
i | P a g e

Artificial Intelligence (AI) Accelerator

By

Ali Ahmad Altaf

Ahmad Shehroz Kayani

Muhammad Hasnain

Fatima Sheikh

Muhammad Abdul Rehman

Supervised by:

Dr. Hussain Ali

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad,

in partial fulfillment for the requirements of B.E Degree in Electrical (Telecom) Engineering.

June 2022

ii | P a g e

In the name of ALLAH, the Most benevolent, the Most Courteous

iii | P a g e

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report

“Artificial Intelligence Accelerator”

is carried out by

Ali Ahmad Altaf, Ahmad Shehroz Kayani, M Hasnain, Fatima Sheikh, M Abdul Rehman

under DR. HUSSAIN ALI supervision and that in my judgement, it is fully ample, in scope and

excellence, for the degree of Bachelor of Electrical (Telecom.) Engineering in Military College

of Signals, National University of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor

Dr. Hussain Ali

Department of EE, MCS

 Date: May 23rd , 2022

iv | P a g e

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

v | P a g e

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues, and supervisor for their guidance.

The group members, who through all adversities worked steadfastly.

vi | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has 9% similarity index. Turnitin report endorsed by Supervisor is attached.

Ali Ahmad Altaf

00000264480

Ahmad Shehroz Kayani

00000245481

Muhammad Hasnain

00000242819

Fatima Sheikh

00000246070

Muhammad Abdul Rehman

00000251754

Signature of Supervisor

vii | P a g e

Abstract

In the computer idea and many prevalent machine learning tasks, such as language recognition and

fraud face detection, there has been immense importance of Convolutional neural networks

(CNNs). Artificial intelligence accelerator is used to run many Machine Learning algorithms.

Various hardware platforms are used to support its processing. However, there are many

challenges that need to be addressed for the successful computation of these algorithms such as

high computational processing, cost efficiency and low power consumption at the same time. Field

Programmable Gate Array (FPGA) technology can be customized to meet the specific

requirements for the implementation of ML algorithms. The use of FPGA in deep learning has

been increasingly significant due its capacity for maximizing parallelism and energy efficiency.

Convolutional Neural Networks (CNNs) have become the benchmark in bringing high accuracy

in many applications using machine learning or deep learning and speech recognition. For faster

and speedy results, we need to accelerate CNN algorithms. FPGA has exceptional features which

make it an achiever in accelerating deep learning algorithm. The prominent features are flexibility,

low latency, and high-power efficiency. Flexibility allows us to customize hardware even down to

its bit level. It becomes a competitive in its feature when precision and accuracy is needed in deep

learning algorithm.

viii | P a g e

Table of Contents

List of Figures ... ix

Chapter 1: Introduction ... 10

1.1 Project Overview .. 10

1.1.1 Artificial Intelligence .. 10

1.1.2 Machine Learning ... 10

1.1.3 Hardware Accelerators .. 11

1.2 Problem Statement .. 12

1.3 Proposed Solution ... 12

1.4 Objective ... 13

1.5 Scope ... 13

1.6 Relevant Sustainable Development Goals .. 13

Chapter 2: Literature Review .. 14

2.1 CNN MODEL ... 14

2.2 RISC-V Architecture .. 16

2.3 CNN Accelerator Strategies: ... 18

2.4 FPGA-based Accelerators ... 19

Chapter 3: Implementation and Working .. 20

3.1 CNN Implementation Steps .. 20

3.1.1 Python model ... 20

3.1.2 Extract Variables & Weights ... 21

3.1.3 Fixed Point Conversion .. 21

3.1.4 RISC-V-32I .. 21

3.2 RISC-V GNU-Tool Chain Standard Installation .. 22

3.2.1 Profiling ... 22

3.3 Technical Requirement ... 23

3.4 CNN Layers Execution Timing Analysis ... 23

Chapter 4: Hardware Designing .. 25

4.1 RISC-V Bring-Up ... 25

4.1.2 Building Toolchain .. 25

4.1.3 Building Vivado Design Project .. 25

4.1.5 Programming the RISC-V Core ... 26

4.2 CNN Accelerator Design .. 26

4.2.1 Hardware Design.. 26

ix | P a g e

4.2.2 Software Design ... 35

Chapter 5: Results ... 38

Chapter 6: Conclussion and Future Work ... 40

6.1 Conclusion .. 40

6.2 Future Work .. 40

Bibliography ... 41

LIST OF FIGURES

Figure 2.1 CNN Model Architecture………...……………………………………………………………14

Figure 2.2 DMA…………………………………………….……………………………………………..16

Figure 2.3 RISC-V five stage pipeline………………………….…………………………………………17

Figure 2.4 Custom Instructions on Every Stage CNN Accelerator……………………………………….18

Figure 3.1 CNN Implementation Steps ... 20

Figure 3.2 Python Model for RISC-V Implementation .. 20

Figure 4.1 CNN Accelerator on RISC-V Block Design ... 27

Figure 4.2 Accelerator Design .. 29

Figure 4.3 Address Generation Control Signals ... 30

Figure 4.4 BRAMS Address generation RTL Design .. 31

Figure 4.5 Cumulative Sum RTL Design .. 32

Figure 4.6 State machine of DMA .. 33

10 | P a g e

CHAPTER 1: INTRODUCTION

1.1 Project Overview

Artificial Intelligence (AI) is an emerging research field and has the objective to incorporate many

Machines Learning (ML) algorithms. However, there are many challenges to be addressed to

realize efficient AI implementations in hardware. For this a potentially strong hardware with AI

implementation capabilities FPGA technology is being used.

1.1.1 Artificial Intelligence

Artificial intelligence is a field of computer science that deals with the modeling of human

intelligence, that is programmed to be able to think like a human. It is the ability of computer or

robot controlled by the computer that is programmed by the humans. the ability of a machine to

behave intelligently in the same way as a human. Artificial intelligence covers the idea that human

intelligence can be stipulated in a way that it can be easily reproduced by a machine. It performs

the tasks goes from easy and basic to hard and complex. Google, an advanced web search

recommends systems (e.g., YouTube, Amazon, and Netflix), understands human speech (e.g., Siri

and Alexa) are AI. Similarly, the automation in decision-making with that playing at the top tier

level in strategic gaming systems are all examples of AI applications.

1.1.2 Machine Learning

Machine learning is a subset of Artificial Intelligence. Machine learning is a concept of learning

from experience and examples. In this, data of the complex problem is provided to the algorithm

and computer can make logical predictions based on the given data. Moreover, computers use

statistical analysis for the output values that fall within a specific desired range. In this way sample

11 | P a g e

data and automate decision making process in building computer models is aided with the use of

machine learning.

1.1.3 Hardware Accelerators

Hardware accelerators are configured to hasten computer science applications. To achieve high-

efficiency embedded vision applications, runtime efficiency with power consumption must be

limited [1]. The combination of embedded computer vision hardware accelerators (e.g., CPUs,

GPUs and FPGAs), and their related vendor personalized visual libraries, developers have a

challenge in directing this fragmented solution [2]. Hardware used for acceleration include:

Graphics Processing Unit (GPU)

They are designed to handle motion of the image. GPUs are increasingly utilized for large-scale

data processing, speeding sections of an application while the rest executes on the CPU. Modern

GPUs' extreme parallel processing enables a user to process billions of data and information.

Field Programmable Gate Array (FPGA)

FPGAs are integrated circuits that can be altered and reprogrammed an infinite number of times

once they are manufactured. They are the basis for reconfigurable computing, a computer model

that divides applications into parallel, application-specific pipelines. The advantage of

reconfigurable computing is that it combines the speed of hardware with the flexibility of software,

essentially combining the greatest features of both hardware and software [3]. An FPGA's basic

design is made up of input/output blocks, customizable logic blocks (CLBs) and routing channels.

Each CLB, which appears in a basic routing structure, is built of look-up tables and flip-flops that

may be configured to perform combinational or sequential logic [3]. CLBs are surrounded by

input/output blocks (IOBs) that allow them to connect with external devices. Because the universal

12 | P a g e

routing structure allows for random wiring, designers can link the logic parts in any way they see

fit. To implement the designs on an FPGA, a hardware description language (HDL), such as

Verilog or VHDL is used.

1.2 Problem Statement

The challenge for high computational processing is therefore critical as AI algorithms and

techniques are becoming increasingly sophisticated and advanced. To manage the challenging

factors for emotion recognition in the world, Deep learning techniques have progressively been

executed. This progress comes at the expense of a large computational cost as CNNs. As a result,

specialized hardware is needed to accelerate their implementation. Graphics Processing Units

(GPUs) are the universally used platform to implement CNNs as they offer optimal performance

in terms of pure computational throughput but requires high power and energy consumption [4].

1.3 Proposed Solution

FPGA will be programmed to fit the ML algorithm and a fast data access efficiency will be

received compared with regular GPUs. FPGA decreases power usage through ML algorithms on

the hardware design.

 RISC-V (Reduced Instruction set computer architecture) and open- source Instruction set

Architecture (ISA). It allows system designers to add custom instructions according to their need.

In this project we have added custom instruction and hardware unit to accelerate the ML algorithm.

Lastly, optimizing memory reads/writes overhead by using DMA, so the processor is free for other

tasks

13 | P a g e

1.4 Objective

Our objective is to design an FPGA based AI Accelerator with:

• Capability of running optimized ML algorithms.

• Less computational complexity.

• Implement 32-bit RISC-V Architecture on FPGA

• Generic implementation of CNN accelerator on RISC-V.

• Optimizing memory reads/writes overhead.

1.5 Scope

Artificial Intelligence (AI) finds it market wherever ML algorithms are being applied. To serve

the purpose, we will be testing an ML algorithm such as Convolutional Neural Network (CNN).

The algorithm would be accelerated by our hardware accelerator. A CNN algorithm will be used

and would be comparing the non-accelerated and accelerated outcomes We would observe the

accelerated one being less complex in regard to computation.

1.6 Relevant Sustainable Development Goals

The project will provide us with the platform for acceleration of Artificial Intelligence (AI)

algorithms. Advancements in AI has made every industry to shift towards it. With that there arises

a problem of high computational complexity. Our project will aid in reducing such complexities.

It will also enhance research and upgrade industrial technologies.

We are addressing the SDG’s #9 which is “Industry, Innovation & Infrastructure”.

14 | P a g e

CHAPTER 2: LITERATURE REVIEW

2.1 CNN MODEL

Convolution Neural Networks is the field of Deep Learning which works on the connectivity

patterns of Neuron similar to the Human Brain and inspired by the organization of the visual

cortex. CNN model as shown Figure 2.1 classify the input images by capturing their spatial and

temporal dependencies through filters [5]. CNN picture sorting takes an input picture, processes

it, and groups under some classes (like domestic and wild animals, human etc.). A series of

convolution layers with filters (Kernels) is input picture, pooling, all connected layer associated,

put a soft-max function to classify an object with probabilistic values between zero and one. The

figure shows a flow of CNN to associate an enter image and classifies the object based on values.

Figure 2.1 CNN Model Architecture [6]

15 | P a g e

Convolution Layer

In this layer, a numerical operation called convolution is done. It is used to reduce the size of the

image [7] and extract specialized features according to kernel. Convolution operation simply

passes the kernel over the image and performs point by point multiplication of filter with image

pixels. Then the result is summed up to give output pixel. The process is repeated by moving kernel

over complete image to give output image.

Pooling layer

The further down sampling and decreasing the matrix scale can be called as pooling. A filter now

is the left-out results of the previous layer, and it selects a particular range out of every cluster of

values. In this way the network is now able to train itself much quicker, while focusing on all the

significant data in every aspect of the picture [8].

Fully connected layer

The input which represents the output of the prior layers can be a 1-D vector. The output will be a

listing of probabilities for different potential labels attached to the picture (e.g., dog, cat, bird). The

label that has the highest probability is that the classifications call [8].

DMA

“The characteristics of computer systems which allow some hardware subsystems to get their

access to RAM (random access memory) or main memory without the CPU interference is called

Direct Memory Access (DMA)”.

It will completely be occupied by the read or write operation and therefore cannot be used for other

tasks when we are DMA is not using. CPU firstly starts the transferring while using the DMA,

16 | P a g e

then performs other tasks while the transfer is happening, and when the transfer is completed, the

DMA gives an interrupt signal to CPU. When the CPU cannot maintain with the data transfer rate

than this feature is helpful, or when the CPU needs to do work while waiting for comparatively

slow I/O data transfer.

Figure 2.2 DMA

2.2 RISC-V Architecture

RISC-V is an open source, friendly, free ISA enabling is the latest period of processor innovation

through public collaboration. It is structured as a small base ISA with a variety of extensions and

freely available to both academia and industry. RISC-V has multiple phases as shown in Figure

2.3 [9]. The first phase is the fetch phase in this instruction loads from the memory. The other

phase is the decode phase in this instruction is decoded i.e., which type of instruction is identified

17 | P a g e

either it is load-store or ALU instruction. The next phase is the execution phase. In this phase

required operation is performed on the decoded instruction. The next phase is the memory phase.

In this phase if instruction is load or store instruction, memory is read or written. The last phase is

a write-back phase. In this phase results are written into the register file. Memory is of two types‟

instruction memory and data memory. It has an arithmetic and logic unit (ALU). An arithmetic

and logic unit may be a digital circuit wants to perform arithmetic and logic operations. Addition,

subtraction, multiplication, and division are the examples of arithmetic operations [10]. AND,

NOT, and OR are logical operations. All these operations are performed on values in the register

file. It is a small amount of storage available. The Program counter (PC) is a register that has the

address of the next instruction to be executed from the memory [11].

Figure 2.3 RISC-V Five Stage Pipeline

18 | P a g e

2.3 CNN Accelerator Strategies:

CNN has multiple layers that take much more time to execute. To accelerate the CNN we adopt

two strategies, strategy per phase and vector block extensions. A detailed explanation of these

strategies is given below. 2.3.1 Strategy per stages: This is the first strategy of the CNN accelerator

[12]. In this strategy, author implemented the CNN accelerator on RISC-V and add Customize

instruction to speed up the CNN process by including load vector, store vector, multiplication,

division custom modules in architecture. Author implemented five-stage pipelines but different

architecture from conventional RISC-V by adding a specific processing module to implement their

boost up commands as shown in Figure 2.4 [13]. Properties and working of each stage are given

below.

Figure 2.4: Custom Instructions on Every Stage CNN Accelerator [14]

19 | P a g e

2.4 FPGA-based Accelerators

There are many processors based on Intel, GPU and also work done on FPGA but FPGA process

are not using generally in world because it is more challenging to process FPGA on ML algorithms

[15]. Since it is an FPGA, the peak performance is equal to the DNN model, the performance peak

is reported for using GoogLeNet source which ran at 900 fps [16].

20 | P a g e

CHAPTER 3: IMPLEMENTATION AND WORKING

3.1 CNN Implementation Steps

The implementation steps of CNN on RISC-V are shown in Figure 3.1. Python has become default

platform for implementation of CNNs over last few years. Many existing implementations make

it easier to make task of designing and implementing CNNs easier. We start with a python model

we trained and validate the python model. Once a CNN is trained, for inference we require

parameters and weights. In our design we are optimizing inference part of the CNN. So, we extract

weight from the python model. Then we ported CNN to C language to port it on RISC-V.

Figure 3.1 CNN Implementation Steps

3.1.1 Python model

We have the MNIST database. It is one of the common data sets used for image classification. It

contains sixty thousand training images and ten thousand testing images. For the classification of

the image, the image passes through the different layers of the model. The Layers of our model

are shown in Figure 3.2.

Figure 3.2 Python Model for RISC-V Implementation [17]

21 | P a g e

3.1.2 Extract Variables & Weights

In the second step, we extracted the weights from the python model. For this purpose, all the

parameters are written in one file from the python model.

3.1.3 Fixed Point Conversion

The python code is converted into C code. All the weights are in the floating-point format are of

size 32 bit but since we need to port part of it in FPGA, and fixed-point numbers are more suited

for FPGAs. For this purpose, we convert data into fixed point 1.15 formats. The maximum and

minimum range of the weights in floating-point format is between 0-1. That’s why we convert into

1.15 formats. There is a special case of convolution addition where the format is changed is of

1.31 but when data c out the 1.15 format is retained.

3.1.4 RISC-V-32I

We explored some open-source RISC-V cores and a suitable core for CNN accelerator that we

found was ORCA by vector blox. ORCA highlighted features are given as:

• ORCA is a completely open source

• Highly parameterized, ideally appropriate for FPGAs, transportable across FPGA vendors.

• It can be configured to either I or M extensions only. So, it has smart performance and

space.

• It is often used as a standalone processor however was designed to be a host to vector blox

proprietary light-weight vector extensions (LVE).

• It has optimum AXI3 and AXI4 instruction and information caches, a separate AXI4 Lite

interface for uncached transactions, associated an auxiliary interface.

22 | P a g e

• Use dual-ported block rams on the FPGA for the register file.

As ORCA is compatible with the tool chain so we need to install tool chain for

Cross compilation of C code of CNN model

3.2 RISC-V GNU-Tool Chain Standard Installation

As orca is 32-bit RISC-V processor with integer and multiplication extensions. We installed

RV32IM bare metal variant of RISC-V-GNU-Tool chain. The main step is downloading and install

Tool chain in Ubuntu.

3.2.1 Profiling

The total time and number of cycles taken by each layer are shown in Table

Table 3.1 Profiling of CNN Layers

Sr.No Layers Time(ms) No Of Cycles

1 Convolution1 150 15,034,049

2 Activation1 2 210,122

3 Convolution2 8,857 885,760,373

4 Activation2 4 457,291

5 Maxpooling1 13 1,361,133

6 Flat 1 195,435

7 Dense1 1,080 108,085,784

8 Activation3 0 1,865

9 Dense2 0 76,793

10 Activation4 0 557

23 | P a g e

Total 10,107 1,010,783,402

3.3 Technical Requirement

The Cora Z7 is very optimized SoC development board featuring the power and flexibility of

Xilinx's Zynq-7000 SoC family [18]. The Zynq-7000 SoC family integrates the software

programmability of an ARM-based processor with the hardware programmability of an FPGA,

delivering optimized system integration [18].

Figure: Cora z7-7000 FPGA board [18]

3.4 CNN Layers Execution Timing Analysis

As it is shown from the above table the activation3, dense2, activation4 layer take lesser time than

other layers i.e., 0ms. The flat layer takes more time layers i.e., 1ms. The activation1 layer takes

more time i.e., 2ms.

24 | P a g e

The activation2 layer takes 4ms. The max-pooling layer takes 13ms, the convolution1 layer takes

150ms. The dense1 layer takes even more time i.e., 1080ms. After that convolution2 layer takes

much more time than all layers i.e., 8857ms. The total time for both convolution1 and convolution2

is 9007ms and also the number of cycles is much more than other layers. So, we need to accelerate

these layers to accelerate CNN. That’s why we make the accelerator for the convolution layer.

25 | P a g e

CHAPTER 4: HARDWARE DESIGNING

4.1 RISC-V Bring-Up

For bringing up the RISC-V core we have used Ubuntu 18.04 and Vivado version 2018.3. In this

section, we will describe the steps required to bring up the RISC-V core. Prerequisites of using a

RISC-V core include using Linux based machine and having Vivado Design Suite installed on the

system. The bring-up of a RISC-V core comprises of the following steps: Building Tool chain,

Building Vivado design project, and programming the RISC-V core. Below we have described

each of these steps in detail.

4.1.2 Building Toolchain

In this step, we build the binary tools, gcc, and newlib library for 32IM-core. Numerous scripts

are available online for carrying out these steps. Refer to Appendix A to see the script used by our

team. For using the provided script, set “RSCV_INSTALL” variable in script.

4.1.3 Building Vivado Design Project

A script named “make file” is provided in Appendix B to make the Vivado Project for the RISC-

V core. Just redirect to the file directory and run the “make‟ command in the terminal. This will

generate the project from the terminal itself. Alternatively, run “make GUI‟ to build the whole

project in the Vivado environment so user can use the GUI tools to manipulate the project

according to his need. To make changes to Block Design created in Vivado, the user has to export

and save the .tcl file. The “Make‟ command does this automatically for the user whereas, if the

user has opted for the GUI option, then “make archived‟ can be used to save the changes to the

design. If only RISC-V parameters are to be changed, arguments can be given to the make file to

26 | P a g e

achieve it. Parameters can also be placed in an optional config.mk file before running the make

command.

4.1.5 Programming the RISC-V Core

The make file includes the functionality of programming the FPGA and RISC-V core as well. To

program the FPGA, use “make pgm‟ command. This will download the bitstream to the board.

Then use “make run‟ to compile, build and load the software over JTAG to the instruction memory

and start the program execution.

4.2 CNN Accelerator Design

In this section, we discuss the CNN accelerator design in detail. The CNN accelerator design can

be broken down into two main parts: namely the hardware design and the software design.

4.2.1 Hardware Design

The crux of CNN accelerator hardware is mainly based upon two main components i.e. the

processor and the accelerator itself. The processor runs the C code for CNN. It uses the DDR

memory from Zynq system to store the program code and data. RISC-V uses the custom developed

hardware accelerator to perform the convolution. This process is started when RISC-V writes the

inputs to the accelerator. The hardware then runs the convolution process and produces results.

These results are saved in the BRAM by the accelerator and the RISC-V is notified that the process

has been completed. The Figure 4.1 below illustrates this process in a block diagram. In the

subsequent subsections, each of these components is discussed in detail.

27 | P a g e

Figure 4.1 CNN Accelerator on RISC-V Block Design

4.2.1.1 RISC-V

In our project, 32-bit RISC-v with integer and multiplication is used to run C bare metal code for

CNN model. RISC-V core is written in VHDL hardware descriptive language with a lot of

configurable parameters. RISC-V used AXI3/4 interface to interact with peripheral and other

blocks. A 32-bit timer is also attached with RISC-V core as a peripheral for time analysis. RISC-

V has mainly two types of AXI ports; cached port and uncached ports. In RISC-V both data and

instruction memory have both cached and uncached port. These ports are used to fetch instructions

and data from the memory to RISC-V. An additional function of the uncached data port is to poll

28 | P a g e

data available on external memories (including BRAM) so that it is constantly available to the

processor. A timer AXI port is used to read the timer value.

Data Flow: The data and program section of C code generated by riscv-gnu-toolchain is written

on zynq DDR through JTAG Logic for RISC-V processor. For the first time RISC-V fetches the

data and instruction sections for c code using Data Uncached port “DUC” and instruction uncached

port “IUC”. Data and instruction data is stored in caches of RISC-V, and which is also a predefined

section on Zynq DDR using Data cached “DC” and Instruction cached “IC” port. Then RISC-V

operates on caches and uses “DUC” and “IUC” ports when it missed cache. “DUC” port also has

a special purpose to interact with other peripheral of RISC-V and accelerator custom design. We

use data uncached port for peripheral so we can directly change and access any variable/memory

location by peripheral and accelerator. A RISC-V timer is also connected to the timer port for

calculating the time and counting a specific value.

4.2.1.2 CNN Accelerator

The CNN Accelerator parallelizes the process of convolution by using a 3x1 multiplication

strategy. It uses three different BRAMs to store the input row separately and one other BRAM to

store the kernel. An address generation custom IP is used to generate address for each BRAM.

Multiplication is performed on these inputs and the results are stored in yet another BRAM. RISC-

V is notified about the completion of the process. The main components of CNN Accelerator are

shown in the following Figure4.2: DMA, BRAMs, BRAM Address generator, Status registers, and

convolution multipliers. The properties and functions of each of these components are discussed

in Figure 4.2 below.

29 | P a g e

Figure 4.2 Accelerator Design

30 | P a g e

4.2.1.3 BRAMS

BRAM stands for Block Random Access memory. It is used in FPGA for storing a large amount

of data. BRAM could be configured as standalone. It could be a single or dual port with different

configurable parameters. We are using three BRAMs in our design, input, kernel, and output

BRAM. All BRAMs are operating in Dual mode.

4.2.1.4 BRAM Address Generator

BRAM Address Generator is a custom IP designed by our team. This IP performs two main

functions. Firstly, it receives the control signals from the status register IP core. When the BRAM

Address Generator receives the start signal, last address, and filter number from the status register

IP core, the IP begins its operation. This core produces the addresses for input BRAM and kernel

BRAM corresponding to the provided filter number. The process is complete when the image

address equals the provided last address as shown in Figure 4.3.

Figure 4.3 Address Generation Control Signals

31 | P a g e

Secondly, the main purpose of address generation IP is to generates a synchronized address for

input, kernel, and output BRAM. The schematic for address generation and shifting process is

shown in Figure 4.4.

Figure 4.4 BRAMS Address generation RTL Design

32 | P a g e

The row shifting operation for convolution is also handled by the second module to generate a

corresponding address for input BRAMs and kernel BRAM. Thirdly, the BRAM address generator

IP performs addition over the results of the convolution multiplier. It also performs a cumulative

sum for 3 cycles to generate convolution results. The schematic for this process is shown in Figure

 4.5 below

Figure 4.5 Cumulative Sum RTL Design

33 | P a g e

4.2.1.5 DMA

The main purpose of DMA is to further accelerate the design. The DMA is formed from AXI-

MASTER IP. The IP was first tested using a verification IP [19]. AXI-MASTER has a state

machine with the help of it first Write on a slave through counter and then Read from slave and at

the end, the read data were Compared with write data. We have modified that state machine, which

performs only one function at a time read or write depends upon the direction signal i.e.

write_or_read given to it. It writes data when the direction is 1 and reads when the direction is 0.

The modified state machine is shown in Fig 4.6

Figure 4.6 State machine of DMA

When write_or_read is equal to 1 DMA writes from BRAM to DDR. When write_or_read is equal

to 0 DMA reads from DDR and writes it on BRAM. In our case, DMA is used only to reads from

34 | P a g e

DDR and writes on one of the four BRAMs depending upon write enable. DMA has the following

ports as shown in Table 4.1

Table 4.1 DMA Ports

4.2.1.6 Convolution Multipliers

Two staged pipelined multipliers are being used in 16x16 bit configuration to generate a 32-bit

signed output.

Data Flow: The complete CNN accelerator consists of two paths, write and read from the CNN

accelerator. Firstly, the input data and kernel for convolution are written on BRAMs using DMA.

We are using three BRAMs for storing each input row. A kernel BRAM is used to store the filter

for Convolution. After the loading process, a start bit from the status IP is used to start the

convolution computation. Last address and filter-no are also selected by using status registers. The

address generation IP generates the addresses for the input image and handles the column shifting

Sr.

No

Port Description

1 Direction Read or write

2 DDR_address Slave address

3 No_of_Data No of data reads or write to DDR

4 Init_txn_pulse Start DMA

5 BRAM_data_in Input data from BRAM to write on DDR

6 BRAM_data_out Output data from DDR to BRAM

7 write_enable(s)

This port may be one or more than one, depending upon attached

BRAMs at output

35 | P a g e

process for convolution. Each Input BRAM gives the 16-bit data for convolution. Filter addresses

are also generated by BRAM address generation IP. Kernel BRAM gives the 64-bit data where 48

least significant bits multiplied to corresponding 16 input data to produce 32-bit multiplication

output BRAM address generation IP also accepts data from these three multipliers and sums them

all. The second part of the Data flow is started where BRAM address generation IP generates the

Output BRAM address, write enable, and write data. Write data is generated by three commutative

addition of multiplication Sum. When the image address equals to last address the first-row

convolution is done. The CNN accelerator sets the status registers done bit. This process will repeat

for all rows of an input image. Whereas the Output address will auto-increment on write data

unless reads data from Output BRAM using DMA and reset output address register through status

register.

4.2.2 Software Design

The C code of CNN model executes the Convolution process using accelerator design. All other

layers of Convolution Neural Network are running of RISC-V processor. The image is dumped on

DDR using “dow” command on the following address 0x40000000. Run the image tcl file for

image load to DDR and kernel to Accelerator BRAM is done by DMA. Convolution on

Accelerator Software Flow. The software developer can access status register in their C code. The

address for status register is 0x43C00000. The basic Flow design for performing computation on

accelerator is shown in following figure.

36 | P a g e

Figure 4.7 Convolution on Accelerator Software Flow

The software developer can access all these BRAMs and status register in their C code. The address

for each BRAM and status register is shown in following Table

37 | P a g e

Name origin

Input_BRAM_Controller_0(Image

Ram)

0x40000000

Input_BRAM_Controller_1(Kernel

Ram)

0x42000000

Input_BRAM_Controller_2(Result

RAM)

0x44000000

Status_reg_Controller 0x43C00000

axi_cdma_0 0x7E200000

38 | P a g e

CHAPTER 5: RESULTS

We have generalized the existing CNN architecture, now it supports every size of matrices, and

can be used with any processor core. We can also change the image on run time. Lastly, we have

optimized memory reads/writes overhead by using DMA, so it accelerates the old architecture

which used to complete a MNIST image classification in 3084 ms to 2105 ms. The results are

shown in following Table 5.1

Table 5.1 Comparison of existing CNN accelerator with modified

Sr. No

Layers

CNN on RISC-

V

CNN on RISC-V

Based Accelerator

without DMA

CNN on RISC-V

Based Accelerator

with DMA

Time(ms) Time(ms) Time(ms)

1 Convolution1 150 32 20

2 Activation1 2 2 2

3 convolution2 8,857 1827 871

4 Activation2 4 4 4

5 Maxpooling1 13 14 14

6 Flat 1 1 1

7 Dense1 1,080 1178 1181

8 Activation3 0 0 0

9 Dense2 0 0 0

10 Activation4 0 0 0

39 | P a g e

Total 10,107 3084 2105

40 | P a g e

CHAPTER 6: CONCLUSSION AND FUTURE WORK

6.1 Conclusion

We all know today’s technology demands high computational speed in less time. As the

technology grows people’s patience is decreasing and they need a system that do their work in less

time as possible. These days everything is being shifted to Machine Learning and Artificial

Intelligence and these AI and ML algorithms usually take a lot of time for its computation. So, in

order to eradicate these computational complexities a hardware is required that will accelerate this

computational process. So, we designed an AI Accelerator based on FPGA that will help in speed

up the AI algorithms that are being used in our daily life. In this way people don’t have to wait

long to do their basic daily life chores that involve AI computational.

6.2 Future Work

Currently we are not using the write side of DMA i.e., write on DDR through DMA, because it

takes more time than usual. So, by shifting accumulation, bias addition, and max pooling to the

hardware side, we will also be able to use the write side of DMA. As a result, this project will be

more accelerated.

• DMA could use to load BRAMs instead of RISC-V and implements ping pong logics.

• BRAMS reload for every row computation that could be reused by making a state machine.

• Reconfigurable Accelerator for every python model.

41 | P a g e

BIBLIOGRAPHY

[1] N. Gupta, "Introduction to hardware accelerator systems for artificial intelligence and machine

learning," Elsevier BV, 2020.

[2] "Heavy.AI," [Online]. Available: https://www.heavy.ai/.

[3] "Bucknell University," [Online]. Available: https://digitalcommons.bucknell.edu/.

[4] T. L.-T. S. N. Hanh Phan-Xuan, ""FPGA Platform applied for Facial," Porcedia Computer Science, vol.

151, pp. 651-658, 2019.

[5] C. L. G. A. C. T. A. D. B. Steve Lawrence, "Face Recognition: CNN approach," Face Recognition: CNN

approach, p. 16, 1 January 1997.

[6] P. Ratan, "Analytics Vidhiya," Data Science Blogathon, 28 October 2020. [Online]. Available:

https://www.analyticsvidhya.com/blog/2020/10/what-is-the-convolutional-neural-network-

architecture/.

[7] K. L. Hendrik Blockeel, "Computational Intelligence in Machine," Machine LEarning, vol. volume

111, no. Issue 5, May 2022, 2022.

[8] "IJARIIT," [Online]. Available: https://www.ijariit.com/.

[9] Michelogiannakis, 2016. [Online]. Available: http://inst.eecs.berkeley.edu/~cs152.

[10] "University of basrah," [Online]. Available: https://faculty.uobasrah.edu.iq/faculty/en.

[11] "Slide Player," [Online]. Available: https://slideplayer.com/.

[12] J. Y. H. a. Y. L. C. F. C. Poulet, " An fpga-based processor for CNN," International Conference on

FPGA, pp. 32-37, 2009.

[13] B. M. a. H. C. M. P. A. Setio, "Memorycentric accelerator design for CNN," 2013.

[14] "Wikimedia commons," MIPS Architechture(Piplinined), 22 January 2009. [Online]. Available:

https://commons.wikimedia.org/wiki/File:MIPS_Architecture_(Pipelined).svg.

[15] "Internet Archive WayBack Machine," [Online]. Available: https://web.archive.org/.

[16] P. M. M. J. V. G. S. S. J. K. Albert Reuther, "Survey of Machine Learning Accelerators," HPEC, p. 6,

2019.

42 | P a g e

[17] "Data Camp," [Online]. Available: https://www.datacamp.com/tutorial/convolutional-neural-

networks-python.

[18] "Digilent," [Online]. Available: https://digilent.com/shop/cora-z7-zynq-7000-single-core-and-dual-

core-options-for-arm-fpga-soc-development/.

[19] "Xilinix Forums," 2020. [Online]. Available: https://forums.xilinx.com/t5/Design-and-Debug-

Techniques-Blog/AXI-Basics-4-Using-the-AXI-VIP-as-protocol-checker-for-an-AXI4/ba-p/1062002.

43 | P a g e

44 | P a g e

45 | P a g e

