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Abstract 

 
 

Convolutional Neural Network (CNN) is an in-depth learning algorithm widely use in image 

processing and pattern recognition due to its robustness that includes flexibility. However, it is 

also the most calculated that leads to real-time malpractice. Field Programmable Gate Arrays 

(FPGA) works well for power consumption, flexible processing flexibility and pipeline 

performance. It is therefore expected to be used to accelerate an in-depth learning algorithm. In 

this study, a FPGA-based system was developed to detect hand-held visual perception in real 

time. We train the CNN model caffeinated model and get the model parameters on the PC. The 

Bilinear interpolation algorithm is used to adjust the image size taken by the camera. We then 

use FPGA to perform the Guessing Hand Gesture Recognition process and the parameters 

obtained by designing the accelerator using Xilinx tools. 
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A person who is unable to express themselves verbally can make good use of hand gestures to get 

their message across. User-friendly communication is enhanced by the use of gestures in 

conjunction with speech language and facial expressions. In addition to visual games, security, and 

sign language identification, there are numerous other applications of human hand gestures based 

on a personal computer interface. When people interact with computers using a human hand 

gesture, a real-time system for recognizing and distinguishing various hand gestures is needed. 

There is still a long way to go in identifying the numerous hand motions provided by various 

academics. It takes a lot of training data to implement the recommended solutions, which in turn 

slows down the processing time and limits their application in real-time systems Real-time 

recognition of human hand movements is possible because to a new hand gesture recognition 

technology that addresses the issues raised above. Hand motions can be detected using simple 

shape-based features calculated by the proposed approach. FPGA implementation is also fast 

enough for real-time human- computer interaction because of the little processing time required by 

the FPGA software. 

Using varying background illumination conditions and lighting adjustment, the suggested 

technique improves accuracy. The skin color separation is also employed for hand separation 

in order to limit the likelihood of other items in the background being falsely separated. 
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1.1 Problem statement 

It is common practice in sign language to employ hand gestures. Voice-impaired people find it 

extremely challenging to communicate with the globe. 

Hand gestures may be automatically recognized and converted into speech and text output by 

this project, making it easier for persons with disabilities to communicate with others. 

1.2 Project description 

 
There are three main processes in from data set creation to image processing and gesture 

recognition and classification. The method starts when image sensor captures the image. The 

primary thing after image capture is pre-processing. FPGA takes pictures in HEX form, but our 

picture is in binary form in 0 & 1 bits because it came from a camera. So, we do pre-process in 

MATLAB and convert out picture in to HEX form. After the pre-processing comes the post- 

processing. In post processing we do some basic image processing to extract the features of the 

image i.e. thresh-holding and border determination etc. The last but not least is that the Deep 

learning model. During this stage we take the method images and their feature and train our 

machine to be ready to identify and make a conclusion. Image is simply captured by a tool and is 

in digital form. 

1.3 Prospective Application Areas 
 

➢ It is utilized by vocally impaired person to speak with the globe in real unit of 

time. 

➢ It is installed/use in schools for differently abled person. 

➢ In home, offices and public places, a vocally person can communicate easily. 

➢ To cover a huge gap between the globe and also the vocally impaired person. 
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1.4 Scope, objectives, and specifications 

1.5.1 Scope and objectives 
 

➢ Improve the system's capacity to recognize different types of lightning. 

 

➢ Increasing precision by using a greater variety of gestures. 

 

➢ Make a list of as many gestures as you can. 

 

➢ This involves using gesture recognition to open web applications. 

 

➢ Using gestures create a system for modifying. 

 
 

1.5.2 Specifications 

1.5.2.1 Hardware specifications 

 
1. FPGA Spartan 3E family 

 

2. PL2303 USB to TTL Converter Module 

 

3. Webcam 

 

1.5.2.2 Software specifications 

 
1. Xilinx 14.7 version 

 

2. MATLAB (2019 a) 

 

1.5 Organization of the report 

The report is consisted of five chapters. Chapter 2 briefly discussed the previously published 

work. Our proposed methodology with the working of different components presented in 

chapter 3. Chapter 4 shows and discusses the results. Conclusion and future work directions 

are discussed in Chapter 5. 
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A literature review is a necessary step in developing a concept for a brand-new project. The 

features of a previously introduced similar project are modified and enhanced in an exceedingly 

new project. An in-depth study regarding all similar projects is additionally mandatory for the 

event and replacement of a project that uses FPGA for hand gesture recognition. Our research 

focuses on the subsequent points. 

➢ Industrial Background 

➢ Existing projects and their shortcomings 

➢ Research Papers 

 

 
2.1 Industrial background 

 
 

In Pakistan out of the 23 Cr population, about 0.5083 Cr people, or 2.21% of the total population, 

are classified as disabled, with a speech disability accounting for 7.5% of this group. 

Sadly, some persons are left unable to communicate after an accident. 

 

Deaf people have relied on sign languages for generations to communicate with others, 

particularly those who are unable to speak or hear. Around the world, wherever there are people 

with disabilities, new sign languages are emerging. It is possible to represent a speaker's thoughts 

via sign language by combining hand forms, hands gestures, arms or body movements, and facial 

expressions. [1] 

 
 

Normal people, on the other hand, don't appear to understand language communication. As a 

result, it may be difficult for persons who communicate solely through signing to speak or even 
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To explain their thoughts to others. Technology has made it possible for people with 

vocal impairments to communicate with others, therefore new solutions have been 

developed. 

 
 

Thus, academics are working on a variety of approaches to convert hand motions into words. A 

vision-based system and a wearable device are the two most commonly used methods. ” Images 

are processed using feature extraction techniques to detect hand and finger movements in vision- 

based systems. As detailed in, there are numerous other investigations into the use of vision- 

based systems for linguistic communication translation. Vision-based systems may not 

necessitate the use of sensory equipment that may be messy and uncomfortable for the users. 

Complex and intensive computations in designing algorithms for feature and movement 

recognition are required to develop vision-based systems. 

 
 

For linguistic communication translation, wearable devices typically use sensors linked to the 

user or gloves. The devices are capable of converting words and phrases into text or even spoken 

language. 

 
 

Hand gestures will be a really important thanks to communicate with computers. There are many 

potential application areas for hand gestures based. There are many difficulties related to the 

interaction of speechless people with normal people. Communication via visual aids is simpler 

than communication via verbal means. Sign language enables people to speak using anatomy 

language; each word contains a set of actions that represents a particular expression computer 

interface, including linguistic communication recognition. 
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Human computer interaction requires an individual's hand recognition system that may recognize 

and classify a spread of hand gestures in real time. 

The project Hand gestures recognition system using FPGA reduces the communication gap 

between vocally impaired and normal persons. 

2.2 Existing projects and their shortcomings 

 

There are some different solutions being proposed for the hand gesture recognition system, but 

everyone has its own advantages and drawbacks. 

Different solutions are preliminary being handed for the hand gestures recognition system, but 

every project has some advantages and shortcoming. Following are some results which are 

formerly being set and being applied. [2] 

 
➢ Hand gesture recognition by using Raspberry pi. 

 

➢ Recognition of hand gestures supported self-organization technique employing a Data 

Glove. 

➢ Recognize the hand supported the form. 

 

➢ Recognize hand gestures using contour analysis of hand. 

 

➢ Hand gesture recognition by using fix threshold for hand segmentation. 

 

➢ Pen based gesture recognition. 

 

➢ Tracker-Based Gestures Recognition. 

 

➢ Hand gesture recognition by using Arduino. 
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2.2.1 Hand gesture recognition by using Raspberry pi 

 

 

The inability to talk is taken into account a real obstacle. People with this disability use other 

ways to speak with others. There are many various ways of communicating with them, one such 

common way of communicating is linguistic communication. Signing allows people to speak 

using organic structure language. Each word encompasses a set of human actions that represent a 

specific expression. 

The motivation for this project is to translate human language into voice that understands human 

gestures. This can be achieved with the assistance of the Raspberry Pi web camera and speakers. 

Several linguistic communications to voice conversion systems are available, but none of them 

provide a transportable program. See if an individual with a voice disability can exchange front 

of the system and act, and also the system converts human gestures into voice and plays it aloud, 

allowing the person to truly communicate with the group. This method also helps visually and 

speech impaired people communicate with one another. 

 

 

Drawback: 

 
 

Raspberry Pi generally has slower processing speeds compared to the FPGA. 

A Raspberry Pi isn’t powerful enough to assist in handling multiple tasks. 
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2.2.1 Recognition of hand gestures supported self-organization technique employing a Data 

Glove. 

 

 
The following procedure is applied to acknowledge hand-gestures supported self-organization by 

employing a Data Glove. 

➢ Angles of cutlet joints are measured by a Data Glove at some time. 

 

➢ Each gesture is segmented from a series of hand shapes. 

 

➢ The number of snapshots in each sign is adjusted to acquire data of standard length. 

 

➢ An input vector for self-organization is produce by joining an order of 10-spatial 

help- shape headings. 

➢ Finally, grouping of KD and-gestures is completed activity by self-arrangement in 

accordance with their correspondences. 

 

 

Recognition rates on self-organization technique employing a Data Glove. 

 

range from 88.9% to 100% for training data and 86.7% to 95.0% for test data in real scenario. 

 

 

Drawback: 

 

Users must wear an information glove to segment their hands, limiting their freedom to 

communicate with their hands exposed. 

 

 

 

2.2.2 Recognize the hand supported the form 

 

At 45 dpi on a flatbed scanner, the scanner captures the subjects' proper hands in an 

unconstrained stance. Prior to any further processing, a fixed style is applied to the silhouettes of 
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Hand photographs, which incorporates both rotation and translation of the hand as a whole 

as well as each of the individual fingers. 

 
 

The Harsdorf distance of the hand forms and the independent component feature of the hand 

silhouette photos were examined to see how they compare. For groups with at least 500 

participants, the classification and verification results were found to be excellent, indicating that 

hand-based recognition could be a viable secure access control mechanism. 

2.2.3 Recognize hand gestures using contour analysis of hand 

 

This project uses real-time implementation to recognize hand features. Using the background 

subtraction method, three cameras and also the hand region are retrieved in order to get the most 

features for hand gesture identification, the longer distance from the final analysis and hence the 

hand contour must be calculated. For practical purposes, Y changes within the vertical contour 

image are used to calculate arm angle and finger positions. Using a data set of roughly 1800 

photos, this approach performed quite well and was effectively applied. 

 

Drawback: 

 

When a project requires a lot of arithmetic, the system is generally tuned for real-time processing. 

 

2.2.4 Hand gesture recognition by using fix threshold for hand segmentation 

Shape-based hand motion recognition was employed in this study, although they used a set 

threshold for hand segmentation, which is susceptible to incorrectly segmenting other bright 

objects. 
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2.2.5 Pen based gesture recognition 

 

It has been discussed a few times about recognizing motions from two-dimensional input devices 

like a pen or mouse. For example, the original Sketchpad system from 1963 featured light-pen 

motions. Since the 1970s, some commercial systems have employed pen gestures. Samples of 

gesture recognition include document editing, traffic control, and design jobs like splines. 

Recent systems like the OGI Quick Set system have proven that pen-based gesture detection may 

also be used in conjunction with speech recognition in virtual environments. Pen gestures, 

including map icons, edit and taps are recognized by Quick Set. This includes 68 pen gestures. A 

variety of PDAs, including the 3Com Palm Pilot and a variety of Windows CE devices have been 

available for commercial use for many years now, beginning with the Apple Newton model. 

Gestural interfaces and interface designers are examined in depth by Long and Rowe in this 

paper. 

 

 

 

2.2.6 Tracker-Based Gestures Recognition 

 

There are many off-the-shelf tracking systems which will be used for gesture recognition, 

primarily to trace the road of sight, hand movements, and therefore the whole body and its 

position. Each sensor has its own strengths and weaknesses when interacting with a virtual 

environment. Since it may be useful to appear at the gesture interface, we are going to 

concentrate on gesture-based input by hand and body tracking.
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2.2.7 Hand gesture recognition by using Arduino. 

 
 

The Arduino-based project is functioning on a glove-based device accustomed convert linguistic 

communication (ASL) to speech. The essential system consists of two parts. 

1. Sign language recognition, conversion to text 

2.conversion to voice 

Sign language gloves are equipped with a flex sensor and encompass simple gloves accustomed 

monitor finger flexion. Flex means to bend. These are sensors that change resistance in line with 

the flex of the sensor. The information from the sensor is shipped to the control unit, which is 

that the Arduino Nano. The analog signal from the sensor is digitally converted, compared to the 

stored character recognition value, and displayed as text on the LCD. Additionally, the text 

output is distributed wirelessly to a mobile or a PC consisting of test-to-speech conversion 

software. [3] 

 
 

Limitations: 

 

➢ An Arduino can only run one sketch or app at a time. Arduino doesn't support 

multitasking functionality. 

➢ Lack of built-in peripherals 

 

➢ Limited number of IDEs 
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There are three main processes in from data set creation to image processing and gesture 

recognition and classification. The method starts when image sensor captures the image. The 

primary thing after image capture is pre-processing. FPGA takes pictures in HEX form, but our 

picture is in binary form in 0 & 1 bits because it came from a photographic camera. So, we do pre-

processing in MATLAB and convert out picture in to HEX form. After the pre-processing comes 

the post-processing. In post processing we do some basic image processing to extract the features 

of the image i.e. thresh-holding and border determination etc. The last but not least is that the Deep 

learning model. During this stage we take the method images and their feature and train our 

machine to be able to identify and make a conclusion. 

Image is simply captured by a tool and is in digital form. 

We discuss of these in details in follow. 

3.1 : Pre-processing. 

 
The first thing after image capture is pre-processing. We do the subsequent process on image. 

 

3.1.1 : Image Re-sizing. 

 

The first thing is image re-sizing. While re-sizing image we've got to kept some things within the 

mind that the larger the image is that the slow the general processing is and smaller the image the 

less he accuracy so we've got to create some balance in these thing. So, we resize our image in 

96x72. 
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3.1.2 : HEX Conversion. 

 

After re-sizing the binary image is converted into HEX from in order that we will deliver it to the 

FPGA for further processing. The MATLAB code does that conversion. 

As soon as the FPGA has finished its post-processing, we need to import this image into the 

Deep learning model, and therefore we need to transform this image back to the binary format as 

well. 

3.2 : Post-Processing. 

 
Input to the FPGA is through port after HEX conversion. Within the 8-bit data format, it is 

loaded into the buffer (HEX data). After that, it's time to do some post-processing. In post- 

processing, the extraction of characteristics is completed. 

3.2.1 : Grey scaling 

 

Commencement of post processing is gray scaling. In FPGA we do gray scaling on the HEX type 

of pre-processed image. 

Intensity information from the sun is all that each pixel's value represents. Typically, these 

photographs show only the blackest black to the whitest white. That is to say, the image is 

entirely composed of shades of grey, each of which has a different level of saturation. 

3.2.2 : Filtering 

 

We need to use some filter to detect the boundaries and fringe of the pre-processed picture so as 

to extract the most components and to urge the important details. 

For the purpose of detecting edges, we employ the Sobel filter. Sobel filter has given us an 

accurate representation of the components, so now we'll proceed with further processing. 

It is used in edge detection algorithms to create a picture with an emphasis on the edges of 

objects, and it is also known as the Sobel–Feldman operator or the Sobel filter. 
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Mathematical Formulation of the Sobel Operator 

 

 

➢ Gx = x-direction kernel * (3×3 portion of image A with (x,y) because the center 
cell) 

 
➢ Gy = y-direction kernel * (3×3 portion of image A with (x,y) because the center 

cell) 
 

➢ magnitude(G) = square root (Gx2 + Gy2) 
 

➢ Ɵ = atan (Gy / Gx) 
 

Figure 3.1:  show a picture with edge detection and thresh-holding. 



18  

3.2.3 : Thresholding. 

 

We apply global thresh-holding to the image to extract the ultimate component that's the gesture 

from the image. 

After the thresh-holding we've our outcome that's absolutely the component of the gesture. Now 

we will use these components in our deep learning model to coach it and classify the results. 

 

The data after pre-processing flow to the arrays where it stores a long time before it makes to             

MATLAB via interface then it converted back to the binary via HEX by MATLAB. 

There are total 10 bits of knowledge first and also the last bit is start and end bits and other 8 bits 

are the information bits. 

Here the post-processing is ended
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Post processing figure: 

 

Figure 3.2: shows post processing diagram 

 

3.3 : Deep Learning Model 

 
Deep learning is that the one amongst the foremost important step in Gesture recognition. This 

model is provoked after we are making the info set in the end the pre and post-processing steps 

the model is provoked to coach it first and so to classify the gestures. [4] [13]
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3.3.1 : Convolutional Neural Network 

 

CNN Convolutional Neural Network is the algorithm we're employing. 

 

An algorithm known as a Convolutional Neural Network (ConvNet/CNN) may be able to learn 

from a picture by assigning significance to various aspects/objects in the image, and then being 

able to tell one from the other. The amount of pre-processing necessary for a ConvNet is 

significantly less than that required for other classification methods. In contrast to rudimentary 

approaches, Convolutional Neural Networks (ConvNets) can be trained to discover these 

filters/characteristics. New data sets are quickly optimized using ADAM's fast convergence. 

There are a variety of CNN designs that can be used to construct AI algorithms that can and will 

be used in the future. We're implementing Alex net's design in our project. 

 
 

3.3.2 : Dataset creation 

 

Once after we provoke this algorithm it seeks for its hunt for condition for dataset that if data set 

is already created and model is trained so it skips to classification except for the primary time as 

our data isn't created yet so it’s found the condition true. 

First it creates the directories for all the ten classes (Gesture) and inside each class it creates 15 

samples directories. After when directories are made it starts capturing the images its show the 

small print on screen that taking picture of sophistication 1, sample 1 and also the class 1 sample 

2 so on. Every time when it takes the image, the image is pre-processed first so post-processed, 

and it saves into the respective directories that are made earlier. 
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Figure 3.3 and 3.4 shows a gesture consisting of 30 samples 
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3.3.3 : Training the model 

 

After the data set is created the data set condition is now false. So, it loads the model and 

starts the training phase where it trains the model. It is a time taking process and takes up to 5 

to 6 hours to train. The more the sample, the more its take time but the more it is accurate. 

 

Figure 3.5 show the training process of datasets 

 
 

In figure 3.5 you can see the training process where accuracy is increasing, and loss is decreasing with 

no. of iteration. Also, we are taking 100 iterations. 
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3.3.4 : Classification of Gestures 

 

The model is trained with our data set now. So, we are ready to use it. When we execute it, it 

finds these two conditions, either data set is created if no it creates one and above process 

repeated and if yes, its skip it and find the second, either. 

Secondly it finds the model is trained or not if condition is yes, so it starts the training process 

and if not, it skipped to the final step that is classification. 

The webcam is opened, and it captures the picture. Once the picture is captured there is going 

to be a pre- and post-processing and after this the processed image is taken to the deep learning 

 

Model where it matches this picture with the data set and watch for the potential match. It 

measures how much the image is relevant to which class of the dataset.  [7]
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3.3.5 : Displaying the results 

 

There are total 10 gestures, it classify the gesture only if it is matched more than 50% form the 

sample in the dataset. There is a sentence after each gesture. So, its display that sentence when a 

gesture is matched to the dataset. 

3.3.6  : Text to speech conversion 

There is sentences against each gesture s after the gesture recognition,  the gesture is displayed 

as a sentence and then there is a MATLAB program defined that convert the sentence into the 

speech signal and we hear the sound of the desired gesture and sentence. 

 
 

3.4 : Optimization process 

 
The main issue we faced when we first run this it was the speed. It takes approximately 1.5 

minutes to before its process the image and shows us the results. It was quite slow. 

There were two reasons for this unnecessary delay. 

 

❖ Hardware limitation 

 

❖ Software limitation 

 

 
We are using Spartan 3E FPGA for the image processing. This is quite complex task for an old 

model of FPGA such 3E. The laptop we are using for MATLAB algorithm such as HEX 

conversion and Deep learning is also not suitable. So we have these software restrictions. 

We also have to do pre-processing (HEX CONVERSION) on the MATLAB before and after 

post-processing this is also an additional task to do. FPGA has this limitation it only accepts the 

data in the form of HEX. We can use a specific image sensor that directly converts the picture 

into the HEX form before post-processing but then too we need it after post-processing. [10]
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The software limitation we have is the deep learning algorithm. We are using MATLAB for this 

purpose because we cannot use FPGA for deep learning purpose. So, this is an additional task for 

the MATLAB and laptop. 

 

We have tried some things to optimize the performance. We have decreased the size of picture as 

less then we can. The cons of this are that our accuracy can be affected by it. We have discarded 

the 50% of weak neurons and just considered 50% strong neuron, it helps us a lot to decrease the 

processing time. We are increasing the no of samples so that we can increase or accuracy a bit. 

Before we took 5 sample for each gesture no, we are taking 15 samples for each gesture. So, we 

increased the accuracy significantly as well as the speed. [5]
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3.5 : Proposed Block diagram 

 

 

 
Figure 3.6 shows the proposed block diagram of Gesture Recognition Process 

 

 

3.6 : Spartan-3E FPGA Family: 

 

3.6.1 : Introduction: 

High-volume, consumer-oriented electronic applications are the target market for the Spartan-3E 

family of Field-Programmable Gate Arrays (FPGAs) From 100,000 to 1.6 million system gates 

are provided by the five members of this family. 

Spartan-3E improves on the previous Spartan-3 family's success by enhancing logic value per I / 

O and cutting expenses per sensible cell greatly. New features enhance system efficiency while 

lowering initial setup costs. To set new norms in formal reasoning, these Spartan-3E FPGA 

upgrades and 90 nm process technology deliver higher efficiency. 
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Consumer applications can benefit greatly from the Spartan-3E FPGA's low cost. The Spartan- 

3E series of ASICs is among the best kept secrets in the industry. FPGAs eliminate the high 

initial costs, extended growth cycles, and environmental instability of traditional ASICs. 

Additionally, unlike ASICs, the FPGA format enables for on-the-spot design development 

without the need for custom hardware modifications. 

 

3.6.2 : Specifications: 

 
• Logic Cells. Over 10,000. 

• DDR SDRAM. 64 MByte, x16 data interface, 100+ MHz 

• NOR Flash. 16 MByte (Intel Strata Flash) 

• SPI Serial Flash. 16MBit (STMicro) 

• Ethernet. 10/100 PHY. (Requires Ethernet MAC in FPGA) 

• Oscillator. 50 MHz clock oscillator. 

 
 

Fig 3.7 Spartan 3E descriptive diagram 
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3.6.3 : Functional Description: 

 
An overview of the IOB to connect a packet pin to the FPGA's internal logic, an Input/Output 

Block (IOB) is used as a programmable unidirectional or bidirectional link. However, there are 

some key distinctions from the Spartan-3 IOB: 

Only 

 

• Added customizable entry delays for all blocks 

 

 

For a limited subset of IOB capabilities, a unidirectional input-only block uses DDR flip flops 

that can be shared between neighboring 

 
 

. As a result, it is impossible to find a way out of this situation. Any reference to output 

functionality is not valid for input-only blocks in the following paragraphs. Only the number of 

input blocks changes with device size, but never more than 25% of the total IOBs.. 

3.6.4 : Storage Element Functions: 

 
All three pathways are represented by three pairs of storage elements in the IOB. Edge-triggered 

D-type flip-flops (FDs) and level-sensitive latches can also be used to implement these storage 

components. (LD). Double Data Rate (DDR) transmission can be generated from the output path 

or Tri-State path by using a dedicated multiplexer for this purpose. By turning the rising-edge 

synchronized data into rising-and-falling edge synchronized bits, this can be accomplished. 

Double Data Rate D-type flip-flops have two registers and a multiplexer (ODDR2). [6] [9]
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3.6.5 : The Configurable Logic Blocks Overview: 

 
Synchronous and combinatorial circuits can be implemented using CLBs, which are the primary 

logic source. Each CLB has four slices, each of which has two LUTs for logic implementation 

and two configurable storage items that can be used as flip-flops or latches. Additional 

multiplexers and transport logic simplify wide logic and arithmetic tasks, and LUTs are offered 

as 16x1 memory (RAM16) or 16-bit shift register (SRL16). CLB slices are automatically 

assigned to general-purpose logic in most designs. The Spartan-3E family CLB structure is 

identical to the Spartan-3 family CLB structure. 

 

 

 

 
 

Fig 3.8 Configurable Logic Blocks 
 

 

3.7 : Software Tool: 
 

3.7.1 : Xilinx 14.7 version 

 
For the synthesis and analysis of HDL designs, Xilinx ISE (Integrated Synthesis Environment) is 

Xilinx's discontinued software tool for the development of embedded firmware for Xilinx FPGA 
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and integrated circuit (IC) product lines. Xilinx Vivado was the next product to come out. To run 

this project, Xilinx 14.7 is required. 

3.7.2 : MATLAB 2019a: 

 

High-performance language for technical computing, MATLAB is an excellent choice. You can 

solve problems by using conventional mathematical notation and see the results in a clear, easy- 

to-understand graphic. MATLAB 2019a is being used to collect the data set. 

 

PL2303 USB to TTL Converter Module: 

 
 

Incorporated with Prolific Technology's USB to UART bridge IC, the PL2303, the PL2303 

UART Module provides a single-chip solution. Minimal components and board space are 

required for this USB-to-UART bridge controller to bring the RS-232 interface up to date with 

USB 2.0. Virtual COM Port (VCP) is a royalty-free virtual COM port that can be utilized in PC 

applications. The USB 2.0 controller, USB transceiver, and full modem control signal are all 

included in this module. [12] [14] 

 
 

Features: 

 

• Two data transfer indicators can monitor the data transfer status in real time 

 

• Works with existing COM port PC applications 

 

• Standard USB type a male and TTL 6 pin connector. 

 

 

 

 

 

 

 

 

  



31  

 

 

 
Pin Name 

 
Description 

 
3.3 V 

 
3.3V Vcc pin 

 
5.0 V 

 
5.0V Vcc pin 

 
TxD 

 
Asynchronous data output (UART Transmit) 

 
RxD 

 
Asynchronous data input (UART Receive) 

 
GND 

 
Ground 

 

 

 

 

 

 
 

Figure 3.9 Pin out figure of USB to TTL converter
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Coding and Analysis 
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Creating dataset: 

 
clc 

clear all 

close all 

%% read images 

 
 

if isfolder('Dataset') 

disp('path found!') 

else 

disp('path not found!') 

disp('Creating path folders!') 

mkdir('Dataset') 

end 

 
 

%% create folders for dataset classes 

classes= 5 

samples = 15 

cam = webcam(); 

for i=1:classes 

if ~isfolder(string(['Dataset' '\' char(num2str(i))])) 

mkdir(string(['Dataset' '\' char(num2str(i))])) 

for j=1:samples 

disp(['sample number: ' num2str(j)] ) 

img = snapshot(cam); 

img = imresize(img(:,:,1),0.15); 

imwrite(img,string(['Dataset' '\' char(num2str(i)) '\' char(num2str(j)) '.jpg'])); 

imshow(img) 

pause(1) 

end 

end 
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disp('Capture data for new class') 

pause(5) 

end 

clear cam 

 

 

 
Comparing dataset with real gestures: 

 
 

clc 

close all 

clear all 

 
train=false 

if train 

imds = imageDatastore('Dataset',... 

'IncludeSubfolders',true,'FileExtensions','.jpg',... 

'LabelSource','foldernames'); 

 
layers = [ 

imageInputLayer([size(imread(cell2mat(imds.Files(1))))]) 

 
convolution2dLayer(3,32,'Padding','same') 

batchNormalizationLayer 

reluLayer 

maxPooling2dLayer(2,'Stride',2) 

dropoutLayer(0.5) 

 

 

convolution2dLayer(3,64,'Padding','same') 

batchNormalizationLayer 

reluLayer 

maxPooling2dLayer(2,'Stride',2) 
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dropoutLayer(0.5) 

 
 

convolution2dLayer(3,64,'Padding','same') 

batchNormalizationLayer 

reluLayer 

maxPooling2dLayer(2,'Stride',2) 

dropoutLayer(0.5) 

 
convolution2dLayer(3,96,'Padding','same') 

batchNormalizationLayer 

reluLayer 

dropoutLayer(0.5) 

 
fullyConnectedLayer(length(unique(imds.Labels))) 

softmaxLayer 

classificationLayer]; 

 

 

 
opts = trainingOptions('adam', ... 

'MaxEpochs',100, ... 

'minibatchsize',128,... 

'Shuffle','every-epoch', ... 

'Plots','training-progress', ... 

'Verbose',false); 

 
net = trainNetwork(imds,layers,opts); 

 
 

save('network.mat','net'); 

else 

disp("taking image") 

pause(1) 

cam = webcam(); 

img = snapshot(cam); 

img = imresize(img(:,:,1),0.15); 
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size(img) 

clear cam 

figure,imshow(img) 

convertHex = reshape(img,1,[]); 

k=1; 

for i=1:length(convertHex) 

a(k)=convertHex(1,i); 

k=k+1; 

end 

fid = fopen('img.hex', 'wt'); 

fprintf(fid, '%x\n', a); 

disp('Text file write done');disp(' '); 

fclose(fid); 

%% perform serial communication link 

 
 

s = serial('COM5','BaudRate',115200,"Timeout",5) 

fopen(s) 

% fprintf(s,'RS232?') 

for i=1:length(convertHex) 

fprintf(s,char(a(i)))%,"uint8") 

end 

fclose(s) 

fid = fopen('img.hex', 'rt'); 

fscanf(fid,'%f'); 

disp('Text file reading done'); 

fclose(fid); 

 
load network.mat 

 
 

[YPred scores]= classify(net,img) 

if length(find(scores>0.5))~=0 
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classname = net.Layers(end).Classes(YPred) 

else 

disp('unknown gesture') 

end 

 
end 

 
 

FPGA coding: 

 
 

[9:06 PM, 5/23/2022] ~Hasnain: clc 

clear all 

close all 

%% read images 

 
 

if isfolder('Dataset') 

disp('path found!') 

else 

disp('path not found!') 

disp('Creating path folders!') 

mkdir('Dataset') 

end 

 
 

%% create folders for dataset classes 

classes= 5 

samples = 15 

cam = webcam(); 

for i=1:classes 

if ~isfolder(string(['Dataset' '\' char(num2str(i))])) 

mkdir(string(['Dataset' '\' char(num2str(i))])) 
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for j=1:samples 

disp(['sample number: ' num2str(j)] ) 

img = snapshot(cam); 

img = imresize(img(:,:,1),0.15); 

imwrite(img,string(['Dataset' '\' char(num2str(i)) '\' char(num2str(j)) '.jpg'])); 

imshow(img) 

pause(1) 

end 

end 

disp('Capture data for new class') 

pause(5) 

end 

clear cam 

[9:11 PM, 5/23/2022] ~Hasnain: `timescale 1ns / 1ps 

 

 

 

 

module main( 

(*LOC = "C9" *) input clk_fpga, 

(LOC = "D18") input reset, 

(LOC = "D7") input RxD, 

(LOC = "F9 E9 D11 C11 F11 E11 E12 F12") output [7:0]RxData, 

(* LOC = "D16" *) output reg sf_e, 

(* LOC = "M18" *) output reg e, 

(* LOC = "L18" *) output reg rs, 

(* LOC = "L17" *) output reg rw, 

(* LOC = "M15" *) output reg d, 

(* LOC = "P17" *) output reg c, 

(* LOC = "R16" *) output reg b, 

(* LOC = "R15" *) output reg a 

 
); 

 
 

reg shift; 
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reg state, nextstate; 

reg [3:0] bit_counter; 

reg [1:0] sample_counter; 

reg [13:0] baudrate_counter; 

reg [9:0] rxshift_reg; 

reg clear_bitcounter,inc_bitcounter,inc_samplecounter,clear_samplecounter; 

 
 

wire HCLK,HRESETn,VSYNC,HSYNC; 

wire [7:0] DATA_R0; 

wire [7:0] DATA_G0; 

wire [7:0] DATA_B0; 

wire [7:0] DATA_R1; 

wire [7:0] DATA_G1; 

wire [7:0] DATA_B1; 

wire ctrl_done; 

 
 

parameter clk_freq = 50_000_000; 

parameter baud_rate = 9_600; 

//parameter baud_rate = 4_800; 

parameter div_sample = 4; 

parameter div_counter = clk_freq/(baud_rate*div_sample); 

parameter mid_sample = (div_sample/2); 

parameter div_bit = 10; 

assign RxData = rxshift_reg[8:1]; 

always @ (posedge clk_fpga) 

begin 

if (reset) begin 

state<=0; 

bit_counter<=0; 

baudrate_counter<=0; 

sample_counter<=0; 

end else begin 
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baudrate_counter<=baudrate_counter + 1; 

if (baudrate_counter >= div_counter-1) begin 

baudrate_counter <=0; 

state<=nextstate; 

if (shift) rxshift_reg <= {RxD,rxshift_reg[9:1]}; 

if (clear_samplecounter) sample_counter<=0; 

if (inc_samplecounter) sample_counter <=sample_counter+1; 

if (clear_bitcounter) bit_counter<=0; 

if (inc_bitcounter) bit_counter<=bit_counter+1; 

 

 

 
end 

 
 

end 

end 

 
 

always @ (posedge clk_fpga) 

begin 

shift <=0; 

clear_samplecounter<=0; 

inc_samplecounter<=0; 

clear_bitcounter<=0; 

inc_bitcounter<=0; 

nextstate<=0; 

case(state) 

0: begin 

if (RxD) 

begin 

nextstate<=0; 

end 

else begin 

nextstate<=1; 

clear_bitcounter <=1; 

clear_samplecounter<=1; 

end 

end 

1: begin 
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end 

nextstate<=1; 

if (sample_counter==mid_sample-1) shift<=1; 

if (sample_counter==div_sample -1) begin 

if (bit_counter==div_bit-1) begin 

nextstate<=0; 

end 

inc_bitcounter<=1; 

end else inc_samplecounter<=1; 

 

 

 
end 

 
 

endcase 

default:nextstate<=0; 

 

 

 

reg [26:0] count 

= 0; 

r

e

g 

[

5

:

0

] 

c

o

d

e

; 

r

e

g 

r

e

f

r

e

s

h

; 

always @ 

(posedg

e 

clk_fpg

a) begin 

count<=

count+1

; 

case (count[26:21]) 

0:code<=6'h03; 

1:code<=6'h03; 

2:code<=6'h03; 

3:code<=6'h02; 

4:code<=6'h02; 

5:code<=6'h08; 

6:code<=6'h00; 
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7

:

c

o

d

e

<

=

6

'

h

0

6

; 

8

:

c

o

d

e

<

=

6

'

h

0

0

; 

9

:code<=6'h0C; 

10:code<=6'h00; 

11:code<=6'h01; 

12:code<=6'h24; 

13:code14:code<=6'h

26; 15:code<=6'h25; 

16:code<=6'h26; 

17:code<=6'h2C; 

18:code<=6'h26; 

19:code<=6'h2C; 

20:code<=6'h26; 

21:code<=6'h2F; 

22:code<=6'h22; 

23:code<=6'h2C; 

24:code<=6'h001100; 

25:code<=6'h000000; 

26:code<=6'h25; 

27:code<=6'h27; 

28:code<=6'h26; 

29:code<=6'h2F; 

30:code<=6'h27; 

31:code<=6'h22; 

32:code<=6'h26; 

33:code<=6'h2C; 

34:code<=6'h26; 

35:code<=6'h24; 

36:code<=6'h22; 

37:code<=6'h21; 

default: code<=6'h10; 

 

 

 

 

end 

refresh<=count[20]; 

sf_e<=1; 

{e,rs,rw,d,c,b,a} <= {refresh,code}; 

//imageProcessingAlgorithm A1(HCLK,HRESETn,VSYNC, 
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HSYNC,DATA_R0,DATA_G0,DATA_B0,DATA_R1,DATA_G1,DATA_B1,ctrl_done); 

serialTransmitter 

T1(clk,data,trans

mit,reset,TxD) 

<=6'h28;

endcase 

endmodule 
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Chapter 5  

 

 

 

 

 

 

 

 

Conclusions 
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Our supervisor and us came up with the concept of using this method in conjunction with a 

neural network. 

Because the network output can be used to make inferences, neural networks are useful. We can 

check the result and figure out the answer if the vector isn't correctly classified. 

Optimization of the orienting algorithm is a possibility. It's important to be able to distinguish 

yourself from the crowd. It's obvious that the photographs have a role in this, but the algorithm 

also has a role to play. Cutting-edge line-detection algorithms are constantly being developed. 

Even though tangents are a new thought that has come to mind, there isn't enough time to pursue 

them now that they have crossed my mind. To state that I've reached solid conclusions at the end 

of the endeavor isn't a safe bet. Only the first phase of the project can be done this way. The 

output vector will always be the same, no matter how many times you execute the programmed. 

No such issue arises with perceptron neural networks. Apart from not being 100 percent stable, 

there are so many factors (e.g. number of layers, number of nodes) that one can experiment with 

that it's not that straightforward to discover the best settings. It's all about the application, as 

we've already stated. To meet a given noise target, for instance, you can try to meet these 

requirements. Among my primary objectives were speed and the absence of specific gear. It 

worked, despite the difficulties. 

 
 

Although it would run quicker in C/C+, the concept and implementation would have been far 

more difficult. MATLAB is slower, but it allows its users to work faster and focus on the results 

rather than the design 
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