Aircraft Detection and Classification using Satellite Imagery

(ADCSI)

By
MUHAMMAD AHMAD
MUHAMMAD SAFIULLAH
UMAIR AMIN
TALHA TARIQ

Supervised by:
DR. HASNAT KHURSHID

Submitted to the faculty of the Department of Electrical Engineering,
Military College of Signals, National University of Sciences and Technology, Islamabad,

in partial fulfilment of the requirements of a B.E Degree in Electrical (Telecom) Engineering.

June 2023

i|Page

ii|]Page

In the name of ALLAH, the Most benevolent, the Most Courteous

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to state that the thesis work contained in this report officially
«Aircraft Detection and Classification using Satellite Imagery”

is carried out by
MUHAMMAD AHMAD

MUHAMMAD SAFIULLAH
UMAIR AMIN
TALHA TARIQ

under my supervision and in my judgement, it is fully ample, in scope and excellence, for the
degree of Bachelor of Electrical (Telecom.) Engineering in Military College of Signals,
National University of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor
Lt Col. Dr Hasnat Khurshid

Department of EE, MCS

Date:

iii|]Page

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

iv|Page

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.
Our parents, colleagues and most of all, supervisor, Lt Col Dr Hasnat Khurshid, without your
guidance it would have been a challenging undertaking.

The group members, through all adversities, worked steadfastly.

v|Page

Plagiarism Certificate (Turnitin Report)

This thesis has an 11% similarity index. The Turnitin report endorsed by Supervisor is

attached.

vi|]Page

Muhammad Ahmad
325013

Muhammad Safiullah
325049

Umair Amin
325040

Talha Tariq
325029

Signature of Supervisor

ABSTRACT

In the modern era, satellite or drone imagery is easily accessible. There are several uses for such
images, including the detection and identification of desired targets like aircraft, convoys, trains,
and trucks. It can also be used to identify infrastructure, like runways, storage buildings, Air bases
and Airports. Our effort adds the identification and classification of aircraft in Google Earth
Imagery as another extremely effective use of overhead imagery, broadening the scope of these
applications. This can be very helpful for locating and documenting an aircraft in a particular area.
In this study, a large number of multi-resolution satellite images were used to train the
Convolutional Neural Network-based machine learning algorithm YOLO V5. By selecting
training parameters optimized by learning from multiple literature sources and testing them, the
models were trained. After a period of extensive model training and achieving desirable accuracy,
two user interfaces were developed. Users can detect in real-time when browsing Google Earth or
any other source of overhead imagery with the use of Ul Live Detection Mode. In Google Earth's
Auto-Scan mode, a predefined area is automatically scanned, and all detections are recorded along
with classification information. Along with the pixel values of aircraft in the Google Earth image

that was acquired, the Ul can precisely provide the specific geographic coordinates of the aircraft.

vii|Page

Table of Contents

T) T [0 -SSR X
(O gT=T o) t=1 gl Il 1) oo [0 Tod [S 1
IO 1Y 4 = OSSR 2
A o o] o] [IS oL 1 o SO URST 2
IR I o o] o0 TT=To ST 1111 T oS 3
LA WOPKING PIINCIPIE.....eieeetiiee bbb bbb bbb bbb bbb bbb bbb b st b 3
1.4.1 DAtaSetS OFQANIZATION:cueiteiiitiiteeeetirt ettt ettt eb bt b bbbt b bbbt bbbttt ettt e enes 4
1.4.2 Al models training and FiNe-TUNING:ccuiiiiriieie et te e e s e ta e beesteeteeaesnnes 4
1.4.3 BrOWSET AULOMATION.coeiiiieiieirirs ittt r b nr e r et r e bt nn et n et n et n s 5
14,4 OULPUL EXEFACTION: ..ottt ettt b bbb bbbt b bbbttt 6
o [o [0 OO URPRPRURTOON 6
R O 0 o] £=T=T 1 = [0 SRS 6

BRI O o] 1= od 1YL USSR 7
1.5.1 GENETAl ODJECHIVES: ...ttt bbbttt bbbt bbb bbb et n s 7
1.5.2 ACEAEIMIC ODJECLIVES: ...ttt bbb bbbt bbbt bbbttt 7

1.6 IS Tol0] o[- PP PSR PPPPP 7
L7 DEIIVEIADIES ...t R et R e 8
L7 L EAQIE VIBW .ttt bbb bbb bbb bbb bbb bbbt b ettt 8
1.7.2 ODJECE OF INTEIESE: ...ttt bbbttt bbb bbb bt bbbt bbbt e et n s 8
1.7.3 Data ANAIYSIS REPOIT:iieiiitiecti ettt e e e sttt e e e e s e s taesteesteesbeeeeaneeasseeaeestaesbeeteaneenreennees 8

1.8 Relevant Sustainable DevelopmMENt GOAIS...........cceiviiiiii ittt et e beaae e 9

B I 0 Tox (N0 I T 1SS 9
Chapter 2: LItEratUre REVIEWottt etttk bbbt b e sb et sb et ek s b et et e ne s e ebenresea 10
2.1 EXISEING SOIULIONScutiitiestie ettt ettt e st e s te e te et e e st e eas e e st e te e teesbeeseesseesseesteesaenseanseansenseenreens 10
2.2 RESBAICH ...ttt R R R Rt R E ettt r e 11
2.2.1 Research on object detection and classification teChNIQUES:...........ccvviriiiririin s 12
2.2.2 ONE StAGE V'S TWO SEAGES .. e.vevetieieeiresrert et sttt et ettt st b ekt b e e r bt s bt bbbt e e e s e b sb e et e be et e e e nnennenne s 16

1O gF=T o] (=] e Ml B - = T OSSO UPORRPUTRN 18
3.1 Custom real-World AIFCIaft DIASEL.coiiiieitireee ettt e e e b e bttt e et eesbe b e 18
3.1.1 Dataset COlECtion / ACGUISTLIONeiiiiiiiiiieiee ettt sttt b neenes 19
3.1.2 Data Munging and Feature Extraction (Image- PreproCessing).......cccceoveevereirerenenenieesenesesieseeseseeseenes 20
3.1.3 Labelling OF DEEASEL.......ceiiuiiterieitiitie ettt b bbbt be e et et sbe b e beebe e st e e et nae s 22
3.1.4 ACQUIred DAtaSets DELAIIS:.........eiuiieeieie ittt bttt ettt bttt et nae s 23
3.1.5 ANNOLAtIONS CONVEISIONveiiieieeereetiesiestesiestesteeeeseeseeseestestestesseaseeseessesestessesseaseeseessestesaesseaseeneeseenseneensens 24
3.1.6 DAt AUGMENTALION: .. .cveitieetietiitet ettt ettt bbbt b e st et e bt st et bt st e eb e st e s st st eenes 25

viii|Page

317 Prepared DatASEL:ceiiieeieiteriet ettt b bbb bbb bR bRt b bbb n s 25

3.2 Synthetically generated AIrCrafts DAtASEL..........cccviiviiieiieieie et ee e e e 26
B0 ST T | L1 To= o USRS 26
3.2.2 TOOIS ANA FIaMEBWOTK: ...ttt bttt et et et sbesbesbeeneese e e e nte st 27
3.2.3 GENEIALION WAYS: ...evireeteteeeteete ettt etttk ns et eb bbb e e b bt e b e b e s b £ eb e bt e b e e bt bt bt e bbbt bbbt bt e 27
I BT | v -l £ o LA o) o SRS 28

TR I 1= | (=T a T TSRS 30

Chapter 4: Training Al IMOGEIS.ciiiiie bbbt b et b e se e eresr e 31

4.1 Training Object DeteCtion MOTEL:co it be e 31
I O I T AT Lo s U= 1] (=) SO 31
4.1.2 Pretrained MoOdel COMPAIISON:ccuiiieiieieeiee st e st et et e st steesteeste e e e s e e steesteesaeeseeaneesseesteessaesteeeeasaesnees 32
.13 TTAINING SEIUP: -ttt bbb bbb bbbt b s b b s bbbt bbbt bbbttt s b et et b n s 33
I 0 (o1 3 A SRS 33
T I UL T T =] L SRS 37
4,16 CONCIUSION: .ttt b e bt e Rt Rt bttt 40

4.2 Training Image Classification MOGEL:cooiiiiiiii e 41
4.2 1 TraINING PATAMELEIS ...tttk bbb bbb bbbt bbbt bbbt et bbb 41
4.2.2 Pretrained models COMPATISONc.iiuiiieiie et s e e e teetesneeeneesreesraesteeeeanaesnnas 41
e T I UL T TR (V] o OSSPSR 42
e I o] (o) T O 3 N OSSR 42
.24 TTAINING RESUITS....eititiitiieeieet ettt bbbtk bbbtk bbbt b bbbt be e 44
4.2.5 CONCIUSION ...ttt bbb bbb bbbt Rt b Rt r et r et r e 44

e T O a1 =T To OSSR 44

(O g T o (=] gt oI T] LTSS P PR PPPRPPPRIN 46

5.1 GUI 1 (Multi Screen for Live DEECTION)coieiiiiiieieie ettt bbb 46
LT I I = o Tod QB I Vo -4 SRRSO 46
Lo B 00] 4[] | oo PO RPR 47
5.1.3 Libraries and helper fUNCLIONS:cooiiiiiiie bbb 48
B LA MVOTKING: 1.ttt bbb bbb bbb bR R bR h bR Rt bbbt b et 49
515 CONCIUSION ...ttt e bR bt e bbbt r e b et 51

5.2 GUI 2 (SEIENTUM DASEA)vveeieieeiie ettt ettt et e s b e e te e te e teeseessaesteesteesseenseenseansesseenreens 52
I =] [T 1 B o = o FO OO PRTTOPRPOO 52
LT O] =] o] ST STV PP URURURPPPTPRTROIN 52
5.2.3 Libraries and Helper FUNCLIONS:ouiiiiiie ettt bbbt sne e 55
I Yo (1o SO SO TR URURRPTPRN 58
LRI o] o 1157 T o PSS 65

ChapLer B: CONCIUSION.......c.oiiiiiieiite ettt ettt se et eb e bt e bt s e e s e ekt se e st et e se e s e et e sbeneebesbe e ebenbenea 66
ChAPLEE 72 FULUIE WOTK ...ttt b e bbbt bt b e et e b e sb e b sbesb e b e e neeneenbenbenren 67
RETErenCeS aNd WOIK CHLEAoouiiiiiiie ittt b bbb e bt e e et e b sbesb e beebeese e b e naesreas 68

ix|Page

F N o =TSR 70

List of Figures
FIQUIE 1: YOIOVS AICRITECIUIEovieeii ittt bbb bbb bbb bt b et b 05
Figure 2a: Performance of DeteCtion MOUELScoviiiiiiiieiie bbb 13
Figure 2b: Performance comparison of YOIOV5 and YOIOV7cccuviiiiiiiiciiece e 14
Figure 2c: Comparison of yolov5-cls with other classification models............cccooveviiiii i, 15
Figure 3a: IMage WIth QULTIEISooe ettt e e s ae e s te e aeeneeeaeesteenteebeestenraeanees 19
Figure 3D: IMage WItNOUL OULTIEIS........cei ettt e et e e et esae e s teente e teeseenraenrees 19
Figure 4: ACQUITEd DataSet DELAIIS.ciiiiiiiiieiei ettt bbb ettt et be s 24
Figure 5a: DeteCtion Dataset SPIIL.........cociiiiiiieieiie bbb bbb e b e 25
Figure 5b: Classification DataSet SPILcoiiiiiiiii ittt be e 29
Figure 6: Pre-trained Yolovb detection ModelS COMPAIISONcoveiiiieiieee e 33
Figure 7: Plot Of reSOIULION OF IMAJESc.viivieiiccie et te et ae e b e sae e s tbenteesteesteeneeannes 34
Figure 8: Performance comparison 0f YOIOVS MOEIScccoveiiiiie e 35
Figure 9a: Detection Model trainiNg FESUILS........ccveiiiie ittt te e reeaesnnes 37
Figure 9b: Detection model traiNing rESUILS CUMVE.......uiiiiiie et et cee sttt te et e te e saeestaeste e beesaesnaeannes 39
Figure 10: Performance comparison of pre-trained yolov5-CIS MOGEIS.........c.ccoiiiiiiiniiiieeee e 42
Figure 11: BIOCK DIiagram OF GUI L........ciiiiiiieiieie et bbbttt et 46
Figure 12: GUI 1 DISPIAY PANE ..ot b et b bbb bbb bbbttt nb e et b 51
Figure 13: BIOCK DIiagram OF GUI 2.........ciiiiiiiieie ettt bbbttt et 52
Figure 14: Main WinAOW OF GUI 2........oi ittt st te e te et e s e s taeste e teesbeesneanees 54
Figure 15: Conceptualized Scan Motion OFf GUI 2coiiiiiiiice et 59
Figure 16: Results Display Pane Of GUI 2..........ooiiiiiiiie ettt et e st et e e e teenaeannes 62
Figure 17a: Proposed Display Of GUI 2ooui oottt e te e e st e s te e te e beesaeanees 64
Figure 170: SNAPSNOt OF GUI 2.ttt bbbttt b ettt nbe e bt 65

Xx|Page

Chapter 1: Introduction

Engineering is a required field that has had a tremendous impact on society's development and
progress. By applying scientific knowledge and skills, engineers design and develop new
technologies that can solve complex problems and enhance people's lives across various industries,
including healthcare, transportation, entertainment, and National Security.

Automation is a prime example of a technological advancement resulting from engineering
research, which has transformed the way we live and work. Machines can now be programmed to
perform tasks once done by humans, increasing efficiency, accuracy, and productivity. Automation
has made its way into many industries, from manufacturing to healthcare, and has decreased labor
costs while improving safety.

Automation is one such technology that has been widely employed to strengthen security measures
in various domains. It involves the use of machines that are programmed to make decisions based
on real-time data analysis and historical trends.

Automation software has been developed by engineers to help monitor and control various security
systems in real-time. For instance, it can be used to analyse overhead imagery by satellites and
drones to detect important national assets like Buildings, Convoys and aircraft. This technology can
provide a crucial piece of intelligence information.

Overall, engineering and automation software has played a crucial role in enhancing national
security by providing adequate and efficient solutions to identify and mitigate potential threats. As
technology continues to evolve, engineers will undoubtedly continue to develop new and innovative

solutions to protect and enhance national security.

1|Page

1.1 Overview

In the modern world, intelligence gathering has emerged as a critical aspect of national
security and foreign policy. The complex and rapidly changing geopolitical landscape, coupled with
the advancements in technology, have made the gathering of accurate and timely intelligence more
critical than ever before. Intelligence gathering enables governments and policymakers to make
informed decisions on matters of national importance, ranging from counterterrorism and border
security to economic policies and trade negotiations. It also plays a vital role in international
diplomacy, enabling countries to anticipate and respond to emerging threats and to maintain a
strategic advantage over their rivals. With the increasing dependence on technology and the
growing interconnectedness of the world, intelligence gathering has become even more
challenging, and the need for sophisticated and innovative techniques has become more critical than
ever before.
In today's world, the use of satellite imagery has become increasingly important in various fields,
including national security, urban planning, and environmental monitoring. The detection and
classification of aircraft using satellite imagery is one such application that has been proved

innovative intelligence-gathering source and gives leverage to one state over another.

1.2 Problem Statement

Pakistan is a third-world underdeveloped country with constrained financial resources. Only
available satellite PRSS-1 (Pakistan Remote Sensing Satellite-1) can capture high-resolution optical
and remote sensing images of the Earth and is designed to support various applications, including
natural resource management, urban planning, disaster management, defense and security. Lacking

a standalone automatic system primarily designed for reconnaissance of crucial intelligence assets

2|Page

has created a great void in the modern world of intelligence gathering. The following are the points
which establish the problem statement.
1. There is no independent, autonomous system for Identifying and Classifying national assets.
2. Satellite Imagery is very expensive, and very few support resolutions which are required to
identify concerned objects.

3. Manual work by Image analysts is a burden on the national exchequer.

e

Image analysts' manual labor has very low efficiency.

1.3 Proposed Solution

The primary goal of our proposed solution is to Automatically Detect and Classify national
assets like aircraft using Google Earth’s Satellite Imagery. According to the Google Earth blog,
Google Earth updates its images once a month [1]. The free-to-use updated and high-resolution

imagery will Detect and Classify Aircraft effectively.

1.4 Working Principle

The project primarily uses machine learning methods, automated browsers, and image
processing principles. The project is divided into various modules, and each module is interwoven
with the module after it. The following is a list of the modules:

e Datasets Organization

e Al models training and Fine-tuning.

e Browser Automation

e Output Extraction

e Integration

e GUI presentation

3|Page

1.4.1 Datasets Organization:

A Dataset used for detecting and classifying aircraft needs to have a large number
of images captured from overhead with different zoom levels. The dataset would need to be
diverse, including different types of aircraft, such as commercial planes, military jets and
unmanned aerial vehicles (UAVs), as well as varying weather conditions, lighting and
backgrounds.

1.4.1.1 Custom Aircraft Dataset:

The project uses a Custom build dataset of various types of aircraft collected
from various internet sources. The images were gathered, filtered and annotated to
obtain the coordinates of the object of interest. This dataset would be used for
training the object detection model.
1.4.1.2 Synthetic Aircraft Dataset:

For Classification Purposes, images with higher resolution and large
numbers are required. The images of one class of aircraft are rare to be found on the
internet. To deal with the scarcity of datasets, we synthetically generated images of

an aircraft. The dataset would be used for training the Classification model.

1.4.2 Al models training and Fine-tuning:

The datasets prepared for Detection and Classification were fed to the Object
detection model and Image classification model, respectively, through the application of

machine learning techniques.

1.4.2.1 YOLO algorithm:

4|Page

YOLO (You Only Look Once) is a real-time object detection algorithm that
uses a single convolutional neural network (CNN) to simultaneously predict
bounding boxes and class probabilities for each detected object in an image or video
frame.

Obiject detection in YOLO is done as a regression problem and provides the class
probabilities of the detected images. [3]

In addition to object detection, YOLO can be used for image classification tasks by
modifying the network architecture to output class probabilities without the
associated bounding boxes.

Our project uses the YOLOV5 algorithm to train the datasets. This prepares object

detection and image classification models.

< % ultralytics < CEE——
YOLOvS
@ DATASETS TRAIN @ DEPLOY
Label & Source Notebooks Platforms
@ roboflow o ®© Paperspace I [\ B
Loggers Exports
@LEAR\ML comet T O @ @

Figure 1 — Yolov5 architecture

1.4.3 Browser Automation:

To automatically scan an area in Google Earth, the browser will be automated using
Selenium browser automation. It will also provide essential information like coordinates of

the area.

5|Page

1.4.4 Output Extraction:

The outputs are extracted based on the aircraft detected. The coordinates of detected
aircraft in an image will be fed to the Image classification model along the image to find
which aircraft it is. The detections, their classification result, along with other findings will

be documented as a CSV file.

1.4.5 Integration:

The different modules are then integrated into one stand-alone entity. This stand-

alone entity is essential for a compact solution.

1.4.6 GUI presentation:

The visual demonstration of the project is done through the aid of two GUIs
(graphical user interfaces).
This information presented and documented includes the serial number of the detection, the
snapshot in which the aircraft was found so it can be viewed later, bounding box coordinates,
Score of Confidence, the classifier findings, which include the likelihoods of each class
against the aircraft, latitude and longitude, a link to Google Earth that takes users directly
to the area where the aircraft was found, and, lastly, the location details of the under-sampled
area.
Two GUIs are:

1.4.6.1 GUI 1 (Multi Screen for Live Detection)

It would be for a user manually browsing through Google Earth, and the main
screen will be projected to another screen in which the detections of the area will be

shown. It will mitigate the missing of aircraft as prone to the human eye.

6|Page

1.4.6.2 GUI 2 (Selenium based)
The coordinates of the area to be scanned will be given, and it will
automatically scan the area without human intervention. The session will log all the

details mentioned above to a folder containing the captured images of the aircraft.

1.5 Objectives
1.5.1 General Objectives:

“To build an innovative state-of-the-art software powered by Machine Learning
(ML) and Browser automation techniques, providing an autonomous tool to Detect and

Classify Aircraft with greater efficiency and productivity.”

1.5.2 Academic Objectives:

- Development of an accurate and efficient algorithm for automatically detecting and
classifying aircraft.

- Addressing a real-world problem

- To implement Machine Learning, Image Processing techniques and simulate the
results.

- To increase productivity by working in a team

- To design a project that contributes to the welfare of society and National Security

1.6 Scope

This project finds its scope in intelligence gathering using overhead imagery. It has been
developed in such a way that it is a general-purpose software to identify any object for which the
model has been trained, and it will scan the area for detection using Google earth.

Its applications include:

7|Page

e Early warning for movements of aircraft in enemy Territory
e The detection of foreign aircraft on hostile bases

e Identify enemy ORBAT (Order of Battle)

e Pre-emption against possible enemy strikes

e Counter nefarious enemy intentions.

1.7 Deliverables
1.7.1 Eagle View
It gives an eagle view to observe and gather intelligence using a combination of

image processing, machine learning and browser automation techniques.

1.7.2 Object of interest:

It can detect the object of interest by using the same combination of image
processing and machine learning techniques. By detecting the object of interest, we mean
detecting any kind of object. The limitation is only the dataset of that object, for which also

a solution has been given in the form of Synthetically generation.

1.7.3 Data Analysis Report:

The project will generate a comprehensive report detailing the analysis of the data
collected during the aircraft detection and classification process. The report will include
detailed information on the accuracy of the detection and classification system, as well as

any areas for improvement.

8|Page

1.8 Relevant Sustainable Development Goals

The project falls under SDG 9
“Support domestic technology development, research and innovation in developing
countries.”
By developing software that utilizes cutting-edge technology such as satellite imagery,
image processing and machine learning techniques, this project can contribute to the
advancement of infrastructure and innovation in the field of transportation and surveillance.
Overall, the project can have a positive impact on the achievement of the SDGs by
promoting the use of innovative and sustainable technologies in the field of intelligence and
surveillance.
The project is sponsored by the Intelligence Agency, which will indeed be used for the

enhancement of National Security.

1.9 Structure of Thesis

Chapter 2 contains the literature review and the background and analysis study this thesis is

based upon.

Chapter 3 contains the organization of Datasets

Chapter 4 contains the training and evaluation of Al Models
Chapter 5 describes GUIs in detail

Chapter 6 contains the conclusion of the project.

Chapter 7 highlights the future work of this project.

9|Page

Chapter 2: Literature Review

The introduction of a novel product involves the modification and enhancement of
features that were previously present in similar products. The process of conducting a
literature review holds significant importance in the progression of an idea towards the
creation of a novel product. Similarly, in the context of product development, conducting
a comprehensive analysis of similar projects is imperative. The present study is segmented
into subsequent sections.

e Existing solutions

e Research

2.1 Existing Solutions

There are several existing solutions to this problem. However, all are hardware-based
systems like ADS-B: Automatic Dependent Surveillance-Broadcast (ADS-B), Synthetic Aperture
Radar (SAR), Electro-Optical (EO) Sensors and Multi-Spectral Imaging.

No existing solution employs Convolutional Neural Networks (CNNSs) to do this job.

10|Page

2.2 Research
The literature review for Aircraft Detection and Classification using Satellite Imagery includes

the following:

1. Research on object detection and classification techniques: This includes research on YOLO
(You Only Look Once) object detection technique and other deep learning models that are
commonly used in object detection and classification.

2. One Stage Vs Two Stage Detectors: Whether to do detection and classification in one stage
or employ separate models for these tasks.

3. Studies on satellite imagery: This includes research on different types of satellite imagery,
such as optical and SAR (Synthetic Aperture Radar), and their applications in object
detection and classification.

4. Applications of object detection and classification in defense and security: This includes
studies on the use of object detection and classification in defense and security applications,
such as detecting and identifying military assets and monitoring the movement of troops.

5. Studies on integrating satellite imagery and other data sources: This includes research on
integrating satellite imagery with other data sources, such as aerial imagery, ground-based
sensors, and social media data, to improve object detection and classification.

6. Studies on the use of object detection and classification in disaster management: This
includes research on object detection and classification to identify and monitor areas

affected by natural disasters, such as floods, earthquakes, and wildfires.

11|Page

2.2.1 Research on object detection and classification techniques:

Deep learning neural networks, known as convolutional neural networks (CNNSs), are
frequently employed for image and video processing. CNNs are built to automatically learn
hierarchical representations of visual information from raw pixel input. They are inspired by
the structure of the visual cortex in humans and animals.

CNNs have emerged as a popular and successful method for image classification, object
recognition, and segmentation applications due to their capacity to learn and extract features

from raw data automatically.

2.2.1.1 Object Detection Models

Machine learning models called object detection models are created to find and
identify things of interest in images and videos. Object detection models include details on
the location and limits of specific items inside an image, unlike image classification models,
which merely assign a label to the entire image.
There are various kinds of object detection models, including more established deep
learning models like region-based Convolutional Neural Networks (R-CNN), Single Shot
Detectors (SSD), and You Only Look Once (YOLO), as well as more conventional

computer vision methods like template matching and Haar cascades.

2.2.1.2 Comparison with other models

The problem this project aims to solve needs a state-of-the-art Object Detection

model which can detect aircraft in the images. The performance of various Object

12|Page

detection models was analyzed, and YOLOV5 stood first. It had greater accuracy and

inference time in comparison with other models.

1.0—
g . Humans
OAB .I hl\k‘xh‘
L v YOLO
Sosfy:
0 Vi
3 J‘;.,, St VvOC 2007 Picasso People-Art
& 04 T AP | AP BestF, AP
RONNT Y YOLO 592 | 533 0590 45
0.2 R-CNN 542 | 104 0226 26
. DPM 432 | 378 0458 32
0.0 baj Poselets [7] 365 | 17.8 0.271
’ 0.2 0.4 0.6 0.8 1.0 D&T [4] -1 1.9 0.051
Recall

(b) Quantitative results on the VOC 2007, Picasso, and People- Art Datasets.
The Picasso Dataset evaluates on both AP and best I score.

(a) Picasso Dataset precision-recall curves.
Figure 2a — Performance of different models
Yolov7, which was released in July 2022, performs exceptionally well, but hitherto it had

some bugs related to running on Windows OS; it worked perfectly well on Linux-based

OS. So, we worked with Yolov5.

13|Page

battar MS COCO Object Detection

YOLOv5 ¥ YOLOv?7

55 <

" voLov7is +120% faster

MAP: 55% % MAP: 56.8%
= YOLOv7 (ours)
i YOLOR
INCLUDED bl INCLUDED
SEGMENTATION AS o +;OL.O§Y0L0 . SEGMENTATION AS
SECONDARY MODULE Y:gﬁ(rs ”“ SECONDARY MODULE

50
5 7 8 n 13 15 ” 8 21 23 25 27 29 3 33

better 4— V100 batch linference time (ms)

Figure 2b — Performance comparison of YOLOvV5 and YOLOv7

2.2.1.3 Image Classification Models

ML Models for categorizing and identifying objects and situations in images are
called "Image classification models". These models are tested on a collection of labelled
image datasets, where each image has been given one or more class labels that describe its
content.
Convolutional neural networks (CNNs), a type of deep learning neural network, are
frequently used in image classification models to examine an image's visual characteristics
and determine which class it belongs to. Each layer in the processing process retrieves
progressively sophisticated information from the input image, which is processed through
several layers. The image is then categorized into one or more pre-established categories

using these qualities.

1l4|Page

Obiject identification in images and videos, medical imaging, driverless cars, and security
and surveillance systems are just a few of the many uses for image categorization models.
Due to improvements in deep learning techniques and the accessibility of vast datasets for

training these models, they have improved in accuracy and efficiency.

2.2.1.4 Comparison with other models

YOLO is a one-stage detector; it detects the object and classifies it. However, to
have greater accuracy, we used a separate Image Classification model. Object Detector was
used to detect Aircraft alone, and the Image Classification model was implied to classify
the aircraft within various classes.
The performance of various image classification models was analyzed, and the Yolov5-Cls

model showed promising results.

. Train time Speed Speed qER
Size | accuracy | accuracy 90 epochs ONNX-CPU | TensorRT-vipp ~ Params s

(pixels) topl top5 (M) @224 (B)
4x A100 (hours) (ms) (ms)

224 64.6 X 7:59 b L b 0.5
224 715 : 8:09 . I : 14
224 759 . L L . 39
224 780

224 79.0

224 703

224 739

224 768

224 78.5

75.1

76.4

76.6

777

Figure 2c - Comparison of yolov5-cls with other classification models

15|Page

2.2.2 One Stage Vs Two Stages:

There are two distinct methods for object detection in computer vision: one-stage and two-

stage.

You Only Look Once (YOLO), and Single Shot Detectors (SSD) are examples of one-stage
detectors that are intended to accurately anticipate the class and position of objects in a single
run through the network. They typically predict object classes and bounding box coordinates
simultaneously using several convolutional layers and anchor boxes. For real-time applications

requiring high frame rates, one-stage detectors are typically faster than two-stage detectors.

Obiject detection is done in two steps using two-stage detectors like region-based Convolutional
Neural Networks (R-CNN) and their derivatives. Prior to processing the image, areas of interest
(ROIs) that are likely to contain objects are found. The object class and bounding box
coordinates are then determined by analyzing and categorizing these ROIs. Region proposal
networks (RPNSs) are frequently used in two-stage detectors to create ROIs and a separate CNN
to categorize the objects contained in each ROI. Although two-stage detectors are slower and

require more calculations than one-stage detectors, they are typically more accurate.

In conclusion, although two-stage detectors are more accurate but slower, one-stage detectors

are faster but less accurate. Depending on the needs of the application, such as the necessary

accuracy and speed, one must choose between these two options.

16|Page

To have greater accuracy for Aircraft detection Yolov5 object detection model was selected,
and for the Classification of aircraft separately trained Yolov5-Cls Image Classification model
was used. Due to fewer data on Aircraft classes, it was not possible to train only the object
detection model to accurately detect and classify aircraft. Separating the process yielded
greater accuracy as detecting the aircraft was the only job for the object detection model, and
classifying it was for the Classification model. It also made the project general-purpose to

integrate different models of various objects where scarcity of Dataset is an issue.

17|Page

Chapter 3: Datasets

A dataset is defined as a compilation of information utilized for training, testing, and
assessing machine learning models. A dataset is a collection of various types of data,

including but not limited to images, text, numerical values, or a combination of these.

Labelled datasets are a common practice in machine learning, wherein each data point in the
dataset is associated with one or more class labels or target values. These labels or values
serve as a reference for the machine learning model to generate an output or prediction for

the given data point.

3.1 Custom real-world Aircraft Dataset

The significance of large and varied datasets in the training of machine learning models
cannot be overstated. The size and quality of a dataset can significantly influence the performance
of a machine-learning model, thereby enhancing its accuracy and robustness. The preparation and
refinement of data are typically necessary to guarantee the uniformity, precision, and
appropriateness of the dataset for utilization in machine learning algorithms.
As the project was to be deployed in the real world, we had to gather as much real-world data as
possible. So overhead imagery of aircrafts from various sources on the internet was acquired. The
datasets were different in resolution, annotations format and some of them were not annotated.

Un annotated dataset was annotated with the help of Roboflow.

18|Page

3.1.1 Dataset Collection / Acquisition

The data we want to collect is entirely dependent on the issue we are seeking to resolve.
The coaching knowledge cannot be surpassed by a machine learning algorithm. As a result,
attention must be paid to gathering the best possible image data for the machine learning
models. Computer vision models can be trained using one of the most extensive picture
datasets and deep learning image data, thanks to a large image classification dataset. The range
of services for collecting and annotating image data for use in machine learning and deep
learning applications is extensive. The simplest technique to gather photographs for training
the model is to use snipping software to crop images of aircraft, but there is surplus data in
the area around the aircraft that could skew the model's results.
The training dataset is contaminated with extra data, or "Outliers,” which are not needed to

train the model. Figure 3a below displays an illustration of an outlier.

.
= = S T e ot ey S e
- e e : :

| e e . . : 1l

| Fig_ure 3b: AFimage without outliers.

Figure 3a: Image with outliers.

19|Page

3.1.2 Data Munging and Feature Extraction (Image- Preprocessing)

Data pre-processing, also known as data munging or data cleaning, is an essential step
for machine learning engineers. Most ML engineers devote a significant amount of time to it
before developing the model. Software like Photoshop and other similar programs can be used
for data preparation. Outlier detection, missing value treatments, and removing undesired or
noisy data are a few examples of data pre-processing.

Like that, "image pre-processing" refers to actions on images that are performed at the most
basic level of abstraction. Pre-processing aims to improve the picture data by reducing
unwanted distortions or enhancing specific visual properties necessary for subsequent

processing and analysis tasks.

The following is a list of the four categories of image pre-processing techniques.

1. Brightness adjustments and pixel brightness changes
2. Transformations of Geometry
3. Image Segmentation and Filtering

4. Image restoration and Fourier transformation.

In our case, we focused on the following:
e Noise Removal
e Sharpening

e Removal of Qutliers

20|Page

3.1.2.1 Noise Removal

Digital photographs are susceptible to several kinds of noise. Errors in the picture
capture process lead to pixel values that do not accurately reflect the accurate intensities of
the actual scene, which is what is known as noise. Depending on how an image is produced,
noise can be added in several different ways. For instance: If a picture is captured from a

satellite, it may be blurred because of clouds and unfavorable weather.

The noise would come from the film grain if the image was scanned from a film photograph. In
addition, the film's condition or the scanner itself may have caused noise.

One can eliminate kinds of noise using linear filtering. For this use, some filters, including
averaging or Gaussian filters, are suitable. An averaging filter, for instance, can be used to
reduce image noise caused by grain. Local differences brought on by grit are lessened since

each pixel is adjusted to the average of the pixels in its immediate vicinity.

3.1.2.2 Sharpening

Resolution and acutance are two variables that together makeup sharpness. The
resolution is uncomplicated and objective. It simply refers to the image file's size in pixels.
The more pixels an image has, the better its resolution and the sharper it can be, all other
things being equal. Acutance is slightly more challenging. It is a purely arbitrary measurement

of edge contrast. The acutance has no unit.

How clearly defined the details in a picture are, especially the little elements, determines how

sharp the image is.

21|Page

Therefore, sharpening is a method for making a picture appear sharper. Acutance must be
increased to increase perceived sharpness. Edge contrast must be added if you want your

image to appear sharper.

3.1.2.3 Removal of Outliers

Finding outliers is a difficult undertaking. By looking at uncertainty measurements,
outliers can be found. However, there are various kinds of outliers. An outlier, for instance, can
be a sample that deviates from the norm. For instance, if we want to differentiate planes from
the dataset and enter the data with vehicles and tunnels around the plane, we may get "outliers"
since the class estimate is unclear. Examples of the outliers were supplied in figures 3a and 3b

for reference. The outliers were previously described in depth in section 2.2.

3.1.3 Labelling of Dataset

The model being used for Object Detection is YOLOVS5; it is machine learning under
supervision. Therefore, labelling the data was required before training the model on the data.
For tagging photos and generating bounding boxes around the object of interest in an image,
there are numerous programs and tools available. The bounding box coordinates and class

labels for each object in the image are included in each annotation.
Some of the famous annotation tools are as follows:

0 SuperAnnotate

0 VGG Image Annotation Tool

0 Supervise.ly

22|Page

0 Labelbox
0 Visual Object Tagging Tool (VoTT)
0 Labellmg

0 Roboflow

3.1.3.1 Why Roboflow?

The software used for annotation was Roboflow. The following are the key justifications

for choosing it:

e Asimple user interface

e Free to use with paid upgraded packages

e Cloud computing and storage

e Multiple forms of labelled data are available (which can be downloaded or used by

creating a link to the prepared dataset on any web platform)

3.1.4 Acquired Datasets Detalils:
Below are the details of all acquired images from the internet. Manually cropped images
have also been included in the unannotated images folder. They were annotated with the help

of Roboflow.

23|Page

Serial

Datazet

Datasst 2

Datasst 3

Datazet 4

DatazetS

Datase=t B

Dataset 3

Datazet 7

Dataset 5

kaggle

W3A0D

VHR - 10 [Researchgate]

Carnell Uni

Rareplanes

kaggle

kagagle

kaggle

MTRASI

Labeled [Annotation)

yes [#ml]

yes [Hml)

yes [kt

yes(tat]

wes(zmll

wes [encel)

es[tut]

Mo

Mo

3042

400

=]

310
5800

103

100

]

3400

Figure 4 — Acquired Dataset Details

3.1.5 Annotations Conversion

10635

10100

lmg Size
5007500

5007500

s0°a0s

4500° 2703
5121z

256072560

100077000

2567256

200105 -- Random

Classes

Airplane [Mil planes)

Airplane

Airplane, airplane,
ship, storage tark,
bazeball diamand,
tennis court,
basketball cour,
ground track field,
harbar, bridge, and

firplane

firplane

Airplane

Airplane

firplane
B-1
B-2
twpe-20(B-29)
B-52
Boeing
C-130
C-13%
C-17
C-5
E-3
tupe-13(F-16)
F-22
KC-10
wpe—12[C-21)
wpe-T13(U-2)
twpe-14{F-22]
twpe=1504-10]
tupe-16(A-2E]
twpe-17(P-63]
tpe-13(T-6)
tupe-21t-43)

Matns

The YOLOV5 object detection model uses an annotation file in .txt format. So, all the

annotated dataset of different format was to be converted to a Txt format. Python codes were

written to convert annotations from XML and Pascal VOC formats and to check whether the

annotations were correct. All the annotations were checked, and any irregularity was dropped

using the custom-written code mentioned in Annexure C.

24|Page

3.1.6 Data Augmentation:

Data augmentation enlarges the dataset to include more training data and enhances model
generalizability. Techniques for enhancing data include random cropping, flipping, scaling, and
color adjustments. Yolov5 training API provides these options by default. Furthermore, they

can be modified by hyperparameters file in the API.

3.1.7 Prepared Dataset:

To train the Object Detection Model, a real-world dataset of overhead images collected, as
mentioned above, was segregated into three folders for training, validation, and testing uses
using a custom Python code. Background images were incorporated into the dataset to increase
the model's precision in differentiating between identical structures, such as aircraft and other
similarly shaped items. These background images allowed the model to better learn the

distinguishing characteristics of the intended objects and helped decrease false positives.

= Background,
665
|

= Test, ‘1 498

® Valid, 1498

= Train
= Valid
= Test

Chart Area I

= Train, 12650

Total Images= 15646

Figure 5a — Detection Dataset Split

25|Page

3.2 Synthetically generated Aircrafts Dataset

The term "Synthetic Dataset” refers to a certain kind of dataset that is produced artificially,
frequently using computer graphics or other simulation techniques. Machine learning models can

be trained using synthetic datasets, which have various advantages over real-world datasets.

3.2.1 Significance:

1. Control: Synthetic datasets can be produced with complete control of the distribution of
the data and the underlying ground truth, allowing for the customization of the generated

data for certain use cases and scenarios.

2. Range: Because synthetic datasets can be developed and enhanced in any way that is
appropriate for a certain purpose, they can offer a broader range of data than real-world

datasets.

3. Privacy: Since synthetic datasets do not contain sensitive information about specific
individuals, they can aid in preserving privacy, which is crucial in applications like

healthcare or finance.

4. Scalability: Synthetic datasets may be produced in big numbers and with a wide variety,

which can be helpful for deep learning models that need a lot of data to train.

5. Cost: The creation of synthetic datasets is less expensive than the time- and money-

consuming process of gathering and classifying real-world datasets.

26|Page

In cases when real-world datasets may not be available or adequate, synthetic datasets can
be used to produce huge quantities of high-quality labelled data for machine learning model
training. They also give a mechanism to create certain situations to test models, which helps

with research and development.

3.2.2 Tools and Framework:

o Adobe Photoshop CC 2022
o Sketchfab
o Cinema 4D

3.2.3 Generation ways:

There are several ways to create synthetic datasets:

Generative adversarial networks (GANs): GANs are deep learning models that can
generate new data by learning the underlying distribution of the data. GANs are commonly
used in image and video generation tasks and can produce highly realistic synthetic data.
Rule-based methods: Rule-based methods involve generating data based on specific rules
and constraints. For example, a synthetic dataset of floor plans for buildings could be
generated based on specific architectural rules and design principles.

Simulation: Simulation involves creating a virtual environment that mimics real-world
scenarios to generate synthetic data. This approach is commonly used in robotics and

autonomous vehicle applications, where it is difficult to obtain real-world data.

27|Page

Hybrid methods: Hybrid methods involve combining multiple approaches to generate
synthetic data. For example, a hybrid method could involve using GANS to generate images

and then using data augmentation to create variations of the generated images.

Based on the required requirements of Our Project, the techniques we employed used to
create a synthetic dataset were Using Data Augmentation and Simulating the Virtual

Environment for an Aircraft.

3.2.4 Dataset Preparation:
Adobe Photoshop CC 22 was used to prepare the dataset.

e For synthetic dataset generation, 3d Models of different aircraft were downloaded
from sketchfab.com and imported into Cinema 4d, where materials and shaders
were applied to the model,

e Using Adobe Photoshop, the finalized models were then color corrected and
oriented to replicate overhead imagery of an aircraft at an airbase. Desired Shadows
in reference to the lighting position were set, and compositing elements were added
to the image to add photorealism,

e Samples of Random background images were taken, keeping in mind the different
geographical aspects needed for precise detection and training of the classifier
model.

e The aircraft in the images were then Rotated, Scaled and Skewed at different

orientations to cater for all possible conditions and augmentations.

28|Page

e A Photoshop Composer script was created and used to randomize all the different
planes, orientations and backgrounds in various combinations, which generated a

dataset of 3040 images of 8 different aircraft.

After the generation of the dataset, it was split into the format of folders supported by
yolov5 using code in Annexure E. As it is an image classification model, they do not
require separate annotation files. All images of one type of aircraft are inserted in a

folder with its name.

= Valid, 19 L] ‘Test, 19

TIILLI LD
rArrrBEBE 2R
PEHAHARAHHE
“TEELI LELLE
YryERETE >N

Total Classes = 8
Total Images = 8*380
=3040

| One Class Dataset Split
Total Images = 380

Figure 5b — Classification Dataset Split

29|Page

3.3 Challenges:

The following challenges were faced while preparing datasets:
¢ Non-availability of a large dataset. Smaller datasets were combined to make a bigger one.
e Non-Uniformity in ground truth format. All of them were converted to yolo supported
format by our custom-written codes.
e Formatting of unlabeled data.
e Detection vs Classification Accuracy / Inference Speed tradeoff

¢ No available datasets of a specific aircraft

30|Page

Chapter 4: Training Al Models

As explained in detail above in the Research section, we are using Yolov5 for the generation of

Object Detection and Image Classification models.

4.1 Training Object Detection Model:

The steps involved in training Object Detection Model using Yolov5 and the prepared dataset

are given below. Before that, some concepts have been explained.

4.1.1 Training Parameters:

Training parameters for the YOLOV5 object detection model determine how the model
learns and adjusts its weights during the training process. Here are some key training

parameters for YOLOV5:

e Batch size: This parameter determines the number of images that the model will
process in each training iteration. Larger batch sizes can help to speed up the training
process but require more memory, while smaller batch sizes are slower but require less
memory.

e Learning rate: The learning rate determines the step size that the optimizer takes

during the training process to update the model weights. A higher learning rate will

3l1|Page

result in larger weight updates and faster convergence but can also lead to instability
and divergence.

e Weight decay: This parameter determines the amount of regularization applied to the
model weights during training, which can help to prevent overfitting. A higher weight
decay will result in more regularization, while a lower weight decay will result in less
regularization.

e Epochs: determine the number of times the entire training dataset is used to train the
model. Increasing the number of epochs can help to improve the model's performance
but also increases the risk of overfitting.

e Optimizer: The optimizer determines the algorithm used to update the model weights
during training.

e Loss function: The loss function measures the difference between the predicted and

ground truth bounding boxes and class labels during training.

Optimizing these training parameters is critical for achieving the best performance of the
YOLOV5 model. It is important to experiment with different values of these parameters to find

the optimal combination for the specific problem being solved.

4.1.2 Pretrained Model Comparison:

YOLOvV5 comes with several pre-trained models that can be used for various object
detection tasks. These pre-trained models are trained on large datasets and can be fine-tuned for

specific use cases. Here are some of the pre-trained models available in YOLOvV5:

32|Page

o> > BB

Nano Small Medium Large XLarge
YOLOvbn YOLOvSs YOLOvSm YOLOVvSI YOLOv5x
4 MBFP1G 14 MBFPTG 41 MBFP16 89 MBFP1G 166 MBFF‘16
6.3ms, 6.4ms, 82ms, 10.1ms,, . 121 ms,, .
28.4 mAP ., 37.2mAP_, 45.2 mAP 48.8 mAP__ 50.7 mAP_, .

Figure 6 — Pre-trained Yolov5 Detection Models comparison

We chose yolov5s, the second smallest and fastest model available. Greater accuracy comes
with a trade-off with inference speed. Large models are more accurate, but their detection speed

is slow.

4.1.3 Training Setup:

For training a YOLOvV5 object detection model, a High-end GPU-enabled Python
environment is required. It can be done on a PC or web-based environment. Google Colab was
used, which is a free cloud-based service provided by Google that enables users to run Python
code and other popular machine learning frameworks in a web-based environment. It provides
access to a high-end CPU, GPU, and TPU (Tensor Processing Unit).

It can run Jupyter notebooks. The other thing is Yolov5 API.

4.1.4 Yolov5 API:

The yolov5 GitHub repository provides an API to train object detection models.

33|Page

The following command was used to train the model.

python train.py --img 640 --batch 64 --epochs 2806 --data custom airplane.yaml --cfg yolov5s.yaml --weights ** --project "custo

4.1.4.1 Img Size:
The image size was kept at 640*640. Resolutions of all images were plotted to check
for a median value to which all images would be resized. The majority of images had a

resolution of 640*640. The API automatically resizes all images.

Resolution of Images: 14981

800

700 4

600

500 A

400

Height

300 A

200 4

100 A

0 200 400 600 800 1000 1200
Width

Figure 7 — Plot of resolution of images

The documentation also provides image sizes of the given pre-trained models to get

maximum efficiency.

34|Page

. Speed Speed

size VI00b1 V100 b32 FLOPs

(pixels) 3 @640 (B)
(ms) (ms)

640 ! . 6.3 0.6 c 4.5

640 i ! 6.4 09
640 : : 8.2 1.7
640 ! . ! 2.7

640 . : . 4.8

2.1
3.6

6.8

Figure 8 — Performance comparison of yolov5 models

4.1.4.2 Batch Size:
The Google Collab provides a free GPU of 12 GB memory. A batch size of 64
utilizes a maximum of 11.7 Gb GPU memory. The batch size can be increased with higher

GPU memory.

4.1.4.3 Epochs:
The epochs are set after hit and try; the maximum number is when the model starts

overfitting. Overfitting is a common problem in machine learning where a model is trained

35|Page

too well on the training data to the point where it begins to memorize the training data
instead of learning to generalize to new data. This leads to the model performing poorly on
new, unseen data, despite performing very well on the training data.

4.1.4.4 Data:

This parameter takes a configuration file (.yaml), which contains folder paths of the
train, valid and test folders and class names.
4.1.4.5 Cfg:

The cfg parameter takes an input of the configuration files of pre-trained weights. If
we want to train the yolov5s model, the input will be “yolov5s.yaml”.
4.1.4.6 Weights:

This enables the algorithm to use a pre-trained model. If empty, it trains the model
from scratch.
4.1.4.7 Project:

The name of the folder in which it will store all files related to training and final
weights is also there.
4.1.4.8 Resume:

Google colab’s free session expires after some time. Training a large dataset is not
an easy task. Luckily yolov5 offers a resume option which resumes the training from where
it left off. When the session closes, it also deletes the files. As a workaround, Google Drive
was mounted to Collab and yolov5 git was cloned to the drive so that the files would be
saved even after the session closed. It enabled the use of resume functionality.

The following command was used to resume the training:

python train.py --resume --data custom airplane.yaml --cfg yolov5s.yaml --project “c

36|Page

4.1.5 Training results:

The model was trained for 117 epochs and yielded 80% test accuracy.

Class Images Instances mAP5@ mAP58-95: 100% 12/12 [09:25<00:00, 2.14s/it]

all 1498 5718 0.992 0.804

The following results were plotted by our custom-written code mentioned in Annexure D,
which presents various metrics.

0.09 — trainbox_loss 0.050 — ftrainobj_loss

oo valbox_loss 0.045 - valobj_loss 0.9 -

0.07 0.040:1 08

0.06 4 0.035 4 0.7
0.030
0.05 0.6
0.025 4
0.04
0.020 4 0.5
0.03 1
—— metricsprecision

0.015 1
metricsrecall

0.4
0.02

0.010

T T T T T T
0 20 40 60 80 100 120

0 20 40 60 80 100 120
1.0 1 08
0.9 0.7
0.8 0.6
0.7 05 1
0.6 —
0.5 - 055
0.4 a5l
0.3

—— metricsmAP_05 0.1+ —— metricsmAP_05095

021~ - : - - - - : ; : - -

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Figure 9a — Detection model training results plot

There are several metrics that are commonly used to evaluate the performance of object
detection models like YOLOV5. Some of the most common metrics are:
1. Precision: Precision is the fraction of true positive detections out of all the positive

detections. It measures how accurate the model's predictions are.

37|Page

38|Page

Recall: Recall is the fraction of true positive detections out of all the actual positives in
the dataset. It measures how well the model can detect objects in the dataset.
Intersection over Union (loU): loU is a measure of how well the model can predict the
bounding boxes of objects. It is the ratio of the intersection of the predicted bounding
box and the ground truth bounding box to the union of both bounding boxes.

Average Precision (AP): AP is a metric that measures the accuracy of object detection
models. It is calculated by computing the precision and recall for each object class at
different confidence thresholds and then taking the average.

Mean Average Precision (mAP): measures the precision and recall of the predicted
bounding boxes against the ground truth bounding boxes. MAP is usually calculated by
averaging the AP (Average Precision) scores over different loU (Intersection over
Union) thresholds. mMAP@0.5 (or mAP05095) refers to the MAP calculated with an loU
threshold of 0.5, which is one of the commonly used thresholds for object detection
evaluation. It measures the average precision of the predicted bounding boxes that have

an loU of at least 0.5 with the ground truth bounding boxes.

Fl-Confidence Curve Recall-Confidence Curve

08|

02

ane
= all classes 1.00 at 0.000

0.0 0.2

04 06 08 1.0 0.0 02 04 06 08 1.0
Confidence Confidence

Precision-Recall Curve Precision-Confidence Curve

0.8

0.6

Precision

0.4

024

Alrplane 0.992 Airplane
— all classes 0.992 MAP@O.5 — all classes 1.00 at 0.954

0.0 0.2

0.4 0.6 o8 10 0.0 0.2 0.4 0.6 0.8 1.0

Figure 9b — Detection model training results curves

These are different types of curves that are commonly used to evaluate the performance of

object detection models. Here's an explanation of each of these curves:

1.

39|Page

F1-Confidence curve: The F1 score is a commonly used metric to evaluate the overall
performance of an object detection model. It is a combination of precision and recall.
The F1-Confidence curve plots the F1 score against different confidence levels for the
model's predictions. This curve can be used to determine the optimal confidence
threshold that maximizes the F1 score.

Recall-Confidence curve: Recall measures the percentage of true positive detections
that the model has correctly identified. The Recall-Confidence curve plots the recall
against different confidence levels for the model's predictions. This curve can be used

to determine the optimal confidence threshold that maximizes recall.

3. Precision-Recall curve: Precision is the percentage of true positive detections that the
model has correctly identified out of all the detections it has made. The recall is the
percentage of true positive detections that the model has correctly identified out of all
the ground-truth objects in the image. The Precision-Recall curve plots precision against
recall for different confidence thresholds. This curve can be used to evaluate the trade-
off between precision and recall and to determine the optimal confidence threshold that
balances the two.

4. Precision-Confidence curve: The Precision-Confidence curve plots precision against
different confidence levels for the model's predictions. This curve can be used to

determine the optimal confidence threshold that maximizes precision.

4.1.6 Conclusion:

All the metrics to judge the model’s performance have been explained in detail above. The
model training yielded 80% of test accuracy, as shown in figure 9a. F1-Confidence curves give
a threshold of 0.60 with 98% surety. When integrating the model, the threshold can be set to
0.60, and it won’t miss real aircraft.

The model didn’t overfit because ample time was given to dataset preparation. Overfitting can
occur when a model is too complex relative to the amount of training data available or when
the model is trained for too many iterations or epochs. It can be prevented by using techniques
such as regularization, early stopping, and data augmentation. But the dataset was itself diverse.
It could have been trained more, but due to constrained resources, it was stopped at 117 epochs.

Still, it yielded great accuracy.

40|Page

The test and train loss were following a downward trend which means it could’ve been trained

more on this dataset before overfitting could occur.

4.2 Training Image Classification Model:

The steps involved in training an image classification model on a synthetic dataset are given

below.

4.2.1 Training Parameters
The training parameters of image classification model training are as same as those of object

detection, which has been discussed in detail in 4.1.1.

4.2.2 Pretrained models comparison
Following is the comparison of pre-trained yolov5-cls models. We used the yolov5x model
as it was large enough to learn complex patterns of different aircraft. It also did not consume

more significant resources to train and run inference.

41|Page

) Train time Speed Speed
size accuracy accuracy 90 epochs ONNX.CPU TensorRT.viop Params FLOPs

(pixels) topl top5 ()] @224 (B)
4x A100 (hours) (ms) (ms)

224 64.6 854 7:59 33 ! 2.5 0.5
224 715 90.2 8:09 6.6 J 54 14
224 . 929 10:06 . A . 39

224 ! 94.0 11:56 L 4 : 85

224 d 94.4 15:04

224 ! 89.5 6:47

224 . 91.8 8:33

224 ’ s 11:10

224 : . 17:10

224 . ! 13:03

224 ’ . 17:04

224 ! ‘ 17:10

224 . 4 19:19

Figure 10 — Performance comparison of pre-trained yolov5-cls models

4.2.3 Training Setup

The same setup as mentioned in 4.1.3 was used.

4.2.3 Yolov5-Cls API

The API to train the classification model is also in the same GitHub repository.

The following command was used to train the image classification model.

python classify/train.py --data "/content/Cls-Dataset 8 epochs 20 --model yolov5x-cls.pt --img 224 --batch 128 --pretrained True --project ahmad cls

42|Page

The model parameter takes an input of pre-trained image classification model. We have
used the pre-trained option now, as the dataset was not large enough for the model to be
trained from scratch. The pre-trained model also reduces the time of training.

It supports all Pytorch image classification models and can be used to train any of them.

The following classification models are available, with or without pre-trained weights:

e AlexNet

* ConvNeXt

* DenselNet

e EfficientNet

e EfficientNetV2

e GoogleNet

* |nception V3

e MaxVit

e MNASNet

* MobileNet V2

* MobileNet V3

¢ RegNet

e ResNet

* ResNeXt

e ShuffleNet V2

* SqueezeNet

¢ SwinTransformer
e VGG

e \isionTransformer

s Wide ResNet

43|Page

4.2.4 Training Results

The classification API does not produce results and log files as object detection in which
deep insights into the model’s performance metrics are given. However, the following are the

snapshots of training.

Starting yolov5x-cls.pt training on /content/Cls-Dataset 8ctg 380 dataset with 8 classes for 2@ epochs...

Epoch GPU _mem train loss test loss topl_acc top5_acc
1/20 9.85G 0.74 1.62 0.461 0.974: 22/22 [e0:
2/20 10.3G . 8.9 0.816 0.993: 22/22 [ee:
3/20 10. 0.717 0.901 il 22/22 [e0:
a/20e 18. 1.3 8.757 0.993: 22/22 [e@e:
5/20 18.
6/20 10.
7/20 10.
8/20 10.
9/26 18.
10/20 18.
11/280 10.

.21it/s]
.27it/s]
.26it/s]
.24it/s]
.21it/s]
.19it/s]
.16it/s]
.15it/s]
.18it/s]
.18it/s]
.16it/s]

[=]

.498 1: 22/22 [@8:
.481 i3 22/22 [e0:
.504 i3 22/22 [v0:
479 is 22/22 [ee:
.A487 1: 22/22 [@8:
.483 1: 22/22 [@8:
0.48 1: 22/22 [@8:

[}

W W
[}

(N]

&
F R R RRPRRRPRRBRBR

W W
=}

(]

4.2.5 Conclusion

As the dataset was synthetically generated, it still gave an exceptionally good performance.
Preparing a dataset which can give higher accuracies in real-world testing scenarios a lot of
labor is required.
Anyone who wants to prepare a large, diverse dataset can follow the steps given in previous
chapters and include images of all kinds of scenarios as it would have been in the case of a real-

world collected dataset.

4.3 Challenges

Following engineering challenges were faced:

e Fewer data quantity and quality of classification dataset.

44|Page

45|Page

Hardware constraints; training both models was computationally intensive and required
powerful hardware. Resource constraints limited the complexity of the model, the size
of the dataset and the length of the training process.

Model interpretability: models can be complex and challenging to interpret.
Understanding how the model makes predictions and identifying sources of errors was

a challenging task.

Chapter 5: GUIs

To integrate both models and to solve the problem, two different Graphical User Interfaces were

Created.

5.1 GUI 1 (Multi Screen for Live Detection)
It would be for a user manually browsing through Google Earth. The main screen will be
projected to another screen in which the detections of the area will be shown. It will mitigate the

missing of aircraft as prone to the human eye.

5.1.1 Block Diagram:

= N

Capture Screenshot

4
—

Tilling (640 X 640)

Detection Model Classifier Model

v A 4

Output Tile 1 W [Output Tile 2] [Output Tile .. N

T 3= =T

Output Image
(Concatenated)

Figure 11 — Block Diagram of GUI 1

46|Page

5.1.2 Concept:

This Python script uses the YOLOV5 object detection model and a custom classification

model to detect objects and classify them in real-time using screenshots of a specified window.

1.

The script first defines several helper functions, including one to pre-process the
input image by cropping it and one to crop a bounding box around a detected object
for classification.

The script then loads the YOLOV5 object detection model and sets the confidence
threshold for non-maximum suppression.

If the user chooses to use classification, the script loads the custom classification
model and its corresponding class names.

The script then enters a loop where it captures screenshots of the specified window,
pre-processes them, and runs the object detection model on them to detect objects.
For each detected object, the script optionally crops a bounding box around it and
runs the classification model on it to classify the object.

The script then draws bounding boxes around the detected objects and displays the
object class and classification results (if classification is enabled) on the image. The
output image is then displayed in a window.

The script continuously loops and captures screenshots until the user closes the

output window.

Overall, the script provides a simple and effective way to detect and classify objects in real-

time using deep learning models.

47|Page

5.1.3 Libraries and helper functions:

The code imports several libraries to perform various operations:

e 0s: This library provides a way of using operating system-dependent functionality like
reading or writing to the file system.

e cv2: This library is used for computer vision and image processing operations, such as
image resizing, drawing shapes and text on images, and loading image files.

e numpy: This library is used for numerical computing in Python. It provides support for
large, multi-dimensional arrays and matrices, along with an extensive collection of high-
level mathematical functions to operate on these arrays.

e Torch: This library is used for deep learning and machine learning operations. It provides
several data structures for storing and manipulating large amounts of numerical data, as well
as methods for defining, training, and evaluating machine learning models.

o pathlib: This library is used for working with file paths. It provides a way to represent file
paths as objects, which makes it easier to work with file paths in a platform-independent
way.

e windowcapture (custom): This is a custom module that provides a way to capture the

current screen and return it as a NumPy array.

The helper functions defined in the code are:

e pre_process_image: This function crops the image to a specific size by slicing the

NumPy array and returns the resulting image as a NumPYy array.

48|Page

crop_one_box: This function crops a specific region of the input image using the
coordinates of the bounding box specified by x1, y1, x2, and y2, resizes the cropped
image to 224x224, and returns the resulting image as a tensor.

parse_detections: This function takes the output of the object detection model, the
current screenshot image, and the optional classifier model and draws bounding boxes
and class probabilities on the input image. If a classifier model is provided, it also uses
to predict the class probabilities of each object detected. The function returns the

modified image as a numpy array.

5.1.4 Working:

49|Page

The working of this script is explained in detail below:

e When started, it asks about whether to use Classifier for the classification of
detected objects.

e It loads the object detection model and if selected also loads the image
classification model.

o It sets the “model.conf” parameter, which is the NMS confidence threshold.

e Then it enters in a while loop.

e Itgetsascreenshot of the current screen using a custom-written code which gives
an FPS of 40. It was necessary to have a fast speed of screenshots, or else it
would have produced a significant lag on the projected screen.

e It preprocesses the image. Crops the extra screen of the browser other than
google earth imagery. It is necessary because otherwise, it would confuse the

model with unwanted similar-shaped icons and affect detection.

50|Page

It then divides the image of 1920*1080 resolution into tiles of 640*640 size. 640
resolution size was chosen as the model was trained on this size. Tiling was done
because an image of greater size than the model was trained on would have to
be resized to the training image's size. Greater resolution size images can be
passed, but the detections are not as accurate. The pixel ratio of aircraft gets
smaller, and the model is unable to detect them. So tiling was done so as not to
disturb the pixel ratio and pass each portion of the area as a whole without
resizing it.

It then iterates between the tiles and passes the tile from the model, converting
the detections of torch format into an array using pandas.

Passes each detection into the “parse detections” function along the tile image.
It returns the image with bounding boxes drawn on them. The tile image is stored
in precisely the place from where the tile was taken.

If the classification is selected, the detected coordinates of the object are passed
to the “crop_one box” function to get the cropped image, and that image is
passed to the classification model. It is an iterative process, and all detections
are cropped. Certain necessary checks to prevent runtime errors are also inserted.
After the iteration among tiles is complete, an output image with bounding boxes
drawn is formed. It is projected to another screen using OpenCV.

The script prints FPS on the terminal.

Figure 12 — GUI 1 Display Pane

As shown in the above image, the left screen is where the user is operating, and the screen is

captured, passed through the model, and displayed on the right screen.

5.1.5 Conclusion

It is an object detection and classification application that can be used for general
purposes. To detect any kind of object and shape while browsing through a computer,
the internet or any application that displays on the screen, it can be used. The object of
interest’s model has to be trained, and interfacing is simple. This GUI does not solve the
problem definition we have established above, as it requires manual operation.
However, it was the requirement of agencies. The code has been provided in Annexure

B.

5l1|Page

5.2 GUI 2 (Selenium based)

This is the GUI that solves our problem and is a general-purpose product that can be used for
any kind of object detection and classification autonomically. The coordinates of the area to be
scanned will be given, and it will automatically scan the area without human intervention. The
session will log all the details mentioned above to a folder containing the captured images of the

aircraft and a CSV file.

5.2.1 Block Diagram

Open browser at Top left
AIRCRAFT DETECTION AND CLASSIFICATION ‘ KMl T ’ Coordinates (Lat, Coordinates of Area to scan
long)
[
POINT 1 (Upper Left) POINT 2 (Lower Right) - L ‘
Longhude Longhide
Latitude Latitude Move in zig zags and take
s Mo screenshot, Which ends at lower
right Coordinates.
KML Filename: —
| Web App J \
Detection Model Filename: bestl.pt T
Classification Model Filename: Sctg.pt l
Use Classifier Headless
I CastLiveScreen [Cast Live Detection Table
~) | Model (Detection, Classifier)
Save all screenshots |~ Option 6 l
START
Total Area: 0 Km2
Remaining Area: 0 Km2
Results (Csv)
Extract Results

This Python script uses the techniques of Browser automation by Selenium and Yolov5

object detection and classification to scan an area of google earth.

52|Page

The script first defines several helper functions, including one to pre-process the input image

by cropping it and one to crop a bounding box around a detected object for classification, send

controlling commands to Selenium Browser, log all information in a CSV file and present

information in windows of Tkinter.

1. The script loads the components as set in the GUI, which are:

a.

b.

C.

53|Page

Pointl Longitude and Latitude

Point2 Longitude and Latitude

Area Name

KML file (Generated by Google Earth Project option. It exports the coordinates
of placemarks placed on the map)

Detection Model (For object detection)

Classification Model (For object classification)

Use Classifier Checkbox (Whether to use classifier or not)

Headless browser Checkbox (Starts the session without displaying the browser.
Used to deploy on a server)

Save all Screenshots Checkbox (Saves all screenshots of the area)

Cast Live Detection on another screen Checkbox (Projects the browser to
another screen and shows detection on them in real-time)

Cast CSV Table Checkbox (Displays the log file as a separate window)

54|Page

AIRCRAFT DETECTION AND CLASSIFICATION

POINT 1 (Upper Left) POINT 2 (Lower Right)
Longtude: Longtude:
Latitude: Latitude:
Ares Name:

KML Filename:
Detection Model Filename: best1.pt
Classification Model Filename: 8ctg.pt
I~ UseClassifier I Headless
I~ CastLive Screen |~ Cast Live Detection Table
[~ Save all screenshots |~ Option 6
START |

Total Area: 0 Km2

Remaining Area: 0 Km2

Figure 14 — The main window of GUI 2

Users have been provided with such vast options so that the application can serve a
general purpose.

It checks all options' validity as all of them are interlinked. For example, if the
Headless option is checked, then there is no point in casting the screen as the browser
is not displaying anything, and the process is being run in the background.

It then setups the browser and sets its settings.

Loads the detection and, if checked, classification models. Sets NMS threshold.

6.

10.

11.

Creates a CSV file, sets its header and places it in a folder under Area Name with
the timestamp of session initiation.

Before starting a while True loop, it casts the screen to another screen using the same
procedure as done in GUI 1, but in it, the screenshot is captured from the selenium
library. It saves the preprocessing time to remove any unwanted details of the
captured screenshot as it gives only the imagery. It also enables to have a headless
option as if a complete screen was to be captured; a display browser was necessary
to capture it. With this option, it can be deployed to a server with no display.

It also starts, if checked, the tkinter window to show the CSV file.

The while loop starts when the coordinates of the upper left point have been loaded.
The quality of the map is dependent on the internet connection. A necessary check
to check for blurred images has been placed so that it does not start the scan on blur
images.

The loop starts a move right, move down, move left, move down and move right
scan motion on the browser. It captures screenshots in between and processes them.

After the lower right coordinate has been reached, it quits the operation.

5.2.3 Libraries and Helper Functions:

Many libraries have been used, which made this product possible. For a better understanding

of their usage, we need to understand what they are made for. These are all the libraries used:

55|Page

0s: A Python module for interacting with the operating system. It provides a way to
perform operations like navigating the file system, creating and deleting files and

directories, and more.

56|Page

Selenium: A web testing framework used for automating web browsers. It provides
a way to simulate user interactions with a web page, such as clicking buttons, filling
out forms, and navigating between pages.

Msvrct: To capture keyboard characters. Used to break the loop.

pyautogui: A Python library for automating mouse and keyboard actions. It
provides a way to simulate mouse clicks and movements, as well as keyboard
presses and typing.

Time: A module that provides various functions for working with time in Python. It
can be used to measure how long a piece of code takes to run, delay program
execution for a certain amount of time, and more.

cv2: A library for computer vision in Python. It provides functions for image
processing and analysis, such as image manipulation, object detection, and feature
extraction.

CSV: A module for working with CSV (comma-separated value) files in Python. It
provides a way to read and write CSV files, which are commonly used for storing
and exchanging data in a tabular format.

Torch: A machine learning library for Python. It provides tools for building and
training neural networks, as well as tools for data processing and analysis.
Torch.nn.functional: A module within the PyTorch library that provides various
functions for building neural networks. It includes functions for activation functions,

loss functions, and more.

57|Page

geopy: A Python library for working with geolocation data. It provides tools for
geocoding (converting addresses to latitude and longitude coordinates) and distance
calculation between two points.

Threading: A module in Python for creating and managing threads. It provides a
way to run multiple codes simultaneously within a single program.

screeninfo: A Python library for getting information about the user's display(s). It
provides tools for getting the resolution, refresh rate, and other information about
the screen(s) connected to the computer.

Tkinter: A Python library for creating graphical user interfaces (GUIS). It provides
tools for creating windows, buttons, menus, and other interface elements.

Pandas: A library for data analysis in Python. It provides tools for working with
tabular data, such as reading and writing data from various file formats, filtering and
sorting data, and more.

textwrap: A module in Python for formatting text. It provides functions for
wrapping text to fit within a certain width, filling text with whitespace, and more.
argparse: A module in Python for parsing command-line arguments. It provides a
way to specify and parse command-line arguments passed to a Python script.

sys: A module in Python for interacting with the Python interpreter. It provides a
way to access system-specific variables and functions, such as the command-line
arguments passed to the Python script.

pathlib: A module in Python for working with file system paths. It provides an

object-oriented way to manipulate paths rather than using string operations.

5.2.4 Working

Its working has been described below in modules for better explanation and understanding.

5.2.4.1 Scanning

The main challenge to automatically scan the area was to decide how it would go on
as we wanted to automate Google Earth. The API of google earth is not free. So, we were
left with the only option to automate the browser. The browser shows the same imagery

offered by the API.

58|Page

S (O\ &
,,/ >

Adampur Airport,

Jalandhar. A4
PEHIS :

Figure 15 — Conceptualized Scan Motion of GUI 2

The above image shows the conceptualized motion of the scan on Google Earth.

59|Page

The upper left placemark and Lower right placemark contains coordinates, and only two
pair are enough to define a scan area. They are exported by Google Earth as KML files. The
application has options to either enter coordinates or a KML file.

The program loads the coordinates of the Upper left placemark in a customized Google

Earth link.

google url = f'ht lat},{long}, {alt}, {FieldofVview}
google | 1 8J Il

0h,0t,0r makes the map exactly overhead without any tilt or orthogonal view.

This link is opened in the browser, and it leads to the upper left corner. From there keyboard
right key press is initiated, which moves it to the right. Keypress is optimized to just cross
the scanned area and bring a new unscanned area. The motion continues till it reaches the
longitude of the lower right placemark. After reaching it moves the window down and starts
moving it to the left till the longitude of the upper left placemark.

The scan will continue till it reaches the latitude of the lower right placemark. Hence in this
way, the scan is automated.

The current coordinates are extracted by the Selenium browser library, which gives the
current URL of the page. This way around has been used to get the current coordinates of
the map area being shown. It was not possible other than this because OCRing the lower
bar, which shows coordinates, was also tested, but it did not yield satisfactory results.
Inspecting the page was also not possible as it employed Shadow DOM, which blocks
extracting information.

The area to be scanned also depends on the browser size. The browser on Windows is
1920*1080 in size, so it yields images of the same resolution. If we increase the image size,

then the area scanned in a unit of time can increase and thus scan speed of the area would

60|Page

be enhanced. It can be done if it is deployed on a Windows server. Selenium supports bigger

browser resolutions when deployed on a server with headless option.

5.2.4.2 Logging
Documenting all information is an integral part of this project. It creates a folder

under the Area name and timestamp of session initiation. All files are stored in it.

1 Pathankot AFS a_2023-04-07_1244 07/04/2023 12:48 pm File folder

It contains:

AN
X x ,
- -
i‘, "v(” | ", (92 ” y -

1 Pathankot AFS a image_5_4 image_5_2 image_5_1 image_4_5 image_3.2

image_3_1

e All captured snaps of detected aircraft. If “save all screenshots” is selected, it saves all
captured screenshots, whether they contain any detection or not.
e A CSV file which contains:

o The serial number of the detection

6l|Page

o The snapshot in which the aircraft was found so it can be viewed later

o Bounding box coordinates, where in an image the object is

o Score of Confidence

o The classifier findings, which include the likelihood of each class against the
aircraft

o Latitude and Longitude of the area

o A link to Google Earth takes users directly to the area where the aircraft was
found

o Location details of the under-sampled area

Figure 16 — Results Display Pane of GUI 2

5.2.4.2 Presentation
The project has three possible windows for presenting information. One of them, the main
GUI, has been developed on the tkinter python library. It serves as the central control for

the project. It initiates the session and stops it when necessary.

62|Page

AIRCRAFT DETECTION AND CLASSIFICATION

POINT 1 (Upper Left) POINT 2 (Lower Right)
Longtude: Longtude:
Latitude: Latitude:

Ares Name:
KML Filename:
Detection Model Filename: best1.pt
Classification Model Filename: 8ctg.pt
I~ UseClassifier I Headless
I~ CastLive Screen |~ Cast Live Detection Table
[~ Save all screenshots |~ Option 6
START |

Total Area: 0 Km2

Remaining Area: 0 Km2

It provides information as Total Area and Remaining area in kilometers and Progress in
percentage. The text box below shows all output by script. It gives more insight into what

the script is doing at the moment.

Another window which shows the log file live is also made on Tkinter. The project logs

everything in the CSV file, and this window reads it and displays it. This window is run as

another process, so it does not slow the main script.

63|Page

Lastly, the third window projects the working of the script on another screen. It is to
demonstrate and show what and how the script scans an area. It captures the screenshot of

the main window and projects it to another screen, just like in GUI 1.

Google Earth

SCREEN - 1 SCREEN - 2

Figure 17a — Proposed Display of GUI 2

Below the image is the screenshot of screen 2. It has a table window and a live projection

window.

64|Page

Figure 17b — Snapshot of GUI 2

5.2.5 Conclusion

This application can serve to detect and classify any object on Google Earth. It has
thoroughly addressed the problem posed by intelligence agencies. It still has space for future
work, like addressing the altitude and field of view adjustment according to the terrain. It
requires more testing on a vast, diverse area.

It is ready to be deployed on a Windows server and can give excellent scan speed due to the
bigger resolution size of the browser, as discussed above. The code has been provided in

Annexure A.

65|Page

Chapter 6: Conclusion

In this thesis, we discussed a novel intelligence-gathering system that can Detect and
Classify any object smartly and more efficiently than the typically manual labor of an image analyst.
Our proposed system has an advantage over other traditional systems due to the latest algorithms
used for the detection of objects of interest. Techniques used in our proposed system, Image
Processing techniques, Browser Automation and Machine Learning included algorithms such as
YOLO, which were used to scan and detect the objects of interest; they are also briefly explained,
including their working and importance. The purpose of increasing productivity is being achieved
by using modern techniques. Additionally, the objectives; of accurate detection and classification
and making the application general purpose are attained. Hence saves time as well as is more
accurate.

Our proposed system, ADCSI, is cost-effective as it is purely made for the core purpose of
serving Pakistan, a system that could be beneficial to its National Security. Else, similar hardware

solutions provided and used by other countries are very costly.

66|Page

Chapter 7: Future Work

Future additions that can be made to this project are:

67|Page

Other objects of interest can be detected and classified using this software. For
example, Ships, Artillery Guns, trucks, airstrips and convoys.

This project utilizes Google Earth as its source of imagery. It can be modified to
scan Geotiff files produced by satellites or other sources.

Deployment on a remote Windows-based server, which can make this application
easily accessible and can have more incredible scan speed.

Deployment of this technology on GIS.

10.

References and Work Cited

https://techcult.com/how-often-does-gooqgle-earth-update/

https://www.cameralyze.co/blog/yolov7-architecture-explanation

https://qgithub.com/ultralytics/yolov5/releases

https://pytorch.org/vision/stable/models.html

https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-

v5-917e9ce13208

Deep Multiple Instance Learning for Airplane Detection in High Resolution Imagery

Mohammad Reza Mohammadi [Deep multiple instance learning for airplane detection in

high-resolution imagery | SpringerLink]

Airplane Detection Based on Unsupervised Deep Domain Adaptation in Remote Sensing

Image [https://doi.org/10.21203/rs.3.rs-2088221/v1]

Two-Stage Deep Learning Approach to the Classification of Fine-Art Paintings

[https://ieeexplore.ieee.org/document/8675906]

Jain, A. (2020). Popular Classification Models for Machine Learning. Analytics Vidhya.

Retrieved May 1, 2023, from https://www.analyticsvidhya.com/blog/2020/11/popular-

classification-models-for-machine-learning/

Object Detection: Models, Architectures & Tutorial [2023]. (n.d.). V7Labs. Retrieved

May 1, 2023, from https://www.v7labs.com/blog/object-detection-guide

68|Page

https://techcult.com/how-often-does-google-earth-update/
https://www.cameralyze.co/blog/yolov7-architecture-explanation
https://github.com/ultralytics/yolov5/releases
https://pytorch.org/vision/stable/models.html
https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208
https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208
https://link.springer.com/article/10.1007/s00138-020-01153-7
https://link.springer.com/article/10.1007/s00138-020-01153-7
https://www.analyticsvidhya.com/blog/2020/11/popular-classification-models-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/11/popular-classification-models-for-machine-learning/
https://www.v7labs.com/blog/object-detection-guide

Dataset links

1. https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-

dataset?select=JPEGImages

2. https://zenodo.org/record/3843229#.ZE TGM5By3B

3. https://drive.google.com/file/d/1--foZ3dVV50CsgX0OXT84UeKtrAagc5CKAE/view?pli=1

4. https://arxiv.org/abs/2204.10959

5. https://reqistry.opendata.aws/rareplanes/

6. https://www.kaggle.com/code/jeffaudi/aircraft-detection-with-yolovs

7. https://zenodo.org/record/3464319#.ZE TJs5By3B

69|Page

https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-dataset?select=JPEGImages
https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-dataset?select=JPEGImages
https://zenodo.org/record/3843229#.ZE_TGM5By3B
https://drive.google.com/file/d/1--foZ3dV5OCsqXQXT84UeKtrAqc5CkAE/view?pli=1
https://arxiv.org/abs/2204.10959
https://registry.opendata.aws/rareplanes/
https://www.kaggle.com/code/jeffaudi/aircraft-detection-with-yolov5
https://zenodo.org/record/3464319#.ZE_TJs5By3B

Annexures

import os

from selenium import webdriver

from selenium.webdriver.firefox.options import Options
import msvcrt

import pyautogui

import time

import cv2 as cv

import csv

import torch
import time
import torch.nn.functional as F

from geopy.geocoders import Nominatim
geolocator = Nominatim(user_agent="fypgoogleearth")

from GUI2 files.extra helper import *
from GUI2 files.model helper import *
from GUI2 files.windowcapture import *

import threading
import screeninfo

import tkinter as tk
from tkinter import ttk
import pandas as pd
import textwrap

import argparse
import os
import sys

from datetime import datetime
import pathlib

temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath

Annexure A

os.chdir(os.path.dirname(os.path.abspath(__file)))

print_and flush(data):
print(data)
sys.stdout.flush()

csv_screen(filename):
wrap(string, length=20):
string = str(string)
return ‘\n'.join(textwrap.wrap(string, length))

update table():
df
update_csv_screen
destroy_csv_screen
if update_csv_screen:

df = pd.read csv(f'{filename}.csv")
df = df.reset_index(drop=)

table.delete(*table.get children())

for i, row in df.iterrows():
row = list(row)
row = list(map(wrap, row))
table.insert("", i, values=((row)))
destroy csv_screen:

root.after(1000, update table)
else:

root.destroy()

sys.exit()

filename = f"{current_folder_name}\\{filename}"

df = pd.read_csv(f'{filename}.csv")
df = df.reset _index(drop=)

root = tk.Tk()
root.title(f"{filename}")

table = ttk.Treeview(root, show='headings")

table["columns"] = list(df.columns)

for col in table["columns"]:
table.column(col, width=150, anchor="w")
table.heading(col, text=col)

s = ttk.Style()

s.configure('Treeview', rowheight=200)

for i, row in df.iterrows():
row = list(row)
row = list(map(wrap, row))
table.insert("", i, values=((row)))

scroll y = ttk.Scrollbar(root, orient="vertical”, command=table.yview)
scroll y.pack(side="right", fill="y")
table.configure(yscrollcommand=scroll_y.set)

table.pack()
root.after(1000, update_table)

root.mainloop()

parse_detections(results, tile):
result _dict = []
for result in results:
con = result['confidence’]
con "{:.1%} "' .format(con)
cs result['class']
x1 = int(result['xmin'])

int(result['ymin'])
int(result["'xmax'])
int(result['ymax'])

y2 - yl <=0 X2 - x1 <= 0O:
print_and flush(f"ERROR H={y2-y1} , W={x2-x1}")
continue
color = (@, @, 255)

if model classifier !=
cropped _image = crop one box(tile, x1,yl,x2,y2)
if cropped_image ==
continue
results classifier = model classifier(cropped_image)

p = F.softmax(results classifier, dim=1)
p = p.numpy().tolist()[@]

classifier results =
results = sorted(zip(class names, p), key= x: round(x[1]*100,

2), reverse=)

highestprob class = results[0][0]

highestprob p = results[0][1]

first = f"{class_names[highestprob_class]
round(highestprob_p*100,2)}%"

for (class_na, pred) in results:

classifier_results +=
round(pred*100,2)}% , "

class names[class na]

result dict.append({'pos':f'{x1},{yl},{x2},{y2}"', "conf':f'{con}"', 'Cla

ssifier':classifier_results})
cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)
cv.putText(tile, f'{con} {first}', (x1-2, y1-5),
cv.FONT_HERSHEY DUPLEX, 1, color, 2)

result dict.append({'pos"':f'{x1},{y1},{x2},{y2}"', 'conf':f"'{con}', 'Cla
ssifier':'Nil'})

cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)

cv.putText(tile, f'{con}', (x1-2, y1-5), cv.FONT HERSHEY DUPLEX, 1,
color, 2)

return tile, result dict

def append_to_csv(result dict,image name,lat,long,alt,FieldOfView):
dictt = []
global detection_ counter

google url =
f'https://earth.google.com/web/@{1lat},{long},{alt},{FieldOfView}, 30.00050866y,0h,
ot,or'

try:

location = geolocator.reverse(f"{lat},{long}", language=‘en')
address = location.raw['address’]

address {key: value for key, value in address.items() if 'ISO' not in

address , ".join(address.values())

except Exception as e:
print_and_flush(f"Exception occured retrieving loc data {e}")
address = "Connection Error"

for xx in result dict:
detection_counter += 1
dictt.append({'Serial':detection_counter ,'Image Name':image_name
, 'Position':xx['pos'] , 'Confidence’:xx['conf'] ,'Cls
Results':xx['Classifier'], 'Latitude’:lat , 'Longitude':long, 'Link':google_url
, 'Location':address})
with open(csv_filename, 'a', newline='") as f object:

dictwriter_object = csv.DictWriter(f_object, fieldnames=csv_fields)

dictwriter_object.writerows(dictt)

f object.close()

def cc_screenshots():
cv.namedWindow('P", cv.WINDOW_NORMAL)
screentwo = screeninfo.get_monitors()[1]
screentwo_width = screentwo.width
screentwo_height = screentwo.height
cv.moveWindow('P', screentwo width , @)
while True:

window_screenshot = get_screenshot()
global show_model image
if show_model image:
global model_image
cv.imshow('P', model_image)
cv.waitKey(1000)
show_model image = False

cv.imshow('P', window_screenshot)
cv.waitKey(1)
global stop screenshot thread
if stop_screenshot thread:
break

['upperleft,72.79693968164692,33.57384131541002,511.2013507374641",
'lowerright,72.86793319077674,33.53240399828832,512.0759362930472"]

parser = argparse.ArgumentParser()

parser.add_argument('--pointl_longlat', help='Long,Lat of point 1')
parser.add_argument('--point2_longlat', help='Long,Lat of point 2')
parser.add_argument('--area_name', help="'Area Name')

parser.add_argument('--kml _filename', help='KML filename (Mushaf Airbase)')
parser.add_argument('--det_model', help='Name of Detection model (best.pt)')
parser.add_argument('--cls model', help='Name of Classifier model (best cls.pt)")
parser.add_argument('--use_cls', help='Use Classifier (T/F)',

action="store true')

parser.add_argument('--headless', help='Start program headless (T/F)',
action="'store_true')

parser.add_argument('--save_allscreenshots', help='Save all Screenshots (T/F)',
action="'store true')

parser.add_argument('--cast_live screenshot', help='Cast live screenshots (T/F)',
action="'store true')

parser.add_argument('--cast_csv_table', help='Cast CSV table (T/F)’,
action="'store_true')

args = parser.parse_args()

pl = args.pointl_longlat

p2 = args.point2_longlat

kml filename = args.kml filename

headless = args.headless

keep_nodetection_image = args.save_allscreenshots

screen_cast_check = args.cast_live_ screenshot

cast_csv_table = args.cast_csv_table

detection_model name = args.det_model

classification_model name = args.cls_model

use_cls = args.use_cls

area_name = args.area_name

if kml _filename is not None:
if os.path.isfile(f"kml_files\\{kml_filename}.kml"):
print_and_flush("KML file found.")
UL lat, UL long, LR lat, LR long =
get_cord_from_kml(f'kml_files\\{kml_filename}.kml")

else:
print_and_flush("KML file not found. Exiting")
sys.exit()

if pl and p2 is not None:
UL _long , UL_lat = pl.split(",")
LR_long , LR_lat = p2.split(",")

if detection_model name is not None:
if os.path.isfile(f"model files\\{detection_model name}"):
print_and_flush("Detection Model File Exists")
else:
print_and_flush("Detection Model Not Found. Exiting")
sys.exit()

if classification_model name :
if os.path.isfile(f"model files\\{classification_model name}"):
print_and flush("Classifier Model File Exists")
else:
print_and flush("Classifier Model Not Found. Exiting")
sys.exit()

options = Options()

options.headless = headless

options.binary location = \P \M \f

driver = webdriver.Firefox(executable path='GUI2 files\\geckodriver.exe',
options=options)

right_mov_check =
left _mov_check =
up_mov_check =

down_mov_check =

google url =
"https://earth.google.com/web/@{UL_lat},{UL long}, 320a,65d,30.00050866y,0h,0t,0r

driver.get(google url)
if headless == : print_and_flush("Headless iniitiated")
driver.maximize window()

startTime = time.time()

yolov5 folder path = f"{os.getcwd()}\\yolov5"
model path = f"{os.getcwd()}\\model files"

model = torch.hub.load(yolov5 folder_path, ‘custom',source="local",
path=f'{model path}\\{detection model name}")
model.conf = 0.60

if use _cls:

model classifier = torch.hub.load(yolov5 folder_ path,
‘custom',source="1local",
path=f"'{model path}\\{classification model name}').cpu().float()
class names = model classifier.names
print_and_flush(class_names)

else:

model classifier = None

endTime = time.time() - startTime
print_and flush(f"Models Loaded in {endTime}")

driver.implicitly wait(50)

if kml filename is not None:
csv_filename = f'{kml filename}.csv'
else:
csv_filename = f'{area _name}.csv'

current_folder_name = csv_filename.removesuffix(".csv"
timestamp = datetime.now().strftime("%Y-%m-%d_%H%M")
current_folder_name = f"{current_folder name} {timestamp}"
os.makedirs(current_folder_name)

csv_filename = f"{current_folder name}\\{csv_filename}"
csv_fields = ['Serial', 'Image Name', 'Position’, 'Confidence', 'Cls

Results', 'Latitude', 'Longitude’, 'Link"', 'Location’]
with open(csv_filename, 'w') as csvfile:

writer = csv.DictWriter(csvfile, fieldnames = csv_fields)

writer.writeheader()

_, _,total areasq2 = calculate areasq2(UL_lat, UL long, LR _lat, LR _long)
if total_areasq2 < 1:

use_sgmeters =

total areasq2 = total areasq2 * 1000000

print_and flush(f"TotalArea:{round(total areasq2,3)} m2")
else:

use_sqgmeters =

print_and flush(f"TotalArea:{round(total areasq2,3)} km2")

rem_areasq2 = total areasq2

time.sleep(30)
print_and_flush("Starting...after 30 seconds")
if headless == :
pyautogui.moveTo(1863, 130, 4)
pyautogui.click()

element = driver.find_element_by css_selector("body")
element.click()

previous_url = driver.current_url
press_and_hold('right',0.2,driver)

detection_counter
detection counter =

number_of_row
number_of col

stop_screenshot _thread = False
if screen_cast_check:

screenshot_thread = threading.Thread(target=cc_screenshots)
screenshot_thread.start()
print_and_flush("Started Live screen window")
else:
print_and_flush("Not Starting Live screen window")

global update_csv_screen
global destroy_csv_screen

update_csv_screen = False
destroy csv_screen = False

if cast _csv_table:
if kml filename is not None:
csv_screen_thread = threading.Thread(target=csv_screen,
args=(kml_filename,))
else:
csv_screen_thread = threading.Thread(target=csv_screen,
args=(area_name,))

csv_screen_thread.start()

print_and_flush("Started CSV Table window")
else:

print_and_flush("Not Starting CSV Table window")

show_model image = False

total lat diff = float(UL_lat) - float(LR_lat)

while True:
current_url = driver.current_url

time.sleep(1)

if current_url != previous url:
lat, long,alt,FieldOfView = parse_url(current_url)
prev_lat, prev_long, , = parse url(previous url)

time.sleep(1)

screenshot = driver.get_screenshot_as_png()
screenshot, blur_score = perform_on_screenshot(screenshot)
while(True):

if blur_score > 80:
break

time.sleep(5)
screenshot = driver.get_screenshot_as_png()
screenshot, blur score = perform on_screenshot(screenshot)

detections = model(screenshot, size=640)
results = detections.pandas().xyxy[0@].to_dict(orient="records")
if len(results) != @:
screenshot,result_dict = parse_detections(results, screenshot)

append_to_csv(result_dict,f"image_ {number_of row} {number_of col}.png
",lat,long,alt,FieldOfView)

cv.imwrite(f"{current folder name}\\image {number of row} {number of
col}.png", screenshot)

update_csv_screen = True
model image = pad_model image(screenshot)
show_model image = True

time.sleep(1)

update csv _screen = False

else:
if keep_nodetection_image:
cv.imwrite(f"{current_folder_name}\\image {number_of row} {number
_of _col}.png", screenshot)

if right_mov_check:
press_and_hold('right',1.5,driver)

diff_right mov = float(LR_long)-float(long)

number_of col += 1

if diff_right_mov <= 0:
right mov_check = False
move_down(driver)
number_of row += 1
number_of col = @
left mov_check = True

if left_mov_check:
press_and_hold('left',1.5,driver)

diff left mov = float(long)-float(UL_long)

number_of col += 1

if diff_left mov <= @:
right mov_check = True
move_down(driver)
number_of row += 1
number_of col = @
left_mov_check = False

latitude diff = float(lat)-float(LR_lat)

latitude diff percent = ((1 - latitude diff / total lat diff) * 100)

latitude_diff _percent = @ if latitude_diff percent < @ else
latitude diff percent

latitude_diff_percent = 100 if latitude_diff percent >100 else
latitude_diff_percent

latitude_diff_percent round(latitude diff percent,1)

print_and flush(f"progress:{latitude diff percent}")

rem_areasq2 = total areasq2 - ((total areasq2 * latitude_diff percent) /

print_and flush(f"RemArea:{round(rem areasq2,3)}")
if latitude diff <= 0:
print_and flush("Destination reached")

break

previous url = current_url

if msvcrt.kbhit():

key code = ord(msvcrt.getch())

if key code == ord("q"):
break

driver.quit()
stop_screenshot_thread =
destroy csv_screen =

print_and_flush("quit")

import os

import cv2 as cv

import numpy as np

import torch

from GUI1 files.windowcapture import *
from time import time

import torch.nn.functional as F

import pathlib

temp = pathlib.PosixPath
pathlib.PosixPath = pathlib.WindowsPath

os.chdir(os.path.dirname(os.path.abspath(__file)))

pre_process_image(image):
top = 125
bottom = 50

left = 55
right = 1

rows, cols, channels = image.shape

black_image = np.zeros((rows, cols, channels))

cropped_image = image[top:-bottom, left:-right]

black_image[top:-bottom, left:-right] = cropped_image

black image = black image.astype(np.uint8)

return black_image

crop_one_box(frame, x1,yl,x2,y2):

Annexure B

resize C = torch.nn.Upsample(size=(224, 224), mode='bilinear',
align corners=False)
normalize C = lambda x, mean=0.5, std=0.25: (x - mean) / std

img = (frame[yl-10:y2+10, x1-10:x2+10])
if img.shape[@] <= @ or img.shape[l] <=
return None

img = np.ascontiguousarray(np.asarray(img).transpose((2, 0, 1)))

img = torch.tensor(img).unsqueeze(@) / 255.0
img = resize_C(normalize C(img))
return img

parse_detections(results, tile):
for result in results:
con = result['confidence']
con = "{:.1%}'.format(con)
cs result['class']

x1 = int(result['xmin'])
yl = int(result['ymin'])
x2 = int(result['xmax'])
y2 = int(result['ymax'])

if y2 - yl <= 0 or x2 - x1 <= O:
print(f"ERROR H={y2-y1} , W={x2-x1}")
continue

color = (@, @, 255)

if model classifier != None:

cropped_image = crop_one_box(tile, x1,y1,x2,y2)
if cropped_image == None:
continue

results classifier = model classifier(cropped_image)
p = F.softmax(results classifier, dim=1)

p = p.numpy().tolist()[0]

classifier results =
for (class_na, pred) in zip(class_names,p):
classifier_results +=
class names[class na]}:{round(pred*100,2)} , "

cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)

cv.putText(tile, con classifier results}', (x1-2, yi1-5),
cv.FONT_HERSHEY DUPLEX, 1, color, 2)

else:
cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)
cv.putText(tile, f'{con}', (x1-2, y1-5), cv.FONT HERSHEY DUPLEX, 1,
color, 2)

return tile

use cls =
classifier check = input("Use classifier? y/n ")
if classifier_check == 'y':
use cls =
else:

use cls =

startTime = time()

yolov5_ folder_path = os.getcwd() }\\yolov5"
model path = f"{os.getcwd()}\\model files"

model = torch.hub.load(yolov5_ folder_path, 'custom',source="local",
path=f'{model_path}\\bestl.pt")
model.conf = 0.40

if use_cls:

model classifier = torch.hub.load(yolov5_folder_path,
‘custom',source="local", path=f'{model path}\\cus50.pt"').cpu().float()

class_names = model classifier.names
print(class_names)

else:
model classifier =

endTime = time() - startTime
print(f"Models Loaded in {endTime}")

loop time = time()
while :

image = get_screenshot()
output_image = image.copy()
image = pre_process_image(image)
window_size =

image_height, image width, _ = image.shape

num_windows X = image width // window_size

num_windows_y (image _height + window_size - 1) // window_size

for i in range(num_windows_x):
for j in range(num_windows_y):

X_min = i * window_size

y_min = j * window_size

X_max = x_min + window_size

y_max = y _min + window_size

window = image[y_min:y _max, X_min:x_max]

detections = model(window, size=640)
results = detections.pandas().xyxy[0].to dict(orient="records")

output_image[y_min:y max, x_min:x_max] = parse_detections(results,

cv.imshow('Privew', output image)

print('FPS ".format(1 / (time() - loop_time)))
loop_time = time()

if cv.waitKey(1l) == ord('q'):
cv.destroyAllWindows ()
break

print('Done. ")

88|Page

Annexure C

import cv2
import os
import random

label folder = './labels/'
raw_images folder = './raw_images/'
save_images folder = './save_image/'
name_list path = './name_ list.txt'

classes path = './classes.txt'

def plot_one_box(x, image, color=None, label=None, line_thickness=None):
tl = line_thickness or round(0.002 * (image.shape[@] + image.shape[1l]) / 2) +

color = color or [random.randint(@, 255) for _ in range(3)]
cl, c2 = (int(x[@]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(image, cl, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1)
t_size = cv2.getTextSize(label, @, fontScale=tl / 3, thickness=tf)[0]
= cl[@] + t size[@], c1[1] - t _size[l] - 3
cv2.rectangle(image, cl, c2, color, -1, cv2.LINE_AA)
cv2.putText(image, label, (ci[@], ci[1] - 2), o, t1 / 3, [225, 255, 255],
thickness=tf, lineType=cv2.LINE_AA)

def draw_box_on_image(image_name, classes, colors, label folder,
raw_images_ folder, save images folder):
txt_path = os.path.join(label folder, '%s.txt'%(image_name))
print(image_name)
if image_name == '.DS_Store':
return 0
image path = os.path.join(raw_images_folder, '%s.jpg'%(image_name))

save file path = os.path.join(save images folder, '%s.jpg'%(image_name))

source_file = open(txt_path)
image = cv2.imread(image path)
try:
height, width, channels = image.shape
except:
print('no shape info."')
return ©

box_number = ©

for line in source_file:
staff = line.split()
class_idx = int(staff[0])

x_center, y center, w, h = float(staff[1])*width, float(staff[2])*height,
float(staff[3])*width, float(staff[4])*height

x1 = round(x_center-w/2)

yl = round(y_center-h/2)

x2 = round(x_center+w/2)

y2 = round(y_center+h/2)

plot_one_box([x1,yl,x2,y2], image, color=colors[class_idx],
label=classes[class_idx], line_thickness=)

cv2.imwrite(save_file_path,image)

box_number += 1
return box_number

make_name_list(raw_images_folder, name_list path):

image file_list = os.listdir(raw_images_folder)

text_image name_list file=open(name_list path, 'w")

for 1image_file name in image file list
image name,file extend = os.path.splitext(image_file name)
text _image name_ list file.write(image name+'\n")

text _image name_list file.close()

make_name_list(raw_images_folder, name_list path)

classes = image _names = open(classes_path).read().strip().split()

random.seed(42)

colors = [[random.randint(®, 255) for _ in range(3)] for _ in
range(len(classes))]

image_names = open(name_list_path).read().strip().split()

box_total =
image_total = ©
for image name in image_names:
box_num = draw_box_on_image(image name, classes, colors, label folder,
raw_images_folder, save_images folder)
box_total += box_num
image_total += 1
print('Box number:', box total, 'Image number:',image total)

91|Page

Annexure D

import matplotlib.pyplot as plt
import numpy as np

dataArray = np.genfromtxt('results.csv', delimiter=',', names=True)

plt.subplot(2, 3, 1)

plt.plot(dataArray['trainbox_loss'], label='trainbox_ loss"')
plt.plot(dataArray['valbox loss'], label='valbox loss')
plt.legend()

.grid()

.subplot(2, 3, 2)

.plot(dataArray['trainobj loss'], label='trainobj loss')
.plot(dataArray[‘valobj loss'], label='valobj loss')
.legend()

.grid()

.subplot(2, 3, 3)

.plot(dataArray[‘metricsprecision’], label='metricsprecision')
.plot(dataArray[‘metricsrecall’], label='metricsrecall')
.legend()

.grid()

.subplot(2, 3, 4)

.plot(dataArray[‘metricsmAP_05'], label='metricsmAP_05")
.legend()

.grid()

.subplot(2, 3, 5)

.plot(dataArray[‘metricsmAP_05095'], label="metricsmAP_05095")
.legend()

.grid()

.show()

92|Page

Annexure E

import os
import shutil

folder_names = ['BOEING', 'HAWK', 'JAGUAR', 'MIG-21','MIG-29','MIRAG-
2000', 'RAFALE', 'SU-30", 'TEJAS']

train_percent = 0.9
test_percent = 0.05
valid percent = 0.05

os.path.exists('Dataset'):
.makedirs('Dataset’)

os.path.exists('Dataset/train’):
.makedirs('Dataset/train")
os.path.exists('Dataset/test"):
.makedirs('Dataset/test")
os.path.exists('Dataset/valid'):
.makedirs('Dataset/valid")

folder in folder_names:

os.makedirs('Dataset/train/" + folder)
os.makedirs('Dataset/test/"' + folder)
os.makedirs('Dataset/valid/' + folder)

files = os.listdir(folder)

train_files = int(len(files) * train_percent)

test_files = int(len(files) * test_percent)

valid files = int(len(files) * valid_percent)

print(f"{folder}: Total images={len(files)}; train={train_files},
valid={valid files}, test={test_files}.
total={train_files+valid files+test files}")

for i in range(train_files):
shutil.copy(folder + '/' + files[i], 'Dataset/train/' + folder)
for i in range(train_files, train_files+test files):

shutil.copy(folder + '/' + files[i], 'Dataset/test/' + folder)
for i in range(train_files+test files, len(files)):
shutil.copy(folder + "/' + files[i], 'Dataset/valid/' + folder)

94|Page

Turnitin - Originality Report - Syndicate 15 https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=...

Turnitin Originality Report

Processed on: 01-May-2023 11:40 PM EDT
ID: 2076974441

Word Count: 11453 Similarity by Source
Submitted: 3 Similarity Index

Internet Sources: 5%

0, Publications: 4%
Syndicate 15 By Bilal Janjua 11% Student Papers: 8%

2% match (student papers from 30-May-2022)
Submitted to Higher Education Commission Pakistan on 2022-05-30

1% match (Internet from 05-Mar-2021)
https://archive.org/details/peel?and%5B%5D =firstTitle%3AI8&sort=titleSorter

< 1% match (student papers from 27-Jun-2013)
Submitted to Higher Education Commission Pakistan on 2013-06-27

< 1% match (student papers from 15-Aug-2022)
Submitted to Liverpool John Moores University on 2022-08-15

< 1% match (student papers from 23-Feb-2023)
Submitted to Liverpool John Moores University on 2023-02-23

< 1% match (student papers from 27-Feb-2023)
Submitted to Liverpool John Moores University on 2023-02-27

< 1% match (student papers from 15-Mar-2023)
Submitted to Liverpool John Moores University on 2023-03-15

< 1% match (student papers from 22-]Jan-2023)
Submitted to Nanyang_Technological University on 2023-01-22

< 1% match (student papers from 23-Jan-2023)
Submitted to Nanyang Technological University on 2023-01-23

< 1% match (student papers from 15-Jan-2023)
Submitted to Abdullah Gul University on 2023-01-15

< 1% match (student papers from 26-Feb-2023)
Submitted to Babes-Bolyai University on 2023-02-26

< 1% match (student papers from 06-Dec-2022)
Submitted to University of Ruhuna Matara on 2022-12-06

< 1% match (student papers from 01-May-2023)
Submitted to University of Hertfordshire on 2023-05-01

< 1% match (student papers from 21-Mar-2023)
Submitted to University of Hertfordshire on 2023-03-21

< 1% match (Internet from 17-Mar-2023)
https://www.wikiwand.com/en/Draft:Complete_programming_of python

< 1% match (student papers from 01-May-2023)
Submitted to University of Bolton on 2023-05-01

< 1% match (Maragoni Mahendar, Arun Malik, Isha Batra. "Emotion estimation model for cognitive state
analysis of learners in online education using deep learning", Expert Systems, 2023)

Maragoni Mahendar, Arun Malik, Isha Batra. "Emotion estimation model for cognitive state analysis of
learners in online education using deep learning", Expert Systems, 2023

< 1% match (student papers from 30-Mar-2023)
Submitted to Leiden University on 2023-03-30

1 of 16 02/05/2023, 8:51 am

95 |Page

Turnitin - Originality Report - Syndicate 15 https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=...

< 1% match (Lecture Notes in Computer Science, 2005.)
Lecture Notes in Computer Science, 2005.

< 1% match (Internet from 23-Mar-2023)
https://pdffox.com/implementation-and-performance-evaluation-of-a-cmis-server-for-open-source-php-
based-wcms-pdf-free.html

< 1% match (Bhavan Kumar S B, Guhan S, Manyam Kishore, Santhosh R, Alfred Daniel J. "Deep
Learning Approach for Pothole Detection - A Systematic Review", 2023 Second International Conference
on Electronics and Renewable Systems (ICEARS), 2023)

Bhavan Kumar S B, Guhan S, Manyam Kishore, Santhosh R, Alfred Daniel J. "Deep Learning Approach
for Pothole Detection - A Systematic Review", 2023 Second International Conference on Electronics and
Renewable Systems (ICEARS), 2023

< 1% match (Internet from 20-Apr-2023)
https://uobrep.openrepository.com/bitstream/handle/10547/625758
/DAWAM%20Edward%?20Swarlat%201415601%20FULL%20REPOSITORY%20COPY.pdf?isAllowed=y&
sequence=1

< 1% match (student papers from 19-Aug-2021)
Submitted to Visvesvaraya Technological University, Belagavi on 2021-08-19

< 1% match (Internet from 16-Dec-2022)
https://files.osf.io/v1/resources/rvzyc/providers/osfstorage
/621700d67f41120253fal6ef?action=download&direct=8&version=2

< 1% match (student papers from 14-Sep-2019)
Submitted to Seevic College on 2019-09-14

< 1% match (Internet from 26-Feb-2023)
http://ir.mu.ac.ke:8080/jspui/bitstream/123456789/4272/1/0GINA%20THESIS. pdf

< 1% match (student papers from 21-Jan-2023)
Submitted to Asia Pacific International College on 2023-01-21

< 1% match (student papers from 11-Apr-2023)
Submitted to Coventry University on 2023-04-11

< 1% match (student papers from 13-May-2021)
Submitted to University of Hull on 2021-05-13

< 1% match (Internet from 24-Mar-2023)
https://WWW.coursehero.com/file/95265840/P1-2190822112442-1docx/

< 1% match (Lecture Notes in Computer Science, 2010.)
Lecture Notes in Computer Science, 2010.

< 1% match (Internet from 05-Mar-2023)
http://etd.aau.edu.et/bitstream/handle/123456789/15459/Hassen%20Mohammed.pdf?isAllowed=y&
sequence=1

< 1% match (Internet from 18-Nov-2022)
http://etd.aau.edu.et/bitstream/handle/123456789/16748/Yadeta%20Gizaw.pdf?isAllowed=y&
sequence=1

< 1% match (student papers from 27-Apr-2023)
Submitted to The Robert Gordon University on 2023-04-27

< 1% match (student papers from 21-Apr-2023)
Submitted to The University of the West of Scotland on 2023-04-21

< 1% match (Fisher, A.. "The dynamics of tree cover change in a rural Australian landscape", Landscape
and Urban Planning, 19991201)

Fisher, A.. "The dynamics of tree cover change in a rural Australian landscape", Landscape and Urban
Planning, 19991201

< 1% match (student papers from 23-Apr-2023)
Submitted to University of North Texas on 2023-04-23

< 1% match (Internet from 28-Feb-2020)
http://collections.mun.ca/cdm/compoundobject/collection/cns2/id/41678/rec/18

20f 16

% |Page

02/05/2023, 8:51 am

Turnitin - Originality Report - Syndicate 15 https://www.turnitin.com/newreport_printview.asp?eq=1&eb=1&esm=...

< 1% match (Internet from 10-Jan-2023)
https://jp.mathworks.com/help/wavelet/ug/wavelet-scattering.html

< 1% match (Internet from 07-Oct-2022)

http://www.laspositascollege.edu/gv/pdc/assets/docs/mandatoryflex/archives/fall2019
/MentalArchitecture.pptx

< 1% match (student papers from 25-Apr-2021)
Submitted to Purdue University on 2021-04-25

< 1% match (student papers from 05-Jan-2023)
Submitted to University of Sunderland on 2023-01-05

< 1% match (student papers from 28-Mar-2023)

Al Salem, Ageel Asaad. "Managing Consistency and Consensus in Group Decision-Making with
Incomplete Fuzzy Preference Relations", 2017

< 1% match (Internet from 15-Mar-2023)
https://www.mdpi.com/1424-8220/23/6/3147/htm

< 1% match (student papers from 07-Apr-2023)
Submitted to Cardiff University on 2023-04-07

< 1% match (Internet from 26-Oct-2022)

https://gmro.gmul.ac.uk/xmlui/bitstream/handle/123456789/79350
JZHANG_Xindi_130799436_EECS_PhD_final.pdf?isAllowed=y&sequence=1

< 1% match (Bo Lu, Bingchuan Bai, Xuefeng Zhao. "Vision-based structural displacement measurement
under ambient-light changes via deep learning and digital image processing", Measurement, 2023)

Bo Lu, Bingchuan Bai, Xuefeng_Zhao. "Vision-based structural displacement measurement under
ambient-light changes via deep learning_and digital image processing”, Measurement, 2023

< 1% match (Internet from 10-Jan-2023)
https://moviecultists.com/where-to-find-bounding-box

< 1% match (Internet from 20-Nov-2015)
http://www.gamefaqs.com/ps/572645-arc-the-lad-ii/fags/67059

< 1% match (student papers from 26-Apr-2023)
Submitted to Metropolia Ammattikorkeakoulu Oy on 2023-04-26

< 1% match (student papers from 27-Aug-2020)
Submitted to University of Edinburgh on 2020-08-27

< 1% match (Internet from 08-Dec-2022)

< 1% match (Internet from 16-Dec-2022)
https://github.com/gokulsaraswat/365Days_MachineLearning_Deeplearning/blob/main/README.md

< 1% match ()
Herman, Hilde. "A framework for the design, development and implementation of technology platforms
in the South African health context", Stellenbosch : Stellenbosch University, 2019

< 1% match (Internet from 18-Dec-2022)

/D1%?20F.Apeagyei%20IFATSEA%20Session%203.pdf

< 1% match (Internet from 13-Apr-2023)

< 1% match (Internet from 20-Jun-2019)
https://zh.scribd.com/doc/146394333/Encyclopedia-of-Flight

< 1% match (Tang, Pengjie, Hanli Wang, and Sam Kwong. "G-MS2F: GooglLeNet based multi-stage
feature fusion of deep CNN for scene recognition", Neurocomputing, 2016.)

Tang, Pengjie, Hanli Wang, and Sam Kwong. "G-MS2F: GooglLeNet based multi-stage feature fusion of
deep CNN for scene recognition", Neurocomputing, 2016.

3of 16

97|Page

02/05/2023, 8:51 am

