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ABSTRACT  

 

 

This project focuses on exploring the effectiveness of deep learning systems in improving 

speech quality. The approach employs a fully attention-based mechanism that utilizes deep 

learning to enhance speech signals by processing noisy speech signals and producing 

perceptually enhanced clean speech signals. The model is trained on a large dataset of both 

noisy and clean speech signals and evaluated using both objective and subjective metrics on 

different benchmark datasets. Results show that the proposed method outperforms traditional 

speech enhancement techniques in terms of speech quality and intelligibility. The study also 

investigates the impact of various architectural and training parameters on the model's 

performance, demonstrating the potential of deep learning-based speech enhancement using 

Transformers-based forward feed models as a promising research area.  
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CHAPTER 1  

INTRODUCTION 

1.1 Evolution from RNNs 

Speech enhancement and noise separation tasks benefited greatly from advances in neural 

networks years ago. Speech enhancement techniques traditionally use noise and speech 

products to estimate the noise spectrum and then estimate clean speech. RNNs are an 

essential part of today's audio processing and are used in many fields such as speech 

recognition, speech synthesis, separation and enhancement. Especially when combined with 

multi-port mechanisms such as LSTMs [1] and GRUs [2, 3], their backward linking is 

important for long-term learning and maintaining good conversational content. However, the 

inherent nature of RNNs affects computational efficiency. Secondly, RNN use sequence-to-

sequence architecture which means that it takes a sequence of inputs and generates sequence 

of outputs. Hence, computational complexity increases as parallel processing was not 

accommodated. This bottleneck is particularly evident when dealing with large datasets with 

long sequences. Initially, LSTM did favor researchers in achieving some dependencies but as 

the sentence/speech gets larger, it tends to decrease the efficiency of the model. Later on, the 

results were imagined to be proven good when RNN/CNN or LSTM be combined together 

but they did not achieve the desired result. With the publication of research paper “Attention 

is All you Need” in 2017 by google researchers, the problem of larger dependencies no more 

exists. The Self-Attention mechanism completely revolutionized Transformers [4] and got 

successful in completely avoid this bottleneck by eliminating the circuitry and replacing it 

with an attention-based process. 

By targeting the entire system simultaneously, direct connections can be made from remote 

points, making it easy for Transformers to learn about longevity [5]. Because of this, 

Transformers has gained popularity in audio processing and has recently competed in speech 

recognition [6], synthesis [7], augmentation [8], binaryization [9], and voice recognition [10]. 

The dual path method succeeded in solving some of the problems associated with long-term 

modeling for speech: In [14], the authors propose to divide a sequence of frames into blocks 

and use LSTM to process the sequence within the block. Based on the function block, they 

can model both short-term and long-term dependencies with reduced spring usage legs; [15]. 

The authors who proposed this model call Transformer enhancement using multiple heads. 

Self-monitoring and LSTM, like the original Transformer [17], is based on attention only. 
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1.2 Speech Enhancement on Transformer based Model. 

To date, research on the Transformer-based audio enhancement model has been limited. In 

recent advancements in speech enhancement area of study deep learning techniques have 

been of paramount importance and latest studies are being conducted in this regard which 

show promising results. The majority of speech enhancement techniques [14,15,17-22] 

presently rely on accurate modeling of long-term inputs for optimal performance. The 

prevailing systems are mostly founded on the learned masking algorithm. In this framework, 

two different filters (analysis and synthesis) are trained using data, and a mask is calculated 

for each location, allowing for discrimination.  

Building on this, long term modelling plays an important role for enhancement [14]. This is 

accomplished by segmenting the input array into sections, which are processed locally and 

globally using distinct RNNs. Nonetheless, the use of RNNs in DPRNNs has limitations in 

terms of connection, particularly for global processing steps. In a recent attempt to integrate 

transformers into separate speech pipelines [22], the proposed DPTNet was found to 

outperform the DPRNN model. However, such models still include RNNs that do poorly on 

the parallelization capabilities of pure attention models. 

Our model is based on an encoder, decoder, and mask mesh are used, as shown in Figure 1. 

 

Figure 1.1: High Level Description Block 

 

1.3 Problem Statement 

This thesis aims to tackle the difficulty of improving speech signals that have been 

contaminated by additive white Gaussian noise (AWGN), modeled as: 

     𝑦(𝑡) =  𝑠(𝑡) +  𝑛(𝑡)                                                       1.1 

where y(t) is the observed noisy speech signal, s(t) is the clean speech signal, and n(t) is the 

additive white Gaussian noise with zero mean and variance 𝜎2. Traditional speech 

enhancement methods often rely on handcrafted features and signal processing techniques, 

which can result in suboptimal performance when the noise characteristics differ from those 
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of the training data. Transformer based approach has shown great promise in addressing this 

problem by automatically learning effective representations of the input data with less 

computing time as compared to RNN based models.  

 

1.4 Proposed Solution 

1. Develop a deep learning model that leverages both the time-domain and frequency-

domain information of speech signals for enhanced performance. 

2. Noise can be reduced / mitigated by developing more robust models particularly which 

are Transformer based. 

3. Investigate transfer learning techniques to enhance the model's ability to generalize to 

novel types of noise and levels. 

4. Propose a novel evaluation metric that better reflects the performance of speech 

enhancement systems in real-world scenarios. 

5. Perform a comprehensive valuation of the proposed model on various datasets and 

under different noise conditions to demonstrate its effectiveness and robustness. 

 

1.5 Objectives 

Project aims to create a SepFormer Transformation-based system for speech enhancement 

that can successfully improve speech signals corrupted by diverse types and intensities of 

noise. The system will be trained on large datasets of speech signals corrupted by different 

types of noise to learn effective representations of the input data. The proposed system will 

be evaluated on various datasets and under different noise conditions to demonstrate its 

effectiveness and robustness. Additionally, a user-friendly interface will be developed to 

enable its use by non-experts. The computational complexity and resource requirements of 

the proposed system will also be analyzed to ensure its scalability and practicality. 

 

1.6 Limitations 

There are limitations of this study: 

1. First, we had to go through literature and coding exercises to find and develop a 

transformer-based model. 

2. Purchase of GPUs from third party for training of the data sets. 
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3. Libraries are only available in Linux distros, thus have limited deployment scope. 

4. The proposed model may be computationally intensive and require high-performance 

computing resources. 

5. The proposed model may not be effective in scenarios where the signal-to-noise ratio 

(SNR) is very low. 

1.7 Thesis Organization 

1. The literature review of the imperative principles presented in this thesis is presented 

in Chapter 2 along with several developed models to provide a flow for the readers. 

2. Experimental Setup is described in Chapter 3. 

3. Chapter 4 explains the working and layout of the GUI. 

4. Results on different data sets are depicted in Chapter 5. 

5. The final notes are presented in Chapter 6 along with a proposal for future work.  



5 

 

CHAPTER 2 

TRANSFORMER BASED MODEL 

 

2.1 Literature Review 

Traditional speech enhancement techniques used filters to block or allow certain range of 

frequencies to be effective against noise cancellation. Using high or low pass filters allowed 

researchers to keep the noise minimum while propagating speech elements. But the problem 

of presence of AWGN remained for a while. Due to flat density of AWGN over the 

frequency spectrum, filters were unable to remove it in an efficient way. There was a need to 

remove AWGN using deep learning approach. The first and foremost approach used during 

experimentation relied on the use of RNN. The results were considerable to some extent but 

model was failed to counter dependencies due to absence of memory content. Secondly, due 

to absence of parallel processing mechanism, the model took a lot of time in training and also 

required a lot of computational resources. CNN paved the way for future improvements but 

failed to provide any fruitful results when large speech inputs were fed to them for 

enhancements. LSTM somehow managed to counter dependencies but there was a huge need 

of improvement in respect to SNR values.  

In 2017, a paper was published with the title “Attention is All you Need” which paved the 

way for longer dependencies. The paper focused on use of transformers using Attention 

mechanism. The paper proved the fruitful results in NLP. Nevertheless, its benefits also 

seemed to be ripping fruits in favor of speech enhancements, separation etc.  Ultimately, 

combination of CNN along with transformers using Attention mechanism yielded the best 

results as far as SNR values are concerned.  Keeping in view the problems faced in early 

models, the suggested speech enhancement model is founded on the domain masking 

learning approach [14,15,17-22], and comprises an encoder, a decoder, and a masking 

network. The input speech signal is initially pre-processed by taking STFT so that signal is 

converted from time domain to frequency domain. This will produce series of magnitude 

spectrograms where each of them will be representing a short segment of the input speech 

signal. The encoder utilizes a fully convolutional neural network, while the masking system 

leverages two Transformers within the dual-path processing block previously introduced 

[17]. The masking system estimates the ideal mask to separate sources in the mixture, and the 
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decoder reconstructs the signal, which is separated into time intervals using the mask 

estimate. 

2.2 Encoder 

The series of magnitude spectrogram produced as a result of STFT are then fed to the encoder 

block. The encoder can be visualized as the stack of transformers one above the other. At this 

point, the input sequence is once again processed in order to capture temporal patterns which 

would help in generating high-level features. This is done at the beginning of each 

transformer with 1D convolutional layer and then applying the ReLU activation function. The 

function can be represented as: 

    ℎ =  𝑅𝑒𝐿𝑈(𝑐𝑜𝑛𝑣1𝑑(𝑥))                                                        (2.1) 

Computational performance, speed and memory management is significantly improved by 

the stride factor of this convolutional layer. Implementation of stride factor is an important 

step in determining the step size used by the convolutional operation. The stride factor has to 

be balanced as the smaller stride factor would demand high computational cost while 

producing more detailed output. On the other hand, larger stride would reduce the 

computational cost at the expense of  loss of detailed output. 

 

Figure 2.1: Overall Architecture 

2.3 Masking Net 

As shown in Figure 3, we observe a complete masking network that receives an input in the 

form of a STFT-like encoded representation and estimates a mask {m1,……,mN} for each of 

the Ns. This encoded input is normalized using a normalization layer coupled with a linear 

processing layer (with dimensionality F). Normalization is an important step to limit the 

range and also to improve convergence. In our model, normalization is also reducing the 

impact of outliers or extreme values in the data, which are sources of noise and lies outside 

the frequency bands of human voice. The input speech signals are then distributed in different 

chunks to ensure that each chunk is being processed in detail. Subsequently, we generate an 
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overlay of the C dimension by cutting h with 50% - 75% overlap in the timeline. This ensures 

two steps i-e; First, the present data being passed is connected with previous data. Secondly, 

it ensures dependencies between the input speech signals. We visualize the output as a 

fragmented process denoted by h' ∈ RFxCxN
C, where C represents the length of each block and 

N is the number of blocks created. h' represents the input of the Masker block, which serves 

as the primary component of the netmask. PReLU activates the output of the SepFormer 

process of the block h'' ∈ RFxCxN
C, followed by a linear layer. An overlay scheme is then 

applied, and this representation is passed to the two forward layers and the ReLU activation 

function. Activation functions are helping us to decide what is the expected output that would 

lead to suppression of unwanted noise. Tanh and Sigmoid functions have greatly helped us in 

achieving the result in our desired range. At this stage, we want to bound our model that is 

not too deep to certain output range. However, a further process must be added to ensure that 

our model does not suffer from vanishing gradient problem.

 

Figure 2.2: Masker Insight 

 

2.4 SepFormer Block 

Figure 4 illustrates the SepFormer block, which is based on the DPRNN approach that 

considers both long-term and short-term dependencies [17]. In our proposed model, the 

transformer block with a short-term dependency model is referred to as IntraTransformer 

(IntraT), while the block with a long-term dependency model is known as InterTransformer 

(InterT). InterT interacts with the second part of IntraT h, creating independent blocks with 

short patterns in each block. We then modify the last two parameters (denoted by P) and 

incorporate the InterT block change model. This approach can be applied to model blocks over 

a longer time span. So, the whole evolution of SepFormer is described as follows:  
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      𝒉′′ =  𝒇𝒊𝒏𝒕𝒆𝒓(𝓟(𝒇𝒊𝒏𝒕𝒓𝒂(𝒉′)))                      (2.2) 

 

 

Figure 2.3: SepFormer Block 

 

2.4.1 Dual Transformers (Intra and Intra) 

Dual block structure is displayed in Figure 2. Variable z shows input to the Transformer. 

Prior to processing, an encoding based on the concept of positioning on sinusoidal graphs e is 

added to the z input to enable the Transformer to differentiate between the positions of 

different elements in the input sequence: 

      𝑧′ = 𝑧 + 𝑒                                                                     (2.3) 

Spatial coding improves the performance of the enhancement by infusing sequential 

information about the various elements that make up the system. We follow the coding rules 

defined in [4]. Then we use several transformer layers (MHA) at each transformer layer g(.) 

as:  

    𝑧′′ = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧′))                          (2.4) 

As described in [4], each tracking head calculates the index of the product at each point of the 

array. The transformer ends with a support link (FFW) used independently for each function. 

   𝑧′′′ = 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑧′′ + 𝑧′)) + 𝑧′′ + 𝑧′                           (2.5) 

 

Figure 2.4: Intra and Inter Transformers 
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2.5 Decoder 

Decoder works on deconvolutional layers in which system parameters remain constant.The 

decoder solely utilizes deconvolutional layers with identical stride and kernel size as that of 

the encoder. This is because encoder is designed to reduce the dimensions of the input signal 

while preserving relevant information. The decoder takes as input a concatenation of the 

mask estimates 𝑚𝑘for each of the k sources and the encoded mixture signal h.. Consequently, 

the transformation of the decoder may be represented as: 

   �̂� = 𝑐𝑜𝑛𝑣1𝑑 − 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝑚𝑘 ∗ ℎ)                                       (2.6) 
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CHAPTER 3 

EXPERIMENTAL SETUP AND SOFTWARES 

3.1 Dataset 

The datasets used to train the model are WSJ0-2mix, WSJ0-3mix and WHAM. These data 

sets are comprised of audio signals of 16000 Hz. Overall, 20 – 30 dB performance in SNR 

value was achieved using our enhancement model. These values are stated on the base of 

results of test samples in the dataset and real-time recordings with different types of noises. 

Complete analysis of the results is discussed in Chapter 6. 

We selected these datasets because they contain all training specimens including all kinds of 

urban noises and diverse components in frequency domain with corresponding labeled 

outputs which makes the training of the model more efficient. Moreover, these data sets are 

preprocessed and are available publicly on the internet. Data gathering, in this case recording 

audio signals and labeling is a very hefty and time-consuming job so we relied on these data 

sets. 

3.1.1 WHAM Dataset Structure 

For training ML machines, datasets are divided into 3x types: 

a. Training 

b. Validation 

c. Test 

Training samples are used to train the machine, validation samples are used for optimum 

tuning and accuracy while test samples are unseen data to the model upon which its 

efficiency is measured. The larger number of samples of training data,the more robust model 

is trained, that’s why we selected WHAM. Table 2 shows the directory structure and number 

of samples included in WHAM dataset. 

 

Type Directory Duration (hrs) No. of Files 

Training Tr 58.03 20000 

Validation Cv 14.65 5000 

Test Tt 9.00 3000 

Table 1: WHAM Dataset 
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3.2 Softwares Used 

Python 3.10 is used for the development and deployment of the model in Ubuntu 22.04 OS. 

PyCharm was used for coding and managing the code blocks. Libraries which are listed 

below: 

a. PyTorch 

b. Matplotlib 

c. Numpy 

d. Sci-kit 

e. Soundfile 

3.3 Breakdown 

Architectural breakdown is explained below with coding components as explained 

theoretically in section 2.2, 2.3 & 2.4: 

3.3.1 SEBrain class (Masking) 

 

Figure 3.1: SEBrain sub-class 

 

Here we are using the subclass of Brain module of SpeechBrain that is SEBrain as shown in 

Figure 6. Function compute_forward is basically making predictions based on data which is 

loaded into the model. Masking is also here in this function. By repeated iterations based of 

predictions audio signal is refined and noise components are mitigated. 
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3.3.2 Objectives Function 

 

Figure 3.2: compute_objectives function 

 

 

compute_objectivesfunction basically calculates loss factor during the training of the model 

based on STOI factor based on masked Spectrograms. 

 

3.3.3 Spectral Magnitudes Calculations 

 

Figure 3.3: compute_feats function 
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compute_feats function processes spectral magnitudes based on STFT and reduces the small 

differences in the data input while training the model. 

 

 

 

3.3.4 fit( ) Function 

This function is called in sb class after iterating each data set respectively. It comprises of two 

functions (on_stage_start&on_stage_end) which are defined in sub-class for measuring the 

metrics and taking decision to start or end the epochs. 

 

Figure3.4: on_stage_start function. 

 

 

Figure 3.5: on_stage_end function. 
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Hyper parameters are seeded into the code using HyperPyYAML. It includes seeding, 

computing STFT and setting model params. 

3.4 Parameters 

Breakdown of the encoder is as follows: 

a. Filters = 256. 

b. 16 samples of Kernel. 

c. Stride Factor = 8 samples. 

d. No. of Blocks = 2. 

e. Kintra = 4x repetitions. 

f. Kinter = 4x repetitions.   

It appears that the optimal version of the SepFormer model utilizes a mesh technique with an 

overlap of 50%-75% and processes the C = 250 dimension using eight layers of transformers 

in IntraT and InterT. This pipeline is repeated twice (N=2), with each transformer layer 

having 8 parallel heads and a 1024-dimensional positional feedforward mesh. The entire 

model consists of 26 million parameters. Several options were explored for optimization, but 

the most promising results were obtained using Adam’s optimizer, with a learning rate of 

15e-5, and gradient clipping is applied with an L2 norm of five. The SI-SNR loss, evaluated 

with permutation invariance and clipped at 30dB, is used as the primary metric for SE tasks. 

The automated mixing sensitivity technique is used to optimize the mixing ratio of clean 

speech and noise. The system has been trained over 30 times using a 3.70 GHz Intel Core i5-

10th gen CPU and NVIDIA GeForce RTX 3050 TI graphics card. 

Model parameters are depicted in Figure 11 below: 

 

Figure 3.6: Model Params. 
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CHAPTER 4 

GUI DESIGN 

While considering deployment options for our model we considered numerous options which 

included: 

a. Web based API. 

b. Python based GUI Application. 

c. Deployment on Nvidia Jetson AGX Xavier development kit. 

Keeping in view the financial constraints and computing resources availability we opted for 

Python based GUI in which our SE model is deployed. 

4.1 Layout 

Our GUI application is based on python 3.10 on Ubuntu 22.04 LTS OS. Figure 12 shows the 

general layout of the application. We used python tkinter library for designing this GUI. 

 

 

Figure 4.1: Layout of GUI 

This GUI limits only “.wav” audio codec to be processed. We included an automated code to 

convert other audio formats to “.wav” for avoiding errors for non – stop execution.  
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4.2  Playaudio 

Inbuilt python library playsound is used to play sounds. Figure 13 shows the code for 

playaudio button. 

 

Figure 4.2: Playaudio code 

4.3 Record 

Depending upon the processing speed of the CPUs and availability of GPUs, record time is 

limited to 10 seconds because enhancing noisy audio sample takes some time. Audio format 

for recording is “.wav” by default. Other parameters are as follows: 

a. Duration: 10 seconds. 

b. Sample Rate: 16000 Hz. 

c. Channel: 1. 

Figure 14 shows the code block for recording an audio. 

 

 

Figure 4.3: Record Audio Function. 
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4.4      Plot Spectrogram Button 

We used matplotlib to plot SNR values of the selected audio samples and it helps to compare 

the SNR improvement after the enhancement. Figure 15 shows the code block for 

spectrogram function. 

 

Figure 4.4: Spectrogram Function. 

 

4.5 Enhancer Button 

 

Figure 4.5: Enhancer function. 

This function asks the user to input an audio file to be enhanced and after enhancing the file 

using the model it asks to save in the custom directory which can be played and analyzed 

afterwards.  
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1 Enhancement Performance 

A comparison is presented between the results acquired by the state-of-the art SepFormer 

architecture and the best reported results in the literature are described below in Table 1. The 

proposed model achieves remarkable results, with a Signal invariant-SNR improvement of 

22.3 dB and a Signal-to-Distortion Ratio improvement of 22.4 dB on the test-set using 

dynamic mixing. When dynamic mixing is employed, the results outperform any previous 

work done.  

 

Table 5.1:  Results on WSJ0-2 mix Dataset. 

 

SepFormer comprises of 26 million parameters which are complimented by dynamic mixing 

and SE results much better in both time and frequency domains. 

 

5.2 Real-Time Results 

Test specimens from WHAM data set were used to test the trained model and optimum 

results were obtained. Also, a live recording feature and runtime enhancement of recording is 
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also included. Figure 5 and Figure 6 show the SNR values of a 10 sec test audio clip before 

and after enhancement using the SepFormer speech enhancement model. 

 

 

Figure 5.1: Spectrogram of a noisy audio signal. 

 

Figure 5.2: Spectrogram of an audio signal after enhancement. 

The improvement in SNR value is visible and improvement of approximately -40 dB is 

evident. This is of an audio recording on a laptop under normal working conditions with 

multi-source background noise. 
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5.3 Spectrographs 

We used MATLAB to do analysis on the test specimens and plot different spectrograms 

which are discussed below. Following analysis is done the same audio speech sample which 

was recorded with noise and enhanced afterwards. 

 

5.3.1 Time Domain 

Significant changes in time domain are visible after processing through the trained model. 

Figure 7 shows the original noisy signal and Figure 8 shows the time domain after SE 

through the SepFormer model. 

 

 

Figure 5.3: Noisy Signal in Time Domain  

 

 

 

Figure 5.4: Enhanced Signal in Time Domain 

 

All extra components other than speech components of the real time recording are reduced / 

mitigated significantly. Signals are limited to 10 sec because of GUI limitations which will be 

discussed in chapter 5 of this paper.  
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5.3.2 Frequency Domain 

In frequency domain, noise components are more clearly visible overlapping speech signal. 

Figure 9 shows results of the frequency domain of the noisy signal. When it was enhanced 

using our proposed model, the noise components were reduced significantly which is visible 

in Figure 10. 

 

Figure 5.5: Noisy Signal in Time Domain.  

Usually, human speech lies in 4 kHz of frequency range, but it can be seen higher frequency 

components exists in the signal, but our model mitigated them efficiently. 

 

Figure 5.6: Enhanced Signal in Frequency Domain. 
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CHAPTER 6 

FUTURE WORK AND CONCLUSION 

 

6.1 Concluding Notes 

In this thesis, a new speech enhancement model named SepFormer Transformer was 

introduced, which uses deep learning techniques and achieved superior results on various 

noise-corrupted datasets. The described model consists of an encoder, decoder, and masking 

network using domain masking approach. The encoder uses a fully convolutional network, 

while the masking network uses two Transformers. These are being used inside a dual-path 

processing block and performs the correct estimate optimal masks for separating the sources 

present in the mixtures. In the end, using the predicted mask, the decoder reconstructs the 

separated signals in the time domain. 

 

The SepFormer Transformer, proposed in this thesis, was trained on extensive datasets of 

speech signals contaminated with different types of noise. As a result, it acquired valuable 

insights into the input data and demonstrated remarkable efficacy in isolating speech signals 

from noise and producing superior quality enhanced speech signals. Furthermore, compared 

to other approaches, the proposed model shows outperformed results in different objective 

metrics such as SDR, SI-SNRi. 

 

In addition, the proposed model's computational complexity and resource requirements were 

analyzed, ensuring its scalability and practicality for real-world applications. A user-friendly 

interface was also developed to enable its use by non-experts.  

 

The proposed SepFormer Transformer-based speech enhancement model demonstrated its 

effectiveness and robustness, showing promise for further improvements and advancements 

in the field. The results of this work can serve as a valuable contribution to the speech 

enhancement research community, with potential applications in areas such as 

teleconferencing, voice assistants, and hearing aids, among others. The proposed model can 

provide significant benefits in enhancing the quality of speech signals in various real-world 

applications and improving the user experience. Overall, this work can pave the way for 
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future research in the field of speech enhancement, facilitating advancements in the 

development of more effective and efficient models for speech signal processing. 

 

6.2 Future Work 

Potential future aspects of this work are: 

 

6.2.1 Efficient and Scalable Training Approach 

While the current model achieves state-of-the-art performance, its training process can be 

resource-intensive, making it challenging to scale up to larger datasets or real-world 

scenarios. Therefore, developing a more efficient training process that can handle larger 

datasets and real-world scenarios can further improve the model's scalability and practicality. 

6.2.2 Real-Time Speech Enhancement for Communication Systems 

• Integration with telecommunication systems for real-time speech enhancement. 

• Potential deployment in call centers, teleconferencing, and other communication 

systems. 

6.2.3 Deployment on Mobile Device 

• Optimizing parameters and hyper-parameters for making light weight 

applications, which can be installed on mobile devices. 

• Improving cellular service quality in Urban Areas. 

6.2.4 Speech Enhancement for Hearing Aids 

• Integration with hearing aids to improve speech intelligibility in noisy 

environments. 

• Potential deployment for elderly individuals and people with hearing impairments 

6.2.5 Integration with Virtual Assistants and Smart Speakers 

• Improving speech recognition accuracy and intelligibility of virtual assistants and 

smart speakers. 

• Potential deployment in smart homes, cars, and other IoT devices. 
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6.2.6 Development of Customizable Speech Enhancement Solutions 

• Development of speech enhancement models that can be tailored to specific noise 

and speech conditions. 

• Potential deployment in industries such as entertainment, broadcasting, and 

media. 

Overall, exploring these future aspects can lead to the deployment of speech enhancement 

models in various industries and sectors, leading to improved speech intelligibility and 

accuracy. With the potential for customization, scalability, and real-time processing, the 

proposed SepFormer Transformer-based speech enhancement model provides a strong 

foundation for future research and development in this field.  
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