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Abstract 

In the computer idea and many prevalent machine learning tasks, such as language recognition and 

fraud face detection, there has been immense importance of Convolutional neural networks 

(CNNs). Artificial intelligence accelerator is used to run many Machine Learning algorithms. 

Various hardware platforms are used to support its processing. However, there are many 

challenges that need to be addressed for the successful computation of these algorithms such as 

high computational processing, cost efficiency and low power consumption at the same time. Field 

Programmable Gate Array (FPGA) technology can be customized to meet the specific 

requirements for the implementation of ML algorithms. The use of FPGA in deep learning has 

been increasingly significant due its capacity for maximizing parallelism and energy efficiency. 

Convolutional Neural Networks (CNNs) have become the benchmark in bringing high accuracy 

in many applications using machine learning or deep learning and speech recognition. For faster 

and speedy results, we need to accelerate CNN algorithms. FPGA has exceptional features which 

make it an achiever in accelerating deep learning algorithm. The prominent features are flexibility, 

low latency, and high-power efficiency. Flexibility allows us to customize hardware even down to 

its bit level. It becomes a competitive in its feature when precision and accuracy is needed in deep 

learning algorithm. 
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CHAPTER 1: INTRODUCTION 

1.1 Project Overview  

Artificial Intelligence (AI) is an emerging research field and has the objective to incorporate many 

Machines Learning (ML) algorithms. However, there are many challenges to be addressed to 

realize efficient AI implementations in hardware. For this a potentially strong hardware with AI 

implementation capabilities FPGA technology is being used. 

1.1.1 Artificial Intelligence 

Artificial intelligence is a field of computer science that deals with the modeling of human 

intelligence, that is programmed to be able to think like a human. It is the ability of computer or 

robot controlled by the computer that is programmed by the humans. the ability of a machine to 

behave intelligently in the same way as a human. Artificial intelligence covers the idea that human 

intelligence can be stipulated in a way that it can be easily reproduced by a machine. It performs 

the tasks goes from easy and basic to hard and complex. Google, an advanced web search 

recommends systems (e.g., YouTube, Amazon, and Netflix), understands human speech (e.g., Siri 

and Alexa) are AI. Similarly, the automation in decision-making with that playing at the top tier 

level in strategic gaming systems are all examples of AI applications. 

1.1.2 Machine Learning  

Machine learning is a subset of Artificial Intelligence. Machine learning is a concept of learning 

from experience and examples. In this, data of the complex problem is provided to the algorithm 

and computer can make logical predictions based on the given data. Moreover, computers use 

statistical analysis for the output values that fall within a specific desired range. In this way sample 
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data and automate decision making process in building computer models is aided with the use of 

machine learning. 

1.1.3 Hardware Accelerators  

Hardware accelerators are configured to hasten computer science applications. To achieve high-

efficiency embedded vision applications, runtime efficiency with power consumption must be 

limited [1]. The combination of embedded computer vision hardware accelerators (e.g., CPUs, 

GPUs and FPGAs), and their related vendor personalized visual libraries, developers have a 

challenge in directing this fragmented solution [2]. Hardware used for acceleration include: 

Graphics Processing Unit (GPU)  

They are designed to handle motion of the image. GPUs are increasingly utilized for large-scale 

data processing, speeding sections of an application while the rest executes on the CPU. Modern 

GPUs' extreme parallel processing enables a user to process billions of data and information. 

Field Programmable Gate Array (FPGA)  

FPGAs are integrated circuits that can be altered and reprogrammed an infinite number of times 

once they are manufactured. They are the basis for reconfigurable computing, a computer model 

that divides applications into parallel, application-specific pipelines. The advantage of 

reconfigurable computing is that it combines the speed of hardware with the flexibility of software, 

essentially combining the greatest features of both hardware and software [3]. An FPGA's basic 

design is made up of input/output blocks, customizable logic blocks (CLBs) and routing channels. 

Each CLB, which appears in a basic routing structure, is built of look-up tables and flip-flops that 

may be configured to perform combinational or sequential logic [3]. CLBs are surrounded by 

input/output blocks (IOBs) that allow them to connect with external devices. Because the universal 
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routing structure allows for random wiring, designers can link the logic parts in any way they see 

fit. To implement the designs on an FPGA, a hardware description language (HDL), such as 

Verilog or VHDL is used. 

1.2 Problem Statement  

The challenge for high computational processing is therefore critical as AI algorithms and 

techniques are becoming increasingly sophisticated and advanced. To manage the challenging 

factors for emotion recognition in the world, Deep learning techniques have progressively been 

executed. This progress comes at the expense of a large computational cost as CNNs. As a result, 

specialized hardware is needed to accelerate their implementation. Graphics Processing Units 

(GPUs) are the universally used platform to implement CNNs as they offer optimal performance 

in terms of pure computational throughput but requires high power and energy consumption [4]. 

1.3 Proposed Solution 

FPGA will be programmed to fit the ML algorithm and a fast data access efficiency will be 

received compared with regular GPUs. FPGA decreases power usage through ML algorithms on 

the hardware design. 

 RISC-V (Reduced Instruction set computer architecture) and open- source Instruction set 

Architecture (ISA). It allows system designers to add custom instructions according to their need. 

In this project we have added custom instruction and hardware unit to accelerate the ML algorithm. 

Lastly, optimizing memory reads/writes overhead by using DMA, so the processor is free for other 

tasks 
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1.4 Objective 

Our objective is to design an FPGA based AI Accelerator with: 

• Capability of running optimized ML algorithms. 

• Less computational complexity. 

• Implement 32-bit RISC-V Architecture on FPGA 

• Generic implementation of CNN accelerator on RISC-V. 

• Optimizing memory reads/writes overhead. 

1.5 Scope 

Artificial Intelligence (AI) finds it market wherever   ML algorithms are being applied. To serve 

the purpose, we will be testing an ML algorithm such as Convolutional Neural Network (CNN). 

The algorithm would be accelerated by our hardware accelerator. A CNN algorithm will be used 

and would be comparing the non-accelerated and accelerated outcomes We would observe the 

accelerated one being less complex in regard to computation. 

1.6 Relevant Sustainable Development Goals 

The project will provide us with the platform for acceleration of Artificial Intelligence (AI) 

algorithms. Advancements in AI has made every industry to shift towards it. With that there arises 

a problem of high computational complexity. Our project will aid in reducing such complexities. 

It will also enhance research and upgrade industrial technologies. 

We are addressing the SDG’s #9 which is “Industry, Innovation & Infrastructure”. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 CNN MODEL 

Convolution Neural Networks is the field of Deep Learning which works on the connectivity 

patterns of Neuron similar to the Human Brain and inspired by the organization of the visual 

cortex. CNN model as shown Figure  2.1 classify the input images by capturing their spatial and 

temporal dependencies through filters [5]. CNN picture sorting takes an input picture, processes 

it, and groups under some classes (like domestic and wild animals, human etc.). A series of 

convolution layers with filters (Kernels) is input picture, pooling, all connected layer associated, 

put a soft-max function to classify an object with probabilistic values between zero and one. The 

figure shows a flow of CNN to associate an enter image and classifies the object based on values.  

 

 

Figure 2.1 CNN Model Architecture [6] 
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Convolution Layer 

In this layer, a numerical operation called convolution is done. It is used to reduce the size of the 

image [7] and extract specialized features according to kernel. Convolution operation simply 

passes the kernel over the image and performs point by point multiplication of filter with image 

pixels. Then the result is summed up to give output pixel. The process is repeated by moving kernel 

over complete image to give output image. 

Pooling layer  

The further down sampling and decreasing the matrix scale can be called as pooling. A filter now 

is the left-out results of the previous layer, and it selects a particular range out of every cluster of 

values. In this way the network is now able to train itself much quicker, while focusing on all the 

significant data in every aspect of the picture [8]. 

Fully connected layer  

The input which represents the output of the prior layers can be a 1-D vector. The output will be a 

listing of probabilities for different potential labels attached to the picture (e.g., dog, cat, bird). The 

label that has the highest probability is that the classifications call [8].  

DMA  

“The characteristics of computer systems which allow some hardware subsystems to get their 

access to RAM (random access memory) or main memory without the CPU interference is called 

Direct Memory Access (DMA)”.  

It will completely be occupied by the read or write operation and therefore cannot be used for other 

tasks when we are DMA is not using. CPU firstly starts the transferring while using the DMA, 
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then performs other tasks while the transfer is happening, and when the transfer is completed, the 

DMA gives an interrupt signal to CPU. When the CPU cannot maintain with the data transfer rate 

than this feature is helpful, or when the CPU needs to do work while waiting for comparatively 

slow I/O data transfer. 

 

Figure 2.2   DMA 

2.2 RISC-V Architecture 

RISC-V is an open source, friendly, free ISA enabling is the latest period of processor innovation 

through public collaboration. It is structured as a small base ISA with a variety of extensions and 

freely available to both academia and industry. RISC-V has multiple phases as shown in Figure 

2.3 [9]. The first phase is the fetch phase in this instruction loads from the memory. The other 

phase is the decode phase in this instruction is decoded i.e., which type of instruction is identified 
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either it is load-store or ALU instruction. The next phase is the execution phase. In this phase 

required operation is performed on the decoded instruction. The next phase is the memory phase. 

In this phase if instruction is load or store instruction, memory is read or written. The last phase is 

a write-back phase. In this phase results are written into the register file. Memory is of two types‟ 

instruction memory and data memory. It has an arithmetic and logic unit (ALU). An arithmetic 

and logic unit may be a digital circuit wants to perform arithmetic and logic operations. Addition, 

subtraction, multiplication, and division are the examples of arithmetic operations [10]. AND, 

NOT, and OR are logical operations. All these operations are performed on values in the register 

file. It is a small amount of storage available. The Program counter (PC) is a register that has the 

address of the next instruction to be executed from the memory [11]. 

 

Figure 2.3 RISC-V Five Stage Pipeline 
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2.3 CNN Accelerator Strategies:  

CNN has multiple layers that take much more time to execute. To accelerate the CNN we adopt 

two strategies, strategy per phase and vector block extensions. A detailed explanation of these 

strategies is given below. 2.3.1 Strategy per stages: This is the first strategy of the CNN accelerator 

[12]. In this strategy, author implemented the CNN accelerator on RISC-V and add Customize 

instruction to speed up the CNN process by including load vector, store vector, multiplication, 

division custom modules in architecture. Author implemented five-stage pipelines but different 

architecture from conventional RISC-V by adding a specific processing module to implement their 

boost up commands as shown in Figure 2.4 [13]. Properties and working of each stage are given 

below. 

 

Figure 2.4: Custom Instructions on Every Stage CNN Accelerator [14] 
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2.4 FPGA-based Accelerators  

There are many processors based on Intel, GPU and also work done on FPGA but FPGA process 

are not using generally in world because it is more challenging to process FPGA on ML algorithms 

[15]. Since it is an FPGA, the peak performance is equal to the DNN model, the performance peak 

is reported for using GoogLeNet source which ran at 900 fps [16].  
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CHAPTER 3: IMPLEMENTATION AND WORKING 

3.1 CNN Implementation Steps 

The implementation steps of CNN on RISC-V are shown in Figure  3.1. Python has become default 

platform for implementation of CNNs over last few years. Many existing implementations make 

it easier to make task of designing and implementing CNNs easier. We start with a python model  

we trained and validate the python model.  Once a CNN is trained, for inference we require 

parameters and weights. In our design we are optimizing inference part of the CNN. So, we extract 

weight from the python model. Then we ported CNN to C language to port it on RISC-V. 

 

Figure 3.1 CNN Implementation Steps 

3.1.1 Python model 

We have the MNIST database. It is one of the common data sets used for image classification. It 

contains sixty thousand training images and ten thousand testing images. For the classification of 

the image, the image passes through the different layers of the model. The Layers of our model 

are shown in Figure 3.2. 

 

Figure 3.2 Python Model for RISC-V Implementation [17] 
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3.1.2 Extract Variables & Weights 

In the second step, we extracted the weights from the python model. For this purpose, all the 

parameters are written in one file from the python model. 

3.1.3 Fixed Point Conversion 

The python code is converted into C code. All the weights are in the floating-point format are of 

size 32 bit but since we need to port part of it in FPGA, and fixed-point numbers are more suited 

for FPGAs. For this purpose, we convert data into fixed point 1.15 formats. The maximum and 

minimum range of the weights in floating-point format is between 0-1. That’s why we convert into 

1.15 formats. There is a special case of convolution addition where the format is changed is of 

1.31 but when data c out the 1.15 format is retained. 

3.1.4 RISC-V-32I 

We explored some open-source RISC-V cores and a suitable core for CNN accelerator that we 

found was ORCA by vector blox. ORCA highlighted features are given as:   

• ORCA is a completely open source 

• Highly parameterized, ideally appropriate for FPGAs, transportable across FPGA vendors. 

• It can be configured to either I or M extensions only. So, it has smart performance and 

space. 

• It is often used as a standalone processor however was designed to be a host to vector blox 

proprietary light-weight vector extensions (LVE). 

• It has optimum AXI3 and AXI4 instruction and information caches, a separate AXI4 Lite 

interface for uncached transactions, associated an auxiliary interface. 
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• Use dual-ported block rams on the FPGA for the register file. 

As ORCA is compatible with the tool chain so we need to install tool chain for 

Cross compilation of C code of CNN model 

3.2 RISC-V GNU-Tool Chain Standard Installation 

As orca is 32-bit RISC-V processor with integer and multiplication extensions. We installed 

RV32IM bare metal variant of RISC-V-GNU-Tool chain. The main step is downloading and install 

Tool chain in Ubuntu. 

3.2.1 Profiling 

The total time and number of cycles taken by each layer are shown in Table  

Table 3.1 Profiling of CNN Layers 

Sr.No Layers Time(ms) No Of Cycles 

1 Convolution1 150 15,034,049 

2 Activation1 2 210,122 

3 Convolution2 8,857 885,760,373 

4 Activation2 4 457,291 

5 Maxpooling1 13 1,361,133 

6 Flat 1 195,435 

7 Dense1 1,080 108,085,784 

8 Activation3 0 1,865 

9 Dense2 0 76,793 

10 Activation4 0 557 



23 | P a g e  
 

Total  10,107 1,010,783,402 

3.3 Technical Requirement 

The Cora Z7 is very optimized SoC development board featuring the power and flexibility of 

Xilinx's Zynq-7000 SoC family [18]. The Zynq-7000 SoC family integrates the software 

programmability of an ARM-based processor with the hardware programmability of an FPGA, 

delivering optimized system integration [18]. 

 

Figure: Cora z7-7000 FPGA board [18] 

3.4 CNN Layers Execution Timing Analysis 

As it is shown from the above table the activation3, dense2, activation4 layer take lesser time than 

other layers i.e., 0ms. The flat layer takes more time layers i.e., 1ms. The activation1 layer takes 

more time i.e., 2ms. 
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The activation2 layer takes 4ms. The max-pooling layer takes 13ms, the convolution1 layer takes 

150ms. The dense1 layer takes even more time i.e., 1080ms. After that convolution2 layer takes 

much more time than all layers i.e., 8857ms. The total time for both convolution1 and convolution2 

is 9007ms and also the number of cycles is much more than other layers. So, we need to accelerate 

these layers to accelerate CNN. That’s why we make the accelerator for the convolution layer. 
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CHAPTER 4: HARDWARE DESIGNING 

4.1 RISC-V Bring-Up 

For bringing up the RISC-V core we have used Ubuntu 18.04 and Vivado version 2018.3. In this 

section, we will describe the steps required to bring up the RISC-V core. Prerequisites of using a 

RISC-V core include using Linux based machine and having Vivado Design Suite installed on the 

system. The bring-up of a RISC-V core comprises of the following steps: Building Tool chain, 

Building Vivado design project, and programming the RISC-V core. Below we have described 

each of these steps in detail. 

4.1.2 Building Toolchain 

In this step, we build the binary tools, gcc, and newlib library for 32IM-core. Numerous scripts 

are available online for carrying out these steps. Refer to Appendix A to see the script used by our 

team. For using the provided script, set “RSCV_INSTALL” variable in script.  

4.1.3 Building Vivado Design Project 

A script named “make file” is provided in Appendix B to make the Vivado Project for the RISC-

V core. Just redirect to the file directory and run the “make‟ command in the terminal. This will 

generate the project from the terminal itself. Alternatively, run “make GUI‟ to build the whole 

project in the Vivado environment so user can use the GUI tools to manipulate the project 

according to his need. To make changes to Block Design created in Vivado, the user has to export 

and save the .tcl file. The “Make‟ command does this automatically for the user whereas, if the 

user has opted for the GUI option, then “make archived‟ can be used to save the changes to the 

design. If only RISC-V parameters are to be changed, arguments can be given to the make file to 
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achieve it. Parameters can also be placed in an optional config.mk file before running the make 

command. 

4.1.5 Programming the RISC-V Core 

The make file includes the functionality of programming the FPGA and RISC-V core as well. To 

program the FPGA, use “make pgm‟ command. This will download the bitstream to the board. 

Then use “make run‟ to compile, build and load the software over JTAG to the instruction memory 

and start the program execution. 

4.2   CNN Accelerator Design 

In this section, we discuss the CNN accelerator design in detail. The CNN accelerator design can 

be broken down into two main parts: namely the hardware design and the software design. 

4.2.1   Hardware Design 

The crux of CNN accelerator hardware is mainly based upon two main components i.e. the 

processor and the accelerator itself. The processor runs the C code for CNN. It uses the DDR 

memory from Zynq system to store the program code and data. RISC-V uses the custom developed 

hardware accelerator to perform the convolution. This process is started when RISC-V writes the 

inputs to the accelerator. The hardware then runs the convolution process and produces results. 

These results are saved in the BRAM by the accelerator and the RISC-V is notified that the process 

has been completed. The Figure  4.1 below illustrates this process in a block diagram. In the 

subsequent subsections, each of these components is discussed in detail. 
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Figure 4.1 CNN Accelerator on RISC-V Block Design 

4.2.1.1 RISC-V 

In our project, 32-bit RISC-v with integer and multiplication is used to run C bare metal code for 

CNN model. RISC-V core is written in VHDL hardware descriptive language with a lot of 

configurable parameters. RISC-V used AXI3/4 interface to interact with peripheral and other 

blocks. A 32-bit timer is also attached with RISC-V core as a peripheral for time analysis. RISC-

V has mainly two types of AXI ports; cached port and uncached ports. In RISC-V both data and 

instruction memory have both cached and uncached port. These ports are used to fetch instructions 

and data from the memory to RISC-V. An additional function of the uncached data port is to poll 
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data available on external memories (including BRAM) so that it is constantly available to the 

processor. A timer AXI port is used to read the timer value. 

Data Flow: The data and program section of C code generated by riscv-gnu-toolchain is written 

on zynq DDR through JTAG Logic for RISC-V processor. For the first time RISC-V fetches the 

data and instruction sections for c code using Data Uncached port “DUC” and instruction uncached 

port “IUC”. Data and instruction data is stored in caches of RISC-V, and which is also a predefined 

section on Zynq DDR using Data cached “DC” and Instruction cached “IC” port. Then RISC-V 

operates on caches and uses “DUC” and “IUC” ports when it missed cache. “DUC” port also has 

a special purpose to interact with other peripheral of RISC-V and accelerator custom design. We 

use data uncached port for peripheral so we can directly change and access any variable/memory 

location by peripheral and accelerator. A RISC-V timer is also connected to the timer port for 

calculating the time and counting a specific value. 

4.2.1.2 CNN Accelerator 

The CNN Accelerator parallelizes the process of convolution by using a 3x1 multiplication 

strategy. It uses three different BRAMs to store the input row separately and one other BRAM to 

store the kernel. An address generation custom IP is used to generate address for each BRAM. 

Multiplication is performed on these inputs and the results are stored in yet another BRAM. RISC-

V is notified about the completion of the process. The main components of CNN Accelerator are 

shown in the following Figure4.2: DMA, BRAMs, BRAM Address generator, Status registers, and 

convolution multipliers. The properties and functions of each of these components are discussed 

in Figure  4.2 below. 



29 | P a g e  
 

 

Figure 4.2 Accelerator Design 
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4.2.1.3 BRAMS 

BRAM stands for Block Random Access memory. It is used in FPGA for storing a large amount 

of data. BRAM could be configured as standalone. It could be a single or dual port with different 

configurable parameters. We are using three BRAMs in our design, input, kernel, and output 

BRAM. All BRAMs are operating in Dual mode. 

4.2.1.4 BRAM Address Generator 

BRAM Address Generator is a custom IP designed by our team. This IP performs two main 

functions. Firstly, it receives the control signals from the status register IP core. When the BRAM 

Address Generator receives the start signal, last address, and filter number from the status register 

IP core, the IP begins its operation. This core produces the addresses for input BRAM and kernel 

BRAM corresponding to the provided filter number. The process is complete when the image 

address equals the provided last address as shown in Figure  4.3. 

 

Figure 4.3 Address Generation Control Signals 
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Secondly, the main purpose of address generation IP is to generates a synchronized address for 

input, kernel, and output BRAM. The schematic for address generation and shifting process is 

shown in Figure  4.4. 

 

Figure 4.4 BRAMS Address generation RTL Design 
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The row shifting operation for convolution is also handled by the second module to generate a 

corresponding address for input BRAMs and kernel BRAM. Thirdly, the BRAM address generator 

IP performs addition over the results of the convolution multiplier. It also performs a cumulative 

sum for 3 cycles to generate convolution results. The schematic for this process is shown in Figure 

 4.5 below 

 

Figure 4.5  Cumulative Sum RTL Design 
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4.2.1.5 DMA 

The main purpose of DMA is to further accelerate the design. The DMA is formed from AXI-

MASTER IP. The IP was first tested using a verification IP [19]. AXI-MASTER has a state 

machine with the help of it first Write on a slave through counter and then Read from slave and at 

the end, the read data were Compared with write data. We have modified that state machine, which 

performs only one function at a time read or write depends upon the direction signal i.e. 

write_or_read given to it. It writes data when the direction is 1 and reads when the direction is 0. 

The modified state machine is shown in Fig 4.6 

 

Figure 4.6 State machine of DMA 

When write_or_read is equal to 1 DMA writes from BRAM to DDR. When write_or_read is equal 

to 0 DMA reads from DDR and writes it on BRAM. In our case, DMA is used only to reads from 
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DDR and writes on one of the four BRAMs depending upon write enable. DMA has the following 

ports as shown in Table 4.1 

Table 4.1 DMA Ports 

4.2.1.6 Convolution Multipliers 

Two staged pipelined multipliers are being used in 16x16 bit configuration to generate a 32-bit 

signed output. 

Data Flow: The complete CNN accelerator consists of two paths, write and read from the CNN 

accelerator. Firstly, the input data and kernel for convolution are written on BRAMs using DMA. 

We are using three BRAMs for storing each input row. A kernel BRAM is used to store the filter 

for Convolution. After the loading process, a start bit from the status IP is used to start the 

convolution computation. Last address and filter-no are also selected by using status registers. The 

address generation IP generates the addresses for the input image and handles the column shifting 

Sr. 

No 

Port Description 

1 Direction Read or write 

2 DDR_address Slave address 

3 No_of_Data No of data reads or write to DDR 

4 Init_txn_pulse Start DMA 

5 BRAM_data_in Input data from BRAM to write on DDR 

6 BRAM_data_out Output data from DDR to BRAM 

7 write_enable(s) 

This port may be one or more than one, depending upon attached 

BRAMs at output 
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process for convolution. Each Input BRAM gives the 16-bit data for convolution. Filter addresses 

are also generated by BRAM address generation IP. Kernel BRAM gives the 64-bit data where 48 

least significant bits multiplied to corresponding 16 input data to produce 32-bit multiplication 

output BRAM address generation IP also accepts data from these three multipliers and sums them 

all. The second part of the Data flow is started where BRAM address generation IP generates the 

Output BRAM address, write enable, and write data. Write data is generated by three commutative 

addition of multiplication Sum. When the image address equals to last address the first-row 

convolution is done. The CNN accelerator sets the status registers done bit. This process will repeat 

for all rows of an input image. Whereas the Output address will auto-increment on write data 

unless reads data from Output BRAM using DMA and reset output address register through status 

register. 

4.2.2 Software Design 

The C code of CNN model executes the Convolution process using accelerator design. All other 

layers of Convolution Neural Network are running of RISC-V processor. The image is dumped on 

DDR using “dow” command on the following address 0x40000000. Run the image tcl file for 

image load to DDR and kernel to Accelerator BRAM is done by DMA. Convolution on 

Accelerator Software Flow. The software developer can access status register in their C code. The 

address for status register is 0x43C00000. The basic Flow design for performing computation on 

accelerator is shown in following figure. 
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Figure 4.7 Convolution on Accelerator Software Flow 

 

The software developer can access all these BRAMs and status register in their C code. The address 

for each BRAM and status register is shown in following Table 
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Name origin 

Input_BRAM_Controller_0(Image 

Ram) 

0x40000000 

Input_BRAM_Controller_1(Kernel 

Ram) 

0x42000000 

Input_BRAM_Controller_2(Result 

RAM) 

0x44000000 

Status_reg_Controller 0x43C00000 

axi_cdma_0 0x7E200000 
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CHAPTER 5: RESULTS 

We have generalized the existing CNN architecture, now it supports every size of matrices, and 

can be used with any processor core. We can also change the image on run time. Lastly, we have 

optimized memory reads/writes overhead by using DMA, so it accelerates the old architecture 

which used to complete a MNIST image classification in 3084 ms to 2105 ms. The results are 

shown in following Table 5.1 

Table 5.1 Comparison of existing CNN accelerator with modified 

 

Sr. No 

 

Layers 

 

CNN on RISC-

V 

CNN on RISC-V 

Based Accelerator 

without DMA 

 

CNN on RISC-V 

Based Accelerator 

with DMA 

Time(ms) Time(ms) Time(ms) 

1 Convolution1 150 32 20 

2 Activation1 2 2 2 

3 convolution2 8,857 1827 871 

4 Activation2 4 4 4 

5 Maxpooling1 13 14 14 

6 Flat 1 1 1 

7 Dense1 1,080 1178 1181 

8 Activation3 0 0 0 

9 Dense2 0 0 0 

10 Activation4 0 0 0 



39 | P a g e  
 

Total  10,107 3084 2105 
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CHAPTER 6: CONCLUSSION AND FUTURE WORK 

6.1 Conclusion 

We all know today’s technology demands high computational speed in less time. As the 

technology grows people’s patience is decreasing and they need a system that do their work in less 

time as possible. These days everything is being shifted to Machine Learning and Artificial 

Intelligence and these AI and ML algorithms usually take a lot of time for its computation. So, in 

order to eradicate these computational complexities a hardware is required that will accelerate this 

computational process. So, we designed an AI Accelerator based on FPGA that will help in speed 

up the AI algorithms that are being used in our daily life. In this way people don’t have to wait 

long to do their basic daily life chores that involve AI computational.  

6.2 Future Work 

Currently we are not using the write side of DMA i.e., write on DDR through DMA, because it 

takes more time than usual. So, by shifting accumulation, bias addition, and max pooling to the 

hardware side, we will also be able to use the write side of DMA. As a result, this project will be 

more accelerated.  

• DMA could use to load BRAMs instead of RISC-V and implements ping pong logics.  

• BRAMS reload for every row computation that could be reused by making a state machine. 

• Reconfigurable Accelerator for every python model. 
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