of the motion. To keep the notation flexible, we will say that there are f
zero Lyapunov exponents.

In order to calculate the Lyapunov spectrum, one does not normally use Eq.
(2.44). Benettin et al. developed a technique (Benettin, Galgani, and Strelcyn,
1976) wherein the finite but small displacement vectors are periodically rescaled
and orthogonalized during the course of a solution of the equations of motion.
Hoover and Posch (1985) and, independently, Goldhirsch, Sulem, and Orszag
(1987) pointed out that this rescaling and orthogonalization can be carried
out continuously by introducing constraints to the equations of motion of the
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tangent vectors. With this modification, orthogonality and tangent vector lengths
are maintained at all times during the calculation in much the same way as
our Gaussian thermostats and ergostats maintain fixed values for the kinetic
temperature or the internal energy.

In theory, the 2DCN eigenvalues of the real, symmetric matrix 𝚵T (t) ⋅ 𝚵(t) can
also be used to calculate the Lyapunov spectrum in the limit t → ∞. Since 𝚵(St𝚪)
is dependent only on the mother trajectory St𝚪, calculation of the Lyapunov expo-
nents from the eigenvalues of 𝚵T (t) ⋅ 𝚵(t) does not require the solution of 2DCN
tangent trajectories as in the methods mentioned in the previous paragraph. How-
ever, after a short time, numerical difficulties are encountered using this method
because of the enormous difference in the magnitude of the eigenvalues of the
𝚵T (t) ⋅ 𝚵(t) matrix. After a short time, this matrix becomes highly ill-conditioned.
The use of QR decompositions (where𝚵(t) = 𝐐 ⋅ 𝐑 and𝐑 is a real upper triangular
matrix with positive diagonal elements and 𝐐 is a real orthogonal matrix) reduces
this problem. Use of the QR decomposition is equivalent to the reorthogonaliza-
tion/rescaling of the displacement vectors in the scheme discussed previously.

We note that the Lyapunov exponents are only defined in the long time limit
and, if the simulated nonequilibrium fluid does not reach a stationary state, the
exponents will not converge to constant values. It is useful for the purposes of this
work to define time-dependent exponents as

{
𝜆i (t;𝚪) ; i = 1,… , 2DCN

}
= 1

2t
ln
(
eigenvalues

(
𝚵T (t;𝚪) ⋅ 𝚵(t;𝚪)

))
(2.46)

Unlike the Lyapunov exponents, these finite time exponents will depend on the
initial phase space vector 𝚪 and the length of time over which the tangent vectors
are integrated, and we therefore will refer to them as finite-time, local Lyapunov
exponents.

The systems considered in statistical thermodynamics are all chaotic: they have
at least one positive Lyapunov exponent. This means that (except for a set of zero
measure) points that are initially close will diverge after some time, and therefore
information on the initial phase space position of the trajectory will be lost. Points
that are initially close will eventually span the accessible phase space of the system.
In fact, for typical macroscopic nonequilibrium systems, the number of positive
and negative exponents are very nearly equal. The total number of exponents is,
of course, of the order of Avodagro’s constant (∼6× 1023).

The sum of the first two Lyapunov exponents shows how quickly the fastest
growing area grows. The sum of the first three Lyapunov exponents gives the rate
of growth of the fastest growing three-dimensional volume, and so on. The Lya-
punov exponents of an equilibrium (Hamiltonian) system sum to zero, reflecting
the phase space conservation of these systems.

The sum of all the Lyapunov exponents is, in fact, equal to the time-averaged
phase space expansion factor, so that for isokinetic systems
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2DC N∑
i=1

𝜆i = lim
t→∞

𝜕

𝜕𝚪
⋅ �̇�

t
= lim

t→∞
Λt = − lim

t→∞
[DC(Nth − 1) − 1]𝛼t (2.47)

This is because the phase space expansion is the average rate of increase of the
ostensibly dimensioned phase space volume element. Comparing this equation
with Eq. (2.36) shows that the sum of all the Lyapunov exponents gives the expo-
nential rate at which the streamed phase space volume vanishes.

lim
t→∞

𝛿V𝚪(St𝚪) = exp[Λtt]𝛿V𝚪(𝚪) = exp

[∑
i=1

𝜆it

]
𝛿V𝚪(𝚪) (2.48)

As we will see later, in equilibrium systems all properties, including Lyapunov
exponents, must be invariant under time reversal. This implies that time reversal
of Lyapunov spectra for equilibrium systems must transform the spectrum into
itself, which in turn means that for all equilibrium systems the exponents must
arrange themselves into conjugate pairs that each sum to zero.

𝜆
eq
max + 𝜆

eq
min = 𝜆

eq
max+1 + 𝜆

eq
min−1 = · · · = 0 (2.49)

If the ostensible phase space dimension is odd, the unpaired exponent must be
zero. In fact, there could be multiple exponents that are zero since this would not
violate the time-reversal property.

The symplectic eigenvalue theorem (Eckmann and Ruelle, 1985; Abraham and
Marsden, 1978) shows that, for all autonomous symplectic dynamical systems
with time-independent Lyapunov exponents, the conjugate exponents must pair
about zero as in Eq. (2.49). If the system is stationary in time, this pairing about
zero can happen only if the system eventually relaxes toward equilibrium. As we
will see later (Section 4.3), the necessary and sufficient condition for stationarity
is that the system is ΩT-mixing. Hence we have our first proof of the relaxation to
equilibrium. All autonomous symplectic systems that areΩT-mixing must relax to
equilibrium at long times. Symplectic systems include autonomous Hamiltonian
systems as a special case.

Equation (2.49) also shows how Lyapunov exponents are related to time-
averaged dissipative fluxes and thereby to transport coefficients. We define a
nonlinear transport coefficient in terms of the long time average of the dissipative
flux divided by the dissipative field as

L(Fe) ≡ − lim
t→∞

Jt
Fe

(2.50)

Definition
Then using equations we derive what is known as the Lyapunov sum rule, which
for an N-particle isokinetic system reads

LN (Fe) = −
kBT

∑2DC N
i=1 𝜆i

F2
e V

(2.51)
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For homogeneously thermostatted systems that are adiabatically symplectic,
Evans, Cohen, and Morriss (1990) have shown that the Lyapunov spectrum has
a conjugate pairing symmetry about the time-averaged value of the thermostat
multiplier so that the nonlinear transport coefficient can be calculated by
summing any conjugate pair of Lyapunov exponents. Since the largest and the
smallest exponents are the easiest to compute, for such systems we can write

LN (Fe) = −
kBT

(
𝜆max + 𝜆min

) (
2DCN − f

)
∕2

F2
e V

(2.52)

Definition
Equation (2.52) is an example of the conjugate pairing rule for homogeneously
thermostatted, adiabatically symplectic systems.

Equations (2.51) and (2.52) show how apparently abstract mathematical quan-
tities such as Lyapunov exponents, which characterize the stability or otherwise
of phase space trajectories, are related to measurable physical properties such as
transport coefficients. In physical systems of thermodynamic interest, the Lya-
punov spectra are very smooth.

For thermostatted steady states, the Lyapunov sum is negative. This indicates
that the phase space collapses toward a lower dimensional attractor in the original
phase space. A number of relationships have been conjectured to characterize the
dimension of this object whose volume is preserved by the dynamics (the so-called
invariant steady-state attractor).

Definition
For systems of interacting particles, this dimension is commonly taken to be
the Kaplan–Yorke dimension defined as (Kaplan and Yorke, 1979; Frederickson,
Kaplan, and Yorke, 1983)

DKY ,N ≡ NKY +
NKY∑
i=1

𝜆i∕
|||𝜆NKY+1

||| (2.53)

where NNKY
is the largest integer for which

∑NKY
i=1 𝜆i > 0. As you sum the Lyapunov

exponents from the largest to the smallest, you start by summing at least one
positive number – because the system is chaotic. If the system satisfies the sec-
ond “law” of thermodynamics, the time-averaged thermostat multiplier is positive,
indicating that, on average, work is converted to heat that must be removed by the
thermostat in order to maintain steady state conditions. From the Lyapunov sum
rule, that is, Eq. (2.52), we see that summing all the Lyapunov exponents gives a
negative number. Somewhere during the summation process, the running sum
changed from being positive to negative. Using linear interpolation between the
integer exponents, the Kaplan–Yorke dimension is determined and is considered
to be a measure of the dimension of that object whose volume is preserved by the
dynamics. In typical systems of thermophysical interest, the ostensible dimension
of phase space is O(6NA) where NA is Avogadro’s number. The typical dimensional
reduction is, by way of contrast, exceedingly small O(1)! In the linear response
regime close to equilibrium, there is an exact relation between the Kaplan–Yorke
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dimension of the steady state and the zero-field transport coefficient for an N-
particle system (Evans et al., 2000):

LN (Fe = 0) = lim
Fe→0

(2DCN − f − DKY ,N (Fe))𝜆max(Fe)kBT
VF2

e
(2.54)

In this limit, the dimensional reduction is less than 1: 2DCN − f −
DKY ,N (Fe) < 1.

These remarkable equations show not only how to calculate the Kaplan–Yorke
dimension of the invariant steady state attractor but also how this dimensional
reduction is related to a physical property, namely a transport coefficient.

It is important to remember that, although we can use the Kaplan–Yorke con-
struction to determine the dimension of an invariant mathematical object, the
phase continuity equation for nonequilibrium steady states shows that on average
the 6N-dimensional volume occupied by an ensemble of phase space trajecto-
ries contracts forever (see Eq. (2.36)) and is never stationary no matter how long
the trajectories are run. The Kaplan–Yorke construction is just a mathematical
construction. Important physical information is conveyed in the rate of collapse
toward the zero volume attractor. In nonequilibrium steady states, this collapse
continues forever. The reduced dimension of the nonequilibrium steady state only
has consequences for some phase functions.

Definition
We define a physical phase function A(𝚪) to be any physical property that can be
written as a function of the phase space vector 𝚪. Examples include the internal
energy H0(𝚪) and the pressure tensor 𝐏(𝚪) =

[∑
i∈V𝐩i𝐩i + 1∕2

∑
i,j𝐅ij

(
𝐪i − 𝐪j

)]
∕V

(for bulk systems with pair interactions only). These physical phase functions have
meaning for an individual microstate. For autonomous Hamiltonian systems, the
internal energy in a co-moving (or nonmoving) reference frame is a constant of the
motion: dH0(𝚪)∕dt = �̇� ⋅ 𝜕H0(𝚪)∕𝜕𝚪 = 0. For adiabatic SLLOD dynamics, the xy
element of the pressure tensor is the dissipative flux, and satisfies Eq. (2.20) instan-
taneously for an individual mechanical N-particle system: Ḣ0(𝚪) = −Pxy(𝚪)�̇�(t)V !

Of course, one can calculate the average value of these physical phase
functions for a macroscopic ensemble of systems: ⟨A(t)⟩ ≡ ∫ d𝚪A(𝚪)f (𝚪; t).
When this is done, the averages of physical phase functions can be expressed
as functionals of low order distribution functions (e.g., the singlet, pair, or
three-body distribution functions (Evans and Rondoni, 2002), f (1)(𝐪,𝐩), f (2)(𝐪1,

𝐪2,𝐩1,𝐩2), f (3)(𝐪1,𝐪2,𝐪3,𝐩1,𝐩2,𝐩3), etc.). Without ensemble averaging, the value
of these physical phase functions gives the value of the physical property for an
individual microstate (e.g., its instantaneous energy, stress kinetic temperature
or pressure). This is what we mean when we use the description “physical phase
function.”

In contrast, the Gibbs entropy −kB ∫ d𝚪 f (𝚪; t) ln(f (N)(𝚪; t) is a functional of
the full N-particle distribution function f (𝚪; t) ≡ f (N)(𝐪,𝐩; t), which cannot be
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expressed in terms of only the low order distribution functions. A criterion for
whether a phase function is high or low order can be made on the basis of whether
it is a functional of distributions that span a space whose dimension is higher or
lower than the Kaplan–Yorke dimension.

As mentioned previously, in real experimental nonequilibrium steady states
the Kaplan–Yorke dimension of the steady state attractor is typically very
close to the ostensible dimension of phase space. In real situations, the dimen-
sional reductions are tiny (Evans et al., 2000). Low order phase functions
are formed by integrating over many of the coordinates and momenta of
the N-particle distribution function. This smooths any singularities present in
the high order distributions. The low order distributions do not notice that the
nonequilibrium steady state phase space distribution is fractal. Only high order
functions like the entropy and the various free energies are affected by the fractal
singularities.

Unlike the case for physical phase variables, you cannot calculate the contri-
bution an individual microstate makes to the entropy f (𝚪; t) ln(f (𝚪; t)) without
knowledge of the full N-particle phase space distribution, f (𝚪; t). The phase space
probability density is a property that can be determined only from knowledge
of the entire macroscopic ensemble. Unlike physical phase functions, there is no
microscopic meaning that can be attached to the Gibbs entropy of an individ-
ual microstate at phase space vector 𝚪 at time t. In this sense, Gibbs entropy is
not a physical property of a mechanical microstate. It is, in fact, a property of the
ensemble of microstates.

2.6
Gibbs Entropy in Deterministic Nonequilibrium Macrostates

Definition
The fine-grained Gibbs entropy SG is defined as

SG(t) ≡ −kB∫D
d𝚪 f (𝚪; t) ln [ f (𝚪; t)] (2.55)

See Section 5.6 and Chapter 8 for discussions on why this quantity is useful at
equilibrium. At this stage we do not discuss why entropy is defined in this way. As
mentioned above, the Gibbs entropy is obviously a functional of the full N-particle
distribution function.

We will, however, explain why this quantity is so problematic in deterministic
nonequilibrium steady states (Evans, Williams, and Searles, 2011). We know that
the nonequilibrium density is distributed in a space of lower dimension than the
ostensible phase space dimension: for example, 2DC(Nth − 1) − 1 for a system with
a Gaussian thermostat or ergostat. This is analogous to condensing a density from
a two-dimensional area onto a one-dimensional line. When the entropy is defined
as above, the integral is to be taken over the ostensible phase space D. This is highly
problematic because almost everywhere in the phase space the density measured
with respect to the ostensible dimension is zero!
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The fact is that you can only calculate the entropy if you know the dimension
and the topology of the measure. However, the dimension is known only approx-
imately and the topology is, in general, not known at all.

If we use the phase continuity equation, we can attempt to calculate how this
fine-grained entropy changes in time for an isokinetic system:

ṠG(t) = −kB∫ d𝚪 [1 + ln(f )]
𝜕f
𝜕t

= kB∫ d𝚪 [1 + ln(f )] 𝜕

𝜕𝚪
⋅ [�̇�f ]

= −kB∫ d𝚪 f �̇� ⋅
𝜕

𝜕𝚪
[1 + ln(f )]

= −kB∫ d𝚪�̇� ⋅
𝜕f
𝜕𝚪

= kB∫ d𝚪 f (𝚪; t) 𝜕

𝜕𝚪
⋅�̇�(𝚪, t) = −kB(DC(Nth − 1) − 1)⟨𝛼(t)⟩ (2.56)

Integration by parts is used in going from the second to the third line,
with the boundary terms equaling zero. In a nonequilibrium steady state,⟨𝛼(t)⟩ = const > 0 (the sign of the average can be proved from the fluctuation
theorem, see Section 3.2 and noting the relationship between the average of the
dissipation function and the thermostat multiplier), so the entropy apparently
diverges at a constant rate toward negative infinity!

If there are no thermostats, as in an autonomous Hamiltonian system, the
fine-grained Gibbs entropy is simply constant because �̇� ⋅ 𝜕∕𝜕𝚪 = 0. So for
autonomous Hamiltonian systems, the entropy, which only exists at the level of a
macroscopic ensemble, is a constant of the motion as the entire ensemble evolves
in time. That ensemble consists of an infinite set of noninteracting N-particle
systems. Entropy is not a physical property that can be ascribed to an individual
N-particle microstate.

One may object that in Eq. (2.56) the integrations by parts involve boundary
terms that may be nonzero. This is not the case, however. If we consider an
autonomous Hamiltonian system that has some arbitrary initial distribution,
we can show that the Gibbs entropy is time-independent directly rather than
showing that its time derivative is zero.

We know from the streaming form of the phase continuity equation (2.26) that
f (St𝚪; t) = f (𝚪; 0). This is because f (Ss𝚪; t) = exp

[
− ∫ t

0 dsΛ (Ss𝚪)
]

f (𝚪; 0) and for
Hamiltonian dynamics Λ(𝚪) ≡ 0. We use Eq. (2.55) to calculate the entropy at
some time t.

SG(t) = −kB∫ d(St𝚪) f (St𝚪; t) ln[f (St𝚪; t)]

= −kB∫ d(St𝚪) f (𝚪; 0) ln[f (𝚪; 0)]

= −kB∫ d𝚪
|||||
𝜕
(
St𝚪

)
𝜕𝚪

||||| f (𝚪; 0) ln[f (𝚪; 0)]

= −kB∫ d𝚪 f (𝚪; 0) ln[f (𝚪; 0)] = SG(0) (2.57)
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The first line uses St𝚪 as a dummy integration variable in Eq. (2.55). The second
line uses the streaming phase continuity relation for Hamiltonian systems. The
fourth line uses the fact that the Jacobian in line 3 is, for Hamiltonian systems,
unity.

The constancy of the entropy for autonomous Hamiltonian systems is almost
never commented on in textbooks for physics, chemistry, or chemical engineer-
ing students. It is discussed in more mathematical texts on dynamical systems
theory. This constancy was first discovered by Gibbs in 1903 (Gibbs, 1981). It was
commented on extensively in the exhaustive, but ultimately inconclusive, Ehren-
fest review of the foundations of statistical mechanics (Ehrenfest and Ehrenfest,
1990).

Because the entropy is so problematic in nonequilibrium systems, it will play no
role in our discussions of nonequilibrium phenomena. We will meet it again when
we discuss equilibrium systems in Chapter 8.

2.A Appendix: Phase Space Expansion Calculation

Here we consider the slightly tricky issue of computing the exact phase space
expansion factor for Gaussian isokinetic dynamics. We treat the isokinetic case
because it is less straightforward than the Nosé–Hoover case.

As discussed above, there are two ways of considering phase space expansion
when there are constants of the motion: using the full 2DCN dimensional space,
where DC is the Cartesian dimension of phase space and N is the number of
particles, or to assume that the ostensible phase is the hyperspace within that
2DCN space defined by those constants of motion. In the treatment below, we
consider the latter choice. As an example of a case where the former case is con-
sidered for calculation of the phase space expansion, see Bright, Evans, and Searles
(2005).

For simplicity, consider a three-dimensional N-particle system obeying the
following dynamics:

�̇�i =
𝐩i
m

�̇�i = 𝐅i(𝐪) − 𝛼𝐩i

𝛼 =

N∑
i=1

𝐅i ⋅ 𝐩i

N∑
i=1

p2
i

(2.A1)

As always, the momenta are peculiar so

N∑
i=1

𝐩i = 𝟎 (2.A2)
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With this choice for the thermostat multiplier, the peculiar kinetic energy is also
constant:

N∑
i=1

pi(t)2∕2m = K , ∀t (2.A3)

The four constraints Eqs. (2.A2) and (2.A3) imply that the 3N Cartesian momen-
tum components are not all independent, so one cannot compute the usual phase
space expansion factor:

Λ = 𝜕∕𝜕𝚪 ⋅ �̇�(𝚪) =
N∑

i=1

𝜕∕𝜕𝐩i ⋅ (−𝛼𝐩i) (2.A4)

where we have assumed AI𝚪. The difficulty is that, in general, you cannot vary one
Cartesian momentum component keeping all other 3N − 1 components fixed and
still satisfy Eq. (2.A2).

We resolve this situation by effectively eliminating the degrees of freedom asso-
ciated with the Nth particle and compute the phase space expansion factor as

Λ =
N−1∑
i=1

𝜕∕𝜕𝐩i ⋅ (−𝛼𝐩i)

= −(3N − 3)𝛼 −
N−1∑
i=1

𝐩i ⋅ 𝜕∕𝜕𝐩i𝛼

= −(3N − 3)𝛼 −
N−1∑
i=1

𝐩i ⋅ 𝜕∕𝜕𝐩i

N−1∑
j=1

𝐅j ⋅ 𝐩j +

(N−1∑
j=1

𝐅j

)
⋅

(N−1∑
j=1

𝐩j

)

N−1∑
j=1

p2
j +

(N−1∑
j=1

𝐩j

)2

= −(3N − 3)𝛼 −

N−1∑
i=1

𝐅i ⋅ 𝐩i +

(N−1∑
i=1

𝐅j

)
⋅

(N−1∑
i=1

𝐩i

)

2mK

+ 2

N−1∑
i=1

𝐅i ⋅ 𝐩i +

(N−1∑
j=1

𝐅j

)
⋅

(N−1∑
j=1

𝐩i

)

(2mK)2

⎡⎢⎢⎣
N−1∑
i=1

p2
i +

(N−1∑
j=1

𝐩i

)2⎤⎥⎥⎦
= −(3N − 4)𝛼 (2.A5)

In calculating this derivative, we still have one constraint. However the two terms
involving the partial derivatives, namely

∑N−1
i=1

𝜕∕𝜕𝐩i ⋅ 𝐩i and
∑N−1

i=1 𝐩i ⋅ 𝜕∕𝜕𝐩i, are
independent of the value of the peculiar kinetic energy. So although the virtual
displacement taken in the derivative violates the kinetic energy constraint, the
answer that is computed is independent of the value of the kinetic energy. In fact,
one could transform to a normalized momentum 𝐩′i for which the scaled kinetic
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energy could not vary. The results so obtained are still given by Eq. (2.A5) because∑N−1
i=1

𝜕∕𝜕𝐩i ⋅ 𝐩i =
∑N−1

i=1
𝜕∕𝜕𝐩′i ⋅ 𝐩

′
i , and so on.

The same calculation for Nosé–Hoover thermostats in the phase space
extended to include the thermostat multiplier 𝛼 shows that in that case the phase
space expansion factor is −(3N − 3)𝛼 because the second term in the second line
of Eq. (2.A5) is absent.
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3
The Evans–Searles Fluctuation Theorem

Hence the Second Law of thermodynamics is continually being violated
and that to a considerable extent in any sufficiently small group of
molecules belonging to any real body. As the number of molecules in the
group is increased, the deviations from the mean of the whole become
smaller and less frequent; and when the number is increased till the group
includes a sensible portion of the body, the probability of a measurable
variation from the mean occurring in a finite number of years becomes so
small that it may be regarded as practically an impossibility.

(Maxwell, 1878, p. 280)

3.1
The Transient Fluctuation Theorem

The first proof (1994) of any fluctuation theorem was for a special case of what
is now known as the Evans–Searles transient fluctuation theorem (ESFT). Here
we give a very general proof. Consider the response of a system, initially in some
known but arbitrary distribution,

f (𝚪; 0) =
exp[−F(𝚪)]

∫D
d𝚪 exp[−F(𝚪)]

(3.1)

where F(𝚪) is some arbitrary single-valued real function for which f (𝚪; 0) =
f (MT𝚪; 0) (i.e., the initial distribution is an even function of the momenta), over
some specified phase space domain D. 𝚪 is the extended phase space vector, which
includes the phase space vector and may include additional dynamical variables
such as the volume (in, say, isobaric systems) or the thermostat multiplier
associated with a possible Nosé–Hoover thermostat.

Consider any system whose dynamics is described by continuous, determinis-
tic, time-reversible equations of motion. The equations of motion may have an
applied dissipative field, or the field may be zero. If the field is zero, then in order
to see anything interesting, the initial distribution should not be preserved by the
equations of motion (if it is preserved, then the ESFT is completely trivial). On the
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other hand, if a dissipative field is applied, then it is frequently useful to consider
the case where the initial distribution is the equilibrium distribution for the field
free dynamics.

We assume that the unthermostatted equations of motion satisfy the AI𝚪 con-
dition. A thermostat may be added (e.g., as in Eq. (2.14)), but again this is not
absolutely essential. The equations of motion must, however, be time-reversal-
symmetric.

Definition

The time-averaged dissipation Ωt(𝚪) along a trajectory originating at phase 𝚪 and
averaged for a time t is defined as (Evans and Searles, 2002; Searles and Evans,
2000)

∫
t

0
dsΩ(Ss𝚪) ≡ ln

(
f (𝚪; 0)

f (MT St𝚪; 0)

)
− ∫

t

0
Λ(Ss𝚪)ds

≡ Ωt(𝚪)t ≡ Ωt(𝚪) (3.2)

It is useful to define 𝚪∗ ≡ MT St𝚪. From Eq. (2.9) we know that this phase space
vector is the origin of the conjugate antitrajectory to that trajectory starting at 𝚪.
Going forward in time with the natural propagator from𝚪∗ is like going backwards
in time from St𝚪 except that the velocities are reversed – see Eq. (2.9).

Definition
A system is said to be ergodically consistent over a phase space domain D if

∀𝚪 ∈ D, st f (𝚪; 0) ≠ 0,
MT St𝚪 ∈ D, and f (MT St𝚪; 0) ≠ 0, ∀t (3.3)

In order for the dissipation function to be well defined over the phase space
domain D, the system must be ergodically consistent over D. There are systems
that fail to satisfy this condition. For example, if we let the initial distribution be
microcanonical, and if the dynamics does not preserve the energy (there may
be a dissipative field but no ergostat, etc.), then ergodic consistency obviously
breaks down.

Ergodic consistency also implies that, for almost all trajectories that start at a
phase vector 𝚪 inside the domain D, the conjugate antitrajectory that starts at
MT St𝚪 is also inside D. We say “almost all” because, if there is a zero measure
set of trajectories that have missing antitrajectories, this will not violate Eq. (3.3).
Ergodic consistency is concerned with phase space density but not with zero mea-
sure objects (e.g., individual phase space trajectories). As mentioned in Chapter 1,
almost all Loschmidt’s antitrajectories exist in the initial distribution of states.

We note that the phase space domain should be specified in consideration of
phase space averages, although this is often not done. If N particles are physically
constrained to be located in a physical region (by impenetrable walls or so), then
the specification of the domain can be very important.
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We can rewrite the definition of the dissipation function so that it directly gives
the ratio of the probabilities p, at time zero, of observing sets of phase space trajec-
tories originating inside infinitesimal volumes of phase space 𝛿V𝚪 and 𝛿V𝚪(𝚪∗) ≡
𝛿V𝚪(MT St𝚪).

p(𝛿V𝚪(𝚪; 0))
p(𝛿V𝚪(𝚪∗; 0))

=
f (𝚪; 0)𝛿V𝚪(𝚪)

f (𝚪∗; 0)𝛿V𝚪(𝚪∗)
lim 𝛿V𝚪→0

→
f (𝚪; 0)
f (𝚪∗; 0)

exp
[
−∫

t

0
ds Λ (Ss𝚪)

]
= exp[Ωt(𝚪)t] (3.4)

We have used Eq. (2.36) for 𝛿V𝚪(𝚪)∕𝛿V𝚪(St𝚪), together with the observation that
the Jacobian for the time reversal map is unity, 𝛿V𝚪(MT𝚪∗)∕𝛿V𝚪(𝚪∗) = 1. The third
line follows by a trivial use of the definition of Eq. (3.2).

Throughout this book, we will assume that the initial distribution is invariant
under the time-reversal mapping, MT and f (MT𝚪; 0) = f (𝚪; 0).

Eq. (3.4) shows that the time integral of the dissipation function gives the log-
arithm of the probability ratio of observing, at time zero, an infinitesimal set of
trajectories relative to the conjugate set of anti-trajectories. Thus one way to think
of the dissipation function is as a measure of the temporal asymmetry inherent
in sets of trajectories originating from an initial distribution of states. As noted in
Evans, Williams, and Searles (2010), its ensemble average is the relative entropy
or Kullback–Leibler divergence (see also Kawai, Parrondo, and Broeck (2007)).
As we will see, the dissipation function has an extensive set of properties.

What is not so obvious is that this definition of the time-averaged dissipation
function even applies to some non-autonomous systems. If a time-dependent
external field has a definite parity under time reversal over some given interval of
time [0, t], the conjugate sets of trajectories and antitrajectories still exist and the
time-averaged dissipation can still be calculated using Eq. (3.4).

We have not said anything about how we could choose 𝛿V𝚪. Now suppose we
choose the volume element 𝛿V𝚪 to be the set of volume elements in D within which
all trajectories originating at time zero from within that volume have the time-
averaged dissipation function Ωt(𝚪) = (A ± 𝛿A). Then we have

lim
𝛿A→0

p(𝛿V𝚪(𝚪; 0))
p(𝛿V𝚪(𝚪∗; 0))

= lim
𝛿A→0

f (𝚪; 0)𝛿V𝚪(𝚪)
f (𝚪∗; 0)𝛿V𝚪(𝚪∗)

= exp[Ωt(𝚪)t]
= exp[At] (3.5)

Using the time reversal symmetry of the equations of motion, all trajectories orig-
inating within 𝛿V𝚪∗ must have the property Ωt(𝚪∗) = −(A ± dA) and therefore we
see that

p(Ωt = A)

p(Ωt = −A)
= exp[At] (3.6)

This is the ESFT.
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The result is clearly asymmetric. The integrated dissipation function itself is odd
under time reversal. In Eq. (3.6), if A is positive, then Eq. (3.6) says it is exponen-
tially more likely to observe positive rather than negative time-averaged dissipa-
tion. If, on the other hand, A is negative, then it is exponentially more unlikely to
observe negative rather than positive time-averaged dissipation. Regardless of the
sign of A, the implication is the same: positive time-averaged dissipation is more
likely than its complementary negative counterpart.

What is not so obvious is that, for a given system, there may be multiple non-
contiguous phase space subvolumes each of which has a time-averaged dissipation
equal to A± dA. However, because the system is ergodically consistent, every such
subvolume has its own conjugate phase space subvolume that contains the phase
space vectors for the time-reversed conjugate antitrajectories. Every such subvol-
ume has a time-averaged dissipation of −A± dA. Equation (3.6) is still valid in this
case because, for each conjugate set of trajectories, the ratio on the left-hand side
of Eq. (3.6) is still exp[At], so summing over all the noncontiguous domains leaves
the ratio unchanged.

We need to stress again the conditions required for the derivation of Eq. (3.6):

• The initial distribution should be an even function of the momenta.
• The system is ergodically consistent over the relevant domain.
• The dynamics must be time-reversal-symmetric.
• The dynamics should be smooth.
• Any time-dependent external fields must have a definite parity under time

reversal, over the given time interval.

Some of the conditions can be relaxed for certain systems, however we will not
discuss these in this book.

Since the time-integrated dissipation function itself is extensive in the integra-
tion time and in the number of degrees of freedom, we see that for macroscopic
systems observed for macroscopic times the probability of observing negative
time-integrated dissipation “becomes so small that it may be regarded as prac-
tically an impossibility” – (Maxwell, 1878). It is interesting to note that Maxwell
recognized the importance of both time and system size in relation to observing
violations of the second “Law.” The quote reveals that Maxwell would not be
surprised at the qualitative implications of the ESFT. However, the ESFT gives a
precise quantification of the matter.

It should be noted that the ESFT gives a relation between probabilities of time
integrals of the dissipation function. These time integrals start at the time when the
dissipation function is defined (Eq. (3.2)). The dissipation function is a functional
of both the dynamical equations of motion that determine St𝚪 = exp[iL(𝚪)t]𝚪
from the initial phase𝚪 and also the initial distribution f (𝚪; 0). These “initial” times
need to be one and the same.

The instantaneous dissipation function can be determined by differentiation of
Eq. (3.2):
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𝜕

𝜕t∫
t

0
dsΩ(Ss𝚪) = Ω(St𝚪)

= 𝜕

𝜕t

[
ln ( f (𝚪; 0)) − ln (f (eiL(𝚪)t𝚪; 0)) − ∫

t

0
dsΛ(eiL(𝚪)s𝚪))

]

= − 1
f (eiL(𝚪)t𝚪; 0)

𝜕f (eiL(𝚪)t𝚪; 0)
𝜕t

− Λ(eiL(𝚪)t𝚪)

= − 1
f (eiL(𝚪)t𝚪; 0)

𝜕eiL(𝚪)t𝚪
𝜕t

•
𝜕f (eiL(𝚪)t𝚪; 0)
𝜕(eiL(𝚪)t𝚪)

− Λ(eiL(𝚪)t𝚪)

= − 1
f (eiL(𝚪)t𝚪; 0)

[iL(𝚪)eiL(𝚪)t𝚪] •
𝜕f (eiL(𝚪)t𝚪; 0)
𝜕(eiL(𝚪)t𝚪)

− Λ(eiL(𝚪)t𝚪)

= − 1
f (St𝚪; 0)

�̇�(St𝚪) •
𝜕f (St𝚪; 0)
𝜕(St𝚪)

− Λ(St𝚪). (3.7)

The derivative on the left-hand side of Eq. (3.7) is to be computed at a fixed point
in phase space. It we now set t = 0, we obtain an expression for the instantaneous
dissipation function:

Ω(𝚪) = − 1
f (𝚪; 0)

�̇�(𝚪) •
𝜕f (𝚪; 0)

𝜕𝚪
− Λ(𝚪) (3.8)

The ESFT has generated much interest, as it shows how irreversibility emerges
from the deterministic, time-reversible equations of motion. Its proof is extremely
simple and uses almost nothing but the time reversibility of the underlying dynam-
ics. Because its proof relies on so few assumptions, the ESFT is extremely general.
It is valid arbitrarily far from equilibrium. It applies to systems of arbitrary size.
Taking the classical “thermodynamic limit” is not required.

It provides a generalized form of the second “Law” of thermodynamics that
can be applied to small systems observed for short periods. It also resolves the
long-standing Loschmidt Paradox. The ESFT has been verified experimentally: for
examples, see Wang et al. (2002), Carberry et al. (2004a, 2007), Reid et al. (2004),
Collin et al. (2005), Liphardt et al. (2002), Trepagnier et al. (2004), Schuler et al.
(2005).

The form of the ESFT Eq. (3.6) applies to any valid ensemble/dynamics combi-
nation. However, the precise expression for Ωt given in Eq. (3.2) is dependent on
both the initial distribution and the dynamics.

3.2
Second Law Inequality

We are now in a position to use the ESFT to derive a number of simple inequal-
ities. The derivation of the second law inequality (SLI) from the ESFT provides
what amounts to a proof of the second “Law” of thermodynamics. The SLI shows
that time averages (rather than instantaneous values) of the ensemble-averaged
dissipation are nonnegative. This SLI is valid for the appropriately time-averaged
dissipation but the ensemble-averaged instantaneous dissipation may be negative
for intermediate times.
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The SLI states that (Searles and Evans, 2004)

⟨Ωt⟩ ≥ 0, ∀t > 0 (3.9)

The proof is trivial and is obtained by integration of Eq. (3.6):

⟨Ωt⟩ = ∫
+∞

−∞
dB p(Ωt = B)B

= ∫
+∞

0
dB p(Ωt = B)B + ∫

0

−∞
dB p(Ωt = B)B

= ∫
+∞

0
dB p(Ωt = B)B − ∫

+∞

0
dB p(Ωt = −B)B

= ∫
+∞

0
dB p(Ωt = B)B(1 − exp[−B]) ≥ 0 (3.10)

In linear, irreversible thermodynamics, it is asserted that the quantity called the
spontaneous entropy production cannot be negative. Close to equilibrium, the
ensemble-averaged dissipation for a driven system is equal to the ensemble-
averaged spontaneous entropy production (see Chapter 6). In an electric circuit
close to equilibrium, both quantities are equal to the product of the electric
current times the voltage divided by the ambient temperature. If the circuit has
a complex impedance, there will necessarily be a phase lag between the applied
voltage and the current. This means that for an AC sinusoidal electric circuit, there
will always be intervals within a cycle within which the dissipation or entropy
production is negative. This presents serious difficulties for linear, irreversible
thermodynamics, but the SLI is not presented with any difficulties by this matter.
The SLI only asserts that the time-integrated, ensemble-averaged dissipation
is positive. The time integral begins at the initial time when the dissipation
function itself was defined. The SLI does not state that the ensemble-averaged
instantaneous dissipation must be positive.

Now let us look at Eq. (3.10) in more detail. For every value of B > 0 if
p(Ωt = B) > 0, ergodic consistency implies p(Ωt = −B) > 0. This is because for
every set of trajectories the conjugate set of antitrajectories exists within the
ostensible phase space domain. Furthermore, as can be seen from Eq. (3.10), the
fluctuation theorem shows p(Ωt = B) > p(Ωt = −B) ≠ 0. This, in turn, means
that if the time-integrated dissipation is nonzero for some infinitesimal set of
initial points in phase space near 𝚪

Ωt(𝚪) ≠ 0, 𝚪 ∈ D, t > 0 ⇒ ⟨Ωt⟩ > 0 (3.11)

Definition
A nonzero value for the time-averaged dissipation of an infinitesimal set of phase
space trajectories anywhere in the ostensible phase space domain implies, for
ergodically consistent systems, a strict SLI Eq. (3.11).
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We note that the SLI (both strict and otherwise) has macroscopic consequences
for the fluctuation theorem. The SLI has important consequences in widely varied
applications such as atmospheric physics and aerodynamics.

3.3
Nonequilibrium Partition Identity

This Identity (also referred to as the Kawasaki identity, Kawasaki normalization
factor, Kawasaki function, and the integral fluctuation theorem) was first implied
for Hamiltonian systems by Yamada and Kawasaki in 1967 and was explicitly noted
by Morriss and Evans for thermostatted systems driven by an external field in 1984
(Morriss and Evans, 1985; Evans and Searles, 1995; Carberry et al., 2004b). The
nonequilibrium partition identity (NPI) is stated as follows:⟨

exp
[
−Ωtt

]⟩
= 1 (3.12)

A very simple proof can be obtained using the ESFT given in Eq. (3.6):⟨
exp

[
−Ωtt

]⟩
= ∫

+∞

−∞
dA p(Ωt = A) exp[−At]

= ∫
+∞

−∞
dA p(Ωt = −A)

= ∫
+∞

−∞
dA′ p(Ωt = A′) = 1 (3.13)

It is, at first, quite extraordinary that, although the SLI says the exponent of the NPI
is negative on average, the rare instances when the dissipation function has a neg-
ative time average occur with such frequency that their exponentially enhanced
effect ensures the average of the exponential is always unity. Trivially, we observe
that the NPI is still valid even in the case where Ωt(𝚪) = 0, ∀𝚪 ∈ D.

We note that, in order to observe the NPI in real experimental data, we must be
able to observe the antitrajectories that are conjugate to the most probable trajec-
tories. In macroscopic systems, this may be (as Maxwell already noted) impossible
because of the extremely low probability of observing these events.

For real data, one can only expect to observe time-averaged values of the
dissipation over some finite range. In some experiments, no negative dissipation
averages may be observed. In this case, the NPI cannot be experimentally verified.
Even when negative values are observed, they will generally have a more restricted
range than for the averages that are positive. In such cases, one can prune the
distribution so that it is bounded −B ≤ Ωt ≤ +B with p̃(Ωt = b) ≠ 0, ∀|b| ≤ B
for a bounded, normalized probability distribution p̃ in order to obtain an
experimentally verifiable result. Then we can write⟨

exp
[
−Ωtt

]⟩
−B≤Ωt≤+B

= ∫
+B

0
dA p̃(Ωt = A) exp[−At] + ∫

0

−B
dA p̃(Ωt = A) exp[−At]
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= ∫
+B

0
dA p̃(Ωt = −A) + ∫

0

−B
dA p̃(Ωt = −A)

= ∫
B

−B
dA p̃(Ωt = −A)

= ∫
B

−B
dA′ p̃(Ωt = A′) = 1

= ∫
+B

−B
dA′ p̃(Ωt = A′t) = 1 (3.14)

This restricted range distribution has a vastly better behaved average than the
corresponding unrestricted average in Eq. (3.13). In Eq. (3.13), the average almost
always approaches unity from below, making it extremely difficult to estimate
numerical uncertainties in actual experimental data.

Pruning the probability distribution guarantees ergodic consistency in
the empirical data (i.e., if a value of Ωt = A ± 𝛿A is observed, then so too is
Ωt = −A ± 𝛿A −A± dA). The unpruned distribution violates ergodic consis-
tency of the empirical data. One can observe sets of trajectories with positive
time-averaged dissipation but not observe any of their conjugate antitrajecto-
ries. Increasing the sample size widens the observed range of time-averaged
dissipation but the unpruned distribution will always be ergodically inconsistent
sufficiently far from zero for the negative dissipation states. Furthermore, if the
numerical error in the experimentally determined p(Ωt = −A) is very large, then
it is it is better to exclude it from the integral in the evaluation of Eq. (3.13), as
its magnitude will be amplified by eAt in that expression. This is achieved in Eq.
(3.14) by restricting the bounds.

Lastly, we note that, although the ESFT implies the NPI, the converse is not true
(Carberry et al., 2004b).

3.4
Integrated Fluctuation Theorem (Evans and Searles, 2002)

The fluctuation theorem quantifies the probability of observing time-averaged
dissipation functions having complimentary values. The SLI only states that the
ensemble average of the time-averaged dissipation should be positive rather than
negative. Therefore, it is of interest to construct a fluctuation theorem that pre-
dicts the probability ratio that the time-averaged dissipation function is positive
rather than negative.

In experimental situations where the statistical error is large and the ensem-
ble sample sizes are small, it is useful to be able to predict the probability that
the time-averaged dissipation is negative. The integrated form of the fluctuation
theorem (IFT) (Ayton, Evans, and Searles, 2001) gives a relationship that quanti-
fies the probability of observing Second Law violations in small systems observed
for a short time.
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The ESFT, Eq. (3.6), can be written as

p(Ωt = −A)

p(Ωt = A)
= exp(−At) (3.15)

We wish to give the probability ratio of observing trajectories with positive and
negative values of Ωt , and so we consider

p+(t) ≡ p(Ωt > 0), p−(t) ≡ p(Ωt < 0) (3.16)

Now

p−(t)
p+(t)

=
∫

∞

0
dA p(Ωt = −A)

∫
∞

0
dA p(Ωt = A)

(3.17)

Using Eq. (3.6)

p−(t)
p+(t)

=
∫

∞

0
dA exp(−At)p(Ωt = A)

∫
∞

0
dA p(Ωt = A)

(3.18)

The right-hand side of this equation is just the ensemble average of exp(−Ωtt)
evaluated over that subset of trajectories for which the time-averaged dissipation
is positive.

Again, if we look at Eqs. (3.17) and (3.18) in detail, we see that on the right-hand
side for every value of A > 0 p(Ωt = −A) < p(Ωt = A). This, in turn, means that, if
the time-integrated dissipation is nonzero for any value of A

p(Ωt(𝚪) = A) ≠ 0, ⇒
p−(t)
p+(t)

= ⟨exp(−Ωtt)⟩Ωt>0 < 1 (3.19)

From Eq. (3.18) we can also obtain the reciprocal relationship:
p+(t)
p−(t)

= 1
⟨exp(−Ωtt)⟩Ωt>0

≥ 1 (3.20)

where the equality holds only if p(Ωt = A) = 0, ∀A.
Similarly, it can be shown that

p+(t)
p−(t)

= ⟨exp(−Ωtt)⟩Ωt<0 ≥ 1 (3.21)

where the equality holds only if p(Ωt = A) = 0, ∀A.
We note that in actual experiments where ⟨Ωt⟩ > 0, Eqs. (3.19) and (3.20) have

much smaller statistical uncertainties than Eq. (3.21), because rarely observed tra-
jectory segments with highly negative values of Ωt will have a large influence on
the ensemble average in Eq. (3.21). Consequently, Eq. (3.21) should be avoided in
numerical calculations or laboratory experiments.
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Finally, we note that Eq. (3.21) can be used to show that

p−(t) =

⟨
exp

(
−Ωtt

)⟩
Ωt>0(

1 +
⟨

exp
(
−Ωtt

)⟩
Ωt>0

) , p+(t) =
1(

1 +
⟨

exp
(
−Ωtt

)⟩
Ωt>0

) (3.22)

Obviously, p−(t) + p+(t) = 1, ∀t and, again, p−(t) ≤ p+(t), ∀t. Furthermore, one
can have equality only if there is zero dissipation. Nonzero dissipation anywhere
in the relevant phase space implies p−(t) < p+(t), ∀t!

3.5
Functional Transient Fluctuation Theorem (Evans and Searles, 2002)

The FTs derived above predict the ratio of the probabilities of observing conju-
gate values of the dissipation function. As given above, these theorems give no
information on the probability ratios for any functions other than the dissipation
function, Eq. (3.2). In this section we describe how the FT can be extended to apply
to arbitrary phase functions that have an odd parity under time reversal (Searles,
Ayton, and Evans, 2000).

Let 𝜙(𝚪) be an arbitrary phase function, and define the time average

𝜙i,t =
1
t ∫

t

0
ds𝜙(Ss𝚪i) (3.23)

for a phase space trajectory: Ss𝚪i; 0 < s < t. At t = 0, the phase space volume occu-
pied by a contiguous set of trajectories for which {𝚪i|A − 𝛿A < 𝜙i,t < A + 𝛿A} is
given by 𝛿V𝚪(𝚪), and at time t these phase points will occupy a volume 𝛿V𝚪(St𝚪) =
𝛿V𝚪(𝚪)eΛt t , where Λt is the time-averaged phase space expansion factor along
these trajectories – see Eq. (2.36). We denote 𝜙(t) = ⟨𝜙i,t⟩{i}, that is, the average
value of 𝜙i,t over the set of contiguous trajectories {𝚪i}.

If the dynamics is reversible and the system is ergodically consistent, there will
be a contiguous set of initial phases {𝚪∗

i }, given by𝚪∗
i = MT (St𝚪i), that will occupy

a volume 𝛿V𝚪(𝚪∗) = 𝛿V𝚪(St𝚪) = 𝛿V𝚪(𝚪)eΛt t along which the time-averaged value
of the phase function is𝜙i∗,t = MT (𝜙i,t). For any𝜙i(𝚪) that is odd under time rever-
sal, 𝜙i∗,t = −𝜙i,t .

The probability ratio of observing trajectories originating in an initial phase
volume and its conjugate phase volume will be related to the initial phase space
distribution function and the measure of the volume elements by Eq. (3.4). There-
fore, from the definition of the dissipation function in Eq. (3.2) we obtain

lim
𝛿V𝚪→0

p(𝛿V𝚪(𝚪; 0))
p(𝛿V𝚪(𝚪∗; 0))

= exp[Ωt(𝚪)t] (3.24)
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If the phase function is odd under time reversal symmetry, then the ratio of the
probability of observing trajectories for which A − 𝛿A < 𝜙t < A + 𝛿A to the prob-
ability of observing conjugate trajectories, for which −A − 𝛿A < 𝜙t < −A + 𝛿A, is

p(𝜙t = A)

p(𝜙t = −A)
=

∫𝜙t (𝚪)=A
d𝚪 f (𝚪; 0)

∫𝜙t (𝚪∗)=−A
d𝚪∗ f (𝚪∗; 0)

=
∫𝜙t (𝚪)=A

d𝚪 f (𝚪; 0)

∫𝜙t (𝚪)=A
d𝚪 f (𝚪; 0)e−Ωt (𝚪)t

=
⟨

e−Ωt t
⟩−1

𝜙t=A
(3.25)

where the notation ⟨· · ·⟩
𝜙t=A refers to the ensemble average over (possibly) non-

contiguous trajectory sets for which A − 𝛿A < 𝜙t < A + 𝛿A. Equation (3.25) gives
the ratio of the measure of those phase space trajectories for which 𝜙t = A to the
measure of those trajectories for which 𝜙t = −A.

This is the functional transient fluctuation theorem (FTFT) for any phase vari-
able 𝜙t that is odd under time reversal. Provided it has a definite parity under time
reversal symmetry, the actual form of 𝜙t is quite arbitrary.

If the phase variable is even under time reversal symmetry, then we cannot
obtain the relationship between p(𝜙t = A)∕p(𝜙t = −A) using the time reversal
properties of the dissipation function.

3.6
The Covariant Dissipation Function

As we have seen already, the dissipation function is a rather important function in
statistical mechanics. In later chapters we will see that it plays a key role in almost
all aspects of nonequilibrium statistical mechanics – in response theory and in
understanding the process of relaxation toward equilibrium. It is defined in terms
of the initial distribution of states and also by the dynamical equations of motion.

What happens to the dissipation function if we redefine the dissipation func-
tion in terms of the time-evolving N-particle phase space distribution function
rather than the initial distribution? The time-covariant dissipation function could
be written as

Ω𝜏 (St1𝚪; t1) ≡ ln

(
f
(
St1𝚪; t1

)
f (MT St1+𝜏𝚪; t1)

)
− ∫

t1+𝜏

t1

Λ(Ss𝚪)ds (3.26)

where the dissipation function is integrated for a time 𝜏 but defined with respect
to the phase space density at time t1 rather than at the usual time zero. By con-
structing the ESFT at time t1 and allowing this time to increase without bound, we
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could construct an exact, steady-state FT for thermostatted driven systems that
evolved toward nonequilibrium steady states. This steady-state FT would not be
asymptotic, unlike the FT to be discussed in Section 6.10.

However, there is a serious problem posed by this scenario. The time-integrated
dissipation function is related to a number of important physical properties. We
have met only a small number of these properties thus far in this book. This means
that there must be some kind of invariance of properties satisfied by the dissipation
function. So you really cannot constantly redefine the quantity.

From the definition Eq. (3.26) we see that

lim
𝛿V𝚪→0

p
[
𝛿V𝚪

(
St1𝚪

)
; t1)

]
p
[
𝛿V𝚪

(
MT St1+𝜏𝚪

)
; t1

] = lim
𝛿V𝚪→0

f (St1𝚪; t1)𝛿V𝚪(St1𝚪)
f (MT St1+𝜏𝚪; t1)𝛿V𝚪(MT St1+𝜏𝚪)

= exp
[
Ω𝜏

(
St1𝚪; t1

)]
(3.27)

Now all the trajectories that arrive in 𝛿V𝚪(St1𝚪) at time t1 started out within 𝛿V𝚪(𝚪)
at time zero. All the trajectories that arrive at 𝛿V𝚪(St1+𝜏𝚪) at time t1 + 𝜏 would have
continued on to 𝛿V𝚪(S2t1+𝜏𝚪) at time 2t1 + 𝜏 . Furthermore, all trajectories within
the volume element 𝛿V𝚪(S2t1+𝜏𝚪) at time 2t1 + 𝜏 started within 𝛿V𝚪(𝚪) at time
zero. So in fact

lim
𝛿V𝚪→0

p
[
𝛿V𝚪

(
St1𝚪

)
; t1

]
p
[
𝛿V𝚪

(
MT St1+𝜏𝚪

)
; t1

] = lim
𝛿V𝚪→0

p[𝛿V𝚪(𝚪); 0]
p
[
𝛿V𝚪

(
MT S2t1+𝜏𝚪

)
; 0
] (3.28)

For the antitrajectories, going backwards in time from t1 to zero is like going
forward in time an additional amount t1 from time t1 + 𝜏 , and therefore (Evans,
Searles, and Williams, 2010)

Ω𝜏 (St1𝚪; t1) = Ω2t1+𝜏 (𝚪; 0) (3.29)

The antitrajectories at time zero to those within 𝛿V𝚪(𝚪) are the time reversal
mapped phases of those in 𝛿V𝚪(S2t1+𝜏𝚪).

So there is no new information contained within the time-covariant dissipa-
tion function. This leads to the following very important observation: There is no
time-local, non-asymptotic ESFT for steady states with time-reversible determin-
istic dynamics.

3.7
The Definition of Equilibrium

If a system is very weakly coupled to a heat bath at a given ‘temperature,’ if
the coupling is indefinite or not known precisely, if the coupling has been
on for a long time, and if all the ‘fast’ things have happened and all the ‘slow’
things not, the system is said to be in thermal equilibrium.

(Feynman, 1972)

One of the aims of this book is to understand the true nature of thermal equi-
librium. We will return to discuss the nature of equilibrium many times in this
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book, each time with a little more knowledge than before, until at the end of
Chapter 5 we will be able to demonstrate that the definition we are about to intro-
duce, indeed, encompasses each aspect of the qualitative notion of equilibrium
given by Feynman in the quote above.

It may seem somewhat odd that we should introduce a definition of equilib-
rium in a chapter that is mostly devoted to discussing nonequilibrium systems.
However, you cannot really understand equilibrium without first knowing how
nonequilibrium systems relax toward equilibrium.

Definition
An equilibrium system is characterized by an N-particle phase space distribution
and a dynamics for which, over the phase space domain D, the time-integrated
dissipation function is identically zero:

Ωeq,t(𝚪) = 0, ∀𝚪 ∈ D, ∀t > 0

⇒ ⟨(Ωeq,tt)⟩ = 0, ∀t > 0
⇒ peq,+(t) = peq,−(t), ∀t > 0 (3.30)

Although this is a convenient definition of equilibrium, we do not yet know
whether equilibrium systems exist or whether such systems are stable. It turns
out that the answer to both these questions is yes, but these answers will be given
only in the next chapters.

We have already seen that the only way ⟨Ωt⟩ = 0 is if the instantaneous dis-
sipation and the time-averaged dissipation are both zero everywhere, Eq. (3.30).
Consequently the ensemble-averaged, time-integrated dissipation is zero if and
only if the time-integrated dissipation is zero almost everywhere in the ostensible
phase space:

⟨Ωt⟩eq = 0 ⇔ Ωt(𝚪) = 0, ∀!𝚪 ∈ D, ∀t > 0 (3.31)

Definition
Equation. (3.31) is called the second law equality.

A number of corollaries follow immediately. From Eq. (3.30) we observe that,
for equilibrium systems that are ergodically consistent over D, the probability of
observing every infinitesimal set of phase space trajectories is equal to the proba-
bility of observing, at time zero, the conjugate set of antitrajectories:

peq(𝛿V𝚪(𝚪); 0)
peq(𝛿V𝚪(MT St𝚪); 0)

= 1, ∀!𝚪 ∈ D, ∀t (3.32)

The equilibrium state is therefore time-reversal-symmetric.
For instance, if we compute the Lyapunov spectrum {𝜆i; i = 1,… , d;𝚪(0)} for

a system with time-reversible dynamics, for a trajectory originating at 𝚪(0), we
know that for any steady system (nonequilibrium steady state or an equilibrium
state) the spectra have the property that if we reverse the direction of time, the
largest, most positive exponent will be −1 times the smallest, most negative
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exponent of the original system. If we denote the exponents of the time-reversed
system as {𝜆∗i ; i = 1, … , d;𝚪∗(0)}, we will have

𝜆∗i (𝚪
∗(0)) = −𝜆f −i+1(𝚪(0)), ∀!𝚪(0) ∈ D (3.33)

where f is the number of nonzero Lyapunov exponents in the system.
Now, if we further assume that the system is an ergodic equilibrium system, we

see that the spectrum must be independent of the initial phase 𝚪(0) or 𝚪∗(0). This
means that the spectrum for the trajectory must be the same as the spectrum of
the antitrajectories. At equilibrium, therefore the time reversal map transforms
the spectrum into itself. This means that, at equilibrium

𝜆eq,i = −𝜆eq, f −i+1(𝚪(0)), ∀i (3.34)

Definition
This is termed the conjugate pairing rule for equilibrium systems.

All ergodic equilibrium systems have Lyapunov spectra that, apart from any
unpaired zero exponents, consist of conjugate pairs of exponents that each sum to
zero. The conjugate paired exponents define sets of two-dimensional areas that are
each preserved in measure by the natural dynamics. The Kaplan–Yorke dimension
of an ergodic equilibrium system is equal to the number of Lyapunov exponents
(including unpaired zero exponents), which is also the ostensible dimension of the
phase space. For these systems, the ostensible phase space volume is at least, on
average, preserved by the natural dynamics.

Thus far we have only discussed equilibrium systems in the context of time-
integrated dissipation. Later, in Chapter 4 we will talk about equilibrium in the
context of instantaneous dissipation. At the moment we do not know whether
Ωt(𝚪) = 0, ∀𝚪 ∈ D ⇒ Ωt+𝜏 (𝚪) = 0, ∀𝚪 ∈ D, t, 𝜏 > 0. These questions and others
will be answered in the next chapter.

3.8
Conclusion

One often sees in the historical, and even in the recent, literature statements that
imply irreversibility results from the special nature of the initial state. For example

it is in any case impossible on the basis of present theory to carry out a
mechanical derivation of the second law without specializing the initial
state

E. Zermelo translated by Brush (1966, pp. 194–202).

or

I have called it one of the most brilliant confirmations of the mechanical
view of Nature that it provides an extraordinarily good picture of the dissi-
pation of energy, as long as one assumes that the world began in an initial
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state satisfying certain conditions. I have called this state an improbable
state.

A quote from: “A word from mathematics to energism”
L. Boltzmann interpretted by Broda (1983, p. 74).

The time-asymmetry comes merely from the fact that the system has been
started off in a very special (i.e., low entropy) state.

(Penrose, 1990, p. 408)

With respect to the fluctuation theorem, the initial state need not be a state of
particularly low probability. Equation (3.1) is a rather general distribution func-
tion, and the FT holds for all distributions subject to the rather mild assumptions
given above. This initial state simply cannot be an equilibrium state because, if this
is so, everything is time-reversal-symmetric. If there is any dissipation at all, the
probability of positive time-averaged dissipation is exponentially more likely (in
time and in the number of degrees of freedom) than the probability of comple-
mentary negative time-averaged dissipation Eq. (3.6).

What was never realized until the proof of the fluctuation theorem was a rather
simple fact. Loschmidt’s assertion (that for every trajectory there exists a con-
jugate antitrajectory and that summing over all such conjugate pairs implies that
irreversibility is impossible) is simply wrong. One must, instead, consider not indi-
vidual phase space trajectories but the probabilities of infinitesimal sets of trajec-
tories having specified properties within some tolerance. It is this probability ratio
that gives the dissipation function its meaning. It makes no mathematical sense to
think that individual conjugate trajectory pairs somehow cancel each other out.
Only when the system is at equilibrium do the probabilities of observing sets of
trajectories and their conjugate antitrajectories become equal, giving us, for the
first time, a mathematical definition of equilibrium.
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4
The Dissipation Theorem

… the divergences [in the virial expansion of transport coefficients]
somehow implied that the whole classical picture of nonequilibrium
statistical mechanics was wrong, that there was an essential nonanalytic,
non-controlled feature in the theory, that defied ‘Boltzmann’s dream.’

(Cohen, 1990)

4.1
Derivation of the Dissipation Theorem

We now derive the dissipation theorem, which shows that, as well as being the
subject of the Evans–Searles transient fluctuation theorem (ESFT), the dissipation
function is the central argument of both linear response theory (i.e., Green–Kubo
theory) and nonlinear response theory. This theorem was first derived in 2008
(Evans, Searles, and Williams, 2008a,b); see also Williams and Evans (2008).

Taking the solution of the Lagrangian form of the phase continuity Eqs. (2.26)
and (2.29), we can substitute for f (𝚪; 0) using the definition of the time-integrated
dissipation function (3.2), obtaining

f (St𝚪; t) = exp
[
−∫

t

0
dsΛ (Ss𝚪)

]
f (𝚪; 0)

= exp
[
−∫

t

0
dsΛ (Ss𝚪)

]
f (St𝚪; 0) exp

[
∫

t

0
dsΩ(Ss𝚪) + ∫

t

0
Λ (Ss𝚪) ds

]

= f (St𝚪; 0) exp
[
∫

t

0
dsΩ(Ss𝚪)

]
(4.1)

The first line is obtained from Eqs. (2.26) and (2.29). The second line substitutes
for f (𝚪; 0) using the definition of the dissipation function (3.2).

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Equation (4.1) is valid for all 𝚪, so we choose 𝚪 → S−t𝚪. Then, after this remap-
ping, we get

f (𝚪; t) = f (𝚪; 0) exp
[
∫

t

0
dsΩ(SsS−t𝚪)

]

= f (𝚪; 0) exp
[
−∫

−t

0
ds′ Ω(Ss′𝚪)

]
(4.2)

where the second equality is obtained by introducing s′ = s − t. Replacing the
dummy variables gives

f (𝚪; t) = f (𝚪; 0) exp
[
−∫

−t

0
dsΩ(Ss𝚪)

]

= f (𝚪; 0) exp
[
∫

t

0
dsΩ(S−s𝚪)

]
(4.3)

This result shows that the forward time propagator for the N-particle distribu-
tion function exp[−iL(𝚪)t] – see Eq. (2.32): f (𝚪; t) = exp[−iLt] f (𝚪; 0) – has a very
simple relation (backward in time) to the exponential time integral of the dissipa-
tion function. In fact, Eq. (4.3) is a simpler equation. It involves only functions
and their path integrals, whereas Eq. (2.32) involves functions and exponential
integrals of operators.

If we take Eq. (4.3) and differentiate it in time at a fixed point in phase space, we
see that

𝜕f (𝚪; t)
𝜕t

= Ω(S−t𝚪) f (𝚪; t) = −iL(𝚪) f (𝚪; t) (4.4)

where we have used Eq. (2.31) to relate the time derivative of f (𝚪; t) to the f-
Liouvillean.

Equation (4.4) shows there is a very simple relation between the dissipation
function and the f-Liouville operator.

In the case of adiabatic (i.e., unthermostatted) dynamics for an ensemble that
is initially an equilibrium canonical ensemble, this result is equivalent to the dis-
tribution function derived by Yamada and Kawasaki (1967). However, Eq. (4.3) is
much more general and, like the ESFT, can be applied to any initial ensemble and
any time-reversible, and possibly thermostatted, dynamics that satisfies AI𝚪. For
thermostatted dynamics driven by a dissipative field, Eq. (4.3) was first derived in
1985 (Morriss and Evans, 1985).

From Eq. (4.3) we can calculate nonequilibrium ensemble averages of physical
phase functions in the Schrödinger representation:

⟨B(t)⟩Fe, f (𝚪;0) = ∫D
d𝚪B(𝚪) exp

[
−∫

−t

0
dsΩ (Ss𝚪)

]
f (𝚪; 0)

=
⟨

B (0) exp
[
−∫

−t

0
ds Ω (Ss𝚪)

]⟩
Fe , f (𝚪;0)

(4.5)



4.1 Derivation of the Dissipation Theorem 67

Differentiating Eq. (4.5) with respect to time, we find that
d⟨B(t)⟩Fe, f (𝚪;0)

dt
= ∫D

d𝚪B(𝚪)Ω(S−t𝚪)f (𝚪; t)

= ∫D
d𝚪B(St𝚪)Ω(𝚪)f (𝚪; 0)

= ⟨B(t)Ω(0)⟩Fe , f (𝚪;0) (4.6)

If we integrate Eq. (4.6) in time, we can write the averages of physical phase func-
tions (Section 2.5) in the Heisenberg representation as

⟨B(t)⟩Fe, f (𝚪;0) = ⟨B(0)⟩f (𝚪;0) + ∫
t

0
ds⟨Ω(0)B(s)⟩Fe , f (𝚪;0) (4.7)

On both sides of Eq. (4.7), the time evolution is governed by the full field-
dependent, thermostatted equations of motion (Eq. (2.14)).

Definition
The derivation of Eq. (4.7) from the definition of the dissipation function (3.2)
is called the dissipation theorem (Evans, Searles, and Williams, 2008a,b). This
theorem is extremely general and allows the determination of the ensemble
average of an arbitrary physical phase function under very general conditions.
We require time-reversible autonomous dynamics, an initial distribution that is
invariant under the time reversal map MT , and ergodic consistency so that the
dissipation function is nonsingular.

Like the ESFT, Eqs. (4.5) and (4.7) are valid arbitrarily far from equilibrium.
Equation (4.5) can be obtained for time-dependent fields by including the explicit
time dependence, but Eq. (4.7) cannot (Williams and Evans, 2008). As in the
derivation of the ESFT, the only unphysical terms in the derivation are the ther-
mostatting terms within the wall region. However, because these thermostatting
particles can be moved arbitrarily far from the system of interest, the precise
mathematical details of the thermostat are unimportant. If the number of degrees
of freedom in the reservoir is much larger than that of the system of interest, the
reservoir can be assumed to be in thermodynamic equilibrium. In this case, there
is therefore no difficulty in defining the thermodynamic temperature of the walls.

If the reservoir or thermostat is comparable in size to the system of interest,
then both the reservoir and the system of interest may be far from equilibrium.
The temperature, which is implicit in the actual expression for the dissipation
function, is the equilibrium thermodynamic temperature both systems will relax
to if the dissipative field is set to zero and both systems are allowed to relax to ther-
mal equilibrium – see Chapter 5. For isokinetic systems, this is equal to the kinetic
temperature of the thermostat. For Nosé–Hoover thermostatted systems, this is
the target temperature of the Nosé–Hoover thermostat – regardless of the value
of the Nosé–Hoover time constant. The instantaneous kinetic temperature of the
Nosé–Hoover thermostatted reservoir particles is dependent on the particular
value of the Nosé–Hoover time constant. The only temperature these differently
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thermostatted systems have in common is the equilibrium thermodynamic
temperature they would each relax to, if they were allowed to do so.

4.2
Equilibrium Distributions are Preserved by Their Associated Dynamics

Equation (4.4) shows that if at time t, the dissipation is nonzero anywhere in the
phase space domain, the distribution function f (𝚪; t) is time dependent:

∃𝚪 ∈ D stΩ(St𝚪) ≠ 0 ⇒
𝜕f (𝚪; t)

𝜕t
= Ω(S−t𝚪)f (𝚪; t) ≠ 0 (4.8)

and it cannot be an equilibrium distribution function. Conversely, if the distribu-
tion function is an equilibrium distribution at t = 0 and the system evolves under
zero-field dynamics in contact with a thermostat, then from Eqs. (3.30) and (4.3)

feq(𝚪; t) = feq(𝚪; 0) = feq(𝚪), ∀!𝚪 ∈ D, ∀t (4.9)

The distribution function will remain an equilibrium distribution function
forever. Using Eq. (4.3)

𝜕feq(𝚪; t)
𝜕t

= Ωeq(S−t𝚪)f (𝚪; t) = 0, ∀!𝚪 ∈ D, ∀t (4.10)

Equation (4.10) in turn implies

Ωeq(𝚪) = 0, ∀!𝚪 ∈ D (4.11)

where we have used Eq. (4.10) with t = 0. So our definition of equilibrium involv-
ing path integrals of dissipation Eqs. (3.30) and (3.31) is equivalent to Eq. (4.11),
which says that for equilibrium distributions the instantaneous dissipation
must be zero everywhere. If you start with an equilibrium distribution, Eq. (4.10)
implies that the distribution stays an equilibrium distribution for all time provided
the dynamics remains that used in the definition of the dissipation function.

Furthermore, using Eq. (4.8) the only unchanging distribution functions are
equilibrium distributions where the instantaneous dissipation is identically zero
everywhere in the ostensible phase space domain. Thus distributions that, over
some specified domain D, are at equilibrium with respect to their specified dynam-
ics are time-independent at every point in phase space!

Definition
This gives us a new definition of equilibrium systems. Equilibrium systems
are those combinations of dynamics and phase space distribution that sat-
isfy Eq. (4.11). This is a simple restatement of our original definition (3.30),
which involved time integrals of dissipation. Our new definition involves the
instantaneous dissipation.
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Notes:

• Although the partial derivative of the equilibrium distribution function with
respect to time is zero, the streaming derivative of an equilibrium distribution
function is not zero in general. As we will see in Chapter 6, for isochoric constant
energy systems the streaming derivative is zero but for any equilibrium sys-
tem that exchanges heat with its surroundings dfeq(t)∕dt ≠ 0. For thermostatted
equilibrium systems, the time-averaged streaming derivative is zero, however.

• Although the dissipation theorem shows that an equilibrium distribution feq(𝚪)
is preserved by its dynamics, we do not yet know whether an equilibrium dis-
tribution is unique or whether it is stable with respect to small perturbations.
Neither do we know whether arbitrary initial distributions will relax towards
equilibrium at long times. We will return to discuss these issues in Chapter 5.

• Equation (4.3) shows that for all nonequilibrium deterministic systems the
N-particle distribution function has explicit time dependence: fne(𝚪; t). This
automatically means that nonequilibrium steady-state distributions cannot be
written in a closed, time-stationary form:

fne(𝚪) ≠ exp[−F(𝚪)]

∫D
d𝚪 exp[−F(𝚪)]

(4.12)

for some real F(𝚪). If Eq. (4.12) were possible, we would have
𝜕fne(𝚪)
𝜕t

= 0 = Ω(S−t𝚪)fne(𝚪, t), ∀!t, 𝚪 ∈ D (4.13)

The only way this could happen would be if Ω(𝚪) = 0, ∀!𝚪 ∈ D. But this
implies that the distribution is in fact an equilibrium distribution, which is a
self-contradiction. Consequently Eq. (4.12) is correct.
The Jaynes information theory approach (Jaynes, 1980) to nonequilibrium
steady states hypothesizes closed forms like the right-hand side of Eq. (4.12) for
nonequilibrium steady-state distributions. From Eq. (4.12), these can, at most,
only be approximations! They cannot possibly be exact.
In writing Eq. (4.11), we excluded the case where we discontinuously change
the dynamics, thereby instantaneously changing the form of the equilibrium
distribution. In such a case, the initial distribution is an equilibrium distribu-
tion for the prior dynamics (t ≤ 0) but is a nonequilibrium distribution for the
subsequent (t > 0) dynamics. The functional form of the dissipation function
depends on the t > 0 dynamics.

• As noted in Section 2.5, in nonequilibrium steady states the distribution
function collapses forever toward a steady-state attractor of lower dimension
than that of the embedding phase space. Therefore, although averages of
physical phase functions are time independent, in nonequilibrium steady
states the distribution function and its associated Gibbs entropy Eq. (2.55) are
not constant. The Gibbs entropy is, of course, not the average of a physical
phase function; but rather it is an ensemble average of the logarithm of the
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full N-particle phase distribution. Although the ensemble average of physical
phase functions become time independent at sufficiently long times, the Gibbs
entropy itself diverges linearly in time toward negative infinity.

4.3
Broad Characterization of Nonequilibrium Systems: Driven, Equilibrating, and T-Mixing
Systems

Definition
A driven system is a system of interacting particles, possibly thermostatted in
some way, subject to an external dissipative field Fe (or possibly asymmetric
boundary condition). Consider a system that, for times up to zero, is in an equi-
librium distribution with respect to the zero-field dynamics. The field-dependent
dynamics satisfies AI𝚪. Because the zero-field system is at equilibrium with
respect to the zero-field dynamics, the dissipative field is solely responsible for
the dissipation for t > 0.

Definition
For driven systems the dissipative factor, [𝛽J](𝚪), is defined by the equation,

Ω(𝚪) ≡ −[𝛽J](𝚪)V Fe (4.14)

where V is the system volume, and [𝛽J](𝚪) is simply minus one times the instan-
taneous dissipation divided by the volume and the dissipative field. The factor of
minus one is just conventional so that the dissipative flux J takes the same sign as
the xy element of the pressure tensor when the dissipative field is the strain rate.

Definition
We often refer to Eq. (4.14) as the primary dissipation function for the external
field Fe. When the field is zero, there is no dissipation.

Definition
The dissipative field could be a mechanical field appearing in the equations of
motion (e.g., an electric field applied to an electrical conductor), or it could be
the strain rate appearing in the SLLOD equations of motion (Section 2.3) when
applied to a fluid.

Definition
The dissipative field could be a thermodynamic field (e.g., a velocity or temperature
difference between moving walls that bound the system of interest). Thermody-
namic fields are associated with boundary conditions. These boundary conditions
do not usually appear in the actual equations of motion for the atoms or molecules
comprising the system.

As we have seen, the SLLOD equations of motion when applied to a fluid sys-
tem (Section 2.3) have the characteristics both of a mechanical dissipative process
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and a thermal transport process. The equations of motion refer explicitly to the
field, but the boundary conditions also refer to the field. This points out that,
although thermal and mechanical dissipative processes look profoundly different,
at a deeper level there are similarities between the two types of field.

The SLLOD equations of motion, Section 2.3, are not autonomous but the
nonautonomous terms rapidly decrease in magnitude with increasing system size
in systems with short-range interatomic potentials such as the Lennard–Jones
or WCA potentials (Evans and Morriss, 1990; Petravic, 2005; Bernardi, Brookes,
and Searles, 2014).

Without loss of generality, we define the dissipative field so that the dissipation
function is a linear functional of that field. If the dissipation is explicitly quadratic
in some external physical variable, we just define the dissipative field to be that
quadratic variable. The dissipative field in Eq. (4.14) is undefined up to some scalar
factor. This has no serious mathematical consequences however, because this fac-
tor can be simply absorbed into the factor [𝛽J].

In order to specify [𝛽J](𝚪) further, we need to look at the explicit form for
the initial distribution and the dynamics. In Chapter 2, we showed that for
Nosé–Hoover thermostatted driven systems whose equations of motion are
given by Eq. (2.14), 𝛽 = 1∕kBTth. Here Tth was the target temperature of the
Nose–Hoover thermostatted reservoir, which (as will be shown in Chapter 6), is
equal to the equilibrium thermodynamic temperature that the entire system will
relax toward if the dissipative field is set to zero and the entire system is allowed
to relax toward equilibrium.

For ergostatted systems, 𝛽 is not constant and is, instead, the reciprocal of the
instantaneous kinetic temperature of the ergostatted particles times Boltzmann’s
constant. This kinetic temperature is not a constant of the motion for constant
energy dynamics.

Analogous statements are made if the thermostat is, in fact, an isokinetic ther-
mostat. In this case, 𝛽 is the reciprocal of the constant kinetic temperature multi-
plied by Boltzmann’s constant. Again, this kinetic temperature is the equilibrium
thermodynamic temperature that the system will relax toward if the dissipative
field is set to zero and the system is allowed to relax toward equilibrium.

For all driven systems that are at initially in equilibrium, Eq. (4.7) can be written
as the transient time correlation function (TTCF) expression (Evans, Searles, and
Williams, 2008a) for the thermostatted nonlinear response of the physical phase
variable B to the dissipative field Fe:

⟨B(t)⟩Fe, f (𝚪;0) = ⟨B(0)⟩f (𝚪;0) − V∫
t

0
ds⟨[𝛽J](0)B(s)⟩

Fe, f (𝚪;0)
Fe (4.15)

Definition
TTCF, Eq. (4.15), has been used frequently to compute the nonlinear transport
behavior of systems over extremely wide ranges of the applied field (Morriss
and Evans, 1987; Evans and Morriss, 1988; Borzsak, Cummings, and Evans,
2002; Todd and Daivis, 1999; Delhommelle, Cummings, and Petravic, 2005;
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Delhommelle and Cummings, 2005; Pan and Mccabe, 2006; Brookes et al., 2011).
It is exact at arbitrarily far from equilibrium and for systems of arbitrary size.
It applies to systems that are driven by mechanical fields that appear directly
in the equations of motion and also to boundary-driven systems where it is the
boundary conditions that prevent the system from being in equilibrium.

Definition
A system is said to be ΩT-mixing, over a phase space domain D, if ensemble aver-
ages over domain D of the TTCFs ⟨B(𝚪(s))Ω(𝚪(0))⟩ appearing in Eq. (4.7) go to
zero at long times sufficiently rapidly and their time integrals converge to a finite
value as the integration time goes to infinity. In fact, Eq. (4.7) shows that ΩT-
mixing is also a necessary condition for ensemble averages to be time-independent
or stationary at long times.

Definition
Consider a system in which either ⟨A(0)⟩ or ⟨B(t)⟩ = 0, ∀t where A(𝚪),B(𝚪)
are physical phase functions. Such a system is said to be T-mixing if TTCFs of
A(𝚪),B(St𝚪) go to zero at long times, sufficiently rapidly for their infinite time
integrals to converge to finite values: |||∫ ∞

0 ds ⟨A (0)B(s)⟩||| = const < ∞. Obviously
T-mixing systems are ΩT-mixing, and therefore T-mixing systems must relax to
time-stationary states in the long time limit.

Definition
Consider a system in which either ⟨A(0)⟩ or ⟨B(t)⟩ = 0, ∀t, where A(𝚪),B(𝚪) are
physical phase functions. Such a system is said to be weak T-mixing if TTCFs of
A(𝚪),B(St𝚪) go to zero at long times: limt→∞⟨A(0)B(t)⟩ = 0.

If the decay of transient correlations takes place at a rate of 1∕t or slower, weak
T-mixing systems will not be T-mixing and will not be stationary at long times.
All T-mixing conditions refer to physical phase functions.

Since the average of phase functions is not necessarily zero, that is, ⟨B(s)⟩ ≠ 0
for some B, the ΩT-mixing condition requires that

⟨Ω(0)⟩ = 0 (4.16)

and for driven systems

⟨[𝛽J](0)⟩ = 0 (4.17)

The dissipation function is odd under the time-reversal mapping and, since our
initial distributions are always invariant under the time reversal mapping, Eq.
(4.16) always holds. We can make some further remarks about Eq. (4.17). Because
our systems are purely dissipative, Eq. (4.17) must be true. If it was not, then one
could very slowly conduct a quasi-static change to the initial system that would
change its thermodynamic state. In the absence of thermostats, if Eq. (4.17)
were not true, we could slowly (quasi-statically) change the energy of the system.
The Hamiltonian would be dependent on the external field. This violates our
assumption that the dissipative flux is purely dissipative. This would violate the
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nonequilibrium partition identity. We will consider only fields that change the
underlying thermodynamic state of the system in Chapter 8.

Definition
An equilibrating system is a system that evolves under zero-field dynamics, possi-
bly in contact with some form of thermostat. Initially, the system is not in equilib-
rium with respect to the zero field dynamics. The initial form of the distribution
is entirely responsible for dissipation.

If the dissipative field is nonzero, the ensemble-averaged and time-averaged
dissipation is, as the second law inequality shows, always strictly positive, and
the dissipation must be, to leading order, quadratic in the dissipative field. This
means that the ensemble-averaged steady-state dissipation is analytic in the field,
as expected for finite times in finite systems with continuous dynamics, and the
system is driven as

lim
Fe→0

⟨[𝛽J](t)⟩Fe , f (𝚪,0) = O(Fe), ∀t (4.18)

It is possible that this leading order term vanishes because of some symmetry of
the system, in which case the leading term would be cubic in the field.

For small fields and small systems, the averages of field-induced properties of
the system are often swamped by noise from naturally occurring fluctuations.
This makes direct calculation of the left-hand side of Eq. (4.15) problematic. This
is particularly relevant in the calculation of the transport coefficient, which can
be obtained from the ratio of the flux to the field. The TTCF can be applied at
any field strength, and can even be zero, at which it reduces (essentially) to the
Green–Kubo expression for the linear response (Kubo, 1966):

lim
Fe→0

⟨B(t)⟩Fe, f (𝚪;0) = ⟨B(0)⟩f (𝚪;0) − V∫
t

0
ds⟨[𝛽J](0)B(s)⟩

Fe=0, f (𝚪;0)
Fe (4.19)

where the ensemble average on the right-hand side is an equilibrium ensemble
average and the dynamics used to compute B(s) ≡ B(Ss𝚪) is the zero-field (pos-
sibly) thermostatted dynamics. This is in marked contrast to Eq. (4.15), where
everything is computed with the dissipative field applied.

Definition
A system is said to be mixing if time correlation functions ⟨A(0)B(t)⟩𝜇 taken over
a stationary distribution 𝜇 factorize in the long time limit: limt→∞⟨A(0)B(t)⟩𝜇 =⟨A⟩𝜇⟨B⟩𝜇 .

Weak T-mixing is a direct generalization of mixing for transient rather than
stationary distributions. Mixing is for correlation functions in systems that have
stationary averages of physical phase functions such as equilibrium or steady-state
distributions.

Note: we could consider systems that are being driven by a dissipative field but
are not initially at equilibrium with respect to the zero-field dynamics. For sim-
plicity, we rarely consider such mixed systems in this book.
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Definition
A stationary system is said to be physically ergodic if, in the long time limit,
ensemble averages of physical properties are independent of the initial phase
space distribution.

4.3.1
Two Corollaries of the Dissipation Theorem

Two consequences follow for systems that are T-mixing over the specified phase
space domain. These systems have two properties:

1) They have time-independent, ensemble-averaged values for physical phase
functions at long times.

2) They are physically ergodic over the specified phase space domain at long
times.

These results are true for systems that are driven or equilibrating.
Property 1 is trivial. In fact, ΩT-mixing is a necessary and sufficient condition

for stationarity at long times.
If the system is ΩT-mixing, obviously we have convergent integrals for Eq. (4.7)

and a constant value for the long time ensemble-averaged value of all smooth phys-
ical phase variables. If we assume the system was not physically ergodic, then we
could form time correlation functions involving the values of these physical phase
functions with the time-zero dissipation. These correlation functions would never
decay, violating the assumed T-mixing assumption. Thus T-mixing systems must
be physically ergodic.

Why do we expect correlation functions (4.7) and (4.15) go to zero at long
times? Two things happen. First, as we have seen, if the system is T-mixing, either
Eq. (4.16) or (4.17) holds.

Second, in many (but not all!) systems, correlation functions of zero mean
quantities go to zero at long times. (This is guaranteed if the system is weak
T-mixing.) At late times, these systems lose “memory” of the initial value for
the phase functions appearing in the correlation function. This loss of “memory”
has no direct connection with Lyapunov instability or the Kolmogorov–Sinai
entropy. In the linear response regime, the Fourier–Laplace transform of the
decaying memory function in fact gives thermophysical information on how the
system responds to periodic external fields at different frequencies (Evans and
Morriss, 1990). In viscous systems, the decaying memory kernel characterizes
the system’s viscoelastic rheological properties.

From Eqs. (4.16) and (4.17), we have ⟨Ω(0)⟩ = 0 and many time-correlation
functions decorrelate over time, and we have

lim
t→∞

⟨Ω(0)B(t)⟩ = ⟨Ω(0)⟩ lim
t→∞

⟨B(t)⟩ = 0 (4.20)

This will certainly occur if the system is weak T-mixing. The time correlation
function appearing in Eq. (4.20) is not necessarily an equilibrium or steady-state
correlation function. It may be a TTCF as in Eq. (4.7). Systems that do not
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lose correlations are generally integrable (e.g., undamped systems of harmonic
oscillators).

Our definition of T-mixing is, in fact, stronger than Eq. (4.20). It requires
that the correlations vanish sufficiently rapidly that the time integrals Eq. (4.7)
converge to finite values. They must decay faster than t−1. For equilibrium systems
in two dimensions, autocorrelation functions of particle velocity, shear stress,
and heat flux (all physical phase functions) evaluated in the limit of large system
size are all thought to have divergent time integrals because of the so-called long
time tails – see Section 8.7 of Hansen and Mcdonald (1986) for an elementary
discussion. In three dimensions, the corresponding equilibrium autocorrelation
functions are thought to decay asymptotically as t−3∕2, fulfilling the T-mixing
convergence criterion.

Historically, there has been much interest in systems at the borderline of being
mixing or T-mixing. The famous Fermi–Pasta–Ulam system (Gallavotti, 2008),
which is a chain of anharmonic oscillators where the degree of anharmonicity can
be controlled, are right at the border line of T-mixing. They are thought to be
nonmixing.
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5
Equilibrium Relaxation Theorems

One has therefore rigorously proved that, whatever the distribution of
kinetic energy at the initial time might have been, it will, after a very long
time, always necessarily approach that found by Maxwell.

(Boltzmann, 1872)

5.1
Introduction

Understanding the relaxation of systems to equilibrium has been fraught with
difficulties (Evans, Searles, and Williams, 2009a). The first reasonably general
approach to this problem is the Boltzmann H-theorem. Beginning with the
definition of the H-function, Boltzmann proved that the Boltzmann equation
for the time evolution of the single-particle probability density in a uniform
ideal gas implies a monotonic decrease in the H-function (Dorfman, 1999;
Huang, 1963) – see the review by Lebowitz (1993) for a modern discussion of
Boltzmann’s ideas. However, there are at least two problems with Boltzmann’s
treatment. First, the Boltzmann equation is valid only for an ideal gas – its
extension to higher densities has proven to be impossible (Cohen, 1990). Second,
and more problematic, unlike Newton’s equations, the Boltzmann equation itself
is not time-reversal-symmetric. It is, therefore, completely unsurprising that it
can be used to derive time-asymmetric results.

The middle of the twentieth century saw significant progress in ergodic theory
with the proof (Sinai, 1976) that, since an autonomous Hamiltonian dynamical
system preserves the microcanonical distribution, if the dynamics carried out
within this microcanonical distribution is mixing, then in the long time limit,
averages of physical phase functions should approach those of the uniform micro-
canonical distribution. In this chapter we will give this standard ergodic theory
proof and a generalization that applies to thermostatted and/or barostatted
relaxation. Curiously, these two proofs of relaxation do not refer explicitly to the
dissipation function. Dissipation is, however, used to show that the equilibrium
state exists and is stationary in time. Also, neither proof provides any details of
the relaxation process. All they reveal is for finite systems that support mixing
equilibrium states, long-time averages of physical phase functions, approach the
equilibrium averages of those mixing equilibrium distributions.

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Later we will use the dissipation theorem and a corollary of the Evans–Searles
fluctuation theorem (ESFT), namely the second law inequality, to prove the
relaxation to equilibrium of both autonomous Hamiltonian systems (Evans,
Searles, and Williams, 2009b) and also of such systems in contact with a heat bath
(Evans, Searles, and Williams, 2009a). We use these proofs to follow the details of
the relaxation process. Our results extend the findings of modern ergodic theory,
and they show the importance of dissipation in the process of relaxation toward
equilibrium.

As an aside to the main logical development of this book, we prove that the
negative logarithm of the canonical partition function is equal to the thermo-
dynamic Helmholtz free energy divided by the thermodynamic temperature and
Boltzmann’s constant.

The results given in this chapter finally resolve the puzzle felt so keenly by R.C.
Tolman 1938 (Tolman, 1979) concerning Boltzmann’s postulate of equal a pri-
ori probabilities for the equilibrium state of autonomous Hamiltonian systems:
“Although we shall endeavor to show the reasonable character of this hypothesis,
it must nevertheless be regarded as a postulate which can be ultimately justified
only by the correspondence between conclusions which it permits and the regu-
larities in the behavior of actual systems which are empirically found.” – Tolman
(1979, p. 59).

5.2
Relaxation toward Mixing Equilibrium: The Umbrella Sampling Approach

It is known from ergodic theory that a finite, autonomous Hamiltonian system that
preserves a mixing microcanonical equilibrium distribution will, from almost any
initial state described by an phase space distribution f (𝚪; 0)𝛿(H(𝚪) − E), eventu-
ally have averages of physical phase functions that relax toward their microcanon-
ical equilibrium values (Sinai, 1976).

Definition
As mentioned in Section 4.3, a system is said to be mixing if for integrable, reason-
ably smooth physical phase functions, time correlation functions computed with
respect to a stationary distribution factorize into products of averages computed
with respect to the same distribution:

lim
t→∞

⟨
A (𝚪)B(St𝚪)

⟩
∞ − ⟨A (𝚪)⟩∞⟨B (𝚪)⟩∞ = 0 (5.1)

Here, the brackets ⟨· · ·⟩∞ denote an ensemble average with respect to an invariant
(i.e., time-stationary) probability distribution 𝜇∞. In the case that 𝜇∞ has a density
f (𝚪;∞), one may write

⟨A⟩∞ = ∫ d𝜇∞(𝚪)A(𝚪) =∫ d𝚪 f (𝚪;∞)A(𝚪) (5.2)

where f (𝚪;∞) = | 𝜕𝜇∞∕𝜕𝚪| and is a (dimensionless and normalized) distribution.
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If f (𝚪;∞) is not defined over the phase space of the system, one would write
only the first equality ⟨A⟩∞ = ∫ d𝜇∞(𝚪)A(𝚪), where d𝜇∞(𝚪) is dimensionless and
normalized.

Implicit in this definition is the fact that the invariant measure must be
preserved by the dynamics. If it is not, limt→∞

⟨
B
(
St𝚪
)⟩

∞ ≠ ⟨B (𝚪)⟩∞, because
by definition 𝚪 is sampled from d𝜇∞ = d𝚪 f (𝚪;∞) but St𝚪 will be sampled from
some other distribution entirely. So mixing systems must, as a prerequisite,
have an invariant measure that is preserved by the dynamics and, addition-
ally, they must satisfy Eq. (5.1) with respect to this invariant distribution or
measure.

We note that, if the system has nonzero angular momentum, no stationary long-
time measure is possible (unless we transform to a non-inertial, co-rotating coor-
dinate frame where Hamiltonian dynamics breaks down). So if angular momen-
tum is conserved in our system, we must set it to zero.

The mixing property is a property of the stationary state of interest, in which
observables take the average values denoted by ⟨· · ·⟩∞. It represents the fact that,
in the macroscopically stationary state, correlations among time-evolving physical
properties (measured by using averages of physical phase functions) decay in time.
Therefore, in general, the mixing condition would not appear to guarantee relax-
ation to an invariant state. Mixing already assumes stationarity of the macrostate
and its preservation by the system’s dynamics regardless of whether it is reached
asymptotically in time, as implied by our notation, or it is initially prepared in that
state by some means.

Definition
Our version (Evans, Williams, and Rondoni, 2012) of the standard ergodic theory
proof of relaxation for autonomous Hamiltonian systems begins by noting that
the microcanonical distribution, f𝜇c(𝚪):

f𝜇c(𝚪) ≡ lim
dE→0

1

∫E<H(𝚪)<E+dE
d𝚪

(5.3)

has zero dissipation for autonomous Hamiltonian dynamics and is therefore a
time-stationary equilibrium distribution, preserved by the autonomous Hamil-
tonian dynamics – see Eq. (4.8). Here the domain, D, is the isoenergetic hypersur-
face with E < H(𝚪) < E + dE, and dE → 0 and f𝜇c(𝚪) is nonzero on this domain.
We assume that if our system is somehow inserted into this naturally invariant
distribution, the ensemble of finite systems is mixing.

We will now give the standard proof that, if our ensemble is initially not dis-
tributed according to this distribution, the ensemble will, in fact, relax toward this
distribution – at least for the purposes of computing time averages of low-order
physical phase functions (Evans et al., 2016). This last qualification is supremely
important. In general the full N-particle relaxing phase space distribution is
exceedingly highly structured. It collapses towards a fractal that at late times
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reflects unstable periodic orbits as the slowest decaying structures in the relaxing
full phase space distribution. This would appear to make the theoretical analysis
of phase space relaxation impossible. However because we are only interested in
the relaxation of physical phase functions that are only functionals of extremely
low order projected distributions (singlet pair and three-particle distributions –
maybe four particle at most!) we can replace the full N-particle distribution with
smooth relaxing distributions that have the same averages for physical properties.
In the Green expansion (Green, 1952) of the full N-particle distribution the
low order distributions are smooth and relax towards equilibrium. It is only the
high order distribution functions that contain the fractal information. These
high order distributions are unmeasureable in general and cannot be detected
in the relaxing averages of physical phase functions. This allows us to replace
the complex unrelaxing N-particle phase space distribution with the smooth
counterpart assembled from the low order components of the Green expansion.

Note: If the dynamics has any constants of the motion, these should be fixed at
values specified by appropriate delta functions as in Eq. (5.9).

We compute the time-dependent average of a physical phase function A(𝚪) for
some smooth distribution function f (𝚪; t) which is defined in the domain D:

⟨A⟩t = ∫D
d𝚪A(𝚪) f (𝚪; t)

= ∫D
d𝚪A(St𝚪) f (𝚪; 0) (5.4)

where the second equality is due to the equivalence of the Heisenberg and
Schrödinger representations of phase space averages, and the notation ⟨A⟩t refers
to an ensemble average with respect to the time-evolved distribution f (𝚪; t). In
Eq. (5.4), stationarity is not assumed. However, since the dynamics is driven by
an autonomous Hamiltonian, the energy is fixed.

Now we multiply and divide the last expression in Eq. (5.4) by the (necessarily
finite!) ostensible volume of the phase space. This casts the first line in a form to
which the mixing property can (perhaps) be applied:

⟨A⟩t = 1

∫D
d𝚪

⋅ ∫D
d𝚪A(St𝚪) f (𝚪; 0) ⋅ ∫D

d𝚪

≡ ⟨A
(
St𝚪
)

f (𝚪; 0)
⟩
𝜇c ⋅ ∫D

d𝚪 (5.5)

We emphasize that, in order to derive Eq. (5.5), the ostensible phase space volume
needs to be finite. This equation also requires that the asymptotic phase space
density is defined at all points in D.

A few more words need to be said about
⟨

A
(
St𝚪
)

f (𝚪; 0)
⟩
𝜇c. This function is

an equilibrium microcanonical, cross-time correlation function. It results from
the fact that for Hamiltonian dynamics, any time-dependent nonequilibrium
ensemble average, say ⟨A⟩t , equals a time-dependent nonequilibrium average⟨

A(St𝚪
⟩

0 computed with respect to the initial distribution f (𝚪; 0). It also assumes
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that f (𝚪; 0) ≡ f0(𝚪) is a phase function (i.e. it is defined at all 𝚪 and its time
invariance is indicated by the ‘0’). In order for this to be possible we assume
that the initial distribution is smooth; it could be an equilibrium distribution
for a different dynamics. In such cases the distribution function behaves like a
low order phase function, to which the mixing condition can be applied. We
exclude the case where the initial distribution is a nonequilibrium steady-state
distribution.

Using Eq. (5.1) and knowing that the microcanonical distribution is preserved
by the autonomous Hamiltonian dynamics, we now take the long time limit:

lim
t→∞
⟨A⟩t = ⟨A (𝚪)⟩𝜇c⟨f (𝚪; 0)⟩𝜇c ⋅ ∫D

d𝚪

= ⟨A (𝚪)⟩𝜇c
1

∫D
d𝚪

∫D
d𝚪 f (𝚪; 0) ⋅ ∫D

d𝚪

= ⟨A (𝚪)⟩𝜇c.1 = ⟨A (𝚪)⟩𝜇c (5.6)

We have used the mixing assumption Eq. (5.1) to allow us to factorize the natu-
rally invariant (microcanonical) time correlation function into a product of two
invariant (microcanonical) averages. Lastly, we use the normalization of the ini-
tial distribution function. Because distribution functions are normalized, we see
that for any distribution and time ⟨f (𝚪; t)⟩𝜇c = ∫D

d𝚪 f (𝚪; t)∕∫D
d𝚪 = 1∕∫D

d𝚪 =

exp[−SG(E,N ,V )∕kB], where we use the definition Eq. (2.55) and f𝜇c(𝚪) = 1∕∫D
d𝚪

(see also Eq. (5.54) below). The microcanonical average of a normalized distribu-
tion function tells us nothing about that distribution. The average only tells us the
Gibbs entropy of the microcanonical distribution used to calculate the average.

Note: we do not need to assume the existence of a stationary state, since the
microcanonical distribution is indeed preserved by Hamiltonian dynamics. This
is because (as already noted previously) the dissipation function is identically
zero for autonomous Hamiltonian dynamics with an initial ensemble being the
uniform microcanonical distribution and therefore the distribution is stationary
using Eq. (4.4).

So ⟨A⟩t tends toward a microcanonical average, whatever physical phase func-
tion A(𝚪) or the initial probability density f (𝚪; 0) one considers – as long as it lies
on an energy hypersurface and the initial distribution is reasonably smooth. By
definition, this amounts to a proof of relaxation toward the microcanonical equi-
librium state denoted by ⟨⋅⟩𝜇c.

Unless one starts at t = 0 with the microcanonical distribution, this proof shows
that averages of low-order thermodynamic quantities approach microcanonical
averages in the long time limit. The actual N-particle distribution never becomes
the microcanonical distribution. At any time, no matter how large, we can always
apply a time-reversal map and return (eventually!) to the initial distribution. As
time increases in the relaxation process, the long-time N-particle distribution



82 5 Equilibrium Relaxation Theorems

function becomes ever more tightly folded upon itself, never becoming the smooth
microcanonical equilibrium distribution.

If it were in fact to eventually become precisely the microcanonical distribution
one, could never return to the initial distribution by applying a time-reversal map.
This gives a proof that the relaxation process cannot be complete in finite time.

We now generalize this derivation so that it applies to any dynamics that
preserves a mixing equilibrium distribution feq(𝚪) (Evans et al., (2016)). The
phase space vector could be augmented by additional variables such as the
Nosé–Hoover thermostat multiplier or the system volume to cover a variety of
different systems (e.g., Nosé–Hoover thermostatted dynamics or Nosé–Hoover
isothermal isobaric dynamics). However, we do not show this explicitly in our
notation.

We write the equilibrium distribution as

feq,h(𝚪) =
exp[−h(𝚪)]

∫D
d𝚪 exp[−h(𝚪)]

(5.7)

where h(𝚪) is some real integrable function of the (possibly augmented) phase
space vector 𝚪 defined over some domain D. Again, this initial distribution will
need to be reasonably smooth. We compute the average of some physical phase
space function A(𝚪) at some time t with an initial distribution f0(𝚪) ≠ feq,h(𝚪):

⟨A (t)⟩0 = ∫D
d𝚪A(St𝚪)f0(𝚪)

=
∫D

d𝚪A(St𝚪)f0(𝚪) exp[h(𝚪)] exp[−h(𝚪)]

∫D
d𝚪 exp[−h(𝚪)]

∫D
d𝚪 exp[−h(𝚪)]

=
⟨

A
(
St𝚪
)

f0(𝚪) exp[h(𝚪)]
⟩

eq,h∫D
d𝚪 exp[−h(𝚪)]

−−−−→
t→∞

⟨A (𝚪)⟩eq,h
⟨

f0 (𝚪) exp[h(𝚪)]
⟩

eq,h∫D
d𝚪 exp[−h(𝚪)]

= ⟨A (𝚪)⟩eq,h
∫D

d𝚪 f0(𝚪) exp[h(𝚪)] exp[−h(𝚪)]

∫D
d𝚪 exp[−h(𝚪)]

∫D
d𝚪 exp[−h(𝚪)]

= ⟨A (𝚪)⟩eq,h∫D
d𝚪 f0(𝚪)

= ⟨A (𝚪)⟩eq,h (5.8)

where ⟨· · ·⟩eq,h denotes an average with respect to the mixing equilibrium distri-
bution given by Eq. (5.7). We note that all equilibrium distributions are stationary
since they have zero dissipation everywhere in the allowed phase space. We also
note that the “partition function” ∫ d𝚪 exp[−h(𝚪)] must be finite and nonzero:
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otherwise the derivation cannot be completed. We also require a form of ergodic
consistency: for all 𝚪 s.t. f0(𝚪) ≠ 0, we require exp[−h(𝚪)], exp[h(𝚪)] ≠ 0.

This latter point means that the derivation cannot be extended to thermostat-
ted dissipative systems because the relevant “partition functions” and the relevant
functions exp[−h(𝚪)], exp[h(𝚪)] would be singular.

This generalized derivation of relaxation for arbitrary mixing equilibrium distri-
butions can be applied to isokinetically thermostatted systems or Nosé–Hoover
thermostatted systems as well as isothermal/isobaric systems. In each case, the
relevant zero-dissipation equilibrium distribution has been known since the mid-
1980s (Evans and Morriss, 1983)! We now have a proof of relaxation toward these
smooth equilibrium distributions.

As elegant as the umbrella sampling “proof” of relaxation to equilibrium is, it
reveals almost nothing of the relaxation process. It reveals nothing, for example,
about the timescales for relaxation. Worse still, this proof cannot be extended to
the question of relaxation to nonequilibrium steady states because of the lack of
ergodic consistency. With this in mind, we construct a new proof of relaxation
toward equilibrium using the notion of T-mixing. As we will see in Chapter 6,
this new approach can indeed be applied to relaxation to nonequilibrium steady
states.

The umbrella sampling proof of relaxation does show that the transient states
connecting initial reasonably smooth distributions to the limiting equilibrium
distribution must beΩT-mixing, sinceΩT-mixing is a necessary condition for sys-
tems to have stationary, long-time averages of physical properties. The existence of
mixing equilibrium states that are preserved by a specified dynamics implies that
the transients must be ΩT-mixing provided the initial states are also reasonably
smooth. This is a somewhat surprising result. T-mixing transients imply that the
limiting equilibrium state is mixing, but it is somewhat surprising that the mere
existence of a mixing finite equilibrium state implies that the transients are at least
ΩT-mixing!

5.3
Relaxation of Autonomous Hamiltonian Systems under T-Mixing (Evans, Searles, and
Williams, 2009b)

We have already met the definition of the microcanonical distribution in Eq. (5.3).
We repeat this definition in more detail here. From the definition of the dissipation
function, it is trivial to see that, if the states are distributed as

f𝜇c(𝚪) ≡ lim
dE→0

𝛿(𝐏)𝛿(𝐋)

∫E<H(𝚪)<E+𝑑𝐸
d𝚪𝛿(𝐏)𝛿(𝐋)

= 1

∫ d𝚪
if 𝚪 ∈ D, = 0 if 𝚪 ∉ D (5.9)
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then under autonomous Hamiltonian dynamics the dissipation function is iden-
tically zero, everywhere in ostensible phase space, D, which is a limitingly thin
energy shell, E, and zero total linear, P, and total angular momentum L. Basically,
the linear and angular momenta are constants of the motion and the phase space
expansion factor is also zero.

The distribution function in Eq. (5.9) is therefore an equilibrium distribu-
tion function. It is referred to as the equilibrium microcanonical distribution
(f𝜇c(𝚪)) – see Eq. (5.3). Within this ostensible domain D, T-mixing systems have
no physical phase functions that are constants of the motion. Later we will prove
this statement from the T-mixing definition.

Of course, if the particular Hamiltonian with which we are dealing contains
more symmetries than those discussed here, there will be additional physical
phase functions that are constants of the motion. These should be handled
by inserting additional delta functions into the microcanonical distribution
Eq. (5.9) so that the ostensible phase space is constrained to a fixed value for these
additional constants of the motion.

Mixing is closely related to, but subtly different from, the T-mixing condition.
The equilibrium relaxation theorems require sufficiently fast rates of correlation
decay. This is made part of the definition of T-mixing itself.

Definitions
In Section 4.3, we introduced the definitions of ΩT-mixing, T-mixing, and weak
T-mixing. Because these definitions are very important, we remind the reader of
these definitions once again. ΩT-mixing assumes that for a real, low-order, rea-
sonably smooth physical phase function A(𝚪)

∫
∞

0
ds⟨Ω (𝚪)A(Ss𝚪)⟩0 = L0 ∈ ℜ (5.10)

where L0 is real and finite, Ω(𝚪) is the instantaneous dissipation at the phase 𝚪
and A(Ss𝚪) is the phase function A(𝚪) evaluated at the time-evolved phase Ss𝚪.
In contradistinction to the well-known mixing condition of ergodic theory, the T-
mixing condition considers time correlation functions referred to the initial state,
here denoted by ⟨⋅⟩0, where the distribution of phases is usually known.

T-mixing systems have the property that

∫
∞

0
ds ⟨𝛿A (𝚪) 𝛿B(Ss𝚪)⟩0 = L0 ∈ ℜ (5.11)

where 𝛿B(St𝚪) ≡ B(St𝚪) −
⟨

B
(
St𝚪
)⟩

0 is a zero-mean physical phase function.
As in Section 4.3, the weak T-mixing condition, which looks very similar to the

mixing condition, is

lim
t→∞

[⟨
A (𝚪)B(St𝚪)

⟩
0 − ⟨A (𝚪)⟩0⟨B

(
St𝚪
)⟩

0

]
= 0 (5.12)

where A(𝚪),B(𝚪) are low-order physical phase functions. The main difference
between weak T-mixing, Eq. (5.12), and standard mixing, Eq. (5.1), lies in the
fact that the second factor in the second term inside square brackets in Eq. (5.12)
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is not time-independent. It takes the form
⟨

B
(
St𝚪
)⟩

0 = ⟨B (𝚪)⟩t , and hence it
cannot be taken out of the limit. This time dependence is a reflection of the
fact that the ensemble averages in Eq. (5.12) are taken with respect to the initial
distribution rather than an invariant (presumed) long-time distribution.

For each of the T-mixing conditions (5.10–5.12), the relevant probability distri-
bution is not the invariant one; it is the initial ensemble d𝜇0(𝚪) = d𝚪 f (𝚪; 0), whose
averages are denoted by ⟨⋅⟩0. Mixing Eq. (5.1) and weak T-mixing Eq. (5.12) do not
say anything about the rate of convergence to a stationary state or even whether
such convergence actually occurs.

We obviously exclude the constants of the motion inherent in the Hamiltonian
symmetries from being possible phase functions in Eqs. (5.11) and (5.12) (i.e.,
A(𝚪), B(𝚪) ≠ H0(𝚪), P𝛼(𝚪), L𝛼(𝚪), 𝛼 = x, y, z) since each of these variables is
obviously a constant of the motion. So our ostensible phase space domain D is
some specified physical volume on an energy hypersurface1) with zero linear and
angular momentum. The zero linear momentum condition could be relaxed, but
the total angular momentum must be fixed at zero.

If the space is orientationally isotropic, the total angular momentum is a con-
stant of the motion and, for reasons that are rather obvious, the system cannot
possibly be T-mixing Eq. (5.11). When viewed from an inertial coordinate frame,
the measure required for mixing Eq. (5.1) cannot be time-invariant but rather will
be periodic. Likewise, the integrals required for the T-mixing property Eq. (5.11)
will not in general converge but may also be periodic functions of the integration
time. Rotating systems may, however, be weak T-mixing Eq. (5.12).

In a T-mixing system, there can be no nontrivial physical constants of the
motion other than those inherent in the Hamiltonian symmetries. If there were
such constants, we could form transient time correlation functions that violated
Eq. (5.11). The fixed values of the various constants of the motion must be
chosen to provide an inertial coordinate frame within which we can construct a
Hamiltonian dynamical system.

All weak T-mixing systems are physically ergodic over the ostensible phase
space because, if the phase space broke up into nonintersecting phase space
subdomains characterized by different macroscopic averages for low-order phase
functions, we could form constants of the motion depending on whether a system
was on one subdomain or another. These subdomain occupation numbers could
then be substituted as A(𝚪) in Eq. (5.12), thereby violating the weak T-mixing
condition.

If the relevant time correlation functions (5.10) and (5.3) decay asymptotically
as t−1 or more slowly, the system may be weak T-mixing Eq. (5.12) but cannot be
ΩT-mixing or T-mixing Eqs. (5.10) and (5.11). In contradistinction to mixing Eq.
(5.1), if a system is T-mixing Eq. (5.11) (or even ΩT-mixing Eq. (5.10)), it must
relax to a time-stationary state at long times, whether or not this state is charac-
terized by a smooth probability density f (𝚪;∞). If a system is weak T-mixing, but

1) This hypersurface is defined as a limitingly thin energy shell as in Eq. (5.3) rather than a true hyper-
surface H=E (Thompson, 1972).
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not ΩT-mixing, relaxation to an invariant state from a noninvariant initial state
will not occur. Generation of this weak T-mixing invariant state must be made by
insertion into that state – say by a Monte-Carlo stochastic process.

In general, it is exceedingly difficult to prove that a given system is mixing and
perhaps even harder to prove whether it is T-mixing. However, because of the
many properties of T-mixing systems, it is easy to perform numerical/empirical
tests of whether a system is T-mixing.

We now give a proof of relaxation to the stationary state based on the T-mixing
condition (5.11) (Evans, Searles, and Williams, 2009b; Reid et al., 2013). From the
T-mixing assumption, there can be no low-order constants of the motion other
than the trivial ones, the internal energy H0 and the linear and angular momenta
𝐏,𝐋, which are assumed to take on fixed values of E, 𝟎, 𝟎, respectively.

If we consider any reasonably smooth, deviation from the microcanonical form
Eq. (5.9) generated by a real-valued integrable physical deviation function, g(𝚪)
that is even in the momenta and differentiable,

fg(𝚪) =

⎧⎪⎪⎨⎪⎪⎩

exp
[
−g (𝚪)

]
∫ d𝚪 exp[−g(𝚪)]

,𝚪 ∈ D

0,𝚪 ∉ D

(5.13)

the dissipation function will not vanish and we have

Ω(𝚪) = ġ(𝚪) (5.14)

where ġ(𝚪) ≡ �̇� ⋅ 𝜕g(𝚪)∕𝜕𝚪 denotes the time derivative.
Since the system is T-mixing, if g(𝚪) ≠ 0, then Ω(𝚪) ≠ 0 because g(𝚪) cannot be

a constant of the motion and the strict form of the second law inequality applies.

Definition
In Eq. (5.13), the physical phase function g(𝚪), which is even in the momenta, is
termed a deviation function.

The strict second law inequality states that the ensemble average of the time
integral of the dissipation from 0 to some time t is positive for all values of t. It is
only equal to zero if the system is at equilibrium and g(𝚪) = 0, ∀𝚪. Thus for finite
values of the deviation function g, we have⟨

Ωt
⟩

0 =
⟨

g
(
St𝚪
)
− g(𝚪)

⟩
0 ≡ ⟨Δg (t)⟩0 > 0, g(𝚪) ≠ 0, ∀t > 0 (5.15)

Thus, if there is any deviation from the equilibrium distribution Eq. (5.9), the dissi-
pation function will not vanish (because there are no other low-order constants of
the motion) and, further, the ensemble average of the time integrated dissipation
function must be positive. In fact

⟨Δg (t)⟩0 = ∫
∞

0
dA A(1 − e−A)p(Δg(t) = A) > 0, ∀t, g(𝚪) ≠ 0 (5.16)
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If there is any nonzero dissipation, Δg(t) ≠ 0, the ensemble-averaged change in
dissipation ⟨Δg (t)⟩0 must be greater than zero. This means that for T-mixing sys-
tems with Hamiltonian dynamics, the smooth equilibrium distribution function
is unique among distribution functions of the same or lower order, as g(0), and is
given by Eq. (5.9).

One can prove that the system must relax toward equilibrium by using the T-
mixing property Eq. (5.10) and the dissipation theorem (Chapter 4) for the devia-
tion function itself:

lim
t→∞
⟨g (t)⟩0 − ⟨g (0)⟩0 = lim

t→∞

⟨
Ωt
⟩

0 = ∫
∞

0
ds⟨ġ (0) g(s)⟩0 = const > 0

⇒ lim
t→∞
⟨ġ (t)⟩0 = lim

t→∞
⟨Ω (t)⟩0 = 0 (5.17)

Thus for the T-mixing systems treated here, in the long-time limit the ensemble-
averaged instantaneous dissipation ⟨ġ (t)⟩ is zero. In fact the ensemble averaged
value of all phase functions that are odd under the time reversal mapping is in fact
zero. This also means that the asymptotic distribution towards which the system is
relaxing must be even under the time reversal mapping. Since we have already seen
that the zero dissipation equilibrium state (even under the time reversal mapping)
is unique, among distribution functions of the same, or lower, order as g(0), the
system must be relaxing toward that unique smooth equilibrium state.

Of course, for a system that is not initially at equilibrium, for any time no matter
how large, the fine-grained phase space distribution is never given by the equilib-
rium state Eq. (5.9), because if this did happen, the system could never return to
the initial distribution after the application of a time-reversal map.

This implies that for T-mixing autonomous Hamiltonian systems the relaxation
to the true smooth equilibrium distribution function must take an infinite amount
of time. Relaxation to equilibrium cannot occur in a finite time! Although the
distribution function does not relax, the averages of low order phase functions
(including the deviation function) calculated using the evolved distribution func-
tion become indistinguishable from those calculated using the smooth, unique
equilibrium distribution.

5.4
Thermal Relaxation to Equilibrium: The Canonical Ensemble (Evans, Searles, and
Williams, 2009a)

Consider a classical system of N interacting particles in a volume V . The micro-
scopic state of the system is represented by a phase space vector of the coordi-
nates and momenta of all the particles, {𝐪1,𝐪2,… ,𝐪N ,𝐩1,… ,𝐩N} ≡ (𝐪,𝐩) ≡ 𝚪,
where 𝐪i,𝐩i are the position and momentum of particle i. Initially (at t = 0), the
microstates of the system are distributed according to a normalized probability
distribution function f (𝚪; 0). To apply our results to realistic systems, we separate
the N-particle system into a system of interest and a wall region containing NW
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particles. Within the wall, a subset of Nth particles is subject to a fictitious thermo-
stat. The thermostat employs a switch Si, which controls how many and which par-
ticles are thermostatted, Si = 0; 1 ≤ i ≤ (N − Nth), Si = 1; (N − Nth + 1) ≤ i ≤
N ,Nth ≤ NW . We define the thermostat kinetic energy as

Kth ≡
N∑

i=1
Si

p2
i

2mi
(5.18)

and write the equations of motion for the composite N-particle system as

�̇�i =
𝐩i
mi

�̇�i = 𝐅i(𝐪) − Si(𝛼𝐩i + 𝐅th)

�̇� =

[
2Kth

3
(
Nth − 1

)
kBTth

− 1

]
1
𝜏2 (5.19)

where 𝐅i(𝐪) = −𝜕Φ(𝐪)∕𝜕𝐪i is the interatomic force on particle i, Φ(𝐪) is the
total interparticle potential energy, −Si𝛼𝐩i is a deterministic, time-reversible
Nosé–Hoover thermostat (Evans and Morriss, 1990) used to add or remove
heat from the particles in the reservoir region through introduction of an extra
degree of freedom described by 𝛼, Tth is the target parameter that controls the
time-averaged kinetic energy of the thermostatted particles, and 𝜏 is the time
constant for the Nosé–Hoover thermostat. The force 𝐅th = (1∕Nth)

∑N
i=1 Si𝐅i

ensures that the macroscopic momentum of the thermostatted particles is a
constant of the motion, which we set to zero.

Note that the choice of thermostat is reasonably arbitrary; for example, we could
use some other choice of time-reversible deterministic thermostat, such as one
obtained by use of Gauss’ principle of least constraint (Evans et al., 1983; Evans and
Morriss, 1990), to fix Kth and arrive at essentially the same results. In order to sim-
plify the notation, we introduce an extended phase space vector 𝚪∗ ≡ (𝚪, 𝛼) and
from here on represent this implicitly using𝚪. In the absence of the thermostatting
terms, the (Newtonian) equations of motion preserve the phase space volume so
the system satisfies AI𝚪. The equations of motion for the particles in the system of
interest are quite natural. The equations of motion for the thermostatted particles
are supplemented with unnatural thermostat and force terms. Equations (5.18)
and (5.19) are time-reversible, and heat can be either absorbed or given out by the
thermostat.

For the Nosé–Hoover dynamics Eqs. (5.18) and (5.19), consider the initial dis-
tribution

f (𝚪; 0) ≡ fc(𝚪) =
𝛿(𝐏th) exp[−𝛽thHE(𝚪)]

∫D
d𝚪𝛿(𝐏th) exp[−𝛽thHE(𝚪)]

, ∀𝚪 ∈ D (5.20)

If H0(𝚪) is the internal energy of the system, HE(𝚪) = H0(𝚪) + 3∕2(Nth − 1)
kBTth𝛼

2𝜏2 is the so-called extended Nosé–Hoover Hamiltonian, kBTth ≡ 𝛽−1
th ,
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and 𝛿(𝐏th) ≡ 𝛿
(∑

Sipxi

)
𝛿
(∑

Sipyj

)
𝛿
(∑

Sipzk

)
fixes the total momenta of

the thermostatted particles in each Cartesian dimension, at zero.

Definition
We shall call the distribution in Eq. (5.20) the canonical distribution even though
it includes extra degrees of freedom for the thermostat multiplier 𝛼.

Definition
In Eq. (5.20), Tth = 𝛽−1∕kB is called the equilibrium thermodynamic temperature
of the canonical distribution of states Eq. (5.20).

It is easy to show that for this distribution Eq. (5.20) and the dynamics Eqs. (5.18)
and (5.19), the dissipation function Ωc(𝚪) is identically zero at all points sampled
by the canonical distribution:

Ωc(𝚪) = 0, ∀𝚪 ∈ D (5.21)

Proof: From Eq. (5.20) and the definition of the dissipation function, we see that
(see Appendix 2.A for how to evaluate Λ exactly)

Ωc,t(𝚪(0)) = 𝛽th[HE(𝚪(t)) − HE(𝚪(0))] + 3(Nth − 1)∫
t

0
ds𝛼(s) (5.22)

Now, from the definition of the extended Hamiltonian and the equations of
motion, we see that, if we take the time derivative of Eq. (5.22), we obtain

Ωc = 𝛽th[−2Kth𝛼 + 3(Nth − 1)kBTth𝛼�̇�𝜏
2] − (3Nth − 1)𝛼 (5.23)

Now, using the equation of motion for the thermostat multiplier, we see that

Ωc = 𝛽th

[
−2Kth𝛼 + 3

(
Nth − 1

)
kBTth𝛼

2Kth − 3(Nth − 1)kBTth
3(Nth − 1)kBTth

]
+ 3(Nth − 1)𝛼

= 𝛽th[−2Kth𝛼 + 𝛼[2Kth − 3(Nth − 1)kBTth]] + 3(Nth − 1)𝛼
= 0 (5.24)

where we have used the fact that kBTth ≡ 𝛽−1
th . We note that in the proof we

are using exact calculations. Often, approximations that are valid only in the
large N limit are used in statistical mechanics. This calculation is exact for any
arbitrary N.

We know from Section 4.2 that this initial (equilibrium) distribution is pre-
served by the dynamics Eqs. (5.18) and (5.19):

f (𝚪; t) = fc(𝚪), ∀𝚪 ∈ D, ∀t (5.25)

Since we know that Eq. (5.20) is an equilibrium distribution for the dynamics we
consider, and since we also know that T-mixing systems are physically ergodic,
we know from Section 4.3 that Eq. (5.20) is the unique smooth equilibrium distri-
bution for this system. However, because of the importance of this point, we will
explore the matter in greater detail.
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Consider an arbitrary physical deviation from the canonical distribution

f (𝚪; 0) ≡ 𝛿(𝐏th) exp[−𝛽thHE(𝚪) − 𝛾g(𝚪)]

∫D
d𝚪𝛿(𝐏th) exp[−𝛽thHE(𝚪) − 𝛾g(𝚪)]∫

(5.26)

where g(𝚪) is an arbitrary physical, integrable, real deviation function (phase func-
tion) and, since f (𝚪; 0) must be an even function of the momenta, g(𝚪) must also
be even in the momenta. Without loss of generality, we assume 0 ≤ 𝛾 . The factor
𝛾 is a scale parameter that we can use to control the magnitude of the deviation
from equilibrium.

For such a system Eq. (5.26) evolving under our dynamics Eqs. (5.18) and (5.19),
the instantaneous dissipation function is

Ω(𝚪) = 𝛾
𝜕g(𝚪)
𝜕𝚪

⋅ �̇�(𝚪) = 𝛾 dg(𝚪)∕dt (5.27)

Since g(𝚪) is even in the momenta, we know that

⟨Ω (0)⟩g = ⟨𝛾 ġ (𝚪)⟩g = 0 (5.28)

where the subscript g on the ensemble average denotes the fact that the average is
carried out over the initial deviated distribution (Eq. (5.26)).

Now, Eq. (5.27) implies

f (𝚪; t) = exp[−𝛾Δg(𝚪,−t)] f (𝚪; 0) (5.29)

where Δg(𝚪, t) ≡ g(St𝚪) − g(𝚪). Because the system is T-mixing, there can be no
physical constants of the motion additional to those specified in Eq. (5.11). Thus,
if g(𝚪) ≠ 0, there must be dissipation, and the distribution function cannot be a
time-independent equilibrium distribution. Thus the smooth equilibrium distri-
bution given by Eq. (5.20) is unique.

The dissipation function satisfies the strict second law inequality

𝛾⟨Δg (𝚪, t)⟩g = ∫
∞

0
dA A(1 − e−A)p[𝛾Δg(𝚪, t) = A]

> 0 (5.30)

If p[𝛾Δg(𝚪, t) = A] is nonzero for any A> 0, then p[𝛾Δg(𝚪, t) = ±A] > 0 and the
integrand in Eq. (5.30), as well as the integral, will be strictly positive. Thus in a
T-mixing system if the initial distribution differs in any way from the canonical
distribution, there will be dissipation and the ensemble-average of the time inte-
gral of the dissipation is positive. This remarkable result is true for an arbitrary
𝛾 , g(𝚪).

Summarizing, since the system is T-mixing, there is a unique time-symmetric,
smooth equilibrium state characterized by being dissipationless everywhere in the
phase space domain D. For the system considered here, that distribution is the
canonical distribution (5.20). Thus we have derived an expression for the unique
equilibrium state corresponding to the thermostatted equations of motion and
shown that it takes on the standard form for the canonical distribution, modulo
the facts that in the thermostatting region the momentum is a constant of the
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motion that is set to zero and that there is an extended degree of freedom for the
thermostat.

If we start the system at time zero from a nonequilibrium distribution (5.26),
we can ask the question how does the ensemble average of the deviation function
change with time. Substitution of Eq. (5.30) into Eq. (5.29) gives

⟨Δg (𝚪, t)⟩g = 𝛾∫
t

0
ds⟨ġ (0) g(s)⟩g > 0, ∀t > 0 (5.31)

where the ensemble averages are taken with respect to the initial nonequilibrium
distribution function (5.26).

Because the initial distribution is an even function of the momenta, we know
from Eq. (5.28) that the transient time correlation function appearing in Eq. (5.31)
can be regarded as involving the product of two zero-mean phase variables (see
Eq. (4.18)), and the T-mixing condition can be directly applied to the correlation
function. Applying the T-mixing condition shows that the time integral on the
right-hand side of Eq. (5.31) converges as t → ∞. This implies that

lim
t→∞
|||⟨Δg (𝚪, t + 𝜏)⟩g − ⟨Δg (𝚪, t)⟩g||| = 0 (5.32)

This means that, as t becomes ever larger, the dissipation over a fixed time interval
𝜏 becomes ever smaller, and in the long-time limit the ensemble-averaged instan-
taneous dissipation vanishes. In fact the ensemble average of every odd phase
function vanishes in the long time limit, implying the asymptotic distribution
is even under the time reversal mapping. This implies that the system is relax-
ing toward its unique smooth equilibrium state, (as characterized by distribution
functions of the same, or lower, order as g(0)) and

lim
t→∞

𝛾⟨ġ (t)⟩f (𝚪,0) = lim
t→∞
⟨Ω (t)⟩f (𝚪,0) = 0 (5.33)

Equation (5.33) follows by differentiating Eq. (5.32) with respect to 𝜏 and then
letting t increase without bound.

We have therefore proved that, subject to the conditions stated above, arbi-
trary initial nonequilibrium systems eventually relax, perhaps not monotonically,
toward equilibrium (Evans, Searles, and Williams, 2009a). The distribution func-
tion itself continues to evolve for all time, but the averages of low-order phase
functions become equal to those calculated with the smooth equilibrium distri-
bution function.

Definition
We need to make an extremely important observation concerning the process of
relaxation. The equilibrium canonical distribution (Eq. (5.20)) toward which the
system with an arbitrary initial distribution (Eq. (5.26)) relaxes has an equilibrium
thermodynamic temperature Tth that is identical (for systems of arbitrary size)
to the target kinetic temperature of the Nosé–Hoover thermostat Tth. It is the
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temperature of the underlying equilibrium state the initial system will relax toward
if it is T-mixing and it is so allowed.

From Eqs. (5.19) and (4.5), we see that

⟨B (t)⟩g = ⟨B (0)⟩g + 𝛾∫
t

0
ds ⟨ġ (0)B(s)⟩g (5.34)

and substituting ġ(𝚪) = B(𝚪) we see that

lim
t→0+

⟨ġ (t)⟩g = 𝛾
⟨

ġ2 (0)
⟩

g > 0 (5.35)

This proves that initially, on average, the system always moves toward, rather than
away from, equilibrium. At later times, the system may move, for a short time,
away from equilibrium (e.g., as in the case of an underdamped oscillator) but
such movement is never enough to make the time-integrated, ensemble-averaged
dissipation negative (or even zero). The time-integrated average dissipation from
the initial state to any intermediate state (including the final equilibrium state)
is strictly positive. At any sufficiently later instant in the relaxation process, the
instantaneous dissipation may be negative. This shows that, in general, the relax-
ation process may not be monotonic in time. Such nonmonotonic relaxation is
extremely common in nature.

Equation (5.35) implies another important point. Occasionally, one sees in
the literature the correct observation that dissipative systems have phase space
trajectories that are more stable than their time-reversed anti-dissipative conju-
gates – see, for example, William Thomson quote, Chapter 6 (Thomson, 1874) or
Hoover (1999, p. 247). This comment on the relative mechanical stability is easily
seen to be correct because, if we consider a nonequilibrium steady state, the sum
of all the Lyapunov exponents must be negative. This implies that, for systems
satisfying the conjugate pairing rule (Eq. (2.49)), the largest positive exponent
for a steady state is smaller in magnitude than the largest positive exponent for
an antisteady state. This is obvious because the largest positive exponent for an
antisteady state is −1 times the value of the most negative exponent of a steady
state, and the sum of the extremal exponents for a steady state that satisfies
the conjugate pairing rule must be negative. For systems that do not satisfy the
conjugate pairing rule, the Kolmogorov–Sinai entropy for the antisteady state is
greater than that for the steady state.

However, this difference in the relative stability of steady state and antisteady
state trajectories is irrelevant to whether the second “Law” of thermodynamics is
being satisfied. Equation (5.35) shows that, on average, systems respond imme-
diately in a direction favored by the second “Law.” They do not rely on the slow
buildup of instabilities before they begin to satisfy the second “Law.” Indeed, the
initial gradient of the response, Eq. (5.35), is an equilibrium property that is com-
pletely unrelated to Lyapunov exponents.

Since we now know that under the conditions specified here the system will
at long times relax toward its unique equilibrium state, we therefore know the
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following:

lim
t→∞
⟨ġ (t)⟩g = ⟨ġ (0)⟩g + 𝛾∫

∞

0
ds⟨ġ (0) ġ(s)⟩g

⇒ 𝛾∫
∞

0
ds⟨ġ (0) ġ(s)⟩g = 0 (5.36)

where the first term on the right-hand side of the top line is zero by Eq. (5.20)
and the subscript g signifies that the initial ensemble is given by Eq. (5.26).
Equation (5.36) is true for any deviation function that is even in the momenta.

Definition
We call Eq. (5.36) the heat death equation (Evans, Williams, and Rondoni, 2012).
It shows that, for systems arbitrarily far from equilibrium initially, the infinite time
integral of the transient autocorrelation function of fluxes of nonconserved quan-
tities vanishes.

If we take the weak deviation limit where 𝛾 → 0, we see that equilibrium time
autocorrelation functions of fluxes of nonconserved quantities also vanish:

lim
𝛾→0

lim
t→∞
⟨ġ (t)⟩g = ⟨ġ (0)⟩eq + 𝛾∫

∞

0
ds⟨ġ (0) ġ(s)⟩eq

⇒ 𝛾∫
∞

0
ds⟨ġ (0) ġ(s)⟩eq = 0 (5.37)

This equation was first written down in 1963 by Zwanzig (Zwanzig, 1963; Berne,
Boon, and Rice, 1966) and has been called the ZBBR equation (Evans, 1981, 1983).

In summary, we have demonstrated that, for any T-mixing Hamiltonian
system of fixed volume and fixed number of particles in contact with a heat
reservoir whose initial (nonequilibrium) distribution is even under time reversal
symmetry,

• there is a unique dissipationless state, and this state has the canonical distribu-
tion (although a Nosé–Hoover thermostat was used in this derivation, essen-
tially the same result is obtained with other thermostatting mechanisms such
as a Gaussian isokinetic thermostat.);

• in T-mixing systems with decaying temporal correlations, the system relaxes
toward canonical equilibrium;

• this relaxation toward equilibrium is not necessarily monotonic (we note that
the Boltzmann H-theorem applied to uniform dilute gases implies a monotonic
relaxation to equilibrium, thus the relaxation theorem allows for much more
complex behavior as seen experimentally.);

• the time-integrated, ensemble-averaged dissipation satisfies the strict inequality⟨Δg (𝚪, t)⟩g > 0;
• the initial ensemble average response is always toward, rather than away from,

equilibrium;
• the relaxation process cannot take place in finite time.
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We have also shown quite generally that, for T-mixing dynamical systems obey-
ing time reversible dynamics, equilibrium states have properties that are time-
reversal-symmetric (i.e., probabilities of observing any set of trajectories and its
conjugate set of antitrajectories are equal) if and only if the dissipation function
is zero everywhere in phase space. If there is dissipation anywhere in the phase
space, the distribution function is not time-independent and the system cannot
be in equilibrium.

5.5
Relaxation to Quasi-Equilibrium for Nonergodic Systems

If the system is not T-mixing over the full phase space domain D, the system
may split into nonergodic subdomains Di i= 1,2, and so on, each characterized
by different ensemble averages for physical properties. If these states are individ-
ually T-mixing, then the two relaxation theorems given above (for Hamiltonian
systems and for such systems in contact with a heat reservoir) still apply individ-
ually to each subdomain. The systems will still relax to either microcanonical or
canonical equilibrium within each subdomain. Examples of such systems are rel-
atively common, for example, solid or glassy systems. Many solid systems are not
really completely relaxed to true thermodynamic equilibrium; their macroscopic
physical properties are history-dependent – for example, work-hardened metals
or metals that are rapidly quenched.

None of these systems is T-mixing over the ostensible phase space domain.
However, all are expected to be T-mixing over the history-dependent phase space
subdomains within which these solid samples are kinetically trapped. The topol-
ogy of these subdomains can be incredibly complex. However, whatever the topol-
ogy, because the macroscopic properties are stationary in time, such solids must
beΩT-mixing over the subdomain, and a particular solid sample is trapped within.
Depending on whether such a system is in contact with a thermal reservoir or not,
at long times such systems will relax toward microcanonical or canonical equilib-
rium within their particular phase space subdomain.

Quasi-equilibrium is very common in solids because their physical properties
(essentially infinite shear viscosities and very low diffusion coefficients) mean that
the full exploration of phase space is kinetically restricted – see the following for a
more extensive discussion of relaxation to quasi-equilibrium states (Williams and
Evans, 2007, 2008, 2010; Williams, Searles, and Evans, 2008).

5.6
Aside: The Thermodynamic Connection

This section is not necessary for the logical exposition of this book. It is included
for those who already know classical thermodynamics. Statistical mechanics has
been traditionally taught assuming the “laws” of thermodynamics. As we will see



5.6 Aside: The Thermodynamic Connection 95

later in this book, the zeroth and second laws will be proved from mechanics in
Sections 7.2 and 8.5, respectively, with an introduction to this development in
Section 5.7.

We give a proof here, that the microscopic expressions defined below, Eqs. (5.39)
and (5.40) on average, are indeed equal to the thermodynamic entropy and tem-
perature, respectively (Reid et al., 2013). We take as our starting point known
expressions for the Galilei invariant energy and pressure to equal, on average, their
thermodynamic counterparts. Energy and pressure are, as the first “law” of ther-
modynamics makes clear, completely mechanical in nature.

To begin, we note that from classical thermodynamics we have two equations
for the entropy (S) in terms of the energy (U), the volume (V ), and the pressure (p):

𝜕S
𝜕U
||||V = 1

T
𝜕S
𝜕V
||||U =

p
T

(5.38)

Consider the function S̃ defined (up to an additive constant) as

S̃ = kB ln∫D
𝛿(𝐏)d𝚪 ≡ kB ln V𝚪 (5.39)

where the integration domain D, is the limitingly thin energy shell. We can identify
the internal energy U with the value of the Hamiltonian in a co-moving coordinate
frame H0(𝚪), because internal energy is the Galilei-invariant mechanical energy.

Consider a phase vector displacement in phase space 𝚪′ =𝚪 + d𝚪, where
d𝚪 = dU(𝜵𝐩H)∕(𝜵𝐩H ⋅ 𝜵𝐩H) and 𝜵𝐩 · · · ≡ ( 𝜕∕𝜕px1,

𝜕∕𝜕py1,… , 𝜕∕𝜕pzN , 0, 0,… , 0
)
…

that is normal to the kinetic energy hypersurface
∑

i
p2

i ∕2m = K0, and that (to
leading order in N) changes the energy of any phase point𝚪 by a constant infinites-
imal amount dU . Since the Jacobian of the transformation J(𝚪) = || 𝜕𝚪′∕𝜕𝚪|| =
1 + dU 𝜵

2
𝐩 H∕(𝜵𝐩H⋅𝜵𝐩H), it can be seen from Eq. (5.39) that (Butler et al., 1998):

𝜕S̃
𝜕U

|||||V ≡ 1
T̃

=
3NkB

2
⟨

K0
⟩
𝜇c

≡ 1⟨
TK (𝚪)

⟩
𝜇c

+ O(1∕N) (5.40)

where the ensemble average is microcanonical and taken with respect to Eq. (5.9),
and TK (𝚪) is the instantaneous kinetic temperature. (Note: there are obviously
infinitely many other phase space projections that one could use to move between
two infinitely close energy hypersurfaces. These lead to infinitely many different
phase functions whose microcanonical and canonical averages equate, in the
thermodynamic limit, to the equilibrium thermodynamic temperature – see, for
example, Eq. (5.55).)

If we now use the SLLOD equations (note that the SLLOD equations of motion
give an exact description of arbitrary homogeneous flows – see Daivis and Todd
(2006)) to accomplish an infinitesimal volume change at constant energy using an
ergostat to fix the energy, we see that from the ergostatted equations of motion

dH0 = dU = 0 = −pdV − 2K0𝛼dt (5.41)
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where, from the SLLOD equations (2.21), p is the microscopic expression for the
pressure in a bulk system which is spatially uniform over the range of intermolec-
ular forces:

3pV =
∑
i∈V

p2
i ∕m − 1

2
∑

i∈V ,∀j
𝐫ij ⋅ 𝐅ij (5.42)

where 𝐫ij ≡ 𝐫j − 𝐫i,𝐅ij is the force on particle i due to particle j, and 𝛼 is the ergostat
multiplier. (We assume that the intermolecular forces are limited to pair interac-
tions only.) As Irving and Kirkwood showed (Irving and Kirkwood, 1950), this
microscopic expression for p is easily identified with the microscopic mechanical
force “across” a surface and is therefore, on average, equal to the thermodynamic
pressure.

We also know from the phase continuity equation df ∕dt = 3N𝛼f , that the
change in phase space volume dV𝚪 caused by this constant energy volume
change is

dV𝚪 = −3N⟨𝛼⟩𝜇cV𝚪dt (5.43)

From our proposed microscopic equation for the entropy, (5.39), we see that

𝜕S̃
𝜕V

|||||U =
⟨3NkBp

2K0

⟩
𝜇c

=
⟨

p
TK

⟩
𝜇c

=
⟨p⟩𝜇c

T̃
+ O(1∕N) (5.44)

Comparing Eqs. (5.40), (5.44), and (5.38) and noting that the classical entropy is
only defined up to an arbitrary constant, we conclude that S and S̃ satisfy the same
partial differential equation:

𝜕X
𝜕V
||||U
/

𝜕X
𝜕U
||||V = p (5.45)

This means that up to an arbitrary additive constant the entropy and S̃(U,V ) are
the same function of U,V :

S(V ,U) = S̃(V ,U) + O(1∕N) + const (5.46)

Note that T , T̃ , which are yet unresolved, both individually cancel from the two
versions of Eq. (5.45) (when X = S, S̃). Substituting the thermodynamic entropy
into Eq. (5.44) and comparing with the second equation in Eq. (5.38) then shows
that

T(V ,U) = T̃(V ,U) + O(1∕N) (5.47)

The O(1∕N) corrections disappear in the thermodynamic limit where classical
thermodynamics is valid. Having identified the microscopic expressions for the
entropy and the temperature in equilibrium microcanonical systems, we can now
apply the usual textbook arguments to derive the expressions for the Helmholtz
free energy in canonical systems.

We can also give a microscopic expression for the Helmholtz free energy of equi-
librium canonical systems directly.
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We postulate that the Helmholtz Free energy A(T ,N ,V ) is the same function
of the thermodynamic temperature that Q is of the Nose–Hoover target temper-
ature Tth in Eq. (5.19) (Evans, Searles, and Williams, 2009a):

A(T = Tth,N ,V ) = Q(Tth,N ,V ) + (1∕N)

≡ −kBTth ln
[
∫ d𝚪𝛿

(
𝐏th
)

exp[−𝛽thHE(𝚪)]
]

(5.48)

That is, when Tth = T , the Helmholtz free energy A(T) at the thermodynamic tem-
perature T is equal to the value of the statistical mechanical expression Q(Tth) that
is defined in Eq. (5.48). From classical equilibrium thermodynamics, we note that
the Helmholtz free energy satisfies the differential equation

U = A − T 𝜕A
𝜕T

(5.49)

where U is the internal energy. Whereas if we differentiate Q, which is defined in
(5.48), with respect to Tth, we see that

⟨
H0
⟩
= Q − Tth

𝜕Q
𝜕Tth

(5.50)

Since U =
⟨

H0
⟩

and noting that when T = Tth = 0, then A(0) = U(0) = Q(0),
we observe, treating T , Tth as integration parameters x, that A and Q satisfy the
same differential equation: U(x) = Y (x) − x 𝜕Y (x)∕𝜕x, with the same initial x= 0
condition and therefore A(T) = Q(Tth) and our hypothesis Eq. (5.48) is proved.
The pressure can be verified using the SLLOD equations, but since pressure is a
mechanical property, obtaining a microscopic expression for pressure presents no
difficulties.

Lastly, we derive a microscopic expression for the entropy of an equilibrium
canonical system. First, we note from classical equilibrium thermodynamics

S = U − A
T

(5.51)

Substituting the microscopic expressions for both the Helmholtz Free energy and
the internal energy into Eq. (5.51) for a canonical system gives

Sc =
∫ d𝚪e−𝛽H0 H0

T∫ d𝚪e−𝛽H0

+ kB ln
[
∫ d𝚪e−𝛽H0

]

=
−kB∫ d𝚪

(
e−𝛽H0

[
−𝛽H0 − ln∫ d𝚪e−𝛽H0

])

∫ d𝚪e−𝛽H0

= −kB∫ d𝚪 fc(𝚪) ln[fc(𝚪)] (5.52)

where fc(𝚪) is given by the equilibrium canonical distribution (Eq. (5.20)).
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Definition
The Gibbs entropy (see Eq. (2.55)) of a phase space distribution f (𝚪) is defined as

SG ≡ −kB∫ d𝚪 f (𝚪) ln[f (𝚪)] (5.53)

The Gibbs entropy of the equilibrium canonical distribution (Eq. (5.20)) is the
thermodynamic entropy of the equilibrium system in contact with a heat bath
at the specified thermodynamic temperature. We note that in Eq. (2.57), as Gibbs
knew, for autonomous Hamiltonian systems the Gibbs entropy is a constant of the
motion.

The Gibbs entropy of a microcanonical distribution of states is the thermo-
dynamic entropy of the isolated autonomous Hamiltonian system with internal
energy U. We can calculate the Gibbs entropy of a microcanonical distribution of
states:

SG,𝜇c = −kB∫D
d𝚪 1

∫D
d𝚪

{
ln [1] − ln

[
∫D

d𝚪
]}

= +kB ln
[
∫D

d𝚪
]

(5.54)

where D denotes the limitingly thin energy shell and zero momentum domain
in phase space given in Eq. (5.9). Equation (5.54) is, of course, consistent with
Eq. (5.39).

Lastly, we should make a comment seldom made in textbooks. We have derived
a number of “standard” microscopic expressions for thermodynamic quantities.
However, each such expression is not unique. For example, there are infinitely
many different expressions for the equilibrium pressure or temperature. At
equilibrium, you can even calculate the equilibrium thermodynamic tempera-
ture using an expression that is purely configurational (Butler et al., 1998). If
𝛻𝐪 ≡ (𝜕∕𝜕𝐪1,… , 𝜕∕𝜕𝐪N ), then

1
kBT

=

⟨
𝛻2
𝐪Φ (𝐪)
|𝛻𝐪Φ(𝐪)|

⟩
+ O
( 1

N

)
(5.55)

where Φ(𝐪) is the interparticle potential energy of the system and q denotes all
the Cartesian coordinates of all the particles in the system. Typically, what hap-
pens is that, away from equilibrium, these different expressions for equilibrium
thermodynamic quantities each take on very different values, again pointing out
how special the equilibrium state is.

5.7
Introduction to Classical Thermodynamics

We now return to the logical exposition of this book and give a quick derivation
of some of the “laws” of classical equilibrium thermodynamics. A more detailed
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discussion will be given in Sections 7.2 and 8.5. We also take the opportunity to
explain some of the unusual, in some cases unique, terminology and mathematics
adopted by thermodynamicists over the last 150 years.

Typically, in the thermodynamic limit but very close to equilibrium, nonequilib-
rium averages of physical phase variables have negligible fluctuations – the stan-
dard deviation of averages of intensive phase functions scale like N−1∕2. These
fluctuations can be ignored in the thermodynamic limit. Close to equilibrium, an
intensive quantity like the hydrostatic pressure behaves like

lim
�̇�→0

p(Tkin, 𝜌, �̇�) = p(T = Tkin, 𝜌, �̇� = 0) + O(�̇�2) (5.56)

where Tkin is the kinetic temperature of the nonequilibrium system, T is the equi-
librium thermodynamic temperature appearing in the equilibrium canonical dis-
tribution function (5.20), and �̇� is the dilation rate. In the so-called quasi-static
limit, where rates of doing nonequilibrium processes go to zero, we can calcu-
late changes using the equilibrium values for thermodynamic variables. This is
allowed because integration times for processes scale like the reciprocals of the
rates (e.g., �̇�−1), while the errors incurred by replacing the actual values with their
equilibrium counterparts scale like the square of the rates (e.g., �̇�2 in Eq. (5.56)
see Section 8.3 for another example discussed in more detail). This means that
the nonequilibrium contributions to the integrated changes vanish as O(�̇�) at suf-
ficiently slow rates. Quasi-static changes are not mysterious processes. They are
simply processes that take place in the infinitely slow limit, as in Eq. (5.56). This
is, of course, not how processes always take place in the natural world!

Consider the Helmholtz free energy of our quasi-static canonical system in the

thermodynamic limit (N → ∞): A = −kB ln
[
∫D

d𝚪 exp[−𝛽H0 (𝚪)
]

, see Eq. (5.38).

Let our system be subject to a quasi-static cyclic change in the temperature. From
our definition of the Helmholtz free energy of our equilibrium canonical system,
we see that for quasi-static changes

Ȧ = kB

⟨
𝜕𝛽H0
𝜕t

⟩
C

(5.57)

where ⟨· · ·⟩C denotes a canonical average.
Now we compute the cyclic integral of the quasi-static rate of change in the

Helmholtz free energy due to temperature changes in the thermodynamic limit:

qs∮ dA=qs∮ d(U∕T)

=qs∮ Ud(1∕T)+qs∮ dQ∕T

= 0 (5.58)

The first line is obtained from Eq. (5.57) and noting that in the thermodynamic
limit H0 = U . In going from the first to the second line in Eq. (5.58), we use the
chain rule and the fact that for this transformation, by construction, the change in
the internal energy is caused solely by the exchange of heat.
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In Eq. (5.58), we follow the conventional notation used in classical thermody-
namics, where dX denotes a quasi-static so-called virtual change in the variable
X. We could replace each dX by limdX∕dt→0 dX∕dt, but conventionally this has not
been done.

The fact that the cyclic integral of the change in the Helmholtz free energy of
our quasi-static (equilibrium) is zero is due to the fact that, by definition, in a
cyclic quasi-static process, the system returns to its initial equilibrium state after
one cycle. Similarly, both the internal energy and the temperature return to their
original values upon completion of a quasi-static cycle, so qs∮ Ud(1∕T) = 0.

Substituting this latter expression into Eq. (5.58) shows that

qs∮ dQ∕T = 0 (5.59)

If we split this cyclic integral into two part cycles: 1 → 2, 2 → 1, the fact that the
cyclic integral is always zero means that, given a pathway 1 → 2, the integral for
the return path back to 1 is independent of whether the return pathway includes

an intermediate state 3 or a different intermediate state, say 4. Thus qs∫
1

2
dQ∕T

is independent of the pathway between 2 and 1.

Definition
A thermodynamic state function is solely a function of the thermodynamic state
variables, which for our system comprise the number of particles N , the ther-
modynamic temperature T , and the volume of the system V or equivalently the
density 𝜌. The numerical value of a state function is independent of the pathway
or history describing how it arrived at its current state.

Definition
This enables us to define the change in a state function called the calorimetric
entropy S(T ,V ) as

S2 − S1 ≡ qs∫
2

1
�dQ∕T (5.60)

The strike through the differential for the heat denotes the fact that the heat is not
a state function, and many textbooks say that �dQ is an “imperfect” differential.
Textbooks also sometimes state that the reciprocal of the absolute temperature
is the “integrating factor for the heat, turning �dQ∕T into a perfect differential:
dS” – meaning that its integral Eq. (5.60) is a state function, namely the entropy S.

We can also see that this integrating factor is unique. It cannot be replaced
by any other monotonic function of the temperature, say 1∕T3. This is because
it comes ultimately from the algebraic form for the canonical equilibrium
distribution function (5.20), then to the associated form for its corresponding
Helmholtz free energy Eq. (5.38), and then into its derivative Eq. (5.57). Since for
T-mixing systems in contact with a heat reservoir, the equilibrium distribution
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is, as we proved, unique, so too is the “integrating factor” for the heat. So
the integrating factor for the heat is, in fact, the instantaneous temperature
of the quasi-static canonical distribution of states through which the system
evolves.

Now, for a system subject to a change of volume and a transfer of heat, the con-
servation of energy shows that for quasi-static processes in the thermodynamic
limit

dU = �dQ − pdV (5.61)

This is usually referred to as the first “Law” of thermodynamics, but it is really noth-
ing but the statement of conservation of total mechanical energy. (Note: we could
include an infinite variety of other forms of work in Eq. (5.61).) We only include
the work performed by moving a piston against a pressure head, for simplicity.

Since the heat transfer is not a state function, we can use Eq. (5.60) to replace it
with variables that are state functions. This gives us the fundamental statement of
the combined first and second “laws” of classical thermodynamics for quasi-static
changes in the thermodynamic limit:

dU = TdS − pdV (5.62)

Definition
Equation (5.62) is termed the Gibbs equation. It was first written down in this form
by Clausius. Gibbs then generalized it so that it could be applied to mixtures. Over
time, the special case given here has also been called the Gibbs equation.

We note that, if we take the microscopic definition of the Gibbs entropy of a
canonical system given in Eq. (2.55) (repeated in Eq. (5.53)), we can see that

TSG,c = −kBT∫ d𝚪 fc(𝚪) ln[fc(𝚪)]

=
−kBT∫ d𝚪

(
e−𝛽H0

[
−𝛽H0 − ln∫ d𝚪e−𝛽H0

])

∫ d𝚪e−𝛽H0

=
∫ d𝚪e−𝛽H0 H0

∫ d𝚪e−𝛽H0

+ kBT ln
[
∫ d𝚪e−𝛽H0

]

= U − A (5.63)

where we have used the definition (5.48) for the Helmholtz free energy, which we
repeat here:

A ≡ −kBT ln
[
∫ d𝚪e−𝛽H0

]
(5.64)

The first term in the second last line of Eq. (5.63) is obviously the canonical equi-
librium average of the energy (i.e., the internal energy U). Equation (5.63) shows
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the fundamental relationship between the internal energy and the Helmholtz free
energy.

Equation (5.60) enables the entropy of any equilibrium state to be determined
by carrying out a quasi-static change from an initial equilibrium state where
the entropy is known. However, it cannot be used to determine the entropy of a
nonequilibrium state. By construction, the final state must be at equilibrium. We
therefore define an irreversible calorimetric entropy Sir, which is no longer a state
function:

Sir,2 − S1 ≡ ∫
2

1
�dQ∕T (5.65)

We can now show that the instantaneous value of the rate of change of the Gibbs
entropy defined in Eq. (2.55) is equal to the rate of change of the calorimetric
entropy defined in Eq. (5.65). This is true for both quasi-static and irreversible
processes. Both entropies are, apart from a constant that is independent of the
thermodynamic state of the system, one and the same quantity.

Consider the instantaneous rate of change of the Gibbs entropy for a possibly
irreversible process:

ṠG(t) = −kB∫ d𝚪 [1 + ln(f (𝚪; t))]
𝜕f (𝚪; t)

𝜕t

= −kB∫ d𝚪 f �̇� ⋅
𝜕[1 + ln(f )]

𝜕𝚪

= −kB∫ d𝚪�̇� ⋅
𝜕f
𝜕𝚪

= kB∫ d𝚪f 𝜕

𝜕𝚪
⋅ �̇� = −3NthkB ⟨𝛼 (t)⟩

=
−Q̇th(t)

T
=

Q̇soi(t)
T

= Ṡir(t), ∀t (5.66)

In the last line Q̇soi(t) denotes the heat gain or loss for the system of interest.
In going from line 3 to line 4 of Eq. (5.66), we have assumed that Nth particles
are subject to an isokinetic thermostat in three Cartesian dimensions. In this
case, the temperature in line 4 would be the kinetic temperature of the Nth
particles, which may be some, or all, of the particles in the system. This makes
no difference to the final result because in either case this kinetic temperature
is equal in value to the equilibrium thermodynamic temperature T the entire
system will relax to if it is so allowed. If the process is not quasi-static, the
change in the entropy computed using Eq. (5.65) is not path-independent. This
means that, if the process is irreversible, Eq. (5.60) cannot be used since the left
hand-side of the equation is undefined if the pathway between states 1 and 2 is
undefined.

We note that for a quasi-static process transforming a system from equilibrium
state 1 to equilibrium state 2, ΔSG = ΔSir = ΔSeq, where ΔSeq is defined through
Eq. (5.60). However, if the transformation is carried out irreversibly,ΔSG = ΔSir ≠
ΔSeq. This reflects the fact that only the equilibrium entropy is a state function. It
also reflects the fact that the Gibbs entropy incorporates the details of the under-
lying distribution that will never reach the equilibrium distribution of state 2 in a
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finite time, although the physical properties of the system will relax to the equi-
librium values to within any desired accuracy.

Definition
Equation (5.66) gives a generalized definition for the rate of change of entropy.
It is valid for reversible and irreversible processes and shows that up to a state-
independent, additive constant, the Gibbs and irreversible calorimetric entropies
are equal. Their rates of change are instantaneously equal. The key to understand-
ing Eq. (5.66) is our new definition of the temperature of the underlying equilib-
rium state that any nonequilibrium system would relax to if it was so allowed.

One could make infinitely different variations on the thermostatting mech-
anism. We could just thermostat one particle, or we could thermostat just the
x-kinetic temperature of some or all of the particles, but the final result remains
unchanged. In this sense, the factor 3Nth in line 2 of Eq. (5.66) is completely
nominal. The last line gives the only physically relevant result. As we will see in
Chapter 8, we could even use a Nosé–Hoover thermostat without changing the
result.

In the Nosé–Hoover thermostat, we could even make the target kinetic temper-
ature a time dependent function – Section 8.5. In this case, Eq. (5.66) is still valid
except that the temperature must be the instantaneous value of the target kinetic
temperature which, of course, is also the instantaneous value of the temperature
of the underlying equilibrium state. This temperature is not instantaneously equal
to the ensemble-averaged kinetic temperature for this system. This illustrates the
unique properties of the temperature of the underlying equilibrium state.

Equation (5.66) provides a very simple example of how singular the entropy is
for nonequilibrium systems. Suppose we start with a microcanonical equilibrium
distribution for some ergostatted dynamics in the thermodynamic limit. We apply
a dissipative field to the system in which the AI𝚪 condition holds. This means that
Eq. (5.66) gives the rate of change of the entropy of the system of interest, even in
the presence of the dissipative field. After a Maxwell time, we assume the system
to relax into a nonequilibrium steady state (in Chapter 6, we show the T-mixing
is a necessary and sufficient condition for relaxation to a nonequilibrium steady
state).

In the steady state, the ensemble-averaged value of the ergostat multiplier is a
constant independent of time. The entropy of the system diverges toward negative
infinity at a constant rate. After some time t, we set the dissipative field back to
zero and let the T-mixing system relax at constant energy toward microcanonical
equilibrium. In this relaxation process, the entropy of the system does not change
because it is now an autonomous Hamiltonian system. After a Maxwell time (or
multiple Maxwell times), the averages of all physical phase functions take on (to
arbitrary accuracy) the same microcanonical values they had at time zero, and
yet the entropy of the final state can be made arbitrarily more negative than the
initial entropy by simply extending the duration t of the nonequilibrium steady
state to arbitrarily large values! In Appendix 5.A, we illustrate these same issues
for a system subject to a Nosé–Hoover thermostat.
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Although we have given meaning to temperature in non-quasi-static or irre-
versible processes, the entropy calculated for such processes is, unsurprisingly,
not a state function. Only in the quasi-static limit is the entropy a state function
(5.60).

The Gibbs entropy, which is equal to the irreversible calorimetric entropy, is a
function of the unphysical N-particle distribution function. An equilibrium dis-
tribution can, as we have just seen, never be reached in finite times. This is why by
introducing the T-mixing condition we concentrate on the relaxation of averages
of physical phase functions, ignoring the fractal intricacies of N-particle phase
space distribution functions.

The derivation of classical thermodynamics will be explained in greater detail
in Chapter 8, where we will give a detailed account of how the changes in the state
of the system take place. In Chapter 8, we will also prove some thermodynamic
inequalities such as the Clausius inequality for a thermal reservoir. Superficially,
some of these inequalities will look similar to the inequalities found in thermo-
dynamic textbooks, but the meaning of many of the quantities is different. For
example, we have already given a definition for the temperature appearing in the
Clausius inequality for irreversible processes. It is the equilibrium thermodynamic
temperature the system will relax toward, if it is so allowed. In Chapter 8, we
will use Nosé–Hoover thermostats rather than the isokinetic thermostats used
here. This also shows that the basic equalities of classical thermodynamics are
independent of how the thermostatting is performed.

5.A Appendix: Entropy Change for a Cyclic Temperature Variation (Williams, Searles,
and Evans, 2014)

Here we consider a system subject to a cyclic change in temperature to
demonstrate the behavior and relationship between the dissipation and the ther-
modynamic and Gibbs entropies. Consider a thermostatted system at equilibrium
at T1, which is monitored for a period 𝜏1, then is decreased to temperature T2
over a period 𝜏2, maintained that temperature for a period 𝜏3, then warmed back
to T1 over a period 𝜏2, and maintained at that temperature for a period 𝜏1 (see
Figure A.5.1).

In order to determine the dissipation function, we need to look at a time-
symmetric protocol. For simplicity, we make the changes in T such that 𝛽 varies
linearly in time. To ensure ergodic consistency, we consider a Nosé–Hoover ther-
mostatted system. This example can then be used to consider thermodynamically
reversible or irreversible changes.

The equations of motion are

�̇�i = 𝐩i∕m
�̇�i = 𝐅i − 𝛼𝐩i

�̇� = 1
𝜏2

th

( 𝐩i ⋅ 𝐩i
3NkT (t)m

− 1
)

(5.A1)
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β
(β2 − β1)

β2

β1

τ1 τ1
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(β1 − β2)
β τ2

=

Figure A.5.1 Schematic diagram of the protocol used for change of temperature in the
example considered. Reproduced from Williams, Searles, and Evans (2014) with permission
of Taylor and Francis.

and the initial distribution function is

f (𝚪, 𝛼) = e−𝛽1H0(𝚪)−(3∕2)N𝜏2
th𝛼

2

Z1
(5.A2)

This becomes a cyclic process if the time period 𝜏1 becomes long enough such that,
for averages of low-order phase functions, the system approaches equilibrium. We
will consider both possibilities here (cyclic and not).

The dissipation function for this process is

Ω𝜏max
= 𝛽1H0(𝜏max) − 𝛽1H0(0) +

3
2

N𝜏2
th(𝛼(𝜏max)2 − 𝛼(0)2) + 3N∫

𝜏max

0
𝛼(t)dt

(5.A3)

Noting that
d
dt

[3
2

N𝜏2
th𝛼(t)

2
]
= 3N𝜏2

th𝛼(t)�̇�(t) =
2K(t)𝛼(t)

kT(t)
− 3N𝛼(t) (5.A4)

so
3
2

N𝜏2
th(𝛼(𝜏max)2 − 𝛼(0)2) = ∫

𝜏max

0

(
2K (t) 𝛼(t)

kBT(t)
− 3N𝛼(t)

)
dt (5.A5)

and substituting into Eq. (5.A3) gives

Ω𝜏max
= 𝛽1H0(𝜏max) − 𝛽1H0(0) + ∫

𝜏max

0

2K(t)𝛼(t)
kBT(t)

dt (5.A6)

Furthermore, Ḣ0(t) = −2K(t)𝛼(t) = Q̇(t), where Q̇(t) is the rate at which heat is
transferred to the system, since no work is being done on the system. So

Ω𝜏max
= 𝛽1H0(𝜏max) − 𝛽1H0(0) − ∫

𝜏max

0

Q̇(t)
kBT(t)

dt (5.A7)

Now consider some special cases:

1) When lim(𝜏2 → ∞), we have a reversible process. Then

∫
𝜏1+𝜏2

𝜏1

⟨
Q̇ (t)

⟩
kBT(t)

dt = −∫
𝜏1+2𝜏2+𝜏3

𝜏1+𝜏2+𝜏3

⟨
Q̇ (t)

⟩
kBT(t)

dt and
⟨

H0
(
𝜏max
)⟩

=
⟨

H0 (0)
⟩
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so from (5.A7)
⟨
Ω𝜏max

⟩
= −∫

𝜏max

0

⟨
Q̇ (t)

⟩
kBT(t)

dt = 0 (5.A8)

2) Now consider the irreversible process with finite 𝜏2 but with lim(𝜏1 → ∞).

With respect to averages of low-order phase functions, the system will be arbi-
trarily close to equilibrium at 𝜏max, so lim

𝜏max→∞

⟨
H0
(
𝜏max
)⟩

=
⟨

H0 (0)
⟩

. Then, from
Eq. (5.A7)

⟨
Ω𝜏max

⟩
= −∫

𝜏max

0

⟨
Q̇ (t)

⟩
kBT(t)

dt = −1∕kB∫
𝜏max

0
ṠG(t)dt (5.A9)

and from the second law inequality (3.9),
⟨
Ω𝜏max

⟩
> 0, so

⟨
Ω𝜏max

⟩
= −∫

𝜏max

0

⟨
Q̇ (t)

⟩
kBT(t)

dt = −1∕kB∫
𝜏max

0
ṠG(t)dt > 0 (5.A10)

If the process is irreversible, the inequality applies. The equality will apply for the
reversible case. So this says that for the irreversible cycle, the time integral of the
average dissipation function (multiplied by kB), the change in the Gibbs entropy,
and the integral of

⟨
Q̇
⟩
∕T , where the temperature is the target temperature of

the Nosé–Hoover thermostat, are all equal and will be positive, independent of
the Nosé–Hoover time constant 𝜏th.

The target temperature will, in general, be different from the instantaneous
kinetic temperature and, furthermore, those differences will vary with respect to
the time constant 𝜏th. Exactly the same equation can be derived using an isokinetic
rather than Nosé–Hoover thermostat. These facts show that the temperature
T(t) in Eq. (5.A10) is, in fact, the equilibrium thermodynamic temperature of the
underlying equilibrium system at time t. This temperature can be discovered by
halting the execution of the protocol at time t and allowing the entire system to
relax to equilibrium. From the equilibrium relaxation theorems, for isokinetic
dynamics this temperature is the instantaneous kinetic temperature at time t.
For the Nosé–Hoover thermostat, it is the Nosé–Hoover target temperature at
time t, regardless of the value of the feedback time constant.

Equation (5.A10) also shows the lack of utility of the Gibbs entropy in this work.
Although its time derivative is

⟨
Q̇ (t)

⟩
∕T(t), the difference in the Gibbs entropy

of the initial and final states is not zero. This is in spite of the fact that an unlimited
amount of time is allowed for relaxation toward the final state! For any relax-
ation time no matter how large, the final distribution at time 𝜏max is not precisely
an equilibrium distribution, and the Gibbs entropy detects these minute differ-
ences and SG(0) > SG(𝜏max), ∀𝜏max. If it did relax to a true equilibrium, we could
never retrieve the initial distribution of states by applying a time-reversal operator.
For any 𝜏max no matter how large, the initial distribution of states can always be
retrieved using a time-reversal operator. True equilibrium distributions are invari-
ant in time with or without the application of time-reversal operators.
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6
Nonequilibrium Steady States

The number of molecules being finite, it is clear that small finite deviations
from absolute precision in the reversal we have supposed would not obviate
the resulting disequalisation of the distribution of energy. But the greater
the number of molecules, the shorter will be the time during which the
disequalising will continue; and it is only when we regard the number of
molecules as practically infinite that we can regard spontaneous disequal-
isation as practically impossible.1)

(Thomson, 1874)

6.1
The Physically Ergodic Nonequilibrium Steady State

Definition
As we saw in Section 2.2, a nonequilibrium system is stationary if it is subject to
a thermostatting mechanism and a dissipative field such that for physical phase
functions A(𝚪)

⟨A(t)⟩ = ∫D
d𝚪A(𝚪) f (𝚪; t) = ∫D

d𝚪A(St𝚪) f (𝚪; 0) = const, ∀t (6.1)

where D denotes the ostensible phase space domain over which the initial
ensemble density is nonzero. Stationarity simply means that such systems have
time-independent averages for physical properties. This stationarity may occur
for all times or only for sufficiently late times. Stationarity does not imply that
the distribution function is stationary. In fact, as we first saw in Eq. (2.56),
in a nonequilibrium stationary state the Gibbs entropy diverges at a constant
rate toward negative infinity. In stationary nonequilibrium states, the time-
independent value that these time averages take on can be dependent on the
initial phase 𝚪.

1) In modern terminology, Thomson is saying, other things being equal, that the largest Lyapunov
exponent increases with the number of particles, so that its reciprocal (the reversal time) becomes
microscopic for macroscopic systems. At the present time it is unknown whether Thomson’s asser-
tion is correct: (Searles, Evans, and Isbister, 1997).

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Definition
A physically ergodic nonequilibrium steady state (peNESS) satisfies the equation

lim
t→∞

⟨A(t)⟩0 = lim
t→∞

At(𝚪) = lim
t→∞

1
t ∫

t

0
ds A(Ss𝚪), ∀!𝚪 ∈ D (6.2)

where ⟨· · ·⟩0 denotes an ensemble average over the initial t = 0 and ensemble
f (𝚪; 0). For almost any ∀! initial phase 𝚪, the time average on the left-hand side of
Eq. (6.2) equals the right-hand side late-time ensemble average taken with respect
to the initial distribution f (𝚪; 0) in D. At late times, we say that the steady state is
ergodic with respect to ensemble averages of physical properties over the initial
distribution in D.

When we speak of physical ergodicity, we say that almost any initial phase leads,
at long times, to time averages that are equal to the long-time ensemble average,
because there may be sets of initial phase points, with zero measure, whose long-
time averages of physical properties are different from those of almost all other
initial phases (e.g., the zero measure phases that generate the antisteady state).

Definition
By zero measure we mean that, if we sample phases randomly over the ostensible
phase space domain D, the probability of observing these zero measure phases is
precisely zero.

Our notion of physical ergodicity is defined solely by averages of physical phase
variables. We make no statement about the nonequilibrium distributions f (𝚪; t).
These distributions are for macroscopic systems, are practically impossible to
measure, and they frequently relax toward fractal objects.

Consider almost any 𝚪 ∈ D if we form the time-reversal mapping of the set of
late-time phase vectors {St𝚪}; then the set of phases {MT St𝚪} has very strange
properties. Advancing time for a short while 𝜏 ≪ t generates an antisteady state
ensemble in which it is overwhelmingly likely to convert heat into work! However,
for sufficiently large t, the probability of observing these “repeller” phases in a
typical set of equilibrium phases {𝚪} becomes incredibly small – going to zero in
the limit t → ∞. This is why we use the terminology “almost any” initial phase will
generate a trajectory along which the time-averaged dissipation is positive. This is
the qualitative content of the transient fluctuation theorem.

Equation (6.2) implies that the long-time averages could be averaged over almost
any initial distribution of those initial phases f (𝚪; 0) so that for a peNESS

lim
t→∞

⟨
B(St𝚪

⟩
0 ≡ lim

t→∞∫𝚪∈D
d𝚪B(St𝚪) f (𝚪; 0) = lim

t→∞

⟨
B(St𝚪

⟩
∀! f (𝚪; 0), ∀𝚪 ∈ D

(6.3)

Equation (6.3) shows that peNESSs are physically ergodic with respect to almost
any initial distribution of phases f (𝚪; 0) in the phase space domain D. Time aver-
ages of physical variables are equal to ensemble averages, and in the nonequilib-
rium steady state (NESS) the late-time ensemble average is independent of the
initial distribution. This coincides with the commonplace observation that, for
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example, in shearing laminar flows with fixed boundary conditions of shear rate,
boundary temperatures and pressure, and so on, the NESS so produced is, at long
times, independent of the details of the initial state from which it was produced
and a single late-time time average will give the same result for a physical mea-
surement that we would obtain from a late-time ensemble average of repeated
experiments.

Later in this chapter we will examine in more detail the mathematical conditions
that are required in order to generate a peNESS.

While our physical experience is that physically ergodic NESSs do exist, we also
know from experience that NESSs are not always physically ergodic. For example,
in Rayleigh–Bénard instability we know that for a fixed geometry and a given set of
boundary conditions, systems may form into two, or four rolls, and so on, with the
number of rolls fixed and persisting (apparently) indefinitely. Clearly, the physical
properties of the two-roll system are different from those of a four-roll system.
These types of system do not satisfy Eq. (6.2) (i.e., they do not form a peNESS).

If we could define the initial phase space subdomain D2 over which only two rolls
form at late times, then over the subdomain D2 the system would form a peNESS,
while over D it would not. However, in such cases it may be practically impossible
to actually discover the topology of this phase space subdomain D2. Such domains
are expected to be fractal. If this is the case, then from a practical point of view
such systems are best viewed as not forming a physically ergodic NESS.

6.2
Dissipation in Nonequilibrium Steady States (NESSs) (Williams, Searles, and Evans,
2014)

We will now discuss dissipation (rather than entropy or the so-called entropy pro-
duction) in NESSs. We begin by considering a system of N particles subject to the
following equations of motion:

�̇�i = 𝐩i∕m + Ci𝐅e, �̇�i = 𝐅i + Di𝐅e − Si𝛼IK𝐩i + Si𝐅th (6.4)

In these equations, 𝐅e is an external dissipative field (e.g., an electric field applied
to a molten salt), and the scalar phase functions Ci and Di couple the system to
the field. The system can be easily generalized to tensor coupling parameters if
required. If we denote a set of thermostatted particles as belonging to the set th,
we choose Si = 0, i ∉ th; = 1, i ∈ th to be a switch to determine whether particle
i is a member of the set, th, of Nth thermostatted particles. 𝛼IK is the thermostat
multiplier chosen to fix the kinetic energy of the thermostatted particles at the
value Kth, and 𝐅th is a fluctuating force used to fix the total momentum of the
thermostatted particles, which is chosen to have a value of zero. We assume the
interatomic forces 𝐅i; i = 1,N , are smooth functions of the interparticle separa-
tion. We also assume that the interatomic forces are short-ranged so that there are
no convergence problems in the large N limit.

We assume that in the absence of the thermostatting and momentum-
zeroing forces, the equations of motion preserve phase space volumes
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( 𝜕∕𝜕𝚪 ⋅ �̇�ad ≡ Λad(𝚪) = 0) where 𝚪 ≡ (𝐪1,… ,𝐪N ,𝐩1,… ,𝐩N ) is the phase space vec-
tor and the superscript “ad” denotes the fact that the time derivative is calculated
with the thermostatting and momentum zeroing forces turned off. This condition
is known as the adiabatic incompressibility of phase space condition or AI𝚪 for
short – see Section 2.2.

We assume that the system of particles is subject to infinite checkerboard
boundary conditions (Evans and Morriss, 1990) – at least in the direction of the
force. This means that angular momentum is not a constant of the motion. It also
means that dissipation can go on forever without the system relaxing to equilib-
rium. Currents can flow in the direction of the force forever. The thermostatted
particles may be taken to form solid walls parallel to the field, so that they can
absorb or liberate heat that may be required to generate a NESS characterized by
a fixed value for the kinetic energy of the thermostatted particles.

In contrast, if the system is finite, mixing, and has an autonomous Hamiltonian,
even when subject to a dissipative external force it will eventually relax toward
microcanonical equilibrium (Section 5.3). If these same systems are thermostat-
ted, as in Eq. (6.4), they will eventually relax toward canonical equilibrium
(Section 5.4). For example, a finite cell containing charged particles subject to a
fixed external field, whether thermostatted or not, will eventually, after dissipative
transients, relax toward equilibrium. The charges will be separated by the external
field and eventually produce an internal field (space charge) that cancels out the
externally applied field.

However, although NESSs that persist for an infinite amount of time do not exist
in Nature, on accessible timescales they can be approached arbitrarily closely by
a judicious choice of large but finite heat reservoirs and managing the magnitude
of dissipation in relation to the size of those reservoirs and the nonequilibrium
system of interest. If the time taken to relax toward equilibrium is much longer
than the time taken to relax toward a (transient) nonequilibrium “steady” state,
averages of low order phase functions in those transient dissipative states can be
approximated as stationary averages.

In this chapter we consider only those particles that are initially located in the
unit cell at time zero. The equations of motion given in Eq. (6.4) do not need to
refer to the periodic boundaries or re-imaging processes because we follow the
coordinates on this initial set of particles indefinitely no matter how far they may
diffuse or stream from the initial unit cell, and the coordinates of the particles are
then continuous in time. No matter where one of the original particles is located at
later times, the force on that particle due to any one of the infinite periodic array of
other particles close enough to exert a force on this original particle is computed
correctly. This is done by exploiting the infinite checkerboard convention. At long
times, the nearest neighbors of one of the original unit cell particles are not neces-
sary members of the original unit cell. This is the so-called infinite checkerboard
convention commonly used in molecular dynamics and Monte Carlo computer
simulation (Allen and Tildesley, 1987).

The initial distribution is taken to be the equilibrium distribution for this system
(see below). It takes the form of a canonical phase space distribution function fc(𝚪)
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augmented with the necessary delta functions (5.12):

f (𝚪; 0) = fc(𝚪) =
exp[−𝛽thH0(𝚪)]𝛿(𝐏th)𝛿(Kth(𝚪) − K𝛽,th)

∫ d𝚪 exp[−𝛽thH0(𝚪)]𝛿(𝐏th)𝛿(Kth(𝚪) − K𝛽,th)
(6.5)

where 𝐏th =
∑N

i=1 Si𝐩i is the total momentum of the thermostatted particles,
Kth(𝚪) = Kth(p) =

∑
Sip2

i ∕2mi is the kinetic energy of the thermostatted particles,
and K𝛽,th = (3Nth − 4)𝛽−1

th ∕2 (we assume the system has three Cartesian dimen-
sions) is the fixed value of the kinetic energy of the thermostatted particles. The
number of particles in a unit cell is N . The kinetic energy of the thermostatted
particles is fixed using the Gaussian multiplier 𝛼IK in the equations of motion.
Here, 𝛽th = 1∕kBTth, where kB is Boltzmann’s constant and, for isokinetic sys-
tems, Tth is the so-called kinetic temperature of the thermostatted particles.
For Nosé–Hoover thermostatted systems, it is the reciprocal of the target
temperature of the Nosé–Hoover feedback mechanism. In the Nosé–Hoover
thermostatted case, there is an O(1) change in the equipartition relation between
the thermostat kinetic energy and the kinetic temperature of the thermostat
(Evans and Morriss, 1990). The (only) common feature of all thermostatted
systems is that 𝛽th is the reciprocal of the equilibrium thermodynamic tempera-
ture that the entire driven system would relax toward if the system is T-mixing
Eq. (5.10), the driving force is set to zero, and the whole system is allowed time to
relax toward thermodynamic equilibrium under the influence of the thermostat
(Chapter 5). We call this temperature the thermodynamic temperature of the
underlying equilibrium state. The internal energy of the N particles in the unit cell
is the average of H0(𝚪) = K(𝐩) + Φ(𝐪), where K ,Φ are, respectively, the peculiar
kinetic energy and the potential energy of all the particles in the original unit cell.

To be more mathematically correct, we should specify the ostensible phase
space domain that is not referred to explicitly in Eq. (6.5). In principle, the
particle momenta are unbounded. Clearly, the delta functions in Eq. (6.5) place
four constraints on the momenta of (some) particles in the system. The initial
coordinates of the particles will each range over some finite range ±L within the
unit cell of the periodic system. Because of the infinite periodicity, any particle
and its environment are identical to any periodic image of that particle. Particles
can always be “re-imaged” back into the original unit cell (Evans and Morriss,
1990). However, calculating certain quantities may have spurious discontinuities
if this is done. Thermodynamic quantities such as pressure, internal energy, and
so on, are all continuous in time, independent of whether particles are “imaged”
in the unit cell. Throughout most of the remainder of this paper, we will not refer
explicitly to this ostensible phase space domain.

The thermostatting region that is unnatural can be made arbitrarily remote from
the natural system of interest. The thermostatting particles may be buried far
inside realistically modeled walls that contain the nonequilibrium system of inter-
est. This means that there is no way that the particles in the system of interest can
“know” how heat is ultimately being removed from the system. The thermostats
are important as a bookkeeping device to track the evolution of phase space vol-
ume in a deterministic but open system.
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The time integral of the dissipation function evaluated at an initial phase 𝚪 is
formally defined as

Ωt(𝚪) ≡ ln
⎡⎢⎢⎢⎣

f (𝚪; 0) exp
(
− ∫ t

0 dsΛ (Ss𝚪)
)

f (MT St𝚪; 0)

⎤⎥⎥⎥⎦
(6.6)

where MT is the time reversal map, MT𝚪 ≡ (𝐪1,… ,𝐪N ,−𝐩1,… ,−𝐩N ), and St is
the time evolution operator for a time t. A key point in the definition of dissipa-
tion is that 𝚪 and MT St𝚪 are the origin phases for a trajectory and its conjugate
antitrajectory, respectively. This places constraints on the propagator St . Any time-
dependent driving fields 𝐅e(t) must have a definite parity under time reversal over
the interval (0, t).

For a system satisfying Eq. (6.4) and satisfying the AI𝚪 condition and having
an initially equilibrium distribution of states Eq. (6.5), it is easy to show that the
instantaneous dissipation function (6.6) can be written as

Ω(𝚪) ≡ −𝛽thV𝐉(𝚪) ⋅ 𝐅e = 𝛽th
∑

i
[𝐩iDi∕m − 𝐅iCi] ⋅ 𝐅e (6.7)

where 𝐉(𝚪) is the so-called dissipative flux and V is the unit cell volume. For
example, for electrical conductivity, where Ci = 0,∀i and Di = ci is the electric
charge of particle i and an electric field is applied in the x-direction, 𝐅e = (Fe, 0, 0),
it is easy to see that −JV =

∑
ciẋi, the electric current in the x-direction.

Such a dissipation function is called a primary dissipation function – Section
4.3. When the field is zero, the system remains in equilibrium and the dissipation
is identically zero.

From the dissipation theorem (Chapter 4) we know that, if the system is ini-
tially at equilibrium, we can write the nonlinear response of an arbitrary integrable
phase function B(𝚪) as

⟨B(t)⟩Fe,0 = ⟨B(0)⟩0 − 𝛽thV ∫
t

0
ds⟨𝐉(0)B(s)⟩Fe ,0 ⋅ 𝐅e (6.8)

where ⟨B(t)⟩Fe,0 denotes the ensemble average of the phase function B(𝚪) evalu-
ated at the propagated phase St𝚪, with the initial distribution (t = 0) being given
by Eq. (6.5). The first subscript on the ensemble averages Fe indicates that the prop-
agator St is given by the full field-dependent thermostatted dynamics of Eq. (6.4),
and the second subscript, which is zero in this case, indicates that the average is
with respect to the initial equilibrium distribution function. In Eq. (6.8), B(s) ≡
B(Ss𝚪), 𝐉(0) ≡ 𝐉(𝚪), and B(s) is also evaluated with the full field-dependent ther-
mostatted dynamics.

From Eq. (6.8) we also see that, if the system is initially at equilibrium and the
driving field is zero, then the ensemble averages of all integrable phase functions
are time independent, and if the system starts with the equilibrium distribution
(6.5), the distribution is preserved by the field-free thermostatted dynamics.

Although Eq. (6.8) only refers directly to the N particles in the unit cell, the
coordinates and momenta of all periodic image particles follow by symmetry.
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This expression (6.8) is exact for systems arbitrarily near or far from equilibrium
and also for systems of arbitrary size. If the system isΩT-mixing, then by definition
(5.10), if B(𝚪) is a real-valued physical phase function

lim
t→∞

⟨B(t)⟩Fe,0 = ⟨B(0)⟩Fe,0 + L0 ∈ ℜ (6.9)

So the infinite time integral of the transient time correlation function in Eq. (6.8)
converges to a finite value for an arbitrarily strong, or weak, dissipative field.
Physically this corresponds to the relaxation to a NESS at sufficiently long times.
The T-mixing property Eq. (5.11) also means that the steady-state distribution is
physically ergodic and does not break down into nonmixing subspaces that have
different values for the steady-state averages of low-order phase functions.

If the phase space did break down into subdomains with distinct time-invariant
sets of averages of these low-order phase functions, these distinct values could
be used to define new constants of the motion. These constants of the motion
would lead to nonconvergent integrals for the relevant time correlation functions,
and thereby violate the T-mixing assumption. Any initial correlations between the
physical phase functions that are constants of the motion would be preserved for
all time, resulting in divergences in Eq. (6.8).

Thus steady-state time averages must equal ensemble averages over the steady
state attractor(s) even though its topology is fractal and its geometry is gener-
ally unknown. So the T-mixing condition implies that the late-time stationary
nonequilibrium states are in fact NESSs that are physically ergodic over the initial
phase space domain.

We do know that the dimension of the steady-state attractor(s) is less than that
of the ostensible phase space and generally decreases as the dissipation increases.
(N.B. it is not known whether the Kaplan–Yorke dimension is in general a mono-
tonic decreasing function of the dissipative field. In the weak field, linear response
regime the Kaplan–Yorke dimension is a monotonic decreasing function of the
dissipative field (Evans et al., 2000).)

Although the long-time averages appearing on the left-hand side of Eqs. (6.8)
and (6.9) are finite, these averages could be divergent in the limit of large system
size. For finite dissipative fields, the large system limit is usually problematic. For
example, for a fixed shear rate in Couette flow, as the system size increases, so
does the Reynolds number for the flow. As the system size increases, we know
that there will be a transition from laminar to (eventually) highly turbulent flow.
Such large systems (e.g., Rayleigh–Bénard flows) may not be T-mixing at high
fields, and once it becomes turbulent, it is clearly not T-mixing as a steady state is
not achieved.

In the weak field limit, this Eq. (6.8) reduces (essentially) to the well-known
Green–Kubo expression (Evans and Morriss, 1990; McQuarrie, 1976) for the
linear response:

lim
Fe→0

⟨B(t)⟩Fe,0 = ⟨B(0)⟩0 − 𝛽thV ∫
t

0
ds⟨𝐉(0)B(s)]⟩Fe=0,0 ⋅ 𝐅e (6.10)
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where the right-hand side is given by the integral of an equilibrium (i.e., 𝐅e = 𝟎)
time correlation function. The initial ensemble for the terms on the right-hand
side is the equilibrium ensemble Eq. (6.5), and the dynamics inherent in the
equilibrium time correlation function is generated at zero field but with the
thermostat on. The field only appears in the nonequilibrium average on the
left-hand side of Eq. (6.10) and as an explicit factor multiplying the correlation
function on the right-hand side of Eq. (6.10).

In the linear response regime, the T-mixing condition implies that, for a
system initially in a canonical ensemble, limt→∞⟨J(0)B(t)⟩Fe=0,C = 0; that is,
in the long-time limit there is no correlation between J(0) and limt→∞B(t) so
that limt→∞⟨J(0)B(t)⟩Fe=0,C = ⟨J⟩Fe=0,C⟨B⟩Fe=0,C = 0 and the zero-field system is
mixing. If correlations were nonzero in the long-time limit, the integral Eq. (6.10)
could not converge and the system would not be T-mixing. The mixing condition
assumes that Eq. (5.1)

lim
t→∞

|||⟨A (𝚪 (0))B(𝚪(t))]⟩Fe=0,C − ⟨A(𝚪)⟩Fe=0,C⟨B(𝚪)⟩Fe=0,C
||| = 0 (6.11)

where the subscript, C, on the ensemble average implies it is a canonical ensemble
average and fc(𝚪) is the equilibrium distribution (6.5). In Eq. (6.8), the T-mixing
condition for the equilibrium time correlation function implies that the system is
mixing over the invariant equilibrium distribution (6.5). In the zero-field limit, the
T-mixing transient time correlation function must be a rapidly decaying mixing
equilibrium time correlation function.

However, mixing does not, in general, imply T-mixing. In a T-mixing system,
the correlation function must go to zero sufficiently rapidly for the integral to
converge, so that limt→∞|⟨B(𝚪(t))⟩Fe,0| is time-independent and finite. Having
equilibrium time correlation functions going to zero at long times is insufficient
to ensure T-mixing.

If the decorrelations in the equilibrium time correlation function scale like
1∕t or slower at long times, the system will be mixing but not T-mixing. For
example, if the equilibrium time correlation function goes to zero as 1/t at long
times, limt→∞ limFe→0⟨B(t)⟩Fe

− ⟨B(0)⟩ = O(ln(t)) and the system will never have
a time-independent average value for the phase variable even arbitrarily close
to equilibrium. Thus we have an example system that could be mixing over the
equilibrium time correlation function but does not relax to NESSs in the linear
response regime close to equilibrium. This is quite different to the ergodic theory
result for finite, autonomous Hamiltonian systems where a mixing equilibrium
distribution that is preserved by the dynamics does indeed imply relaxation
toward that time-independent microcanonical equilibrium distribution! For such
systems, the transients must in fact be at least ΩT-mixing.

To put this into a more physical context, in two dimensions in the large system
limit (i.e., the number of particles N in the unit cell goes to infinity), equilib-
rium time correlation functions for the macroscopic Navier–Stokes transport
coefficients are each thought to have t−1 long time tails (Alder and Wainwright,
1970). In this limit, the Fourier series in our infinitely periodic system become
continuous Fourier–Laplace transforms. Thus macroscopic equilibrium systems
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in two dimensions may be mixing but would not be T-mixing. Again, this does
not violate the ergodic theory proof of relaxation to microcanonical equilibrium
because that proof applies only to finite systems.

If we turn briefly to the transient time correlation function expressions
for the nonlinear response Eq. (6.8), the mixing condition is simply not relevant.
The transient time correlation function on the right-hand side is not stationary.
The measure evolves from the initial equilibrium distribution (6.5) and through
a set of transient measures (over which the transient integral is computed) until
at long times, if the system is ΩT-mixing, we approach the steady state with
stationary averages for physical observables. The mixing condition (6.11) can
never prove relaxation to a steady state because the condition already assumes in
its definition (6.11) stationarity with respect to time!

We say that Eq. (6.10) is “essentially” the same as the Green–Kubo relations
because there are some subtle differences. Kubo’s results (Kubo, 1966) were for
the linearized adiabatic response (i.e., no thermostats) of a canonical ensemble of
systems. We derived Eq. (6.10) for isokinetic dynamics where the kinetic energy
of the thermostatted particles is fixed and the distribution for the system of
interest is canonical – Eq. (6.5). Thus the equilibrium time correlation function
appearing in Eq. (6.10) is for field-free isokinetic dynamics. This is not the same
as the case considered by Kubo. Kubo’s time correlation functions involved
canonical distributions but the field-free dynamics employs constant-energy
Newtonian trajectories. Kubo’s system was obviously not physically ergodic
(because states of different energies never mix), whereas our results, Eq. (6.10),
are physically ergodic (because the system is T-mixing). An equivalent result to
Eq. (6.10) can be obtained for systems that are initially at equilibrium (with a
canonical distribution function) but with thermostat-free dynamics for t > 0. The
dissipation function for this system will be the same as in the thermostatted case.
Then, Eq. (6.10) would be equivalent to the Green–Kubo relations.

Evans and Sarman have proved (Evans and Sarman, 1993) that, to leading
order in the number of degrees of freedom in the system (= O(N)), adiabatic and
homogeneously thermostatted equilibrium correlation functions are identical.
Of course, if the dissipative field only couples to particles in the system of interest
and the thermostat region is large and remote, the fluctuations in the dissipation
function (which is local to the system of interest) will hardly be affected by the
presence or absence of thermostatting terms in the large remote thermostatting
region.

Because the thermostat is unphysical, we only thermostat a subset of the total
number of particles. If we only thermostat particles that are remote from the nat-
ural system of interest (still within the unit cell), we can always appeal to the
gedanken experiment that if we make the thermostatting region ever more remote
from the system of interest, there is just no way that the physical system of interest
can “know” how the remote thermostatting is actually occurring. If the external
fields are set to zero and the T-mixing system is allowed to relax to equilibrium,
we know the thermodynamic temperature of that underlying equilibrium system.
That is the temperature that appears in the equations given above.
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In fact, Evans and Sarman also proved (Evans and Sarman, 1993) that at
the same state point, steady-state time correlation functions and steady-state
averages computed for homogeneously isokinetic, isoenergetic, or Nosé–Hoover
dynamics are identical to leading order in N. The proof assumes that the NESS
is mixing. To define a common state point, they fixed N , V , Fe, and the average
value of the thermostat multiplier ⟨𝛼⟩. It is easy to understand how this happens.
If the system is T-mixing, it will relax to a mixing steady state. The ensemble-
averaged value for the thermostat multiplier becomes constant in time. Since
limt→∞⟨𝛼(t)⟩ = const independent of the thermostatting/ergostatting mecha-
nism, in the large system limit the differences in the Liouvilleans and propagators
are O(1∕N). In the large system limit, there is no practical difference between
constant-energy or constant-kinetic-temperature thermostats and ergostats.

There is yet another interesting observation we can make regarding Kubo’s
system. If you consider viscous flow in a dilute gas, then as is known from
kinetic theory, the viscosity of a gas increases with temperature (Huang, 1963).
This means that for any finite field, no matter how small, the shear stress of
an adiabatic shearing gas must increase with time. This means that a shearing
unthermostatted gas can never be T-mixing! In a physical sense, for such a system
the time correlations never decay – at least not rapidly enough for T-mixing.

You can see how this memory effect occurs. If among the initial ensemble
members one encounters a fluctuation that increases the gas viscosity, that
fluctuation will cause slightly more heating of the gas. In this slightly heated
gas, the viscosity will be slightly higher than average, increasing the likelihood of
further fluctuations that in turn increase the viscosity. This is a runaway process
that prevents the decay of correlations required for the T-mixing condition.

6.3
For T-Mixing Systems, Nonequilibrium Steady-State Averages are Independent of the
Initial Equilibrium Distribution

We have already argued that for T-mixing systems the steady-state properties
must be independent of the initial distribution. In this section we give an explicit
proof of this point (Evans et al., 2015).

The dissipation function defined in Eq. (6.6) is a functional of both the dynam-
ics and the initial distribution. The exact transient Evans–Searles fluctuation
theorem refers to this exact dissipation function. How does the influence of the
nonequilibrium initial distribution disappear? We consider an initial distribution
that is not the equilibrium distribution for the zero-field system but is some
deviation from it:

fg(𝚪; 0) =
exp[−𝛽thH0(𝚪) + 𝜆g(𝚪)]𝛿(𝐏th)𝛿(Kth(𝚪) − K𝛽,th)

∫ d𝚪 exp[−𝛽thH0(𝚪) + 𝜆g(𝚪)]𝛿(𝐏th)𝛿(Kth(𝚪) − K𝛽,th)
(6.12)



6.3 For T-Mixing Systems, Nonequilibrium Steady-State Averages are Independent 119

We assume that the deviation function g(𝚪) is even in the momenta, is nonsingu-
lar, real, and integrable, and the system is ergodically consistent. The positive real
parameter 𝜆 is a simple scaling parameter [0 ≤ 𝜆 ≤ 1] that allows us to easily scale
the magnitude of the deviation from the equilibrium distribution. The dissipation
function is easily seen to be

Ω𝜆(𝚪) = −𝛽th𝐉(𝚪)V ⋅ 𝐅e − 𝜆ġ(𝚪) (6.13)

Substituting into the dissipation theorem gives

⟨g(t)⟩𝐅e,𝜆
= ⟨g(0)⟩𝐅e,𝜆

− ∫
t

0
ds⟨[𝛽th𝐉(0)V ⋅ 𝐅e + 𝜆ġ(0)] g(s)]⟩𝐅e ,𝜆

(6.14)

and recalling that g(t) is even in the momenta we have ⟨ġ(0)⟩𝐅e ,𝜆
= ⟨𝐉(0)⟩𝐅e,𝜆

= 0.
So, if the system is T-mixing, then at sufficiently long times the value of the
left-hand side becomes time-independent, which means that the part of the
ensemble-averaged dissipation function due specifically to the deviation function
(6.14) is zero at long times:

lim
t→∞

⟨ġ(t)⟩𝐅e,𝜆
= 0 (6.15)

It is logically possible that at long times the ensemble-averaged dissipative flux
limt→∞ ⟨𝐉(t)⟩𝐅e,𝜆

≠ limt→∞ ⟨𝐉(t)⟩𝐅e,𝜆=0 is still influenced by the initial deviation
function. For T-mixing systems, we now give a formal proof that this is not so and
that at long times the dissipation becomes independent of the deviation function.

We write the average dissipation for the deviated system as

lim
t→∞

⟨Ω𝜆(t)⟩𝐅e,𝜆
= − lim

t→∞
⟨𝛽th𝐉(t)V ⋅ 𝐅e + 𝜆ġ(t)⟩𝐅e ,𝜆

= − lim
t→∞

⟨𝛽th𝐉(t)V ⋅ 𝐅e⟩𝐅e,𝜆

= − lim
t→∞

⟨𝛽th𝐉(t)V ⋅ 𝐅ee𝜆g(0)⟩𝐅e,𝜆=0⟨e𝜆g(0)⟩Fe,𝜆=0

= − lim
t→∞

⟨𝛽th𝐉(t)V ⋅ 𝐅e⟩𝐅e,𝜆=0⟨e𝜆g(0)⟩𝐅e,𝜆=0⟨e𝜆g(0)⟩𝐅e ,𝜆=0

= − lim
t→∞

⟨𝛽th𝐉(t)V ⋅ 𝐅e⟩𝐅e,𝜆=0 = lim
t→∞

⟨Ω𝜆=0(t)⟩𝐅e ,𝜆=0 (6.16)

In going from the first to the second line, we used Eq. (6.15). Going from the third
line to the fourth, we used the fact that at long times the system becomes stationary
and the T-mixing transient system must also be weak T-mixing – see Eq. (5.12).
(Note: T-mixing implies weak T-mixing but weak T-mixing does not imply T-
mixing.)
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6.4
In the Linear Response Steady State, the Dissipation is Minimal with Respect to
Variations of the Initial Distribution

In the linear response regime (where fluxes are linear in 𝐅e, 𝜆), where the average
dissipation function is quadratic in 𝐅e, 𝜆, for finite times we have

lim
𝐅e,𝜆→0,∫

t

0
ds⟨Ω𝜆(s)⟩𝐅e ,𝜆

= −∫
t

0
ds

[
𝛽thV𝐅e ⋅ lim𝐅e→0

⟨𝐉 (s)⟩𝐅e,𝜆=0 + 𝜆 lim
𝜆→0,

⟨ġ(s)⟩𝐅e=𝟎,𝜆

]

> −∫
t

0
ds𝛽thV𝐅e ⋅ lim𝐅e→0

⟨𝐉(s)⟩𝐅e ,𝜆=0 = O(F2
e )

> 0, ∀t (6.17)

It is easy to show that any cross-terms 𝜆𝐅e ⋅ ⟨𝐉(0)ġ(t)⟩𝐅e=0,𝜆=0 vanish by sym-
metry in the linear response regime, and in any case are of higher order
O(F2

e 𝜆
2). The second line in this equation follows from applying the second

law inequality to the (weak) dissipation due solely to the deviation function:
− ∫ t

0 ds [limt→∞ ⟨ġ(s)⟩𝐅e=𝟎,𝜆] > 0, ∀t. The last line follows by applying the
second law inequality to the dissipation due to both dissipative fields. We note
that at any moment in time, the ensemble-averaged dissipation from either the
dissipative field or the initial deviation function, or both, may be negative.

The second line of Eq. (6.17) shows that, in the linear response steady state, the
time-averaged primary dissipation is less than any other dissipation due to varia-
tions in the initial distribution away from equilibrium. In the nonlinear regime, it
is not known whether the average primary dissipation is minimal.

Equation (6.17) shows that at sufficiently long times, in T-mixing driven systems
the dissipation always relaxes toward the average of the primary dissipation func-
tion. If the driven system is T-mixing, all other forms of dissipation decay toward
zero, leaving only the primary dissipation in the limit of infinite time.

This proof that in the linear response regime the primary dissipation is minimal
with respect to variations in the initial distribution function gives a proof (Evans
et al., 2015) for T-mixing systems, of Prigogine’s principle of minimum entropy
production in the linear response regime close to equilibrium. He states: “In the
linear regime, the total entropy production in a systems subject to [a] flow of
energy and matter, diS∕dt = ∫ 𝜎 dV , reaches a minimum value at the nonequilib-
rium stationary state. This is because the unconstrained forces adjust themselves
to make their conjugate fluxes go to zero” (Kondepudi and Prigogine, 1998, p. 393).
We have already noted that in the linear regime the average dissipation is equal to
the so-called entropy production. In our system, there is no net mass flow into or
out of the unit cell. In our case all we have to do is to construct a second “force”
Fe,2 that is capable of generating the flux ġ. This unconstrained force adjusts itself
so that its conjugate flux; namely ġ averages to zero in the steady state. To find
this “force” and its equations of motion is a trivial exercise. If the equations of
motion take the same form as Eq. (6.12) but with coupling parameters C2,i,D2,i
and a “force” 𝐅2,e, we see that we merely have to find the coupling parameters
such that 𝜆ġ = 𝐅2,e ⋅

∑N
i=1

[
𝐩i∕m D2,i − 𝐅iC2,i

]
, which is a trivial exercise.



6.5 Sum Rules for Dissipation in Steady States 121

6.5
Sum Rules for Dissipation in Steady States

Using Eq. (6.15) and the T-mixing property, we have the following relaxation sum
rule:

lim
t→∞

⟨ġ(t)⟩Fe,𝜆
= −∫

∞

0
ds⟨[𝛽th𝐉(0)V ⋅ 𝐅e + 𝜆ġ(0)]ġ(s)]⟩Fe ,𝜆

=
− ∫ ∞

0 ds⟨[𝛽th𝐉(0)V ⋅ 𝐅e + 𝜆ġ(0)]ġ(s)e𝜆g(0)]⟩Fe,𝜆=0⟨e𝜆g(0)⟩Fe,𝜆=0

= 0 (6.18)
This is analogous to the corresponding sum rule for the fluxes of noncon-
served quantities in systems relaxing to equilibrium – the heat death Eq. (5.36).
In the present case, the sum rule is for fluxes of nonconserved quantities
relaxing to a steady state. In the heat death case, Fe = 0 and the first term
on the right-hand side of the first line of Eq. (6.18) is simply absent. So
for NESSs in the long time, t, limit, instead of autocorrelation functions
of fluxes of nonconserved quantities integrating to zero, they behave as
𝜆 ∫ t

0 ds ⟨ġ(0)ġ(s)⟩Fe ,𝜆

lim(t→∞)
−−−−−−−→ − ∫ t

0 ds ⟨𝛽th𝐉(0)V ⋅ 𝐅eġ(s)⟩Fe ,𝜆
.

The fact that in regard to forming averages of physical phase functions T-mixing
systems forget about their initial distributions is completely consistent with our
earlier proof that the steady state is physically ergodic. We eventually arrive
arbitrarily close to this same domain even if the initial t = 0 distribution differs
from the equilibrium distribution for the zero-field system. Indeed, if we start
a single trajectory at time zero in the long-time limit, the domain traced out by
this single trajectory must explore essentially the same domain as that generated
at some arbitrarily long time from an arbitrary initial distribution of states. This
domain will be close to that of the attractor(s) for the system.

Of course, if we examine phase space at extreme resolution (say with a very sin-
gular phase function, for example, ln[f (𝚪; t)], the deterministic phase space never
“forgets” its original initial conditions; these can always be retrieved by applying
a time-reversal map to return to the original distribution of states. Therefore, the
value of the time average of ln[f (𝚪; t)] will depend on the initial point. However,
when “observed” by computing averages of low-order physical phase functions for
thermophysical properties like pressure, stress, or energy, these very fine struc-
tures in phase space cannot be resolved and the knowledge of initial conditions is
effectively lost. The measurement of thermophysical properties is the only way we
can characterize these macroscopic states. The measurement of the fine-grained
phase space density is simply not possible – at least at the resolution required to
generate the initial distribution after a long relaxation toward the steady state.

Another way to describe these steady-state strange attractors is that, starting
from different initial phase space points, we may approach slightly different
steady-state attractors. These different attractors must, in T-mixing systems, be
so tightly interwoven that when we measure steady-state averages we cannot
observe differences in the long-time averages. This is what is implied by the
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T-mixing condition and Eq. (6.18), for example. This happens despite the fact that
these attractors are of lower dimension than the ostensible phase space, because
there is “room” for them to fill phase space differently, leading to different average
values even for low-order phase functions.

At first it may seem paradoxical that, in spite of the fact that the distribution
function tends toward a lower dimensional steady-state attractor, the physical
averages of properties are independent of the initial distribution of states. It may
seem that the dimensional collapse allows plenty of “wriggle room” for physical
averages to differ. However, this is countered by two facts. First, in physical
T-mixing systems the dimensional reduction is tiny – typically a few parts per
Avogadro’s number of dimensions! Second, physical properties are dependent
only on very low dimensional projections (a dozen or so dimensions) of the full
steady-state attractor. These highly projected distributions are smooth.

As long as the steady-state attractor “spans” the ostensible phase space, different
initial distributions can yield identical values for physical properties that are only
dependent on exceedingly low order projected distributions.

For all temperatures, densities, and external fields, the average long-time dissi-
pation generated from a nonequilibrium distribution is identical to that generated
from the equilibrium distribution for the system. This means that the nonlinear
transport coefficient L(Fe) defined in terms of the steady state dissipation

L(Fe; 𝜆) ≡ lim
t→∞

⟨Ω𝜆(t)⟩𝜆
𝛽thVF2

e
= lim

t→∞

⟨Ω𝜆=0(t)⟩𝜆=0

𝛽thVF2
e

= L(Fe; 𝜆 = 0) (6.19)

is independent of whether the initial distribution was its equilibrium distribution
or any deviation from it – so long as the kinetic temperature of the reservoir
particles has a fixed value so that the temperature of the underlying equilibrium
state is fixed.

Equation (6.19) accords with our knowledge of the thermophysical properties
of fluids, and so on. For example, the viscosity of argon is history-independent. It
only depends of the temperature, density, and strain rate. The initial preparation of
the system is irrelevant to the viscous properties of the system in the steady state
inside the viscometer. In T-mixing systems, the nonlinear and linear transport
coefficients are in fact state functions.

6.6
Positivity of Nonlinear Transport Coefficients

In Chapter 4, we gave a derivation of the dissipation theorem for an exceedingly
general set of time-reversible equations of motion and for quite general initial
distributions f (𝚪; 0). Considering a nonequilibrium system, if one substitutes
Ω for B in Eq. (6.8) and then combines the resulting equation with the strong
form of the second law inequality, one knows that time integrals of the ensemble
averages of the dissipation must be positive: ∫ t

0 ds ⟨Ω(s)⟩ > 0, ∀t. Since at long
times for T-mixing systems the average dissipation is time-independent, one can
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only conclude that in NESSs the ensemble average dissipation must be positive. If
this were not the case, the second law inequality would be violated for sufficiently
large times. Therefore, the dissipation in driven T-mixing systems

lim
t→∞

⟨Ω(t)⟩Fe, f (𝚪;0) = ∫
∞

0
ds⟨Ω(0)Ω(s)⟩Fe , f (𝚪;0) = const > 0, ∀Fe, f (𝚪; 0) (6.20)

So, for driven systems not only does the dissipation autocorrelation function start
with a positive value (⟨Ω(0)2⟩Fe, f (𝚪;0) > 0, ∀Fe, f (𝚪; 0)), but for all normalizable
initial distributions and for any well-defined dynamics with an arbitrarily strong
external field (if any), any negative tails in the ensemble-averaged dissipation
function must disappear before the system enters the necessarily positive
dissipation of the final steady state.

If we consider a driven isokinetic system, we observe from Eq. (6.8) that

− lim
t→∞

⟨J(t)⟩Fe,c = −⟨J(0)⟩c + 𝛽thV ∫
∞

0
ds⟨J(0)J(s)⟩Fe ,cFe

= 𝛽thV ∫
∞

0
ds⟨J(0)J(s)⟩Fe ,cFe

≡ L(Fe)Fe > 0, ∀Fe (6.21)

We have assumed the dissipative flux and force are scalars, and we have used the
fact that 𝛽th ≡ 1∕kBTth, where Tth is the equilibrium thermodynamic temperature
that the system will relax to if the driving force is set to zero and the system is
allowed to relax to equilibrium. We have also used the fact that for driven systems⟨J(0)⟩c = 0.

The T-mixing property guarantees that the t → ∞ limit is finite and therefore
so too is the nonlinear transport coefficient at the specified value of the driving
field L(Fe). The T-mixing condition further guarantees that the NESS is physically
ergodic over the specified phase space domain.

The second law inequality means that the conventionally defined average
dissipative flux will be negative when the dissipative field is positive. If we
consider planar Couette flow as an example, the following mapping applies:
Fe → 𝜕ux∕𝜕y ≡ �̇�; J → Pxy; L(Fe) → 𝜂(�̇�), where the variables are, in turn, the
strain rate �̇� ; the xy element of the pressure tensor Pxy, and, lastly, the nonlinear
strain-rate-dependent shear viscosity 𝜂(�̇�) defined in the nonlinear constitu-
tive relation for shear viscosity. Equation (6.21) gives a nonlinear constitutive
relation between the dissipative flux and the dissipative field for a finite driven
thermostatted system that is T-mixing.

The second law inequality guarantees that the nonlinear transport coefficients
L(Fe), 𝜂(𝛾) appearing in the nonlinear constitutive relation for finite-sized peri-
odic, T-mixing systems are finite and must be positive:

∞ > L(Fe) > 0, ∀Fe (6.22)

If we look again at Eq. (6.21), we see that the second law inequality implies that
∫ t

0 ds⟨J(s)⟩Fe , fc(𝚪,0) < 0, ∀t. However, the approach to the steady state may not be
monotonic. The ensemble-averaged instantaneous dissipative flux may be positive
at intermediate times. In fact, in the nonlinear regime this is a common situation.
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6.7
Linear Constitutive Relations for T-Mixing Canonical Systems

Each of these results also includes the linear response regime as a special case in
the limit of weak fields.

lim
Fe→0

lim
t→∞

−𝜕⟨J(t)⟩Fe,c

𝜕Fe

= lim
Fe→0

𝛽thV ∫
∞

0
ds
⟨

J (0) 𝜕J(s)
𝜕Fe

⟩
Fe,c

Fe + 𝛽thV ∫
∞

0
ds⟨J(0)J(s)⟩Fe=0,c

= lim
Fe→0

𝛽thV ∫
∞

0
ds⟨J(0)J ′(s)⟩Fe,cFe + 𝛽thV ∫

∞

0
ds⟨J(0)J(s)⟩Fe=0,c

= 𝛽thV ∫
∞

0
ds⟨J(0)J(s)⟩Fe=0,c

≡ L(Fe = 0) > 0 (6.23)

In Eq. (6.23), there are two places where the field dependence is manifest. One is in
the explicit factor Fe. The second place is in the implicit time dependence of J(s).
In going from the first to the second line of Eq. (6.23), we expect that since J(s)
is a smooth function of time, phase 𝚪, and Fe, J ′(𝚪(s)) ≡ 𝜕J(𝚪(s))∕𝜕Fe will also be
smooth. We assume the equations of motion do not contain singularities. We do
not cover the case of hard particles or even systems with a piecewise continuous
potential.

We note that d⟨J(t)⟩∕dt = 𝛽thV Fe⟨J(0)J(t)⟩Fe,c, so at short times limt→0⟨J(t)⟩Fe,c =
𝛽thV ⟨J(0)J(0)⟩0,cFet, which is linear in the field, and means that it takes time for
the nonlinearities to “grow” into the response.

The proof of Eq. (6.23) gives a proof that finite systems that are thermostatted
and driven satisfy AI𝚪 with smooth intermolecular forces, are T-mixing, and have
finite linear constitutive relations in the weak field limit. Further, the transport
coefficient appearing in this linear constitutive relation is positive. For electrical
conductivity, we therefore have, subject to the conditions above, a proof of Ohm’s
“Law” in the limit of weak fields, or using the SLLOD equations for shear flow, a
proof of Newton’s constitutive relation for weak shear flow – at least as they apply
to finite periodic systems. There is nothing in the proof given above to prevent the
possible divergence of the extrapolated linear transport coefficient as the system
size, in each periodic cell, is increased.

6.8
Gaussian Statistics for T-Mixing NESS

In 2000, we showed (Searles and Evans, 2000) that by combining the asymptotic
steady-state Evans–Searles transient fluctuation theorem (ESFT) (proved in
the next section) with the central limit theorem, you could prove Green–Kubo
relations in driven systems, for transport coefficients in the weak-field limit.
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That derivation required a careful double limit (t → ∞, Fe → 0) that could not
be extended to higher field strengths. It also required the assumption that for
long averaging times the time-averaged dissipative flux satisfies the conditions
for the central limit theorem to be valid. The dissipation theorem obviates this
discussion and shows how both the nonlinear and the linear response can be
obtained directly and exactly in terms of integrals of time correlation functions
involving the dissipation function directly.

However, if the system is ΩT-mixing (or mixing), then for sufficiently long
averaging times the time-averaged dissipative flux must satisfy the central limit
theorem with Gaussian statistics close to the mean of the distribution. As we will
see in the next section, this fact is essential in order to prove the observability of
the asymptotic steady-state fluctuation relation.

For driven systems, the dissipation function is quite simply related to the
dissipative flux and the dissipative force. The Green–Kubo equilibrium time
correlation function involves fluctuations in the dissipative flux. This flux is not
identically zero at any instant in time for a system at equilibrium, whereas the
dissipation function is. For driven systems satisfying AI𝚪, the dissipative force,
and not the flux, is zero at equilibrium at all times.

6.9
The Nonequilibrium Steady-State Fluctuation Relation

We now consider fluctuation relations for the dissipation in a NESS (Searles,
Rondoni, and Evans, 2007) – or at least as we approach NESSs. We have already
seen (Section 6.4) that, if the initial distribution is not the equilibrium distribution
for the zero-field dynamics, the influence of the deviation function disappears
in time Eq. (6.4.5). This means, by definition, that any steady-state fluctuation
relation can only refer to the primary dissipation function for the system.

From Section 3.6, we may approach the steady state by asking what is the
probability that the covariant dissipation integrated for a time 𝜏 , but starting
not at time zero but rather at time t, equals a value A compared to −A. As
t becomes ever larger, the time-integrated dissipation approaches that of a
true NESS. So using Eqs. (3.26) and (3.29) we can write down the follow-
ing exact Evans–Searles transient fluctuation relation for the time-averaged
dissipation function defined by the system dynamics and the time t distribu-
tion function Ωt,t+𝜏 (St𝚪; t) = 1

𝜏
Ωt,t+𝜏 (St𝚪; t). To simplify the notation, we let

Ωu,u+𝜏 (Su𝚪; t) ≡ Ωu,u+𝜏 (t):

1
𝜏

ln
⎡⎢⎢⎢⎣

p
(
Ωt,t+𝜏 (t) = A

)
p(Ωt,t+𝜏 (t) = −A)

⎤⎥⎥⎥⎦
= 1

𝜏
ln

[
p(Ω0,2t+𝜏 (0) = A𝜏∕(2t + 𝜏)

p(Ω0,2t+𝜏 (0) = −A𝜏∕(2t + 𝜏))

]

= A𝜏∕(2t + 𝜏) (6.24)
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As discussed in Section 3.6, the covariant steady-state fluctuation relation reduces
to the familiar transient fluctuation relation over a symmetrically extended time
range. On the right-hand side of Eq. (6.24), the dissipation function is defined with
respect to the time zero distribution, Ω0,2t+𝜏 (𝚪; 0).

We can determine the steady-state distribution by taking the long-time limit
p(Ωss,𝜏 (ss) = A) ≡ limt→∞ p(Ωt,t+𝜏 (t) = A), where Ωss,𝜏 (ss) is the dissipation func-
tion defined with respect to the steady state and averaged over a period 𝜏 , starting
in the steady state. Therefore

1
𝜏

ln
⎡⎢⎢⎢⎣

p
(
Ωss,𝜏 (ss) = A

)
p(Ωss,𝜏 (ss) = −A)

⎤⎥⎥⎥⎦
≡ lim

t→∞

1
𝜏

ln
⎡⎢⎢⎢⎣

p
(
Ωt,t+𝜏 (t) = A

)
p(Ωt,t+𝜏 (t) = −A)

⎤⎥⎥⎥⎦
= A (6.25)

One can also ask what conditions are required for a steady-state fluctuation
relation to be valid when the dissipation function is defined with respect to the
zero time distribution rather than the evolved or steady-state distribution.

First, we discuss the case where there is no serial correlation in the time series
data for Ω(St𝚪; 0). Using Eq. (3.25), we can write

lim
t→∞

1
𝜏

ln
p(Ωt,t+𝜏 (0) = A)

p(Ωt,t+𝜏 (0) = −A)
= lim

t→∞

1
𝜏

ln
[⟨

exp(−Ω0,2t+𝜏 (0)
⟩−1
Ωt,t+𝜏 (0)=A𝜏

]

= lim
t→∞

1
𝜏

ln
[⟨

exp
(
−Ω0,t (0) − Ωt,t+𝜏 (0)

⟩
−Ωt+𝜏,2t+𝜏 (0)

)⟩−1
Ωt,t+𝜏 (0)=A𝜏

]
= A + lim

t→∞

1
𝜏

ln
[⟨

exp
(
−Ω0,t (0)

−Ωt+𝜏,2t+𝜏 (0)
)⟩−1

]
= A + lim

t→∞

1
𝜏

ln
[⟨

exp
(
−Ω0,t (0)

)⟩−1

⟨
exp

(
−Ωt+𝜏,2t+𝜏 (0)

)⟩−1
]

= lim
t→∞

[
A + 1

𝜏
ln
[⟨

exp
(
−Ωt+𝜏,2t+𝜏 (0)

)⟩−1
]]

(6.26)

where we have exploited the lack of serial correlation in the data and employed the
nonequilibrium partition identity Eq. (3.12). If the time series data for Ω(t) has no
serial correlation, we can see that the condition for the ensemble average has no
influence on the time integrals inside the ensemble average on the third line of
Eq. (6.26).
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The second term in the last line of Eq. (6.26) can be evaluated using the relations

⟨
exp

(
−Ω0,a+b (0)

)⟩
=
⟨

exp
(
−Ω0,a (0)

)⟩ ⟨
exp

(
−Ωa,a+b (0)

)⟩
= 1

= 1
⟨

exp
(
−Ωa,a+b (0)

)⟩
⇒

⟨
exp

(
−Ωa,a+b (0)

)⟩
= 1 (6.27)

Substituting this into Eq. (6.26) gives

lim
t→∞

1
𝜏

ln
p(Ωt,t+𝜏 (0) = A)

p(Ωt,t+𝜏 (0) = −A)
≡ 1

𝜏
ln

p(Ωss,𝜏 (0) = A)

p(Ωss,𝜏 (0) = −A)
= A (6.28)

where the subscript “ss” in Ωss,𝜏 (0) denotes that the time averages start in the
steady state, and the zero in the argument denotes the fact that the dissipation
is defined with respect to the zero time (equilibrium) distribution.

Now, of course, in any real dynamical system there must be serial correlation in
the time series data, so Eq. (6.28) cannot be exact for real dynamical systems. The
covariant properties of the dissipation function mean that extreme care is needed
when attempting to handle these equations for NESSs. When the serial correlation
is allowed for, Eq. (6.28) becomes an asymptotic result that is valid only in the limit
𝜏∕𝜏M → ∞, where 𝜏M is the Maxwell time describing the correlation time of the
dissipation function:

lim
𝜏∕𝜏M→∞

lim
t→∞

1
𝜏

ln
⎡⎢⎢⎢⎣

p
(
Ωt,t+𝜏 (0) = A

)
p(Ωt,t+𝜏 (0) = −A)

⎤⎥⎥⎥⎦
= lim

𝜏∕𝜏M→∞

1
𝜏

ln
⎡⎢⎢⎢⎣

p
(
Ωss,𝜏 (0) = A

)
p(Ωss,𝜏 (0) = −A)

⎤⎥⎥⎥⎦
= A (6.29)

where the subscript “ss” denotes that the integral over 𝜏 should only be done when,
to your desired level of accuracy, the system has relaxed to its unique NESS and
the dissipation function is the primary dissipation function for the dynamics. We
will now derive this result.

For sufficiently large t, that is, several Maxwell times 𝜏M, we can approach a
steady state. Observing

Ωt,t+𝜏 (0) =
1
𝜏 ∫

t+𝜏

t
ds Ω(Ss𝚪; 0)

= 1
𝜏 ∫

𝜏

0
ds Ω(Ss𝚪; 0) + 1

𝜏 ∫
t

0
ds(Ω(S𝜏+s𝚪; 0) − Ω(Ss𝚪; 0)) (6.30)

and noting that last integral on the second line does not grow/shrink with time
after the first few Maxwell times, we can write Ωt,t+𝜏 = Ω0,𝜏 + O(𝜏M∕𝜏) and
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lim𝜏∕𝜏M→∞Ωt,t+𝜏 = Ω0,𝜏 . So lim𝜏∕𝜏M→∞ p(Ωt,t+𝜏 (0) = A) = lim𝜏∕𝜏M→∞ p(Ω0,𝜏 (0) =
A + O(𝜏M∕𝜏))(), ∀t Therefore

lim
𝜏∕𝜏M→∞

1
𝜏

ln
p(Ωss,𝜏 (0) = A)

p(Ωss,𝜏 (0) = −A)
= lim

𝜏∕𝜏M→∞
lim
t→∞

1
𝜏

ln
p(Ωt,t+𝜏 (0) = A)

p(Ωt,t+𝜏 (0) = −A)

= lim
𝜏∕𝜏M→∞

1
𝜏

ln
p(Ω0,𝜏 (0) = A + O(𝜏M∕𝜏))

p(Ω0,𝜏 (0) = −A + O(𝜏M∕𝜏))
,∀t

= lim
𝜏∕𝜏M→∞

[A + O(𝜏M∕𝜏)]

= A (6.31)

The second line transforms the steady-state probability ratio into a ratio of
transient averages of dissipation. We note that, in order for the proof to be valid,
the standard deviation of Ωt,t+𝜏 should shrink more slowly than 1∕𝜏 . Otherwise,
the corrections O(𝜏M∕𝜏) will not become negligible before observation of
fluctuations becomes impossible.

In Eq. (6.31), the dissipation function is defined by the dynamics and the t = 0
(equilibrium) distribution function. We only integrate the resulting function over
the restricted range t, t + 𝜏 , where t is sufficiently long that we are in the steady
state. We have already seen that for T-mixing systems the system eventually
forgets about the initial distribution. By definition, this process must be complete
before a NESS can be created.

As we have noted in Section 6.8, for T-mixing steady states the distribution
of average values of dissipation will become Gaussian about the mean. Since the
average dissipation is positive, the negative value that is most difficult to observe
is –1 times the mean value of the dissipation A. The mean will remain constant
with increase in averaging time t, but the standard deviation will decrease. Using
Gaussian statistics we see that A = |−A| ∼ 𝜎AO(𝜏−1∕2), where 𝜎A is the standard
deviation of the distribution of A. Taking more and more samples enables us to
observe fluctuations further and further from the mean value for Ω – which is
positive.

Definition
So the asymptotic steady-state fluctuation relation (6.31) is observable because
the error term (= O(𝜏−1)) vanishes faster than the (negative) fluctuations them-
selves (= O(𝜏−1∕2)). This means that the fluctuations satisfy the asymptotic
steady-state fluctuation relation at long averaging times before the magnitude of
those fluctuations decays to zero.

For T-mixing systems, the steady state is physically ergodic and independent
of the initial distribution of states. If we take the initial distribution to arbitrarily
close to a delta function at almost any point in phase space, our asymptotic
steady-state fluctuation relation applies to late-time averages along a single phase
space trajectory. In this case, Eq. (6.31) is an asymptotic result for an individual
dynamical system over arbitrarily long times.
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6.10
Gallavotti–Cohen Steady-State Fluctuation Relation

An alternative steady-state fluctuation relation to Eq. (6.31) has been proposed by
Gallavotti and Cohen (1995a,b) and Bonetto et al. (2006). The Gallavotti–Cohen
fluctuation relation has been proven for Anosov and the so-called Axiom A
systems (Gallavotti, 1995), but the resulting relationship was anticipated to apply
to a wider range of systems.

The Gallavotti–Cohen fluctuation relation can be written as

lim
𝜏→∞

1
𝜏

ln

[
p[Λ𝜏 = B]

p[Λ𝜏 = −B]

]
= −B for |B| ≤ B∗ (6.32)

where Λ ≡ 𝜕∕𝜕𝚪 ⋅ �̇� is the phase space expansion rate and B∗ is some bound (gen-
erally unknown) (Evans, Searles, and Rondoni, 2005). Equation (6.32) refers to
results observed along a single, exceedingly long phase space trajectory.

Equation (6.32) has, as we have said, been proven for Anosov systems, but
Gallavotti and Cohen proposed that the equation may be valid for sufficiently
chaotic non-Anosov systems. This proposal is termed the chaotic hypothesis.
At the present time there is no test, independent of the Gallavotti–Cohen
fluctuation relation, that predicts whether the chaotic hypothesis will apply to any
given non-Anosov system. Presumably, a precondition for the chaotic hypothesis
to hold is that the dynamical system does in fact relax to a steady state because
Eq. (6.32) would make no sense for non-steady-state systems (e.g., adiabatic
systems that heat up without bound).

Gallavotti has also proposed a possible modification to Eq. (6.32) for systems
with an unbalanced number of positive and negative Lyapunov exponents in non-
Anosov systems (Bonetto, Gallavotti, and Garrido, 1997). However, numerical
tests seem to show no evidence of a discontinuity in Eq. (6.32) when the number
of positive and negative exponents change (e.g., by increasing the dissipative
field). Such a change would be necessarily discontinuous (Williams, Searles, and
Evans, 2006).

For isoenergetic systems, Λ(t) = −Ω(t), ∀t, and therefore the relations (6.29)
and (6.32) become identical for ergodic, isoenergetic steady states, implying for
this circumstance that B∗ = ∞.

Application of the Gallavotti–Cohen fluctuation relation to systems that
are not isoenergetic has recently been discussed (Evans, Searles, and Rondoni,
2005; Bonetto et al., 2006), and it has found that there are serious limitations
to its practical utility. For instance, for systems driven by a dissipative field
Fe and satisfying AIΓ, the bound in Eq. (6.32) goes to zero as equilibrium is
approached: B∗ = O(F2

e ) → 0 as Fe → 0. This means that the range of applicability
of the Gallavotti-Cohen fluctuation relation shrinks to zero as equilibrium is
approached. In fact, it is easy to see why this must be the case. At equilibrium, the
Gallavotti-Cohen fluctuation relation for thermostatted systems would predict
an asymmetry in the probability of time-averaged values of the phase space
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expansion factor. This is obviously not possible! By contrast, at equilibrium
the Evans–Searles fluctuation relations simply state that fluctuations in the
time-integrated dissipation is symmetric about zero – see Section 6.9.

Perhaps even more difficult is the fact that for thermostatted systems the time
required for convergence of the Gallavotti–Cohen fluctuation relation diverges
to infinity as O(F−2

e ) (i.e., the asymptotic limit in Eq. (6.32) should be written as
𝜏∕F2

e → ∞) (Evans, Searles, and Rondoni, 2005).
Since much of the interest in fluctuation relations arises from the fact that they

are exact arbitrarily far from equilibrium, the bound on the range of fluctuations
means that the Gallavotti–Cohen fluctuation relation is of limited use in large
deviation theory. On the other hand, close to equilibrium the shrinking bounds
on the range of the argument and the divergence of the convergence time also
lead to problems.

One can easily see why this divergence of convergence times occurs close to
equilibrium. The phase space expansion factor for thermostatted systems close
to equilibrium contains a sum of two terms. One is the dissipation function
(times −1) but the other component is just (to leading order, close to equilibrium)
the equilibrium fluctuations in the phase space expansion factor. The equilibrium
fluctuations become independent of the external field close to equilibrium,
and they are of course symmetric about zero and therefore cannot satisfy any
fluctuation relation. In the long-time limit in steady states of thermostatted
systems limt→∞(Λt + Ωt) = 0, but as the field becomes ever smaller, the relative
magnitude of the symmetric equilibrium fluctuations becomes ever larger,
swamping the dissipation. Thus as the field becomes smaller, it takes longer and
longer for the average Λt to become equal to −Ωt . We will discuss an example
of the convergence difficulties for the Gallavotti–Cohen fluctuation relation in
Section 7.3 – especially contrasting Eqs. (7.27)–(7.31).

6.11
Summary

One often sees references in the literature to the supposition that in NESSs the
“entropy production” (i.e., average dissipation) is a maximum (or sometimes a
minimum!) subject to the known constraints. The fact that when a dissipative
field is suddenly applied to an equilibrium system the dissipation increases
from zero means that in a steady state the dissipation can hardly be an absolute
minimum. The fact that the dissipation very frequently overshoots its steady state
value means that, in general, the steady-state dissipation cannot be a maximum
either. In this chapter, we have shown that in the linear response regime the
primary dissipation is minimal with respect to all possible variations of the initial
distribution away from the natural equilibrium distribution.

There is a way of rederiving the dissipation theorem for driven systems as
an extremum principle (Evans, 1985), but the final result is identical to the
dissipation theorem and it involves an infinite set of constraints. The choice of
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which constraints should be used in these derivations is best made after you
already know the correct answer, because a priori there seems to be no objective
criteria for selecting these constraints.

One of the interesting things our work has revealed is that in T-mixing systems
the NESS is physically ergodic and independent of the initial distribution. This
independence with respect to the initial distribution means that there is only one
Evans–Searles steady-state fluctuation relation for a given dynamical system.

The positivity of transport coefficients is a direct result of the fact that the time
integral of the ensemble-averaged dissipation is positive. It also means that, on
average, work is converted into heat rather than the reverse. For a driven T-mixing
system that satisfies AI𝚪 and is isokinetic, we have

𝛽thḢ0(t) = −𝛽thVJ(t)Fe − 2𝛽thKth𝛼(t)
= −𝛽thVJ(t)Fe − (3N − 4)𝛼(t) (6.33)

If we take long-time averages for a steady state

lim
t→∞

𝛽thḢ0,t = lim
t→∞

[
−𝛽thJtV Fe − (3N − 4) 𝛼t

]
= 𝛽thVL(Fe)F2

e − (3N − 4) lim
t→∞

𝛼t

= 0 (6.34)

where … t denotes a time average of duration t. We note that it is the stationary
property of the ΩT-mixing steady-state which implies that the long-time average
rate of change of the energy goes to zero. Since 𝛽th, L(Fe),V , F2

e are each strictly
positive, so too must be the long-time average of the thermostat multiplier. This
means that when averaged over long times in a NESS, heat must, on average, be
removed from the system by the thermostat. Thus the work performed on the
system by the dissipative field −JV Fe is, on average, positive and by Eq. (6.34)
this work is dissipated into the form of heat and then removed from the system
by the (physically remote) thermostat. This gives a mathematical proof of one of
the postulated statements of the second law of thermodynamics given in William
Thomson’s, 1852 paper, “On the universal Tendency in Nature to the Dissipation of
Mechanical Energy” (Thomson, 1852): “Although mechanical energy is indestruc-
tible, there is a universal tendency to its dissipation, which produces throughout
the system a gradual augmentation and diffusion of heat, cessation of motion, and
exhaustion of the potential energy of the material Universe.”
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7
Applications of the Fluctuation, Dissipation, and Relaxation
Theorems

M. Van der Waals seems, therefore, to be somewhat hasty in assuming that
the temperature of a substance is in every case measured by the energy of
agitation of its individual molecules.

(Maxwell, 1874)

7.1
Introduction

In this chapter we will work through a number of applications of the various
theorems we have proven earlier in this book. These applications illustrate
the power of the formalism we have constructed. The first application will be
a derivation of the zeroth “Law” of thermodynamics (Evans, Williams, and
Rondoni, 2012). It is ironic that the first statement of the zeroth “Law” was by
Maxwell. The quote above suggests that he was quite confused regarding the
velocity distributions of equilibrium systems at different densities. However,
Maxwell’s concept of the zeroth “Law” was entirely macroscopic and had nothing
to do with microscopic distributions.

Later we treat heat flow (Searles and Evans, 2001) and temperature quenches
(Schmidt and Evans, 1994) showing how these transient thermal transport
processes can be expressed in terms of dissipative fluxes and fields. Heat flow is
interesting because it is a boundary-driven thermal, rather than a mechanical,
transport process. There is no mechanical dissipative field appearing in the
equations of motion – as is the case for electrical conductivity or the SLLOD
equations for shear flow. Similarly, a temperature quench has no mechanically
dissipative field. We also cover the relaxation of inhomogeneities in atomic “color.”
If the color of a particle is ignored, in the weak field regime, the system is always in
equilibrium (Evans, Searles, and Mittag, 2001). The system is in a nonequilibrium
state only if we can recognize the “color” of its particles. The equations of motion
for this system are field-free Hamiltonian dynamics. No energy is exchanged
between the system of interest and its surroundings. Nevertheless, we can
calculate the dissipation function and evaluate fluctuation relations!

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Later we give a very brief discussion of instantaneous fluctuation relations
(Petersen, Evans, and Williams, 2013) and, finally, a summary of some of the
fundamental properties of the dissipation function and contrast these with the
phase space expansion factor.

7.2
Proof of the Zeroth “Law” of Thermodynamics

In this section, we turn our attention to the proof of the zeroth “Law” of ther-
modynamics (Evans, Williams, and Rondoni, 2012). What is now known as the
zeroth law of thermodynamics was first stated by Maxwell (1872). Among the
numerous equivalent statements, Maxwell said: “Bodies whose temperatures are
equal to that of the same body have themselves equal temperatures.” In Chapter
5, we gave a number of proofs of the relaxation of classical particulate systems
to thermal equilibrium. The equilibrium states to which our systems relax are all
spatially isothermal. None of the equilibrium distributions refers to the absolute
positions of particles. They are only a function of their relative positions through
the interatomic potential energy function. Implicit in these equilibrium relaxation
theorems is a proof of the zeroth “Law” of thermodynamics.

In this section we give an explicit mathematical proof of the zeroth “Law” for
T-mixing deterministic particulate systems obeying autonomous Hamiltonian
dynamics. No external fields are applied to the system. We should add that, as in
most discussions in physics, we consider only inertial coordinate systems since
we do not wish to include Coriolis forces, and so on.

The derivation also leads to an understanding of how heat flows from hot to
cold bodies and how the transport coefficient characterizing this flow is posi-
tive and finite when the system is T-mixing. This heat flow gradually equalizes
the temperature across the entire system, and heat eventually ceases to flow. This
is the mechanism by which the zeroth “Law” behavior of equilibrium systems is
achieved.

Consider an ensemble of N-particle systems obeying Newton’s or Hamilton’s
equations of motion. We do not assume that each particle is identical. The
particles could differ in masses and interatomic potentials. If the system of
particles is isolated, the total energy, linear momentum, and angular momentum
are constants of the motion. In our thought experiment, we could imagine that
the system is composed of two solid three-dimensional boxes so that the left half
and the right half of the system are in thermal contact but there is no mass flow
between the two sides. These two boxes represent the “bodies” mentioned in
Maxwell’s statement of the zeroth “Law.” The two boxes (bodies) contain particles
that may be solid, liquid, or gas.

In order to prove the zeroth “Law” of thermodynamics, consider a system with
different temperatures in its left and right sides. We let Δ𝛽 denote the difference
in the reciprocal absolute temperatures of the two bodies left L and right R,
divided by Boltzmann’s constant. The absolute temperature of each body, TL,TR,
is not known. Only the reciprocal difference Δ𝛽 ≡ 1∕kBTR − 1∕kBTL is known. The
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calculation of the absolute temperature of each body requires knowledge of the
equation of state for the system. Thus we consider an initial distribution of the
form

f (𝚪; 0) =
exp[Δ𝛽HL(𝚪)]𝛿(H0(𝚪) − E)𝛿(𝐏)𝛿(𝐋)

∫ d𝚪 exp[Δ𝛽HL(𝚪)]𝛿(H0(𝚪) − E)𝛿(𝐏)𝛿(𝐋)
, Δ𝛽 ≠ 0

=
exp[−Δ𝛽HR(𝚪)]𝛿(H0(𝚪) − E)𝛿(𝐏)𝛿(𝐋)

∫ d𝚪 exp[−Δ𝛽HR(𝚪)]𝛿(H0(𝚪) − E)𝛿(𝐏)𝛿(𝐋)
, Δ𝛽 ≠ 0 (7.1)

where

HC =
∑
i∈C

[
p2

i
2mi

+ 1
2
∑

j
𝜙i,j

]
, C = L,R (7.2)

where L,R denote the left or right bodies in Maxwell’s statement of the
zeroth “Law”, and 𝜙i,j is the potential energy of particles i, j. Clearly, H0(𝚪) =
HL(𝚪) + HR(𝚪) and, in contradistinction to the common notation, the interaction
energy between the two bodies is accounted for within the two sub-Hamiltonians
of each body. As usual the energy delta function is taken to be a limitingly thin
energy shell, (E, E+dE). We have assumed that there are only pair interactions.
We could extend the theory to include many-body interactions, but this would
only increase the complexity of the argument without revealing any more physics.

If there were no interactions between the two subsystems L, R, (i.e.,
𝜙i,j = 0, ∀i ∈ L, j ∈ R), these two parts would remain in separate micro-
canonical equilibriums indefinitely. Such a system would not as a whole be
T-mixing. Switching on the interactions between the two subsystems means that
the initial system is not in thermodynamic equilibrium and, on average, generates
future states with positive time-averaged dissipation function.

From Eqs. (7.1) and (7.2), the deviation function is

g(𝚪) = −Δ𝛽HL(𝚪) or g(𝚪) = Δ𝛽HR(𝚪) (7.3)

If the reciprocal difference is zero, the system is isothermal and is at equilibrium.
So, Eqs. (7.1) and (7.2) provide a convenient mathematical model to study thermal
relaxation and hence give a proof of Maxwell’s zeroth “Law.”

The two quantities in Eq. (7.3) differ by a constant Δ𝛽H0, but this constant has
no physical relevance and is removed in Eq. (7.1) due to the normalization. The
instantaneous dissipation function ġ(𝚪) is easily seen to be

Ω(𝚪) = −Δ𝛽ḢL(𝚪) = Δ𝛽ḢR(𝚪) (7.4)

In deriving this equation, we have used the fact that the energy H0 = HL + HR
is a constant of the motion. From the dissipation theorem (Chapter 4), the time
evolution of the phase space distribution function is given by

f (𝚪; t) = f (𝚪; 0) exp
(
−∫

−t

0
ds Ω (Ss𝚪)

)
(7.5)

The second law inequality shows that the time integral of the dissipation function
satisfies the inequality⟨

Ωt (𝚪)
⟩

0 = −
⟨
Δ𝛽ΔHL

(
St𝚪

)⟩
0 =

⟨
Δ𝛽ΔHR

(
St𝚪

)⟩
0 > 0, ∀t > 0 (7.6)
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where ΔHL(St𝚪) ≡ HL(St𝚪) − HL(𝚪). If the left side of the system is hotter than
the right, that is, TL > TR, and Δ𝛽 > 0, in order for Eq. (7.6) to be satisfied,⟨ΔHL(St𝚪)⟩0 must be negative, meaning that the hot left-hand side loses heat
energy to the cooler right-hand side, that is, ⟨ΔHR(St𝚪)⟩ > 0. This is in accordance
with the second “Law” of thermodynamics.

Substituting into the dissipation theorem for averages gives

⟨
HL

(
St𝚪

)⟩
0 =

⟨
HL (𝚪)

⟩
0 − Δ𝛽 ∫

t

0
ds
⟨

ḢL (𝚪)HL(Ss𝚪)
⟩

0 (7.7)

Since the system is T-mixing, in the long-time limit the integral of the correlation
function converges to a finite value and the average energy of the left and right
sides of the system becomes constant in time. If the average energy of the left hand
body is constant, the instantaneous dissipation must have a zero average value:

lim
t→∞

Δ𝛽⟨ḢL(St𝚪)⟩0 = 0 (7.8)

In the long-time limit, the average dissipation is zero. This can happen only if
the distribution has relaxed to its unique dissipationless equilibrium distribution
(Eq. (7.1) with Δ𝛽 = 0). This is because, as we have already seen, any deviation
from this distribution must produce a positive value for the time integral of the
ensemble-averaged dissipation function (Section 5.3). The temperatures of the
left- and right-hand sides of the system must be equal because the unique equilib-
rium distribution (Eq. (7.1) withΔ𝛽 = 0) is spatially homogeneous. This completes
our proof of the zeroth “Law” of thermodynamics.

Since there is no flux of particles between the two regions or bodies, and if the
boundary between the two bodies has a cross-sectional area 𝜎A, the energy change
is simply related to a heat flux JQ,R from the appropriate side of the system

ḢL ≡ JQ,R𝜎A (7.9)

(outward normal convention is used) and we can write the dissipation theorem
for the heat flux as

⟨JQ,R(St𝚪)⟩0 = −Δ𝛽𝜎A ∫
t

0
ds
⟨

JQ,R (𝚪) JQ,R(St𝚪)
⟩

0 (7.10)

Because of the form of Eq. (7.1), which ensures that all functions that are odd
in the momentum (including all fluxes of non-conserved quantities) are zero
at time zero, we see that ⟨JQ,R(𝚪)⟩0 = 0. Equation (7.9) is obviously a form of
Fourier’s “Law” for heat flow. In fact, it gives an exact expression for the nonlinear
far-from-equilibrium thermal conductivity (Evans, Williams, and Rondoni, 2012).
Indeed, the magnitude of Δ𝛽 has not been specified in our derivation and can be
arbitrarily large or small. Fourier’s “Law” for heat flow only relates to the linear
response regime close to equilibrium. It is a linear constitutive relation. Previous
time correlation expressions for the thermal conductivity (Evans and Morriss,
1990; Zwanzig, 2001) were also limited to the linear response regime close to
equilibrium. In Eq. (7.9), the transient time correlation integral is dependent on
the size of the temperature gradient (difference). In the linear response regime,
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we take the weak gradient limit of the transient time correlation function (TTCF),
namely the corresponding equilibrium time correlation function.

If the temperature difference is converted into a temperature gradient, and if
the heat capacity of the systems is large relative to the heat fluxes, this equation
gives an expression for the nonlinear thermal conductivity JQ,L ≡ 𝜆(Δ𝛽)Δ𝛽 of the
pseudo-steady state that may develop initially:

𝜆(Δ𝛽) = 𝜎A ∫
tc

0
ds
⟨

JQ (𝚪) JQ(St𝚪)
⟩

0 (7.11)

where tc is the convergence time for the pseudo-steady state. In the weak gradient
limit, Eq. (7.11) is consistent with the Green–Kubo relations for thermal conduc-
tivity. (Note that in our system the heat flux appearing in our correlation functions
is defined in terms of the energy flux across a plane whereas the usual heat flux
appearing in Green–Kubo expressions is defined over a (homogeneous) volume
(Evans and Morriss, 1990). Also, JQ appearing in Eq. (7.11) can be either the left
or right fluxes as the formula is symmetric.) However, for our system, because the
total energy is conserved but the energies of each of the two regions are not sepa-
rately conserved, and our T-mixing system eventually relaxes to equilibrium, the
heat flux eventually goes to zero:

lim
t→∞

⟨
JQ,R

(
St𝚪

)⟩
0 = −Δ𝛽𝜎A ∫

∞

0
ds
⟨

JQ,R (𝚪) JQ,R(St𝚪)
⟩

0 = 0 (7.12)

In this equation, all dynamics is Newtonian and the initial distribution is the initial
nonequilibrium distribution Eq. (7.1). It is valid when the initial state is arbitrar-
ily far from equilibrium. In the far-from-equilibrium regime, the time correlation
function is not an equilibrium time correlation function but rather is a TTCF
(nonequilibrium) that is dependent on the magnitude of the initial temperature
difference.

Equation (7.11) is a special case of the heat death equation (Eq. (5.36)). Infinite-
time correlation integrals of fluxes of nonconserved quantities vanish.

7.3
Steady-State Heat Flow (Searles and Evans, 2001; Evans, Searles, and Williams, 2010)

In previous chapters we have mostly considered mechanically driven systems
where the dissipative field appears explicitly in the equations of motion as per
Eq. (6.4). In the previous section we studied transient relaxation due to heat
flow in a field-free Hamiltonian system. Here, because of the importance of
understanding thermal conductivity, we will give a method for studying steady-
state boundary-driven heat flow (Searles and Evans, 2001; Evans, Searles, and
Williams, 2010).

Experimentally, there are a number of ways in which walls can be ther-
mostatted. If the walls are made of highly thermally conductive material, chilled
and hot fluids may be circulated through pipes in the walls while having their
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relative proportions adjusted according to some temperature-sensing feedback
mechanism. This is essentially the same as what we accomplish mathematically
in the differential feedback isokinetic thermostat or in the integral feedback
mechanism of the Nosé–Hoover thermostat. Alternatively, if the heat capacity of
the reservoirs is huge compared to that of the thermal conduction cell, then the
temperature variation in the reservoirs over microscopic relaxation times may be
regarded as insignificant.

Here we employ the so-called Nosé–Hoover thermostat in the reservoir regions
in order to maintain these regions at a fixed temperature. Its impact on the system
of interest, namely the thermal conduction cell, is only indirect. In an experiment,
the material properties of the thermal conduction cell are independent of whether
the reservoirs are maintained at a fixed temperature by virtue of the circulation of
a coolant or the use of reservoirs of large heat capacity. The thermal conductivity
is a material property. It is independent of the precise chemical composition of
the walls of a conduction cell.

The theory that follows is also independent of the thermostatting mechanism.
The reason for this independence is that the formal fluctuation formulae are inde-
pendent of precisely how the thermostatting is accomplished in the far-removed
thermostatting region. We can move the thermostatting region arbitrarily far
from the system of interest and still generate the same fluctuation relation.
There is no way that the system of interest can “know” precisely how the heat is
ultimately removed by the remote thermostat. We note that in low-dimensional
anharmonic chains it is well known that there can be long-range spatial corre-
lations for heat flow – see Gallavotti (2008). In typical physical systems, such
correlations are much shorter ranged.

It turns out that the only significant thing that the system of interest takes from
the thermostat is the equilibrium thermodynamic temperature the system will
relax to, if it is so allowed.

The aim is to derive formulae for the dissipation function of a thermal conduc-
tion cell (Searles and Evans, 2001). We consider the system initially at equilibrium
(because then the phase space distribution function is known – see Chapter 5).
Initially the whole system is isothermal. The temperature gradient is then applied
and a heat flux develops in time.

The equations of motion for all the particles in the combined systems, H , 0, C are

�̇�i = 𝐩i

�̇�i = 𝐅i − 𝛼H𝐩iAi − 𝛼C𝐩iBi (7.13)

where 𝛼H∕C are the thermostat multipliers, TH∕C are the target temperatures of the
hot and cold regions, and Ai and Bi are switches equal to 1 or 0. Ai is only one for
particles in region H , and Bi is only one for particles in region C. The multipliers
themselves satisfy the following equations of motion:

d𝛼H∕C

dt
= 1

𝜉

( ∑
i∈H∕C

𝐩2
i

m
−
(
3Nth + 1

)
kBTH∕C

)
(7.14)
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where Nth is the number of particles in each reservoir. The constant 𝜉 controls
the timescale for fluctuations in the kinetic temperatures of regions H,C. The time
constant is given by (Evans and Morriss, 1990) 𝜏H∕C = O(

√
𝜉∕3NthkBTH∕C). We

always choose 𝜉 = O(Nth) so that 𝜏H∕C is intensive.
For simplicity, we assume that the walls are sufficiently dense so that the par-

ticles from region 0 do not penetrate either of the reservoir regions – the walls
are impervious solids. The details of the interatomic forces implicit in {𝐅i} will be
described later. It is important to note that in the zero region and the H , 0 and C, 0
interfaces, the equations of motion can be made arbitrarily realistic by improved
modeling of the interatomic forces. In the zero region, there are no unnatural
forces. Our system is very similar to that studied by Searles and Evans (2001) and
Petravic and Harrowell (2006, 2005), and although the dimensionality and the par-
ticle dynamics is very different, it has the same form for the dissipation function
as in the system studied by Mejia-Monasterio and Rondoni (2008).

The additional Nosé–Hoover thermostat ensures that in a steady state the
reservoir regions are maintained at constant time-averaged kinetic temperatures
TH , TC . In a nonequilibrium T-mixing, steady state

lim
t→∞

d𝛼H∕C,t∕dt = 0 ⇒ 1∕(3Nth + 1)kB
∑

i∈H∕C

𝐩2
i ,t

m
= TH∕C (7.15)

Since the system is assumed to be T-mixing, it must be physically ergodic. We
assume that at t = 0 the initial phase space distribution f (𝚪; 0) is the equilibrium
canonical distribution (Section 5.4):

f (𝚪†; 0) =
exp

[
−𝛽0

(
H0 (𝚪) + 𝜉(𝛼2

H + 𝛼2
C)∕2

)]
∫ d𝚪′ exp

[
−𝛽0

(
H0 (𝚪) + 𝜉(𝛼2

H + 𝛼2
C)∕2

)] (7.16)

where 𝛽0 = 1∕(kBT0), H0 =
∑

p2
i ∕2m + Φ(q) is the internal energy, H†

0 =
H0 + 𝜉(𝛼2

H + 𝛼2
C)∕2 is called the extended energy, and 𝚪† ≡ (𝚪, 𝛼H , 𝛼C) is the

extended phase space vector.
The phase space expansion factor Λ(𝚪†) appearing in the phase continuity

equation is

Λ = −dNth𝛼H − dNth𝛼C (7.17)

Thus the formal Lagrangian solution of the phase continuity equation is – see Eq.
(2.19)

f (St𝚪†; t) = f (𝚪†; 0) exp
[
∫

t

0
ds dNth𝛼H (s) + dNth𝛼C(s)

]
(7.18)

From the equations of motion, we see that the rate of change of the extended inter-
nal energy is

Ḣ†
0 = −3NthkB(TH𝛼H + TC𝛼C) (7.19)
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Substituting Eqs. (7.17) and (7.19) into Eq. (3.2) gives the time-averaged dissipa-
tion function as

Ωt(𝚪†)t = −∫
t

0
ds

[
3Nth𝛽0kB

(
TH𝛼H (s) + TC𝛼C(s)

)
− 3Nth(𝛼H (s) + 𝛼C(s))

]
= ∫

t

0
ds3Nth{𝛼H (s)(TC − TH ) + 𝛼C(s)(TH − TC)}∕(TH + TC)

= 3Nth
(TH − TC)
(TH + TC) ∫

t

0
ds [𝛼C(s) − 𝛼H (s)] (7.20)

where the second line follows from the imposed relationship between the initial
temperature and target temperatures of the thermostats, 2T0 = TC + TH . From
the Evans–Searles fluctuation theorem (ESFT) (Chapter 3), we see that the prob-
ability ratio of observing conjugate values for the time-averaged difference in the
thermostat multipliers is

p(𝛼C,t − 𝛼H,t = A)
p(𝛼C,t − 𝛼H,t = −A)

= exp
[

3Nth
TH − TC
TC + TH

At
]

(7.21)

The ESFT for heat flow given by Eq. (7.21) is exact for any arbitrary system size,
observation time t, and also arbitrarily far from equilibrium.

Equation (7.21) is a statement of the transient fluctuation theorem for heat flow
between Nosé–Hoover thermostatted walls. Since the system is T-mixing, the
system will relax to a unique steady state. Therefore we can consider the steady-
state fluctuation theorem

lim
t→∞

ln

[
p
(
𝛼C,t − 𝛼H,t = A

)
p(𝛼C,t − 𝛼H,t = −A)

]/[
3Nth

TH − TC
TC + TH

t
]
= A (7.22)

These two equations, that is, Eqs. (7.21) and (7.22), are valid outside the linear
regime. For our thermal conduction setup and with our initial conditions and ther-
mostats, the only caveat is that the steady-state formula requires the system to be
T-mixing. Equations (7.21) and (7.22) are clearly consistent with the second law of
thermodynamics in that it is exponentially more probable for heat to flow from hot
to cold, in which case 𝛼C,t > 0, 𝛼H,t < 0 and from (7.22) we see that in the steady
state limt→∞|𝛼C,t| > limt→∞|𝛼H,t|. In either the large system and/or the long-time
limit, the time-averaged heat will flow only from hot to cold.

The dissipation theorem (Chapter 4) gives an exact TTCF expression for the
ensemble average of the nonlinear response of an arbitrary phase variable B(𝚪) as

⟨B(t)⟩ = ⟨B(0)⟩ − 3Nth(TH − TC)
TH + TC ∫

t

0
ds⟨B(s)[𝛼H (0) − 𝛼C(0)]⟩ (7.23)

In this equation, the angle brackets denote an average over the initial (i.e., t = 0)
ensemble and ⟨B(t)⟩ ≡ ⟨B(St𝚪)⟩. Unlike the fluctuation theorems, the dissipation
theorem does not require ergodicity. The linearized weak-field version of this
equation is essentially identical to that in the paper by Petravic and Harrowell
(2006, 2005, Eq. (7.23)). By comparing with the usual Kawasaki distribution func-
tion for a system driven by an external mechanical force, we see that, although the
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system is a thermal nonequilibrium system where boundary conditions rather
than external mechanical forces drive the system away from equilibrium, there is
a formal resemblance of the nonlinear response to that obtained if we applied a
fictitious mechanical field

Fe =
kB(TH − TC)

2
(7.24)

to the system. In this case, the intensive dissipative flux J can be identified as the
fictitious function

J(𝚪†) = 3nthkB[𝛼H (𝚪†) − 𝛼C(𝚪†)] (7.25)

where nth ≡ Nth∕Vth is the number density of the thermostat volumes.
Equation (7.23) contains a great deal of information. Since the system is

T-mixing, the TTCF appearing on the right-hand side decays to zero at long times.
More precisely, we require that time integrals of TTCFs of phase functions and the
time zero dissipation function (7.23) should converge in the infinite-time limit.

We note that in the weak field (see Eq. (7.23)) limit the linear response of the
system to thermal conduction can be computed exactly from the time integral of
an equilibrium time correlation function. In this limit, T-mixing implies that the
equilibrium dynamics is mixing and that the correlations decay faster than 1∕t.

Choosing the phase function B(𝚪) to be the dissipation function itself and using
the second law inequality shows that at late times the ensemble-averaged dissipa-
tion function equals the time-averaged dissipation function and that the average
value is nonnegative. In fact, it must be strictly positive because the equilibrium
state is the unique dissipationless state for T-mixing systems.

If the transient autocorrelation function for the dissipation function is positive
for all times, then the relaxation to the steady state is monotonic and the steady
state corresponds to the state of maximum dissipation compared to all the tran-
sient states, the equilibrium state, and, of course, all the conjugate time-reversed
antistates. If the autocorrelation function is not positive for all time, then the
steady state has no such extremal properties (i.e., there are transient states with
greater ensemble-averaged dissipation than the steady state).

Our system considers the transient response of the three regions H , 0, C
that are initially at the same temperature T0. At t = 0, systems H and C are
instantly brought into contact with Nosé–Hoover thermostats, which rapidly[
𝜏H∕C = O

(√
𝜉∕3NthkBTH∕C

)]
bring systems H and C to temperatures TH ,TC ,

respectively.
Without loss of generality, we assume that the three regions H , 0, and C have

a rectangular cross section of area 𝜎A and wall normals parallel to the x-axis, and
the distance separating the thermostatted reservoirs is L.

At the moment, our expression for the dissipation function involves nonphysi-
cal variables. We now transform our expression for the dissipation function into
an expression involving physically measureable variables: heat fluxes and temper-
ature difference.

The ultimate fluxes into and out of our system are given by the energy gain or
loss by the thermostats themselves. These are the only nonconservative elements
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of our system. The thermostatting terms are analogous to the coolant in a physical
thermostat. Once the energy is taken up by the circulating coolant, the physical
circulation of that coolant removes that energy from the system of interest. With
this in mind, it is natural to evaluate the H/C “heat fluxes” as

JQH∕C(t)𝜎 = ∓3NthkBTH∕C𝛼H∕C(t) (7.26)

These are the heat fluxes across the area 𝜎A immediately before, or after,
the heat is removed, or injected, by the thermostats themselves. (Note,
the difference in signs! limt→∞𝛼H,t = −limt→∞𝛼C,t < 0. This further implies:
limt→∞ JQH,t = limt→∞ JQC,t > 0.)

We begin by manipulating our expression for the instantaneous dissipation
function. From Eqs. (7.20) and (7.26), we see that

Ω(t)kB = − 1
T0

[
3NthkBTH𝛼H (t) − 3NthkBT0𝛼H (t)

+3NthkBTC𝛼C (t) − 3NthkBT0𝛼C(t)
]

=
[
−

JQH (t) 𝜎A

TH
+

JQC(t)𝜎A

TC

]
+
[ JQH (t) 𝜎A

T0
−

JQC(t)𝜎A

T0

]
(7.27)

Equation (7.27) consists of a sum of two terms.

Definition
The second term is not explicitly proportional to a function of the temperature dif-
ference – it is not a driven term but rather is a boundary term. This second term
cancels another boundary term inherent in the first term and ensures that if the
system is in true thermodynamic equilibrium where TH = TC = T0, the dissipa-
tion function is identically zero in spite of the fact that due to boundary fluctua-
tions JH (t) ≠ JC(t), instantaneously.

At equilibrium, it is only on average that these two quantities are equal. If the
second term is missing from Eq. (7.28), the relative importance of these boundary
fluctuations increases without bound as the system becomes closer to equilibrium.

This expression for the dissipation function involves only physically measurable
variables that retain their physical meaning even when the system of interest is
arbitrarily far from equilibrium. Because there is no convection in our system,
the heat fluxes are simply energy fluxes. The target temperatures of the artificial
Nosé–Hoover thermostat, TH∕C , are the equilibrium thermodynamic tempera-
tures that the two thermostats would relax to if the two thermostatting regions
were decoupled from each other and the system of interest, and each thermostat
was allowed to relax to equilibrium – see Chapter 5.

Substituting Eq. (7.27) into the second law inequality gives

lim
t→∞

kBΩt = lim
t→∞

[
JQt𝜎A

TC
−

JQt𝜎A

TH
+

JQt𝜎A

T0
−

JQt𝜎A

T0

]

= lim
t→∞

JQt𝜎A

[
1

TC
− 1

TH

]
> 0 (7.28)
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For our system this inequality is clearly satisfied. It is a product of two positive
terms.

Aside
For those who are familiar with linear irreversible thermodynamics, we can see
that in the local equilibrium regime close to and only close to equilibrium, the
time-averaged dissipation function in Eq. (7.27) is recognizable as the extensive
spontaneous entropy production Σtherm (De Groot and Mazur, 1984):

Σtherm(t) = lim
∇T→0 ∫V

d𝐫 𝜎(𝐫, t) = lim
∇T→0∫V

d𝐫 𝐉Q(t)•∇T−1

= 𝜎A lim
∇T→0 ∫

+L∕2

−L∕2
dx JQx(t)

d(1∕T(x))
dx

= 𝜎A
JQx (x, t)

T(x)

|||||
+L∕2

−L∕2
− 𝜎A ∫

+L∕2

−L∕2
dx 1

T(x)
dJQx(x, t)

dx

= lim
TH−TC→0

(
−𝜎A

( JQH (t)
TH

−
JQC(t)

TC

)

+𝜎A
JQH (t) − JQC(t)

T0
+ O

(
d3

dx3

))
(7.29)

This expression for the thermodynamic entropy production, Σtherm(t), equals
the average dissipation function multiplied by Boltzmann’s constant: kBΩ(t) in
Eq. (7.27). However, unlike the entropy production, the definition of the dissi-
pation function retains precise mathematical meaning far from equilibrium. In a
sense, therefore, the dissipation function serves as a mathematical replacement for
the entropy production. When the entropy production can be defined, it is equal,
on average, to the dissipation function. However, unlike entropy production, the
dissipation function can, for ergodically consistent systems, always be defined.

Aside
It is a trivial matter to compute the time derivative of the fine-grained Gibbs
entropy Eq. (5.53), SG = −kB ∫ d𝚪† f (𝚪†, t) ln(f (𝚪†, t)). From Eq. (6.9) we see that

ṠG(t) = kB ∫ d𝚪† f (𝚪†; t) 𝜕�̇�†(t)∕𝜕𝚪†

= −3NT kB⟨𝛼H (t) + 𝛼C(t)⟩ = kB⟨Λ(t)⟩ (7.30)

It is clear that the dissipation function is not instantaneously related to the time
derivative of the fine-grained Gibbs entropy.

Comparing Eq. (7.27) with Eq. (7.30), we see that ṠG(t) = ⟨JH (t)⟩𝜎A∕TH −⟨JC(t)⟩𝜎A∕TC does not contain the boundary terms and so (in contrast to the
instantaneous dissipation) ṠG(t) ≠ 0 for equilibrium systems.

Only the time-averaged rate of change of the fine-grained Gibbs entropy for
the steady state is equal, for sufficiently long averaging times, to –1 times the
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steady-state average of the thermodynamic entropy production:

−ṠG,t = −kB⟨Λt⟩
=

t→∞
−𝜎A⟨JQ,t⟩

(
1

TH
− 1

TC

)
=

t→∞
kB⟨Ωt⟩ (7.31)

The second equality is simply a restatement of Eq. (7.29); the third equality is
true for sufficiently long averaging times. We note that Λ(t) is the argument
of the steady-state Gallavotti–Cohen fluctuation relation – see Section 6.10.
The discussion above about the relative importance of boundary terms shows
that, as we said in Section 6.10, ever longer averaging times are required for the
asymptotic Gallavotti–Cohen fluctuation theorem to converge as we approach
equilibrium. As equilibrium is approached, this time grows like (TH − TC)−2!

Applying the second law inequality, Eq. (3.11), to our system shows that in the
long time limit we obtain

lim
t→∞

⟨JQ,t⟩ ≡ −𝜆 ( 𝜕T∕𝜕x)
𝜕T
𝜕x

= −𝜆 ( 𝜕T∕𝜕x)
𝜕T
𝜕x

> 0 ⇒ 𝜆 ( 𝜕T∕𝜕x) > 0, ∀ 𝜕T∕𝜕x (7.32)

where 𝜆 ( 𝜕T∕𝜕x) is the nonlinear thermal conductivity, and the temperature gra-
dient is negative. Since the system is T-mixing, a unique steady state is generated
for any given temperature gradient and the nonlinear thermal conductivity is finite
and positive for any finite temperature gradient. Therefore, Fourier’s “Law,” which
applies to the weak-field limit, is valid for our system. (The thermal conductivity
cannot be zero since in T-mixing systems the only state that has zero dissipation
is the equilibrium state – see Chapter 6.)

7.4
Dissipation Theorem for a Temperature Quench

In this section we will discuss response theory for a temperature quench (Schmidt
and Evans, 1994) and its relationship to the relaxation theorem. The response
of a system to a rapid change in temperature is of interest in the study of phase
transitions. Such quenches may be used to induce glass formation or to initiate
spinodal decomposition. Typically, a quench takes the system from an initial
equilibrium state to a final equilibrium state that is characterized by a different
value (usually lower) of the temperature. In the case of a quench to a glass,
the final state is not in true thermodynamic equilibrium. The transition states
between the initial and the final states are also obviously nonequilibrium states.
These observations suggest that one should be able to analyze such transitions
using a standard tool of nonequilibrium statistical mechanics, namely nonlinear
response theory (Schmidt and Evans, 1994). In this section we will show one way
in which this can be accomplished. In the next chapter (Chapter 8) we will discuss
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another set of ways of studying the transitions between equilibrium states via
nonequilibrium pathways.

Here we describe equations of motion that give an exact description of an impul-
sive temperature quench of arbitrary magnitude. We describe the applied field
and its conjugate dissipative flux. We apply the dissipation theorem (Chapter 4)
to develop an exact TTCF expression, which may be used to analyze the transient
response of any phase function to a temperature quench. These expressions have
been tested in computer simulations and found to be consistent with the observed
response.

In this section we consider an N-particle classical system evolving under Gaus-
sian isokinetic equations of motion – see Eq. (6.4):

�̇�i =
𝐩i
m

�̇�i = 𝐅i − 𝛼𝐩i (7.33)

where 𝐩i, 𝐪i, and 𝐅i are the momenta, positions, and interatomic force vectors for
the particle i. We assume that the initial total momentum is zero. Note that we
could employ our usual switch as in Eq. (6.4) but the mathematics hardly changes.

It has been proved (Evans and Sarman, 1993) that in an equilibrium system that
is mixing, time averages under Gaussian thermostatted dynamics are identical
to the corresponding time averages under Newton’s equations, in the thermody-
namic limit. In this same limit, equilibrium time correlation functions evaluated
under thermostatted or Newtonian dynamics are also equivalent. In Eq. (7.33),
the internal energy is given by H0 =

∑
i(Ki) + Φ, where Ki =

𝐩2
i

2m
is the (peculiar)

kinetic energy of particle i, and Φ is the total potential energy. The internal energy
and total momentum are constants of the motion.

In order to maintain a constant temperature, we set K̇ ≡ ∑
iK̇i = 0 and thus

K̇ =
∑

i

𝐩i
m

•(𝐅i − 𝛼𝐩i) = 0 ⇒ 𝛼 =
∑

i
𝐩i
m

•𝐅i

2K
(7.34)

We now consider a system that obeys the above equations of motion, Eqs. (7.33)
and (7.34), and experiences an instantaneous change in its kinetic temperature at
time t = 0. The equilibrium distribution function immediately before the quench
is isokinetic – see Section 6.2:

f (𝚪; 0−) =
exp[−𝛽−Φ(𝚪)]𝛿(𝐩)𝛿(2K − (3N − 4)kBT(0−))

∫Dd𝚪 exp[−𝛽−Φ(𝚪)]𝛿(𝐩)𝛿(2K − (3N − 4)kBT(0−))
= fK (𝚪; 𝛽−) (7.35)

with 𝛽− = 1∕kBT(0−), which is a function of the equilibrium temperature T(0−) for
times t ≤ 0−. 𝚪 = (x1, x2,… , zN , px1,… , pzN ) is the 6N-dimensional phase space
vector.

At time t = 0, a temperature quench is accomplished by scaling all momenta by
a factor 𝜆 while the coordinates remain unchanged; that is, 𝐩i(0+) = 𝜆𝐩i(0−) and
𝐪i(0+) = 𝐪i(0−). With this scaling, the kinetic energy and kinetic temperature T ≡∑𝐩2

i ∕3NmkB change, but the potential energy, which is a function of the coordi-
nates alone, does not. The total momentum remains at zero after the rescaling. The
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distribution function immediately after the quench t = 0+ is therefore given by

f (𝚪, 0+) =
exp[−𝛽−Φ(𝚪)]𝛿(𝐩)𝛿(2K − (3N − 4)kBT+)

∫Dd𝚪 exp[−𝛽−Φ(𝚪)]𝛿(𝐩)𝛿(2K − (3N − 4)kBT+)
(7.36)

where 𝛽+ = 𝛽−∕𝜆2 = 1∕kBT+ = 1∕kBT∞.
Clearly, f (𝚪; 0+) is not an equilibrium distribution function. The unique

isokinetic equilibrium distribution function is given by Eq. (7.35) with 𝛽− → 𝛽+.
However, it is a straightforward matter to compute the dissipation function so
that we can study the time evolution and relaxation of this system.

From Eq. (7.36) and the definition of the instantaneous dissipation function,
Eq. (3.7), we get

Ω = 𝛽−Φ̇ + (3N − 4)𝛼 (7.37)

Using the fact that

Ḣ0(t) = −2K+𝛼(t) = −(3N − 4)kBT+𝛼(t) ≡ −Q̇(t) (7.38)

where Q̇ is the heat absorbed from the system by the thermostat

Ω(𝚪) =
(
1 − 𝛽−∕𝛽+

)
(3N − 4)𝛼(𝚪) = (𝛽+ − 𝛽−)Q̇ (7.39)

If the quench involves a sudden cooling, we would expect that 𝛽+ > 𝛽− and this
equation is in accordance with what we expect from the second law inequality
(i.e., ⟨Q̇⟩ > 0 for a temperature quench). The configurational degrees of freedom
are still “hot” (see Eq. (5.55)) and, in order for the thermostat to maintain the
kinetic degrees of freedom at the suddenly lower temperature, the thermostat
must remove energy from the system (i.e., ⟨𝛼⟩ > 0) until the configurational
degrees of freedom have also “cooled down.”

If we substitute Eq. (7.39) into the dissipation theorem Eq. (4.7), we see that
the time dependence of the ensemble average of a phase function A(𝚪) can be
computed as

⟨A(t)⟩ = ⟨A(0+)⟩ + (𝛽+ − 𝛽−)∫
t

0+
ds⟨Q̇(0+)A(s)⟩. (7.40)

If we set A(𝚪) to be Q̇(t), we find that

⟨Q̇(t)⟩ = ⟨Q̇(0+)⟩ + (𝛽+ − 𝛽−)∫
t

0+
ds⟨Q̇(0+)Q̇(s)⟩

= (𝛽+ − 𝛽−)∫
t

0+
ds⟨Q̇(0+)Q̇(s)⟩ (7.41)

We know from the relaxation theorem that, if the system is T-mixing, at
long times the system will relax to an isokinetic distribution at a temperature
T∞ = T+. This equation predicts the direct response of an arbitrary phase
function A(𝚪) to an instantaneous quench in temperature. It also shows that
for temperature quenches the relative difference in the initial and final tem-
peratures, (𝛽− − 𝛽∞)∕𝛽∞ = T∞∕T− − 1, plays the role of the “applied external
field” in response theory. The dissipative flux that is conjugate to this “field” is
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simply 𝛽∞Q̇(t). Although the quench is initiated by an impulsive action (i.e., the
momentum scaling at t = 0), the “external field” in these equations takes the form
of a Heaviside step rather than a delta function in time.

Aside
This problem is impossible to tackle using conventional linear, irreversible ther-
modynamics. The initial quenched state is just too far from equilibrium for con-
ventional thermodynamics to say anything about the problem.

7.5
Color Relaxation in Color Blind Hamiltonian Systems

It is frequently useful in nonequilibrium statistical mechanics to endow otherwise
identical particles with a color label. One can invent a fictitious color field that
interacts with the color to induce color currents or to set up stationary gradi-
ents in color density in a fluid. This can provide useful information regarding
self-diffusion in fluids – see Evans et al. (1983) and Evans and Morriss (1990,
Section 6.2).

We now consider the free relaxation of a color density modulation (Evans, Sear-
les, and Mittag, 2001; Evans and Searles, 2002). First, we need to construct an
ensemble of systems with a color density modulation. Without loss of general-
ity, consider a system of N identical particles, which for t < 0 is subject to a color
Hamiltonian

Hc = H0 + Fc

N∑
i=1

ci sin(kxi) (7.42)

where ci = (−1)i is the color charge of particle i, k = 2𝜋∕L, where L is the
boxlength, and H0 ≡ ∑

ip2
i ∕2m+ ∈

∑
i<jΦ(𝐪) is a “color blind” interaction Hamil-

tonian (the potential energy Φ(𝐪) and the internal energy H0(𝚪) do not refer to
the color charges). The color density modulation can be measured by averaging
the appropriate Fourier component:

𝜌c(k) ≡
N∑

i=1
ci sin(kxi) (7.43)

where xi is the x-coordinate of particle i. We assume that for t < 0, the system is in
contact with a heat bath. Since the system is at thermal equilibrium for t < 0, the
color field induces a color density wave

⟨𝜌c(k, 0)⟩Fc
=

∫ d𝚪 𝜌c(k) exp[−𝛽(H0 + Fc𝜌c(k))]
∫ d𝚪 exp[−𝛽(H0 + Fc𝜌c(k))]

Fc→0
= −𝛽Fc⟨𝜌c(k)2⟩Fc=0 (7.44)

From the last line of Eq. (7.44), it is clear that in the weak-field limit
limFc→0⟨𝜌c(k, 0)⟩Fc=0 < 0. So at t = 0 the system is initially modulated with a
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color density wave. We wish to consider the behavior of the system for t ≥ 0,
when the external color field is “turned off” and the contact between the system
and the heat bath is broken. The system then relaxes freely under the “color blind”
Hamiltonian H0.

For t > 0, no work is done on the system and no heat is transferred to or from
the system’s surroundings. The system evolves with constant energy (E = H0(𝚪)).
The fine-grained Gibbs entropy is constant, Eq. (2.56). No calorimetric process
can reveal a change in the entropy. Indeed, in the linear response regime in the
weak-field limit (and only in this limit!), if we disregard the color labels, the sys-
tem would be thought of as being in equilibrium. Nevertheless, according to Le
Chatelier’s principle, the color density modulation should decay rather than grow
as the system becomes homogeneous with respect to color.

The dissipation functionΩ(Γ) can be determined using Eq. (3.2). For t > 0, there
is no phase space compression since the dynamics is Newtonian and there is no
applied field. Furthermore, energy is conserved. Therefore, the dissipation func-
tion becomes

tΩt = 𝛽[Hc(t) − Hc(0)]

= 𝛽Fc ∫
t

0
ds �̇�c(k, s) = 𝛽Fc[𝜌c(k, t) − 𝜌c(k, 0)], ∀t > 0 (7.45)

The time-integrated dissipation function thus gives a direct measurement of the
change in the color density modulation order parameter. This is an interesting
system to study, and it emphasizes that the dissipation function is a functional
of both the initial distribution of states and the dynamics. In this example, the
dynamics is purely Newtonian with no external driving fields or thermostats. It is
the form of the initial distribution that generates dissipation. This is in spite of the
fact that for t > 0 the dynamics is “color blind” and for weak fields, in the linear
response regime, if you ignore the color label, the initial distribution would be an
equilibrium distribution and the number density of particles would, on average,
be uniform.

Applying the ESFT equation, Eq. (3.6), to this system gives
p[𝜌c(k, t) − 𝜌c(k, 0) = A]

p[𝜌c(k, t) − 𝜌c(k, 0) = −A]
= exp[𝛽FcA] (7.46)

where 𝛽 is the reciprocal temperature of the initial ensemble.
In order to test this equation, we considered a system of 32 particles in 2 Carte-

sian dimensions. The particles interact via a WCA potential, and the equations of
motion at t < 0 are

�̇�i =
𝐩i
m
, ∀t

�̇�i = 𝐅i − 𝐢cikFc cos kxi − 𝛼𝐩i, t < 0
= 𝐅i, t > 0

�̇� = 1
Q

( N∑
i=1

𝐩2
i

m
− 2NkBT

)
, t < 0

= 0, t > 0 (7.47)
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Figure 7.1 Snapshots from a molecular dynamics simulation showing the phase separation
of black and white particles at t < 0 (with field on) in (a) and their relaxation to equilibrium
(at t = 32) in (b). Here, T = 1.0, n= 0.4, and Fc = 2.0. From Evans and Searles (2002).

where 𝛼 is the Nosé–Hoover thermostat multiplier. At t = 0, the field and the ther-
mostat are switched off and the system is allowed to relax to equilibrium. We note
that this system is not T-mixing for t > 0 because states with different energies
cannot mix. We can, however, regard it as a canonical sum of independent, non-
interacting, T-mixing systems.

Figure 7.1 shows the modulation in the color density of the particles at t < 0 and
the color mixing that occurs as predicted by the Le Chatelier’s principle1) when
the field is switched off.

The fluctuation theorem for this system would predict that, although mixing
would be the most likely outcome, for small systems and short periods the color
modulation could in fact become stronger. This demixing violates Le Chatelier’s
principle. Figure 7.2 shows a histogram of values for the time-integrated dissipa-
tion p(Ωtt) and Figure 7.3 shows that the fluctuation theorem is satisfied for this
system.

7.6
Instantaneous Fluctuation Relations (Petersen, Evans, and Williams, 2013)

The covariant dissipation relation, Eq. (3.29), states that Ω𝜏 (St1𝚪; t1) =
Ω2t1+𝜏 (𝚪; 0). This means that

Ω0(St1𝚪; t1) = ln

(
f
(
St1𝚪; t1

)
f (MT St1𝚪; t1)

)

1) If a system has a stable equilibrium, then any spontaneous change in its parameters must bring about
processes which tend to restore the system to equilibrium Atkins and De Paula (2006).
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= lim
𝛿V𝚪→0

ln

(
p
[
𝛿V𝚪

(
St1𝚪

)
; t1

]
p[𝛿V𝚪(MT St1𝚪); t1]

)

= Ω2t1
(𝚪; 0) = lim

𝛿V𝚪→0
ln

p[𝛿V𝚪(𝚪); 0]
p[𝛿V𝚪(MT S2t1+𝜏𝚪); 0]

(7.48)
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Figure 7.2 Histogram of the distribution of the dissipation function for a system containing
a color-separated binary system that is relaxing to equilibrium. Here, T = 1.0, n= 0.4, Fc = 2.0,
and t = 0.4. From Evans and Searles (2002).
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Figure 7.3 Test of the fluctuation theorem given by Eq. (7.46) for a system containing a
color-separated binary system that is relaxing to equilibrium. Here, T = 1.0, n= 0.4, Fc = 2.0,
and t = 0.4. From Evans and Searles (2002).
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Thus the ratio of observing trajectories passing through a small phase space vol-
ume element near 𝛿V𝚪(St1𝚪) at time t1, compared to the conjugate set of antitrajec-
tories near 𝛿V𝚪(MT St1𝚪) at time t1, is the same as the probability ratio of observing
trajectories near 𝛿V𝚪(𝚪) at time zero, compared to their conjugate antitrajectories
at 𝛿V𝚪(MT S2t1𝚪) at time zero. This is just the conservation of ensemble members
in comoving phase space volume elements.

The functional transient fluctuation formula, Eq. (3.25), can be applied to a tra-
jectories 0, 2t + 𝜏 , where averaging of the phase variable commences at t:

p(𝜙t,t+𝜏 = A)

p(𝜙t,t+𝜏 = −A)
=

∫
𝜙t,t+𝜏 (𝚪)=Ad𝚪 f (𝚪; 0)

∫
𝜙t,t+𝜏 (𝚪)=−Ad𝚪∗ f (𝚪∗; 0)

=
∫
𝜙t,t+𝜏 (𝚪)=Ad𝚪 f (𝚪; 0)

∫
𝜙t,t+𝜏 (𝚪)=Ad𝚪 f (𝚪; 0)e−Ω0,2t+𝜏 (𝚪;0)

= ⟨e−Ω0,2t+𝜏 (𝚪;0)⟩−1
𝜙t=A

(7.49)

Considering an arbitrary phase function B(𝚪), which is odd under the time-
reversal map MT , and substituting lim𝜏→0Bt,t+𝜏 = B(St1𝚪) for the phase variable
𝜙t,t+𝜏 in the functional transient fluctuation formula, Eq. (7.49), gives

p(B(St1𝚪) = A)
p(B(St1𝚪) = −A)

= ⟨exp[−Ω2t1
(𝚪; 0)]⟩−1

B(St1𝚪)=A

= ⟨exp[−Ω2t1
(𝚪; 0)]⟩B(St1𝚪)=−A (7.50)

Thus the probability ratio of observing opposite values of a phase function at a
time t1 is related to negative exponentials of path integrals of the dissipation from
t = 0 to 2t1 (Petersen, Evans, and Williams, 2013).

7.7
Further Properties of the Dissipation Function (Evans, Searles and Williams, 2008)

Originally, the dissipation function, Eq. (3.4),was defined in order to characterize
the ratio of probabilities p of observing infinitesimal sets of phase space trajec-
tories originating at t = 0 in a phase space volume 𝛿V𝚪(𝚪) to the probability of
observing at t = 0 their time-reversed antitrajectories inside 𝛿V𝚪(MT St𝚪):

p(𝛿V𝚪(𝚪); 0)
p(𝛿V𝚪(MT St𝚪); 0)

= exp
[
∫

t

0
dsΩ (Ss𝚪)

]
(7.51)

Combining Eq. (7.51) with Eq. (4.3) – which for convenience we repeat here as
Eq. (7.52)

f (𝚪; t) = exp
[
−∫

−t

0
ds Ω (Ss𝚪)

]
f (𝚪; 0) (7.52)
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shows that the nonequilibrium N-particle distribution function at time t can be
written in terms of the ratio of probabilities of observing conjugate trajectories:

f (𝚪; t) =
p(𝛿V𝚪(MT S−t𝚪); 0)

p(𝛿V𝚪(𝚪; 0)
f (𝚪; 0) (7.53)

We find it remarkable that the measure of irreversibility given in Eq. (7.52) by
the dissipation function also features so centrally in the dissipation theorem. This
shows that this measure of irreversibility is the prime function in determining
how a nonequilibrium system will respond to a nonequilibrium perturbation or
dissipative field.

The dissipation theorem can be used to calculate the ensemble average of an
arbitrary phase variable and for arbitrarily strong dissipative fields Fe. In deriving
Eq. (7.52), we considered a system that preserves the initial (equilibrium) distri-
bution in the absence of an external dissipative field. Our formalism is sufficiently
general to also describe the process of equilibration where there is no external dis-
sipative field, Fe = 0, but where dissipation occurs only because the initial distribu-
tion is not preserved by the dynamics (i.e., is a nonequilibrium distribution). The
results given in Eq. (7.52) apply to this more general circumstance (this includes
systems subject to rapid temperature or pressure quenches, and so on, but in
which there is no applied mechanical dissipative field).

It is interesting to compare a number of different relationships between the dis-
tribution function, the dissipation function, and the phase space expansion factor
(Evans, Searles, and Williams, 2008). The first such relation is Eq. (7.51). We note
that, although the time argument in Eq. (7.52) is negative, the dynamics must still
be governed by the field-dependent, thermostatted equations of motion. Rewrit-
ing the definition of the time-integrated dissipation (Eq. (3.2)), we have

f (St𝚪; 0) = exp
[
−∫

t

0
ds

[
Ω (Ss𝚪) + Λ(Ss𝚪)

]]
f (𝚪; 0) (7.54)

In a nonequilibrium steady state (SS), ⟨Ω(t)⟩ss = −⟨Λ(t)⟩ss, which is the phase
space compression rate. In the early literature on fluctuation relations, many
authors confused the difference between dissipation and phase space compres-
sion rate; many thought they were the same quantity not just on average but also
instantaneously (as in fluctuation relations). Only in the special case where the
initial ensemble is microcanonical and the dynamics is isoenergetic (system of
interest plus walls and thermostat) is Ω(t) = −Λ(t), ∀t. In driven thermostatted
canonical systems, the instantaneous dissipation is the work (i.e., the change in
the energy minus that change due to the heat) divided by kBT , whereas the phase
space expansion factor is the heat lost from the system due to the thermostat
divided by kBT . As the driving field gets smaller, the absolute difference between
the instantaneous values becomes independent of the field.

Lastly, we have the formal solution of the phase continuity equation in its
Lagrangian form, Eq. (2.35):

f (St𝚪; t) = exp
[
−∫

t

0
dsΛ (Ss𝚪)

]
f (𝚪; 0) (7.55)



References 153

Comparing Eqs. (7.52), (7.54), and (7.55) clearly shows the difference between
dissipation and the phase space compression factor. To this day, these two quanti-
ties, namely phase space compression and dissipation, are often confused as being
identical.
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8
Nonequilibrium Work Relations, the Clausius Inequality, and
Equilibrium Thermodynamics

… suppose our senses sharpened to such a degree that we could trace the
motions of molecules as easily as we now trace those of large bodies, …
the distinction between work and heat would vanish . . . .

(Maxwell 1878, p. 279)

In previous chapters devoted to the fluctuation, dissipation, and relaxation
theorems, once we set the dynamics running at the initial time, or perhaps at
time 0+, at no stage did we change the underlying equilibrium thermodynamic
state. (In thermal quenches or pressure quenches, we changed the underlying
equilibrium state from t = 0− to t = 0+.) If at any time we ceased doing work
on a driven system, the system would relax back to the (perhaps underlying)
thermodynamic equilibrium state we started from at t = 0+. From t = 0+ onward,
the equilibrium state for the system with the dissipative field set to zero did
not change with time. In equilibrating systems, the system is not initially in
equilibrium, but the equilibrium state specified by the zero-field dynamics was
unchanging and for T-mixing systems it is unique. In driven systems, the system
starts in equilibrium, but is driven out of equilibrium by the dissipative field. If
the dissipative field is subsequently set to zero, the system will return toward the
initial equilibrium state.

As mentioned in Section 2.2, there is no easy mathematical way to tell whether
a given field is dissipative or elastic (i.e., it changes the free energy of the under-
lying equilibrium state). For example, electric fields or strain fields can be either,
depending on the temperature and/or density of the system.

The clearest indication that the dissipation is purely dissipative is evidenced in
the nonequilibrium partition identity (NPI) (Section 3.3). If the integrated dissipa-
tion contained a reversible component ΔWrev, then the left-hand side of the NPI,
Eq. (3.12), would have to be equal to exp[−ΔWrev] rather than unity.

Another feature of the dynamics studied previously was that the equations of
motion, at least after t = 0+, were almost always autonomous. (The exception
was that for the ESFT (Evans-Searles fluctuation theorem) we could employ
non-autonomous dynamics provided it had a definite parity over a specific time
interval, under the time-reversal mapping.) In this chapter we will very frequently

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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discuss non-autonomous systems in which either the Hamiltonian or some
thermodynamic state variables change non-autonomously during the dynamics.

Aside
We note that in classical thermodynamics, the free energy differences between
two equilibrium states are determined using the work carried out along a quasi-
static (i.e., equilibrium, reversible) pathway connecting the two equilibrium states.
Of course, in classical thermodynamics one only performs these measurements in
the so-called thermodynamic limit where all intensive thermodynamic quantities
are independent of the system size and where fluctuations vanish.

Jarzynski (1997a,b) discovered the first of a set of new fluctuation relations that
used rapidly traversed nonequilibrium path integrals measured for an ensemble
of nonequilibrium pathways to provide equilibrium thermodynamic information
about small systems. Although the relationships are formally correct for systems
of arbitrary size, in order for these approaches to be useful, the system size must be
small because the methods rely on fluctuations and the observation of phase space
trajectories that are the time-reversed conjugate trajectories to the most probable
trajectories (i.e., they are among the most improbable trajectories possible within
the specified phase space domain). In addition, they are applicable to a small sys-
tem (such as a single molecule) immersed in a large bath with which it interacts.
Although the requirement for small system size may be seen as something of a
disadvantage, it turns out to be an essential advantage for studying the thermo-
dynamics of small nano- or biosystems, something that classical thermodynamics
could not do.

The fundamental reason why the Jarzynski equality (JE) works is because, if
we write the nonequilibrium work as a sum of the purely reversible thermo-
dynamic work and the purely irreversible work, the irreversible work satisfies
an NPI, leading directly to the JE. We show this in detail in this chapter – see
Section 8.6.

The Crooks fluctuation theorem (CFT) (Crooks, 1999) is another such fluctua-
tion relation that is applicable to the same classes of systems as the JE. CFT and
the JE were originally developed for determining the difference in free energy of
canonical equilibrium states at the same temperature. However, we present a very
general formalism for deriving nonequilibrium free energy relations that can be
applied in a very wide variety of circumstances.

There is, at the time of writing this book, a huge literature on CFT and JE.
When these results were first announced, there appeared in the literature a
number of papers claiming CFT and JE were incorrect. By now they are both
well-accepted theoretical relations. Although the vast majority of theoretical
papers employ stochastic rather than deterministic methods, we will, as always,
employ time-reversible deterministic dynamics as first outlined for CFT and
JE by ourselves (Evans, 2003). By employing classical deterministic Newtonian
dynamics, the only global assumptions we are making are that quantum and
relativistic effects are insignificant.
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Later in the chapter, we show how to derive the Clausius inequality for a
thermal reservoir directly from mechanical considerations (Evans, Williams, and
Searles, 2011). In 1854, Clausius proved his inequality by assuming the second
“Law” of thermodynamics (Clausius, 1854, 1856). In fact, Clausius’ statement of
the second “Law” is perhaps the most commonly used form of the law. The fact
that we can now prove this from the laws of mechanics, completely changes the
logical structure of thermodynamics. The “Laws” of thermodynamics, in fact,
cease being laws and instead become theorems provable from the time-reversible
equations of mechanics and the axiom of causality (Chapter 9). No longer
is thermodynamics in apparent contradiction to time-reversible microscopic
dynamics. A further consequence of our exposition is that the logical com-
partmentalization of thermodynamics as being separate from, and indeed in
conflict with mechanics and electrodynamics, vanishes. Our microscopic analysis
leads directly, in the thermodynamic and quasi-static limits, to the equations of
classical thermodynamics.

Our mechanical proof of the Clausius inequality leads to the Clausius inequality
for the reservoir, but it leads to different results for the system of interest (soi). It
gives meaning to the temperature in the non-quasi-static case where it is a strict
inequality for the reservoir. As noted by Bertrand, Orr, and Buckingham over a
century ago (Bertrand, 1887; Orr, 1904; Buckingham, 1905), in the case of a strict
inequality, Clausius gave no logically consistent definition for the temperature. We
now say that at any point in a Clausius cycle, the temperature is always the temper-
ature of the underlying equilibrium state to which the system plus reservoir will
relax if they are so allowed. A consequence of this is, of course, that the changes
in the entropy for the system of interest and the reservoir are always equal and
opposite even in the non-quasi-static case. The entropy, in fact, does not “tend to
a maximum” as Clausius claimed (Clausius, 1854). It is simply constant, as Gibbs
discovered for autonomous Hamiltonian systems. It is dissipation, not entropy,
that tends to increase.

8.1
Generalized Crooks Fluctuation Theorem (GCFT) (Evans, Searles, and Williams, 2011)

We consider two closed N-particle systems: 1, 2. These systems may have the same
or different Hamiltonians, temperatures, or volumes; it does not matter. Nor does
the ensemble matter: microcanonical, canonical, or isothermal isobaric. A pro-
tocol, and the corresponding time-dependent dynamics, is then defined that will
eventually transform equilibrium system 1 into equilibrium system 2 – at least
with respect to taking averages of physical properties. The systems are distin-
guished by introducing a parameter 𝜆(t), which takes on a value 𝜆1 in system 1
and 𝜆2 in system 2, and the transformation is also parameterized through 𝜆(t)with
𝜆(0) = 𝜆1 and 𝜆(𝜏) = 𝜆2. The equations of motion are therefore non-autonomous
(i.e., they depend explicitly on time).
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Definitions
We define a generalized dimensionless “work” ΔX𝜏 (𝚪) for a trajectory of duration
𝜏 originating from the phase point 𝚪 as

exp[ΔX𝜏 (𝚪)] ≡ lim
𝛿V𝚪→0

peq,1(𝛿V𝚪(𝚪; 0))Z(𝜆1)
peq,2(𝛿V𝚪(S𝜏𝚪; 0)Z(𝜆2)

=
feq,1(𝚪)d𝚪Z(𝜆1)

feq,2(S𝜏𝚪)d(S𝜏𝚪)Z(𝜆2)
, ∀𝚪 ∈ D1 (8.1)

where Z(𝜆i) is the partition function for the system i= 1,2 and
d𝚪= lim𝛿V𝚪→0𝛿V𝚪(𝚪). The partition function Zi is just the normalization
factor for the equilibrium distribution function feq(𝚪), and feq(𝚪) = exp[F(𝚪)]∕Z,
where F(𝚪) is some real single-valued phase function.

Note: one can always multiply the numerator and denominator by a common
factor, leaving the equilibrium distribution unchanged. This it related to the fact
that in classical statistical thermodynamics the free energies, the entropy, and
even the energy are each only defined up to an arbitrary additive constant – see
Eq. (5.46).

In Eq. (8.1), D1 is the accessible phase space domain for system 1, (e.g., coordi-
nates in a fixed special range (−L,+L), and momenta range from (−∞,+∞)). In
Eq. (8.1), d𝚪 is an infinitesimal phase space volume centered on 𝚪, and d(S𝜏𝚪) an
infinitesimal phase volume centered on S𝜏𝚪. Without loss of generality, we assume
that both equilibrium distribution functions are even functions of the momentum.
This implies that we are not moving relative to both systems.

Although the physical significance of the generalized work, X, might seem
obscure at this point, we will show that for particular choices of dynamics and
ensemble, it is related to important thermodynamic properties and when it is
evaluated along quasi-static paths it is in fact a path independent state function.

Before proceeding further with the analysis, it is useful to consider precisely
what the generalized work is dependent upon. First, it is a function of the equi-
librium states 1 and 2. This occurs via the equilibrium distributions appearing in
Eq. (8.1) and also the partition functions for those states – see Eq. (8.1). Second,
it is a function of the endpoints of the possibly nonequilibrium phase space tra-
jectory that takes phase 𝚪 to S𝜏𝚪. It is also a function of how much heat is gained
or lost from the system over the duration of that trajectory. This heat loss deter-
mines the ratio of the phase space volumes, d𝚪∕d(S𝜏𝚪). Lastly, it is a function of
the duration of the trajectories, 𝜏 .

The probability of observing ensemble members within the infinitesimal phase
volume d𝚪 centered on the phase vector 𝚪 in the initial equilibrium distribution
function feq,1(𝚪) is peq,1(d𝚪; 0) = feq,1(𝚪)d𝚪.

It is very important to note that the time 𝜏 is the time at which the parametric
change in 𝜆 is complete. This means that at time 𝜏 this system is not in equilibrium:
f (𝚪; 0) = feq,1(𝚪) but f (𝚪; 𝜏) ≠ feq,2(𝚪) in general. We have seen in Chapter 5 that
relaxation to complete thermal equilibrium cannot take place in finite time. The
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generalized work is defined with respect to two different equilibrium distributions
and the end points of finite time phase space trajectories: Ss𝚪 ∶ 0 ≤ s ≤ 𝜏 .

Definition
In order for ΔX𝜏 (𝚪) to be well defined, ∀𝚪 ∈ D1, we must have S𝜏𝚪 ∈ D2 and both
feq,1(𝚪) ≠ 0 and feq,2(S𝜏𝚪) ≠ 0. This is known as the ergodic consistency for the gen-
eralized work.

We identify ‖𝜕S𝜏𝚪∕𝜕𝚪‖ as the Jacobian determinant and note that

‖‖‖‖𝜕S𝜏𝚪
𝜕𝚪

‖‖‖‖ = d(S𝜏𝚪)
d𝚪

(8.2)

The GCFT considers the probability peq,f (ΔXt = B ± dB) of observing values of
ΔXt in the range B ± dB for forward trajectories starting from the initial equilib-
rium distribution 1, f1(𝚪; 0) = feq,1(𝚪), and the probability peq,r(ΔXt = −B ∓ dB) of
observing ΔXt in the range = −B ± dB for reverse trajectories but starting from
the equilibrium distribution given by feq,2(𝚪) of system 2.

Consider two equilibrium ensembles from which the initial trajectories can be
selected with known equilibrium distributions: feq,1(𝚪) and feq,2(𝚪).

If initially we select phases from feq,1(𝚪) and employ a particular protocol
(labeled “f ”) and the corresponding time-dependent dynamics defined by a
parameter 𝜆f (s) with 𝜆f (0) = 𝜆1 and 𝜆f (𝜏) = 𝜆2, then the probability that the
phase variable defined in Eq. (8.1) takes on the value B is given by

peq,1(ΔX𝜏,f = B ± dB) = ∫ΔX𝜏,f =B±dB
d𝚪 feq,1(𝚪) (8.3)

If initially we select phases from feq,2(𝚪) with a particular protocol (labeled
“r”) which is the time-reverse of (f ), 𝜆r(s) = 𝜆f (𝜏 − s), and corresponding time-
dependent dynamics so that 𝜆r(0) = 𝜆2 and 𝜆r(𝜏) = 𝜆1, then the probability
that the phase variable defined in Eq. (8.1) takes on the value −B is given by
peq,2(ΔX𝜏,f = −B ∓ dB) = ∫ΔX𝜏,f =−B∓dB

d𝚪 feq,2(𝚪).

We note that a trajectory starting at point 𝚪 and evolved forward in time with
the forward protocol to the point S𝜏𝚪 will be related by a time-reversal mapping
to a trajectory starting at MT S𝜏𝚪 and evolving with the time-reverse protocol. If
S𝜏

f ∕r is the time evolution operator with forward/reverse protocol,

MT S𝜏
r MT S𝜏

f 𝚪 = 𝚪 (8.4)

Now we look at the ratio of these two probabilities:

peq,1(ΔX𝜏,f = B ± dB)
peq,2(ΔX𝜏,r = −B ∓ dB)

=
∫ΔX𝜏,f (𝚪)=B±dB

d𝚪 feq,1(𝚪)

∫ΔX𝜏,r(𝚪)=−B∓dB
d𝚪 feq,2(𝚪)

(8.5)
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If ΔX𝜏,f (𝚪) = B, then from Eq. (8.1) we know that ΔX𝜏,r(MT S𝜏𝚪) = −B. We can
therefore write Eq. (8.5) as

peq,1(ΔX𝜏,f = B ± dB)
peq,2(ΔX𝜏,r = −B ∓ dB)

=
∫ΔX𝜏,f (𝚪)=B±dB

d𝚪 feq,1(𝚪)

∫ΔX𝜏,r(𝚪)=−B∓dB
d𝚪 feq,2(𝚪)

=
∫ΔX𝜏,f (𝚪)=B±dB

d𝚪 feq,1(𝚪)

∫ΔX𝜏,r(MT S𝜏𝚪)=−B∓dB
d(MT S𝜏𝚪) feq,2(MT S𝜏𝚪)

=
∫ΔX𝜏,f (𝚪)=B±dB

d𝚪 feq,1(𝚪)

∫ΔX𝜏,f (𝚪)=B±dB
d𝚪 exp[−ΔX𝜏,f (𝚪)] feq,1(𝚪)Z(𝜆1)∕Z(𝜆2)

= exp[B]
Z(𝜆2)
Z(𝜆1)

(8.6)

To obtain the third line, we have used Eq. (8.1), noting that the Jacobian is
unchanged on time-reversal mapping, d(MT S𝜏𝚪)∕d(S𝜏𝚪) = 1, and that the value
of the equilibrium distribution is unchanged on time-reversal mapping of the
phase point.

Definition
Equation (8.6) is the generalized Crooks fluctuation relation (GCFR) and its deriva-
tion is the GCFT.

In the derivation of Eq. (8.6), we have not placed restrictions on the dynam-
ics, apart from the conditions of ergodic consistency and reversibility (Eq. (8.4)).
Therefore, the nonequilibrium system could evolve under homogeneously ther-
mostatted dynamics, or with thermostats far from the system of interest, or even
with no thermostat. The details of the thermostatting will not change the validity
of Eq. (8.6).

However, even if the system is thermostatted, as previously mentioned, at time
𝜏 the system that is evolving from feq,1(𝚪) will not have relaxed to the equilibrium
distribution feq,2(𝚪) (or vice versa). In fact, complete relaxation never takes place
in finite time – see Sections 5.3 and 5.4. We can compute the change in the gen-
eralized work going from a time 𝜏 to time 𝜏 + s. During this interval, there is no
parametric change and the system simply relaxes toward the equilibrium state 2
produced by the thermostatted equations of motion. From Eq. (8.1) we see that

exp[ΔX𝜏+s(𝚪) − ΔX𝜏 (𝚪)] =
feq,1(𝚪)d𝚪 Z(𝜆1)

feq,2(S𝜏+s𝚪)d(S𝜏+s𝚪)Z(𝜆2)
feq,2(S𝜏𝚪)d(S𝜏𝚪)Z(𝜆2)

feq,1(𝚪)d𝚪 Z(𝜆1)

=
feq,2(S𝜏𝚪)d(S𝜏𝚪)

feq,2(S𝜏+s𝚪)d(S𝜏+s𝚪)
, ∀s > 0 (8.7)
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If we look at the second line of Eq. (8.7), we recognize that it is simply the exponen-
tial of the integrated dissipation function (3.2), Ωeq,2,s(S𝜏𝚪), defined in the ESFT
for equilibrium system 2 evaluated at a phase S𝜏𝚪 and integrated for a time s. It
is important to note that both the numerator and the denominator of Eq. (8.7)
involve forward time integrations from system 2 equilibrium (i.e., there is no for-
ward and reverse as in Eq. (8.1)). Therefore

[ΔX𝜏+s(𝚪) − ΔX𝜏 (𝚪)] ≡ΔXs(S𝜏𝚪)

= ln
feq,2(S𝜏𝚪)

feq,2(S𝜏+s𝚪)
− ∫

𝜏

0
dsΛ(S𝜏+s𝚪)

= Ωeq,2,s(S𝜏𝚪) = 0, ∀𝚪 ∈ D2, ∀s > 0 (8.8)

The last line is identically zero because the dissipation function Ωeq(𝚪) for all
equilibrium systems is identically zero – see Section 3.7 – and we know from the
equilibrium relaxation theorem that the system does eventually relax toward the
unique, ergodic, dissipationless equilibrium state of system 2!

Equation (8.8) means that we can fix the parametric change interval at 𝜏 and take
the limit lims→∞ΔX𝜏+s(S𝜏+s𝚪) = ΔX𝜏 (S𝜏𝚪)without affecting Eq. (8.6). Thus we can
allow the end point distribution of states lims→∞f (S𝜏+s𝚪; 𝜏 + s) → feq,2(S𝜏+s𝚪) to
relax arbitrarily close to equilibrium, thereby generating the “equilibrium” distri-
bution of the states required for the ensemble of reverse trajectories. We can then
generate the reverse trajectories by reversing the entire protocol from the phase
vectors {S𝜏+s(𝚪)}.

In order for this process to work, the transient states that start at time 𝜏 must be
T-mixing, or the final equilibrium distribution feq,2(𝚪) must be preserved by the
dynamics and that equilibrium distribution must be mixing. The first condition is
true if and only if the second set of conditions is true. If these two sets of conditions
are not met, then some Monte Carlo process needs to be used to generate the
second equilibrium distribution of states. In this case, there will, of course, be
difficulties in defining the equilibrium states we are trying to study.

8.2
Generalized Jarzynski Equality (GJE)

The generalized Jarzynski equality (GJE) (Jarzynski, 1997a) can be thought of
as the analog of the NPI evaluated for the generalized work. We say “analog”
because the introduction of forward and reverse paths in the definition of the
generalized work is quite different from the use of forward-only paths for the
dissipation function.

The derivation of the GJE from the GCFT is trivial. The simplest approach is to
obtain GJE by integration of the GCFT, Eq. (8.6):
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⟨exp[−ΔX𝜏 (𝚪)]⟩eq,1 = ∫
+∞

−∞
dB pf (ΔX𝜏 = B) exp(−B)

= ∫
+∞

−∞
dB pr(ΔX𝜏 = −B)

Z(𝜆2)
Z(𝜆1)

=
Z(𝜆2)
Z(𝜆1)

(8.9)

If the two states had the same partition functions, (8.9) would, superficially, look
almost identical to the NPI. The proof is line by line analogous to that given in
Section 3.3 for the NPI. We also note that with the change of variables, the domain
of integration may change.

As is the case for NPI, GJE can also be derived straightforwardly from Eq. (8.1).
Here we compute the relevant average directly:

⟨exp[−ΔX𝜏 (𝚪)]⟩eq,1 = ∫D1

d𝚪 feq,1(𝚪)
feq,2(S𝜏𝚪)Z(𝜆2)d(S𝜏𝚪)

feq,1(𝚪)Z(𝜆1)d𝚪

= ∫D2

d(S𝜏𝚪) feq,2(S𝜏𝚪)
Z(𝜆2)
Z(𝜆1)

=
Z(𝜆2)
Z(𝜆1)

(8.10)

where the brackets ⟨· · ·⟩eq,1 denote an equilibrium ensemble average over the ini-
tial equilibrium distribution. We also note that with the change of variables the
domain of integration may change. There is obviously a trivial ⟨exp[−ΔX]⟩eq,2 ana-
log to Eqs. (8.9) and (8.10).

The validity of Eqs. (8.9) and (8.10) requires that ∀𝚪 ∈ D1, feq,1(𝚪) ≠ 0, which
implies ∀S𝜏𝚪 ∈ D2, feq,2(S𝜏𝚪) ≠ 0. This is the ergodic consistency condition for the
generalized work. As mentioned previously, one can talk of the ergodic consistency
for the theoretical equilibrium distribution as well as the ergodic consistency of
the empirical data that one has at one’s disposal. Even if the theoretical distri-
butions are ergodically consistent, the observed data may not be. This will lead
to biased or skewed estimates for the partition function ratio, as was discussed
previously in detail.

From the first line of Eq. (8.9), it is clear that trajectories for which the value
of ΔX𝜏 is negative have a contribution to the ensemble average, which is expo-
nentially enhanced. Therefore, in order to obtain numerical convergence of the
ensemble average, it is important that these trajectories are sufficiently well sam-
pled. Many recent studies have addressed this issue and have developed algo-
rithms to improve convergence (Adjanor, Athènes, and Calvo, 2006; Kofke, 2006;
Wu and Kofke, 2005a–c; Macfadyen and Andricioaei, 2005; Lechner and Del-
lago, 2007; Lua and Grosberg, 2005; Shirts and Pande, 2005; Ytreberg, Swendsen,
and Zuckerman, 2006; Lechner et al., 2006; Schmiedl and Seifert, 2007; Vaikun-
tanathan and Jarzynski, 2008). If the averaging process is not sufficiently exhaus-
tive for these possibly extremely rare events to be observed, Eqs. (8.9) and (8.10)
will give incorrect results and the statistics for the average will be highly skewed.
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This skewness makes it extremely hard to estimate the statistical uncertainties for
the average of the left-hand side of Eqs. (8.9) and (8.10).

We now outline a simple but effective way to improve the estimate for the par-
tition function ratio. As noted in Section 3.3, numerical evaluation of the NPI can
be improved by guaranteeing ergodic consistency of the numerical data, and a
similar approach can be used to treat the partition function ratio. We can define
ranges [ln(Z(𝜆1)∕Z(𝜆2)) − b, ln(Z(𝜆1)∕Z(𝜆2)) + b] ≡ [B1,B2] for the forward pro-
tocol and [ln(Z(𝜆2)∕Z(𝜆1)) − b, ln(Z(𝜆2)∕Z(𝜆1)) + b] ≡ [−B2,−B1] for the reverse
protocol within which the observed distributions of the generalized work will be
nonzero. Then the normalized probability distributions for the dimensionless gen-
eralized work over the restricted range can be computed as

p̂f (ΔX𝜏 ) = pf (ΔX𝜏 )∕∫
B2

B1

dA pf (ΔX𝜏 = A) = pf (ΔX𝜏 )∕bf

p̂r(ΔX𝜏 ) = pr(ΔX𝜏 )∕∫
−B1

−B2

dA pr(ΔX𝜏 = A) = pr(ΔX𝜏 )∕br (8.11)

Note that over the restricted range

bf p̂f (ΔX𝜏 ) = pf (ΔX𝜏 ), ∀(B1 < ΔX𝜏 < B2)
brp̂r(ΔX𝜏 ) = pr(ΔX𝜏 ), ∀(−B2 < ΔX𝜏 < −B1) (8.12)

where the factors bf , br are both less than unity because of the range restriction
for p̂f ∕r(ΔX) and the fact that all four probability distributions are normalized over
their respective three different ranges. Now compute the following:

bf

br
⟨exp[−ΔX𝜏 (𝚪)]⟩eq,1,B1<ΔX𝜏<B2

=
bf

br ∫
B2

B1

dA p̂f (ΔX𝜏 = A) exp(−A)

= 1
br ∫

B2

B1

dA pf (ΔX𝜏 = A) exp(−A)

= 1
br ∫

B2

B1

dA pr(ΔX𝜏 = −A)
Z(𝜆2)
Z(𝜆1)

= ∫
−B1

−B2

dA p̂r(ΔX𝜏 = A)
Z(𝜆2)
Z(𝜆1)

=
Z(𝜆2)
Z(𝜆1)

(8.13)

This restricted range estimate for the partition function ratio will have a sub-
stantially reduced skewness. This is because the numerical data satisfies ergodic
consistency. In the unrestricted range case, one can easily have, for the proba-
bilities inferred from numerical data, that pf (ΔX) = 0 while pr(−ΔX) ≠ 0, or vice
versa. This means that in almost all experiments, the average for the left-hand side
of Eqs. (8.9) and (8.10) approaches its mean value from either above or below. Ever
more sampling may sample the possibly extreme events that move the average to
below or above the mean, respectively. The problem is that these rare events have
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a large effect on the mean. In the restricted range case this cannot happen. The
range for the work has been restricted so that these conjugate sets of trajectories
and antitrajectories are actually observed in the experimental data.

These problems concerning ergodic consistency are more pronounced for
Jarzynski relations than for the Crooks relation because in the latter we see
immediately if this condition is broken. The problem is hidden in the Jarzynski
relation because, if the theoretical range for the work is unbounded, the general-
ized Jarzynski relation, Eqs. (8.9) and (8.10), is an infinite range relation and for
actual experimental data ergodic consistency will always break down eventually.

This observation concerning ergodic consistency in the numerical data also
has an immediate impact on the calculation of free energy differences as the
thermodynamic limit is approached. For sufficiently large systems, the bounds in
Eq. (8.13) will be zero! In this case, the Crooks and Jarzynski relations become
impossible to use. In this case, the averages must be calculated in finite systems
for a series of system sizes and then extrapolated to obtain the value in the
thermodynamic limit. This may not be an easy or cheap task. If you apply GCFT
or GJE to macroscopic systems, you will never observe the required fluctuations
and the GJE can only be applied in the infinitely slow quasi-static (qs) limit:

lim
𝜏→∞

lim
N→∞

⟨
exp

[
−ΔX𝜏 (𝚪)

]⟩
eq,1 = lim

𝜏→∞
lim

N→∞
exp

[⟨
−ΔX𝜏 (𝚪)]

⟩
qs,eq,1

]
=

Z(𝜆2)
Z(𝜆1)

(8.14)

The generalized Jarzynski and Crooks relations cannot be applied to macroscopic
systems using nonequilibrium pathways.

Equations (8.9), 8.11, and (8.13) are very general, and they even apply to stochas-
tic dynamics. Obviously, the paths do not need to be quasi-static paths as in tradi-
tional thermodynamics. These equations are independent of the particular proto-
col, provided ergodic consistency holds. In fact, it is possible to average over the
initial ensemble and an ensemble of protocols since the final answer is protocol-
or path-independent.

As is the case for the NPI, the GJE can be, as we have seen, proved from the
GCFR. However, the reverse is not true because the fluctuation relations contain
more information than either the NPI or GJE.

8.3
Minimum Average Generalized Work

We now derive a further simple corollary of the GJE. From Eq. (8.10), we see that
Z(𝜆2)
Z(𝜆1)

= ⟨exp[−ΔX𝜏 ]⟩1

= exp[−⟨ΔX𝜏⟩1]⟨exp[−ΔX𝜏 + ⟨ΔX𝜏⟩1]⟩
≥ exp[−⟨ΔX𝜏⟩1]⟨1 − ΔX𝜏 + ⟨ΔX𝜏⟩1⟩
= exp[−⟨ΔX𝜏⟩1] (8.15)



8.3 Minimum Average Generalized Work 165

In deriving this relation, we have used the fact that ex ≥ 1 + x, ∀x ∈ ℝ. Taking
the logarithms of both sides and then multiplying both sides by −1 we get

⟨ΔX𝜏⟩ ≥ ln

[
Z
(
𝜆1
)

Z(𝜆2)

]
(8.16)

This is clearly the analog of the second law inequality for systems of changing
free energy. Some authors refer to work inequalities like Eq. (8.16) as the Clau-
sius inequality; however, we reserve that term for cyclic inequalities of the heat,
since as Planck remarked (Planck, 1945), “this is the form of the Second Law first
enunciated by Clausius.”

In actual systems, the right-hand side will turn out to be a dimensionless free
energy difference. For example, if systems 1 and 2 are canonical and at the same
temperature and have the same number of particles and volume, as we will see later

(Section 8.7), ln[Z1∕Z2] = 𝛽ΔA21 = 𝛽(A2 − A1) and ΔX = 𝛽∫
𝜏

0
ds W (s), where

W denotes the work (i.e., the change internal energy minus that change caused by
the heat), and Ai is the Helmholtz free energy of system i. The minimum aver-
age work inequality implies in this case ΔW21 ≥ ΔA21. The minimum work is
expended if the path is reversible or quasi-static, in which case that work is, in
fact, the difference in the Helmholtz free energies divided by kBT .

If the parametric protocol takes us around a closed cycle that is defined in terms
of the parameter 𝜆(t), we see that since by definition Z1∕Z2 = 1

∮ ds⟨Ẋ(s)⟩ = ∮ ⟨dX⟩ ≥ 0 (8.17)

The ensemble average of the cyclic integral of the generalized work is nonnegative.

Definition
We call Eq. (8.17) the nonequilibrium cyclic inequality for the generalized work.

Equation (8.17) for the generalized work is very different from the correspond-
ing cyclic integral of the heat. For the work, we simply execute the protocol cycle.
For the heat, as we will soon see, we have to complete the cycle many times
and wait until the system settles into a periodic response to the cyclic protocol
before we can apply the cyclic integral of the heat. Not all systems do settle into
a cyclic response. In these cases, we can say nothing about the cyclic integral
of the heat.

The reason for the difference is that, if we execute the cycle once along a
nonequilibrium path, when the parameter reaches the value 𝜆2, even though
the system is not yet in equilibrium there is, by Eq. (8.8), no further change in
the work during the long relaxation process. The heat does change during this
relaxation, however!

We first introduced the definition of quasi-static processes in Section 5.7. To
make this chapter easier to read, we repeat this definition here.
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Definition
If the dynamics is macroscopically reversible, the cyclic integral can be zero only if
the cycle is thermodynamically reversible or quasi-static. A pathway is traversed
quasi-statically if the average work for a forward path is equal and opposite the
average work for the reversed path.

The cyclic integral of the generalized work for a quasi-static cycle is zero. The
proof is obvious. The fact that the cyclic integral of the generalized work is zero,
that is, ∮ dX = 0, also implies that

qs∫
f

i
dX = independent of path (8.18)

where the subscript “qs” denotes the fact that the integral is for a quasi-
static or thermodynamically reversible pathway. The proof of Eq. (8.18) is
obvious. Construct a reversible cycle i → f , f → i. The cyclic integral must
be zero, so if we vary the pathway for the return leg f → i, we must always
get the same value for the integrated reversible work, independently of the
precise path.

Definition
Finally, we can see that if the integral of the generalized work for paths
is independent of the pathway, then that integral must be a state func-
tion (i.e., a function only of the initial and final states of the system).
In fact, this is why the seemingly abstract generalized work defined in
Eq. (8.1) is so important. The generalized work for a thermodynamically
reversible, or quasi-static, pathway is always a history- and path-independent
function of the thermodynamic states of the system at the end points
of the path.

Example
What we have proved above is true if quasi-static paths exist, but we have not
shown they do. Consider the case where the parameter 𝜆(t) is equal to the strain,
and suppose we wish to strain the crystal of volume V though an angle 𝛿𝛾 . For
simplicity, suppose that our protocol is to strain the crystal at a constant rate �̇� .
The time taken to increase the strain from zero to 𝛿𝛾 is 𝛿𝛾∕�̇� . For small strains, we
expect that

lim
�̇� ,𝛾→0

⟨Pxy(t)⟩ = −G0𝛾(t) − 𝜂0+ �̇� , 0 < t < 𝛿𝛾∕�̇� (8.19)

where G0 is the zero-frequency elastic shear modulus, which will in the end
give the quasi-static or macroscopically reversible work, and 𝜂0+ is the limiting
zero-frequency shear viscosity of the crystal. (Note: You cannot speak of the
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zero-frequency shear viscosity of a solid!) The generalized work turns out to be

lim
�̇�→0
⟨ΔX⟩ = − lim

�̇�→0
𝛽V∫

𝛿𝛾∕�̇�

0
ds⟨Pxy(s)⟩�̇�

= lim
�̇�→0

𝛽V∫
𝛿𝛾∕�̇�

0
ds [G0�̇�

2s + 𝜂0+ �̇�
2]

= lim
�̇�→0

𝛽V
[G0�̇�

2𝛿𝛾2

2�̇�2 +
𝜂0+ �̇�

2𝛿𝛾

�̇�

]

= lim
�̇�→0

𝛽V
[G0𝛿𝛾

2

2
+ 𝜂0+ �̇�𝛿𝛾

]

=
𝛽V G0𝛿𝛾

2

2
(8.20)

The second viscous term is always positive independent of the sign of 𝛿𝛾, �̇� ,
whereas the first term is reversible. It can be positive or negative. Obviously, if
we strain the crystal though a cycle, the first term will then also vanish while for
finite strain rates the second term will satisfy the inequality Eq. (8.17).

8.4
Nonequilibrium Work Relations for Cyclic Thermal Processes (Williams, Searles, and
Evans, 2008)

We wish to consider a realistic model of a system that is driven away from equi-
librium by a reservoir whose temperature is changing. For this case, the simple
parametric change in the Hamiltonian or external field usually employed in the
derivation of the GJE or the GCFT is not applicable, and care is needed in devel-
oping the physical mechanisms.

Here we could address this issue by considering an system of interest contain-
ing some very slowly relaxing constituents, such as soft matter or pitch, in contact
with a rapidly relaxing reservoir. The reservoir may be formed from a copper block
or another highly thermally conductive material. Changing the temperature of the
reservoir (say with a thermostatically controlled heat exchanger) then drives the
system of interest out of equilibrium. The change in temperature is slow enough so
that the reservoir may be treated, to high accuracy, as undergoing a quasi-static
temperature change. The slowly relaxing system of interest is far from equilib-
rium. We employ the GCFT and the GJE to describe this system. Importantly, the
quantities that appear in the theory are physically measurable variables.

Another mechanism for achieving the required result would be (following
Planck (1945)) to have an ensemble of large equilibrium thermostats that can
be thermally coupled to the system of interest in a protocol sequence. If these
thermostats are large, they can be regarded as being in thermal equilibrium. If
they are sufficiently remote from the system of interest, there is no way the system
of interest can “know” the precise mathematical details of how heat is ultimately
taken from or added to the system of interest.
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For convenience from a theoretical perspective, we choose the Nosé–Hoover
thermostatting mechanism, and the equations of motion, including the thermo-
stat multiplier, are then

�̇�i =
𝐩i
m

�̇�i = 𝐅i(𝐪) − Si(𝛼(𝚪)𝐩i + 𝐅th)

�̇� =

⎛⎜⎜⎜⎜⎜⎝

N∑
i=1

Si𝐩i•𝐩i∕m

3
(
Nth − 1

)
kBT(t)

− 1

⎞⎟⎟⎟⎟⎟⎠
1
𝜏2
𝛼

(8.21)

where 𝜏𝛼 is an arbitrary Nosé–Hoover time constant. The value of T(t) is the
target temperature of the thermostat (i.e., the temperature of the underlying equi-
librium state at any time t, during the execution of the protocol), and Si = 0, 1 is
a switch that controls which particles are coupled to the Nosé–Hoover thermo-
stat –

∑N
i=1 Si = Nth. In our model, the particles that are coupled to the thermostat

can be taken to be remote from the system of interest. This ensures that the parti-
cles in the system of interest are ignorant of the precise details of this unphysical
thermostat. These thermostatted particles are also subject to a fluctuating force
𝐅th, which is chosen to ensure that the total momentum of the thermostatted par-
ticles is identically zero,

∑N
i=1 Si𝐩i ≡ 𝐩th = 𝟎.

The extended, time-dependent internal energy is

HE(𝚪, 𝛼, t) = H0(𝚪) +
3(Nth − 1)

2
kBT(t)𝛼2𝜏2

𝛼 (8.22)

and the extended phase space of the system is 𝚪′ = (𝚪, 𝛼). The phase continuity
equation, Eq. (2.34), states df ∕dt = −Λf , and using Eq. (8.21) it is possible to show
that

kBT(t)Λ(t) = kBT(t)
(

𝜕

𝜕𝚪
•�̇� (t) + 𝜕

𝜕𝛼
�̇�(t)

)
= −3(Nth − 1)kBT(t)𝛼(t) = −Q̇th(t) (8.23)

where Q̇th is the rate of decrease in HE due to the thermostat or, equivalently, the
rate of increase of energy in the external thermostat. From the relaxation theorem
(Chapter 5), the unique equilibrium distribution function for this system at a fixed
temperature T is then

feq(𝚪;T , 𝛼) =
𝜏𝛼
√

3(Nth − 1)∕(2𝜋)
Zc(T)

exp(−𝛽HE(𝚪,T , 𝛼))𝛿(𝐩th)

=
exp(−𝛽HE(𝚪,T , 𝛼))𝛿(𝐩th)

Zc,E(T)
(8.24)

where Zc(T) is the canonical partition function for the system of interest, and
Zc,E(T) is the corresponding partition function for the extended system; 𝜆(t) ≡
T(t).

We now consider applying the GCFR, Eq. (8.6), when a thermal rather than a
mechanical process occurs. Consider a thermostatted system of N particles whose
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target temperature is changed from T1 to T2 over a period 0 < t < 𝜏 . We do not
change the Hamiltonian during this process. For simplicity, we consider a canon-
ical ensemble for the two equilibrium states, Eq. (8.22), and use the equations of
motion (8.21). The temperature dependence of the reservoir is achieved by making
the Nosé–Hoover target temperature T(t) in Eq. (8.21) a time-dependent param-
eter.

From Eqs. (8.1) and (8.21)–(8.23), we see that the generalized dimensionless
work in this extended canonical system is

ΔXE,𝜏 (𝚪′; 0, 𝜏) = 𝛽2HE(S𝜏𝚪′) − 𝛽1HE(𝚪′) + ∫
𝜏

0
dt 𝛽(t)Q̇th(St𝚪′) (8.25)

where 𝛽(t) = 1∕(kBT(t)) is the inverse time-dependent target temperature. One
can immediately see that this is a form of work for the extended system because
it gives the extended system energy change minus the heat increase in the system
of interest: dWE = dUE + dQth = dUE − dQsoi. Following Planck, dQth is the heat
transferred to the thermal reservoir (th) and dQsoi is the heat transferred to the
system of interest, which will be equal and opposite. Now if we take the derivative
of the extended Hamiltonian while the temperature is changing, but with no other
external agent acting on the system, we obtain using Eqs. (8.21) and (8.22)

d
dt

HE(St𝚪′) = −Q̇th(St𝚪′) + 3
2
(Nth − 1)kBṪ(t)𝛼2(t)𝜏2

𝛼 (8.26)

We then obtain
d
dt

[𝛽(t)HE(St𝚪′)] = −𝛽(t)
[

H0
(
St𝚪′) Ṫ(t)

T(t)
+ Q̇th(St𝚪′)

]
(8.27)

and combining Eqs. (8.27) and (8.25), the generalized “power” for a change in the
target temperature with time is

ẊE(St𝚪) = �̇�(t)H0(St𝚪) (8.28)

Definition
We defined the Helmholtz free energy of the system of interest with temperature
Ti in terms of the logarithm of the canonical partition function Zc in Eqs. (5.48)
and (5.64). In the present case, we have for the extended system

AEi ≡ −kBTi ln(ZcE,i)

≡ −kBT ln
(
∫ d𝚪d𝛼 exp(−𝛽iHE,i (𝚪, 𝛼)

)
, i = 1, 2 (8.29)

Definition
If we apply the GJE to the canonical case, we see from Eq. (8.9) that, in the canon-
ical case, we obtain an example of the well-known JE:

⟨exp[−ΔXc,E,𝜏 ]⟩ = Zc,E,2

Zc,E,1
= ⟨exp[−ΔXc,𝜏 ]⟩

=
Zc,2

Zc,1
= exp[−𝛽2A2 + 𝛽1A1] (8.30)
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This is a JE for a temperature change in a system with a fixed Hamiltonian and
volume.

We also use the fact that Zc,E(T) = Zc(T)
√

2𝜋∕3(Nth − 1)𝜏2
𝛼 . This allows us to

convert to the ratio of partition functions and the free energy differences to those
for the system of interest. In the first line, the differences in the extension compo-
nent of the work also equals zero.

We now use Eq. (8.28) to evaluate the left-hand side of Eq. (8.30). Note that the
right-hand side of Eq. (8.28) depends only upon physical variables and not the
unphysical thermostat multiplier 𝛼 or the extended Hamiltonian. Equation (8.30)
then becomes⟨

exp
(
−∫

𝜏

0
dt �̇� (t)H0(St𝚪)

)⟩
1
=

Zc,2

Zc,1
= exp[−𝛽2A2 + 𝛽1A1] (8.31)

For quasi-static processes, the exponent of the left-hand side of Eq. (8.31) has no
fluctuations, and one can use Eq. (8.31) to show that

qs∫
𝜏

0
dt �̇�(t)U(t) = 𝛽2A2 − 𝛽1A1

=qs∫
𝜏

0
dt d

dt
[𝛽(t)A(t)]

=qs∫
𝜏

0
dt Ṫ(t) 𝜕

𝜕T
[𝛽(t)A(t)] (8.32)

where the subscript “qs” denotes that the integrals are for quasi-static processes
only. In deriving Eq. (8.32), we have used the fact that the internal energy U is
just the canonical average of the Hamiltonian H0. For this case, we see that the
dimensionless “power” is the rate of change of the dimensionless Helmholtz free
energy.

From the second line of Eq. (8.32), we see that for quasi-static processes

− U
kBT2 Ṫ = − A

kBT2 Ṫ + 1
kBT

𝜕A
𝜕T

Ṫ = d
dt

(𝛽A) (8.33)

Multiplying the terms in the first equality by kBT2∕Ṫ and rearranging gives, for
quasi-static processes

A = U + T 𝜕A
𝜕T

(8.34)

One can, of course, derive this equation directly from the definition of the
Helmholtz free energy, Eq. (8.29). Simple differentiation of the Helmholtz free
energy with respect to temperature yields Eq. (8.34).

Aside
For temperature changes at finite rates, the classical thermodynamic temperature
of the system of interest cannot be defined and the kinetic temperature of the
system of interest may not be equal to the temperature of the thermal reservoir.
Nonetheless, Eqs. (8.30) and (8.31) can still be used to compute changes in the
free energy of the system of interest as specified by Eq. (8.21). In our approach,
the temperature is always the temperature of the underlying equilibrium state to
which the system will relax if it is so allowed.



8.5 Clausius’ Inequality, the Thermodynamic Temperature, and Classical Thermodynamics 171

If one constructs an algorithm, Eq. (8.21), to accomplish some thermal trans-
formation (N1,V1,T1) → (N1,V1,T2), then Eqs. (8.25) and (8.28) give a precise
microscopic form for the generalized “work” appearing in the classical thermo-
dynamic path integral for the free energy change. Although the quasi-static path
integral expression is unique, the nonequilibrium expression is certainly not.
This is because there are infinitely many protocols that accomplish the required
change. Nonetheless, each of these expressions gives identical values for the free
energy difference.

8.5
Clausius’ Inequality, the Thermodynamic Temperature, and Classical Thermodynamics
(Evans, Williams, and Searles, 2011)

We now turn our attention away from work, to heat. In the process, we will re-
derive the equations of classical thermodynamics we first derived in Section 5.7.
However, now we will be able to derive the thermodynamic inequalities. As we will
soon see, unlike the situation for the thermodynamic equalities, the inequalities
will, in many cases, be different from what was proposed by Clausius 150 years ago.

As before, we consider a periodic protocol. However, for the heat (and unlike
work), we can only deduce useful results if the system responds periodically to
the cyclic protocol. We note that, if we periodically cycle a given protocol, not all
systems will respond periodically. The necessary and sufficient conditions for the
system to respond periodically are not known. Clausius’ Inequality for a thermal
reservoir applies only if in the long time limit (t → ∞) the average system response
is periodic (Planck, 1945).

Consider a system with the equations of motion given by Eq. (8.21). If we now
substitute Eq. (8.25) into Eq. (8.17) and apply it to a periodic cycle after any cyclic
transients have decayed, we can deduce that

lim
t→∞∮P

ds ⟨Ẋ(t + s)⟩ = lim
t→∞∮P

ds
⟨
𝛽 (t + s) Q̇th(t + s) +

d𝛽(t + s)HE(t + s)
dt

⟩

= lim
t→∞∮P

⟨dQth
kBT

⟩
≥ 0 (8.35)

where we use the notation∮P
ds to denote the cyclic integral of a periodic function.

Because the cycle is periodic, the change in ⟨𝛽HE⟩ around the cycle is identically
zero. The protocol is, by definition, always periodic, so in one complete cycle 𝛽(t +
s) always returns to its initial value. If and only if the system settles down to a
periodic response to the periodic protocol will ⟨HE(t + s)⟩ also return to its initial
value at s = 0. This can be expected to occur (if it occurs at all) only in the large t
limit. In this equation, t is the time that you start the cyclic integral. Not all systems
will settle down on average to a periodic response to a periodic protocol.

Thus, for systems that on average settle down to a periodic response to a cyclic
protocol, the cyclic integral of the ensemble-averaged change in the heat divided
by the target temperature cannot be negative, Eq. (8.35).
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In more usual notation, Eq. (8.35) implies that, in the large system limit, that is,
N → ∞, where fluctuations are negligible, we obtain the Clausius inequality for
the heat transferred to thermal reservoir or a set of thermal reservoirs:

lim
N→∞

lim
t→∞∮P

dQth
T

≥ 0 (8.36)

In these equations, that is, Eqs. (8.35) and (8.36), regardless of the Nosé–Hoover
time constant, the time-dependent temperature is the instantaneous value of the
target temperature of the Nosé–Hoover thermostat. At any instant, the numer-
ical value of the target temperature is, in fact, the equilibrium thermodynamic
temperature that the entire system would relax to if at that same moment this tar-
get temperature was fixed at its current value and the entire system is allowed to
relax to thermodynamic equilibrium. We know that this is so from the relaxation
theorem for T-mixing systems (Chapter 5). We will often use the description that
the temperature appearing in Eqs. (8.35) and (8.36) is at any instant of time the
thermodynamic temperature of the underlying equilibrium state.

If the thermostat is composed of a large Hamiltonian region coupled to the sys-
tem of interest and a remote Nosé–Hoover thermostatted region, we can argue
that the precise details of the thermostat cannot possibly be “known” to the system
of interest and are therefore unimportant.

If the thermostat is comparable in size to the system of interest and if the cycle
is traversed quickly, both the system of interest and the thermostat will be away
from equilibrium. At any point in the cycle, there is a profound difference between
the nonequilibrium state generated by the Gaussian isokinetic and Nosé–Hoover
thermostats. However, for both types of thermostats, Eqs. (8.35) and (8.36) take
the same form. For Gaussian thermostats, the change in the kinetic temperature
of the thermostat is instantaneous, whereas for Nosé–Hoover thermostats there
is a variable phase lag ∼ 𝜏𝛼 in Eq. (8.21). (The value of this feedback time con-
stant is completely arbitrary.) The only “temperature” any of these systems have in
common is the thermodynamic temperature of the underlying equilibrium state.
At any point in the cycle, the precise nature of the nonequilibrium state (e.g., the
instantaneous average pressure or energy) is highly dependent on the phase lag 𝜏𝛼
or whether the thermostat is Gaussian or Nosé–Hoover-like.

In Planck’s discussion of Clausius’ inequality (Planck, 1945), at any instant in
the cycle, T is the equilibrium thermodynamic temperature of the particular large
equilibrium reservoir with which the system of interest is currently in contact.

Clausius’ thermodynamic inequality for the reservoirs, Eq. (8.36), is of course
exact only in the thermodynamic limit, and in small systems it can occasionally be
violated as in Eq. (8.5). The probability ratio that for a finite system the work inte-
gral takes on a value A compared to −A can be computed from a time-dependent
version of the fluctuation relation.

Equations (8.35) and (8.36) show that, on average, we cannot construct a per-
petual motion machine of the second kind. A perpetual motion machine of the
second kind would require that ∮P

⟨dQth∕T⟩ < 0 so that ambient heat from the
reservoir is converted into useful work in the system of interest. Thus the proof of
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Eqs. (8.35) and (8.36) constitutes a direct mechanical proof of Clausius’ statement
of the second “Law” of thermodynamics.

Because of their importance, we now discuss the case of time reversible quasi-
static cycles once again. We already met these in Section 5.7; however, at that time
we only discussed quasi-static cycles. We also used isokinetic thermostats. Here
we use Nosé–Hoover thermostats to obtain basically the same results. We also
now have a better understanding of the temperature as it appears in Clausius’s
equality and his inequality for the thermal reservoirs.

If the cycle is reversible or quasi-static, we can apply Eq. (8.36) to the forward
cycle and to the reversed cycle, which must have the same value for the magnitude
of the integral but opposite sign. The only possible value for both integrals for
reversible cycles is, therefore, zero:

lim
N→∞ qs∮

�dQth
T

= 0 (8.37)

The subscript quasi-static denotes a quasi-static cycle. We note that a quasi-static
cycle cannot have any transients and is always periodic. This means that we do not
need a subscript “p” because it would be redundant. Equation (8.37) is identical
to Eq. (5.59), which was derived solely using quasi-static considerations. We note
that the strike-through on the differential for the heat, �dQth, denotes the fact that
even for quasi-static processes Q is not a state function.

Applying the same arguments as we did for the quasi-static cyclic integral of the
generalized work shows that the quasi-static integral from state 1 to state 2

lim
N→∞ qs∫

2

1

�dQth
T

≡ Sth,2 − Sth,1 = −Ssoi,2 + Ssoi,1 (8.38)

is independent of the path from state 1 to 2. The subscripts on S indicate that the
integral can be evaluated using either the heat transferred to the thermostat or sys-

tem of interest and limN→∞qs∫
2

1
�dQsoi∕T ≡ Ssoi,2 − Ssoi,1. Using the same arguments

as before – see also Eq. (5.60) – the entropy changes for the extended system and
for the system of interest itself are identical.

Definition
The quantities Sth, Ssoi defined in Eq. (8.38) are termed the equilibrium and calori-
metric entropy of the thermostat and system of interest, respectively. These func-
tions are obviously state functions for quasi-static processes.

If we substitute Eq. (8.25) into Eq. (8.30) using Eq. (8.38) for quasi-static pro-
cesses in the thermodynamic limit where averages of exponentials equal expo-
nentials of averages, we see that

lim
N→∞ qs∫

f

i

⟨�dQth⟩
T

= −

(
A2 −

⟨
H0,2

⟩
T2

)
+

(
A1 −

⟨
H0,1

⟩
T1

)
= −Ssoi,2 + Ssoi,1

(8.39)



174 8 Nonequilibrium Work Relations, the Clausius Inequality, and Equilibrium Thermodynamics

In deriving Eq. (8.39), we have used the fact that ⟨Δ(𝛽HE)⟩ = ⟨Δ(𝛽H0)⟩. This par-
ticular result was not needed in the isokinetic case – Section 5.7. (Note: we could
remove the ensemble averages because in the thermodynamic limit fluctuations
vanish.) Now if we compare Eqs. (8.38) and (8.39), we see that in the thermody-
namic limit the equilibrium calorimetric entropy S of the system of interest, the
Helmholtz free energy A, and the internal energy ⟨H0⟩ ≡ U must be related by an
equation which we have given before, Eq. (5.63):

A = ⟨H0⟩ − TS ≡ U − TS (8.40)

We have used the fact that the heat gained by the thermostat is equal and opposite
to the heat gained by the system of interest. Comparing Eq. (8.40) with Eq. (8.34)
shows that 𝜕A∕𝜕T = −S. Comparing Eq. (8.40) with Eq. (5.63) shows that (as in
Eq. (5.65)) for the quasi-static process:

SG,c(T ,V ) = S(T ,V ) (8.41)

and we see (again) that the Gibbs entropy of an equilibrium canonical ensemble
of systems is the same (up to an arbitrary additive constant) as the calorimetric
entropy.

We can now also reinterpret Eqs. (8.23)–(8.28) as

dU = �dQsoi + dW = TdS + dW (8.42)

where all quantities refer to the system of interest. A special case of this Gibbs
equation was derived in Eq. (5.62).

Using (8.40), we find that the change in the Helmholtz free energy of the system
of interest is given by

dA = −SdT + dW (8.43)

Finally, we see, from rearranging Eq. (8.40), that

S = U − A
T

(8.44)

which is completely consistent with Eq. (5.63).
Away from equilibrium, we know from Section 2.6 that, if the system is an

autonomous Hamiltonian system, the Gibbs entropy of the ensemble is a con-
stant of the motion, and so for these systems one does not have to specify whether
the system is at equilibrium or not. We will have more to say of this matter in
Section 8.8.

Aside
Equations (8.40)–(8.42) are immediately recognized as the conventional
equations of classical thermodynamics for quasi-static processes in the ther-
modynamic limit. However, unlike classical thermodynamics, our equations
came directly from the laws of mechanics and the axiom of causality. We did
not need to assume Clausius’ inequality for the reservoir; we proved it. Indeed,
the Helmholtz free energy was defined using the logarithm of the partition
function – a statistical mechanical expression rather than a thermodynamic
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expression. Equation (8.40) is usually taken as the definition of the Helmholtz
free energy. In our exposition, we used Eq. (8.29) instead as the definition of the
Helmholtz free energy, and Eq. (8.40) is a derived relationship.

Equation (8.38) gives us another very important piece of information. As we saw
in Section 5.7, the “integration factor for the heat” in quasi-static processes is the
time-dependent thermodynamic temperature. The fact that the equilibrium tem-
perature is the integrating factor for the heat ultimately comes from the form of the
canonical equilibrium distribution function – see Section 5.7 for more details. The
equilibrium relaxation theorem (Chapter 5) says that this distribution is unique
for T-mixing systems. The consequence of this is that the integrating factor for
the heat, that is, T in Eq. (8.38), is also unique.

We have now seen that our mechanical derivations of the fundamental equality
of classical thermodynamics is independent of whether we use isokinetic dynam-
ics as in Section 5.7 or Nosé–Hoover dynamics as in this section. In this section
we have also been able to derive the Clausius inequality for the reservoir. In our
derivation, we have been able to give meaning to the temperature appearing in this
inequality as it applies to nonequilibrium cycles. This avoids the logical problems
with the Clausius inequality that were first raised by Bertrand (1887), Orr (1904),
and Buckingham (1905). Even if the system is far from equilibrium during the cycle
(where Clausius’ temperature becomes ill-defined), the temperature that appears
in the Clausius inequality refers to a well-defined equilibrium temperature.

In our “Aside” on the “The Thermodynamic Connection” in Section 5.6,
we proved that if we assume the traditional “laws” of thermodynamics, the
thermodynamic Helmholtz free energy and the microscopic partition function
are related by Eq. (5.48) (which is identical to Eq. (8.29)). We also proved for
equilibrium systems the equivalence of the target kinetic temperature employed
in a Nosé–Hoover thermostat and the thermodynamic temperature for canonical
systems. These proofs took the classical thermodynamic relations between the
Helmholtz free energy, the internal energy, the entropy, volume, and temperature
as given. Section 5.6 was labeled as an “Aside” because it is not necessary for the
logical exposition of this book.

We have now arrived at a completely new logical position. We have proved
the zeroth (Section 7.2) and second “Laws” of thermodynamics (Section 8.5), the
latter in the form of the Clausius inequality for the reservoir, Eqs. (8.35) and (8.36).
We take the first “Law” of thermodynamics as given by the laws of mechanics.
This means that logically we have now proved the macroscopic equations that
are the basis of thermodynamics, Eqs. (8.40)–(8.42). We made no assumptions
except the laws of mechanics, the assumption of T-mixing, ergodic consistency,
and the axiom of causality. Clausius, of course, proved his theorem assuming
the second “Law” of thermodynamics. He assumed that the construction of a
perpetual motion machine of the second kind was impossible. Our proof requires
no such assumption. This is quite a different logical point of view from that used
by Clausius (1854).

We take the mechanical quantities such as energy and pressure as microscopic
averages of the mechanical energy and pressure. We define the Helmholtz free
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energy in terms of the logarithm of the canonical partition function. We proved
Clausius’ inequality for the cyclic integral of the heat divided by the temperature
of the underlying equilibrium state. The temperature is just a parameter we met
in the unique equilibrium phase space distribution that nonequilibrium canoni-
cal systems relax toward (Section 5.4). Clausius’ equality for the heat allowed us to
define entropy as a state function for equilibrium or quasi-static systems. This then
allowed us to generate Eq. (8.41), which is the Gibbs equation that expresses the
thermodynamic summary of the first and second “Laws” of thermodynamics as
they apply to quasi-static processes. Knowing the relationship between the inter-
nal and Helmholtz free energies allowed us to derive Gibbs’ microscopic expres-
sion for the equilibrium thermodynamic or calorimetric entropy. At no stage in
our exposition did we need to assume the “Laws” of thermodynamics. They were
derived.

8.6
Purely Dissipative Generalized Work

Definition
We define a dimensionless, purely dissipative generalized “work” ΔY𝜏 (𝚪) for a tra-
jectory of duration 𝜏 , originating from the phase point 𝚪, under this dynamics as
(Reid, Sevick, and Evans, 2005)

exp[ΔY𝜏 (𝚪)] =
peq,1(d𝚪)

peq,2(d(S𝜏𝚪))

≡ feq,1(𝚪)d𝚪
feq,2(S𝜏𝚪)d(S𝜏𝚪)

, ∀𝚪 ∈ D (8.45)

The derivation of results for this quantity is very similar to that for the generalized
dimensionless work (Sections 8.1–8.3), so we will quickly give a summary of the
main results without rehearsing the proofs.

As before, the time 𝜏 is the time at which the parametric change in 𝜆 is complete.
This means that at time 𝜏 this system is not necessarily at equilibrium.

Following the same procedure that led to Eq. (8.10), we see that

⟨exp[−ΔY𝜏 (𝚪)]⟩eq,1 = ∫ d𝚪feq,1(𝚪; 0)
feq,2(S𝜏𝚪; 0)d(S𝜏𝚪)

feq,1(𝚪; 0)d𝚪
= 1 (8.46)

where the brackets ⟨· · ·⟩eq,1 denote an equilibrium ensemble average over the ini-
tial distribution. This equation is the analog of the NPI.

The validity of Eq. (8.46) requires that there is an integrable region in the phase
space of the final equilibrium distribution for which feq,2(S𝜏𝚪; 0) ≠ 0, that is,

∫ d(S𝜏𝚪) feq,2(S𝜏𝚪; 0) ≠ 0.
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Definition
The requirement that for any feq,1(𝚪; 0) ≠ 0 the existence of an integrable region
in the phase space of the final equilibrium distribution for which feq,2(S𝜏𝚪; 0) ≠
0, that is, ∫ d(S𝜏𝚪) feq,2(S𝜏𝚪; 0) ≠ 0, is the ergodic consistency condition for the
generalized work.

The fluctuation relation for the purely dissipative generalized work considers
the probability peq,1(ΔY𝜏 = B) of observing values of ΔY𝜏 = B ± dB for forward
trajectories starting from the initial equilibrium distribution feq,1(𝚪, 0), and the
probability peq,2(ΔY𝜏 = −B) of observing ΔY𝜏 = −B ± dB for reverse trajectories
but starting from the equilibrium given by feq,2(𝚪, 0). Proof of this GCFR closely
resembles those of ESFT and the GCFT Eq. (8.6):

peq,1(ΔY𝜏,f = B ± dB)
peq,2(ΔY𝜏,r = −B ∓ dB)

=
∫ΔY𝜏,f (𝚪)=B±dB

d𝚪 feq,1(𝚪)

∫ΔY𝜏,r(𝚪)=−B∓dB
d𝚪 feq,2(𝚪)

=
∫ΔY𝜏,f (𝚪)=B±dB

d𝚪feq,1(𝚪)

∫ΔY𝜏,r(MT S𝜏𝚪)=−B∓dB
dMT S𝜏𝚪feq,2(MT S𝜏𝚪)

=
∫ΔY𝜏,f (𝚪)=B±dB

d𝚪feq,1(𝚪)

∫ΔY𝜏,f (𝚪)=B±dB
d𝚪 exp[−ΔY𝜏,f (𝚪)]feq,1(𝚪)

= exp[B] (8.47)

Again, we can see the change in the purely dissipative work after the parametric
changes are complete:

exp[ΔY𝜏+s(𝚪) − ΔY𝜏 (𝚪)] =
feq,2(S𝜏𝚪)d(S𝜏𝚪)

feq,2(S𝜏+s𝚪)d(S𝜏+s𝚪)
(8.48)

which is recognized as the dissipation function for the second equilibrium. There-
fore, we have

[ΔY𝜏+s(𝚪) − ΔY𝜏 (𝚪)] ≡ ΔYs(S𝜏𝚪)
= Ωeq,2,s(S𝜏𝚪) = 0, ∀𝚪 ∈ D, ∀s > 0 (8.49)

This leads to the shortened form for the fluctuation relation for the dimensionless
purely dissipative generalized work:

peq,1(ΔY𝜏 = B)
peq,2(ΔY𝜏 = −B)

= exp[B] (8.50)
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The derivation of the JE for the dimensionless, purely dissipative generalized work
is trivial:

⟨exp[−ΔY𝜏 ]⟩eq,1 = ∫D1

d𝚪 feq,1(𝚪)
feq,2(S𝜏𝚪)d(S𝜏𝚪)

feq,1(𝚪)d𝚪

= ∫D2

d(S𝜏𝚪)feq,2(S𝜏𝚪)

= 1 (8.51)

Now we are in a position to give a simple but informative derivation of the GJE.
Comparing Eq. (8.1) with Eq. (8.45), we see that the generalized work is related to
the purely dissipative work by the relation

exp[ΔX𝜏 (𝚪)] = exp[ΔY𝜏 (𝚪)]
Z1
Z2

(8.52)

This means that

⟨exp[−ΔX𝜏 ]⟩eq,1 = ⟨exp[−ΔY𝜏 ]⟩eq,1
Z2
Z1

=
Z2
Z1

(8.53)

which is identical to the GJE, Eq. (8.9). For isothermal processes, this becomes
rather simple: ΔX𝜏 → 𝛽ΔW𝜏 , ΔY𝜏 → 𝛽ΔWirr,𝜏 , and 𝛽ΔW𝜏 = 𝛽ΔWirr,𝜏 + 𝛽ΔA.

The generalized, purely irreversible work ΔYirr,𝜏 has properties very similar to
those of the dissipation function. However, there are important differences. States
1 and 2 must be in equilibrium, and Eq. (8.45) refers to forward and reverse tra-
jectories whereas the dissipation function (as in Eq. (8.49)) only refers to forward
processes.

Nevertheless, the dissipative work shares many analogous properties. From the
JE it is easy to compute a bound on the purely dissipative, dimensionless, general-
ized work for a thermodynamic process (Jarzynski, 1997a):

1 = ⟨exp[−ΔY𝜏 ]⟩eq,1

= exp[−⟨ΔY𝜏⟩eq,1]⟨exp[−ΔY𝜏 + ⟨ΔY𝜏⟩eq,1]⟩eq,1

≥ exp[−⟨ΔY𝜏⟩eq,1]⟨1 − ΔY𝜏 + ⟨ΔY𝜏⟩eq,1⟩eq,1 = exp[−⟨ΔY𝜏⟩eq,1] (8.54)

In deriving this result we have used the fact that ex ≥ 1 + x, ∀x. The above
equation implies that the ensemble average of the purely irreversible dimension-
less work is positive except for quasi-static processes:

⟨ΔY𝜏⟩eq,1 ≥ 0 (8.55)

This is formally analogous to the second law inequality. If a process is reversible,
the change in the work for the forward path must be equal and opposite to that for
the reverse path and the only way this can occur is if the change in the work is zero.
This shows that the work is purely dissipative, as claimed when it was defined. For
quasi-static averages

⟨ΔY ⟩qs = 0 (8.56)
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In spite of these similarities between the purely irreversible work and the dissipa-
tion function, their respective definitions show that they are quite different. This
is also evidenced by the fact that the proof of the second law inequality for the
purely irreversible work has to be different from that for the dissipation function.

8.7
Application of the Crooks Fluctuation Theorem (CFT), and the Jarzynski Equality (JE)

We now give an example of how to apply the GCFT and GJE to an actual statistical
mechanical ensemble and system of dynamics. We show that these very general
results lead to the canonical forms of the CFT and the JE for the transformation
between initial and final equilibrium states with the same values for temperature,
volume, and number of particles (T ,V ,N). In Section 8.4, we already met the JE
for a canonical system subject to a changing temperature. Here we give the JE and
Crooks fluctuation relations for Nosé–Hoover isothermal systems in which the
Hamiltonian is subject to a parametric transformation. This is the usual transfor-
mation that is discussed by these relations and was the original relation proposed
by Jarzynski (1997a).

We assume all systems are T-mixing over the respective phase space domains.
The relevant equilibrium distribution function is the canonical distribution func-
tion – see Section 5.3

f (𝚪; 0) =
exp[−𝛽H0(𝚪)]

Zc
, ∀𝚪 ∈ D (8.57)

In Eq. (8.28), we defined a quantity called the Helmholtz free energy, A, which is
related to logarithm of the canonical partition function Zc – see Sections 5.3, 5.4,
and 5.6,

A(𝜆) ≡ −kBT ln Zc(𝜆)

= −kBT ln
[
∫ d𝚪 exp

(
−𝛽H0 (𝚪, 𝜆)

)]
(8.58)

In order to transform from the initial equilibrium state with 𝜆 = 𝜆1 = 𝜆(0)
to the final equilibrium state with 𝜆 = 𝜆2 = 𝜆(𝜏), the functional form of the
system’s Hamiltonian may vary parametrically over the period 0 < t < 𝜏 , for
example, H0(𝚪, 𝜆(t)) =

∑N
i=1 p2

i ∕(2m) + Φ(𝐪, 𝜆(t)), where Φ(𝐪, 𝜆(t)) is the inter-
particle potential. For t > 𝜏 , the Hamiltonian’s parametric dependence is fixed at
H0(𝚪, 𝜆(𝜏)). Over the time 0 < t < 𝜏 , the ensemble is driven arbitrarily far away
from equilibrium, and if the transformation is halted at t = 𝜏 , because the system
is T-mixing, the system will eventually relax to the unique, new equilibrium state.

For a system in which the phase space is extended because of the intro-
duction of additional dynamical variables such as the volume or those
associated with the thermostat (such as in the case of Nosé–Hoover
dynamics (Hoover, 1985), as detailed below), the work becomes ΔX𝜏 =
𝛽[HE(S𝜏𝚪, 𝜆(𝜏)) − HE(𝚪, 𝜆(0))] + ln

[
d𝚪

d(S𝜏𝚪)

]
where HE is the Hamiltonian of
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the extended system (Williams, Searles, and Evans, 2008). We note, as before
(Section 8.4), that from the equations of motion for the Nosé–Hoover thermostat
Eq. (8.21), the differences in the extended Hamiltonian divided by kBT are the
same as for the internal energy because the extended Hamiltonian divided by kBT
differs from the internal energy divided by kBT by terms that are independent of
the temperature and the Hamiltonian of the system of interest. The difference is,
in fact, 3(Nth − 1)𝛼2𝜏2∕2. Alternatively, we could more simply employ isokinetic
dynamics, thereby obviating the need for an extension to the Hamiltonian. The
results are formally identical.

Using Eq. (8.1), the generalized “work” becomes

ΔX𝜏 = 𝛽[H0(S𝜏𝚪, 𝜆(𝜏)) − H0(𝚪, 𝜆(0))] + ln
[

d𝚪
d (S𝜏𝚪)

]

= 𝛽[H0(S𝜏𝚪, 𝜆(𝜏)) − H0(𝚪, 𝜆(0))] − ∫
𝜏

0
ds Λ(Ss𝚪)

= 𝛽[H0(S𝜏𝚪, 𝜆(𝜏)) − H0(𝚪, 𝜆(0)) + ΔQ𝜏 ]
= 𝛽ΔW𝜏 (8.59)

The final equality is obtained from the first “Law” of thermodynamics, and the
equations of motion must satisfy AI𝚪.

Definition
So the generalized dimensionless “work” is, in the isothermal canonical case, iden-
tifiable as 𝛽 times the work performed over a period of time 𝜏 . The latter is the
change in energy minus the change in energy due solely to the exchange of heat:
ΔW = ΔU + ΔQth = ΔUsoi − ΔQsoi. (Remember, Q̇th is defined, Eq. (8.23), as the
heat transferred to the thermostat, which is the negative of the heat transferred to
the system.)

We note that, if at the end of the protocol t = 𝜏 the system is not in equilibrium,
it does not matter. Any subsequent relaxation processes will have no effect onΔW .
The change in the energy is exactly due to the change in the heat, leaving the work
unchanged, exactly as proved for the generalized work in Eq. (8.6).

Using Eqs. (8.6) and (8.59), the CFT is given as

p1(ΔW𝜏 = B)
p2(ΔW𝜏 = −B)

= exp[𝛽B]
Zc,2

Zc,1
= exp[−𝛽(ΔA − B)] (8.60)

where ΔA = A2 − A1 = A(𝜆(𝜏)) − A(𝜆(0)), and using Eq. (8.10), the JE is

⟨exp(−𝛽ΔW𝜏 )⟩ = Zc,2

Zc,1
= exp(−𝛽ΔA) (8.61)

The same results are obtained for the canonical distribution when the dynam-
ics are thermostatted by a Gaussian thermostat (Evans, 2003) or a Nosé–Hoover
thermostat (Williams, Searles, and Evans, 2008). For other ensembles and trans-
formations, Eq. (8.1) does not necessarily refer to a work (e.g., see Reid, Sevick,
and Evans (2005), Adib (2005), and Chelli et al. (2007)).
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The first experimental tests of the JE and CFR were by Liphardt et al. (2002),
who used optical tweezers to extend a DNA–RNA hybrid chain, measuring the
work required as the extension proceeded.

If we now evaluate the cyclic work integral Eq. (8.17) for the case of constant
temperature systems, we have

∮ ⟨dW⟩ = ∮ ⟨dUsoi⟩ − ∮ ⟨dQsoi⟩
= ∮ ⟨dUsoi⟩ + ∮ ⟨dQth⟩ ≥ 0 (8.62)

where, as usual, the cycle is defined as a cycle in the parameter 𝜆(t). The validity of
Eq. (8.62) is independent of whether the system responds periodically to the cycle.
It only requires that the parameter 𝜆(s) returns to its initial value. The system at
the end of this cycle may have an internal energy that, on average, is different from
its average initial value. This is because, if the cycle begins from an equilibrium
state but is traversed quickly, then at the end of the cycle the system may be in
a nonequilibrium state with an internal energy that is different from the initial
equilibrium value.

When the parameter completes a cycle, 𝜆(𝜏) = 𝜆(0), the subsequent change in
the internal energy dUsys is identical to the heat absorbed by the system dQsoi from
the thermostat since there is no further change in the work. So even though at the
end of a parametric cycle the system is not yet in equilibrium and subsequent
thermal relaxation will still take place, the CI, Eq. (8.27), is still valid.

If we run the cycle in reverse (i.e., we reverse the direction of the protocol) and
if the process is reversible, then the cyclic integral will take on the opposite sign
(by definition) but still obey the inequality, Eq. (8.26). The only way this can be
true is if for reversible systems the cyclic integral of the work is zero.

Definition
We call Eq. (8.62) the nonequilibrium cyclic work inequality for the system of inter-
est.

If and only if the cycle is periodic (i.e., the system has periodically cycled many
times through a periodic protocol and if the initial transients have decayed to
zero), then ∮P

⟨dUsoi⟩ = 0, and then Eq. (8.62) gives

∮P
⟨dQth⟩ ≥ 0 (8.63)

Further, if we now take the thermodynamic limit, we see that for large systems the
heat absorbed by a large heat reservoir over one periodic cycle cannot be negative.
If the process is conducted reversibly, then both the forward periodic cycle and the
reverse periodic cycle must both be nonnegative and therefore both must integrate
to zero.

In summary, if we surround our system of interest with a large equilibrium ther-
mal reservoir at temperature T , and if we do a cycle of work defined by some
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protocol 𝜆(t), we see that over the cycle, on average, the thermostat absorbs heat
rather than losing it.

In small systems where the cycles are of limited duration, there will be instances
when∮ dW < 0! Our result says that on average the cyclic inequality for the work
holds.

8.8
Entropy Revisited

“Entropy is not conserved; it is increasing all the time.” (Penrose, 1990, p. 412)

We now look again at Eq. (8.35). If our system is subject to a periodic thermal
protocol and if the system settles into a periodic cycle, the ensemble-averaged
heat absorbed by the thermostat (dQth) is nonnegative, limt→∞∮P

⟨dQth∕T⟩ ≥ 0.
If the sign were reversed, we would have been able to construct a perpetual motion
machine of the second kind. So we have given a proof of the second “Law” of ther-
modynamics since Clausius’ statement of that “Law” refers to the impossibility of
constructing such a machine.

There is a complementary inequality for the system of interest, namely

lim
t→∞∮P

⟨dQsoi∕T⟩ ≤ 0 (8.64)

If we combine the system of interest and the thermostat, we see that for the com-
bined system, the “Universe,” we find that for both reversible and irreversible
processes

dQsoi(t)∕T(t) + dQth(t)∕T(t) = (dQsoi(t) − dQsoi(t))∕T(t)
= 0, ∀t (8.65)

The second line follows because, first, dQsoi(t) = −dQth(t) and, second, at any
point in the cycle the temperature of the underlying equilibrium states for both
the thermostat and the system of interest are, by the zeroth law, equal because
both systems, by construction, are in thermal contact. Defining the change in the
entropy of the system and thermostat by Eq. (8.38) and the change in entropy of
the Universe as a sum of these, Eq. (8.65), directly contradicts Clausius’s assertion
(Clausius, 1854) that the entropy of the Universe tends to a maximum. It is dissi-
pation that tends to a maximum, not entropy. This result is a direct consequence
of the definition of temperature in Eq. (8.38). If, instead, the average kinetic tem-
perature of the system/thermostat was used in definition of the change in entropy
and the temperature of the thermostat was increasing, the kinetic temperature
of the system would be less than that of the thermostat. Then the total change
in entropy would be positive. However, for a process that is not quasi-static, the
temperature in Clausius’s original work was not defined. There are infinitely many
definitions of the temperature of a nonequilibrium system; it is the underlying
equilibrium temperature that naturally occurs in the second law inequality from
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which Eq. (8.36) is obtained. Equation (8.65) also avoids the criticisms of Clausius’
inequality, as it applies to irreversible processes (Bertrand, 1887; Orr, 1904; Buck-
ingham, 1905). The temperature appearing in Eqs. (8.36) and (8.8.2) is well defined
even for irreversible processes.

In spite of our knowledge of the time dependence of the entropy in nonequilib-
rium systems, away from equilibrium entropy is not a useful quantity. Away from
equilibrium it is dissipation that is useful. At equilibrium, their respective roles
are reversed because, at equilibrium, dissipation is identically zero while entropy
becomes exceedingly useful.

8.9
For Thermostatted Field-Free Systems, the Nonequilibrium Helmholtz Free Energy is a
Constant of the Motion

Consider a thermostatted system in contact with an isokinetic heat bath. The bath
could be much larger than the system of interest, in which case the heat bath
could be approximated as being in thermodynamic equilibrium while the system
of interest, which is in thermal contact with the bath, relaxes toward equilibrium.
The heat bath could also be of similar size to the system of interest, and therefore
it may also be out of equilibrium.

There are no external dissipative fields applied to the system, but the initial
distribution for the system of interest is not an equilibrium distribution. The
nonequilibrium system of interest is relaxing toward equilibrium. In Eqs. (2.56)
and (5.66), we saw there that the rate of change of the Gibbs entropy and the
irreversible calorimetric entropy is given by the equation

ṠG(t) = Ṡir(t) = kB∫ d𝚪 f (𝚪; t)) 𝜕

𝜕𝚪
•�̇� = −kB(3N − 4)⟨𝛼(t)⟩ (8.66)

where Nth is the number of thermostatted particles, and 𝛼 is the usual isokinetic
thermostat multiplier. We also know that the rate of change of the total internal
energy of the system of interest is

⟨Ḣ0(t)⟩ = −2Kth⟨𝛼(t)⟩
≡ −3NthkBT⟨𝛼(t)⟩ (8.67)

where T is the kinetic temperature of the reservoir, which is, of course, also equal
to the thermodynamic temperature of the underlying equilibrium system.

Since the system is not initially at equilibrium, we cannot use the equilibrium
statistical mechanical definition of the Helmholtz free energy, which for a canon-

ical equilibrium state is given by Eq. (5.64): A ≡ −kBT ln
[
∫ d𝚪e−𝛽H0

]
. Instead,

we can use Eq. (8.40) to define the Helmholtz free energy of the nonequilibrium
system:

Ane ≡ U − TSir (8.68)
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From Eqs. (8.66)–8.68, we can then deduce that the nonequilibrium Helmholtz
free energy for the system of interest is a constant of the motion:

Ȧne = ⟨Ḣ0⟩ − TṠir = 0 (8.69)

If the initial perturbed system was a canonical equilibrium distribution with a
temperature that was different from that of the thermostat, and the system was
allowed to relax to the new equilibrium state, then Eq. (5.64) could be used to
determine the difference in the equilibrium Helmholtz free energies of the two
equilibrium states. Unlike the difference in the nonequilibrium Helmholtz free
energies of the two states, the difference in the equilibrium Helmholtz free ener-
gies will be nonzero.

These systems, with an initial distribution that is not the equilibrium distribu-
tion of the dynamics, are precisely the type of systems treated by the relaxation
theorem for canonical systems in contact with a heat reservoir. In that case, how-
ever, the time integral of the ensemble average of the dissipation is positive for
all times, and the instantaneous dissipation eventually decays toward zero every-
where in phase space (i.e., in the infinite time limit, the system must have relaxed
to equilibrium). Dissipation consistently describes the nonequilibrium relaxation
process. In contrast, Eq. (8.69) is an example which shows that away from equilib-
rium free energies like the Helmholtz free energy are, like the entropy, of little use.
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9
Causality

In quantum mechanics … The fundamental equation is itself symmet-
rical under time reversal … However, despite this symmetry, quantum
mechanics does in fact involve an important non-equivalence of the two
directions of time. This appears in connection with the interaction of a
quantum object with a system which with sufficient accuracy obeys the laws
of classical mechanics … If two interactions A and B with a given quantum
object occur in succession, then the statement that the probability of any
particular result of process B is determined by the result of process A can
be valid only if process A occurred earlier than process B.

(Landau and Lifshitz, 1969, p. 31)

9.1
Introduction

If all the laws of mechanics and quantum mechanics were time-reversal-
symmetric, then clearly you cannot prove a time-asymmetric result like the
fluctuation theorem. In the first proof given by Evans and Searles (1994), this time
symmetry was indeed broken, but it was broken in such a natural way that most
people who have analyzed this proof fail to see where the time reversal symmetry
is broken. Time reversal symmetry was broken when it was assumed that natural
processes are causal (Searles and Evans, 1996).

We quote Landau and Lifshitz above (p. 31). This is a statement of the axiom
of causality at least as it applies to quantum mechanics. It is used frequently in
quantum mechanics, but (not indicated by Landau and Lifshitz) it is also required
in classical mechanics and electrodynamics. The equations of motion in classical
(and quantum) mechanics are indifferent to the direction of time – Hamilton’s
action principle shows this with great clarity. However, mechanics on its own does
not give us enough information to predict experimental results.

In the proofs of the ESFT (Evans–Searles transient fluctuation theorem) and the
GCFT (generalized Crooks fluctuation theorem), the probabilities of observing
particular values of time integrals of the dissipation function or of the gener-
alized work are computed from the probabilities of observing the initial states

Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems,
First Edition. Denis J. Evans, Debra J. Searles, and Stephen R. Williams.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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from which those sets of trajectories began: f (𝚪; 0)d𝚪. We never computed the
probabilities of observing conjugate sets of trajectories from the known endpoint
distribution; indeed, had we done so, we would have proved the “anti-fluctuation
theorem” and an “anti-second law” (Evans and Searles, 1996).

What is so strange about the anti-causal Universe is that in this case the phase
space distribution and the last time (t) determine the initial distribution of phases
at t = 0 for all values of t! For nonequilibrium antisteady states in an anti-causal
Universe, the initial distribution collapses toward a lower dimensional repeller as
the integration time grows. As the antisteady state is explored for longer times
t, the initial state at t = 0 is constantly changing! The t = 0 distribution of states
is therefore not a well-defined, fixed distribution! The only way the present state
is well defined is if the entire future history of the Universe is known and fixed.
Events that occur in the distant future influence the present distribution of states.
If one includes the possibility of radioactive decay occurring in the future and
influencing the present state, its innately random nature would make the present
state of the Universe undefined. Likewise, the exercise of human free will at some
time in the future could also change the present distribution of states! This would
appear to be logically impossible in a universe where time increases rather than
decreases.

The axiom of causality is so natural that people fail to observe that they have
made this assumption. It is constantly used in classical mechanics. This is evi-
denced by the simple fact that Laplace transforms are defined only by (0, ∞) time
integrals rather than (−∞,∞) time integrals as is used for spatial Fourier trans-
forms. This, in turn, leads to memory functions rather than antimemory or forget-
ful functions. For an extensive discussion of causality and thermodynamics, see
Evans and Searles (1996).

The transient fluctuation theorem and time-dependent response theory are
meant to model the following types of experiment (Evans and Searles, 2002).
One begins an experiment with a well-defined ensemble of systems characterized
by some given initial (often equilibrium) distribution function. One then does
something to the system (applies or turns off a field as the case may be), and one
tries to predict what subsequently happens to the system. It is completely natural
that one assumes that the probability of subsequent events can be predicted from
the probabilities of finding initial phases and a knowledge of preceding changes
in the applied field and environment of the system.

As we will soon see, computer simulation provides a clear illustration of the fact
that the equations of motion can be run forward or backward. Those equations of
motion are completely time-reversal-symmetric. It is the use of causality to predict
the outcomes of experiments that actually breaks the symmetry of time.

Definition
The future state of the system is predicted solely from the probabilities of states of
the system in the past. This is called the axiom of causality.

It is logically possible to compute the probability of occurrence of present states
from the probabilities of future events, but this seems totally unnatural. A major
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problem with this approach is that, at any given instant, the future states are gen-
erally not known! In spite of these philosophical and practical difficulties, we will
explore the logical consequences of the (unphysical) axiom of anti-causality.

We now show that if we derive the Green–Kubo relations for the transport coef-
ficients defined by anti-causal constitutive relations, first, these anti-transport
coefficients have the opposite sign to their causal counterparts and, second, what
we call the system “response” starts to change before external fields are changed
(Evans and Searles, 1996). In an anti-causal world, it becomes overwhelmingly
probable to observe final equilibrium microstates that evolved from second law
violating nonequilibrium steady states. Although this behavior is not seen in the
macroscopic world, anti-causal behavior is permitted by the solution of the time-
reversible equations of motion, and we demonstrate, using computer simulation,
how to find phase space trajectories that exhibit anti-causal behavior.

9.2
Causal and Anti-causal Constitutive Relations (Evans and Searles, 1996, 2002)

Consider the component dB(t1) of the linear response at time t1of a system char-
acterized by a response function L(t1, t2). The response is due to the application
of an external force F(t2) acting for an infinitesimal time dt2(> 0), at time t2, and
could be written as

𝛿B(t1) = L(t1, t2)F(t2)𝛿t2 (9.1)

This is the most general linear scalar relation between the response and the force
components. If the system is autonomous – independent of the time at which the
experiment is undertaken (i.e., the same response is generated when both times
appearing in Eq. (9.1) are translated by an amount t ∶ t2 → t2 + t, t1 → t1 + t),
then the response function L(t1, t2) is solely a function of the difference between
the times at which the force is applied and the response is monitored:

𝛿B(t1) = L(t1 − t2)F(t2)𝛿t2 (9.2)

Definition
The invariance of the response to time translation is called the assumption of sta-
tionarity.

Equation (9.2) does not, in fact, describe the results of actual experiments
because it allows the response at time t1 to be influenced not only by forces in
the past, F(t2), where t2 < t1, but also by forces that have not yet been applied
t2 > t1. We therefore distinguish between the causal and anti-causal response
components

𝛿BC(t1) ≡ +LC(t1 − t2)F(t2)𝛿t2, t1 > t2 (9.3a)
𝛿BA(t1) ≡ −LA(t1 − t2)F(t2)𝛿t2, t1 < t2 (9.3b)
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Later we will prove that LC(t) = LA(−t).
(Note: we could consider superimposing a causal and an anti-causal response.

However by considering these separately, we argue later that the anti-causal com-
ponent leads the present state of the Universe undefined. So we simply argue
that in our Universe with increasing time, anti-causal responses are physically
impossible.)

Considering the response at time t to be a linear superposition of influences due
to the external field at all possible previous (or future) times gives

BC(t) = ∫
t

−∞
LC(t − t1)F(t1)dt1 (9.4a)

for the causal response and

BA(t) = −∫
+∞

t
LA(t − t1)F(t1)dt1 (9.4b)

for the anti-causal response.

9.3
Green–Kubo Relations for the Causal and Anti-causal Response Functions (Evans and
Searles, 1996, 2002)

And if also the materialistic hypothesis of life were true, living creatures
would grow backwards, with conscious knowledge of the future, but no
memory of the past.

(Thomson, 1874)

To make this discussion more concrete, we will discuss the Green–Kubo
relations for shear viscosity (Evans and Morriss, 1990). Analogous results can be
derived for each of the Navier–Stokes transport coefficients. We assume that the
regression of fluctuations in a system at equilibrium, whose constituent particles
obey Newton’s equations of motion, is governed by the Navier–Stokes equations.

Definition
We consider the wave vector-dependent transverse momentum density J⊥(ky, t):

J⊥(ky, t) ≡
∑

i
pxi(t)eikyyi(t) (9.5)

where pxi is the x-component of the momentum of particle i, yi is the y-coordinate
of particle i, and ky is the y-component of the wave vector.

The (Newtonian) equations of motion can be used to calculate the rate of change
of the transverse momentum density. They give

J̇⊥ = iky

[∑
i

pxipyieikyyi + 1∕2
∑

i,j
yijFxij

1 − eikyyij

ikyyij
eikyyi

]

≡ ikyPyx(ky, t) (9.6)
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In this equation, Fxij is the x-component of the force exerted on particle i by parti-
cle j, yij ≡ yj − yi, and Pxy(ky, t) is the xy-component of the wave vector-dependent
pressure tensor. For simplicity, we assume the interparticle forces are simple pair
interactions. For such systems, Eq. (9.6) is exact.

We now consider the response of a pressure tensor to a strain rate �̇�(t) applied to
the fluid for t > 0 in the causal system and for t < 0 in the anti-causal system. In the
causal system, the strain rate is turned on at t = 0, while in the anti-causal system
the strain rate is turned off at t = 0. Since the pressure tensor is related to the time
derivative of the transverse momentum current by Eq. (9.6) and the strain rate is
related to the Fourier transform of the transverse momentum density by �̇�(ky, t) =
−ikyJ⊥(ky, t)∕𝜌, the most general linear, stationary, and causal constitutive relation
can be written as

J̇⊥(ky, t) =
−k2

y

𝜌 ∫
t

0
𝜂C(ky, t − s)J⊥(ky, s)ds, t > 0 (9.7)

where 𝜂C is the causal response function (or memory function), and 𝜌 is the mass
density. The corresponding anti-causal relation is

J̇⊥(ky, t) =
k2

y

𝜌 ∫
0

t
𝜂A(ky, t − s)J⊥(ky, s)ds, t < 0 (9.8)

where 𝜂A is the anti-causal “response” function. Note that because t < 0, we find
that the argument (t− s) in Eq. (9.8) is less than zero, and we are indeed exploring
the response of the system at times less than zero, which is prior to the changes in
the strain rate that occur at times greater than zero!

It is straightforward to use standard techniques to evaluate the Green–Kubo
relations for the causal and anti-causal shear viscosity coefficients.

Definitions
In the anti-causal case, it is important to remember that the usual Laplace trans-
form

F̃(s) ≡ ∫
+∞

0
F(t)e−stdt, t ≥ 0 (9.9)

is inappropriate and needs to be replaced by an anti-Laplace transform

F̂(s) ≡ ∫
0

−∞
F(t)estdt, t ≤ 0 (9.10)

(Note: F̂(s) = ∫
∞

0
F(−t)e−stdt = F̃ ′(s), t ≥ 0, where F ′(t) ≡ F(−t)). We note that

the anti-Laplace transform of a time derivative is ̂̇F(s) = F(0) − sF̂(s), and that the
anti-Laplace transform of a convolution is the product of the anti-Laplace trans-
forms of the convolutes.

By multiplying both sides of Eqs. (9.7) and (9.8) by J⊥(−ky, 0) and taking the
(equilibrium) ensemble average, one can easily derive the following relations for
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the shear viscosity and the anti-causal shear viscosity:

C̃(ky, s) =
C(ky, 0)

s +
k2

y 𝜂C (ky,s)
𝜌

(9.11a)

Ĉ(ky, s) =
C(ky, 0)

s +
k2

y 𝜂A(ky,s)
𝜌

(9.11b)

where

C(ky, t) ≡ ⟨J⊥(ky, t)J⊥(−ky, 0)⟩, ∀t (9.12)

More useful relations for the viscosity coefficients, especially at k = 0, can be
obtained by utilizing the equilibrium stress autocorrelation function

N(ky, t) ≡ 1
V kBT

⟨Pyx(ky, t)Pyx(−ky, 0)⟩, ∀t (9.13)

Using the fact that N̂ = − ̂̈C∕k2
y V kBT , one can show (Evans and Morriss, 1990)

𝜂C(ky, s) =
Ñ(ky, s)

1 − k2
y Ñ(ky, s)∕𝜌s

(9.14a)

𝜂A(ky, s) =
N̂(ky, s)

1 − k2
y N̂(ky, s)∕𝜌s

(9.14b)

At zero wave vector, we find that the causal and anti-causal memory functions are
both given by the equilibrium autocorrelation function of the pressure tensor:

𝜂C(t) = 𝜂A(−t), where t > 0
≡ 𝜂(t), ∀t

= V
kBT

⟨Pyx(t)Pyx(0)⟩ (9.15)

where we have used Pyx(t)V = limk→0Pyx(ky, t). Since equilibrium autocorrelation
functions are symmetric in time, one does not have to distinguish between the
positive and negative time domains. This proves our assertion made in Section 9.2
that LC(t) = LA(−t).

Using Eqs. (6.13)–(6.15) and taking the zero wave vector limit, we obtain the
causal response of the xy-component of the pressure tensor as

PyxC(t) = −∫
t

0
𝜂(t − s)�̇�(s)ds, t > 0 (9.16)

and the anti-causal response as

PyxA(t) = ∫
0

t
𝜂(t − s)�̇�(s)ds, t < 0 (9.17)
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In the linear regime close to equilibrium, the instantaneous dissipation function
Ω(t) for an isokinetic system is given by

Ω(t) = −𝛽Pyx(t)�̇�(t)V (9.18)

where �̇�(t) is the time-dependent strain rate. From Eqs. (9.16) and (9.17), it is easy
to see that if we conduct two shearing experiments, one on a causal system with
a strain rate history �̇�C(t) and one on an anti-causal system with �̇�A(t) = ±�̇�C(−t),
then

ΩA(t) = −ΩC(−t) (9.19)

This proves that, if the causal system satisfies the second law of thermodynamics,
then the anti-causal system must violate that law, and vice versa. If we now invoke
the second law inequality, we see the following:

∫
t

0
ds⟨ΩA(−s)⟩ = −∫

t

0
ds⟨ΩC(s)⟩ ≤ 0, ∀t > 0 (9.20)

Definition
Equation (9.20) is the anti-second law inequality.

9.4
Example: The Maxwell Model of Viscosity (Evans and Searles, 1996, 2002)

In this section we examine the consequences of the causal and anti-causal
response by considering the Maxwell model for linear viscoelastic behavior (see
Section 2.4 of Evans and Morriss (1990)). If we consider the causal response of a
system to a two-step strain rate ramp

�̇�C(t) = a, 0 < t < t1

�̇�C(t) = b, t1 < t < t2 (9.21)

then use the Maxwell memory kernel

𝜂M(t) = G∞e−|t|∕𝜏M , ∀t (9.22)

in Eq. (9.16) and the fact that the causal 𝜂C and anti-causal 𝜂A Maxwell shear vis-
cosities in the zero frequency limit are

𝜂C = 𝜂A = G∞𝜏M = 𝜂M (9.23)

we find that the causal response is

PxyC(t) = −a𝜂(1 − e−t∕𝜏M ), 0 < t < t1

PxyC(t) = −a𝜂(e−(t−t1)∕𝜏M − e−t∕𝜏M ) − b𝜂(1 − e−(t−t2)∕𝜏M ), t1 < t < t2 (9.24)
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If we now consider the corresponding anti-causal experiment with strain rate his-
tories given by

�̇�A(t) = a, −t1 < t < 0
�̇�A(t) = b, −t2 < t < −t1 (9.25)

we find that the anti-causal response is

PxyA(t) = a𝜂(1 − et∕𝜏M ), −t1 < t < 0
PxyA(t) = a𝜂(e(t+t1)∕𝜏M − et∕𝜏M ) + b𝜂(1 − e(t+t2)∕𝜏M ), −t1 < t < −t2 (9.26)

From Eqs. (9.24) and (9.26), it is clear that

PxyA(t) = −PxyC(−t) (9.27)

These response functions are shown graphically in Figure 9.1. A two-step strain
rate ramp with a= 1.0, b= 0.5, t1 = 2, and t2 = 4 was considered. Equations (9.24)
and (9.26) were used to predict the causal and anti-causal responses, respectively,
of the xy-component of the pressure tensor. Values of G∞ = 40.0 and t = 0.05 were
used in the model. These values were obtained from approximate fits to computer
simulation data (see Section 6.5).

The data in Figure 9.1 show that, for the causal response, Pxy is zero at equilib-
rium (t ≤ 0) and decreases when the field is applied until the steady-state value is
obtained. It remains at the steady value until t = 2, at which time the strain rate is
reduced. Since this system is causal, no change in Pxy occurs until after the strain
rate is reduced, when it increases until the system reaches a new steady state. We
display the anti-causal response from t =−4 where it is in an antisteady state. Just
before the strain rate is increased (at t =−2), Pxy increases to a new antisteady state
value. Using Eq. (9.18), we see that in the causal response dissipation is in the graph
always positive and second saw satisfying, whereas in the anti-causal response the
instantaneous dissipation is in this graph always negative.

9.5
Phase Space Trajectories for Ergostatted Shear Flow (Evans and Searles, 1996, 2002)

We now examine the causal and anti-causal response on a microscopic scale, and
we consider the relative probability of observing second law satisfying and second-
law-violating trajectories by studying an ergostatted system of N particles under
shear.

The ergostatted SLLOD equations of motion (2.21) and (2.23) are time-
reversible (Evans and Morriss, 1990). Therefore, for every i-segment St𝚪(i),
(0< t <𝜏), there exists a conjugate trajectory segment St𝚪(i(K)), (0 < t < 𝜏) with
the property that Pxy(St𝚪(i(K))) = −Pxy(S−t𝚪(i)), (0 < t < 𝜏). Thus, the t-averaged

shear stress Pxy,i,t ≡ 1∕t∫
t

0
ds Pxy(Ss𝚪i) for segment i is equal and opposite to

that for its conjugate: Pxy,iK ,t = −Pxy,i,t . We note that, since the solution of the
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Figure 9.1 A schematic diagram of the (a)
causal and (b) anti-causal response of Pxy to
a two-step strain rate ramp determined using
the Maxwell model for linear viscoelastic
behavior with G∞ = 40 and 𝜏M = 0.05 (solid

line). In both cases the time dependence
of the strain rate is shown as a dashed line.
Reproduced from Evans and Searles (1996)
with permission of American Physical Society.

equations of motion is a unique function of the initial conditions, the conjugate
segment is also unique.

We have previously shown that for shear flow, conjugate segments may be
generated by using a phase space mapping known as a Kawasaki- or K-map see
Section 7.4 of Evans and Morriss (1990) and section 2.3. A K-map of a phase 𝚪
is defined as a time-reversal map that is followed by a y-reflection. In the case of
shear flow, the K-map leaves the strain rate unchanged but changes the sign of the
shear stress, that is, MK𝚪 = MK (x, y, z, px, py, pz) = (x,−y, z,−px, py,−pz) ≡ 𝚪(K).
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It is straightforward to show that the Liouville operator for the system simulated
by Eqs. (2.21) and (2.23), iL(𝚪, �̇�) ≡ ∑

[�̇�i(𝚪, 𝛾)•𝜕∕𝜕𝐪i + �̇�i(𝚪, �̇�)•𝜕∕𝜕𝐩i], has the
property that under a K-map M(K)iL(𝚪, �̇�) = iL(𝚪(K), �̇� (K)) = −iL(𝚪, �̇�)M(K). If we
assume a strain rate history such that, �̇�K (−t) = �̇�(t), ∀t, then it follows that if a
K-map is carried out on an arbitrary phase 𝚪 at t = 0, then evolution forward in
time from 𝚪(K ) under a strain rate �̇�K (t) is equivalent to time evolution backward
in time from 𝚪 under the strain rate history �̇�(t), (t < 0):

Pxy(−t,𝚪, �̇�(−t)) = exp[−iL(𝚪, �̇�(−t))t]Pxy(𝚪) = −Pxy(t,𝚪(K), �̇�K (t)) (9.28)

We note that, if we do not assume that �̇�K (−t) = �̇�(t), ∀t, then there is no general
method for generating conjugate trajectory segments. This is because propaga-
tors with different strain rates do not commute and the inverse propagator must
therefore retrace the strain rate history of the conjugate propagator but in inverse
historical order.

We will now indicate, in more detail, how to construct the conjugate segment
i(K ), from an arbitrary phase space trajectory segment i. The construction is illus-
trated in Figure 9.2 for the case where the strain rate remains the same for the
duration of the trajectory. A trajectory of length 𝜏 is generated by solving the
equations of motion. The conjugate segment is then constructed by applying a K-
map to the phase at the midpoint of the segment (t = 𝜏/2), MK𝚪(2) =𝚪(5). We then
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Figure 9.2 Pxy for trajectory segments from a
simulation of 200 WCA disks at T = 1.0 and
n= 0.8. A constant strain rate of 𝛾 = 1.0 is
applied at t = 0. The trajectory segment 𝚪(1,3)
was obtained from a forward time simula-
tion. At t = 2, a K-map was applied to 𝚪(2)
to give 𝚪(5). Forward and reverse time sim-
ulations from this point give the trajectory

segments 𝚪(5,6) and 𝚪(5,4), respectively. If one
inverts Pxy in Pxy = 0 and inverts time about
t = 2, one transforms the Pxy(t) values for the
antisegments 𝚪(4,6) into those for the conju-
gate segment 𝚪(1,3). Reproduced from Evans
and Searles (1996) with permission of Ameri-
can Physical Society.
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advance in time from the point (𝚪(5)) to t = 𝜏 by solving the equations of motion,
and also go backward in time from the K-mapped point t = 𝜏/2 to t = 0. A conju-
gate trajectory of length 𝜏 is thereby produced. This construction has previously
been described in more detail (Evans and Searles, 1995).

Clearly, the mapped trajectory is a solution of the equations of motion for the
system, and therefore it would eventually be observed from the ensemble of start-
ing states. When the K-map is carried out at t = 0, the shear stress is inverted, and
Eq. (6.18) shows that Pxy(𝜏∕2 + t,𝚪) = −Pxy(𝜏∕2 − t,𝚪(K)), and similarly Pxy(𝜏∕2 −
t,𝚪) = −Pxy(𝜏∕2 + t,𝚪(K)); therefore, for every point on the original trajectory,
there is a unique point on the mapped trajectory with opposite shear stress. The
𝜏-averaged shear stress of the conjugate trajectory is opposite to that of the orig-
inal trajectory, that is, Pxy,iK (𝜏) = −Pxy,i(𝜏). Thus, if the original segment was one
satisfying the second law, then the conjugate segment is one violating the second
law, and vice versa.

In a causal world, which is described by causal macroscopic constitutive rela-
tions such as Eq. (9.4a), the observed segments are overwhelmingly likely to be
satisfying the second law. It is a simple matter to apply the arguments of Section
2.1 for the special case of ergostatted shear flow, where a simple time-reversal
map cannot be used and must be replaced by the K-map. The condition of ergodic
consistency has to be modified slightly to require

f (St𝚪K ; 0) ≠ 0, ∀𝚪 ∈ D (9.29)

The result is the ESFT given in Eq. (3.6).

9.6
Simulation Results (Evans and Searles, 1996, 2002)

We can demonstrate the relationships between the conjugate pairs of trajecto-
ries, the second law of thermodynamics, and causal and anti-causal response using
numerical simulations of the system described by Eqs. (2.21) and (2.23). Figure 9.3
shows the response of Pxy for a trajectory and its conjugate when a constant strain
rate is applied. The response was determined using nonequilibrium molecular
dynamics simulations of 200 disks in two Cartesian dimensions. The disks interact
via the WCA potential

𝜙(r) =

{
4
(
r−12 − r−6) + 1 r < 21∕6

0 r > 21∕6 (9.30)

Shearing periodic boundary conditions were used to minimize boundary effects
(Evans and Morriss, 1990). The system was maintained at a constant kinetic tem-
perature of T = 1.0, and the particle density was n=N/V = 0.8. An initial phase
was selected from an equilibrium distribution, and a strain rate of 𝛾 = 1.0 was
applied to the system at t = 0. A trajectory segment was generated by simulat-
ing forward in time to t = 4. The conjugate trajectory was constructed using the
scheme describe above. Examination of the trajectories shows that Pxy(𝜏 + t) for
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Figure 9.3 Pxy (solid line) from nonequi-
librium molecular dynamics simulations of
56 particles at T = 1.0 and n= 0.8 under-
going shear flow. The dashed line gives
the time dependence of the strain rate. In
(a), Pxy was determined using 1000 trajec-
tories whose initial phases were selected
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The conjugate trajectories were obtained by
applying a K-map to the phase of the trajec-
tory at t = 2, simulating forward and back-
ward in time from this point and translating
in time so that the conjugate trajectory ends
at t = 0. Note that the strain rate history of
the conjugate trajectory is reversed. Repro-
duced from Evans and Searles (1996) with
permission of American Physical Society.
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the trajectory satisfying the second law is equal in magnitude but opposite in
sign to Pxy(𝜏 − t) for the trajectory violating the second law, where t is the time
at which the K-map is applied (𝜏 = 2). These results therefore confirm the rela-
tionship between Pxy of trajectories satisfying the second law and the conjugate
trajectories violating the second law, given by Eq. (9.28).

The causality of the response is more clearly demonstrated in Figure 9.3, where
the response of Pxy to a strain rate ramp is shown. Pxy(t) was averaged over 100
individual trajectories to reduce the fluctuations in the steady state, giving a par-
tially ensemble-averaged response Pxy. In these simulations, 56 disks were used.
The initial phases of the trajectories shown in Figure 9.3 were sampled from the
equilibrium distribution at t = 0. Pxy is close to zero at equilibrium and decreases
to near a steady-state value after the field is applied. After the strain rate is reduced,
Pxy increases toward a new steady-state value.

The conjugate trajectories are shown in Figure 9.3. They were constructed as
described above and translated in time to begin at t =−4. At this time, the system
is in an antisteady state and Pxy remains near its antisteady state value until just
before the strain rate is changed, when it increases toward a new antisteady state
value.

In accordance with the ESFT, these response curves demonstrate that most ini-
tial phases (here all 100 randomly selected initial phases) satisfy the second law
and most phases (again all 100 initial random phases) exhibit response curves that
we would describe as having “causal” characteristics (i.e., the stress responds to
prior rather than future changes in the strain rate). Second law violating conju-
gate trajectories respond to the step in the strain rate before it is made, so they are
anti-causal. Close inspection of the graph reveals that at all points along pairs of
conjugate trajectories Pxy(t)trajectory = −Pxy(−t)conjugate trajectory, which follows from
Eq. (9.28).

The system used in the simulations corresponds to that examined using the
Maxwell model described in Section 9.4. Figure 9.3 shows the response, deter-
mined by nonequilibrium molecular dynamics simulation, to the same two-step
strain rate ramp that was used to model the response shown in Figure 9.1. Com-
parison of these response curves indicates that the system is reasonably well rep-
resented by the Maxwell model.

We should also note that, if we generate an antitrajectory that has negative aver-
age dissipation, such a trajectory will not continue indefinitely. Because the sum
of its Lyapunov exponents is positive while the sum of exponents for the trajectory
is negative, the antitrajectory is less mechanically stable than its conjugate trajec-
tory. Because no numerically computed trajectory is exact, this numerical error is
amplified by the Lyapunov instability, and eventually the antitrajectory will decay
into a trajectory with positive average dissipation.

If the error in any computed phase space position is 𝛿, and if the particles have
a dimensionless radius and average momentum of unity, the time required for the
antitrajectory to decay is − ln(𝛿)∕𝜆min, where 𝜆min is the smallest (i.e., the most
negative) Lyapunov exponent for the trajectory with positive average dissipation.
This decay has nothing to do with why the second “Law” is satisfied. The error
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𝛿 is not a material property. In an electrical circuit, the second “Law” is satis-
fied as soon as the voltage Fe is applied. In fact, the initial rate of increase in
the electrical current density J is given by an equilibrium fluctuation formula that
has nothing to do with noise, errors, or Lyapunov instability: limt→0+d⟨J(t)⟩∕dt =
−𝛽V ⟨J(0−)2⟩eqFe.

One might have thought that the instability of the antitrajectory would be very
strong, and the slope d⟨J⟩∕dt, when the current crosses zero, would be very large.
In fact, this is not so, and the crossing slope is typically much less than the initial
slope caused by applying the voltage to the system which was at equilibrium at
time zero! In a sense, then, the equilibrium state is more unstable under shear
than is the antisteady state!

9.7
Summary and Conclusion

As we have seen throughout this book, it is dissipation and not phase space com-
pression, entropy, or entropy production that features in the fluctuation, the dissi-
pation, and the equilibrium relaxation theorems. Each of these theorems is exact
for systems of arbitrary size and arbitrarily near to, or far from, equilibrium. It used
to be said that for nonequilibrium systems virtually no exact results are known.
That is most definitely not the case today.

At the end of this book, we are now in a position to identify the key quantity
that facilitates the entire exposition. Dissipation dominates the theory. Although
it was originally defined to give the probability ratios of observing in the same
initial ensemble, sets of trajectories, and their conjugate sets of anti-trajectories,
this definition (3.2) also involves a balance between energy change and phase space
expansion or contraction. This is particularly obvious in equilibrating systems, Eq.
(5.22). By losing a certain quantity of heat from an otherwise Hamiltonian system,
the system also gives up a certain amount of phase space. The ratio of heat loss to
phase space expansion is given by kBT , the reciprocal of the integration factor for
the heat appearing in the Clausius inequality for thermal reservoirs.

This quantity, kBT , is the thermodynamic temperature of the underlying equi-
librium state toward which the nonequilibrium system will relax, if it is so allowed.
This is another key element of our theory.

The fluctuation theorems are proved by directly exploiting the time reversal
symmetry of the dynamics. Time-reversed sets of trajectories and antitrajecto-
ries are actually exploited to prove the theorem. Indeed, in systems where these
conjugate sets do not exist, the fluctuation relations are not valid – ergodic con-
sistency has broken down. The theorems are so powerful and general, precisely
because their proofs make so few assumptions.

In a Universe where time increases, it seems to us that causality is the only phys-
ical possibility available. In a Universe where time increases, the axiom of causality
permits us to conduct experiments forward in time as indeed time increases. In
an anti-causal Universe, we must know the future states before they are available,
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because time only increases. Worse still, the present state of the Universe is in fact
undefined if future events contain random events as occur in many quantum pro-
cesses. If time decreased rather than increased, an anti-causal Universe would be
indistinguishable from our own, making the actual direction of time irrelevant.

The other feature of our thesis is the minor role played by entropy. Indeed,
entropy was only mentioned for systems at equilibrium (Sections 5.7 and 8.5).
Indeed, since Gibbs’ second paradox was announced (that entropy is conserved
by autonomous Hamiltonian dynamics), entropy has been problematic away from
equilibrium. Our thesis shows that it is unnecessary to consider entropy, except
for equilibrium systems where dissipation, on the other hand, is identically zero.
Entropy and dissipation are thus seen to have perfectly complementary roles.

It seems astonishing that 150 years after Clausius made his famous remarks
(Clausius, 1865)

The energy of the Universe is constant.
The entropy of the Universe tends to a maximum,

we have now come to such a different point of view. The ubiquity of Clausius’ view
is all the more astonishing, because of the logically correct criticisms of his argu-
ments that were already made in the late nineteenth century (Bertrand, 1887) and
very early in the twentieth century (Orr, 1904, 1905; Buckingham, 1905). These
criticisms and others were summarized in the widely read encyclopedia article
written by the Ehrenfests in 1912 (Ehrenfest and Ehrenfest, 1990). This article was
translated into English in 1959. In the preface to the English translation, Tatiana
Ehrenfest wrote: “At the time the article was written, most physicists were still
under the spell of the derivation by Clausius of the second law of thermodynam-
ics in the form of the existence of an integrating factor for the heat … ” Ehrenfest
and Ehrenfest (1990, p. viii). Clausius’s predictions were made based on equilib-
rium system arguments. Nonequilibrium systems, including the current state of
our world, are not treated by Clausius. Because many systems can be treated as
close to equilibrium, the results remain extremely useful, but the fact that they are
not always valid is rarely recognized today.

Energy and the entropy are both constants for autonomous Hamiltonian dynam-
ics but, on average, the time-integrated dissipation increases until at sufficiently
late times in any isolated or thermostatted system it approaches a constant value.
In that limit, the instantaneous dissipation is zero everywhere in the allowed phase
space. This assumes, of course, that classical mechanics suffices to describe the
dynamics of our system and that our system of interest is T-mixing. We know that
both assumptions fail to hold for natural processes taking place across the natural
Universe. However, to at last be able to understand the basic statistical thermody-
namics of classical systems is a considerable improvement in our understanding
of natural processes!

Unlike entropy and temperature of Clausius’ classical thermodynamics, dissipa-
tion and the temperature of the underlying equilibrium state are, for the systems
studied herein, always well defined, regardless of system size or the proximity of
that system to equilibrium.
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We have also at last come to realize the fundamental role played by causality in
physics. Only the past influences the present. The future will, in turn, be influenced
by the present. The future cannot influence the present. The equations of motion
in physics are by themselves insufficient to predict what goes on in the Universe.
Those equations must be supplemented with the axiom of causality. This axiom
is so natural that most physicists, chemists, and engineers fail to realize that it is
in fact an assumption and that an alternative mathematical possibility even exists.
We have argued that although anti-causality is a mathematical possibility, it can-
not be a physical possibility because it makes the present state of the Universe
undefined when there are random quantum, or free-will, processes in the future.

The lack of recognition of the significance of causality is, however, precisely why
the proof of the “laws” of thermodynamics had to wait so long.
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