
WriteRight  

by
NC Ahmed Bilal Siddiqui

NC Maryam Kamal

NC Muhammad Nabeel

NC Mishal Zahra

Supervised by
Supervisor. Prof. Dr. Nauman Ali Khan

In Partial Fulfillment 

Of the Requirements for the degree 

Bachelors of Engineering in Software Engineering (BESE)

Military College of Signals

National University of Sciences and Technology

Rawalpindi, Pakistan

May 2024



2

In the name of Allah, the Most Benevolent, the Most Courteous.



3

CERTIFICATE OF CORRECTNESS AND 

APPROVAL

This is to officially state that the thesis work contained in this report “WrightRight” is 

carried out by Ahmed Bilal Siddiqui, Maryam Kamal, Muhammad Nabeel, Mishal 

Zahra under my supervision and that in my judgment, it is fully ample, in scope and 

excellence, for the degree of Bachelor of Software Engineering in Military College of 

Signals, National University of Sciences and Technology (NUST), Islamabad.

Approved by 

Supervisor 

Asst Prof Dr. Nauman Ali Khan

  Date: May 12, 2024



4

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in 
support of another award or qualification in either this institute or anywhere else.



5

DEDICATION 

I dedicate this thesis to all those who believed in me and stood by me during this challenging 
yet rewarding journey. To my family, friends, and mentors, your support and encouragement 
have been invaluable. Special thanks to my project supervisor, Dr Nauman Ali Khan, whose 

expertise and guidance were essential to the completion of this work.

 

Dedicated to our beloved families and our country Pakistan. 



6

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our Parents, colleagues and most of all our supervisor, Dr. Nauman Ali Khan,

without your support and guidance it would have never been 

possible for us to complete our Final Year Project.



7

Plagiarism Certificate (Turnitin Report)
We hereby declare that this project report entitled “WrightRight” submitted to the 

“DEPARTMENT OF COMPUTER SOFTWARE ENGINEERING”, is a record of an original 

work done by us under the guidance of Supervisor “ASST. PROF. DR. Nauman Ali Khan” 

and that no part has been plagiarized without citations. Also, this project work is submitted in 

the partial fulfillment of the requirements for the degree of Bachelor of Computer Science. 

This thesis has an 10% similarity index. Turnitin report endorsed by Supervisor is attached at 

the end.

Team Members Signature

NC Ahmed Bilal Siddiqui

NC Maryam Kamal

NC Muhammad Nabeel             

NC Mishal Zahra

Supervisor Signature

Asst Prof Dr. Nauman Ali Khan

Date:

May 12, 2023

Place:

Military College of Signals, NUST,

Rawalpindi Pakistan



8

ABSTRACT

Handwriting is an important skill that can affect one’s academic and professional 

performance, as well as self-esteem and confidence. However, many people struggle with 

poor handwriting due to various reasons, such as lack of practice, improper guidance, or 

physical or mental challenges. Improving one’s handwriting can be a tedious task, especially 

for children and young adults who are used to digital devices and online communication. The 

need for an app that improves handwriting skills has never been more apparent, especially in 

educational contexts where handwritten assignments, exams, and note-taking continue to be 

vital.

WriteRight arises from the recognition that technology can be harnessed to make the process 

of improving one's handwriting engaging and accessible to users. We have developed a 

gamified version of a handwriting improvement app that makes learning and practicing 

handwriting fun and rewarding. The app uses the latest technologies, such as Flutter, 

Firebase, and Django, to create an interactive and user-friendly interface, a secure and 

scalable database, and a smart and accurate AI engine. The app allows users to register and 

log in, see a map of different levels, see their profile and progress history, and rate words on 

each level. The app aims to help users achieve better handwriting quality, and consistency 

and boost their self-confidence and satisfaction.



9

Table of Contents
WriteRight............................................................................................................................... 1
CERTIFICATE OF CORRECTNESS AND APPROVAL................................................................ 3
DECLARATION OF ORIGINALITY.................................................................................................4
DEDICATION........................................................................................................................................ 5
ACKNOWLEDGEMENTS...................................................................................................................6
ABSTRACT............................................................................................................................................8
Chapter 1. SOFTWARE REQUIREMENTS SPECIFICATION....................................................14

1.1 Introduction.................................................................................................................14
1.1.1 Purpose............................................................................................................. 14
1.1.2 Document Conventions..................................................................................... 14
1.1.3 Intended Audience and Reading Suggestions.................................................. 14
1.1.4 Product Scope...................................................................................................15

1.2 Overall Description..................................................................................................... 15
1.2.1 Product Perspective.......................................................................................... 15
1.2.2 Product Functions............................................................................................. 15
1.2.3 User Classes and Characters........................................................................... 16
1.2.4 Operating Environment..................................................................................... 16
1.2.5 Design and implementation constraints............................................................ 16
1.2.6 Assumptions and Dependencies.......................................................................16

1.3 External Interface Requirements................................................................................17
1.3.1 User Interfaces.................................................................................................. 17

1.3.1.1 Authentication Screens.............................................................................17
1.3.1.2 Dashboard................................................................................................ 17
1.3.1.3 Map...........................................................................................................17
1.3.1.4 Leadersboard........................................................................................... 17
1.3.1.5 Profile....................................................................................................... 18
1.3.1.6 History...................................................................................................... 18
1.3.1.7 Teachers Dashboard................................................................................ 18
1.3.1.8 Enrolled Screen........................................................................................ 18
1.3.1.9 Requests Screen...................................................................................... 18

1.3.2 Hardware Interface............................................................................................18
1.3.3 Software Interfaces........................................................................................... 19
1.3.4 Communication Interfaces.................................................................................19

1.4 System Features........................................................................................................ 19
1.4.1 User Registration...............................................................................................19

1.4.1.1 Description................................................................................................19
1.4.1.2 Stimulus/Response Sequence................................................................. 19
1.4.1.3 Functional Requirements..........................................................................20

1.4.2 Tracking History.................................................................................................20
1.4.2.1 Description................................................................................................20
1.4.2.2 Stimulus/Response Sequence................................................................. 20
1.4.2.3 Functional Requirements..........................................................................20



10

1.4.3 Gamification and Level System.........................................................................20
1.4.3.1 Description................................................................................................20
1.4.3.2 Stimulus/Response Sequence................................................................. 20
1.4.3.3 Functional Requirements..........................................................................20

1.4.4 Image Upload.................................................................................................... 21
1.4.4.1 Description................................................................................................21
1.4.4.2 Stimulus/Response Sequence................................................................. 21
1.4.4.3 Functional Requirements..........................................................................21

1.4.5 Teacher Dashboard........................................................................................... 21
1.4.5.1 Description................................................................................................21
1.4.5.2 Stimulus/Response Sequence................................................................. 21
1.4.5.3 Functional Requirements..........................................................................22

1.4.6 Requirements.................................................................................................... 22
1.5 Other Non-functional Requirements...........................................................................23

1.5.1 Performance Requirements.............................................................................. 23
1.5.2 Safety Requirements.........................................................................................24
1.5.3 Security Requirements...................................................................................... 24
1.5.4 Software Quality Attributes................................................................................24

1.5.4.1 Availability.................................................................................................24
1.5.4.2 Clarity....................................................................................................... 25
1.5.4.3 Reliability.................................................................................................. 25
1.5.4.4 Intuitiveness..............................................................................................25
1.5.4.5 Informative................................................................................................25
1.5.4.6 Correctness.............................................................................................. 25
1.5.4.7 Flexibility...................................................................................................25

1.5.5 Business Rules..................................................................................................26
Chapter 2. LITERATURE OVERVIEW...........................................................................................27

2.1 Industrial Background.................................................................................................27
2.2 Existing Solutions and Differentiating Factor..............................................................27

Chapter 3. DESIGN AND DEVELOPMENT................................................................................... 28
3.1 Introduction.................................................................................................................28
3.2 Purpose...................................................................................................................... 28
3.3 Product Scope............................................................................................................28
3.4 System Overview....................................................................................................... 29

3.4.1 Product Perspective.......................................................................................... 29
3.4.2 Context Diagram............................................................................................... 30
3.4.3 Data Flow Diagrams..........................................................................................31

3.4.3.1 Student Module........................................................................................ 31
3.4.3.2 Teacher Module........................................................................................ 33

3.4.4 Product Functions............................................................................................. 34
3.4.4.1 Client Side................................................................................................ 34
3.4.4.2 Server Side...............................................................................................34

3.5 System Architecture................................................................................................... 34
3.6 Architectural Design................................................................................................... 35



11

3.6.1 Decomposition Description................................................................................35
3.6.1.1 Module Decomposition............................................................................. 35

3.6.1.1.1 Deploymemt Diagram......................................................................36
3.6.1.1.2  Overview of Modules...................................................................... 36
3.6.1.1.3  Server Modules.............................................................................. 37

3.6.1.2 Process Decomposition............................................................................38
1. Use Case Diagram..................................................................................... 38

3.7 Design Rationale........................................................................................................ 61
3.7.1 Singleton Pattern:..............................................................................................61
3.7.2 Adapter Pattern:................................................................................................ 61
3.7.3 Observer Pattern:.............................................................................................. 61

Chapter 4. Data Design........................................................................................................................62
4.1 Data Description.........................................................................................................62
4.2 Data Dictionary...........................................................................................................63

4.2.1.1 Server-side............................................................................................... 63
4.2.1.2 Application side........................................................................................ 64

4.3 Component Diagram.................................................................................................. 65
4.3.1 Mobile Application Module................................................................................ 67

4.3.1.1 Staff/Admin Side.......................................................................................67
4.3.1.1.1 Student Registration........................................................................ 67
4.3.1.1.2 View Level Map............................................................................... 70
4.3.1.1.3 Play Level/upload image................................................................. 73
4.3.1.1.4 Calculate and View Results.............................................................76
4.3.1.1.5 View Student Performance..............................................................79

4.3.1.2 Teacher Dashboard module..................................................................... 82
4.3.2 Server-Side Module...........................................................................................84

Chapter 5. Implementation And Testing............................................................................................85
5.1 System Overview....................................................................................................... 85
5.2 Preprocessing............................................................................................................ 85

5.2.1 Converting to grayscale:....................................................................................86
5.2.2 Binarization:.......................................................................................................86
5.2.3 Noise Reduction with Median Filtering:............................................................. 86
5.2.4 Laplacian Filtering:............................................................................................ 86
5.2.5 Inversion of Laplacian Image:........................................................................... 86

5.3 Structural Similarity Index:..........................................................................................87
5.3.1 Windowing and Division into Patches:.............................................................. 88
5.3.2 Local Mean Calculation:.................................................................................... 88
5.3.3 Local Variance and Covariance Calculation:.....................................................88
5.3.4 Luminance, Contrast, and Structure Comparison:............................................ 88
5.3.5 Aggregation Across Patches:............................................................................ 88

5.4 Marking and Placing Images......................................................................................89
5.4.1 Edge Detection with Canny:.............................................................................. 89
5.4.2 Edge Density Calculation:................................................................................. 90
5.4.3 Conditional Dilation:.......................................................................................... 91



12

5.4.4 Contour Extraction and Selection:.....................................................................91
5.4.5 Resizing Contours with Aspect Ratio Preservation:.......................................... 92
5.4.6 Drawing Contours on a Canvas :...................................................................... 93

Chapter 6. Conclusion and Future Works.........................................................................................95
References............................................................................................................................................. 96

List of Figures

Fig 1 Context diagram presenting outlining external interactions and system boundaries.... 30
Fig 2: Data Flow Diagram for Student Module of WriteRight................................................. 31
Fig 3: Data Flow Diagram for Teacher Module of WriteRight.................................................33
Fig 4: Client-Server Architecture Diagram of WriteRight........................................................35
Fig 5: Detailed Class Diagram of WriteRight..........................................................................36
Fig 6: Use Case Diagram of the WriteRight Application.........................................................38
Fig 7: Sequence Diagram of Student Module for WriteRight................................................. 39
Fig 8: Sequence Diagram of Login for Student Module......................................................... 40
Fig 9: Sequence Diagram to Upload Image for Student Module............................................41
Fig 10: Sequence Diagram of View History for Student Module............................................ 41
Fig 11: Sequence Diagram of Register with Teacher for Student Module..............................42
Fig 12: Sequence Diagram of Attempt Exercise for Student Module.....................................43
Fig 13: Sequence Diagram for Logout of Student Module..................................................... 44
Fig 14: Sequence Diagram of Teacher Module for WriteRight...............................................45
Fig 15: Sequence Diagram of Login for Teacher Module.......................................................46
Fig 16: Sequence Diagram of Assign Exercise for Teacher Module...................................... 47
Fig 17: Sequence Diagram of Enrolled Students for Teacher Module................................... 48
Fig 18: Sequence Diagram of Exercise Results for Teacher Module.....................................49
Fig 19: Sequence Diagram of Enrollment Requests for Teacher Module.............................. 50
Fig 20: Sequence Diagram of Logout for Teacher Module.....................................................51
Fig 21: Detailed Activity Diagram of WriteRight..................................................................... 52
Fig 22: Activity Diagram of Login Flow for WriteRight............................................................53
Fig 23: Activity Diagram of Play Level for Student Module.................................................... 54
Fig 24: Activity Diagram for Registering With Teacher for Student Module........................... 55
Fig 25: Activity Diagram for Attempting Exercise  for Student Module...................................56
Fig 26: Activity Diagram for Handling Student Enrollment Requests..................................... 57
Fig 27: Activity Diagram for Uploading Exercise for Teacher Module.................................... 58
Fig 28: Package Diagram Representing Granular Modules for WriteRight............................59
Fig 29: Deployment Diagram Representing Deployment Modules for WriteRight................. 60
Fig 30: Entity Relation Diagram for the Database Entities in the WriteRight......................... 62
Fig 31: Overview of Component Design for WriteRight..........................................................65



13

Fig 32: Working of OCR for DIP Model of WriteRight............................................................ 65
Fig 33: Login Page/Screen of WriteRight...............................................................................67
Fig 34: Level selection screen of WriteRight..........................................................................70
Fig 35: Sample character and student’s submission screens of WriteRight.......................... 73
Fig 36: Results and marking displayed after comparing........................................................ 76
Fig 37: Performance tab for Student in WriteRight.................................................................79
Fig 38: Dashboard module for Teacher in WriteRight............................................................ 82
Fig 39: Preprocessing of images before comparing and other algorithms.............................87
Fig 40: Working of ssim for image comparison results...........................................................89
Fig 41: Edge detection in preprocessed image......................................................................90
Fig 43: Displaying largest selected contour........................................................................... 92
Fig 44: Largest contours with unequal sizes not suitable for marking....................................93



14

Chapter 1. SOFTWARE REQUIREMENTS 

SPECIFICATION

1.1 Introduction
1.1.1 Purpose
This is a thesis document for mobile-based handwriting improvement application. 

WrightRight makes handwriting practice fun, engaging, and ultimately, successful. It joins 

people, devices, and applications and students, teachers and schools providing primary 

education to help students improve their handwriting and act as an assistant to teachers 

improving overall ecosystem time efficiently. The system will provide gamified levels, 

feedback to the answers, live statistics and a Teacher-Student ecosystem.

1.1.2 Document Conventions
● Headings are prioritized in a numbered fashion, the highest priority heading having a 

single digit and subsequent headings having more numbers, per their level.

● All the main headings are titled as a single-digit number followed by a dot and the 

name of the section (Time New Roman, size 18).

● All second-level subheadings for every sub-section have the same number as their 

respective main heading, followed by one dot and subsequent subheading number 

followed by the name of the sub-section (Time New Roman, size 16).

● All third-level subheadings follow the same rules as above for numbering and 

naming, but different for font (Time New Roman, size 14).

● Further level subheadings i.e. level four have font (Time New Roman, size 12).

● This document is typewritten using a font size of 12pt in Time New Roman, with 

margins of 2 cm and line spacing of 1.5 lines.

1.1.3 Intended Audience and Reading Suggestions
Anyone with some basic knowledge of programming can understand this document. The 

document is intended for Users, Developers, Software architects, Testers, Project managers 

and Documentation Writers. But anyone with a programming background and some 

experience with UML can understand this document.

It is divided into Several phases with sections being intended for developers and software 

managers, but other sections can be understood by anyone having little knowledge about 

software.



15

To design meaningful test cases and provide useful feedback to developers, testers must first 

grasp the system's functionality. The developers must understand the specifications of the 

software product they are creating.

This paper is intended for broad conversations about WrightRight Application 

implementation decisions. The product's user should understand the fundamentals of App 

Development, Firebase, Digital Image Processing,interfaces, and classes.

1.1.4 Product Scope
"WriteRight" is a comprehensive handwriting improvement tool. It provides a gamified, 

interactive learning environment for all ages, with real-time feedback and progress tracking. 

It includes a "Teacher Dashboard" for educators to monitor student progress and manage 

assignments. The app uses Flutter, Firebase, Django, and an image comparison algorithm, 

and is compatible with Android and iOS devices. It aims to create an inclusive, effective, and 

enjoyable platform for handwriting improvement.

1.2 Overall Description
1.2.1 Product Perspective
Our project aims to develop "WriteRight," a comprehensive handwriting improvement tool 

that revolutionizes the way users of all ages enhance their writing skills.

1.2.2 Product Functions
The WriteRight application will be able to do following:

1. Gamified Learning

2. Real-time Feedback

3. Teacher Dashboard



16

1.2.3 User Classes and Characters
There are two main user classes.

1. Students

These users will be allowed to play the gamified levels and climb up the points table 

depending upon their score on each level. They will have to login to access the 

system. They can also get registered with a teacher by sending a request.

2. Teachers

The teachers are required to first login into the system. They can see the requests 

students have made to register with them which can either be accepted or declined. 

Teachers can create customized exercises which are visible to all of their registered 

students.

1.2.4 Operating Environment
Operating environment for the WrightRight is as listed below. 

● Cloud database

● Client/server system

● Operating system: Android/IOS 

● Database: Firebase database

● Platform: Flutter/Django/Python

1.2.5 Design and implementation constraints
● The information of all users, events must be stored in a database that is accessible by 

the application.

● The results are to be considered as mere suggestions from an assistant and not a final 

decision.

● The server must be up and running 24/7.

● The results depend upon the angle and surrounding conditions in which the image is 

captured.

1.2.6 Assumptions and Dependencies
The product needs following third party products

● Tesseract OCR.

● Firebase ecosystem to store data.



17

● Flutter/Python to develop the product.

1.3 External Interface Requirements
1.3.1 User Interfaces
User Interface will have following components:

1.3.1.1  Authentication Screens
The homepage will have a form for username and password to authenticate teachers and 

students. On click of the ‘LOGIN’ button, the user will be authenticated and taken to the 

dashboard, where students and teachers will have their respective screens.

1.3.1.2  Dashboard
The student module consists of 5 Tab screens i.e. Map, Profile, History, Leadersboard, and 

Register Teacher. Students can navigate among all these screens using the tab bar.

1. Map

2. Profile

3. History

4. LeadersBoard

5. Register Teacher.

Teacher module consists of 

1. Teachers Dashboard

2. Enrolled Students

3. Request Screen

1.3.1.3  Map
Students will be displayed a map of all the available levels. He/she can select a level from 

the map. The student will be presented with a reference image and will have the option to 

either copy the given image on paper and upload a photo of their handwritten work, or write 

the alphabet directly on the screen using a stylus. After clicking the ‘submit’ button the user 

will be shown a result popup with the user's score on it.

1.3.1.4  Leadersboard
The Leaderboard will show a list of our top students. This will help in creating a competitive 

environment for students.



18

1.3.1.5  Profile
Profile screen will display the user’s data like username etc. It will display the user's current 

total score. 

1.3.1.6  History
The history screen will show the progress of the student with help of graphs and charts. This 

will help students in keeping track of their progress.

1.3.1.7  Teachers Dashboard
The teacher's dashboard will provide an overview of their profile, including the number of 

students enrolled, exercises assigned, and other relevant details.

1.3.1.8  Enrolled Screen
The enrolled screen will display a list of all students currently enrolled with the teacher. 

Clicking on a student's name will show a list of all submissions made by that student.

1.3.1.9  Requests Screen
The Request screen will display all the student registration requests received by the teacher. 

Teachers have the option to either accept or decline these requests.

1.3.2 Hardware Interface
This system needs the following hardware requirements.

1.3.2.1 Camera Interface

The application would require access to the device's camera for capturing images of 

handwritten content.

1.3.2.2 Storage Interface
Access to storage interfaces is necessary for storing and managing the images captured by the 

camera. This includes both internal and external storage options (e.g. SD cards) for saving 

and retrieving images. 

1.3.2.3 Operating System APIs
Access to the device's operating system APIs is essential for interacting with hardware 

components and managing image files, along with other system-level functions.

1.3.2.4 Networking Interface
The application involves uploading images to a server for analysis or comparison, a network 

interface would be necessary for internet access via Wi-Fi or cellular data.



19

1.3.3 Software Interfaces
The software interface should follow the Model-View-Template (MVT) model for rendering 

and modeling data objects. The interface must connect to a database to fetch user 

information, retrieve previous performance, display provided sample images, and display the 

final result. Sample images and images uploaded can have a format of JPEG, PNG, and JPG.

1.3.4 Communication Interfaces
The communication architecture must follow the client-server model. Communication 

between the client and server should utilize a REST-compliant web service and must be 

served over HTTP Secure (HTTPS). The client-server communication must be stateless. A 

uniform interface must separate the client roles from the server roles.

1.4 System Features
In this subsection, we will examine the features of the system in detail by categorizing them 

according to their functionality. For each of the features, we will give an introduction, 

purpose, and a stimulus/response sequence. Introduction part will give basic background 

information about the feature. Alternative flow of events will be given in stimulus/response 

subsection

1.4.1 User Registration
1.4.1.1  Description
The registration feature of our app serves as the initial step for users to create their accounts 

and access the app.

1.4.1.2  Stimulus/Response Sequence

Stimulus: User opens the app for the first time.

Response: Display a registration or login screen.

Stimulus: User clicks on the "Sign Up" button. 

Response: Display a registration form to user

Stimulus: User clicks on the "Login" button.

Response: Display a login form with fields for email and password. After successful login, 

redirect the user to the homepage.



20

1.4.1.3  Functional Requirements

REQ-1: Users can create an account by providing a username, email, and password.

REQ-2: Users can log in with their credentials.

REQ-3: Users can reset their password if forgotten.

1.4.2 Tracking History
1.4.2.1  Description

Analytics and progress tracking allow users to see their improvement trends and identify 

areas where students need more practice. 

1.4.2.2 Stimulus/Response Sequence

Stimulus: User visits History screen.

Response:  Display historical performance data and track the progress and learning 

trends of each student over time.

1.4.2.3 Functional Requirements

REQ-1: Track and display a user's historical performance and improvement over time.

REQ-2: Provide detailed statistics, such as similarity scores and learning curve etc.

1.4.3 Gamification and Level System
1.4.3.1  Description

Gamification adds engagement and motivation to the app. Users are motivated to improve 

their performance to reach higher levels.

1.4.3.2  Stimulus/Response Sequence

Stimulus: User achieves a certain similarity score.   

Response: Update the user's level, reward them,  and display their progress.

Stimulus: User levels up and enters a new level.

Response: Display a celebratory message and similarity score of student’s submission.

1.4.3.3  Functional Requirements

REQ-3.1: Define multiple levels of achievement.

REQ-3.2: Set a threshold score for each level.

REQ-3.3:  Reward users upon reaching a new level (e.g., stars)

REQ-3.4: Track and display the user's current level and progress.



21

1.4.4 Image Upload
1.4.4.1  Description

This is the core feature of this app,  users can submit handwritten text for comparison and 

receive a similarity score.

1.4.4.2  Stimulus/Response Sequence

Stimulus: User uploads an image.

Response: Process the uploaded image to extract the handwritten text content and compare it 

with the dataset using the image comparison algorithm.

Stimulus: User submits an image that contains text not found in the dataset. 

Response: Provide feedback that the text is not recognized in the dataset, and the comparison 

score may not be available.

Stimulus: User submits an image with clear handwriting and high similarity to the dataset.

Response: Calculate a high similarity score and provide a positive message, possibly with 

encouraging feedback.

1.4.4.3  Functional Requirements

REQ-4.1: Users can upload a handwritten text image.

REQ-4.2: The app must use an image comparison algorithm to compare the uploaded image 

with the dataset.

REQ-4.3: The application must have a dataset of reference handwritten texts.

REQ-4.3: A similarity index (e.g, a percentage or score) should be calculated and displayed.

1.4.5 Teacher Dashboard
1.4.5.1  Description

The teacher dashboard provides instructors with the necessary functions to manage students, 

monitor their progress and prepare assignments which students can perform and get 

evaluated. 

1.4.5.2  Stimulus/Response Sequence

Stimulus: Instructor logs in to the teacher dashboard.

Response: Display teacher dashboard with options for managing data sets, assignments, and 

student progress.



22

Stimulus: Instructor views a student's progress report.

Response: The system will display a detailed review of each student's performance, 

including submitted images, assigned exercises, and a list of enrolled students.

1.4.5.3  Functional Requirements

REQ-5.1: Teachers can create different assignments for the students.

REQ-5.2: Teachers can access a comprehensive overview of each student's progress, 

including submitted images, assigned exercises.

1.4.6 Requirements

Requirement # Requirement Component

R1 User registration and 
login                  

Mobile app (Flutter)

R2 Account types (student, 
teacher)

Mobile app (Flutter)

R3 Level selection and 
gameplay

Mobile app (Flutter), 
Django app

R4 Image capture and upload Mobile app (Flutter)

R5 Image processing and 
comparison

Backend server (Django, 
Python libraries)

R6 Scoring and feedback 
generation

Backend server (Django, 
Python libraries)

R8 Progress tracking and 
visualization

Mobile app (Flutter),
Firebase Database

R9 Leaderboard display Mobile app (Flutter), 
Firebase Database

R10 Teacher dashboard for 
student management

Firebase Database

R11 Exercise upload and 
management

Firebase Database

R12 Enrollment requests and 
approvals

Firebase Database



23

Requirement # Requirement Component

R13 Authentication and 
authorization

Mobile app (Flutter), 
Firebase Database

R14 Security and privacy 
measures

Mobile app (Flutter), 
Django app, Firebase

R15 Performance and 
scalability

Backend server (Django, 
Python libraries), Firebase

R16 User interface design and 
usability

Mobile app (Flutter)

R17 Cross-platform 
compatibility (Android, 
iOS)

Mobile app (Flutter)

Table 1. Requirements Table

1.5 Other Non-functional Requirements
1.5.1 Performance Requirements
One of the primary NFRs of the WriteRight application is the system's performance 

requirement, since the project will analyze students' handwriting and produce findings. 

Interface screen loading times cannot be longer than three seconds. Users expect a fluid and 

responsive experience when interacting with the WriteRight program, whether they are 

accessing various functions or switching between modules. Prolonged loading times might 

cause user annoyance and disinterest.  It is something I have noticed to be very important 

because if interface screens take a long time to load, users’ happiness can not be guaranteed. 

Second, if no response is received after a certain amount of time has passed, the window is 

closed and a timeout message is displayed. It is important for the programme to inform the 

user of a server response or to simply notify the user of the progress when the program is 

performing a complex and time consuming action. This also assists in managing expectations 

by creating a barrier that reduces the likelihood of a user being displeased with a certain 

service. For instance, if a user is performing a handwriting analysis activity that involves 

server-side processing, and the processing operation takes time exceeding that estimated due 

to high server load and this disrupts the normal intended operation then a timeout message 



24

should be conveyed to the user. It is recommended to include a message in the form of a 

notification to inform the user or any associated party about the delay. In terms of scalability, 

the WriteRight application demonstrates solid performance, as thousands of user interactions 

are processed without any issue in the frontend and server-side backend. For instance, there 

might be high usage during times like when many users are using the handwriting analysis 

tool or are engaged in the game-based activities that allow users to enhance specific skills, the 

workload must be balanced in a way to achieve the best performance. This scaleability 

guarantees customers positive customer experiences in terms of latency and downtime with 

increased number of concurrent queries thus providing students with more uninterrupted 

learning as they make use of the resources in the application.

1.5.2 Safety Requirements
To reduce the risk on the part of the users on the safety and security of their data that they 

input in the WriteRight application, stringent measures are taken. Optimum security measures 

complement user-generated dispatches and performance data that are retained and 

transmitted. This encryption would utilize currently accepted methods and protocols to from 

access to and eavesdropping on the data whether stored or being transmitted.

1.5.3 Security Requirements
To address security issues the WriteRight Programme has a secure data handling policy, 

feature access control among others are among the security measures of the WriteRight 

Programme. Also, restricted and controlled user operations that based of the policies and 

permits set will be eliminated by policy and access control measures to prevent break-in and 

unauthorized access into the systems. user legitimacy would also require multiple passwords 

inputting or another type of input such as the password entry only option.

1.5.4 Software Quality Attributes
1.5.4.1  Availability
At the highest extent, WriteRight makes availability the absolute number one, which ensures 

servers are continuously running to make sure users never stay out for a single moment or 

second. As a result, due to this dedication to availability, customers can do their jobs in 

WriteRight at any time they feel like doing it thereby increasing their productivity levels and 

at the same time enhancing their experience and user satisfaction.



25

1.5.4.2  Clarity
WriteRight’s prompts and interface elements are designed for instant and clear understanding 

by anyone who lacks technical expertise. By using plain language and simple design 

concepts, the program allows users to easily explore its features and functions, so that their 

engagement with it is enhanced and comprehension promoted.

1.5.4.3  Reliability
WriteRight really treasures reliability. Users can trust that the application will deliver reliable 

and accurate performance since it undergoes rigorous tests and validations which assures 

accuracy of handwriting analysis results and other functionalitiesibiliًٰty

1.5.4.4  Intuitiveness
The principle of design of WriteRight, focus on ease of use where as possible a user will not 

need guides and tutorials. For WriteRight, known user interface patterns and common sense 

practices that enable users to complete tasks as easily as possible and move through the 

system have decreased the time taken to learn while increasing the level of satisfaction.

1.5.4.5  Informative
WriteRight follows a proactive approach to user communication by quickly warning users in 

case of any problem or error that they have experienced while using the program. Various 

error messages and notifications are availed to users, giving them information on the 

condition of the system that creates openness and confidence in the dependability of the 

program.

1.5.4.6  Correctness
WriteRight analyzes the handwriting through image processing techniques but sometimes 

reports errors due to limitations. It strives for constant improvement in accuracy over time.

1.5.4.7  Flexibility
WriteRight places high value on adaptability, hence making it easy to respond to emerging 

user needs and changes in technology. Such flexibility in the architecture and principles of 

modular design of WriteRight allow it to easily add new features and improvements while 

ensuring scalability and sustainability. WriteRight's adaptability helps it to remain relevant 

and valuable over time because it can respond to user feedback and market development.



26

1.5.5 Business Rules
You can only see your grades and stuff in the WriteRight app if youre actually taking the 

class. , like, info about how you write and how youre doing with it, is in this data. Only 

certain students will be able to see personal info to keep things private and confidential. 

Teachers can check out students past grades and give them tasks in the WriteRight app. But 

only the teacher who was given to each student will be able to see their answers and other 

private stuff. Thanks to this access control system, teachers can keep an eye on student 

progress without invading their privacy.

1.6 Sustainable Development Goals(SDGs)

WriteRight is committed to advancing several key United Nations Sustainable 

Development Goals, specifically SDG 4 "Quality Education" through tools for 

improved learning and communication; SDG 16 "Peace, Justice, and Strong 

Institutions" through data security and privacy; SDG 9 "Industry, Innovation, and 

Infrastructure" through the leveraging of cutting-edge technologies and creativity; and 

addressing finally SDG 10 "Reduced Inequalities" by provision for inclusivity and 

equality in access to educational resources, ultimately closing the digital divide.



27

Chapter 2. LITERATURE OVERVIEW
Educational sector targeting kids especially is declined towards speech and verbal content. In 

this digital age when everything is a click away handwriting education applications are 

emerging for improved learning experience. This review explores the potential of these apps 

to enhance handwriting skills across various user groups.

2.1 Industrial Background
In the age of ubiquitous digital communication, the ability to write legibly by hand remains a 

valuable skill. However, with the decline of pen-and-paper use in daily life, many students 

struggle to maintain legible and efficient handwriting. Handwriting can be critically 

important for an individual as it one of the tools for making an impression as well as reflects 

the degree of professionalism to some extent.

WrightRight creates an early market segregation where growing concern regarding declining 

handwriting skills creates an opportunity to cater a wide range of users, including children to 

develop proper letter formation and improve writing fluency in a fun and interactive way, 

adults to learn write new language they are learning as being multilingual is in trend these 

days, and senior citizens to maintain cognitive function and dexterity through targeted 

handwriting exercises.

2.2 Existing Solutions and Differentiating Factor
There is a lot of work done on extracting features from handwritten text but to compare and 

mark the extent to which the two writings are similar is pretty much new to explore. This is 

different from signature verification because in signature verification we have a set of true 

signatures and it is a classification problem where model can be changed while handwriting 

improvement has no fixed true or false variations and is never a classification problem.



28

Chapter 3. DESIGN AND DEVELOPMENT

3.1 Introduction
The Software Design Specification (SDS) introduction provides an overview of the complete 

SDS, including its goal, scope, definitions, acronyms, abbreviations, references, and 

overview. This document's purpose is to discuss in depth the functional and non-functional 

features of the WriteRight, which employs image processing techniques to score and mark 

the images uploaded by students. This document provides thorough descriptions and 

visualizations of the WriteRight.

3.2 Purpose
The Software Design Specification for WriteRight is a technical guide to help transform the 

vision of a gamified handwriting improvement system from UI widgets to image analysis 

algorithms that will seamlessly integrate together. The primary goal of the SDS is not only to 

instruct developers but to facilitate collaboration, avoid redundant work and ensure a final 

product that is not only an app but also an integrated system will be delivered. It contains all 

relevant details of how each component is both functional and delightful to use by students, 

teachers and every user in between. The SDS in short is the link between vision and 

implementation to make WriteRight serve its mission to render handwriting practice 

harmless, entertaining and finally effective.

3.3 Product Scope
"WriteRight" is a complete software solution for handwriting development. The app offers an 

interactive, gamified and user friendly environment for users of all ages to learn and improve 

handwriting skills through a fun and competitive space. The learning process is monitored in 

real-time and users are provided with immediate feedback and rewards. Teachers and 

Professionals have access to their own "Teacher Dashboard" where they can assign tasks and 

monitor students' progress. The technology behind the app is a Dart and Firebase based 

Flutter application, using Django as a backend server, and an image comparison algorithm to 

assess and compare users' handwriting. WriteRight works on Android and iOS devices and 

aims to be inclusive, effective and fun.



29

3.4 System Overview
“WriteRight” is a fun gamified app for improving our handwriting. For the mobile part, I used 

Flutter, backend is written in Django and, of course, Firebase for syncing data in real time. 

There is a ranking where users can see their progress compared to other users. The main 

feature of the product is giving users feedback based on their handwriting using an image 

comparison algorithm. “WriteRight” is multilingual, has Android and iOS platform support, 

levels and rewards that boost users’ motivation and much more… This app is a complete 

solution for better handwriting using technology and interactive learning.

3.4.1 Product Perspective

"WriteRight" is a part of educational technology, it is an application for improving 

handwriting skills. This mobile application is developed using Flutter and Django. 

"WriteRight" is a gamified application, that is easy in using, including functions like 

registration, monitoring progress, passing levels. The application is integrated with Firebase 

as a data storage, which allows to work with the data in real time. "WriteRight" is a complex 

solution, which goal is to create an engaging and useful application for improving 

handwriting skills for students and teachers.



30

3.4.2 Context Diagram

Fig 1 Context diagram presenting outlining external interactions and system boundaries.

The context diagram states the functionalities of WriteRight when users interact – the teachers 

can manage their students and exercises, while students can play different levels. All data is 

stored on Firebase and Django's APIs connecting the application to the DIP functions 

analyzing student’s writing. The central system handles user registration, storing and fetching 

data, generating writing results, and integrating with Firebase and Django.



31

3.4.3 Data Flow Diagrams
3.4.3.1Student Module

Fig 2: Data Flow Diagram for Student Module of WriteRight



32

The student journey at WriteRight application starts by students registering with their details 

and logging into the system. Once logged in, they can play different available gamified levels 

designed to enhance their handwriting skills. Upon selecting a level, an image is displayed on 

screen and students submit a handwritten text image trying to mimic it. Students can use the 

"Edit Profile" tab for profile management, "Gamified Map" for level progression and 

interactive GUI, "Leaderboard" to encourage healthy competition among students, "Register 

Teacher" for students to get an amazing experience with teachers, and "History" for a 

comprehensive performance overview. 



33

3.4.3.2 Teacher Module

Fig 3: Data Flow Diagram for Teacher Module of WriteRight

The teacher’s journey at WriteRight application commence by entering their credentials and 

are redirected to a comprehensive dashboard. Teachers can seamlessly create assignments, 

specifying instructions and deadlines. The system securely stores these assignment details, 

ensuring efficient management. Teachers can also view a list of enrolled students, 

Additionally, teachers can accept enrollment requests from students who want to get 

associated with them, enhancing the collaborative and educational aspects of the platform.



34

3.4.4 Product Functions
3.4.4.1  Client Side
● User Registration: Users can register, log in, and reset their password.

● Tracking History: Students can view performance trends, celebrate milestones, and 

track progress.

● Gamification and Level System: Students can progress through levels, and earn XP 

points giving an overall game experience.

● Image Upload and Comparison: Students are supposed to upload images, which are 

then compared and a score is given along with a real-time feedback.

● Register with Teacher: Students can search and register with the teacher they want to 

keep as a mentor.

● Attempt Exercise: Students can attempt teacher-assigned exercises for practice.

● Assign Exercise: The teacher can upload and assign exercises to students to improve 

their handwriting.

● View Results: The teacher can view the assigned exercise’s results.

● Handle Student Request: The teacher can accept or reject a student’s request.

3.4.4.2  Server Side
● User Authentication: Authenticate and authorize users, ensuring data confidentiality.

● Firebase Real-time Database: Synchronize data across devices, and manage user 

profiles and progress.

● Digital Image Processing (DIP): Images are preprocessed, OCR extracts the text, and 

DIP models analyze the image producing results.

3.5 System Architecture
The application’s architecture is designed to provide a seamless handwriting improvement 

experience. The architecture is a client-server model, where the user's mobile device (front 

end) interacts effortlessly with the application's backend. The engaging user interface, 

developed in Flutter offers effortless navigation through features like registration, progress 

tracking, and gamified learning. The robust backend, powered by Django and supported by 

Firebase handles important tasks such as authentication, data storage, and image processing 



35

using sophisticated DIP models. There is a unique channel for DIP functions. A solid and 

scalable foundation for WriteRight is created through this seamless integration of 

user-friendly design with complex backend technology to facilitate smooth and impactful 

handwriting excellence experience.

3.6 Architectural Design

Fig 4: Client-Server Architecture Diagram of WriteRight

In the context of WriteRight, two layers have been identified: the client layer and the server 

layer based on the DIP model where the flutter application is the client and the DIP model is 

the server. The DIP model is piped and filtered internally to enable a smooth and efficient 

processing of images received from the app for scoring. This pipeline just ensures that data is 

well managed within the DIP model with much ease. It takes feedback of the DIP model, 

using which allows the user to monitor the changes in their handwriting.User Profiles and 

performances are retrieved from Firebase. 

3.6.1 Decomposition Description
3.6.1.1  Module Decomposition



36

3.6.1.1.1 Deployment Diagram

Fig 5: Detailed Class Diagram of WriteRight

The WriteRight class diagram captures essential components and interactions within the 

system. Users differentiated as teachers and students, engage in activities such as assignment 

management, enrollment handling, and participating in gamified learning levels. The system 

seamlessly integrates functionalities such as assignment creation, submission processing, and 

level progression. This modular structure facilitates efficient data management, user-specific 

operations, and an engaging learning experience within the WriteRight application.

3.6.1.1.2  Overview of Modules
An overview of the modules mentioned in Fig 5 is given below:

1. User: Represents students and teachers, allowing registration and role-based feature 

access.

2. Student: Caters to individuals seeking personalized handwriting improvement.

3. Submission: Facilitates the submission and analysis of handwritten text images.

4. Teacher: Serves educators, enabling assignment management and student progress 

monitoring.

5. Exercise: Manages exercises created by teachers for students or classes.



37

6. Progress: Tracks and displays student’s performance over time.

7. Image Processing Model: Employs algorithms to analyze and compare handwritten 

text images.

8. Edit Profile: Allows users to modify and update their profile information.

9. Register Teacher:  Enables students to request and register with specific teachers.

10. Map: Provides a visual representation, possibly for gamification levels or user 

locations.

11. DjangoServer: The Django Model accepts requests, seamlessly forwarding them to 

the DIP Model for further processing and analysis of handwritten text images. 

12. EnrolledStudents: Teachers can view all enrolled students in their class

13. EnrollmentRequests:  Teachers can reject or accept students' received enrollment 

requests.

3.6.1.1.3  Server Modules
The functionalities on the server side for the WriteRight app are as follows:

1. Authentication Module: Handles user authentication processes.

2. API Server: Serves as the gateway for licensed users to access the application’s 

functionality.

3. Database Management Module: Manages data stored in the Firebase database.

4. Django Framework: Used to develop the server-side application.

5. Optical Character Recognition(OCR): Extracts text from images for comparison.

6. Structural Similarity Index Matrix(SSIM): Measures the similarity between image 

regions and marks the areas for improvement.



38

3.6.1.2 Process Decomposition

1. Use Case Diagram

Fig 6: Use Case Diagram of the WriteRight Application

The WriteRight use case diagram shows how users log in, sign up, and handle their profiles. 

Users also play gamified levels with feedback processed by the DIP model. Managing 

enrollments is easy for users, while teachers take care of exercise and student requests. The 

DIP model helps with image processing, making feedback better, and highlighting 

WriteRight's user-friendly and educational features.



39

2. Sequence Diagram

● Student Module

Fig 7: Sequence Diagram of Student Module for WriteRight

The WriteRight app begins with the student logging in or registering, leading to server 

authentication. Once authenticated, students can upload handwritten images, triggering an 



40

upload request to the server. The server processes the image and returns the data to the app, 

displaying the processed image and feedback. Students can access their image history, view 

available teachers, attempt exercise, or log out. Logging out prompts a request to the server 

for logout, ensuring secure and efficient user interactions, including image uploads, history 

viewing, and interactions with teachers and exercises.

i.  Login

Fig 8: Sequence Diagram of Login for Student Module

The diagram starts with the user opening the app, which then displays a login or registration 

screen. The user enters their credentials and the app sends them to Firebase for 

authentication. The Firebase checks the user's credentials and if they are valid, the server 

sends an authentication confirmation back to the app. The app then directs the user to the 

Home Screen.



41

ii.   Upload Image

Fig 9: Sequence Diagram to Upload Image for Student Module

The Above diagram shows the flow for uploading an image in writeRight. The student will 

navigate to a Pacific level in the game where he/she will upload the image. The image will be 

stored in the database and it will be sent to the DIP model for scoring as well. The model will 

send back scores and feedback which will be displayed to the user.

iii. View history

Fig 10: Sequence Diagram of View History for Student Module



42

Students can review their learning journey using the "View History" screen. Using Firebase, 

the app retrieves and displays a comprehensive history, including completed levels and 

performance metrics. This feature encourages self-assessment and enhances the user 

experience by providing valuable insights into the user's handwriting improvement journey.

iv. Enroll With Teacher

Fig 11: Sequence Diagram of Register with Teacher for Student Module

To register with a teacher, students go to the ‘Register Teacher’ screen on the application. The 

application sends a request to Firebase to fetch all available teachers. Firebase processes this 

request and returns a list of all available teachers, which is then displayed to the student on 

the ‘Register Teacher’ screen. Students can then send requests to register with a specific 

teacher. The student’s request will be stored in Firebase.  This process allows students to 

easily find and register with a suitable teacher.



43

v. Attempt exercise:

Fig 12: Sequence Diagram of Attempt Exercise for Student Module

To take an exercise, students will go to the exercise screen in the application. A request is 

then sent to Firebase to check for any exercises that are available or pending. Firebase 

responds with a list of available exercises. Students can then select ‘attempt’ to start taking an 

exercise.



44

vi. Log out

Fig 13: Sequence Diagram for Logout of Student Module

Users have the option to log out of the application by simply clicking on the 'logout' button. 

Once this button is clicked, a request is sent to Firebase to initiate the logout process. 

Firebase, in turn, handles this request and effectively logs the user out of the application.



45

● Teacher Module

Fig 14: Sequence Diagram of Teacher Module for WriteRight



46

The WriteRight app begins with teachers logging in or registering on the mobile platform, 

leading them to a dashboard. From the dashboard, teachers can manage various tasks, 

including assigning exercises, viewing enrolled students, and handling enrollment requests. 

To assign an exercise, teachers upload an image, which the app processes and stores in the 

database. After confirming the extracted text, teachers send the processed image to the server 

along with a request for the total enrolled students. The server retrieves and returns the count, 

displayed on the app. To handle enrollment requests, teachers query the server, which 

provides the requests for their class. When done, teachers can log out, triggering a server 

logout and closing the app session.

i. Login

Fig 15: Sequence Diagram of Login for Teacher Module

The diagram starts with the user opening the app, which then displays a login or registration 

screen. The user enters their credentials and the app sends them to Firebase for 

authentication. When the user's credentials are verified by the Firebase database, the server 

authenticates the app and delivers it back to the app. After that, the app redirects the user to 

the main dashboard.



47

ii. Assign Exercise

Fig 16: Sequence Diagram of Assign Exercise for Teacher Module

The teacher is navigated to the "Assign Exercise" section of the mobile application. There 

they can upload an exercise, and upon uploading/drawing the desired image, the app sends an 

upload request to the server. The server receives the image and stores it in the Firebase 

database.



48

iii. Enrolled Students

Fig 17: Sequence Diagram of Enrolled Students for Teacher Module

This diagram shows a teacher tracking the number of students enrolled in a class. On moving 

to the screen where the list of students is shown, a request is made to the server to fetch all 

the enrolled students with the teacher. The data is fetched from firebase and returned, which 

is then displayed to the teacher.



49

iv. Exercise Results

Fig 18: Sequence Diagram of Exercise Results for Teacher Module

This diagram covers the sequence of a teacher viewing exercise results students have 

submitted. The teacher uses the frontend to send a request to the server to view exercise 

results. The server then retrieves the results from the database and sends them back to the 

app. The app displays the results to the teacher.



50

v. Enrollment Requests

Fig 19: Sequence Diagram of Enrollment Requests for Teacher Module

The process starts when the teacher opens the app and navigates to the "Enroll Student" 

section. They can view the pending student requests, and accept or reject the requests. The 

app then sends a request to the server to enroll the student.



51

vi. Logout

Fig 20: Sequence Diagram of Logout for Teacher Module

Simply clicking on the 'logout' button will allow users access to log out of the application; 

within seconds, a correspondence will be sent to Firebase in order for it to start the process of 

logging the user out.Firebase, in turn, handles this request and effectively logs the user out of 

the application. This means the user will no longer be able to access their account or any 

protected data until they log in again.



52

3. Activity Diagram

Fig 21: Detailed Activity Diagram of WriteRight

The activity diagram of writeRight shows the basic flow of the application. The app is 

divided into 2 parts, the teacher module and the student module. The teacher module provides 

functions like enrolling students and giving exercises. Students can access functionalities like 

play level, attempt exercise, or register with the available teachers.



53

i. Login

Fig 22: Activity Diagram of Login Flow for WriteRight

This activity diagram shows the flow of authentication in our app. Users can login or register 

in our app. If a user fails to provide correct credentials, he/she will need to enter credentials 

again until the right credentials are provided. Similarly, our app will check if all fields are 

correctly filled at the time of registration. Users will be prompted to fill fields again until they 

are filled correctly. After all fields are filled correctly, users will be registered.



54

ii. Play Level

Fig 23: Activity Diagram of Play Level for Student Module 

This diagram shows the flow to play a level in our game. User will upload an image and get 

results. The user cannot move to the next level unless he/she meets a specific threshold of 

score.



55

iii. Register With Teacher

Fig 24: Activity Diagram for Registering With Teacher for Student Module 

This diagram shows the flow for a student to register with a teacher. Students can search for a 

teacher and send enrollment requests to the teacher. Teachers can accept or reject a request. 

Students will be notified about the status of the request.



56

iv. Attempt Exercise

Fig 25: Activity Diagram for Attempting Exercise  for Student Module 

This diagram shows the flow for a student to attempt an exercise given by the teacher. 

Students will complete the exercise and upload its  image which will be evaluated by our 

algorithm.



57

v. Handle Requests

Fig 26: Activity Diagram for Handling Student Enrollment Requests

This diagram shows the flow of the teacher module to enroll students with them. The teacher 

will check if there are any pending requests. Then he can accept or reject them.

vi. Upload Exercise



58

Fig 27: Activity Diagram for Uploading Exercise for Teacher Module 

This diagram shows the flow for a teacher to upload an exercise. The teacher will upload 

the image that students need to copy and then set the start and end times for the exercise. 

Finally, the teacher will upload the exercise. 



59

4. Package Diagram

Fig 28: Package Diagram Representing Granular Modules for WriteRight

Here our application is depicted in a comprehensive package diagram. It comprises distinct 

packages for seamless functionality. The "User Interface" package encapsulates the Flutter UI 

app, ensuring an intuitive user experience. "Data Management" is facilitated by Firebase, 

ensuring efficient storage and retrieval of user data. The "Gamification" package enhances 

user engagement through image preprocessing and scoring. The "OCR Processing" package 

incorporates a Python model for seamless text extraction from images. The "Image 

Comparison" package employs a DIP model to score and compare handwritten images, 

providing users with valuable feedback. Together, these packages create a well-organized and 

efficient system for a feature-rich and user-friendly experience.



60

5. Deployment Diagram

Fig 29: Deployment Diagram Representing Deployment Modules for WriteRight

Within the WriteRight application's deployment architecture, a robust backend server 

orchestrates critical functions like image processing and OCR. This backend seamlessly 

communicates with a database server housing user profiles, teacher-student associations, and 

diverse gamification levels. The mobile application serves as the user interface, allowing 

users to effortlessly capture images using their device's camera. These images are uploaded, 

connecting with the backend server for efficient processing. This setup ensures a cohesive 

and streamlined user experience throughout the application.



61

3.7 Design Rationale
The design rationale for "WriteRight" centers on 3 design patterns mainly. Each oneof the 

patterns is picked from all 3 categories - Structural, Creational, and Behavioral design 

patterns providing all necessary coverage to code reusability, flexibility, and assignment of 

responsibilities. 

3.7.1 Singleton Pattern: 

It ensures that there is only a single point of access, while that single point is globally 

available for all clients. We need strict control over our globally running ML Models on 

servers, therefore it is mandatory to ensure a single point of access even if available globally. 

In our case, when the user interacts with the ML Model via Flutter, the server serves as the 

single access point while the ML models are deployed with global access.

3.7.2 Adapter Pattern: 
It ensures incompatible interfaces to collaborate. Since our application is cross-platform 

(android and iPhone), it must be flexible enough, and the front-end application needs to 

communicate with the ML Models therefore Adapter pattern is to be implemented. In our 

case, we use the Django server as an adapter to make the Flutter interface and ML Scripts 

compatible to run.

3.7.3 Observer Pattern:
 This pattern lets define a subscription mechanism to notify multiple objects about any events 

that happen to the object they’re observing. Our application is event-driven and the observer 

pattern inherits event-driven characteristics by default, hence, it becomes the first choice for 

WriteRight. In our case, ML scripts are only run when a student uploads the image and the 

Django server observes the interface for this change.

.



62

Chapter 4. Data Design
4.1 Data Description
WriteRight's data revolves around two core facets: user information and handwriting samples. 

User information includes login credentials, progress data, and achievements, facilitating 

personalized learning and motivation. Handwriting samples, captured as images, are analyzed 

using image processing algorithms to generate valuable insights like similarity scores and 

areas for improvement. This data feedback loop fuels the core gameplay and empowers users 

to track their progress, while simultaneously enriching the app's ability to adapt and provide 

increasingly accurate feedback over time.

Fig 30: Entity Relation Diagram for the Database Entities in the WriteRight 



63

4.2 Data Dictionary
We will use the Firebase real-time database for our app. The database of our app will consist 
of the following collection:

Collection Key Document Subcollection

Students studentId Name (string)
username(string)
age(int)
email(string)
score(int)

Teachers TeacherId Name(string)
level(string)
email(string)

Enrolled enrollId studentId(string)
TeacherId(string)

Progress ProgressId studentId(string) levelId(string)
Score(int)
stars(int)

Exercise ExerciseId ImageUrl(string)
startTime(string)
endTime(String)

Levels LevelId ImageUrl(string)
levelNumber(int)
isCleared(bool)

Request RequestId studentId(string)
teacherId(string)
status(string)

Attempts AttemptId studentId(string)
teacherId(string
ImageUrl(string)

4.2.1.1 Server-side.
1. extract_frames(fps, vid.video).images => this function is a part of the 

Frame_Extraction class and is used to divide the video into video based on fps parameter.

2. get_features(frames.images).string => this function is a part of the 

Feature_Extraction class and is used to extract the required features from the frames.



64

3. recognize _face(featuredata.frames).video=> this function is a part of the Facial 

Recognition and it feeds the feature data into the model which processes it and classifies the 

face.

4. analyze_activity(featuredata.frames).video=>this function will analyze activity such 

violence detection, number of people etc.

5. recognize_number_plate(featuredata.frames).video=> this function will detect cars 

and will read their number plates at entrance and exit.

6. notify(processedvideo.video).string, video => this function takes in the processed 

video and returns the relevant notification and resultant video.

7. rcvvideo().video => this function is a part of the rest_api class and is used to receive 

video from the application.

8. sendresults(notification, processedvideo). string => this function is part of the 

rest_api class and is used to transmit the results.

4.2.1.2 Application side.
1. main().void => this function is used to start the web application.
2. get_video(address.string).boolean => this function is a part of the Video_Input class 
which is basically tasked with taking in the user’s input and returns true/false if video input is 
successful or not.
3. send_error_notification().string => the function returns an error notification in case 
video input fails.
4. rcv_notifcations().string, video => this function is a part of the Application class and 
it is tasked with receiving the results from the server.



65

4.3 Component Diagram

Fig 31: Overview of Component Design for WriteRight

The above diagram lays out the major components of our project. Machine learning workflow 

consists of Python libraries used to create an ML model for an application.

Data is collected from various sources and then preprocessed to make it suitable for training 

the ML model. Then this  preprocessed data is used to train the ML model. The trained model 

is deployed to production where it can be used to make predictions.

The Django app is being hosted on a web server for user access via web browsers. A 

connection is established between the Flutter app and the Django app's API to utilize the ML 

model's predictions.

Fig 32: Working of OCR for DIP Model of WriteRight



66

The above diagram shows the working of our OCR for character recognition. Firstly, the 

image will be preprocessed and then the Tesseract OCR engine will extract text and provide it 

as API response.



67

4.3.1 Mobile Application Module
This module performs all the front-end tasks for WriteRight application System which 

includes student Registration, solving exercises, view leaderboard and solve assignments 

provided by teacher. This module provides the base for successful working of the server 

module.

4.3.1.1 Staff/Admin Side

4.3.1.1.1 Student Registration

Fig 33: Login Page/Screen of WriteRight



68

Identification Name. User Registration/Login

Location. Mobile Application Module

Type Component

Purpose This component fulfils following requirement from Software 

Requirements Specification Document.

Registration Requirement

     The system shall be able to register new users..

Description

This feature enables the system to register new users and depending 

on their role whether teacher or student is then further moved to their 

respective dashboard. 

Function This component of system interfaces with registration of students.

Subordinates No subordinates

Dependencies This component is independent module and runs in parallel for 

registration of new users.

Interfaces
No interfaces as registration process don’t need to interface with any 

other module.

Resources Hardware. Mobile.

Software. Web Browser (Chrome, Firefox, IE), database for storing 

student`s images.



69

Processing Images will further process after registration for attendance, sleep and 

smoking detection.

Data This component uses students` data for fetching registration which 

includes name, registration number and images. 



70

4.3.1.1.2    View Level Map

Fig 34: Level selection screen of WriteRight

Identification View Level Map



71

Type User Interface Component

Purpose This component fulfills the following requirement from the Software 

Requirements Specification Document:

The system shall allow users to view a map that displays the levels 

available in the gamification feature.

Description

This feature enables users to view a map that displays the levels 

available in the gamification feature.Students can select level to write 

and check that particular character. It ensures that users are logged in 

before accessing this feature.

Function  Display a map showing the available levels in the gamification feature.

Subordinates None.

Dependencies User authentication system to verify login status.

Gamification data repository for level information.

Interfaces
● Input: User login status, user interaction with the gamification 

section.

● Output: Map displaying available levels for selection. Also 

displays which level is completed.

Resources ● User Interface: Frontend component to display the level map.
● Backend Server: To fetch level data which is a sample image 
associated with the level from the gamification feature.

Processing ● Verify user login status.

● Navigate to the gamification section upon user request.

● Fetch and display the level map from the backend server.

● Prompt the user to log in if not already authenticated .



72

Data ● Input Data: User login credentials, user actions.

● Output Data: Level map, login prompt (if necessary)



73

4.3.1.1.3  Play Level/upload image

Fig 35: Sample character and student’s submission screens of WriteRight



74

Identification Name. Play Level.

Location. Mobile Application Module

Type User Interaction Component

Purpose This component fulfils following requirement from Software 

Requirements Specification Document.

● The system shall allow users to upload an image of 

handwritten text for a specified level and receive a score based on 

the uploaded image.

Description

This feature enables users to play a specific level by uploading an 

image of handwritten text associated with that level. The system 

processes the image and provides a score, allowing users to progress 

through the levels based on their performance.

Function Enable users to upload a handwritten text image for a specific level and 

receive a score.

Subordinates None.

Dependencies ● User authentication system to verify login status.

● Gamification data repository for level information and text 

samples.

● Image processing system to analyze the uploaded handwritten 

text.

Interfaces
 User login status, user selection of level, uploaded image of 

handwritten text.

Resources User Interface: Frontend component for level selection, image upload, 
and score display.
Backend Server: To fetch level data, process uploaded images, and 
calculate scores.
Image Processing System: For analyzing the quality and content of 
uploaded handwritten text images.



75

Processing ● Display the handwritten text for the selected level.

● Accept and upload an image of the user's handwritten text.

● Process the uploaded image to calculate a score.

Data Output Data: Handwritten text display, calculated score, feedback on 

image quality, level progression status.



76

4.3.1.1.4  Calculate and View Results

Score Marking

Fig 36: Results and marking displayed after comparing 



77

Identification Calculate and View Results

Type Component

Purpose This component fulfils following requirement from Software 

Requirements Specification Document.

The system shall process uploaded images of handwritten text using 

Digital Image Processing (DIP) algorithms to calculate results. The 

results are then displayed on user screen.

Description

This feature processes uploaded images of handwritten text using DIP 

algorithms. It calculates results, including a similarity score and 

improvement tips, and displays these results on the screen.

Function Display results from DIP algorithms.

Subordinates None.

Dependencies ● User authentication system to verify login status.

● Image processing system for analyzing uploaded images.

● Algorithmic modules for calculating similarity scores and 

generating improvement tips.

Interfaces
 None.

Resources User Interface: For displaying calculated results on the screen.

Processing Display attendance after server processing on the basis of facial 

recoginition.

Data ● Accept and upload a clear image of the user's handwritten text.

● Process the uploaded image using DIP algorithms.



78

● Calculate results, including a similarity score and improvement 

tips.

● Display the results on the screen for the user.



79

4.3.1.1.5  View Student Performance

Fig 37: Performance tab for Student in WriteRight



80

Identification View Child Performance

Type Component

Purpose This component fulfils following requirement from Software 

Requirements Specification Document.

The system shall allow parents to view the performance of their 

children over time.

Description

This feature enables parents to view the performance data of their 

children, tracking progress and improvements over time. The system 

presents historical performance data in an easily understandable 

format.

Function Display the historical performance data of children for parents to 

review.

Subordinates None.

Dependencies Student performance data repository for historical data.

Interfaces
Display of historical performance data.

Resources User Interface: Frontend component for displaying performance data.
Backend Server: To fetch historical performance data of students.
Database: Repository of student performance data.

Processing ● Enable selection of a specific child whose performance data is 

to be viewed.

● Retrieve and display the historical performance data for the 

selected child.

● Present the data in an easily understandable format, including 

charts and graphs showing performance over time.



81

Data This component uses following information of the 

application. - Time to fetch notifications from server.



82

4.3.1.2 Teacher Dashboard module

Fig 38: Dashboard module for Teacher in WriteRight



83

Identification Teacher Module Dashboard

Type Component

Purpose This component fulfils following requirement from Software 

Requirements Specification Document.

● The system shall provide teachers with an overview and quick 

access to main features for managing students and exercises.

Description
The Teacher Module Dashboard is the main control panel for teachers 

using the WriteRight application. It allows teachers to create and 

assign exercises, manage students, and view upcoming exams. The 

dashboard provides quick statistics on the number of students and 

exercises, and easy navigation to different sections of the application.

Function Provide teachers with an overview and quick access to main features 

for managing students and exercises.

Subordinates None.

Dependencies ● User authentication system to verify teacher login status.

● Exercise management system to handle creation and tracking of 

exercises.

● Student management system to track student statistics.

Interfaces
Display of statistics, exercises, and navigation options for teacher.

Resources User Interface: Frontend component for displaying dashboard 
elements.
Backend Server: To fetch data related to students and exercises.
Database: Repository of student and exercise data.

Processing ● Verify teacher login status.

● Display quick statistics on the number of students and 

exercises.

● Provide a button to create new exercises.

● List upcoming exams or exercises with options to view details.



84

● Allow navigation to different sections of the application 

through a bottom navigation bar.

Data Input Data: Teacher login credentials, user interactions (e.g., creating 

exercises, viewing exams).

Output Data: Display of statistics (number of students and exercises), 

list of upcoming exams, navigation options.

4.3.2 Server-Side Module
This module performs all the back-end functionalities related to pre-processing of videos, 

feature extraction, classification, ML algorithms implementation and decision making. 

Feature extraction is the main input for Algorithm implementation component.

In the next chapter all of the techniques used in server side are discussed in detail.



85

Chapter 5. Implementation And Testing

5.1 System Overview
WriteRight” is an engaging, gamified handwriting improvement app. It uses Flutter for 

mobile development, Django for the backend, and Firebase for real-time data sync. Users can 

track progress and get feedback on their handwriting using an image comparison algorithm. 

The app, available on Android and iOS, uses levels and rewards to motivate users, offering a 

comprehensive solution to improve handwriting through technology and interactive learning.

5.2 Preprocessing
Preprocessing is essential for assuring the correctness and dependability of the metric's 

outcomes while preparing pictures for image comparison score computation. Prior to 

calculating the image comparison score, images frequently go through a number of 

preprocessing stages designed to improve their quality and highlight key structural elements.

Following are several reasons why it is crucial to preprocess the image before performing 

structural similarity index (SSIM) comparison:

● Noise Reduction: Images can have noise from lots of different places, such as bad 

sensors, compressed data or light when the picture was taken. To clean up such noise before 

further analysis researchers use filters (for example ‘median filter’). For proper comparison it 

is important to reduce noise since any additional dissimilarity may affect the structural 

similarity index measure (SSIM): because this index is sensitive to even small changes 

between pixels.

● Feature Enhancement: Preprocessing methods like thresholding and Laplacian 

filtering are examples of how to draw attention to the important edges and features in an 

image. This makes the SSIM comparison less concerned with irrelevant details or noise and 

more with what is regarded as structural information. Preprocessed images are used to make 

comparisons that are more accurate since they highlight these important structural elements. 

Similarly, structural motif similarity between images is quantified using SSIM.

● Standardization of Input: Before conducting SSIM comparison, it is important to 

optimize the input images, ensuring they match and have homogenous properties. The 

preprocessing stage removes variances in image dimensions and color channels by reducing 

the photos to a common size (800x800 in this case) and converting them to grayscale. This 

increases the consistency and reliability of the SSIM comparison.



86

Following are the important steps of preprocessing before comparison.

5.2.1 Converting to grayscale: 

The original image is converted from a color (BGR) representation to a grayscale 

representation. This simplifies the image to a single channel, making it easier to process and 

analyze.

5.2.2 Binarization: 
To transform the grayscale image into a binary image, a thresholding procedure is used. 

Pixels are set to their maximum intensity (255) when their intensity values are above a 

threshold (in this case, 100), and to zero when they are below.

5.2.3 Noise Reduction with Median Filtering:
 Median filtering is applied to the binary image to remove noise and small artifacts. It 

replaces each pixel's value with the median value in its neighborhood. The kernel size (5x5 in 

this case) determines the size of the neighborhood.

5.2.4 Laplacian Filtering: 
The Laplacian filter is applied to highlight edges and features in the image. It calculates the 

second derivative of the image and is commonly used for edge detection.

5.2.5 Inversion of Laplacian Image: 

The Laplacian image can be made inverted by deducting its values from 255. Then, the 

contrast will be increased and the edges will be easier to see.

One of the image processing techniques, Laplacian filtering, is utilized in edge identification 

and feature enhancement. The method calculates the second derivative of the picture intensity 

function. In the case of an image, the Laplacian operator is customarily modeled as a 

convolution kernel which is a two-dimensional operator.

This approach reveals the structural components of the image and emphasizes regions within 

the picture which have rapidly varying intensities, typically corresponding to borders. For a 

Laplacian-filtered frame, positive numbers show greater change of intensity while negative 

ones denote less modification within certain regions considerably. At the same time, applying 

a Laplacian filter means bettering image sharpness and clarity through emphasizing edges or 

objects with marked changes in intensity. Many image processing tasks require this 

enhancement like texture analysis, edge recognition and image sharpening; In order to boost 



87

structural information Laplacian filtering is essential at last, so as to enhance the general 

picture quality which will lead to later analysis and interpretation of pictures.

Fig 39: Preprocessing of images before comparing and other algorithms.

5.3 Structural Similarity Index: 
After the image has been pre-processed, it goes to a stage of contrast involving comparison to 

an exemplar image that resides within the system. In this matching exercise, the Structural 

Similarity Index (SSIM) is applied to assess the degree of resemblance between the image 



88

that has been pre-processed and a standard. A common statistic used to assess how similar 

two images appear visually while taking structure, contrast, and brightness into consideration 

is called SSIM.

In image processing, the Structural Similarity Index (SSIM) is a popularly recognized metric 

used to compare two different pictures. The SSIM finds out how similar the photographs are 

in content and structure, as in preprocessing. We should look at the most important steps 

involved in SSIM computation after the preprocessing period:

5.3.1 Windowing and Division into Patches: 
Rather than processing the entire image at once, SSIM operates on local image patches. There 

are smaller spots in the distorted as well as the reference photos. This stage enhances the 

precision of SSIM’s similarity judgment by capturing local structural data.

5.3.2 Local Mean Calculation: 
Every patch is computed to give the mean intensity value which shows the luminance or 

brightness level of that particular patch. The mean value serves as a reference point in terms 

of evaluating local similarities in structures between reference and deformed images.

5.3.3 Local Variance and Covariance Calculation: 
We calculate the local differences in intensity values and how the reference and distorted 

patches change together. Variance tells us how the pixel intensities are spread out within a 

patch, while covariance measures how the pixel values in the two patches move in relation to 

each other. These statistics help us understand the local texture and contrast information.

5.3.4 Luminance, Contrast, and Structure Comparison: 
SSIM, a measure for evaluating luminance similarity, contrast similarity, and structure 

similarity with respect to mean, variance, and covariance values, calculates three terms. 

Luminance similarity quantifies how well related patches match with regard to their average 

brightness levels. We can evaluate whether a given patch is similar in terms of texture/detail 

if we measure contrast level (contrast term preview). SSIM is able to observe patterns present 

between neighbouring pixels (structure term exapnasion).

5.3.5 Aggregation Across Patches: 
The total SSIM index is obtained by calculating the average local similarity measures 

acquired from each patch such that, the mean SSIM value of all patches is usually presented 

as a final result giving a comprehensive analysis of how alike are all pre-processed images.



89

Although SSIM is useful, its inherent limitations prevent it from providing exact results every 

time. It may not be able to fully capture picture quality even though SSIM offers valuable 

insights into structural similarity. Complex scenes, severe distortions, and personal taste in 

colours are some examples of elements that can make it difficult for SSIM to measure 

similarity effectively. Furthermore, the particular preprocessing methods used and the 

properties of the images under comparison may have an impact on how well SSIM performs. 

Therefore, for a complete understanding of image quality, even if SSIM is a useful statistic 

for assessing image quality, it's important to recognise its limitations and supplement its 

findings with other metrics and subjective evaluations.

Fig 40: Working of ssim for image comparison results.

5.4 Marking and Placing Images
The preprocessing begins by converting the images to grayscale to simplify processing. Edge 

detection locates areas of rapid intensity change, enhancing edges. Edge density, the ratio of 

edge pixels to total pixels, is calculated to determine whether dilation is needed for contour 

detection. Contours, representing object boundaries, are extracted, and the largest contours 

are identified. Contours are resized while maintaining aspect ratios for consistency. Resized 

contours are drawn on a canvas for visual comparison. This process aids in aligning and 

visually inspecting contours, highlighting shapes and differences.

5.4.1 Edge Detection with Canny: 
The edges of the image correspond to locations where the Canny algorithm detects rapid 

intensity changes. It uses gradient-based techniques, examining the pixel intensity gradients 



90

in the image, to pinpoint these modifications. The end product is a binary image with 

highlighted edges that are displayed as white lines on a black backdrop. This method works 

well for extracting important structural information from the picture, which is needed for later 

contour identification and shape analysis.

Fig 41: Edge detection in preprocessed image

5.4.2 Edge Density Calculation: 
Edge density calculation is a technique used in image analysis to evaluate the prominence of 

edges within an image. This is done to determine the strength of edges in the image. 

Sometimes the strength of edges is not enough to determine and define the required 

boundary. The total number of pixels in the image is calculated at the same time as the 

number of edge pixels. Next, divide the number of edge pixels by the total number of pixels 

to get the edge density. This produces a ratio that shows how much of the image's surface is 

made up of edges. Whereas a lower density denotes smoother sections with fewer visible 

edges, a higher density signifies a larger frequency of edges, indicating more detailed or 

structured parts in the image. Image with less edge density is then dilation which is explained 

in next step.



91

5.4.3 Conditional Dilation:
Depending upon the edge density we apply dilation which eases the task of edge detection.  

The morphological process of dilation thickens the borders between objects. Depending on 

the determined edge density, it can be used to enhance or remove edges and features as per 

the appropriate edge density. In the pictures where edge prominence is different, this step 

assists the algorithm in contour detection. However, in image processing, dilation is a 

morphological operation that expands an object’s size by adding more pixels to it. It involves 

using a kernel – or a small binary image which is commonly referred to as a structuring 

element- to traverse the image, followed by the setting of each pixel’s intensity value to the 

greatest intensity value that has been identified in the neighborhood recognized by the 

structuring element. This process is an efficient way of increasing areas of high intensity 

within the image, through the thickening or enlarging of certain features. This means that 

extent of dilation depends on size and shape of the structuring element; large elements lead to 

substantial dilation of objects.

Fig 42: Dilation of edges 

5.4.4 Contour Extraction and Selection: 
Many techniques of image processing involve contoured pictures to differentiate the forms 

present in an image. From edge-detected pictures, contours, which connect places of 



92

continual shades along boundaries of constant characteristics, are obtained using the cv2. 

findContours() tool. These are the base work that builds up to the tasks of shape analysis and 

item detection later on the process. It is therefore important to establish the method of 

calculating the highest contour in order to enhance the analysis to a further degree. This step 

isolates the most important form in the image by choosing the contour with the largest area 

among the contours that have been found. This targeted strategy simplifies analysis by 

focusing on the most salient characteristic for closer inspection and contrast. To facilitate 

additional analysis or processing, the biggest contour—which is the object of 

interest—undergoes actions like scaling or alignment.

Fig 43: Displaying largest selected contour 

Now we can see that the largest contour shown is the thing of interest and we will map these 
contours onto each other. The largest contour is typically the most significant shape in the 
image. To do this, we take this step by choosing the one wide line above all others—it lets us 
concentrate more on what matters most while leaving out distractions.

5.4.5 Resizing Contours with Aspect Ratio Preservation:
To compare different forms and achieve accurate results when matching photos to proper 

forms, the largest contours are resized while maintaining their aspect ratios. Resizing avoids 

distortion as well as maintains the correct dimensions of the shapes through maintaining the 

aspect ratio of the contours which is the ratio of width to height. This means that the shapes 

of different sizes or different orientations can be compared without necessarily developing 

bias due size differences. Students need to understand that by comparing both images using a 



93

standard size, it becomes easy to distinguish between the two and this leads to improved 

understanding of the different aspect of the two shapes. 

Fig 44: Largest contours with unequal sizes not suitable for marking

Fig 45: Resized contours with aspect ratio. Suitable for marking

5.4.6 Drawing Contours on a Canvas : 
Meanwhile, in the domain of image analysis, understanding of shapes and patterns requires 

parallel visualisation. For example, imagine when a student aligns his/ her image with that of 

an instructor or a model image with the purpose of seeking differences and probable change 

enhancements. Such is the effect that the contour drawing on a canvas produces. To create the 

teacher's or sample image, the cv2.drawContours() function must be used to compile 

modified contours on a blank canvas; altered versions (from the students) are positioned next 

to the direction picture for comparison, while different areas are lined-up with these images 



94

for corrections. Different colors are applied to distinguish between two sets of lines drawn on 

the map: those coming from learners’ work and those from the teacher’samework. With the 

use of this visual tool, students can easily identify areas in which their work deviates from the 

required quality, giving them the confidence to rectify any errors and improve their abilities. 

As a result, creating contours on a canvas is an effective teaching tool that promotes deeper 

understanding and focused learning.



95

Chapter 6. Conclusion and Future Works
WrightRight is just a prototype and there is a lot of untouched domains to be explored. 

WrightRight is a base line variant and it can turn out to be the first handwriting improvement 

application in Pakistani market once the future worked is achieved. Due to the scope defined 

in SRS and limitations to implement research based solutions, the development of WriteRight 

is limited and the scope can be increased in the interest of research based domain.

Creating Animations to teach require Adope Animate tool. Learning the tool and developing 

the animations in house will be quite expensive in terms of expanding scope and a threat to 

time constraints. For the dedicated OCR, a large dataset of handwritten english alphabets and 

in future words and sentences is required to be gathered and creating a customized dataset 

requires a lot of time and effort along with a good number of volunteers to write. Improving 

the OCR and introducing words and sentences to OCR will also help character limitation to 

be bypassed. For better response time, algorithms used in the backend must be replaced with 

customized algorithm requiring skills in computer vision.

Sr No. Feature Module Expected Cost Inhouse/ 
External

1 Animated 
Tutorials

Student/ 
Teacher

$500 External

2 Faster Response 
Time

Student $200 Inhouse

3 Dedicated OCR Student $800 Inhouse

4 No character 
limitation

Student/ 
Teacher

$400 Inhouse

Table 2. Table stating future work that can be made



96

References

1. Image Processing Techniques for Handwriting Analysis: A Review, P. S. Hiremath and 

S. B. Hiremath, International Journal of Computer Applications, 

2014:https://www.researchgate.net/publication/345364858_Image_Processing_Techniques_A

_Review

2. IEEE Standard 830-1998 (R2019), IEEE Recommended Practice for 

Software Requirements Specifications, 1998, Reaffirmed 2019: 

http://www.math.uaa.alaska.edu/~afkjm/cs401/IEEE830.pdf

3. Gamification and Education: A Literature Review, Ilaria Caponetto, 

Jeffrey Earp and Michela Ott, ITD‐CNR, Genova, Italy, 

2014:https://www.itd.cnr.it/download/gamificationECGBL2014.pdf

4. Secure File Upload and Storage Practices, National Institute of Standards 

and Technology (NIST), 

2023:https://www.nist.gov/publications/security-considerations-exchanging-files-

over-internet

5. API Security Best Practices, OWASP, 2023: 

https://owasp.org/API-Security/editions/2023/en/0x11-t10/

6. United Nations. (2023). Sustainable Development Goals. Retrieved from 

https:https://www.un.org/sustainabledevelopment/sustainable-development-goal

7. SHRESHTA, N., PANTHA, R. R., NAGARKOTI, S., & DHUNGANA, S. (2023). A 
INTEGRATED EDUCATIONAL TOOL: https://elibrary.tucl.edu.np/handle/123456789/18860

8. Koç, H., Erdoğan, A. M., Barjakly, Y., & Peker, S. (2021, March). UML diagrams in 

software engineering research: a systematic literature review. In Proceedings (Vol. 74, No. 1, 

p. 13). MDPI: https://ceur-ws.org/Vol-1078/paper1.pdf

9. Evans, A. S. (1998, October). Reasoning with UML class diagrams. In Proceedings. 

2nd IEEE Workshop on Industrial Strength Formal Specification Techniques (pp. 102-113). 

IEEE: https://ieeexplore.ieee.org/abstract/document/766304

10. Fayed02.Handwritten Isolated English Character Dataset: 

https://www.kaggle.com/datasets/fayed02/handwritten-isolated-english-character-dataset

11. Refactoring.Guru (2014-2024). Design Patterns: 

https://refactoring.guru/design-patterns/

https://www.researchgate.net/publication/345364858_Image_Processing_Techniques_A_Review
https://www.researchgate.net/publication/345364858_Image_Processing_Techniques_A_Review
https://www.researchgate.net/publication/345364858_Image_Processing_Techniques_A_Review
https://www.researchgate.net/publication/345364858_Image_Processing_Techniques_A_Review
http://www.math.uaa.alaska.edu/~afkjm/cs401/IEEE830.pdf
https://www.itd.cnr.it/download/gamificationECGBL2014.pdf
https://www.itd.cnr.it/download/gamificationECGBL2014.pdf
https://www.itd.cnr.it/download/gamificationECGBL2014.pdf
https://www.nist.gov/publications/security-considerations-exchanging-files-over-internet
https://www.nist.gov/publications/security-considerations-exchanging-files-over-internet
https://www.nist.gov/publications/security-considerations-exchanging-files-over-internet
https://www.nist.gov/publications/security-considerations-exchanging-files-over-internet
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
https://www.un.org/sustainabledevelopment/sustainable-development-goal
https://elibrary.tucl.edu.np/handle/123456789/18860
https://ceur-ws.org/Vol-1078/paper1.pdf
https://ieeexplore.ieee.org/abstract/document/766304
https://www.kaggle.com/datasets/fayed02/handwritten-isolated-english-character-dataset
https://refactoring.guru/design-patterns/


97

12. Pranjal Datta. All about Structural Similarity Index (SSIM): Theory + Code in 

PyTorch:

https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorc

h-6551b455541e

https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e
https://medium.com/srm-mic/all-about-structural-similarity-index-ssim-theory-code-in-pytorch-6551b455541e

