
Email Controls and Detection Engine

Final Year Project Report

by

Abdul Moiz Quddus

Kaleem Ullah

Usman Afzal

Muhammad Luqman

In Partial Fulfillment

Of the Requirements for the degree

Bachelor of Engineering in Software Engineering (BESE)

Military College of Signals

National University of Sciences and Technology

Islamabad, Pakistan

(2023)

Page | i

DECLARATION

We hereby declare that this project report entitled “Email Controls and Detection

Engine” submitted to the “CSE Department”, is a record of an original work done

by us under the guidance of Supervisor “Dr. Waleed Bin Shahid” and that no part

has been plagiarized without citations. Also, this project work is submitted in the

partial fulfillment of the requirements for the degree of Bachelor of Computer

Science.

Team Members Signature

Abdul Moiz Quddus ______________

Kaleem Ullah ______________

Usman Afzal ______________

Muhammad Luqman ______________

Supervisor: Signature

AP Dr. Waleed Bin Shahid ______________

Co-Supervisor: Signature

Prof. Dr. Hammad Afzal ______________

Date:

Place:

Military College of Signals

Page | ii

DEDICATION

To our parents, whose unwavering support and encouragement have been the

foundation of our academic journey. This thesis is a testament to their love and

belief in us. We thank them for everything.

Page | iii

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues, and most of all our worthy supervisor, Dr. Waleed Bin

Shahid, without your guidance.

The group members, who through all adversities worked steadfastly.

Page | iv

TABLE OF CONTENTS

Chapter 1 .. 1

INTRODUCTION... 1

1.1 Overview ... 2

1.2 Problem Statement .. 2

1.3 Proposed Solution ... 3

1.4 Working Principle ... 4

1.5 Objectives ... 5

1.5.1 General Objectives: .. 5

1.5.2 Academic Objectives: .. 5

1.6 Scope ... 5

1.7 Deliverables: ... 6

1.7.1 User Accessibility and Control through Plugin: .. 6

1.7.2 Email Analysis and Report: ... 6

1.7.3 Email Classification and Scoring: .. 7

Relevant Sustainable Environmental Goals .. 7

1.8.1 Industry, Innovation, and Infrastructure .. 7

1.8 Structure of Thesis .. 7

Chapter 2 .. 9

LITERATURE REVIEW .. 9

2.1 Existing Email Security Solutions .. 9

2.1.1 Secure Email Gateways (Segs): ... 9

2.1.2 Advanced Threat Protection (Atp): .. 10

2.1.3 Email Authentication Protocols: .. 10

2.2 Spam Detection Techniques ... 11

2.2.1 Rule-Based Filtering: ... 11

2.2.2 Machine Learning: ... 12

2.2.3 Deep Learning: ... 13

2.3 Phishing Detection Techniques ... 14

5.5.1 Heuristic Analysis: .. 14

5.5.2 Machine Learning: .. 14

5.5.3 Blacklists And Whitelists: ... 14

2.4 Research Papers .. 14

2.5 Motivation To Work In Light Of The Literature Review: 15

Page | v

Chapter 3 .. 17

PROBLEM DEFINITION ... 17

3.1 Challenges and Requirements: .. 17

3.1.1 Evolving Email Threats and Adapting to Different Types of Threats: 17

3.1.2 Inadequate Detection, False Positives, and Enhancing Accuracy:..................... 18

3.1.3 Combining Detection Techniques and Developing a Comprehensive Threat

Detection Framework: .. 18

3.1.4 Ensuring Scalability and Efficiency: .. 18

Chapter 4 .. 20

METHODOLOGY ... 20

4.1 Email Fetching via Plugin ... 20

4.2 Authentication and Authorization ... 20

4.3 API Integration.. 20

4.4 Data Transfer .. 21

4.5 Server-Side Processing ... 21

4.5.1 Convolutional Neural Network (CNN) .. 21

4.5.2 Long Short-Term Memory (LSTM) .. 22

4.5.3 BERT ... 22

4.5.4 Random Forest Classifier ... 23

4.6 Data Collection and Preprocessing: .. 23

4.7 Feature Extraction and Selection: ... 24

4.8 Model Development and Integration: ... 24

4.9 Model Evaluation and Optimization: .. 25

4.10 Deployment and Continuous Improvement: ... 26

Chapter 5 .. 27

DETAILED DESIGN AND ARCHITECTURE .. 27

5.1 System Overview .. 27

5.1.1 Modules Overview ... 27

5.1.2 Plugin ... 27

5.1.3 Back-End Server .. 28

5.1.4 Reporting Panel .. 28

5.2 System Architecture .. 28

5.2.1 Architectural Design .. 29

5.2.2 Decomposition Description.. 29

Page | vi

5.3.1 Design Rationale .. 33

5.2.3.1 Client Server Architecture: ... 34

5.2.3.2 Backend Server: .. 34

5.2.3.3 Plugin: ... 34

5.3 Data Design ... 34

5.3.1 Data Description .. 34

5.3.2 Data Dictionary .. 34

5.4 Component Design .. 35

5.4.1 Component Diagram .. 36

5.4.2 Package Diagram ... 37

5.5 Human Interface Design ... 38

5.5.1 Use Cases ... 38

5.5.2 User Interfaces ... 44

5.5.3 Screen Objects And Actions .. 46

Chapter 6 .. 48

IMPLEMENTATION AND TESTING .. 48

6.1 Introduction ... 48

6.2 Software Development Methodologies: .. 48

6.2.1 Collaboration Between Teams: .. 48

6.2.2 Iterative Development For Each Component:.. 49

6.2.3 Prioritization Of Features: .. 49

6.2.4 Continuous Feedback And Improvement: ... 49

6.2.5 Adaptability: .. 49

6.3 Tools And Technologies: .. 50

6.3.1 Chromium Extension: .. 50

6.3.2 Reporting Panel: ... 50

6.3.3 Backend Server: ... 51

6.3.4 Tools .. 53

6.4 Testing Methodology: ... 53

6.4.1 Unit Testing: .. 54

6.4.2 Integration Testing: .. 55

6.4.3 Functional Testing: .. 56

6.4.4 Security Testing: .. 57

6.4.5 Performance Testing: ... 58

Page | vii

6.4.6 System Testing: .. 58

Chapter 7 .. 62

RESULTS AND DISCUSSION ... 62

7.1 Structure Analysis: .. 62

7.2 Text Analysis: ... 62

7.3 URL Analysis: .. 63

7.4 Meta-classifier: ... 63

Chapter 8 .. 64

CONCLUSION AND FUTURE WORK .. 64

8.1 Conclusion .. 64

8.2 Future Work .. 65

Chapter 9 .. 67

LIMITATIONS ... 67

9.1 Size of the Dataset .. 67

9.2 Quality of the Dataset ... 68

9.3 Diversity of the Dataset .. 68

9.4 Imbalanced Dataset .. 69

9.5 Static Dataset .. 70

9.6 Limited External Sources ... 70

Chapter 10 .. 72

REFERENCES .. 72

Page | viii

LIST OF FIGURES

Figure 1: SDG Goal 9 (Industry, Innovation & Infrastructure) 7

Figure 2: System Overview for Processing of an email. .. 27

Figure 3: Client Server Architecture Diagram with sub components. 29

Figure 4: Sequence Diagram for Account, Authorization, Get Email, Send Email

and Generate Report. .. 31

Figure 5: Sequence Diagram for logging out. ... 31

Figure 6: Activity Diagram for plugin. ... 32

Figure 7: Activity Diagram for Server. ... 33

Figure 8: Component diagram for overall system. ... 36

Figure 9: Package Diagram for overall system. .. 37

Figure 10: Usecase Diagram for overall system. .. 38

Figure 11: Sign In page of Google API. ... 44

Figure 12: Menu Page of Plugin ... 45

Figure 13: Reporting Panel ... 46

Figure 14: Visual Studio Code (just for showing UI of IDE) 53

Page | ix

LIST OF TABLES

Table 1: Usecase of Plugin Installation. ... 39

Table 2: Usecase of Account Authentication. ... 40

Table 3: Usecase of Fetching Email. .. 40

Table 4: Usecase of sending email to backend. .. 41

Table 5: Usecase notifying on successful send. ... 41

Table 6: Usecase of updating Reports Panel. ... 42

Table 7: Usecase of showing report. .. 43

Table 8: Usecase of logging out... 43

Table 9: Performance Matrix of Structure Analysis Module. 62

Table 10: Performance Matrix of Text Analysis Module. 63

Table 11: Performance Matrix of URL Analysis Module. 63

Page | x

ABSTRACT

With the increasing sophistication and frequency of email-based cyber

attacks, it has become essential for organizations and individuals to implement

effective security measures to protect their networks and sensitive information.

However, many individuals lack the necessary knowledge and training to identify

potential phishing attacks, malicious content, and attachments in their email inboxes,

leaving organizations vulnerable to data breaches and other security threats.

To address this challenge, we have developed the Email Controls and

Detection Engine. This product is designed to assist individuals in detecting and

analyzing potential security threats in their email inboxes, providing an efficient and

reliable tool for organizations to combat email-based cyber attacks.

The Email Controls and Detection Engine is a plugin designed to assist

individuals in detecting and analyzing potential security threats in their email

inboxes. This plugin is compatible with all modern browsers that use the Chromium

platform and requires an internet connection for proper functionality. The analysis

of email content is performed on the backend server, utilizing predetermined rules,

with the results displayed on the plugin interface. Overall, the Email Controls and

Detection Engine provides an efficient and reliable tool for organizations to combat

potential security threats in their email communication.

Introduction Chapter 1

Page | 1

Chapter 1

INTRODUCTION

The aim of this project is to provide a solution for the increasing cyber threats

posed by email-based attacks. The Email Controls and Detection Engine is a Plugin-

based solution designed to help both individuals and organizations to detect and

analyze potential phishing attacks, malicious content, attachments, and hyperlinks

in their email inbox. The plugin provides an efficient and reliable tool for

organizations to combat potential security threats in their email communication.

With the increasing sophistication and frequency of email-based cyber attacks,

many individuals lack the necessary knowledge and training to identify potential

threats in their email inboxes, leaving organizations vulnerable to data breaches and

other security threats. The Email Controls and Detection Engine addresses this

challenge by offering a reliable tool to assist individuals in detecting and analyzing

potential security threats.

The Email Controls and Detection Engine is comprised of three main modules:

the Plugin, Reporting Panel, and Back-End Server. The Plugin is designed using

HTML, CSS, and JavaScript, and offers features such as fetching and displaying

emails, checking the connection to the server, and providing access to the reporting

panel. The Back-End Server, AI-based modules, includes an email parser, body

analysis, structure analysis, URL analysis, meta-analysis, and reports generation.

After analyzing the email, the server sends the results back to the Reporting Panel,

a simple landing page where users can view or download the complete detailed

report of the received .eml file.

This project caters to both individuals and organizations looking for a reliable

tool to combat email-based cyber-attacks. With the Email Controls and Detection

Engine, individuals can feel confident in their ability to identify potential threats and

protect their organization's sensitive information.

Introduction Chapter 1

Page | 2

1.1 OVERVIEW

The Email Controls and Detection Engine is a proactive email security solution

designed to address the increasing threat of email-based cyber attacks. This Plugin-

based solution provides organizations and individuals with an efficient and reliable

tool to detect and analyze potential phishing attacks, malicious content, attachments,

and hyperlinks in their email inbox.

The system comprises three modules: the Plugin, Reporting Panel, and Back-

End Server. The Plugin, designed in HTML, CSS, and JavaScript, fetches emails

and provides users with a connection status to the Back-End Server. The Back-End

Server, a Python-based server, analyzes emails using predetermined rules and sends

the results to the Reporting Panel, where the complete detailed report of the email is

displayed.

The Email Controls and Detection Engine aims to address the limitations of

current email security solutions, which are reactive and rely on individuals to

manually identify and report suspicious emails. By providing a proactive and

reliable email security solution, the system enables organizations and individuals to

protect their sensitive information, reputation, and ensure business continuity.

Overall, the Email Controls and Detection Engine is an essential tool for

organizations and individuals looking to safeguard their email communication from

potential cyber threats.

1.2 PROBLEM STATEMENT

Problem Statement Email communication is an essential part of business

operations, but it has also become a prime target for cybercriminals looking to

exploit vulnerabilities in an organization's security system. Phishing attacks,

malware, and other email-based threats have become increasingly sophisticated,

making them harder to detect and prevent. These attacks can result in significant

financial losses, damage to an organization's reputation, and compromise of

sensitive information.

Introduction Chapter 1

Page | 3

Current email security solutions are often reactive, relying on individuals to

manually identify and report suspicious emails. This approach is time-consuming

and unreliable, as individuals may not have the necessary training or expertise to

recognize these threats. This creates a pressing need for a proactive and reliable

email security solution that can effectively identify and prevent email-based attacks.

Due to the increasing prevalence of email phishing attacks, many organizations

are vulnerable to significant financial loss and reputational damage. The Belgian

Bank lost $70 million to an email phishing scam, highlighting the severity of the

issue. In fact, 91% of all cyber attacks start with a phishing email, and certain

industries are particularly vulnerable. Therefore, there is an urgent need for a reliable

tool to help individuals and organizations detect and analyze potential phishing

attacks, malicious content, attachments, and hyperlinks in their email inbox.

The problem statement, therefore, is how can organizations proactively and

reliably detect and prevent email-based cyber threats to safeguard their sensitive

information and reputation, and ensure business continuity?

1.3 PROPOSED SOLUTION

Based on the identified problem, the proposed solution is the development of

an Email Controls and Detection Engine, a plugin-based system that can detect and

analyze potential phishing attacks, malicious content, attachments, and hyperlinks

in email inboxes. The plugin would have features such as fetching emails, checking

connections to the backend server, and displaying results on the reporting panel. The

backend server would be an AI-based server with features such as an email parser,

body analysis, structure analysis, URL analysis, meta-analysis, and reports

generation, URLs analysis, and meta-analysis. The reporting panel would be a

simple landing page where the complete detailed report of the email file would be

displayed. The solution aims to provide organizations and individuals with an

efficient and reliable tool to combat potential security threats in their email

communication.

Introduction Chapter 1

Page | 4

1.4 WORKING PRINCIPLE

The Email Controls and Detection Engine operates through a combination of

client-server architecture and modular design, which allows for efficient and

effective detection and analysis of potential email-based cyber threats. The working

principle can be summarized in the following steps:

• User Interface: The user interacts with the plugin through a user interface

designed to display the plugin and facilitate user interactions.

• Email Fetching: The Gmail API component handles incoming and outgoing

requests to the Google server to fetch the emails for analysis.

• Browser Plugin: The plugin component is responsible for receiving and

displaying incoming emails. It then sends requests to the backend server for

further processing.

• Backend Server Analysis: The backend server, a Python-based server that is

AI-powered, performs a comprehensive analysis of the emails, including

scanning for malicious content, attachments, and hyperlinks. It utilizes AI-

based techniques such as structure analysis, URL analysis, and meta-analysis

to detect potential threats.

• Report Generation: After the analysis is complete, the backend server

generates detailed reports on the findings and sends them back to the plugin.

• Reporting Panel: The reporting panel, a simple landing page, displays the

complete detailed report of the analyzed email file for the user to view or

download.

The decomposition of the Email Controls and Detection Engine into smaller

modules and components allows for a more manageable and maintainable system.

The modular design ensures that changes or updates to one component do not affect

the others, making the system more flexible and adaptable to future needs.

The client-server architecture allows for centralized management of resources and

services, enabling better control and security. This architecture also permits multiple

Introduction Chapter 1

Page | 5

clients to access shared resources and services, facilitating data and information

sharing across multiple devices and users.

1.5 OBJECTIVES

1.5.1 General Objectives:

To develop a state-of-the-art plugin-based email security solution, powered

by artificial intelligence and machine learning techniques, to provide individuals

and organizations with a reliable and efficient tool for detecting and analyzing

potential email-based cyber threats.

1.5.2 Academic Objectives:

• Development of an intelligent Email Controls and Detection Engine

• Implementation of AI and machine learning techniques for efficient

threat detection and analysis

• Enhancing collaboration and problem-solving skills by working in a team

• Designing a project that contributes to the cybersecurity of individuals

and organizations, promoting the welfare of society.

1.6 SCOPE

In the era of digital communication, email spam has emerged as a significant

concern for organizations and individuals. The increasing volume of unsolicited and

potentially harmful messages demands a more effective solution to ensure email

security and user confidence. This project aims to leverage AI/ML techniques and

browser plugin technology to tackle this issue head-on.

The Email Controls and Detection Engine provides users with a reliable and

user-friendly tool to authenticate their email accounts, fetch emails from their

inboxes, and send them to a cloud-based detection engine for analysis. By parsing

and examining each email component, the system can identify potential spam

messages and generate a comprehensive PDF report of its findings.

Introduction Chapter 1

Page | 6

This innovative approach not only enhances the email security of organizations

and individuals but also promotes transparency and self-validation, empowering

users to take control of their digital communication. By offering seamless integration

with various email service providers, compatibility with Windows/Linux

environments, and chromium-based browsers, the system caters to a broad user base

with diverse requirements.

In summary, the Email Spam Detection System offers a cutting-edge solution

for identifying and analyzing potential spam emails, ultimately reducing the risk of

security breaches, data leaks, and user inconvenience in the ever-evolving landscape

of digital communication.

1.7 DELIVERABLES:

1.7.1 User Accessibility and Control through Plugin:

The system offers user-friendly accessibility and control by providing a

browser plugin and a reporting panel. Users can authenticate their email accounts,

fetch emails, and send them for analysis through the plugin. The reporting panel

enables users to view and download the generated PDF reports, promoting

transparency and self-validation in the email communication process.

1.7.2 Email Analysis and Report:

The Email Controls and Detection Engine provides a comprehensive analysis

of each email component, identifying potential spam messages and generating a

detailed PDF report outlining its findings. This enables users to understand the

credibility of the email sender and the security risks associated with the email

content.

Introduction Chapter 1

Page | 7

1.7.3 Email Classification and Scoring:

Utilizing AI/ML techniques and data sets, the Email Controls and Detection

Engine classifies and scores the emails based on their potential spamming nature.

This process helps users to quickly identify potentially harmful emails and

prioritize genuine messages.

RELEVANT SUSTAINABLE ENVIRONMENTAL GOALS

1.8.1 Industry, Innovation, and Infrastructure

The Email Controls and Detection Engine contributes to the development of

innovative cybersecurity solutions for both organizations and individual users. By

integrating advanced AI/ML algorithms and modern technologies, this project

enhances the security and efficiency of email communication systems. It promotes

sustainable IT infrastructure by reducing the impact of spam and phishing emails,

fostering an environment that prioritizes innovation and industry advancements.

Figure 1: SDG Goal 9 (Industry, Innovation & Infrastructure)

1.8 STRUCTURE OF THESIS

The structure of the thesis defined the distribution of chapters according to their

topics.

• This Chapter 1 is Introduction.

Introduction Chapter 1

Page | 8

• Chapter 2 contains Literature Review.

• Chapter 3 has Problem Definition.

• Chapter 4 describes Methodology.

• Chapter 5 talks about Detailed Design and Architecture.

• Chapter 6 has Implementation and Testing.

• Chapter 7 finalizes the Results and Discussion.

• Chapter 8 contains Conclusion and Future Work.

• Chapter 9 at last contains References.

Literature Review Chapter 2

Page | 9

Chapter 2

LITERATURE REVIEW

A new product is launched by modifying and enhancing the features of

previously launched similar products. Literature Review is an important step for the

development of an idea to a new product. For the Email Controls and Detection

Engine, a detailed study regarding all similar projects is compulsory. Our research

is divided into the following points:

• Existing email security solutions

• Spam detection techniques

• Phishing detection techniques

• Research papers

2.1 EXISTING EMAIL SECURITY SOLUTIONS

Email security solutions have been evolving to combat the increasing threats

of spam, phishing, and other malicious content. Some of the existing solutions are:

2.1.1 Secure Email Gateways (SEGs):

These solutions provide protection against spam, phishing, and malware by

filtering and scanning inbound and outbound emails. SEGs work by analyzing

emails in real time, evaluating them against a set of rules and known threats, and

blocking or quarantining suspicious messages. Examples of SEGs include:

2.1.1.1 Mimecast: Offers cloud-based email security with features such as

URL protection, attachment protection, and impersonation protection,

alongside archiving and continuity services.

2.1.1.2 Barracuda: Provides a comprehensive email security platform that

includes spam filtering, virus protection, email encryption, data loss

prevention, and advanced threat protection.

Literature Review Chapter 2

Page | 10

2.1.1.3 Proofpoint: Delivers a multi-layered email security solution that

combines advanced threat detection, real-time intelligence, and policy

enforcement to protect against spam, phishing, and malware attacks.

2.1.2 Advanced Threat Protection (ATP):

ATP solutions protect against sophisticated email-based threats that may

bypass traditional email security measures. These solutions use machine learning,

behavioral analysis, and sandboxing to detect and block advanced threats.

Examples of ATP solutions include:

2.1.2.1 Microsoft Office 365 Advanced Threat Protection: Protects Office

365 users from advanced threats, such as spear-phishing and zero-day

malware, by analyzing email attachments and URLs in a secure

environment and providing real-time threat intelligence.

2.1.2.2 Symantec Email Security Cloud: Offers advanced email threat

protection, including targeted attack protection, advanced URL defense,

and sandboxing to detect and block sophisticated threats before they

reach the recipient's inbox.

2.1.2.3 Cisco Advanced Malware Protection (AMP) for Email: Integrates

with Cisco Email Security to provide advanced threat protection, using

global threat intelligence, advanced sandboxing, and real-time malware

blocking to prevent attacks.

2.1.3 Email Authentication Protocols: These protocols help prevent email

spoofing and ensure the authenticity of the sender by verifying that an email has

been sent from a legitimate source. Examples include:

Literature Review Chapter 2

Page | 11

2.1.3.1 Sender Policy Framework (SPF): A protocol that allows domain

owners to specify which mail servers are authorized to send email on their

behalf. Receiving email servers can then check the sender's IP address

against the SPF record to verify that the email is from an authorized

source.

2.1.3.2 DomainKeys Identified Mail (DKIM): A digital signature-based

email authentication method that allows domain owners to sign their

emails using a private key. The receiving email server can then verify the

signature using the corresponding public key, which is published as a

DNS record, ensuring the email has not been tampered with and that it

comes from the claimed domain.

2.1.3.3 Domain-based Message Authentication, Reporting, and

Conformance (DMARC): A protocol that builds on SPF and DKIM by

allowing domain owners to define policies for how receiving email

servers should handle unauthenticated emails, such as rejecting or

quarantining them. DMARC also provides a reporting mechanism that

helps domain owners monitor and improve their email authentication

practices.

2.2 SPAM DETECTION TECHNIQUES

Various techniques have been developed to detect and filter spam emails. Here,

we elaborate on each technique and provide examples of their use:

2.2.1 Rule-based Filtering:

This approach involves creating predefined rules to identify spam based on

specific patterns. These patterns can include keywords, header information, sender

Literature Review Chapter 2

Page | 12

IP addresses, or other identifiable email characteristics. Rule-based filtering

systems analyze incoming emails and apply these rules to determine if they should

be flagged as spam.

Examples of rule-based filtering solutions:

2.2.1.1 SpamAssassin: An open-source email filter that uses a wide range of

heuristic tests, including text analysis, Bayesian filtering, DNS blocklists,

and collaborative filtering databases, to identify and flag spam emails.

2.2.1.2 SpamTitan: A cloud-based email security solution that uses rule-

based filtering, along with other techniques such as Bayesian analysis, to

block spam, phishing, and malware emails.

2.2.2 Machine Learning:

Machine learning techniques are used to classify emails as spam or non-spam

based on various email features, including text, links, and attachments. Algorithms

such as Naive Bayes, Decision Trees, and Support Vector Machines can be trained

on large datasets of known spam and non-spam emails, allowing them to

automatically identify patterns and characteristics associated with spam.

Examples of machine learning-based spam detection:

2.2.2.1 Naive Bayes: A popular probabilistic classifier based on Bayes'

theorem, often used in spam filtering due to its simplicity and

effectiveness. Naive Bayes classifiers can be trained on labeled email

datasets to predict whether an email is spam or non-spam based on the

frequency and co-occurrence of words and phrases in the email.

Literature Review Chapter 2

Page | 13

2.2.2.2 Support Vector Machines (SVM): A machine learning algorithm

that finds the best hyperplane to separate spam and non-spam emails in a

high-dimensional feature space. SVMs can provide high accuracy and

generalization performance in spam detection tasks, particularly when

combined with text preprocessing and feature selection techniques.

2.2.3 Deep Learning:

Advanced techniques like Recurrent Neural Networks (RNNs) and Long

Short-Term Memory (LSTM) networks are used to analyze the content and context

of emails for spam detection. These deep learning models can capture complex

patterns and relationships within email data, including the structure and semantics

of text, allowing for more accurate and robust spam classification.

Examples of deep learning-based spam detection:

2.2.3.1 Recurrent Neural Networks (RNN): A type of neural network

designed to process sequential data, such as text in emails. RNNs can be

trained to detect spam by learning patterns and dependencies in the email

content and can effectively model the contextual information present in

emails.

2.2.3.2 Long Short-Term Memory (LSTM) networks: A type of RNN that

can learn long-range dependencies in data, making them particularly

suitable for spam detection tasks where context and relationships between

words and phrases are important. LSTM networks can be trained on large

email datasets to classify emails as spam or non-spam based on their

content and structure.

Literature Review Chapter 2

Page | 14

By combining these spam detection techniques, email security solutions can achieve

higher accuracy and better adapt to the evolving nature of spam and email-based

threats.

2.3 PHISHING DETECTION TECHNIQUES

Phishing detection techniques aim to identify and block malicious emails

attempting to deceive recipients into revealing sensitive information or performing

actions that compromise security:

5.5.1 Heuristic Analysis:

This approach involves analyzing email content, structure, and sender

information to identify patterns commonly associated with phishing emails.

5.5.2 Machine Learning:

Machine learning algorithms can be trained to detect phishing emails based

on features such as URLs, sender information, and email content.

5.5.3 Blacklists and Whitelists:

Phishing detection systems may rely on blacklists of known phishing sites

and whitelists of trusted websites to identify malicious emails.

2.4 RESEARCH PAPERS

Several research papers have proposed and evaluated various techniques for

detecting spam and phishing emails:

Literature Review Chapter 2

Page | 15

[1] proposed a hybrid approach for spam filtering, combining rule-based filtering

and machine learning techniques, achieving a high detection rate and low false

positive rate.

[2] developed an LSTM-based deep learning model for spam detection, achieving

an accuracy of 97.5% on a benchmark dataset.

[3] investigated the use of machine learning algorithms, including Naive Bayes,

Decision Trees, and Support Vector Machines, for phishing email detection, finding

that the ensemble-based approach provided the best results.

[4] introduced D-Fence, a flexible, efficient, and comprehensive phishing email

detection system. D-Fence leverages natural language processing, machine learning,

and a rule-based approach to analyze email content, context, and sender information.

The system is designed to adapt to different types of phishing emails and offers a

high detection rate while maintaining a low false positive rate. D-Fence

demonstrates the effectiveness of combining multiple techniques to create a more

robust and accurate phishing detection solution.

2.5 MOTIVATION TO WORK IN LIGHT OF THE

LITERATURE REVIEW:

After conducting the literature review, it became evident that email security

remains a critical concern, with spam and phishing attacks continuing to evolve in

sophistication. Existing email security solutions, spam detection techniques, and

phishing detection techniques have shown significant progress. However, there is

always room for improvement in terms of accuracy, adaptability, and

comprehensiveness.

Literature Review Chapter 2

Page | 16

Working on this project was motivated by the desire to build upon the

existing research and develop a more effective and robust email controls and

detection engine. The literature review highlights the strengths and weaknesses of

various techniques, which provided valuable insights for our project. By learning

from and combining the most successful approaches, such as rule-based filtering,

machine learning, and deep learning, we aimed to create an email security solution

that offers a higher detection rate and a lower false positive rate.

Furthermore, the literature review showcases the success of hybrid systems,

like D-Fence, in achieving comprehensive phishing email detection. This project

sought to emulate and build upon such successes by combining multiple techniques

and considering various aspects of email data to create a more accurate and adaptable

email security solution. The ultimate goal of this project is to contribute to the

ongoing development of email security systems and help protect users from ever-

evolving email-based threats.

Problem Definition Chapter 3

Page | 17

Chapter 3

PROBLEM DEFINITION

The primary goal of this project is to develop an advanced email controls and

detection engine capable of effectively identifying and blocking various email

threats, including spam, phishing, and malware. To address the challenges posed by

evolving email threats, inadequate detection, and false positives, the proposed

solution must be adaptable, accurate, and comprehensive. Furthermore, the engine

should combine multiple detection techniques, such as rule-based filtering, machine

learning, and deep learning, to offer a robust defense against email-based attacks.

Finally, the system should be scalable and efficient, ensuring its effectiveness in

processing and analyzing large volumes of email data without compromising

accuracy or performance.

3.1 CHALLENGES AND REQUIREMENTS:

To achieve these objectives, the problem definition can be broken down into

the following subproblems and we will explain them in the form of challenges and

requirements.

3.1.1 Evolving Email Threats and Adapting to Different Types of Threats:

Challenge: Email threats have grown more sophisticated over time, with

attackers shifting from generic spam emails to targeted spear-phishing campaigns.

Existing email security solutions must be continuously updated and enhanced to

keep up with these evolving tactics and techniques. Email threats come in various

forms, such as spam, phishing, and malware.

Requirement: Develop an email controls and detection engine that can adapt

to changing attacker tactics and techniques, providing better protection to users.

Incorporate diverse detection techniques in the engine that can adapt to various

threat types.

Problem Definition Chapter 3

Page | 18

3.1.2 Inadequate Detection, False Positives, and Enhancing Accuracy:

Challenge: Current email security solutions may struggle with accurately

identifying all types of threats, leading to false positives and negatives.

Requirement: Create a more accurate and reliable email security solution that

minimizes false positives and negatives while effectively detecting threats.

Optimize the detection algorithms to improve accuracy and reduce false positives

and negatives through continuous training and refinement of machine learning and

deep learning models.

3.1.3 Combining Detection Techniques and Developing a Comprehensive

Threat Detection Framework:

Challenge: An optimal email security solution should leverage multiple

detection techniques to improve its accuracy and comprehensiveness.

Requirement: Develop an email controls and detection engine that

harmonizes rule-based filtering, machine learning, and deep learning techniques to

provide a robust defense against email-based attacks. Design a framework that

effectively integrates these techniques, leveraging the strengths of each to cover

the weaknesses of others, ensuring a more robust and accurate threat detection

system.

3.1.4 Ensuring Scalability and Efficiency:

Challenge: The volume of emails and email-based attacks continues to grow,

making it essential for email security solutions to be scalable and efficient.

Requirement: Design an email controls and detection engine that can handle

high volumes of emails while maintaining accuracy and performance, ensuring the

Problem Definition Chapter 3

Page | 19

email security solution remains effective as the organization and its email traffic

grow. Build the engine with scalability and efficiency in mind, using optimized

algorithms, parallel processing, and efficient resource management.

Methodology Chapter 4

Page | 20

Chapter 4

METHODOLOGY

The methodology section outlines the steps and techniques used to develop the

email controls and detection engine. This section provides a detailed explanation of

the various stages and components involved in the process, along with examples for

better understanding.

4.1 EMAIL FETCHING VIA PLUGIN

To fetch emails from the user's inbox, we will develop a plugin that integrates

with popular email clients or services (currently Gmail). The plugin will leverage

the email service's API to access the user's inbox, fetch emails, and send them to the

backend server for processing. The plugin will handle authentication, API requests,

and data transfer while ensuring user privacy and security.

4.2 AUTHENTICATION AND AUTHORIZATION

The plugin will implement OAuth 2.0 or a similar protocol to authenticate the

user and obtain the necessary permissions to access their email data. This will ensure

that the plugin operates within the boundaries of the user's privacy settings and

adheres to the email service's security requirements.

4.3 API INTEGRATION

The plugin will use the email service's API to fetch emails from the user's

inbox. It will handle API requests and data retrieval, ensuring that all relevant emails

are fetched and sent to the backend server for processing.

Methodology Chapter 4

Page | 21

4.4 DATA TRANSFER

The plugin will send the fetched email data to the backend server using a secure

communication protocol, such as HTTPS or SSL/TLS. This ensures that the email

data remains encrypted and protected during transit.

4.5 SERVER-SIDE PROCESSING

Upon receiving the email data, the backend server will preprocess the emails

and extract relevant features using the data preprocessing and feature extraction

subsystems. Then, the classification models subsystem will apply various detection

techniques, such as rule-based filtering, machine learning, and deep learning, to

classify the emails based on their threat levels.

Some of the AI/ML models that are used are described below.

4.5.1 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a class of deep learning models

primarily used for image and text recognition tasks. A typical CNN architecture

consists of a series of convolutional layers, followed by pooling layers, fully

connected layers, and an output layer. In the context of text analysis, CNNs can

automatically learn hierarchical representations of input data by scanning the text

with filters of varying sizes, allowing the model to capture meaningful patterns and

features.

In our project, we used a CNN to process email text for spam detection. The

CNN learns to recognize patterns in the text that differentiate spam emails from

legitimate ones. These patterns are then used to classify new, unseen emails as

spam or not spam.

Methodology Chapter 4

Page | 22

4.5.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural

network (RNN) specifically designed to address the vanishing gradient problem in

standard RNNs. This allows them to learn long-term dependencies in sequence

data more effectively. LSTMs consist of memory cells that can store information

over long sequences, along with input, output, and forget gates that regulate the

flow of information into and out of the memory cells.

In our project, we used an LSTM model to process email text for spam

detection. The LSTM learns to recognize patterns in the text and can capture long-

range dependencies that may be indicative of spam emails. This helps the model to

classify new, unseen emails as spam or not spam based on the patterns it has

learned.

4.5.3 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-

trained deep learning model developed by Google AI for natural language

understanding tasks. BERT is based on the Transformer architecture and utilizes

self-attention mechanisms to process input data. The key innovation in BERT is its

bidirectional training, which allows the model to learn contextual relationships

between words in both directions, resulting in a deeper understanding of the text.

In our project, we fine-tuned BERT for the email spam detection task using

our training data. BERT's ability to understand the context and semantic

relationships between words in the text helps the model differentiate between spam

and legitimate emails. This allows the model to classify new, unseen emails as

spam or not spam based on the patterns it has learned.

Methodology Chapter 4

Page | 23

4.5.4 Random Forest Classifier

The Random Forest Classifier is an ensemble learning method that constructs

multiple decision trees during training and combines their predictions to produce a

more accurate and robust classification. The key idea behind Random Forest is that

a group of "weak learners" (individual decision trees) can work together to form a

"strong learner" (the ensemble). During training, each decision tree in the Random

Forest is built using a random subset of the training data, which helps to decorrelate

the trees and reduce overfitting.

In our project, we used the Random Forest Classifier to process email

features and identify spam based on the patterns learned from the training data. The

ensemble nature of the Random Forest Classifier makes it less prone to overfitting

and more accurate in classifying new, unseen emails as spam or not spam.

4.6 DATA COLLECTION AND PREPROCESSING:

Data is the foundation for building a robust email security solution. The first

step in the methodology involves gathering a large dataset of emails, including

legitimate emails, spam, phishing, and emails with malware attachments.

Example:

Collect emails from publicly available sources, such as the Enron email dataset

and SpamAssassin dataset, as well as internal organizational archives with

permission.

Preprocessing involves cleaning and transforming the raw data into a suitable

format for further analysis. This may include removing unnecessary metadata,

converting email contents to lowercase, tokenizing words, and removing stop

words.

Methodology Chapter 4

Page | 24

Example:

Use Natural Language Processing (NLP) libraries, such as NLTK or spaCy, to

tokenize email text and remove stop words.

4.7 FEATURE EXTRACTION AND SELECTION:

The next step involves extracting relevant features from the preprocessed email

data. These features can be used to train machine learning and deep learning models

for threat detection.

Example:

Extract features like email header information, sender's domain, embedded

links, attachment types, and word frequencies.

Feature selection involves selecting the most relevant features that contribute

to accurate threat detection. This can be done using various techniques, such as

information gain, chi-square test, or recursive feature elimination.

Example:

Use the chi-square test to identify the most relevant features for classification.

4.8 MODEL DEVELOPMENT AND INTEGRATION:

With the selected features, develop machine learning and deep learning models

to identify and classify email threats. Split the dataset into training and testing

subsets for model evaluation.

Example:

Methodology Chapter 4

Page | 25

Train a Naive Bayes classifier, a Support Vector Machine (SVM) model, and

a Long Short-Term Memory (LSTM) neural network on the training data.

Integrate the rule-based filtering, machine learning, and deep learning models

into a comprehensive email controls and detection engine. Develop a framework that

combines the outputs of these models to make a final decision on the email threat

classification.

Example:

Use a weighted voting mechanism where each model's output contributes to

the final decision based on its performance during testing.

4.9 MODEL EVALUATION AND OPTIMIZATION:

Evaluate the performance of the email controls and detection engine using

various metrics, such as accuracy, precision, recall, and F1-score. Compare the

results against existing email security solutions to determine the effectiveness of the

developed engine.

Example:

Use a confusion matrix to calculate the mentioned metrics and identify areas

for improvement.

Optimize the models and the overall engine by tuning hyperparameters,

refining features, or adjusting the decision-making mechanism to minimize

false positives and negatives.

Example:

Perform a grid search for optimal hyperparameters in the SVM model to

improve its accuracy.

Methodology Chapter 4

Page | 26

4.10 DEPLOYMENT AND CONTINUOUS IMPROVEMENT:

Deploy the email controls and detection engine in a real-world setting, such as

an organization's email server, and monitor its performance. Continuously update

and improve the models by incorporating new data and feedback from real-world

deployments. This will help the email security solution adapt to evolving threats and

maintain its effectiveness over time.

Example:

Implement a feedback loop where users can report false positives or negatives,

allowing the models to learn from these instances and improve their accuracy.

Detailed Design and Architecture Chapter 5

Page | 27

Chapter 5

DETAILED DESIGN AND ARCHITECTURE

5.1 SYSTEM OVERVIEW

This section provides detailed system architecture of the Email Controls and

Detection Engine. An overview of system modules, their structure, and their

relationships are described in this section. User interfaces and related issues are also

discussed.

Figure 2: System Overview for Processing of an email.

5.1.1 Modules Overview

Email Controls and Detection Engine System requires several modules to

work. These modules can be divided into three parts, the Plugin, Reporting Panel

and Back-End Server. Following is a brief overview of all these modules. Detailed

descriptions of these modules are presented in section 3.

5.1.2 Plugin

This module would be designed in HTML, CSS, and JavaScript. It has

multiple features. Get emails, check connection to server and reports panel. The

get emails will fetch the emails and show in your inbox, check connection to server

return whether you have an active connection with the backend server or not, and

on clicking the reports panel will move you to the reporting panel where the results

are displayed.

Detailed Design and Architecture Chapter 5

Page | 28

5.1.3 Back-end Server

This module would be a Python based server. The backend server also has

multiple features. Email Parser, Body Analysis, Structure Analysis, Reports

Generation, URLs Analysis, and Meta Analysis. The email parser would parse the

email into multiple tokens e-g from, To etc. The server finds out the attachment

and URLs from the body of the email and then check the maliciousness of the

URLs and attachment through VirusTotal API. After the complete analysis of the

backend server the backend server would send the result back to the reporting

panel.

5.1.4 Reporting Panel

This module would be a simple landing page designed with HTML, CSS and

JavaScript where the complete detailed report of the email would be displayed

which is received from the server. The user would view or download the report

then from the Reporting Panel.

5.2 SYSTEM ARCHITECTURE

This section covers the overall architectural description of Emails Control and

Detection Engine. It includes the high-level and low-level descriptions of the project

including block diagrams of the application. Moreover, a complete object-oriented

description includes class diagrams, sequence diagrams, and others. Finally, the

rationale for the design pattern is provided.

Detailed Design and Architecture Chapter 5

Page | 29

Figure 3: Client Server Architecture Diagram with sub components.

5.2.1 Architectural Design

The architectural design of an Emails Control and Detection Engine would

describe the overall structure of the system, as well as the relationships between

the different components or modules that make up the system. This might include

information such as:

5.2.2 Decomposition Description

Decomposition is the process of breaking down a system or problem into

smaller, more manageable parts. In the context of the Email Controls and Detection

Engine, decomposition might involve dividing the plugin into separate components

or modules that each handle a specific aspect of its functionality.

For example, the plugin could be decomposed into the following components:

5.2.2.1 User interface:

This component would handle the display of the plugin and any user

interactions with it.

Detailed Design and Architecture Chapter 5

Page | 30

5.2.2.1 Plugin:

This component would be responsible for analyzing incoming emails for

potential threats and sending requests to the backend server for further

processing.

5.2.2.2 Gmail SMTP:

This component would handle the incoming and outgoing requests to

google server for emails.

5.2.2.3 Backend Server:

This component would be responsible for analyzing, scanning, and

generating reports of the emails.

By decomposing the Email Controls and Detection Engine into smaller parts, it

becomes easier to design, develop, and maintain the plugin. It also allows for more

modular and flexible design, as changes or updates to one component can be made

without affecting the others.

Detailed Design and Architecture Chapter 5

Page | 31

5.2.2.4 Sequence Diagram

Figure 4: Sequence Diagram for Account, Authorization, Get Email, Send Email and

Generate Report.

Figure 5: Sequence Diagram for logging out.

Detailed Design and Architecture Chapter 5

Page | 32

5.2.2.5 Dynamic View (Activity Diagrams)

 Plugin Activity Diagram

Figure 6: Activity Diagram for plugin.

Detailed Design and Architecture Chapter 5

Page | 33

Server Activity Diagram

Figure 7: Activity Diagram for Server.

5.3.1 Design Rationale

Some of the reasons for choosing the Main and subprogram architecture are given

below:

The Project is divided into smaller modules so it’s easy-to-understand flow of data.

Detailed Design and Architecture Chapter 5

Page | 34

5.2.3.1 Client Server Architecture:

With a client-server architecture, a central server can be used to manage

access to resources and services, allowing for better control and security.

Also, it allows multiple clients to access shared resources and services,

making it easier to share data and information between devices or users.

5.2.3.2 Backend Server:

It is a Python based server and will be responsible for analyzing,

scanning, and generating reports of the emails. Also, it allows multiple

clients to access shared resources and services, making it easier to share data

and information between multiple devices.

5.2.3.3 Plugin:

It is any way to integrate our solution as it can be installed on any modern

web browser. Hence, making it easy for users to continue with their work

while using plugin.

5.3 DATA DESIGN

5.3.1 Data Description

Our system takes all the data from the email file which is in the form of .eml

which the plugin will send to the backend server. The server parses the .eml file

and analyze the multiple parts of the email separately. The multiple parts include

meta, attachment, and structure of an email. The backend server after thoroughly

analyzes the different parts of an email and sends the result back to the reporting

panel in the form of Boolean.

5.3.2 Data Dictionary

Data used in our program is described with their type below:

Detailed Design and Architecture Chapter 5

Page | 35

• Delivered To: Boolean (Extracted from email)

• Received: string (Extracted from email)

• Return-Path: string (Extracted from email)

• From: string (Extracted from email)

• To: string (Extracted from email)

• Date: string (Extracted from email)

• Subject: string (Extracted from email)

• To: string (Extracted from email)

• Cc: string (Extracted from email)

• Content-Type: string (Extracted from email)

• Attachment: int (Extracted from email)

• text: string (Extracted from email)

• is_spam: boolean (used to tell whether the email is spam or ham)

• is_connect_server: boolean (used to check connection from the server)

• is_complete_report: boolean (used to notify after complete analysis of

report)

5.4 COMPONENT DESIGN

For optimal functioning of the application, the induvial and various

components of the system must be working at their best and their interactions should

be going smoothly. Let’s look at how the components interact with each other.

Detailed Design and Architecture Chapter 5

Page | 36

5.4.1 Component Diagram

Figure 8: Component diagram for overall system.

Detailed Design and Architecture Chapter 5

Page | 37

5.4.2 Package Diagram

Figure 9: Package Diagram for overall system.

Detailed Design and Architecture Chapter 5

Page | 38

5.5 HUMAN INTERFACE DESIGN

Figure 10: Usecase Diagram for overall system.

5.5.1 Use Cases

In this section, we cover, in detail, the major use cases of the Emails Control

and Detection Engine.

Use Case

Name

Plugin Installation

Actor User

Detailed Design and Architecture Chapter 5

Page | 39

Trigger The User Clicks on the Add to Chrome Button

Precondition The User has a chromium-based web browser

Activity Flow 1. Open the browser in which they want to install the plugin.

2. Navigate to the plugin or extension manager of the

application. This can usually be found in the settings or

preferences menu.

3. Search for the plugin by name or browse the available plugin

options.

4. Select the plugin and click the install button.

5. Follow any additional prompts or instructions for installing

the plugin.

6. Once the plugin is installed, it may need to be activated or

enabled within the application.

7. Restart the application to complete the installation process.

Postcondition The Plugin will now be accessible from the top of the browser

Table 1: Usecase of Plugin Installation.

Use Case

Name

Authenticate Account

Actor User, Google

Trigger The User clicked the Sign In with Google button

Precondition The User has already installed the plugin

Activity Flow 1. The User opens the Plugin.

2. The plugin displays the login screen to the user.

Detailed Design and Architecture Chapter 5

Page | 40

3. The User Sign In with google account.

4. The System proceeds with the login procedure.

Postcondition The plugin receives the authentication token and displays the

menu screen

Table 2: Usecase of Account Authentication.

Use Case

Name

Fetch Email

Actor User, Google

Trigger The User clicked the Get Emails Button

Precondition The User has Already logged in with Google Account

Activity Flow 1. Open the Plugin.

2. After Successful Authentication from your google account.

3. The user will click on the Get Emails Button.

4. After That All the Emails will be Shown On the plugin.

Postcondition The plugin displays all the emails

Table 3: Usecase of Fetching Email.

Use Case

Name

Send Email to Backend

Actor User, Backend Server

Trigger The User clicked the Send to Server

Precondition The User has already logged in the plugin

Detailed Design and Architecture Chapter 5

Page | 41

Activity Flow 1. Open the Plugin.

2. After Successful Authentication from your google account.

3. The user will click on the Get Emails Button.

4. Once all the emails will be fetched.

5. The user will then select the emails and send the emails to the

backend server.

Postcondition The Backend sends the status.

Table 4: Usecase of sending email to backend.

Use Case

Name

Notify on Successful Send

Actor Backend Server

Trigger The User Clicked the Send to Server

Precondition The User has already logged in the plugin and Send the emails

to the backend Server

Activity Flow 1. Open the Plugin.

2. After Successful Authentication from your google account.

3. The user will click on the Get Emails so the emails will

display on the Pugin.

4. After successfully fetching the email then the user will send

the emails to the backend server from plugin.

5. When the emails send successfully the plugin will notify you.

Postcondition The status would be visible in the plugin

Table 5: Usecase notifying on successful send.

Detailed Design and Architecture Chapter 5

Page | 42

Use Case

Name

Update on Reports Panel

Actor User, Backend Server

Trigger The User clicked the Reports Panel.

Precondition The User has already logged in the plugin.

Activity Flow 1. Open the Plugin.

2. After Successful Authentication from your google account.

3. The user will click on the Report Panel.

4. The report panel will show all the completed reports.

Postcondition The reporting panel would be displayed

Table 6: Usecase of updating Reports Panel.

Use Case Name Show Report

Actor User

Trigger The User clicked the show reports in the reporting panel.

Precondition The User has already logged in the app and the server would

complete the analysis of the report

Activity Flow 1. Open the Plugin.

2. After Successful Authentication from your google account.

3. The user will click on the Report Panel.

4. The report panel will show all the complete reports and the

reports which are under processing.

Detailed Design and Architecture Chapter 5

Page | 43

5. After complete processing from the backend. The Reporting

panel will show the complete report.

Postcondition The report will be displayed in the reporting panel

Table 7: Usecase of showing report.

Use Case Name Logout

Actor User

Trigger The User clicked the Logout Button

Precondition The User has already logged in the app

Activity Flow 1. After Successfully login in the plugin.

2. You will be displayed with a logout Button.

3. When You click on the logout Button You will be moved To

the Login screen.

Postcondition The plugin removes the token from the local Storage

Table 8: Usecase of logging out.

Detailed Design and Architecture Chapter 5

Page | 44

5.5.2 User Interfaces

5.5.2.1 Sign In Page

Figure 11: Sign In page of Google API.

Detailed Design and Architecture Chapter 5

Page | 45

5.5.2.2 Menu Page

Figure 12: Menu Page of Plugin

Detailed Design and Architecture Chapter 5

Page | 46

5.5.2.3 Reporting Panel

Figure 13: Reporting Panel

5.5.3 Screen Objects and Actions

5.5.3.1 Plugin: plugin consists of 3 components:

1. Sign In Screen:

The Sign In Screen consists of Sign In with Google Button. When You

Sign In with Google it moves to the menu screen.

2. Menu Screen:

It consists of 3 buttons

• Get Emails:

After clicking on the get emails the plugin will show you the

emails.

• Reporting Panel:

Detailed Design and Architecture Chapter 5

Page | 47

After clicking the Reporting Panel, the reporting panel would

appear and displays the result.

• Log Out:

After Clicking the Logout button, the access token stored in the

local storage would be removed.

3. Display Email:

The Display Email Screen lists all the emails with the checkbox on the side and

includes a button named “Send to Server”. After clicking on this button, the

emails select would be send to backend server.

5.5.3.2 Reporting Panel:

The Reporting Panel would display the complete detailed report of the

.eml file which is received from the server after complete analysis of the

report. The user would view or download the report then from the Reporting

Panel.

Implementation and Testing Chapter 6

Page | 48

Chapter 6

IMPLEMENTATION AND TESTING

6.1 INTRODUCTION:

The "Implementation and Testing" section aims to provide a comprehensive

overview of the methods, tools, and techniques used during the development of the

software, as well as the testing methodologies implemented to ensure its quality and

adherence to the initial specifications. This section will cover aspects such as

software development methodology, tools and technologies employed, and testing

approaches of our software. By discussing these aspects, the section will offer

insights into the development process, challenges encountered, and the measures

taken to create a reliable and efficient software solution.

6.2 SOFTWARE DEVELOPMENT METHODOLOGIES:

Agile methodology has been chosen for this project because it is popular,

iterative, and incremental approach to software development that emphasizes

flexibility, collaboration, and customer satisfaction. Agile methodology positively

impacts the development process and the quality of the final product.

In the context of our email analysis and reporting software, adopting Agile

methodology provided significant benefits to our development process. Here's how

we applied Agile specifically to our project:

6.2.1 Collaboration between teams:

Agile promoted close collaboration between us, the developers

working on the email analysis functionality, the reporting panel team

(including frontend and backend developers), and the Chromium extension

developers. This ensured seamless integration between components and clear

communication about requirements and changes.

Implementation and Testing Chapter 6

Page | 49

6.2.2 Iterative development for each component:

We developed each component of the software (email analysis,

reporting panel, and Chromium extension) iteratively. We focused on

delivering small, functional parts of each component in sprints, allowing us

to evaluate their effectiveness and make improvements based on user

feedback.

6.2.3 Prioritization of features:

Agile enabled us to prioritize the most critical features for each

component. For example, we prioritized the development of essential email

analysis functionality, followed by basic reporting panel features, and finally

the Chromium extension. This ensured that the most important aspects of the

project were developed first, delivering maximum value to users.

6.2.4 Continuous feedback and improvement:

By releasing small increments of each component, we gathered user

feedback on the email analysis results, reporting panel usability, and the

Chromium extension's effectiveness. This feedback helped us identify issues,

make improvements, and validate that the software was meeting user needs.

6.2.5 Adaptability:

Agile allowed us to adapt to changing requirements or new

discoveries more efficiently. If we needed to add new analysis features or

modify the reporting panel based on user feedback, Agile enabled us to adjust

our development plan and priorities accordingly.

In summary, Agile methodology helped us develop our email analysis and reporting

software more effectively by promoting collaboration, iterative development,

Implementation and Testing Chapter 6

Page | 50

prioritization of features, continuous feedback, and adaptability. This ensured that

our software met user needs and delivered value throughout the development

process.

6.3 TOOLS AND TECHNOLOGIES:

For every component we have used different tools and technologies. This

section will provide details of tools and technology used in each component.

6.3.1 Chromium Extension:

Programming Language:

JavaScript - The primary language used for the development of this

Chromium extension. JavaScript is versatile and widely used for web

development, making it suitable for creating browser extensions.

Framework:

None - This specific module does not utilize a particular framework.

It relies on plain JavaScript to handle the extension's logic and

interact with Google APIs.

Libraries:

Manifest V3: The latest version of the manifest file format used for

Chromium extensions. It helps define the extension's metadata,

permissions, and other necessary configurations.

6.3.2 Reporting Panel:

Programming Language:

JavaScript (JS)

Implementation and Testing Chapter 6

Page | 51

Library:

React.js (A popular JavaScript library for building user interfaces)

UI Framework:

React-Bootstrap (A UI component library built with React and based

on the Bootstrap framework)

Routing:

React Router DOM (A library for handling routing in React

applications)

6.3.3 Backend Server:

Programming Language:

Python

Web framework:

Quart

Libraries:

• asyncio: Asynchronous I/O support for concurrent operations.

• csv: Reading and writing CSV files.

• base64: Encoding and decoding binary data using base64.

• collections: Container data types.

• os: Operating system interfaces.

• re: Regular expression operations.

• urllib.parse: URL parsing and manipulation.

• aiohttp: Asynchronous HTTP client/server framework.

• email: Parsing and handling email messages.

• bs4 (BeautifulSoup): HTML and XML parsing.

Implementation and Testing Chapter 6

Page | 52

• string: Common string operations.

• google.oauth2.credentials: Google OAuth 2.0 authentication.

• googleapiclient.discovery: Google API client library.

• jwt: JSON Web Token support.

• functools: Higher-order functions and operations on callable objects.

• datetime: Basic date and time types.

• reportlab: PDF processing library.

• quart_cors: Cross-origin resource sharing (CORS) support for Quart.

Coding Conventions:

• Consistent indentation: The code consistently uses two spaces for

indentation, providing a clean and organized code structure.

• Descriptive variable and function names: The variables and functions

in the code are given meaningful names that describe their purpose, making

the code more readable and maintainable.

• Proper use of async/await: The code makes good use of async/await

to handle asynchronous operations, making the code easier to read and

understand.

• Modularity: The code is organized into separate functions, each with

a specific purpose, promoting modularity and maintainability.

Implementation and Testing Chapter 6

Page | 53

6.3.4 Tools

IDEs:

• Visual Studio Code (VSCode): A popular and versatile code

editor used for writing, editing, and debugging the JavaScript

code for your extension.

Figure 14: Visual Studio Code (just for showing UI of IDE)

Server:

• NPM (8.18.0)

• Python HTTP (3.10.2)

OS:

• Linux (Ubuntu 20.04.5 LTS)

6.4 TESTING METHODOLOGY:

In software development, testing is a critical step to ensure the quality and

reliability of the application. There are several testing methodologies commonly

used in the industry, including unit testing, integration testing, and system testing.

we will briefly explain each methodology that we have used in our project are.

Implementation and Testing Chapter 6

Page | 54

Here are three to four specific tests for each type of testing for our email analysis

and reporting software project:

6.4.1 Unit Testing:

 Unit testing focuses on verifying the functionality of individual components

or functions in isolation. This methodology helps identify and fix bugs early in the

development process. Some of the tests are written below.

6.4.1.1 Test 1: Fetch function

Description: Test the `fetch()` function to ensure it returns the correct

JSON response when given valid input.

Expected Result: A JSON response containing the email data.

Status: Passed

6.4.1.2 Test 2: Email parsing function

Description: Test the email parsing function for extracting the correct

sections and components from an email.

Expected Result: The email is parsed into its individual components (plain,

HTML, application, and image sections).

Status: Passed

6.4.1.3 Test 3: PDF report generation

Description: Test the PDF report generation function to ensure it

generates the report with the correct formatting and data.

Expected Result: A correctly formatted PDF report containing the analysis

results.

Status: Passed

Implementation and Testing Chapter 6

Page | 55

6.4.2 Integration Testing:

 Integration testing focuses on verifying the interaction between different

components or modules of the application. This methodology ensures that the

integrated components work together as expected. Some of the tests are written

below.

6.4.2.1 Test 1: OAuth token-based authorization

Description: Test the integration of the OAuth token-based authorization

between the frontend and backend systems.

Expected Result: Only users with valid OAuth tokens can access the

protected routes, while unauthorized users are denied access.

Status: Passed

6.4.2.2 Test 2: API endpoints and data flow

Description: Test the correct functioning and data flow between the

frontend, backend, and various API endpoints.

Expected Result: Data is correctly sent and received between the frontend,

backend, and APIs, with the appropriate processing applied at each stage.

Status: Passed

6.4.2.3 Test 3: Chromium extension integration

Description: Test the integration of the Chromium extension with the

backend and the reporting panel.

Expected Result: The extension communicates effectively with the backend

and reporting panel, sending email data for analysis and displaying the

results.

Status: Passed

Implementation and Testing Chapter 6

Page | 56

6.4.3 Functional Testing:

 In this section, We tested the full workflow of analyzing an email, generating

a report, and displaying it on the reporting panel to ensure the system met its

functional requirements. We tested the authorization mechanism to ensure that only

authorized users could access the reports. Some of the tests are written below

6.4.3.1 Test 1: Upload and analyze an email

 Description: Test the ability to upload an email, which should trigger

the analysis process and result in the generation of a PDF report.

Expected Result: The email analysis is successfully completed, and a PDF

report is generated.

Status: Passed

6.4.3.2 Test 2: Access and download PDF report

 Description: Test the ability to access and download the generated PDF

report from the reporting panel.

Expected Result: The PDF report is accessible and downloadable from the

reporting panel.

Status: Passed

6.4.3.3 Test 3: Filter functionality

 Description: Test the filter functionality within the reporting panel,

enabling users to filter email reports based on various criteria.

Expected Result: Users can successfully apply filters to the email reports,

displaying only the relevant reports that meet the specified criteria.

Status: Passed

Implementation and Testing Chapter 6

Page | 57

6.4.4 Security Testing:

 In security testing, we tested the OAuth token-based authorization to ensure

that the system was secure and protected against unauthorized access. We checked

for potential vulnerabilities like SQL injections, XSS, or CSRF attacks by testing

the input validation and sanitization in our backend API.

6.4.4.1 Test 1: Invalid OAuth token handling

 Description: Test the handling of invalid or expired OAuth tokens to

ensure that unauthorized users are denied access to the system.

Expected Result: Unauthorized users with invalid or expired tokens are

denied access, and an error message is displayed.

Status: Passed

6.4.4.2 Test 2: Input validation

 Description: Test the input validation mechanisms in the system to

prevent common security vulnerabilities such as SQL injection, cross-site

scripting, and buffer overflows.

Expected Result: The system as such does not takes any input but in URLs

if an attacker uses the injections then it denies the request.

Status: Passed

6.4.4.3 Test 3: Secure data transfer

 Description: Test the security of data storage mechanisms, such as

encryption and access controls, to ensure the confidentiality and integrity of

user data.

Expected Result: User data is securely transferred and protected from

unauthorized access and tampering. No direct sniffing is possible.

Status: Passed

Implementation and Testing Chapter 6

Page | 58

6.4.5 Performance Testing:

 In performance testing we tested the system's performance when analyzing a

large email with numerous attachments and sections. We tested the reporting panel's

loading time when displaying a list of reports under heavy load.

6.4.5.1 Test 1: Load testing

 Description: Test the system's ability to handle a large number of

simultaneous requests without degrading performance.

Expected Result: The system performs well under heavy load, maintaining

an acceptable response time and throughput.

Status: Passed

6.4.5.2 Test 2: Latency testing

 Description: Test the latency of the system, ensuring that response times

are within acceptable limits for users.

Expected Result: The system's latency is within acceptable limits, providing

a good user experience.

Status: Passed

6.4.6 System Testing:

 System testing focuses on verifying the application as a whole, from end to

end. This methodology tests the complete functionality of the application, including

the frontend and backend components, under different scenarios.

System testing is performed through a strong testing strategy and the test cases cover

all the use cases.

Implementation and Testing Chapter 6

Page | 59

6.4.6.1 Plugin Installation:

 Test Description: Verify that the plugin can be successfully installed on

a chromium-based web browser.

Expected Result: The plugin is installed, activated, and accessible from the

browser toolbar.

Status: Passed

6.4.6.2 Authenticate Account:

 Test Description: Verify that the user can log in using their Google

account and the plugin receives the authentication token.

Expected Result: The user is authenticated, and the menu screen is displayed.

Status: Passed

6.4.6.3 Fetch Email:

 Test Description: Verify that the plugin can fetch emails from the user's

Google account and display them in the plugin.

Expected Result: Emails are fetched and displayed within the plugin.

Status: Passed

6.4.6.4 Send Email to Backend:

 Test Description: Verify that the user can select emails and send them

to the backend server for analysis.

Expected Result: Selected emails are sent to the backend server successfully,

and the server confirms the receipt.

Status: Passed

Implementation and Testing Chapter 6

Page | 60

6.4.6.5 Notify on Successful Send:

 Test Description: Verify that the plugin notifies the user when emails

are sent successfully to the backend server.

Expected Result: The plugin displays a status update indicating the

successful sending of emails.

Status: Passed

6.4.6.6 Update on Report Panel:

 Test Description: Verify that the reporting panel updates with the

completed reports and any reports that are still being processed.

Expected Result: The reporting panel displays the report statuses accurately.

Status: Passed

6.4.6.7 Show Report:

 Test Description: Verify that the user can view the completed reports in

the reporting panel.

Expected Result: Completed reports are displayed in the reporting panel.

Status: Passed

6.4.6.8 Download Report:

 Test Description: Verify that the user can download completed reports

as PDF files to their local system.

Expected Result: The user can download the completed reports, and the files

are saved in the local system.

Status: Passed

Implementation and Testing Chapter 6

Page | 61

6.4.6.9 Logout:

 Test Description: Verify that the user can log out of the plugin, and the

authentication token is removed from local storage.

Expected Result: The user is logged out, and the token is removed from local

storage.

Status: Passed

These tests cover every use case in your project, ensuring that each

functionality works as intended and provides the desired results.

Results and Discussion Chapter 7

Page | 62

Chapter 7

RESULTS AND DISCUSSION

In this section, we present the results and discuss the performance of various

machine learning models that were employed in our project for email spam

detection. We used the following models for training.

7.1 STRUCTURE ANALYSIS:

This module analyzes the existence and values of email headers and HTML

content structure. It uses features such as the number of hyperlinks, unique domain

names in HTML assets, linked URLs, and the tree structure of the Document

Object Model. It employs machine learning algorithms like RandomForest,

XGBoost, SVM (SVC), and Naive Bayes for feature modeling.

Model AUPRC Recall

(FPR=10^-3)

Train (s) Test (ms)

RandomForest 0.8993 0.8933 5 0.01

XGBoost 0.8994 0.8884 10 0.01

SVM (SVC) 0.8969 0.8618 919 0.55

Naive Bayes 0.8940 0.0 2 0.01

Table 9: Performance Matrix of Structure Analysis Module.

7.2 TEXT ANALYSIS:

This module predicts the likelihood of sentences in an email belonging to a

phishing email. It uses the Bidirectional Encoder Representations from

Transformers (BERT) model for text analysis. Preprocessing includes language

detection, and the module focuses on modeling English text.

Model

(BERT+)

AUPRC Recall

(FPR=10^-3)

Train (s) Test (ms)

RandomForest 0.8757 0.7796 61 0.01

XGBoost 0.8746 0.6995 560 0.02

SVM (SVC) 0.8310 0.0776 48392 8.44

Results and Discussion Chapter 7

Page | 63

Naive Bayes 0.7353 0.0 3 0.02

Table 10: Performance Matrix of Text Analysis Module.

7.3 URL ANALYSIS:

This module classifies URLs in phishing emails without external reputation

sources. It uses a deep learning approach with a combined architecture of

Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) to

capture differentiating aspects of phishing URLs on a character/word level.

Architecture AUPRC Recall

(FPR=10^-3)

Train (sec) Test (ms)

CNN 0.8406 0.5775 302 0.76

LSTM 0.8149 0.5787 7728 14.41

CNN-LSTM 0.8851 0.7648 4247 7.85

Table 11: Performance Matrix of URL Analysis Module.

7.4 META-CLASSIFIER:

This module aggregates the predictions of the individual modules into a

single prediction probability for each email. It takes the prediction probabilities

from the independent modules as a feature vector, and a supervised learning

algorithm is employed to build a classification model for predicting phishing

emails. The meta-classifier uses XGBoost, as it is more flexible in configuring

thresholds for extremely low false-positive rates.

As there are no significant differences among well-known classifiers, the table for

meta-classifier performance is not provided. However, XGBoost is chosen for its

flexibility and low false-positive rates.

These four modules work together to effectively classify emails as phishing or

benign based on their structure, text content, and URLs.

Conclusion and Future Work Chapter 8

Page | 64

Chapter 8

CONCLUSION AND FUTURE WORK

8.1 CONCLUSION

In our thesis, we presented an elaborate software solution that aimed to

provide an efficient and accurate email analysis system, particularly focusing on

spam detection. We carefully structured the backend of our software into various

modules, including the URL Analysis module, Meta Classifier, Attachment

Modules, and several other components. This modular approach enabled us to

create a systematic and organized workflow, which significantly enhanced the

email analysis process.

To further improve the capabilities of our software, we incorporated

Artificial Intelligence and Machine Learning (AI/ML) techniques into the core of

our system. We utilized state-of-the-art algorithms such as Long Short-Term

Memory (LSTM) for sequence analysis, Convolutional Neural Networks (CNN)

for feature extraction, Bidirectional Encoder Representations from Transformers

(BERT) for natural language understanding, and Random Forest for ensemble

learning. By integrating these advanced techniques, we were able to achieve a high

level of accuracy and effectiveness in our spam detection system.

In addition to the technical aspects, we paid close attention to the design and

implementation of our software. We ensured that the various components were

developed in a modular and maintainable manner, which allowed for seamless

integration and adaptability to future advancements in the field of email analysis

and spam detection.

Throughout the development process, we continuously tested and refined our

algorithms and system components. This iterative approach allowed us to identify

Conclusion and Future Work Chapter 8

Page | 65

and address potential issues, optimize system performance, and further enhance the

overall capabilities of our software.

In conclusion, our software project demonstrated the immense potential of

combining advanced AI/ML techniques with a well-structured backend system to

create a powerful and efficient solution for email analysis and spam detection. The

resulting system not only significantly improved spam detection capabilities but

also provided a robust and flexible platform for further exploration and

development in the ever-evolving field of email analysis. We believe that our work

has laid a solid foundation for future research and innovation in this area, ultimately

contributing to the ongoing battle against spam and other malicious email

activities.

8.2 FUTURE WORK

As for future work, there are several directions we will consider:

8.2.1 Improve the email analysis algorithm:

By incorporating advanced machine learning techniques such as natural

language processing and deep learning, we can enable the system to adapt to new

phishing tactics and improve accuracy over time. This will ensure that our solution

remains effective and relevant in the face of evolving spam email techniques.

8.2.2 Enhance the reporting panel:

Introducing features like sorting, filtering, and searching capabilities can

allow users to better manage and navigate the analysis results. This will improve

the overall user experience and make it easier for users to find relevant information

in the analysis reports.

Conclusion and Future Work Chapter 8

Page | 66

8.2.3 Implement support for other popular email providers:

By extending our solution to support other popular email providers like

Outlook and Yahoo, we can broaden the user base and applicability of our

solution. This will help ensure that more users can benefit from our spam email

detection system, regardless of their email provider.

8.2.4 Develop the software for enterprises:

We plan to deploy our solution on middle servers for proactive analysis in

enterprise settings. This will enable organizations to better protect their employees

from spam and phishing emails, enhancing overall cybersecurity and reducing the

risk of data breaches.

8.2.5 Expand to other email services:

In addition to supporting popular email providers, we aim to expand our

solution to other email services, ensuring that our spam detection system can be

used by a wider range of users and organizations.

8.2.6 Develop for mobile platforms:

We plan to develop our solution for both Android and iOS devices, making

it more accessible and convenient for users who rely on mobile devices for email

communication. This will help protect users from spam and phishing emails on

their smartphones and tablets, further enhancing the security of email

communication.

By addressing these future directions, we can continue to refine and expand

our spam email detection system, ensuring that it remains a valuable tool for

protecting users from unwanted and malicious emails.

Limitations Chapter 9

Page | 67

Chapter 9

LIMITATIONS

One of the significant limitations of this research lies in the dataset used for

training the machine learning models for the spam detection system. In machine

learning, the performance and effectiveness of models are strongly influenced by

the quality, size, diversity, and freshness of the data they are trained on. Let's dive

deeper into these aspects:

9.1 SIZE OF THE DATASET

The size of the dataset is one of the most critical factors influencing the

effectiveness and reliability of machine learning models. Training on a large and

varied dataset helps the model learn and generalize patterns more efficiently. For

our study, this would mean exposure to a wider array of email headers, HTML

structures, text content, and URL patterns related to spam emails.

When the size of the dataset is relatively small, the model may not

encounter enough variations of email content, limiting its ability to accurately

predict and classify new instances. For example, suppose our dataset comprised

only a few hundred emails, most of which contained similar spam tactics like

false lottery winning notifications. In this case, the machine learning model might

excel at identifying these specific types of spam emails but might falter when

exposed to spam emails with more sophisticated tactics, such as intricate phishing

attempts or more subtle marketing ploys.

A larger dataset could encompass thousands or even millions of emails,

providing a broader spectrum of spam types, email structures, and tactics.

Consequently, this could lead to a more well-rounded model capable of detecting

an extensive array of spam emails in real-world scenarios.

Limitations Chapter 9

Page | 68

9.2 QUALITY OF THE DATASET

The quality of the dataset significantly affects the training and performance

of machine learning models. Quality refers to various factors, including

cleanliness (absence of errors, omissions, and duplications), relevance (degree to

which the data fits the purpose), and accuracy (extent to which the data correctly

describes the 'real world' object or event being described).

In our study, suppose the dataset had incorrectly labeled examples where

non-spam emails were marked as spam or vice versa. In that case, it could have

led the model to learn incorrect patterns and associations, thereby reducing its

effectiveness. For instance, if a set of genuine emails from a reputable company

had been incorrectly labeled as spam, the machine learning model might learn to

associate certain legitimate business communication patterns with spam activity.

This could lead to a higher rate of false positives, where legitimate emails are

incorrectly flagged as spam.

Moreover, if the dataset had missing or inconsistent information—for

instance, missing email headers or varying formats in representing the same

information—it could have complicated the learning process for the models,

making it harder for them to extract meaningful features and patterns.

9.3 DIVERSITY OF THE DATASET

Diversity in the dataset is crucial for training robust machine learning

models. It ensures that the model is exposed to a wide range of instances and

variations. In the context of spam detection, diversity would mean having a wide

array of spam emails with different content, structure, language, and tactics.

Limitations Chapter 9

Page | 69

A lack of diversity in the dataset can lead to biased models. For instance, if

our dataset primarily consisted of spam emails written in English, the model

might have become very proficient at detecting spam emails in English but might

underperform when exposed to spam emails written in other languages.

Similarly, if the dataset mostly contained spam emails from a particular sector,

like retail, the models might struggle to accurately classify spam emails from

other sectors, like banking or healthcare.

Hence, having a diverse dataset with various spam email types can

significantly enhance the effectiveness of the machine learning model by

providing a broader understanding of spam patterns across different scenarios and

contexts.

9.4 IMBALANCED DATASET

Machine learning models strive to minimize error during their training

process, and in doing so, they tend to focus on the majority class in an

imbalanced dataset. This situation is common in spam detection, where the

number of non-spam (ham) emails usually surpasses spam emails.

Let's take an example: if our dataset contained 95% ham emails and just

5% spam emails, a machine learning model could achieve 95% accuracy by

merely classifying all emails as ham, completely ignoring the spam class. Such a

model would be practically useless despite its high accuracy rate, as it would fail

to detect any spam emails.

Addressing this issue is not trivial and often involves techniques such as

over-sampling the minority class, under-sampling the majority class, or using

synthetic minority oversampling techniques (SMOTE). However, these

Limitations Chapter 9

Page | 70

techniques have their own trade-offs and limitations. Over-sampling might lead

to overfitting, while under-sampling could result in loss of potentially useful data.

9.5 STATIC DATASET

The field of cybersecurity, particularly spam detection, is dynamic and

continuously evolving. Spammers frequently change their tactics to bypass spam

filters, making spam detection a moving target problem.

If our dataset was static and didn't account for these evolving spam tactics,

our machine learning model might become obsolete over time. For instance, the

model might have learned to detect spam emails based on keyword stuffing (an

outdated spam tactic), but it might fail to detect newer spam tactics such as using

homoglyphs (confusingly similar characters) or employing complex HTML

structures to conceal spam content.

Therefore, the limitation of a static dataset can lead to less adaptable

models, potentially decreasing their effectiveness over time in the real world

where spam tactics continually evolve.

9.6 LIMITED EXTERNAL SOURCES

While our dataset and approach focus on the content and structure of the

emails, they do not make use of external reputation sources or user-specific

behavior. Some spam detection systems use blacklists, domain reputation

systems, or analyze user-specific interaction with emails to increase their

detection accuracy.

For instance, a spam email might not exhibit common spam characteristics

and may appear as a legitimate email when observed in isolation. However, if

Limitations Chapter 9

Page | 71

multiple users reported similar emails as spam or if the sending domain was

known to be associated with spam activities, it could be classified as a spam

email.

While our model focuses on email content analysis, this limitation of not

using external sources might decrease its ability to detect certain sophisticated

spam emails compared to systems that use a more holistic approach.

References Chapter 10

Page | 72

Chapter 10

REFERENCES

[1]

Julio Villena-Román, Sonia Collada-Pérez, Sara Lana-Serrano, José Carlos

González. Hybrid Approach Combining Machine Learning and a Rule-Based Expert

System for Text Categorization. Published in The Florida AI Research. 20 March

2011

Link:https://www.semanticscholar.org/paper/Hybrid-Approach-Combining-

Machine-Learning-and-a-Villena-Rom%C3%A1n-Collada-

P%C3%A9rez/6e2f9f203db02be6d7a90d7b6c6819c1c65ab6ae#related-papers

[2]

Panthagani Vijaya Babu, T. R. Rajesh, Anjaneyulu Nelluru. LSTM-based Deep

Learning Model for Emotion Intensity Level by Enhanced Sentiment Classification.

Published 2020

Link:https://www.semanticscholar.org/paper/LSTM-based-Deep-Learning-Model-

for-Emotion-Level-by-Babu-Rajesh/f6ba9a54777c47c13706c0a3ef66ca3465eefb6f

[3]

Indika Wickramasinghe, Harsha Kalutarage. Naive Bayes: applications, variations

and vulnerabilities: a review of literature with code snippets for implementation

Indika. Published February 2021

Link:https://www.researchgate.net/publication/344194503_Naive_Bayes_applicati

ons_variations_and_vulnerabilities_a_review_of_literature_with_code_snippets_fo

r_implementation_Indika

https://www.semanticscholar.org/paper/Hybrid-Approach-Combining-Machine-Learning-and-a-Villena-Rom%C3%A1n-Collada-P%C3%A9rez/6e2f9f203db02be6d7a90d7b6c6819c1c65ab6ae#related-papers
https://www.semanticscholar.org/paper/Hybrid-Approach-Combining-Machine-Learning-and-a-Villena-Rom%C3%A1n-Collada-P%C3%A9rez/6e2f9f203db02be6d7a90d7b6c6819c1c65ab6ae#related-papers
https://www.semanticscholar.org/paper/Hybrid-Approach-Combining-Machine-Learning-and-a-Villena-Rom%C3%A1n-Collada-P%C3%A9rez/6e2f9f203db02be6d7a90d7b6c6819c1c65ab6ae#related-papers
https://www.semanticscholar.org/paper/LSTM-based-Deep-Learning-Model-for-Emotion-Level-by-Babu-Rajesh/f6ba9a54777c47c13706c0a3ef66ca3465eefb6f
https://www.semanticscholar.org/paper/LSTM-based-Deep-Learning-Model-for-Emotion-Level-by-Babu-Rajesh/f6ba9a54777c47c13706c0a3ef66ca3465eefb6f
https://www.researchgate.net/publication/344194503_Naive_Bayes_applications_variations_and_vulnerabilities_a_review_of_literature_with_code_snippets_for_implementation_Indika
https://www.researchgate.net/publication/344194503_Naive_Bayes_applications_variations_and_vulnerabilities_a_review_of_literature_with_code_snippets_for_implementation_Indika
https://www.researchgate.net/publication/344194503_Naive_Bayes_applications_variations_and_vulnerabilities_a_review_of_literature_with_code_snippets_for_implementation_Indika

References Chapter 10

Page | 73

[4]

Abbasi, F., Jamil, N., & Shah, S. A. A. (2021). D-Fence: A Flexible, Efficient, and

Comprehensive Phishing Email Detection System. In Proceedings of the 2021 ACM

Asia Conference on Computer and Communications Security (ASIACCS '21), June

7–11, 2021, Virtual Event, Japan.

Link:https://www.researchgate.net/publication/354424369_D-

Fence_A_Flexible_Efficient_and_Comprehensive_Phishing_Email_Detection_Sys

tem

[5]

Ferrara, E.: The history of digital spam. arXiv preprint arXiv:1908.06173 (2019)

Link: https://arxiv.org/abs/1908.06173

[6]

Ren, Y., Ji, D.: Learning to detect deceptive opinion spam: a survey. IEEE Access

7, 42934–42945 (2019)

Link: https://ieeexplore.ieee.org/abstract/document/8678638

[7]

Fang, Y., Zhang, C., Huang, C., Liu, L., Yang, Y.: Phishing email detection using

improved RCNN model with multilevel vectors and attention mechanism. IEEE

Access 7, 56329–56340 (2019)

Link: https://ieeexplore.ieee.org/abstract/document/8701426

[8]

https://www.researchgate.net/publication/354424369_D-Fence_A_Flexible_Efficient_and_Comprehensive_Phishing_Email_Detection_System
https://www.researchgate.net/publication/354424369_D-Fence_A_Flexible_Efficient_and_Comprehensive_Phishing_Email_Detection_System
https://www.researchgate.net/publication/354424369_D-Fence_A_Flexible_Efficient_and_Comprehensive_Phishing_Email_Detection_System
https://arxiv.org/abs/1908.06173
https://ieeexplore.ieee.org/abstract/document/8678638
https://ieeexplore.ieee.org/abstract/document/8701426

References Chapter 10

Page | 74

Ji, S., Ma, H., Liang, Y., Leung, H., Zhang, C.: Correction to: a whitelist and

blacklist-based co-evolutionary strategy for defensing against multifarious trust

attacks. Appl. Intell. 48(7), 1891 (2018)

Link: https://link.springer.com/article/10.1007/s10489-018-1195-1

[9]

Caraffini, F., Neri, F., Epitropakis, M.: HyperSpam: a study on hyper-heuristic

coordination strategies in the continuous domain. Inf. Sci. 477, 189–202 (2019)

Link: https://www.sciencedirect.com/science/article/pii/S002002551830851X

[10]

Alghoul, A., Al Ajrami, S., Al Jarousha, G., Harb, G., Abu-Naser, S. S.: Email

classification using artificial neural network. Int. J. Acad. Dev. 2(11), 8–14 (2018)

Link: http://dstore.alazhar.edu.ps/xmlui/handle/123456789/225

[11]

Yu, S.: Covert communication by means of email spam: a challenge for digital

investigation. Digit. Invest. 13, 72–79 (2015)

Link: https://www.sciencedirect.com/science/article/pii/S1742287615000432

[12]

Aleroud, A., Zhou, L.: Phishing environments, techniques, and countermeasures: a

survey. Comput. Secur. 68, 160–196 (2017)

Link: https://www.sciencedirect.com/science/article/pii/S0167404817300810

https://link.springer.com/article/10.1007/s10489-018-1195-1
https://www.sciencedirect.com/science/article/pii/S002002551830851X
http://dstore.alazhar.edu.ps/xmlui/handle/123456789/225
https://www.sciencedirect.com/science/article/pii/S1742287615000432
https://www.sciencedirect.com/science/article/pii/S0167404817300810

References Chapter 10

Page | 75

[13]

Fang, Y., Zhang, C., Huang, C., Liu, L., Yang, Y.: Phishing email detection using

improved RCNN model with multilevel vectors and attention mechanism. IEEE

Access 7, 374–406 (2019)

Link: https://ieeexplore.ieee.org/abstract/document/8701426

[14]

Gupta, S., Deep, K.: Improved sine cosine algorithm with crossover scheme for

global optimization. Knowl. Based Syst. 165, 374–406 (2019)

Link: https://www.sciencedirect.com/science/article/pii/S0950705118305951

[15]

Venkatraman, S., Surendiran, B., Kumar, P.A.R.: Spam e-mail classification for the

Internet of Things environment using semantic similarity approach. J. Supercomput.

76, 756–776 (2020)

Link: https://link.springer.com/article/10.1007/s11227-019-02913-7

[16]

Asghar, M.Z., Ullah, A., Ahmad, S., Khan, A.: Opinion spam detection framework

using hybrid classification scheme. Soft Comput. 24, 3475–3498 (2020)

Link: https://link.springer.com/article/10.1007/s00500-019-04107-y

[17]

https://ieeexplore.ieee.org/abstract/document/8701426
https://www.sciencedirect.com/science/article/pii/S0950705118305951
https://link.springer.com/article/10.1007/s11227-019-02913-7
https://link.springer.com/article/10.1007/s00500-019-04107-y

References Chapter 10

Page | 76

Citlak, O., Dorterler, M., Dogru, I.A.: A survey on detecting spam accounts on

Twitter network. SNAM 9(1), 35 (2019)

Link: https://link.springer.com/article/10.1007/s13278-019-0582-x

[19]

Shuaib, M., Adebayo, O.S., Osho, O., Idris, I., Alhasan, J.K., Rana, N.: Whale

optimization algorithm-based email spam feature selection method using rotation

forest algorithm for classification. SN Appl. Sci. 1(5), 390 (2019)

Link: https://link.springer.com/article/10.1007/s42452-019-0394-7

[20]

Mokri, M.A.E.S., Hamou, R.M., Amine, A.A.: New bio-inspired technique based

on octopus algorithm for spam filtering. Appl. Intell. 49, 3425–3435 (2019)

Link: https://link.springer.com/article/10.1007/s10489-019-01463-y

[21]

Chikh, R., Chikhi, S.: Clustered negative selection algorithm and fruit fly algorithm

based email spam classification. J. Ambient Intell. Hum. Comput. 10(1), 143–152

(2019)

Link: https://link.springer.com/article/10.1007/s12652-017-0621-2

https://link.springer.com/article/10.1007/s13278-019-0582-x
https://link.springer.com/article/10.1007/s42452-019-0394-7
https://link.springer.com/article/10.1007/s10489-019-01463-y
https://link.springer.com/article/10.1007/s12652-017-0621-2

