
i | P a g e

Aircraft Detection and Classification using Satellite Imagery

(ADCSI)

By

MUHAMMAD AHMAD

MUHAMMAD SAFIULLAH

UMAIR AMIN

TALHA TARIQ

Supervised by:

DR. HASNAT KHURSHID

Submitted to the faculty of the Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad,

in partial fulfilment of the requirements of a B.E Degree in Electrical (Telecom) Engineering.

June 2023

ii | P a g e

In the name of ALLAH, the Most benevolent, the Most Courteous

iii | P a g e

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to state that the thesis work contained in this report officially

“Aircraft Detection and Classification using Satellite Imagery”

is carried out by

MUHAMMAD AHMAD

MUHAMMAD SAFIULLAH

UMAIR AMIN

TALHA TARIQ

under my supervision and in my judgement, it is fully ample, in scope and excellence, for the

degree of Bachelor of Electrical (Telecom.) Engineering in Military College of Signals,

National University of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor

 Lt Col. Dr Hasnat Khurshid

Department of EE, MCS

 Date: ___________

iv | P a g e

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

v | P a g e

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues and most of all, supervisor, Lt Col Dr Hasnat Khurshid, without your

guidance it would have been a challenging undertaking.

The group members, through all adversities, worked steadfastly.

vi | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has an 11% similarity index. The Turnitin report endorsed by Supervisor is

attached.

Muhammad Ahmad

325013

Muhammad Safiullah

325049

Umair Amin

325040

Talha Tariq

325029

Signature of Supervisor

vii | P a g e

ABSTRACT

In the modern era, satellite or drone imagery is easily accessible. There are several uses for such

images, including the detection and identification of desired targets like aircraft, convoys, trains,

and trucks. It can also be used to identify infrastructure, like runways, storage buildings, Air bases

and Airports. Our effort adds the identification and classification of aircraft in Google Earth

Imagery as another extremely effective use of overhead imagery, broadening the scope of these

applications. This can be very helpful for locating and documenting an aircraft in a particular area.

In this study, a large number of multi-resolution satellite images were used to train the

Convolutional Neural Network-based machine learning algorithm YOLO V5. By selecting

training parameters optimized by learning from multiple literature sources and testing them, the

models were trained. After a period of extensive model training and achieving desirable accuracy,

two user interfaces were developed. Users can detect in real-time when browsing Google Earth or

any other source of overhead imagery with the use of UI Live Detection Mode. In Google Earth's

Auto-Scan mode, a predefined area is automatically scanned, and all detections are recorded along

with classification information. Along with the pixel values of aircraft in the Google Earth image

that was acquired, the UI can precisely provide the specific geographic coordinates of the aircraft.

viii | P a g e

Table of Contents
List of Figures .. x

Chapter 1: Introduction .. 1

1.1 Overview ... 2

1.2 Problem Statement ... 2

1.3 Proposed Solution .. 3

1.4 Working Principle .. 3

1.4.1 Datasets Organization: .. 4

1.4.2 AI models training and Fine-tuning: ... 4

1.4.3 Browser Automation: .. 5

1.4.4 Output Extraction: .. 6

1.4.5 Integration: .. 6

1.4.6 GUI presentation:.. 6

1.5 Objectives .. 7

1.5.1 General Objectives: .. 7

1.5.2 Academic Objectives: ... 7

1.6 Scope .. 7

1.7 Deliverables ... 8

1.7.1 Eagle View ... 8

1.7.2 Object of interest: ... 8

1.7.3 Data Analysis Report: ... 8

1.8 Relevant Sustainable Development Goals ... 9

1.9 Structure of Thesis ... 9

Chapter 2: Literature Review ... 10

2.1 Existing Solutions .. 10

2.2 Research... 11

2.2.1 Research on object detection and classification techniques: ... 12

2.2.2 One Stage Vs Two Stages:.. 16

Chapter 3: Datasets ... 18

3.1 Custom real-world Aircraft Dataset ... 18

3.1.1 Dataset Collection / Acquisition ... 19

3.1.2 Data Munging and Feature Extraction (Image- Preprocessing) .. 20

3.1.3 Labelling of Dataset .. 22

3.1.4 Acquired Datasets Details:.. 23

3.1.5 Annotations Conversion ... 24

3.1.6 Data Augmentation: .. 25

ix | P a g e

3.1.7 Prepared Dataset: .. 25

3.2 Synthetically generated Aircrafts Dataset .. 26

3.2.1 Significance: ... 26

3.2.2 Tools and Framework: .. 27

3.2.3 Generation ways: .. 27

3.2.4 Dataset Preparation: .. 28

3.3 Challenges: .. 30

Chapter 4: Training AI Models .. 31

4.1 Training Object Detection Model: ... 31

4.1.1 Training Parameters: ... 31

4.1.2 Pretrained Model Comparison: ... 32

4.1.3 Training Setup: ... 33

4.1.4 Yolov5 API: .. 33

4.1.5 Training results: .. 37

4.1.6 Conclusion: ... 40

4.2 Training Image Classification Model: ... 41

4.2.1 Training Parameters .. 41

4.2.2 Pretrained models comparison .. 41

4.2.3 Training Setup .. 42

4.2.3 Yolov5-Cls API .. 42

4.2.4 Training Results .. 44

4.2.5 Conclusion .. 44

4.3 Challenges ... 44

Chapter 5: GUIs... 46

5.1 GUI 1 (Multi Screen for Live Detection) .. 46

5.1.1 Block Diagram: ... 46

5.1.2 Concept: .. 47

5.1.3 Libraries and helper functions: ... 48

5.1.4 Working: ... 49

5.1.5 Conclusion .. 51

5.2 GUI 2 (Selenium based) .. 52

5.2.1 Block Diagram .. 52

5.2.2 Concept ... 52

5.2.3 Libraries and Helper Functions: ... 55

5.2.4 Working .. 58

5.2.5 Conclusion .. 65

Chapter 6: Conclusion ... 66

Chapter 7: Future Work ... 67

References and Work Cited .. 68

x | P a g e

Annexures ... 70

List of Figures

Figure 1: Yolov5 architecture .. 05

Figure 2a: Performance of Detection models .. 13

Figure 2b: Performance comparison of Yolov5 and Yolov7 ... 14

Figure 2c: Comparison of yolov5-cls with other classification models ... 15

Figure 3a: Image with outliers ... 19

Figure 3b: Image without outliers .. 19

Figure 4: Acquired Dataset Details .. 24

Figure 5a: Detection Dataset Split ... 25

Figure 5b: Classification Dataset Split .. 29

Figure 6: Pre-trained Yolov5 detection Models comparison ... 33

Figure 7: Plot of resolution of images ... 34

Figure 8: Performance comparison of yolov5 models ... 35

Figure 9a: Detection model training results ... 37

Figure 9b: Detection model training results curve ... 39

Figure 10: Performance comparison of pre-trained yolov5-cls models ... 42

Figure 11: Block Diagram of GUI 1 .. 46

Figure 12: GUI 1 Display Pane ... 51

Figure 13: Block Diagram of GUI 2 .. 52

Figure 14: Main window of GUI 2 .. 54

Figure 15: Conceptualized Scan Motion of GUI 2 .. 59

Figure 16: Results Display Pane of GUI 2... 62

Figure 17a: Proposed Display of GUI 2 .. 64

Figure 17b: Snapshot of GUI 2 .. 65

1 | P a g e

Chapter 1: Introduction

Engineering is a required field that has had a tremendous impact on society's development and

progress. By applying scientific knowledge and skills, engineers design and develop new

technologies that can solve complex problems and enhance people's lives across various industries,

including healthcare, transportation, entertainment, and National Security.

Automation is a prime example of a technological advancement resulting from engineering

research, which has transformed the way we live and work. Machines can now be programmed to

perform tasks once done by humans, increasing efficiency, accuracy, and productivity. Automation

has made its way into many industries, from manufacturing to healthcare, and has decreased labor

costs while improving safety.

Automation is one such technology that has been widely employed to strengthen security measures

in various domains. It involves the use of machines that are programmed to make decisions based

on real-time data analysis and historical trends.

Automation software has been developed by engineers to help monitor and control various security

systems in real-time. For instance, it can be used to analyse overhead imagery by satellites and

drones to detect important national assets like Buildings, Convoys and aircraft. This technology can

provide a crucial piece of intelligence information.

Overall, engineering and automation software has played a crucial role in enhancing national

security by providing adequate and efficient solutions to identify and mitigate potential threats. As

technology continues to evolve, engineers will undoubtedly continue to develop new and innovative

solutions to protect and enhance national security.

2 | P a g e

1.1 Overview

In the modern world, intelligence gathering has emerged as a critical aspect of national

security and foreign policy. The complex and rapidly changing geopolitical landscape, coupled with

the advancements in technology, have made the gathering of accurate and timely intelligence more

critical than ever before. Intelligence gathering enables governments and policymakers to make

informed decisions on matters of national importance, ranging from counterterrorism and border

security to economic policies and trade negotiations. It also plays a vital role in international

diplomacy, enabling countries to anticipate and respond to emerging threats and to maintain a

strategic advantage over their rivals. With the increasing dependence on technology and the

growing interconnectedness of the world, intelligence gathering has become even more

challenging, and the need for sophisticated and innovative techniques has become more critical than

ever before.

In today's world, the use of satellite imagery has become increasingly important in various fields,

including national security, urban planning, and environmental monitoring. The detection and

classification of aircraft using satellite imagery is one such application that has been proved

innovative intelligence-gathering source and gives leverage to one state over another.

1.2 Problem Statement

Pakistan is a third-world underdeveloped country with constrained financial resources. Only

available satellite PRSS-1 (Pakistan Remote Sensing Satellite-1) can capture high-resolution optical

and remote sensing images of the Earth and is designed to support various applications, including

natural resource management, urban planning, disaster management, defense and security. Lacking

a standalone automatic system primarily designed for reconnaissance of crucial intelligence assets

3 | P a g e

has created a great void in the modern world of intelligence gathering. The following are the points

which establish the problem statement.

1. There is no independent, autonomous system for Identifying and Classifying national assets.

2. Satellite Imagery is very expensive, and very few support resolutions which are required to

identify concerned objects.

3. Manual work by Image analysts is a burden on the national exchequer.

4. Image analysts' manual labor has very low efficiency.

1.3 Proposed Solution

The primary goal of our proposed solution is to Automatically Detect and Classify national

assets like aircraft using Google Earth’s Satellite Imagery. According to the Google Earth blog,

Google Earth updates its images once a month [1]. The free-to-use updated and high-resolution

imagery will Detect and Classify Aircraft effectively.

1.4 Working Principle

The project primarily uses machine learning methods, automated browsers, and image

processing principles. The project is divided into various modules, and each module is interwoven

with the module after it. The following is a list of the modules:

• Datasets Organization

• AI models training and Fine-tuning.

• Browser Automation

• Output Extraction

• Integration

• GUI presentation

4 | P a g e

 1.4.1 Datasets Organization:

A Dataset used for detecting and classifying aircraft needs to have a large number

of images captured from overhead with different zoom levels. The dataset would need to be

diverse, including different types of aircraft, such as commercial planes, military jets and

unmanned aerial vehicles (UAVs), as well as varying weather conditions, lighting and

backgrounds.

 1.4.1.1 Custom Aircraft Dataset:

The project uses a Custom build dataset of various types of aircraft collected

from various internet sources. The images were gathered, filtered and annotated to

obtain the coordinates of the object of interest. This dataset would be used for

training the object detection model.

 1.4.1.2 Synthetic Aircraft Dataset:

For Classification Purposes, images with higher resolution and large

numbers are required. The images of one class of aircraft are rare to be found on the

internet. To deal with the scarcity of datasets, we synthetically generated images of

an aircraft. The dataset would be used for training the Classification model.

 1.4.2 AI models training and Fine-tuning:

The datasets prepared for Detection and Classification were fed to the Object

detection model and Image classification model, respectively, through the application of

machine learning techniques.

 1.4.2.1 YOLO algorithm:

5 | P a g e

YOLO (You Only Look Once) is a real-time object detection algorithm that

uses a single convolutional neural network (CNN) to simultaneously predict

bounding boxes and class probabilities for each detected object in an image or video

frame.

Object detection in YOLO is done as a regression problem and provides the class

probabilities of the detected images. [3]

In addition to object detection, YOLO can be used for image classification tasks by

modifying the network architecture to output class probabilities without the

associated bounding boxes.

Our project uses the YOLOv5 algorithm to train the datasets. This prepares object

detection and image classification models.

Figure 1 – Yolov5 architecture

1.4.3 Browser Automation:

To automatically scan an area in Google Earth, the browser will be automated using

Selenium browser automation. It will also provide essential information like coordinates of

the area.

6 | P a g e

 1.4.4 Output Extraction:

The outputs are extracted based on the aircraft detected. The coordinates of detected

aircraft in an image will be fed to the Image classification model along the image to find

which aircraft it is. The detections, their classification result, along with other findings will

be documented as a CSV file.

 1.4.5 Integration:

The different modules are then integrated into one stand-alone entity. This stand-

alone entity is essential for a compact solution.

 1.4.6 GUI presentation:

The visual demonstration of the project is done through the aid of two GUIs

(graphical user interfaces).

This information presented and documented includes the serial number of the detection, the

snapshot in which the aircraft was found so it can be viewed later, bounding box coordinates,

Score of Confidence, the classifier findings, which include the likelihoods of each class

against the aircraft, latitude and longitude, a link to Google Earth that takes users directly

to the area where the aircraft was found, and, lastly, the location details of the under-sampled

area.

Two GUIs are:

 1.4.6.1 GUI 1 (Multi Screen for Live Detection)

It would be for a user manually browsing through Google Earth, and the main

screen will be projected to another screen in which the detections of the area will be

shown. It will mitigate the missing of aircraft as prone to the human eye.

7 | P a g e

 1.4.6.2 GUI 2 (Selenium based)

The coordinates of the area to be scanned will be given, and it will

automatically scan the area without human intervention. The session will log all the

details mentioned above to a folder containing the captured images of the aircraft.

1.5 Objectives

 1.5.1 General Objectives:

“To build an innovative state-of-the-art software powered by Machine Learning

(ML) and Browser automation techniques, providing an autonomous tool to Detect and

Classify Aircraft with greater efficiency and productivity.”

 1.5.2 Academic Objectives:

- Development of an accurate and efficient algorithm for automatically detecting and

classifying aircraft.

- Addressing a real-world problem

- To implement Machine Learning, Image Processing techniques and simulate the

results.

- To increase productivity by working in a team

- To design a project that contributes to the welfare of society and National Security

1.6 Scope

This project finds its scope in intelligence gathering using overhead imagery. It has been

developed in such a way that it is a general-purpose software to identify any object for which the

model has been trained, and it will scan the area for detection using Google earth.

Its applications include:

8 | P a g e

• Early warning for movements of aircraft in enemy Territory

• The detection of foreign aircraft on hostile bases

• Identify enemy ORBAT (Order of Battle)

• Pre-emption against possible enemy strikes

• Counter nefarious enemy intentions.

1.7 Deliverables

 1.7.1 Eagle View

It gives an eagle view to observe and gather intelligence using a combination of

image processing, machine learning and browser automation techniques.

 1.7.2 Object of interest:

It can detect the object of interest by using the same combination of image

processing and machine learning techniques. By detecting the object of interest, we mean

detecting any kind of object. The limitation is only the dataset of that object, for which also

a solution has been given in the form of Synthetically generation.

 1.7.3 Data Analysis Report:

The project will generate a comprehensive report detailing the analysis of the data

collected during the aircraft detection and classification process. The report will include

detailed information on the accuracy of the detection and classification system, as well as

any areas for improvement.

9 | P a g e

1.8 Relevant Sustainable Development Goals

The project falls under SDG 9

“Support domestic technology development, research and innovation in developing

countries.”

By developing software that utilizes cutting-edge technology such as satellite imagery,

image processing and machine learning techniques, this project can contribute to the

advancement of infrastructure and innovation in the field of transportation and surveillance.

Overall, the project can have a positive impact on the achievement of the SDGs by

promoting the use of innovative and sustainable technologies in the field of intelligence and

surveillance.

The project is sponsored by the Intelligence Agency, which will indeed be used for the

enhancement of National Security.

1.9 Structure of Thesis

Chapter 2 contains the literature review and the background and analysis study this thesis is

based upon.

Chapter 3 contains the organization of Datasets

Chapter 4 contains the training and evaluation of AI Models

Chapter 5 describes GUIs in detail

Chapter 6 contains the conclusion of the project.

Chapter 7 highlights the future work of this project.

10 | P a g e

Chapter 2: Literature Review

The introduction of a novel product involves the modification and enhancement of

features that were previously present in similar products. The process of conducting a

literature review holds significant importance in the progression of an idea towards the

creation of a novel product. Similarly, in the context of product development, conducting

a comprehensive analysis of similar projects is imperative. The present study is segmented

into subsequent sections.

• Existing solutions

• Research

 2.1 Existing Solutions

There are several existing solutions to this problem. However, all are hardware-based

systems like ADS-B: Automatic Dependent Surveillance-Broadcast (ADS-B), Synthetic Aperture

Radar (SAR), Electro-Optical (EO) Sensors and Multi-Spectral Imaging.

No existing solution employs Convolutional Neural Networks (CNNs) to do this job.

11 | P a g e

 2.2 Research

The literature review for Aircraft Detection and Classification using Satellite Imagery includes

the following:

1. Research on object detection and classification techniques: This includes research on YOLO

(You Only Look Once) object detection technique and other deep learning models that are

commonly used in object detection and classification.

2. One Stage Vs Two Stage Detectors: Whether to do detection and classification in one stage

or employ separate models for these tasks.

3. Studies on satellite imagery: This includes research on different types of satellite imagery,

such as optical and SAR (Synthetic Aperture Radar), and their applications in object

detection and classification.

4. Applications of object detection and classification in defense and security: This includes

studies on the use of object detection and classification in defense and security applications,

such as detecting and identifying military assets and monitoring the movement of troops.

5. Studies on integrating satellite imagery and other data sources: This includes research on

integrating satellite imagery with other data sources, such as aerial imagery, ground-based

sensors, and social media data, to improve object detection and classification.

6. Studies on the use of object detection and classification in disaster management: This

includes research on object detection and classification to identify and monitor areas

affected by natural disasters, such as floods, earthquakes, and wildfires.

12 | P a g e

2.2.1 Research on object detection and classification techniques:

Deep learning neural networks, known as convolutional neural networks (CNNs), are

frequently employed for image and video processing. CNNs are built to automatically learn

hierarchical representations of visual information from raw pixel input. They are inspired by

the structure of the visual cortex in humans and animals.

CNNs have emerged as a popular and successful method for image classification, object

recognition, and segmentation applications due to their capacity to learn and extract features

from raw data automatically.

2.2.1.1 Object Detection Models

Machine learning models called object detection models are created to find and

identify things of interest in images and videos. Object detection models include details on

the location and limits of specific items inside an image, unlike image classification models,

which merely assign a label to the entire image.

There are various kinds of object detection models, including more established deep

learning models like region-based Convolutional Neural Networks (R-CNN), Single Shot

Detectors (SSD), and You Only Look Once (YOLO), as well as more conventional

computer vision methods like template matching and Haar cascades.

2.2.1.2 Comparison with other models

The problem this project aims to solve needs a state-of-the-art Object Detection

model which can detect aircraft in the images. The performance of various Object

13 | P a g e

detection models was analyzed, and YOLOv5 stood first. It had greater accuracy and

inference time in comparison with other models.

Figure 2a – Performance of different models

Yolov7, which was released in July 2022, performs exceptionally well, but hitherto it had

some bugs related to running on Windows OS; it worked perfectly well on Linux-based

OS. So, we worked with Yolov5.

14 | P a g e

Figure 2b – Performance comparison of YOLOv5 and YOLOv7

2.2.1.3 Image Classification Models

ML Models for categorizing and identifying objects and situations in images are

called "Image classification models". These models are tested on a collection of labelled

image datasets, where each image has been given one or more class labels that describe its

content.

Convolutional neural networks (CNNs), a type of deep learning neural network, are

frequently used in image classification models to examine an image's visual characteristics

and determine which class it belongs to. Each layer in the processing process retrieves

progressively sophisticated information from the input image, which is processed through

several layers. The image is then categorized into one or more pre-established categories

using these qualities.

15 | P a g e

Object identification in images and videos, medical imaging, driverless cars, and security

and surveillance systems are just a few of the many uses for image categorization models.

Due to improvements in deep learning techniques and the accessibility of vast datasets for

training these models, they have improved in accuracy and efficiency.

2.2.1.4 Comparison with other models

YOLO is a one-stage detector; it detects the object and classifies it. However, to

have greater accuracy, we used a separate Image Classification model. Object Detector was

used to detect Aircraft alone, and the Image Classification model was implied to classify

the aircraft within various classes.

The performance of various image classification models was analyzed, and the Yolov5-Cls

model showed promising results.

Figure 2c - Comparison of yolov5-cls with other classification models

16 | P a g e

2.2.2 One Stage Vs Two Stages:

There are two distinct methods for object detection in computer vision: one-stage and two-

stage.

You Only Look Once (YOLO), and Single Shot Detectors (SSD) are examples of one-stage

detectors that are intended to accurately anticipate the class and position of objects in a single

run through the network. They typically predict object classes and bounding box coordinates

simultaneously using several convolutional layers and anchor boxes. For real-time applications

requiring high frame rates, one-stage detectors are typically faster than two-stage detectors.

Object detection is done in two steps using two-stage detectors like region-based Convolutional

Neural Networks (R-CNN) and their derivatives. Prior to processing the image, areas of interest

(ROIs) that are likely to contain objects are found. The object class and bounding box

coordinates are then determined by analyzing and categorizing these ROIs. Region proposal

networks (RPNs) are frequently used in two-stage detectors to create ROIs and a separate CNN

to categorize the objects contained in each ROI. Although two-stage detectors are slower and

require more calculations than one-stage detectors, they are typically more accurate.

In conclusion, although two-stage detectors are more accurate but slower, one-stage detectors

are faster but less accurate. Depending on the needs of the application, such as the necessary

accuracy and speed, one must choose between these two options.

17 | P a g e

To have greater accuracy for Aircraft detection Yolov5 object detection model was selected,

and for the Classification of aircraft separately trained Yolov5-Cls Image Classification model

was used. Due to fewer data on Aircraft classes, it was not possible to train only the object

detection model to accurately detect and classify aircraft. Separating the process yielded

greater accuracy as detecting the aircraft was the only job for the object detection model, and

classifying it was for the Classification model. It also made the project general-purpose to

integrate different models of various objects where scarcity of Dataset is an issue.

18 | P a g e

Chapter 3: Datasets

A dataset is defined as a compilation of information utilized for training, testing, and

assessing machine learning models. A dataset is a collection of various types of data,

including but not limited to images, text, numerical values, or a combination of these.

Labelled datasets are a common practice in machine learning, wherein each data point in the

dataset is associated with one or more class labels or target values. These labels or values

serve as a reference for the machine learning model to generate an output or prediction for

the given data point.

3.1 Custom real-world Aircraft Dataset

The significance of large and varied datasets in the training of machine learning models

cannot be overstated. The size and quality of a dataset can significantly influence the performance

of a machine-learning model, thereby enhancing its accuracy and robustness. The preparation and

refinement of data are typically necessary to guarantee the uniformity, precision, and

appropriateness of the dataset for utilization in machine learning algorithms.

As the project was to be deployed in the real world, we had to gather as much real-world data as

possible. So overhead imagery of aircrafts from various sources on the internet was acquired. The

datasets were different in resolution, annotations format and some of them were not annotated.

Un annotated dataset was annotated with the help of Roboflow.

19 | P a g e

3.1.1 Dataset Collection / Acquisition

The data we want to collect is entirely dependent on the issue we are seeking to resolve.

The coaching knowledge cannot be surpassed by a machine learning algorithm. As a result,

attention must be paid to gathering the best possible image data for the machine learning

models. Computer vision models can be trained using one of the most extensive picture

datasets and deep learning image data, thanks to a large image classification dataset. The range

of services for collecting and annotating image data for use in machine learning and deep

learning applications is extensive. The simplest technique to gather photographs for training

the model is to use snipping software to crop images of aircraft, but there is surplus data in

the area around the aircraft that could skew the model's results.

The training dataset is contaminated with extra data, or "Outliers," which are not needed to

train the model. Figure 3a below displays an illustration of an outlier.

 Figure 3b: An image without outliers.

 Figure 3a: Image with outliers.

20 | P a g e

3.1.2 Data Munging and Feature Extraction (Image- Preprocessing)

Data pre-processing, also known as data munging or data cleaning, is an essential step

for machine learning engineers. Most ML engineers devote a significant amount of time to it

before developing the model. Software like Photoshop and other similar programs can be used

for data preparation. Outlier detection, missing value treatments, and removing undesired or

noisy data are a few examples of data pre-processing.

Like that, "image pre-processing" refers to actions on images that are performed at the most

basic level of abstraction. Pre-processing aims to improve the picture data by reducing

unwanted distortions or enhancing specific visual properties necessary for subsequent

processing and analysis tasks.

The following is a list of the four categories of image pre-processing techniques.

1. Brightness adjustments and pixel brightness changes

2. Transformations of Geometry

3. Image Segmentation and Filtering

4. Image restoration and Fourier transformation.

In our case, we focused on the following:

• Noise Removal

• Sharpening

• Removal of Outliers

21 | P a g e

3.1.2.1 Noise Removal

Digital photographs are susceptible to several kinds of noise. Errors in the picture

capture process lead to pixel values that do not accurately reflect the accurate intensities of

the actual scene, which is what is known as noise. Depending on how an image is produced,

noise can be added in several different ways. For instance: If a picture is captured from a

satellite, it may be blurred because of clouds and unfavorable weather.

The noise would come from the film grain if the image was scanned from a film photograph. In

addition, the film's condition or the scanner itself may have caused noise.

One can eliminate kinds of noise using linear filtering. For this use, some filters, including

averaging or Gaussian filters, are suitable. An averaging filter, for instance, can be used to

reduce image noise caused by grain. Local differences brought on by grit are lessened since

each pixel is adjusted to the average of the pixels in its immediate vicinity.

3.1.2.2 Sharpening

Resolution and acutance are two variables that together makeup sharpness. The

resolution is uncomplicated and objective. It simply refers to the image file's size in pixels.

The more pixels an image has, the better its resolution and the sharper it can be, all other

things being equal. Acutance is slightly more challenging. It is a purely arbitrary measurement

of edge contrast. The acutance has no unit.

How clearly defined the details in a picture are, especially the little elements, determines how

sharp the image is.

22 | P a g e

Therefore, sharpening is a method for making a picture appear sharper. Acutance must be

increased to increase perceived sharpness. Edge contrast must be added if you want your

image to appear sharper.

3.1.2.3 Removal of Outliers

Finding outliers is a difficult undertaking. By looking at uncertainty measurements,

outliers can be found. However, there are various kinds of outliers. An outlier, for instance, can

be a sample that deviates from the norm. For instance, if we want to differentiate planes from

the dataset and enter the data with vehicles and tunnels around the plane, we may get "outliers"

since the class estimate is unclear. Examples of the outliers were supplied in figures 3a and 3b

for reference. The outliers were previously described in depth in section 2.2.

3.1.3 Labelling of Dataset

The model being used for Object Detection is YOLOv5; it is machine learning under

supervision. Therefore, labelling the data was required before training the model on the data.

For tagging photos and generating bounding boxes around the object of interest in an image,

there are numerous programs and tools available. The bounding box coordinates and class

labels for each object in the image are included in each annotation.

Some of the famous annotation tools are as follows:

⚫ SuperAnnotate

⚫ VGG Image Annotation Tool

⚫ Supervise.ly

23 | P a g e

⚫ Labelbox

⚫ Visual Object Tagging Tool (VoTT)

⚫ LabelImg

⚫ Roboflow

3.1.3.1 Why Roboflow?

The software used for annotation was Roboflow. The following are the key justifications

for choosing it:

• A simple user interface

• Free to use with paid upgraded packages

• Cloud computing and storage

• Multiple forms of labelled data are available (which can be downloaded or used by

creating a link to the prepared dataset on any web platform)

3.1.4 Acquired Datasets Details:

Below are the details of all acquired images from the internet. Manually cropped images

have also been included in the unannotated images folder. They were annotated with the help

of Roboflow.

24 | P a g e

Figure 4 – Acquired Dataset Details

3.1.5 Annotations Conversion

The YOLOv5 object detection model uses an annotation file in .txt format. So, all the

annotated dataset of different format was to be converted to a Txt format. Python codes were

written to convert annotations from XML and Pascal VOC formats and to check whether the

annotations were correct. All the annotations were checked, and any irregularity was dropped

using the custom-written code mentioned in Annexure C.

25 | P a g e

3.1.6 Data Augmentation:

Data augmentation enlarges the dataset to include more training data and enhances model

generalizability. Techniques for enhancing data include random cropping, flipping, scaling, and

color adjustments. Yolov5 training API provides these options by default. Furthermore, they

can be modified by hyperparameters file in the API.

3.1.7 Prepared Dataset:

To train the Object Detection Model, a real-world dataset of overhead images collected, as

mentioned above, was segregated into three folders for training, validation, and testing uses

using a custom Python code. Background images were incorporated into the dataset to increase

the model's precision in differentiating between identical structures, such as aircraft and other

similarly shaped items. These background images allowed the model to better learn the

distinguishing characteristics of the intended objects and helped decrease false positives.

Figure 5a – Detection Dataset Split

26 | P a g e

3.2 Synthetically generated Aircrafts Dataset

The term "Synthetic Dataset" refers to a certain kind of dataset that is produced artificially,

frequently using computer graphics or other simulation techniques. Machine learning models can

be trained using synthetic datasets, which have various advantages over real-world datasets.

3.2.1 Significance:

1. Control: Synthetic datasets can be produced with complete control of the distribution of

the data and the underlying ground truth, allowing for the customization of the generated

data for certain use cases and scenarios.

2. Range: Because synthetic datasets can be developed and enhanced in any way that is

appropriate for a certain purpose, they can offer a broader range of data than real-world

datasets.

3. Privacy: Since synthetic datasets do not contain sensitive information about specific

individuals, they can aid in preserving privacy, which is crucial in applications like

healthcare or finance.

4. Scalability: Synthetic datasets may be produced in big numbers and with a wide variety,

which can be helpful for deep learning models that need a lot of data to train.

5. Cost: The creation of synthetic datasets is less expensive than the time- and money-

consuming process of gathering and classifying real-world datasets.

27 | P a g e

In cases when real-world datasets may not be available or adequate, synthetic datasets can

be used to produce huge quantities of high-quality labelled data for machine learning model

training. They also give a mechanism to create certain situations to test models, which helps

with research and development.

3.2.2 Tools and Framework:

o Adobe Photoshop CC 2022

o Sketchfab

o Cinema 4D

3.2.3 Generation ways:

There are several ways to create synthetic datasets:

Generative adversarial networks (GANs): GANs are deep learning models that can

generate new data by learning the underlying distribution of the data. GANs are commonly

used in image and video generation tasks and can produce highly realistic synthetic data.

Rule-based methods: Rule-based methods involve generating data based on specific rules

and constraints. For example, a synthetic dataset of floor plans for buildings could be

generated based on specific architectural rules and design principles.

Simulation: Simulation involves creating a virtual environment that mimics real-world

scenarios to generate synthetic data. This approach is commonly used in robotics and

autonomous vehicle applications, where it is difficult to obtain real-world data.

28 | P a g e

Hybrid methods: Hybrid methods involve combining multiple approaches to generate

synthetic data. For example, a hybrid method could involve using GANs to generate images

and then using data augmentation to create variations of the generated images.

Based on the required requirements of Our Project, the techniques we employed used to

create a synthetic dataset were Using Data Augmentation and Simulating the Virtual

Environment for an Aircraft.

3.2.4 Dataset Preparation:

Adobe Photoshop CC 22 was used to prepare the dataset.

• For synthetic dataset generation, 3d Models of different aircraft were downloaded

from sketchfab.com and imported into Cinema 4d, where materials and shaders

were applied to the model,

• Using Adobe Photoshop, the finalized models were then color corrected and

oriented to replicate overhead imagery of an aircraft at an airbase. Desired Shadows

in reference to the lighting position were set, and compositing elements were added

to the image to add photorealism,

• Samples of Random background images were taken, keeping in mind the different

geographical aspects needed for precise detection and training of the classifier

model.

• The aircraft in the images were then Rotated, Scaled and Skewed at different

orientations to cater for all possible conditions and augmentations.

29 | P a g e

• A Photoshop Composer script was created and used to randomize all the different

planes, orientations and backgrounds in various combinations, which generated a

dataset of 3040 images of 8 different aircraft.

After the generation of the dataset, it was split into the format of folders supported by

yolov5 using code in Annexure E. As it is an image classification model, they do not

require separate annotation files. All images of one type of aircraft are inserted in a

folder with its name.

Figure 5b – Classification Dataset Split

30 | P a g e

3.3 Challenges:

The following challenges were faced while preparing datasets:

• Non-availability of a large dataset. Smaller datasets were combined to make a bigger one.

• Non-Uniformity in ground truth format. All of them were converted to yolo supported

format by our custom-written codes.

• Formatting of unlabeled data.

• Detection vs Classification Accuracy / Inference Speed tradeoff

• No available datasets of a specific aircraft

31 | P a g e

Chapter 4: Training AI Models

As explained in detail above in the Research section, we are using Yolov5 for the generation of

Object Detection and Image Classification models.

4.1 Training Object Detection Model:

The steps involved in training Object Detection Model using Yolov5 and the prepared dataset

are given below. Before that, some concepts have been explained.

4.1.1 Training Parameters:

Training parameters for the YOLOv5 object detection model determine how the model

learns and adjusts its weights during the training process. Here are some key training

parameters for YOLOv5:

• Batch size: This parameter determines the number of images that the model will

process in each training iteration. Larger batch sizes can help to speed up the training

process but require more memory, while smaller batch sizes are slower but require less

memory.

• Learning rate: The learning rate determines the step size that the optimizer takes

during the training process to update the model weights. A higher learning rate will

32 | P a g e

result in larger weight updates and faster convergence but can also lead to instability

and divergence.

• Weight decay: This parameter determines the amount of regularization applied to the

model weights during training, which can help to prevent overfitting. A higher weight

decay will result in more regularization, while a lower weight decay will result in less

regularization.

• Epochs: determine the number of times the entire training dataset is used to train the

model. Increasing the number of epochs can help to improve the model's performance

but also increases the risk of overfitting.

• Optimizer: The optimizer determines the algorithm used to update the model weights

during training.

• Loss function: The loss function measures the difference between the predicted and

ground truth bounding boxes and class labels during training.

Optimizing these training parameters is critical for achieving the best performance of the

YOLOv5 model. It is important to experiment with different values of these parameters to find

the optimal combination for the specific problem being solved.

4.1.2 Pretrained Model Comparison:

YOLOv5 comes with several pre-trained models that can be used for various object

detection tasks. These pre-trained models are trained on large datasets and can be fine-tuned for

specific use cases. Here are some of the pre-trained models available in YOLOv5:

33 | P a g e

Figure 6 – Pre-trained Yolov5 Detection Models comparison

We chose yolov5s, the second smallest and fastest model available. Greater accuracy comes

with a trade-off with inference speed. Large models are more accurate, but their detection speed

is slow.

4.1.3 Training Setup:

For training a YOLOv5 object detection model, a High-end GPU-enabled Python

environment is required. It can be done on a PC or web-based environment. Google Colab was

used, which is a free cloud-based service provided by Google that enables users to run Python

code and other popular machine learning frameworks in a web-based environment. It provides

access to a high-end CPU, GPU, and TPU (Tensor Processing Unit).

It can run Jupyter notebooks. The other thing is Yolov5 API.

4.1.4 Yolov5 API:

The yolov5 GitHub repository provides an API to train object detection models.

34 | P a g e

The following command was used to train the model.

4.1.4.1 Img Size:

The image size was kept at 640*640. Resolutions of all images were plotted to check

for a median value to which all images would be resized. The majority of images had a

resolution of 640*640. The API automatically resizes all images.

Figure 7 – Plot of resolution of images

The documentation also provides image sizes of the given pre-trained models to get

maximum efficiency.

35 | P a g e

Figure 8 – Performance comparison of yolov5 models

4.1.4.2 Batch Size:

The Google Collab provides a free GPU of 12 GB memory. A batch size of 64

utilizes a maximum of 11.7 Gb GPU memory. The batch size can be increased with higher

GPU memory.

4.1.4.3 Epochs:

The epochs are set after hit and try; the maximum number is when the model starts

overfitting. Overfitting is a common problem in machine learning where a model is trained

36 | P a g e

too well on the training data to the point where it begins to memorize the training data

instead of learning to generalize to new data. This leads to the model performing poorly on

new, unseen data, despite performing very well on the training data.

4.1.4.4 Data:

This parameter takes a configuration file (.yaml), which contains folder paths of the

train, valid and test folders and class names.

4.1.4.5 Cfg:

The cfg parameter takes an input of the configuration files of pre-trained weights. If

we want to train the yolov5s model, the input will be “yolov5s.yaml”.

4.1.4.6 Weights:

This enables the algorithm to use a pre-trained model. If empty, it trains the model

from scratch.

4.1.4.7 Project:

The name of the folder in which it will store all files related to training and final

weights is also there.

4.1.4.8 Resume:

Google colab’s free session expires after some time. Training a large dataset is not

an easy task. Luckily yolov5 offers a resume option which resumes the training from where

it left off. When the session closes, it also deletes the files. As a workaround, Google Drive

was mounted to Collab and yolov5 git was cloned to the drive so that the files would be

saved even after the session closed. It enabled the use of resume functionality.

The following command was used to resume the training:

37 | P a g e

4.1.5 Training results:

The model was trained for 117 epochs and yielded 80% test accuracy.

The following results were plotted by our custom-written code mentioned in Annexure D,

which presents various metrics.

Figure 9a – Detection model training results plot

There are several metrics that are commonly used to evaluate the performance of object

detection models like YOLOv5. Some of the most common metrics are:

1. Precision: Precision is the fraction of true positive detections out of all the positive

detections. It measures how accurate the model's predictions are.

38 | P a g e

2. Recall: Recall is the fraction of true positive detections out of all the actual positives in

the dataset. It measures how well the model can detect objects in the dataset.

3. Intersection over Union (IoU): IoU is a measure of how well the model can predict the

bounding boxes of objects. It is the ratio of the intersection of the predicted bounding

box and the ground truth bounding box to the union of both bounding boxes.

4. Average Precision (AP): AP is a metric that measures the accuracy of object detection

models. It is calculated by computing the precision and recall for each object class at

different confidence thresholds and then taking the average.

5. Mean Average Precision (mAP): measures the precision and recall of the predicted

bounding boxes against the ground truth bounding boxes. MAP is usually calculated by

averaging the AP (Average Precision) scores over different IoU (Intersection over

Union) thresholds. mAP@0.5 (or mAP05095) refers to the MAP calculated with an IoU

threshold of 0.5, which is one of the commonly used thresholds for object detection

evaluation. It measures the average precision of the predicted bounding boxes that have

an IoU of at least 0.5 with the ground truth bounding boxes.

39 | P a g e

Figure 9b – Detection model training results curves

These are different types of curves that are commonly used to evaluate the performance of

object detection models. Here's an explanation of each of these curves:

1. F1-Confidence curve: The F1 score is a commonly used metric to evaluate the overall

performance of an object detection model. It is a combination of precision and recall.

The F1-Confidence curve plots the F1 score against different confidence levels for the

model's predictions. This curve can be used to determine the optimal confidence

threshold that maximizes the F1 score.

2. Recall-Confidence curve: Recall measures the percentage of true positive detections

that the model has correctly identified. The Recall-Confidence curve plots the recall

against different confidence levels for the model's predictions. This curve can be used

to determine the optimal confidence threshold that maximizes recall.

40 | P a g e

3. Precision-Recall curve: Precision is the percentage of true positive detections that the

model has correctly identified out of all the detections it has made. The recall is the

percentage of true positive detections that the model has correctly identified out of all

the ground-truth objects in the image. The Precision-Recall curve plots precision against

recall for different confidence thresholds. This curve can be used to evaluate the trade-

off between precision and recall and to determine the optimal confidence threshold that

balances the two.

4. Precision-Confidence curve: The Precision-Confidence curve plots precision against

different confidence levels for the model's predictions. This curve can be used to

determine the optimal confidence threshold that maximizes precision.

4.1.6 Conclusion:

All the metrics to judge the model’s performance have been explained in detail above. The

model training yielded 80% of test accuracy, as shown in figure 9a. F1-Confidence curves give

a threshold of 0.60 with 98% surety. When integrating the model, the threshold can be set to

0.60, and it won’t miss real aircraft.

The model didn’t overfit because ample time was given to dataset preparation. Overfitting can

occur when a model is too complex relative to the amount of training data available or when

the model is trained for too many iterations or epochs. It can be prevented by using techniques

such as regularization, early stopping, and data augmentation. But the dataset was itself diverse.

It could have been trained more, but due to constrained resources, it was stopped at 117 epochs.

Still, it yielded great accuracy.

41 | P a g e

The test and train loss were following a downward trend which means it could’ve been trained

more on this dataset before overfitting could occur.

4.2 Training Image Classification Model:

The steps involved in training an image classification model on a synthetic dataset are given

below.

4.2.1 Training Parameters

The training parameters of image classification model training are as same as those of object

detection, which has been discussed in detail in 4.1.1.

4.2.2 Pretrained models comparison

Following is the comparison of pre-trained yolov5-cls models. We used the yolov5x model

as it was large enough to learn complex patterns of different aircraft. It also did not consume

more significant resources to train and run inference.

42 | P a g e

Figure 10 – Performance comparison of pre-trained yolov5-cls models

4.2.3 Training Setup

The same setup as mentioned in 4.1.3 was used.

4.2.3 Yolov5-Cls API

The API to train the classification model is also in the same GitHub repository.

The following command was used to train the image classification model.

43 | P a g e

The model parameter takes an input of pre-trained image classification model. We have

used the pre-trained option now, as the dataset was not large enough for the model to be

trained from scratch. The pre-trained model also reduces the time of training.

It supports all Pytorch image classification models and can be used to train any of them.

44 | P a g e

4.2.4 Training Results

The classification API does not produce results and log files as object detection in which

deep insights into the model’s performance metrics are given. However, the following are the

snapshots of training.

4.2.5 Conclusion

As the dataset was synthetically generated, it still gave an exceptionally good performance.

Preparing a dataset which can give higher accuracies in real-world testing scenarios a lot of

labor is required.

Anyone who wants to prepare a large, diverse dataset can follow the steps given in previous

chapters and include images of all kinds of scenarios as it would have been in the case of a real-

world collected dataset.

4.3 Challenges

Following engineering challenges were faced:

• Fewer data quantity and quality of classification dataset.

45 | P a g e

• Hardware constraints; training both models was computationally intensive and required

powerful hardware. Resource constraints limited the complexity of the model, the size

of the dataset and the length of the training process.

• Model interpretability: models can be complex and challenging to interpret.

Understanding how the model makes predictions and identifying sources of errors was

a challenging task.

46 | P a g e

Chapter 5: GUIs

To integrate both models and to solve the problem, two different Graphical User Interfaces were

created.

5.1 GUI 1 (Multi Screen for Live Detection)

It would be for a user manually browsing through Google Earth. The main screen will be

projected to another screen in which the detections of the area will be shown. It will mitigate the

missing of aircraft as prone to the human eye.

5.1.1 Block Diagram:

Figure 11 – Block Diagram of GUI 1

47 | P a g e

5.1.2 Concept:

This Python script uses the YOLOv5 object detection model and a custom classification

model to detect objects and classify them in real-time using screenshots of a specified window.

1. The script first defines several helper functions, including one to pre-process the

input image by cropping it and one to crop a bounding box around a detected object

for classification.

2. The script then loads the YOLOv5 object detection model and sets the confidence

threshold for non-maximum suppression.

3. If the user chooses to use classification, the script loads the custom classification

model and its corresponding class names.

4. The script then enters a loop where it captures screenshots of the specified window,

pre-processes them, and runs the object detection model on them to detect objects.

5. For each detected object, the script optionally crops a bounding box around it and

runs the classification model on it to classify the object.

6. The script then draws bounding boxes around the detected objects and displays the

object class and classification results (if classification is enabled) on the image. The

output image is then displayed in a window.

7. The script continuously loops and captures screenshots until the user closes the

output window.

Overall, the script provides a simple and effective way to detect and classify objects in real-

time using deep learning models.

48 | P a g e

5.1.3 Libraries and helper functions:

The code imports several libraries to perform various operations:

• os: This library provides a way of using operating system-dependent functionality like

reading or writing to the file system.

• cv2: This library is used for computer vision and image processing operations, such as

image resizing, drawing shapes and text on images, and loading image files.

• numpy: This library is used for numerical computing in Python. It provides support for

large, multi-dimensional arrays and matrices, along with an extensive collection of high-

level mathematical functions to operate on these arrays.

• Torch: This library is used for deep learning and machine learning operations. It provides

several data structures for storing and manipulating large amounts of numerical data, as well

as methods for defining, training, and evaluating machine learning models.

• pathlib: This library is used for working with file paths. It provides a way to represent file

paths as objects, which makes it easier to work with file paths in a platform-independent

way.

• windowcapture (custom): This is a custom module that provides a way to capture the

current screen and return it as a NumPy array.

The helper functions defined in the code are:

• pre_process_image: This function crops the image to a specific size by slicing the

NumPy array and returns the resulting image as a NumPy array.

49 | P a g e

• crop_one_box: This function crops a specific region of the input image using the

coordinates of the bounding box specified by x1, y1, x2, and y2, resizes the cropped

image to 224x224, and returns the resulting image as a tensor.

• parse_detections: This function takes the output of the object detection model, the

current screenshot image, and the optional classifier model and draws bounding boxes

and class probabilities on the input image. If a classifier model is provided, it also uses

to predict the class probabilities of each object detected. The function returns the

modified image as a numpy array.

5.1.4 Working:

The working of this script is explained in detail below:

• When started, it asks about whether to use Classifier for the classification of

detected objects.

• It loads the object detection model and if selected also loads the image

classification model.

• It sets the “model.conf” parameter, which is the NMS confidence threshold.

• Then it enters in a while loop.

• It gets a screenshot of the current screen using a custom-written code which gives

an FPS of 40. It was necessary to have a fast speed of screenshots, or else it

would have produced a significant lag on the projected screen.

• It preprocesses the image. Crops the extra screen of the browser other than

google earth imagery. It is necessary because otherwise, it would confuse the

model with unwanted similar-shaped icons and affect detection.

50 | P a g e

• It then divides the image of 1920*1080 resolution into tiles of 640*640 size. 640

resolution size was chosen as the model was trained on this size. Tiling was done

because an image of greater size than the model was trained on would have to

be resized to the training image's size. Greater resolution size images can be

passed, but the detections are not as accurate. The pixel ratio of aircraft gets

smaller, and the model is unable to detect them. So tiling was done so as not to

disturb the pixel ratio and pass each portion of the area as a whole without

resizing it.

• It then iterates between the tiles and passes the tile from the model, converting

the detections of torch format into an array using pandas.

• Passes each detection into the “parse_detections” function along the tile image.

It returns the image with bounding boxes drawn on them. The tile image is stored

in precisely the place from where the tile was taken.

• If the classification is selected, the detected coordinates of the object are passed

to the “crop_one_box” function to get the cropped image, and that image is

passed to the classification model. It is an iterative process, and all detections

are cropped. Certain necessary checks to prevent runtime errors are also inserted.

• After the iteration among tiles is complete, an output image with bounding boxes

drawn is formed. It is projected to another screen using OpenCV.

• The script prints FPS on the terminal.

51 | P a g e

Figure 12 – GUI 1 Display Pane

As shown in the above image, the left screen is where the user is operating, and the screen is

captured, passed through the model, and displayed on the right screen.

5.1.5 Conclusion

It is an object detection and classification application that can be used for general

purposes. To detect any kind of object and shape while browsing through a computer,

the internet or any application that displays on the screen, it can be used. The object of

interest’s model has to be trained, and interfacing is simple. This GUI does not solve the

problem definition we have established above, as it requires manual operation.

However, it was the requirement of agencies. The code has been provided in Annexure

B.

52 | P a g e

5.2 GUI 2 (Selenium based)

This is the GUI that solves our problem and is a general-purpose product that can be used for

any kind of object detection and classification autonomically. The coordinates of the area to be

scanned will be given, and it will automatically scan the area without human intervention. The

session will log all the details mentioned above to a folder containing the captured images of the

aircraft and a CSV file.

5.2.1 Block Diagram

Figure 13 – Block Diagram GUI 2

5.2.2 Concept

This Python script uses the techniques of Browser automation by Selenium and Yolov5

object detection and classification to scan an area of google earth.

53 | P a g e

The script first defines several helper functions, including one to pre-process the input image

by cropping it and one to crop a bounding box around a detected object for classification, send

controlling commands to Selenium Browser, log all information in a CSV file and present

information in windows of Tkinter.

1. The script loads the components as set in the GUI, which are:

a. Point1 Longitude and Latitude

b. Point2 Longitude and Latitude

c. Area Name

d. KML file (Generated by Google Earth Project option. It exports the coordinates

of placemarks placed on the map)

e. Detection Model (For object detection)

f. Classification Model (For object classification)

g. Use Classifier Checkbox (Whether to use classifier or not)

h. Headless browser Checkbox (Starts the session without displaying the browser.

Used to deploy on a server)

i. Save all Screenshots Checkbox (Saves all screenshots of the area)

j. Cast Live Detection on another screen Checkbox (Projects the browser to

another screen and shows detection on them in real-time)

k. Cast CSV Table Checkbox (Displays the log file as a separate window)

54 | P a g e

Figure 14 – The main window of GUI 2

2. Users have been provided with such vast options so that the application can serve a

general purpose.

3. It checks all options' validity as all of them are interlinked. For example, if the

Headless option is checked, then there is no point in casting the screen as the browser

is not displaying anything, and the process is being run in the background.

4. It then setups the browser and sets its settings.

5. Loads the detection and, if checked, classification models. Sets NMS threshold.

55 | P a g e

6. Creates a CSV file, sets its header and places it in a folder under Area Name with

the timestamp of session initiation.

7. Before starting a while True loop, it casts the screen to another screen using the same

procedure as done in GUI 1, but in it, the screenshot is captured from the selenium

library. It saves the preprocessing time to remove any unwanted details of the

captured screenshot as it gives only the imagery. It also enables to have a headless

option as if a complete screen was to be captured; a display browser was necessary

to capture it. With this option, it can be deployed to a server with no display.

8. It also starts, if checked, the tkinter window to show the CSV file.

9. The while loop starts when the coordinates of the upper left point have been loaded.

The quality of the map is dependent on the internet connection. A necessary check

to check for blurred images has been placed so that it does not start the scan on blur

images.

10. The loop starts a move right, move down, move left, move down and move right

scan motion on the browser. It captures screenshots in between and processes them.

11. After the lower right coordinate has been reached, it quits the operation.

5.2.3 Libraries and Helper Functions:

 Many libraries have been used, which made this product possible. For a better understanding

of their usage, we need to understand what they are made for. These are all the libraries used:

• os: A Python module for interacting with the operating system. It provides a way to

perform operations like navigating the file system, creating and deleting files and

directories, and more.

56 | P a g e

• Selenium: A web testing framework used for automating web browsers. It provides

a way to simulate user interactions with a web page, such as clicking buttons, filling

out forms, and navigating between pages.

• Msvrct: To capture keyboard characters. Used to break the loop.

• pyautogui: A Python library for automating mouse and keyboard actions. It

provides a way to simulate mouse clicks and movements, as well as keyboard

presses and typing.

• Time: A module that provides various functions for working with time in Python. It

can be used to measure how long a piece of code takes to run, delay program

execution for a certain amount of time, and more.

• cv2: A library for computer vision in Python. It provides functions for image

processing and analysis, such as image manipulation, object detection, and feature

extraction.

• CSV: A module for working with CSV (comma-separated value) files in Python. It

provides a way to read and write CSV files, which are commonly used for storing

and exchanging data in a tabular format.

• Torch: A machine learning library for Python. It provides tools for building and

training neural networks, as well as tools for data processing and analysis.

• Torch.nn.functional: A module within the PyTorch library that provides various

functions for building neural networks. It includes functions for activation functions,

loss functions, and more.

57 | P a g e

• geopy: A Python library for working with geolocation data. It provides tools for

geocoding (converting addresses to latitude and longitude coordinates) and distance

calculation between two points.

• Threading: A module in Python for creating and managing threads. It provides a

way to run multiple codes simultaneously within a single program.

• screeninfo: A Python library for getting information about the user's display(s). It

provides tools for getting the resolution, refresh rate, and other information about

the screen(s) connected to the computer.

• Tkinter: A Python library for creating graphical user interfaces (GUIs). It provides

tools for creating windows, buttons, menus, and other interface elements.

• Pandas: A library for data analysis in Python. It provides tools for working with

tabular data, such as reading and writing data from various file formats, filtering and

sorting data, and more.

• textwrap: A module in Python for formatting text. It provides functions for

wrapping text to fit within a certain width, filling text with whitespace, and more.

• argparse: A module in Python for parsing command-line arguments. It provides a

way to specify and parse command-line arguments passed to a Python script.

• sys: A module in Python for interacting with the Python interpreter. It provides a

way to access system-specific variables and functions, such as the command-line

arguments passed to the Python script.

• pathlib: A module in Python for working with file system paths. It provides an

object-oriented way to manipulate paths rather than using string operations.

58 | P a g e

5.2.4 Working

Its working has been described below in modules for better explanation and understanding.

5.2.4.1 Scanning

The main challenge to automatically scan the area was to decide how it would go on

as we wanted to automate Google Earth. The API of google earth is not free. So, we were

left with the only option to automate the browser. The browser shows the same imagery

offered by the API.

59 | P a g e

Figure 15 – Conceptualized Scan Motion of GUI 2

The above image shows the conceptualized motion of the scan on Google Earth.

Scan Window

60 | P a g e

The upper left placemark and Lower right placemark contains coordinates, and only two

pair are enough to define a scan area. They are exported by Google Earth as KML files. The

application has options to either enter coordinates or a KML file.

The program loads the coordinates of the Upper left placemark in a customized Google

Earth link.

0h,0t,0r makes the map exactly overhead without any tilt or orthogonal view.

This link is opened in the browser, and it leads to the upper left corner. From there keyboard

right key press is initiated, which moves it to the right. Keypress is optimized to just cross

the scanned area and bring a new unscanned area. The motion continues till it reaches the

longitude of the lower right placemark. After reaching it moves the window down and starts

moving it to the left till the longitude of the upper left placemark.

The scan will continue till it reaches the latitude of the lower right placemark. Hence in this

way, the scan is automated.

The current coordinates are extracted by the Selenium browser library, which gives the

current URL of the page. This way around has been used to get the current coordinates of

the map area being shown. It was not possible other than this because OCRing the lower

bar, which shows coordinates, was also tested, but it did not yield satisfactory results.

Inspecting the page was also not possible as it employed Shadow DOM, which blocks

extracting information.

The area to be scanned also depends on the browser size. The browser on Windows is

1920*1080 in size, so it yields images of the same resolution. If we increase the image size,

then the area scanned in a unit of time can increase and thus scan speed of the area would

61 | P a g e

be enhanced. It can be done if it is deployed on a Windows server. Selenium supports bigger

browser resolutions when deployed on a server with headless option.

5.2.4.2 Logging

Documenting all information is an integral part of this project. It creates a folder

under the Area name and timestamp of session initiation. All files are stored in it.

It contains:

• All captured snaps of detected aircraft. If “save_all_screenshots” is selected, it saves all

captured screenshots, whether they contain any detection or not.

• A CSV file which contains:

o The serial number of the detection

62 | P a g e

o The snapshot in which the aircraft was found so it can be viewed later

o Bounding box coordinates, where in an image the object is

o Score of Confidence

o The classifier findings, which include the likelihood of each class against the

aircraft

o Latitude and Longitude of the area

o A link to Google Earth takes users directly to the area where the aircraft was

found

o Location details of the under-sampled area

Figure 16 – Results Display Pane of GUI 2

5.2.4.2 Presentation

The project has three possible windows for presenting information. One of them, the main

GUI, has been developed on the tkinter python library. It serves as the central control for

the project. It initiates the session and stops it when necessary.

63 | P a g e

It provides information as Total Area and Remaining area in kilometers and Progress in

percentage. The text box below shows all output by script. It gives more insight into what

the script is doing at the moment.

Another window which shows the log file live is also made on Tkinter. The project logs

everything in the CSV file, and this window reads it and displays it. This window is run as

another process, so it does not slow the main script.

64 | P a g e

Lastly, the third window projects the working of the script on another screen. It is to

demonstrate and show what and how the script scans an area. It captures the screenshot of

the main window and projects it to another screen, just like in GUI 1.

Figure 17a – Proposed Display of GUI 2

Below the image is the screenshot of screen 2. It has a table window and a live projection

window.

65 | P a g e

Figure 17b – Snapshot of GUI 2

5.2.5 Conclusion

This application can serve to detect and classify any object on Google Earth. It has

thoroughly addressed the problem posed by intelligence agencies. It still has space for future

work, like addressing the altitude and field of view adjustment according to the terrain. It

requires more testing on a vast, diverse area.

It is ready to be deployed on a Windows server and can give excellent scan speed due to the

bigger resolution size of the browser, as discussed above. The code has been provided in

Annexure A.

66 | P a g e

Chapter 6: Conclusion

In this thesis, we discussed a novel intelligence-gathering system that can Detect and

Classify any object smartly and more efficiently than the typically manual labor of an image analyst.

Our proposed system has an advantage over other traditional systems due to the latest algorithms

used for the detection of objects of interest. Techniques used in our proposed system, Image

Processing techniques, Browser Automation and Machine Learning included algorithms such as

YOLO, which were used to scan and detect the objects of interest; they are also briefly explained,

including their working and importance. The purpose of increasing productivity is being achieved

by using modern techniques. Additionally, the objectives; of accurate detection and classification

and making the application general purpose are attained. Hence saves time as well as is more

accurate.

Our proposed system, ADCSI, is cost-effective as it is purely made for the core purpose of

serving Pakistan, a system that could be beneficial to its National Security. Else, similar hardware

solutions provided and used by other countries are very costly.

67 | P a g e

Chapter 7: Future Work

Future additions that can be made to this project are:

• Other objects of interest can be detected and classified using this software. For

example, Ships, Artillery Guns, trucks, airstrips and convoys.

• This project utilizes Google Earth as its source of imagery. It can be modified to

scan Geotiff files produced by satellites or other sources.

• Deployment on a remote Windows-based server, which can make this application

easily accessible and can have more incredible scan speed.

• Deployment of this technology on GIS.

68 | P a g e

References and Work Cited

1. https://techcult.com/how-often-does-google-earth-update/

2. https://www.cameralyze.co/blog/yolov7-architecture-explanation

3. https://github.com/ultralytics/yolov5/releases

4. https://pytorch.org/vision/stable/models.html

5. https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-

v5-917e9ce13208

6. Deep Multiple Instance Learning for Airplane Detection in High Resolution Imagery

Mohammad Reza Mohammadi [Deep multiple instance learning for airplane detection in

high-resolution imagery | SpringerLink]

7. Airplane Detection Based on Unsupervised Deep Domain Adaptation in Remote Sensing

Image [https://doi.org/10.21203/rs.3.rs-2088221/v1]

8. Two-Stage Deep Learning Approach to the Classification of Fine-Art Paintings

[https://ieeexplore.ieee.org/document/8675906]

9. Jain, A. (2020). Popular Classification Models for Machine Learning. Analytics Vidhya.

Retrieved May 1, 2023, from https://www.analyticsvidhya.com/blog/2020/11/popular-

classification-models-for-machine-learning/

10. Object Detection: Models, Architectures & Tutorial [2023]. (n.d.). V7Labs. Retrieved

May 1, 2023, from https://www.v7labs.com/blog/object-detection-guide

https://techcult.com/how-often-does-google-earth-update/
https://www.cameralyze.co/blog/yolov7-architecture-explanation
https://github.com/ultralytics/yolov5/releases
https://pytorch.org/vision/stable/models.html
https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208
https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208
https://link.springer.com/article/10.1007/s00138-020-01153-7
https://link.springer.com/article/10.1007/s00138-020-01153-7
https://www.analyticsvidhya.com/blog/2020/11/popular-classification-models-for-machine-learning/
https://www.analyticsvidhya.com/blog/2020/11/popular-classification-models-for-machine-learning/
https://www.v7labs.com/blog/object-detection-guide

69 | P a g e

Dataset links

1. https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-

dataset?select=JPEGImages

2. https://zenodo.org/record/3843229#.ZE_TGM5By3B

3. https://drive.google.com/file/d/1--foZ3dV5OCsqXQXT84UeKtrAqc5CkAE/view?pli=1

4. https://arxiv.org/abs/2204.10959

5. https://registry.opendata.aws/rareplanes/

6. https://www.kaggle.com/code/jeffaudi/aircraft-detection-with-yolov5

7. https://zenodo.org/record/3464319#.ZE_TJs5By3B

https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-dataset?select=JPEGImages
https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-dataset?select=JPEGImages
https://zenodo.org/record/3843229#.ZE_TGM5By3B
https://drive.google.com/file/d/1--foZ3dV5OCsqXQXT84UeKtrAqc5CkAE/view?pli=1
https://arxiv.org/abs/2204.10959
https://registry.opendata.aws/rareplanes/
https://www.kaggle.com/code/jeffaudi/aircraft-detection-with-yolov5
https://zenodo.org/record/3464319#.ZE_TJs5By3B

70 | P a g e

Annexures

Annexure A

import os

from selenium import webdriver

from selenium.webdriver.firefox.options import Options

import msvcrt

import pyautogui

import time

import cv2 as cv

import csv

import torch

import time

import torch.nn.functional as F

from geopy.geocoders import Nominatim

geolocator = Nominatim(user_agent="fypgoogleearth")

from GUI2_files.extra_helper import *

from GUI2_files.model_helper import *

from GUI2_files.windowcapture import *

import threading

import screeninfo

#Csv screen

import tkinter as tk

from tkinter import ttk

import pandas as pd

import textwrap

#Sys arg

import argparse

import os

import sys

from datetime import datetime

import pathlib

temp = pathlib.PosixPath

pathlib.PosixPath = pathlib.WindowsPath

71 | P a g e

Change the working directory to the folder this script is in.

os.chdir(os.path.dirname(os.path.abspath(__file__)))

def print_and_flush(data):

 print(data)

 sys.stdout.flush()

def csv_screen(filename):

 def wrap(string, length=20):

 string = str(string)

 return '\n'.join(textwrap.wrap(string, length))

 def update_table():

 global df

 global update_csv_screen

 global destroy_csv_screen

 if update_csv_screen:

 # read the csv file and convert it into a dataframe

 df = pd.read_csv(f'{filename}.csv')

 df = df.reset_index(drop=True)

 # clear the Table

 table.delete(*table.get_children())

 # populate the Table with the updated dataframe values

 for i, row in df.iterrows():

 row = list(row)

 row = list(map(wrap, row))

 table.insert("", i, values=((row)))

 if not destroy_csv_screen:

 root.after(1000, update_table) # check for updates every 1000ms (1

second)

 else:

 root.destroy()

 sys.exit()

 filename = f"{current_folder_name}\\{filename}"

 # read the csv file and convert it into a dataframe

 df = pd.read_csv(f'{filename}.csv')

 df = df.reset_index(drop=True)

72 | P a g e

 # create the tkinter window

 root = tk.Tk()

 root.title(f"{filename}")

 # create the Table

 table = ttk.Treeview(root, show='headings')

 # define the columns

 table["columns"] = list(df.columns)

 # format the columns

 for col in table["columns"]:

 table.column(col, width=150, anchor="w")

 table.heading(col, text=col)

 s = ttk.Style()

 s.configure('Treeview', rowheight=200)

 # populate the Table with the dataframe values

 for i, row in df.iterrows():

 row = list(row)

 row = list(map(wrap, row))

 table.insert("", i, values=((row)))

 # add a scrollbar

 scroll_y = ttk.Scrollbar(root, orient="vertical", command=table.yview)

 scroll_y.pack(side="right", fill="y")

 table.configure(yscrollcommand=scroll_y.set)

 # display the Table

 table.pack()

 root.after(1000, update_table) # start checking for updates every 1000ms (1

second)

 root.mainloop()

def parse_detections(results, tile):

 result_dict = []

 for result in results:

 con = result['confidence']

 con = '{:.1%}'.format(con)

 cs = result['class']

 x1 = int(result['xmin'])

73 | P a g e

 y1 = int(result['ymin'])

 x2 = int(result['xmax'])

 y2 = int(result['ymax'])

 ########################

 if y2 - y1 <= 0 or x2 - x1 <= 0:

 print_and_flush(f"ERROR H={y2-y1} , W={x2-x1}")

 continue

 color = (0, 0, 255)

 ########################

 if model_classifier != None:

 cropped_image = crop_one_box(tile, x1,y1,x2,y2)

 if cropped_image == None:

 continue

 #Classifier

 results_classifier = model_classifier(cropped_image)

 p = F.softmax(results_classifier, dim=1) # probabilities

 p = p.numpy().tolist()[0]

 #classifier_results = '{:.1%} C'.format(p[0])+ ' - {:.1%}

M'.format(p[1])

 ###

 classifier_results = ''

 results = sorted(zip(class_names, p), key=lambda x: round(x[1]*100,

2), reverse=True)

 highestprob_class = results[0][0]

 highestprob_p = results[0][1]

 first = f"{class_names[highestprob_class]} :

{round(highestprob_p*100,2)}%"

 for (class_na, pred) in results:

 classifier_results += f"{class_names[class_na]}

: {round(pred*100,2)}% , "

 ###########

 result_dict.append({'pos':f'{x1},{y1},{x2},{y2}','conf':f'{con}','Cla

ssifier':classifier_results})

 cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)

 cv.putText(tile, f'{con} {first}', (x1-2, y1-5),

cv.FONT_HERSHEY_DUPLEX, 1, color, 2) #(frame,text,bottom left corner of text,font

type, font scaling factor,color,thicknness of line)

 else:

74 | P a g e

 result_dict.append({'pos':f'{x1},{y1},{x2},{y2}','conf':f'{con}','Cla

ssifier':'Nil'})

 cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)

 cv.putText(tile, f'{con}', (x1-2, y1-5), cv.FONT_HERSHEY_DUPLEX, 1,

color, 2) #(frame,text,bottom left corner of text,font type, font scaling

factor,color,thicknness of line)

 return tile, result_dict

def append_to_csv(result_dict,image_name,lat,long,alt,FieldOfView):

 dictt = []

 global detection_counter

 #['Serial','Image Name','Position','Confidence','Latitude','Longitude']

 google_url =

f'https://earth.google.com/web/@{lat},{long},{alt},{FieldOfView},30.00050866y,0h,

0t,0r'

 try:

 location = geolocator.reverse(f"{lat},{long}", language='en')

 address = location.raw['address']

 #address = {key: value for key, value in address.items() if 'ISO' not in

key and 'code' not in key}

 address = {key: value for key, value in address.items() if 'ISO' not in

key}

 address = ", ".join(address.values())

 except Exception as e:

 print_and_flush(f"Exception occured retrieving loc data {e}")

 address = "Connection Error"

 for xx in result_dict:

 detection_counter += 1

 dictt.append({'Serial':detection_counter ,'Image Name':image_name

,'Position':xx['pos'] ,'Confidence':xx['conf'] ,'Cls

Results':xx['Classifier'],'Latitude':lat ,'Longitude':long, 'Link':google_url

,'Location':address})

 with open(csv_filename, 'a', newline='') as f_object:

 dictwriter_object = csv.DictWriter(f_object, fieldnames=csv_fields)

 dictwriter_object.writerows(dictt)

 f_object.close()

75 | P a g e

def cc_screenshots():

 cv.namedWindow('P', cv.WINDOW_NORMAL)

 screentwo = screeninfo.get_monitors()[1]

 screentwo_width = screentwo.width

 screentwo_height = screentwo.height

 cv.moveWindow('P', screentwo_width , 0)

 while True:

 window_screenshot = get_screenshot()

 global show_model_image

 if show_model_image:

 global model_image

 cv.imshow('P', model_image)

 cv.waitKey(1000)

 show_model_image = False

 cv.imshow('P', window_screenshot)

 cv.waitKey(1)

 global stop_screenshot_thread

 if stop_screenshot_thread:

 break

"""

['upperleft,72.79693968164692,33.57384131541002,511.2013507374641',

'lowerright,72.86793319077674,33.53240399828832,512.0759362930472']

"""

Create an ArgumentParser object

parser = argparse.ArgumentParser()

Add an argument to the parser with a name and help message

parser.add_argument('--point1_longlat', help='Long,Lat of point 1')

parser.add_argument('--point2_longlat', help='Long,Lat of point 2')

parser.add_argument('--area_name', help='Area Name')

parser.add_argument('--kml_filename', help='KML filename (Mushaf Airbase)')

parser.add_argument('--det_model', help='Name of Detection model (best.pt)')

parser.add_argument('--cls_model', help='Name of Classifier model (best_cls.pt)')

parser.add_argument('--use_cls', help='Use Classifier (T/F)',

action='store_true')

76 | P a g e

parser.add_argument('--headless', help='Start program headless (T/F)',

action='store_true')

parser.add_argument('--save_allscreenshots', help='Save all Screenshots (T/F)',

action='store_true')

parser.add_argument('--cast_live_screenshot', help='Cast live screenshots (T/F)',

action='store_true')

parser.add_argument('--cast_csv_table', help='Cast CSV table (T/F)',

action='store_true')

args = parser.parse_args()

p1 = args.point1_longlat

p2 = args.point2_longlat

kml_filename = args.kml_filename

headless = args.headless

keep_nodetection_image = args.save_allscreenshots

screen_cast_check = args.cast_live_screenshot

cast_csv_table = args.cast_csv_table

detection_model_name = args.det_model

classification_model_name = args.cls_model

use_cls = args.use_cls

area_name = args.area_name

#Kml file

if kml_filename is not None:

 if os.path.isfile(f"kml_files\\{kml_filename}.kml"):

 print_and_flush("KML file found.")

 UL_lat, UL_long, LR_lat, LR_long =

get_cord_from_kml(f'kml_files\\{kml_filename}.kml')

 else:

 print_and_flush("KML file not found. Exiting")

 sys.exit()

#Point 1 2 and area name

if p1 and p2 is not None:

 UL_long , UL_lat = p1.split(",")

 LR_long , LR_lat = p2.split(",")

#Det model file check

if detection_model_name is not None:

 if os.path.isfile(f"model_files\\{detection_model_name}"):

 print_and_flush("Detection Model File Exists")

 else:

 print_and_flush("Detection Model Not Found. Exiting")

 sys.exit()

77 | P a g e

#Cls Model file check

if classification_model_name is not None:

 if os.path.isfile(f"model_files\\{classification_model_name}"):

 print_and_flush("Classifier Model File Exists")

 else:

 print_and_flush("Classifier Model Not Found. Exiting")

 sys.exit()

#kml_filename = 'Mushaf airbase'

#headless = False

#use_cls = True

#keep_nodetection_image = False

#cast_csv_table = True

options = Options()

options.headless = headless

options.binary_location = r'C:\Program Files\Mozilla Firefox\firefox.exe'

driver = webdriver.Firefox(executable_path='GUI2_files\\geckodriver.exe',

options=options)

right_mov_check = True

left_mov_check = False

up_mov_check = False

down_mov_check = False

#adampur 225a,130d

#google_url =

f'https://earth.google.com/web/@{UL_lat},{UL_long},225a,130d,30.00050866y,0h,0t,0

r'

parameter=184, area=1817m2

google_url =

f'https://earth.google.com/web/@{UL_lat},{UL_long},320a,65d,30.00050866y,0h,0t,0r

'

driver.get(google_url)

if headless == True: print_and_flush("Headless iniitiated")

driver.maximize_window()

Model

#Model Object Detection

startTime = time.time()

78 | P a g e

yolov5_folder_path = f"{os.getcwd()}\\yolov5"

model_path = f"{os.getcwd()}\\model_files"

model = torch.hub.load(yolov5_folder_path, 'custom',source="local",

path=f'{model_path}\\{detection_model_name}')

model.conf = 0.60 # NMS confidence threshold

Model Classifier

if use_cls:

 model_classifier = torch.hub.load(yolov5_folder_path,

'custom',source="local",

path=f'{model_path}\\{classification_model_name}').cpu().float()

 class_names = model_classifier.names

 print_and_flush(class_names)

else:

 model_classifier = None

##################

endTime = time.time() - startTime

print_and_flush(f"Models Loaded in {endTime}")

driver.implicitly_wait(50)

#print_and_flush("Waiting 50 seconds so that page loads up...")

##################

#Create a csv file + folder

if kml_filename is not None:

 csv_filename = f'{kml_filename}.csv'

else:

 csv_filename = f'{area_name}.csv'

current_folder_name = csv_filename.removesuffix(".csv")

timestamp = datetime.now().strftime("%Y-%m-%d_%H%M")

current_folder_name = f"{current_folder_name}_{timestamp}"

os.makedirs(current_folder_name)

csv_filename = f"{current_folder_name}\\{csv_filename}"

csv_fields = ['Serial','Image Name','Position','Confidence','Cls

Results','Latitude','Longitude','Link','Location']

with open(csv_filename, 'w') as csvfile:

79 | P a g e

 # creating a csv dict writer object

 writer = csv.DictWriter(csvfile, fieldnames = csv_fields)

 # writing headers (field names)

 writer.writeheader()

##################

#print_and_flush the total ares sq2

_, _,total_areasq2 = calculate_areasq2(UL_lat, UL_long, LR_lat, LR_long)

if total_areasq2 < 1:

 use_sqmeters = True

 total_areasq2 = total_areasq2 * 1000000

 print_and_flush(f"TotalArea:{round(total_areasq2,3)} m2")

else:

 use_sqmeters = False

 print_and_flush(f"TotalArea:{round(total_areasq2,3)} km2")

rem_areasq2 = total_areasq2

###Chec

k if page has loaded

time.sleep(30)

print_and_flush("Starting...after 30 seconds")

if headless == False:

 pyautogui.moveTo(1863, 130, 4)

 pyautogui.click()

element = driver.find_element_by_css_selector("body")

element.click()

Get the initial URL of the webpage

previous_url = driver.current_url

press_and_hold('right',0.2,driver) # an initial push

global detection_counter

detection_counter = 0

80 | P a g e

number_of_row = 0

number_of_col = 0

stop_screenshot_thread = False

if screen_cast_check:

 screenshot_thread = threading.Thread(target=cc_screenshots)

 screenshot_thread.start()

 print_and_flush("Started Live screen window")

else:

 print_and_flush("Not Starting Live screen window")

#CSV screen

global update_csv_screen

global destroy_csv_screen

update_csv_screen = False

destroy_csv_screen = False

if cast_csv_table:

 if kml_filename is not None:

 csv_screen_thread = threading.Thread(target=csv_screen,

args=(kml_filename,))

 else:

 csv_screen_thread = threading.Thread(target=csv_screen,

args=(area_name,))

 csv_screen_thread.start()

 print_and_flush("Started CSV Table window")

else:

 print_and_flush("Not Starting CSV Table window")

#check for showing model passed image

show_model_image = False

Avg longitude and latitude difference while moving

total_lat_diff = float(UL_lat) - float(LR_lat)

81 | P a g e

while True:

 current_url = driver.current_url

 time.sleep(1)

 if current_url != previous_url:

 lat, long,alt,FieldOfView = parse_url(current_url)

 prev_lat, prev_long,_,_ = parse_url(previous_url)

 #Take screenshot here

 time.sleep(1)

 screenshot = driver.get_screenshot_as_png()

 screenshot, blur_score = perform_on_screenshot(screenshot)

 while(True):

 #take screenshot again as the image is blur

 if blur_score > 80:

 break

 time.sleep(5)

 screenshot = driver.get_screenshot_as_png()

 screenshot, blur_score = perform_on_screenshot(screenshot)

 detections = model(screenshot, size=640)

 results = detections.pandas().xyxy[0].to_dict(orient="records")

 if len(results) != 0:

 screenshot,result_dict = parse_detections(results, screenshot)

 append_to_csv(result_dict,f"image_{number_of_row}_{number_of_col}.png

",lat,long,alt,FieldOfView)

 cv.imwrite(f"{current_folder_name}\\image_{number_of_row}_{number_of_

col}.png", screenshot)

 #cv.imwrite(f"image_{number_of_row}_{number_of_col}.png",

pad_model_image(screenshot))

 #Check to start the check to update csv

 update_csv_screen = True

 model_image = pad_model_image(screenshot)

 show_model_image = True

 time.sleep(1)

 update_csv_screen = False

82 | P a g e

 else:

 if keep_nodetection_image:

 cv.imwrite(f"{current_folder_name}\\image_{number_of_row}_{number

_of_col}.png", screenshot)

 #####################

 if right_mov_check:

 press_and_hold('right',1.5,driver)

 diff_right_mov = float(LR_long)-float(long)

 #print_and_flush(f"Long(right)={number_of_col}")

 number_of_col += 1

 if diff_right_mov <= 0:

 right_mov_check = False

 move_down(driver)

 number_of_row += 1

 number_of_col = 0

 left_mov_check = True

 if left_mov_check:

 press_and_hold('left',1.5,driver)

 diff_left_mov = float(long)-float(UL_long)

 #print_and_flush(f"Long(Left)={number_of_col}")

 number_of_col += 1

 if diff_left_mov <= 0:

 right_mov_check = True

 move_down(driver)

 number_of_row += 1

 number_of_col = 0

 left_mov_check = False

 latitude_diff = float(lat)-float(LR_lat)

 latitude_diff_percent = ((1 - latitude_diff / total_lat_diff) * 100)

 latitude_diff_percent = 0 if latitude_diff_percent < 0 else

latitude_diff_percent

83 | P a g e

 latitude_diff_percent = 100 if latitude_diff_percent >100 else

latitude_diff_percent

 latitude_diff_percent = round(latitude_diff_percent,1)

 print_and_flush(f"progress:{latitude_diff_percent}")

 # if use_sqmeters: #total_areasq2

 # rem_areasq2 -= float(4050)

 # else:

 # rem_areasq2 -= float(0.00805)

 rem_areasq2 = total_areasq2 - ((total_areasq2 * latitude_diff_percent) /

100)

 print_and_flush(f"RemArea:{round(rem_areasq2,3)}")

 if latitude_diff <= 0:

 print_and_flush("Destination reached")

 break

 previous_url = current_url

 # Check if a key has been pressed

 if msvcrt.kbhit():

 # Get the ASCII value of the key that was pressed

 key_code = ord(msvcrt.getch())

 # If the key that was pressed was the "q" key, break the loop

 if key_code == ord("q"):

 break

Close the web browser

driver.quit()

stop_screenshot_thread = True

destroy_csv_screen = True

print_and_flush("quit")

84 | P a g e

Annexure B

import os

import cv2 as cv

import numpy as np

import torch

from GUI1_files.windowcapture import *

from time import time

import torch.nn.functional as F

import pathlib

temp = pathlib.PosixPath

pathlib.PosixPath = pathlib.WindowsPath

#250a gives 224*224 image

Change the working directory to the folder this script is in.

os.chdir(os.path.dirname(os.path.abspath(__file__)))

def pre_process_image(image):

 top = 125

 bottom = 50

 left = 55

 right = 1

 # Get the shape of the image

 rows, cols, channels = image.shape

 # Create a black image with the same shape as the input image

 black_image = np.zeros((rows, cols, channels))

 # Crop the input image using slicing

 cropped_image = image[top:-bottom, left:-right]

 # Assign the values of the cropped image to the corresponding portion of the

black image

 black_image[top:-bottom, left:-right] = cropped_image

 black_image = black_image.astype(np.uint8)

 return black_image

def crop_one_box(frame, x1,y1,x2,y2):

85 | P a g e

 # Functions Classifier

 resize_C = torch.nn.Upsample(size=(224, 224), mode='bilinear',

align_corners=False)

 normalize_C = lambda x, mean=0.5, std=0.25: (x - mean) / std

 img = (frame[y1-10:y2+10, x1-10:x2+10])

 if img.shape[0] <= 0 or img.shape[1] <= 0:

 return None

 #image resize and normalize

 img = np.ascontiguousarray(np.asarray(img).transpose((2, 0, 1))) # HWC to

CHW

 img = torch.tensor(img).unsqueeze(0) / 255.0 # to Tensor, to BCWH, rescale

 img = resize_C(normalize_C(img))

 return img

def parse_detections(results, tile):

 for result in results:

 con = result['confidence']

 con = '{:.1%}'.format(con)

 cs = result['class']

 x1 = int(result['xmin'])

 y1 = int(result['ymin'])

 x2 = int(result['xmax'])

 y2 = int(result['ymax'])

 ########################

 if y2 - y1 <= 0 or x2 - x1 <= 0:

 print(f"ERROR H={y2-y1} , W={x2-x1}")

 continue

 color = (0, 0, 255)

 ########################

 if model_classifier != None:

 cropped_image = crop_one_box(tile, x1,y1,x2,y2)

 if cropped_image == None:

 continue

 #Classifier

 results_classifier = model_classifier(cropped_image)

 p = F.softmax(results_classifier, dim=1) # probabilities

 p = p.numpy().tolist()[0]

 #classifier_results = '{:.1%} C'.format(p[0])+ ' - {:.1%}

M'.format(p[1])

 ###

86 | P a g e

 classifier_results = ''

 for (class_na, pred) in zip(class_names,p):

 classifier_results +=

f"{class_names[class_na]}:{round(pred*100,2)} , "

 ###########

 cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)

 cv.putText(tile, f'{con} {classifier_results}', (x1-2, y1-5),

cv.FONT_HERSHEY_DUPLEX, 1, color, 2) #(frame,text,bottom left corner of text,font

type, font scaling factor,color,thicknness of line)

 else:

 cv.rectangle(tile, (x1, y1), (x2, y2),(255,0,0), 1)

 cv.putText(tile, f'{con}', (x1-2, y1-5), cv.FONT_HERSHEY_DUPLEX, 1,

color, 2) #(frame,text,bottom left corner of text,font type, font scaling

factor,color,thicknness of line)

 return tile

#Ask for whether to run classifier

use_cls = False

classifier_check = input("Use classifier? y/n ")

if classifier_check == 'y':

 use_cls = True

else:

 use_cls = False

Model

#Model Object Detection

startTime = time()

yolov5_folder_path = f"{os.getcwd()}\\yolov5"

model_path = f"{os.getcwd()}\\model_files"

model = torch.hub.load(yolov5_folder_path, 'custom',source="local",

path=f'{model_path}\\best1.pt')

model.conf = 0.40 # NMS confidence threshold

Model Classifier

if use_cls:

 model_classifier = torch.hub.load(yolov5_folder_path,

'custom',source="local", path=f'{model_path}\\cus50.pt').cpu().float()

87 | P a g e

 class_names = model_classifier.names

 print(class_names)

else:

 model_classifier = None

##################

endTime = time() - startTime

print(f"Models Loaded in {endTime}")

loop_time = time()

while(True):

 image = get_screenshot() #returns a numpy array

 output_image = image.copy()

 image = pre_process_image(image)

 # Set the window size

 window_size = 640

 # Get the width and height of the image

 image_height, image_width, _ = image.shape

 # Calculate the number of windows needed in the x and y directions

 num_windows_x = image_width // window_size

 #num_windows_x = (image_width + window_size - 1) // window_size

 num_windows_y = (image_height + window_size - 1) // window_size

 # Slide the window over the image

 for i in range(num_windows_x):

 for j in range(num_windows_y):

 # Get the current window

 x_min = i * window_size

 y_min = j * window_size

 x_max = x_min + window_size

 y_max = y_min + window_size

 window = image[y_min:y_max, x_min:x_max]

 # Make predictions on the window

 detections = model(window, size=640)

 results = detections.pandas().xyxy[0].to_dict(orient="records")

88 | P a g e

 # Draw the bounding boxes on the output image

 output_image[y_min:y_max, x_min:x_max] = parse_detections(results,

window)

 cv.imshow('Privew', output_image)

 # debug the loop rate

 print('FPS {}'.format(1 / (time() - loop_time)))

 loop_time = time()

 # press 'q' with the output window focused to exit.

 # waits 1 ms every loop to process key presses

 if cv.waitKey(1) == ord('q'):

 cv.destroyAllWindows()

 break

print('Done.')

89 | P a g e

Annexure C

#coding:utf-8

import cv2

import os

import random

label_folder = './labels/'

raw_images_folder = './raw_images/'

save_images_folder = './save_image/'

name_list_path = './name_list.txt'

classes_path = './classes.txt'

def plot_one_box(x, image, color=None, label=None, line_thickness=None):

 # Plots one bounding box on image img

 tl = line_thickness or round(0.002 * (image.shape[0] + image.shape[1]) / 2) +

1 # line/font thickness

 color = color or [random.randint(0, 255) for _ in range(3)]

 c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))

 cv2.rectangle(image, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)

 if label:

 tf = max(tl - 1, 1) # font thickness

 t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]

 c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3

 cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA) # filled

 cv2.putText(image, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255],

thickness=tf, lineType=cv2.LINE_AA)

image_name

def draw_box_on_image(image_name, classes, colors, label_folder,

raw_images_folder, save_images_folder):

 txt_path = os.path.join(label_folder,'%s.txt'%(image_name))

 print(image_name)

 if image_name == '.DS_Store':

 return 0

 image_path = os.path.join(raw_images_folder,'%s.jpg'%(image_name))

 save_file_path = os.path.join(save_images_folder,'%s.jpg'%(image_name))

90 | P a g e

 # flag_people_or_car_data =

 source_file = open(txt_path)

 image = cv2.imread(image_path)

 try:

 height, width, channels = image.shape

 except:

 print('no shape info.')

 return 0

 box_number = 0

 for line in source_file:

 staff = line.split()

 class_idx = int(staff[0])

 x_center, y_center, w, h = float(staff[1])*width, float(staff[2])*height,

float(staff[3])*width, float(staff[4])*height

 x1 = round(x_center-w/2)

 y1 = round(y_center-h/2)

 x2 = round(x_center+w/2)

 y2 = round(y_center+h/2)

 # if class_idx == 0:

 # draw_people_tangle = cv2.rectangle(image,

(x1,y1),(x2,y2),(0,0,255),2)

 # cv2.imwrite(save_file_path,draw_people_tangle)

 # elif class_idx == 1:

 # draw_car_tangle =

cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)

 # cv2.imwrite(save_file_path,draw_car_tangle)

 plot_one_box([x1,y1,x2,y2], image, color=colors[class_idx],

label=classes[class_idx], line_thickness=None)

 cv2.imwrite(save_file_path,image)

 box_number += 1

 return box_number

def make_name_list(raw_images_folder, name_list_path):

 image_file_list = os.listdir(raw_images_folder)

 text_image_name_list_file=open(name_list_path,'w')

91 | P a g e

 for image_file_name in image_file_list

 image_name,file_extend = os.path.splitext(image_file_name)

 text_image_name_list_file.write(image_name+'\n')

 text_image_name_list_file.close()

if __name__ == '__main__':

 make_name_list(raw_images_folder, name_list_path)

 classes = image_names = open(classes_path).read().strip().split()

 random.seed(42)

 colors = [[random.randint(0, 255) for _ in range(3)] for _ in

range(len(classes))]

 image_names = open(name_list_path).read().strip().split()

 box_total = 0

 image_total = 0

 for image_name in image_names:

 box_num = draw_box_on_image(image_name, classes, colors, label_folder,

raw_images_folder, save_images_folder)

 box_total += box_num

 image_total += 1

 print('Box number:', box_total, 'Image number:',image_total)

92 | P a g e

Annexure D

import matplotlib.pyplot as plt

import numpy as np

dataArray = np.genfromtxt('results.csv', delimiter=',', names=True)

plt.subplot(2, 3, 1)

plt.plot(dataArray['trainbox_loss'], label='trainbox_loss')

plt.plot(dataArray['valbox_loss'], label='valbox_loss')

plt.legend()

plt.grid()

plt.subplot(2, 3, 2)

plt.plot(dataArray['trainobj_loss'], label='trainobj_loss')

plt.plot(dataArray['valobj_loss'], label='valobj_loss')

plt.legend()

plt.grid()

plt.subplot(2, 3, 3)

plt.plot(dataArray['metricsprecision'], label='metricsprecision')

plt.plot(dataArray['metricsrecall'], label='metricsrecall')

plt.legend()

plt.grid()

plt.subplot(2, 3, 4)

plt.plot(dataArray['metricsmAP_05'], label='metricsmAP_05')

plt.legend()

plt.grid()

plt.subplot(2, 3, 5)

plt.plot(dataArray['metricsmAP_05095'], label='metricsmAP_05095')

plt.legend()

plt.grid()

plt.show()

93 | P a g e

Annexure E

import os

import shutil

list of folder names in the same directory as code

folder_names = ['BOEING','HAWK', 'JAGUAR', 'MIG-21','MIG-29','MIRAG-

2000','RAFALE','SU-30','TEJAS']

percentage of files to be placed in train, test, and valid

train_percent = 0.9

test_percent = 0.05

valid_percent = 0.05

create Dataset folder

if not os.path.exists('Dataset'):

 os.makedirs('Dataset')

create train, test, and valid folders in Dataset folder

if not os.path.exists('Dataset/train'):

 os.makedirs('Dataset/train')

if not os.path.exists('Dataset/test'):

 os.makedirs('Dataset/test')

if not os.path.exists('Dataset/valid'):

 os.makedirs('Dataset/valid')

loop through the folder names

for folder in folder_names:

 # create folder with the same name in train, test, and valid

 os.makedirs('Dataset/train/' + folder)

 os.makedirs('Dataset/test/' + folder)

 os.makedirs('Dataset/valid/' + folder)

 # get all files in the folder

 files = os.listdir(folder)

 # calculate number of files for train, test, and valid

 train_files = int(len(files) * train_percent)

 test_files = int(len(files) * test_percent)

 valid_files = int(len(files) * valid_percent)

 print(f"{folder}: Total images={len(files)}; train={train_files},

valid={valid_files}, test={test_files}.

total={train_files+valid_files+test_files}")

 # copy files to train, test, and valid folders

94 | P a g e

 for i in range(train_files):

 shutil.copy(folder + '/' + files[i], 'Dataset/train/' + folder)

 for i in range(train_files, train_files+test_files):

 shutil.copy(folder + '/' + files[i], 'Dataset/test/' + folder)

 for i in range(train_files+test_files, len(files)):

 shutil.copy(folder + '/' + files[i], 'Dataset/valid/' + folder)

95 | P a g e

96 | P a g e

97 | P a g e

