
i | P a g e

Deep Fake Lab

GC Arslan Sarwar

GC Hassan Nazir

GC Saram Ashfaq

FC Basil Mikhled

Supervised by:

 Lt Col Muhammad Imran Javaid

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad, in

partial fulfillment for the requirements of B.E Degree in Electrical Engineering.

 June 2023

ii | P a g e

In the name of ALLAH, the Most benevolent, the Most Courteous

iii | P a g e

CERTIFICATE OF CORRECTNESS AND

APPROVAL

This is to officially state that the thesis work contained in this report for the Final Year Project

“Deep Fake Lab” is carried out by Arslan Sarwar, Hassan Nazir, Saram Ashfaq, Basil Mikhled,

under my supervision and that in my judgement, it is fully ample, in scope and excellence, for the

degree of Bachelor of Electrical Engineering in Military College of Signals, National University

of Sciences and Technology (NUST), Islamabad.

“Deep Fake Lab”

is carried out by

GC Arslan Sarwar

GC Hassan Nazir

GC Saram Ashfaq

FC Basil Mikhled

Approved by Supervisor

 Signature:

 Name of Supervisor: Lt Col Muhammad Imran Javaid

 Dated:

iv | P a g e

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been

submitted in support of another award or qualification in either this institute or

anywhere else.

v | P a g e

Dedication

This thesis is dedicated to our Families, Teachers, Friends, and to our supervisor for their love,

endless support, and encouragement.

vi | P a g e

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues, and most of all our supervisor, Lt Col Muhammad

Imran Javaid without

your guidance this wouldn’t be possible.

And all the group members, who through all adversities worked steadfastly.

vi | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has 4 similarity index. Turnitin report endorsed by Supervisor is attached.

Name & Signature of

Supervisor:

 Lt Col Muhammad Imran Javaid

Name & Signatures of

Students:

 GC Arslan Sarwar

00000325018

GC Saram Ashfaq

00000325063

vi | P a g e

GC Hassan Nazir

00000325602

FC Basil Mikhled

00000325420

‘

ABSTRACT

vi | P a g e

The increasing prevalence of deep fake videos, which are digitally manipulated

videos that falsely depict individuals saying or doing things they never did, has led

to a need for reliable detection methods. In this project, we propose a deep fake

detection technique based on hashing, which involves generating a unique

fingerprint of a video frame or image that can be used to detect any modifications.

Our approach involves extracting frames from a given video and applying

perceptual hashing techniques to each frame to generate a hash. Perceptual hashing

involves generating a unique signature that captures the perceptual characteristics

of an image or video, such as its color, texture, and shape. We compared the hash

of each frame to a pre-existing database of hashes for authentic videos, and

calculated the similarity score between the two hashes using the Hamming distance.

If the similarity score was below a certain threshold, the frame was considered a

deep fake. To evaluate the performance of our approach, we used a dataset of both

authentic and deep fake videos and calculated the detection accuracy and false

positive rate. Our results demonstrate that our technique achieved high detection

accuracy while keeping the false positive rate low. Our approach offers a simple and

efficient solution for deep fake detection, which can be easily integrated into

existing video analysis pipelines. Our method can be used to detect deep fakes in

real-time, making it useful for applications such as video authentication and online

content moderation. Overall, our project provides a valuable contribution to the

ongoing efforts to combat the spread of deep fake videos, and we believe that our

technique has the potential to be an effective tool for detecting deep fakes in various

settings.

ix | P a g e

Table of Contents

CERTIFICATE OF CORRECTNESS AND APPROVAL ... 3

DECLARATION OF ORIGINALITY ... 4

Dedication ... 5

ACKNOWLEDGEMENTS ... 6

Plagiarism Certificate (Turnitin Report) ... 7

ABSTRACT .. 8

List of Figures ..11

Chapter 1 ... 1

Introduction .. 1

1.1 Overview ... 2

1.2 Problem Statement ... 3

1.3 Proposed Solution ... 4

1.4 Working Principle .. 5

1.4.1 Launch Screen: .. 6

1.4.2 Admin Interface: ... 7

1.4.3 Video Logs: .. 7

1.4.4 Video Upload: .. 9

1.4.5 Request Forwarding: .. 9

1.4.6 Back-end Code: ..10

1.4.7 Steganography: ...10

1.4.7 Output Video: ...11

1.4.8 Video Upload: ...11

1.4.10 Validity Check: ...11

1.4.8 Result: ...11

1.5 Objectives ...11

1.5.1 General Objectives: ..12

1.5.2 Academic Objectives: ...12

1.6 Scope ...12

1.7 Deliverables ..14

1.7.1 Software Requirement Specification: ...14

x | P a g e

1.7.2 Software Architecture Document: ..14

1.7.3 Software Design Document: ..14

1.7.4 Implementation Code Document: ...14

1.7.5 Software Testing Document: ...15

1.7.6 Final Project Report ...15

1.8 Relevant Sustainable Development Goals ...15

1.9 Structure of Thesis ..15

Chapter 2: ...17

2.1 Industrial background ..17

2.2 Existing solutions and their drawbacks ...18

2.2.1 DeepTrace’s ..18

Chapter 3: ...20

3.1 System Overview ...20

3.2 Architecture ...21

3.2.2 Module Decomposition ...22

3.2.3 Process Decomposition ...23

3.2.4 Design Rationale ...26

3.3 Component Design ..27

Chapter 4: ...28

4.1.1 Upload Video ..28

4.1.2 Check: ...29

4.1.3 Django Configuration: ...30

4.1.4 Models: ..31

4.1.5 Views: ..32

4.1.6 Steganography: ...36

4.2 User Interface ..45

4.2.1 Main Window ...45

4.2.3 Admin ..46

Chapter 5 ..48

Conclusion ...48

Chapter 6: ...49

6.1 Access to real life logistics marketplace: ...49

6.2 Future Improvements: ..49

References and Work Cited ...51

vii | P a g e

 List of Figures

Figure 1: Overview of Deep fake Lab ... 02

Figure 2: System Overview ... 20

Figure 3: Class Diagram.. 22

Figure 4: Use Case Diagram ... 23

Figure 5: Sequence Diagram for Login and Register .. 24

Figure 6: Prevention Flow Chart Through Hashing .. 24

Figure 7: Detection Flow Chart Through Hashing .. 25

Figure 8: Component Diagram .. 27

1 | P a g e

Chapter 1

Introduction

Deepfake technology is becoming increasingly sophisticated, making it more

challenging to distinguish between genuine and manipulated media. Your project aims

to address this issue by using a frame-by-frame hashing algorithm to detect deep fakes.

The algorithm works by comparing each frame of a video to the original video to

identify any discrepancies or inconsistencies. If the algorithm detects significant

differences between the original and the video being analyzed, it will flag the video as

a potential deepfake. This approach has several advantages over other deepfake

detection techniques. First, it is effective at detecting deepfakes that have been created

using advanced techniques, such as generative adversarial networks (GANs). Second,

it is fast and efficient, allowing for real-time detection of deepfakes. Finally, it is easy

to implement and can be integrated into existing video processing pipelines. Overall,

your project has the potential to help prevent the spread of misinformation and protect

individuals and organizations from the harmful effects of deepfakes

.

2 | P a g e

1.1 Overview

Project focuses on developing a deepfake detection system using a frame-by-

frame hashing algorithm. The system aims to detect manipulated media by comparing

each frame of the video being analyzed with the original video. If any discrepancies or

inconsistencies are detected, the system will flag the video as a potential deepfake. The

frame-by-frame hashing algorithm is an efficient and effective approach to deepfake

detection. It can detect deepfakes that have been created using advanced techniques,

such as GANs, and can provide real-time detection of deepfakes. Additionally, the

algorithm is easy to implement and can be integrated into existing video processing

pipelines. Your project has the potential to play a significant role in combating the

spread of misinformation and preventing harm caused by deepfakes. By providing a

reliable and accurate detection system, your project can help individuals and

organizations protect themselves from the negative effects of deepfakes.

 Figure 1: Overview of Deep fake Lab

3 | P a g e

1.2 Problem Statement

Deepfakes are manipulated videos that use artificial intelligence and machine

learning techniques to superimpose someone else's face or voice onto another

person's body or video. These videos can be used to spread false information or

defame individuals. With the rise of deepfake technology, there is a growing concern

about the potential misuse of such videos, which can have serious consequences.

Our project aims to develop software that can detect and prevent deepfakes. The

software will use machine learning algorithms to identify and analyze the patterns

and features of deepfaked videos, such as unnatural facial movements,

inconsistencies in lighting and shadow, and other artifacts that may not be visible to

the human eye. The software will then flag the video as potentially deepfaked and

alert the user. By developing such software, we aim to provide a solution to the

growing problem of deepfakes and their potential to spread misinformation and

defame individuals. The software will be particularly useful for news organizations,

law enforcement agencies, and individuals who want to verify the authenticity of

videos before sharing them online.

4 | P a g e

1.3 Proposed Solution

Our project aims to develop a software that uses frame-by-frame hashing to detect and

prevent deepfakes in videos. The software will analyze each frame of a video to generate a

unique hash that represents its content. By comparing the hashes of different frames, the

software can detect inconsistencies and anomalies that are indicative of a deepfake. This

solution provides a tool for verifying the authenticity of videos and preventing the spread

of false information and defamation through deepfakes. It is particularly useful for news

organizations, law enforcement agencies, and individuals who want to verify the integrity

of videos before sharing them online. By using frame-by-frame hashing, our software

provides a robust and efficient solution to the problem of deepfakes.

1. Frame-by-frame hashing: Each frame of the video is analyzed to generate a unique

hash that represents its content.

2. Consistency check: The software compares the hashes of different frames to detect

inconsistencies and anomalies that are indicative of a deepfake.

3. Flagging and alerting: If the software detects a potentially manipulated video, it

flags it as suspicious and alerts the user.

4. Verification: The user can then verify the authenticity of the video before sharing it

online.

5. Provides a user-friendly interface for easy operation and verification.

5 | P a g e

1.4 Working Principle

It is a web-based application which works with hashing algorithm. It

embeds the hash of every frame in the frame and creates a new video. In the

detection process, it again compares the hash of original video with fake video

and give us the results. The list of modules is as under:

• Launch Screen

• Admin Interface

• Video Logs

• Video Upload

• Request Forward

• Back-end Code

• Steganography

• Output Video

• Result

• Validity Check Interface

• Video Upload

• Results

6 | P a g e

1.4.1 Launch Screen:

This will be our user first interaction page. This page will allow

the user to login to their dashboard. This page will also be linked to

registration page.

It will also show different steps required to perform a smooth working

of a project for its end users to avoid any hurdle here after.

• On Login, user will sign up.

7 | P a g e

• fter, user will be shown the relative options.

1.4.2 Admin Interface:

• The video logs interface in your Django web-based portal provides a

comprehensive view of all the videos processed by your software.

• The interface includes a search bar that allows users to search for specific

videos using various parameters such as date, time, and video title.

• Video logs are displayed in a table format that includes details such as

video title, upload date, and status (verified or flagged).

• The table can be sorted by any of these parameters, making it easy for

users to find the information they need.

• Clicking on a specific video opens a detailed view of that video, including

information about the frames flagged as potentially manipulated.

• The interface allows users to view the original and processed videos side

by side, making it easy to compare and identify inconsistencies.

• The interface also provides users with the ability to verify the authenticity

of videos and flag any potentially manipulated videos.

• The user-friendly and intuitive interface helps users manage and verify the

authenticity of videos processed by the software.

• The video logs interface is a crucial feature of your software, particularly

for news organizations, law enforcement agencies, and individuals who

need to verify the authenticity of videos before sharing them online.

1.4.3 Video Logs:

Video logs are records that provide a detailed summary of a video's

metadata and processing history. In the context of video verification and deepfake

detection software, video logs are an essential feature that allows users to keep

track of the videos processed by the software and verify their authenticity.

8 | P a g e

The video logs provide a comprehensive view of each video, including details such

as video title, upload date, and status (verified or flagged). The logs may also

include information on the video's resolution, frame rate, and duration, as well as

the software's analysis of the video's content, such as frame-by-frame hashing.

In the event that the software detects a potentially manipulated video, the video

log will provide a detailed record of the frames that were flagged as suspicious.

This information allows users to investigate further and verify the authenticity of

the video before sharing it online.

Overall, video logs are an essential tool for verifying the integrity of videos and

preventing the spread of false information through manipulated videos. They allow

users to keep track of their videos' processing history and quickly identify any

potentially manipulated content.

9 | P a g e

1.4.4 Video Upload:

A video upload button is a feature in a web-based portal or software that

allows users to upload video files from their local devices or cloud storage

services to the platform. In the context of video verification and deepfake

detection software, a video upload button is an essential feature that allows users

to process videos for authenticity verification.

The video upload button can be located on the software's home page or

dashboard, and it typically prompts the user to select the video file they wish to

upload. The user can then select the video file from their device or cloud storage

service, and the software will begin processing the video.

In addition to the video upload button, the software may also include other

features such as progress bars or upload status indicators that provide users with

real-time feedback on the upload progress.

1.4.5 Request Forwarding:

In a web-based portal or software, user requests made through the front-

end interface must be processed by the back-end code to provide a response.

When a user submits a request through the front-end interface, such as clicking

a button or filling out a form, the request is forwarded to the back-end code for

processing.

Once the back-end code has processed the request, it returns a response to the

front-end interface. The response may include data to be displayed to the user,

an error message if the request could not be fulfilled, or a redirect to another

page or interface within the software.

10 | P a g e

1.4.6 Back-end Code:

• Hashing is a technique used in deepfake detection to create a unique digital

signature or hash for each video frame. This hash can be used to verify the

authenticity of the video frame and detect any manipulation or tampering.

• In Python, libraries such as OpenCV and image hashing libraries like imagehash

and hashlib can be used to generate and compare hashes for video frames.

• The back-end code may include algorithms that use frame-by-frame hashing to

detect any inconsistencies or anomalies in the video data.

• The back-end code may also include components for storing and retrieving

video data, processing user requests, and managing the software's user interface.

1.4.7 Steganography:

• Steganography is the practice of hiding information within other information,

such as an image or a video frame, without altering the perceptual qualities of

the original data.

• In the context of deepfake detection, steganography can be used to embed

information within video frames that can be used to identify if the frame has

been manipulated or tampered with.

• Steganography in video frames involves embedding data within the video

data itself, either through modifying certain pixels or by encoding the data in

the audio track.

• One technique for steganography in video frames is called LSB (Least

Significant Bit) embedding. This involves modifying the least significant bit

of each pixel value to encode a hidden message.

11 | P a g e

1.4.7 Output Video:
After the processing, the video will be ready to release in the market.

1.4.8 Video Upload:
In this tab, user will upload the video to check its deep faked or not.

1.4.10 Validity Check:

When the video is uploaded,

• Video is stored in our database.

• t is compared to our original video, frame by frame.

1.4.8 Result:

▪ Video is compared with original video.

▪ Hashes of frames are compared.

• t will tell us whether video is deep faked or not.

1.5 Objectives

12 | P a g e

1.5.1 General Objectives:

To develop a software solution that can effectively detect and prevent the

spread of deepfake videos on the internet, particularly on websites and online

platforms. To provide a reliable and efficient deepfake detection system that can

help prevent the spread of misinformation and disinformation, which can be

particularly damaging in sensitive areas such as politics, public health, and

national security. To contribute to the broader effort to combat the spread of

deepfakes and promote the responsible use of video content on the internet.

1.5.2 Academic Objectives:

• To contribute to the field of computer science and artificial intelligence by

developing a novel solution for deepfake detection that can be used by website

administrators and moderators to prevent the spread of fake video content.

• To explore and evaluate the effectiveness of frame-by-frame hashing as a primary

technique for deepfake detection, and compare it to other existing methods for

detecting and preventing deepfakes.

• To document and publish the research findings and results of the project in a

research paper or academic journal, which can be useful for other researchers and

academics interested in the topic of deepfakes.

• To demonstrate the practical application of machine learning algorithms and

techniques for deepfake detection, and potentially contribute to the development of

new and improved algorithms for this purpose.

• To provide an opportunity for students or researchers to gain practical experience

in developing and implementing machine learning solutions for real-world

problems, which can be useful for their future careers or academic pursuits.

1.6 Scope

The scope of your project is to develop a software solution that can detect and prevent

deepfake videos on websites and online platforms, using frame-by-frame hashing as the

primary technique for deepfake detection. The software will be implemented as a Django-

13 | P a g e

based web portal, and will include features such as an easy-to-use video upload button, a

video logs interface, and a validity check of fake videos. The project aims to address the

growing problem of deepfake videos, and will explore and evaluate the effectiveness of

frame-by-frame hashing compared to other existing methods for detecting and preventing

deepfakes. The research findings and results will be documented and published in a

research paper or academic journal.

14 | P a g e

1.7 Deliverables

1.7.1 Software Requirement Specification:

This article's goal is to give a thorough explanation of Deep Fakes. It will

describe the function and features of the system, its interfaces, what it will do, how

it will do it, the requirements that must be met, and how the system will respond

to outside stimuli. Both regular users and officials are meant for this paper.

1.7.2 Software Architecture Document:

This article discusses the system's overall design as well as the introduction

of various components and subsystems. It is primarily supported by a system

architecture diagram, which provides an insider's view of the system by outlining

the high-level software components that carry out the key operations necessary

to keep the system running.

1.7.3 Software Design Document:

The design document summarises all of our functional needs and

conceptually illustrates how they relate to one another. The low-level design also

demonstrates how we have been going about putting all of these needs into

practise.

1.7.4 Implementation Code Document:

Details regarding the application's and project's prototype's pseudo code are

provided in the implementation code document.

15 | P a g e

1.7.5 Software Testing Document:

This document includes testing modules with specific test cases that

illustrate the project's accuracy and correctness.

1.7.6 Final Project Report

This thesis report is a compilation of all earlier and ongoing project effort.

Thesis reports include a comprehensive explanation of the project as well as

information on every phase of it, from its introduction to the literature study,

requirements, design discussions, testing, and, finally, future work and conclusion.

1.8 Relevant Sustainable Development Goals

SDG 16, or Sustainable Development Goal 16, is focused on promoting peace,

justice, and strong institutions. Your project is relevant to this goal as it aims to address the

problem of deepfake videos, which can be used to spread false information and disrupt

social and political stability. By developing a software solution that can detect and prevent

deepfakes, your project is contributing to the goal of promoting strong institutions and

ensuring access to justice for all.

Deepfake videos have the potential to cause serious harm to individuals,

organizations, and even entire communities. They can be used to manipulate public

opinion, spread false information, and damage the reputations of individuals or

organizations. By developing a software solution that can effectively detect and prevent

deepfakes, your project is promoting peace and justice by limiting the spread of harmful

content and ensuring that the truth is protected.

In addition, your project is also contributing to the goal of promoting accountable

and inclusive institutions by promoting transparency and accuracy in online content. By

ensuring that videos uploaded to your website are authentic and free from manipulation,

you are promoting trust and accountability in online communication. Overall, your project

has a strong connection to SDG 16 and is contributing to the goal of promoting peace,

justice, and strong institutions.

1.9 Structure of Thesis

16 | P a g e

Chapter 2 contains the literature review and the background and analysis study

this thesis is based upon.

Chapter 3 contains the design and

development of the project. Chapter 4

introduces detailed evaluation and analysis of

the code

 Chapter 5 contains the conclusion of the project.

Chapter 6 highlights the future work needed to be done for the commercialization of this

project.

17 | P a g e

Chapter 2:

Literature Review

By altering and improving the characteristics of previously released, comparable

items, a new product is introduced. A literature review is a crucial phase in the

process of turning an idea into a new product. Likewise, a thorough analysis of all

linked projects is required for the development of a product and its replacement

in the logistics system. We categorised our research into the following categories.

• Industrial Background

• Existing solutions and their drawbacks

• Research Papers

2.1 Industrial background

Deep fake detection using hashing has become an increasingly important area of

research and development in recent years, as the technology to create realistic fake videos

has become more accessible and easier to use. Deep fake technology has the potential to

cause significant harm, from spreading false information to manipulating public opinion or

even committing fraud. The use of hashing algorithms for deep fake detection is a

promising approach, as it allows for the quick and efficient comparison of large datasets,

making it possible to detect even subtle changes in images and videos. This can help to

identify deep fake content and prevent it from spreading.

In industry, deep fake detection is becoming a critical area of focus for many

companies, particularly those in the media and entertainment industries, as well as those

involved in security and surveillance. For example, social media platforms such as

Facebook and Twitter are investing heavily in deep fake detection technology to prevent

the spread of false information on their platforms. Similarly, security agencies and law

enforcement organizations are using deep fake detection to identify potential threats and

prevent fraud.

18 | P a g e

2.2 Existing solutions and their drawbacks

There are several existing solutions for deep fake detection, including

traditional image processing techniques, machine learning-based approaches,

and blockchain-based solutions. However, each of these approaches has its

drawbacks.

Traditional image processing techniques, such as image watermarking and

digital signature verification, are limited in their effectiveness, as deep fake

videos can be created with sophisticated techniques that can bypass these

methods.

Machine learning-based approaches, such as convolutional neural networks

(CNNs) and generative adversarial networks (GANs), have shown promise in

deep fake detection. However, these methods require large datasets of both real

and fake images for training, which can be time-consuming and expensive.

Additionally, these methods may not be effective against newly-created deep

fake videos that have not been seen before.

2.2.1 DeepTrace’s

DeepTrace's technology uses a combination of machine learning algorithms

and digital forensics techniques to analyze video and audio files and detect signs of

manipulation. The company's solutions can detect deep fakes in a range of contexts,

including social media, journalism, and politics.

DeepTrace offers a range of solutions for detecting deep fakes, including an

API that can be integrated into existing media platforms, a web-based dashboard

for monitoring media, and a consulting service for custom projects. The company's

19 | P a g e

solutions are designed to be scalable, adaptable, and easy to use, making it

accessible to a range of industries and organizations.

One of the unique features of DeepTrace's technology is its ability to detect

"contextual anomalies" in media, such as mismatched shadows or reflections, that

may indicate the presence of a deep fake. The company's solutions also use "hash-

based fingerprinting" to identify similar media across different platforms, making

it easier to track the spread of deep fakes online.

DeepTrace has received funding from a range of investors, including

Berlin-based venture capital firm Fly Ventures and Amsterdam-based investor and

incubator ASIF Ventures. The company has also received recognition for its work,

including being named a finalist in the MIT Technology Review's Innovators Under

35 Europe in 2020.

Overall, DeepTrace is one of the leading companies in the field of deep fake

detection, offering innovative and effective solutions for detecting deep fakes in a

range of contexts.

20 | P a g e

Chapter 3:

Design and Development

3.1 System Overview

The system will be a web-based application.. While the backend will be

built on Python, the front end will be based on HTML. To maintain privacy,

authenticity, and integrity, the sofware will need each user to have their own

profile. Any operating system can be used to run the application. The system's

mobile application will also be taken into account..

Figure 2: System Overview

21 | P a g e

3.2 Architecture

3.2.1 Architecture Design

My project uses a web-based architecture with a front-end interface, web

server, and two backend modules for deep fake detection and originality check.

The web server is built using Django and Python, while the deep fake detection

module uses hashing techniques to compare uploaded files to a database of known

deep fake videos. The originality check module compares hash values of uploaded

files to a database of known original images and videos.

22 | P a g e

3.2.2 Module Decomposition

Admin Panel allows to view hashes of stored videos.

Video Upload allows user to upload video for processing.

Back-end Processing works on the video to be encrypted.

Encrypted Video encrypted video is stored in database.

Fake Video Upload allows user to upload the video to be tested.

Video Integrity process the video to be checked and compares

the hashes.

Results Gives the result, whether the video is deep faked or not.

 Figure 3: Class Diagram

23 | P a g e

3.2.3 Process Decomposition

Sequence and use case diagrams that break down the system

into distinct and unified processes are used to explain the process

decomposition. The use cases describe the series of activities a user

engages in when interacting with Deep Fake Lab.

Figure 4: Use Case Diagram

24 | P a g e

There are two primary actors. User and Admin. The user can perform the desired

functionality while the admin is basically concerned with the normal operation of the

system and providing with updates when available.

Figure 5: Sequence Diagram for Login and Register

Figure 6: Prevention Flow Chart Through Hashing

25 | P a g e

Figure 7: Detection Flow Chart Through Hashing

26 | P a g e

3.2.4 Design Rationale

The design rationale for my project is to provide a user-friendly and

accessible solution for deep fake detection using hashing techniques, with the

additional functionality of an originality check feature. The project uses a web-

based architecture with a front-end interface, web server, and two backend

modules for deep fake detection and originality check.

The choice of a web-based architecture was made to ensure that the solution

could be easily accessed by users from different devices and locations.

Additionally, the use of Django as the web framework was based on its popularity

and ease of use for web development, making it an ideal choice for building a

scalable and maintainable web application.

The decision to use hashing techniques for deep fake detection was based

on its effectiveness and speed in identifying similarities between images and

videos. It allowed us to compare uploaded files to a database of pre-computed

hash values for known deep fake videos quickly and accurately.

The inclusion of an originality check feature was made to provide users with

the ability to verify the authenticity of an image or video. The decision to use

hash values for the originality check module was based on the same reasoning as

the deep fake detection module. It allowed us to compare uploaded files to a

database of known original images and videos efficiently.

Overall, the design rationale for my project is focused on providing a user-

friendly and accessible solution for deep fake detection using hashing techniques,

with the additional functionality of an originality check feature. The design

choices were made based on the effectiveness and ease of implementation of the

chosen technologies and methodologies, while ensuring the scalability and

maintainability of the solution.

27 | P a g e

3.3 Component Design

We will examine each component of Deep Fake Lab in greater detail and in a more

organised manner in this part on component design. Each component will include a

functional summary and more specific information.

Figure 8: Component Diagram

28 | P a g e

Chapter 4:

System Implementation

4.1 Pseudo Code for APIs

4.1.1 Upload Video

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <title>Bootstrap demo</title>

 <script src="https://code.jquery.com/jquery-3.5.1.min.js"></script>

 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

GLhlTQ8iRABdZLl6O3oVMWSktQOp6b7In1Zl3/Jr59b6EGGoI1aFkw7cmD

A6j6gD" crossorigin="anonymous">

 </head>

 <body class="bg-light">

 <div class="bg-white text-center p-2">

 <h3 class="text-dark">Deep Fake Lab</h3>

 Home

 Check-Originality

 {% comment %} Decrypt {% endcomment

%}

 </div>

 {% block main %}

29 | P a g e

 {% endblock main %}

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/js/bootstrap.bundle.min.js" integrity="sha384-

w76AqPfDkMBDXo30jS1Sgez6pr3x5MlQ1ZAGC+nuZB+EYdgRZgiwxhTBT

kF7CXvN" crossorigin="anonymous"></script>

 </body>

</html>

4.1.2 Check:

{% extends 'base.html' %}

{% load static %}

{% block main %}

<form action="{% url 'check' %}" method="post"

enctype="multipart/form-data">

 {% csrf_token %}

 <div class="border rounded p-5 text-center w-50 bg-white mx-auto mt-

4">

 <h3>Check Video Originality</h3>

 <div class="text-center" id="upload-btn" style="cursor: pointer;">

 <h6 id="text-file" >Click To Select Video</h6>

 </div>

 <input type="file" name="file" id="file" style="display:none"

accept="video/mp4,video/x-m4v,video/*" required>

 <input type="text" placeholder="compare video id" name="id"

id="id" class="form-control w-25 mx-auto" required>

 <button class="btn btn-primary mt-3"

type="submit">Submit</button>

30 | P a g e

 <h3 class="text-primary mt-4">{{message}}</h3>

 </div>

</form>

<script>

 $('#upload-btn').click(function(){ $('#file').trigger('click'); });

 $('input[type="file"]').change(function(e){

 if(e.target.files.length > 0){

 var fileName = e.target.files[0].name;

 $('#text-file').html(fileName)

 }else{

 $('#text-file').html("Click To Select Video")

 }

 });

</script>

{% endblock main %}

4.1.3 Django Configuration:

from pathlib import Path

Build paths inside the project like this: BASE_DIR / 'subdir'.

BASE_DIR = Path(__file__).resolve().parent.parent

Quick-start development settings - unsuitable for production

31 | P a g e

See https://docs.djangoproject.com/en/4.1/howto/deployment/checklist/

SECURITY WARNING: keep the secret key used in production secret!

SECRET_KEY = 'django-insecure-_m7j+40lzqs#^d_jmes^cjo*im%v-^yzfu-

@_=((su8u47jppc'

SECURITY WARNING: don't run with debug turned on in production!

DEBUG = True

ALLOWED_HOSTS = []

Application definition

INSTALLED_APPS = [

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

 'app'

4.1.4 Models:

from django.db import models

import numpy as np

import pickle

import json

Create your models here.

class VideoModel(models.Model):

 video_hash = models.TextField(blank=True)

32 | P a g e

 video_input = models.FileField(upload_to='input/',blank=True,null=True)

 video_output = models.TextField(blank=True,null=True)

 video_audio_output = models.TextField(blank=True,null=True)

 key = models.CharField(max_length=200,null=True)

 data = models.CharField(max_length=200,null=True)

 np_field = models.TextField(null=True,blank=True)

 created_time = models.DateTimeField(auto_now_add=True)

 def get_array(self):

 return np.array(json.loads(self.np_field))

 def save(self, *args, **kwargs):

 if isinstance(self.np_field, np.ndarray):

 self.np_field = json.dumps(self.np_field.tolist())

 super().save(*args, **kwargs)

class DecModel(models.Model):

 input_file = models.FileField(upload_to='temp/',blank=True,null=True)

class Video(models.Model):

 video = models.FileField(upload_to='videos/')

 hash = models.TextField(null=True)

 hashes = models.JSONField(null=True)

4.1.5 Views:

from django.shortcuts import render

from .models import *

import hashlib

from django.conf import settings

import os

import cv2

33 | P a g e

Create your views here.

def blockChainingVideo(file):

 # Set the chunk size in frames

 chunk_size = 1

 # Define the number of LSBs to use for initialization

 num_lsbs = 4

 # Open the video file

 cap = cv2.VideoCapture(file)

 # Initialize the hash object with an empty string

 hash_previous = hashlib.sha256(b'').hexdigest()

 hashes = []

 # Loop through the frames, hashing each chunk and chaining the hash values

 while True:

 # Read the next chunk of frames

 frames = []

 for i in range(chunk_size):

 ret, frame = cap.read()

 if not ret:

 break

 # Initialize the LSBs of each pixel with the previous hash value

 frame_lsb = frame & ((1 << num_lsbs) - 1)

 frame = frame & ~((1 << num_lsbs) - 1)

 frame |= int(hash_previous[:2*num_lsbs], 16)

 frames.append(frame)

 # Update the previous hash value with the LSBs of the current frame

34 | P a g e

 hash_previous = hashlib.sha256(frame_lsb.tobytes() +

hash_previous.encode()).hexdigest()

 # If we've reached the end of the video, exit the loop

 if not frames:

 break

 # Concatenate the previous hash with the current chunk of frames

 hash_current = hashlib.sha256(hash_previous.encode() +

b''.join([frame.tobytes() for frame in frames])).hexdigest()

 # Set the current hash as the previous hash for the next iteration

 hash_previous = hash_current

 hashes.append(hash_current)

 cap.release()

 cv2.destroyAllWindows()

 # The final hash value is the hash of the last chunk of frames

 return hash_current,hashes

def index(request):

 if request.method == 'POST':

 file = request.FILES.get('file',None)

 video = Video(video=file)

 video.save()

 video_path = os.path.join(settings.BASE_DIR, 'media', video.video.name)

 hashed,hashes = blockChainingVideo(video_path)

 video.hash = hashed

 video.hashes = json.dumps(hashes)

 video.save()

 # Divide the video file into fixed-size chunks

35 | P a g e

 print(hashed)

 return render(request,'index.html',{'hash':hashed,'message':'Video

Uploaded to System with Id: {}'.format(video.id)})

 return render(request,'index.html')

def check(request):

 if request.method == 'POST':

 file = request.FILES.get('file',None)

 id = request.POST.get('id',None)

 if file is not None and id is not None:

 video = Video(video=file)

 video.save()

 video_path = os.path.join(settings.BASE_DIR, 'media',

video.video.name)

 video.hash,hashes = blockChainingVideo(video_path)

 video.hashes = json.dumps(hashes)

 video.save()

 compare_video = Video.objects.get(id=id)

 compare_hashes = json.loads(compare_video.hashes)

 video_hashes = json.loads(video.hashes)

 if video.hash == compare_video.hash and compare_hashes ==

video_hashes:

 video.video.delete()

 video.delete()

 return render(request,'check.html',{'message':'Video is Original

compare to Video:{}'.format(id)})

 elif video.video.size == compare_video.video.size:

 video.video.delete()

 video.delete()

36 | P a g e

 return render(request,'check.html',{'message':'Video is Editted!

compare to Video:{}'.format(id)})

 video.video.delete()

 video.delete()

 return render(request,'check.html',{'message':'Video Not found'})

 return render(request,'check.html')

4.1.6 Steganography:

import numpy as np

import pandas as pand

import os

import cv2

from matplotlib import pyplot as plt

from moviepy.editor import *

In[4]:

def BinaryToDecimal(binary):

 string = int(binary, 2)

 return string

def msgtobinary(msg):

 if type(msg) == str:

 result= ''.join([format(ord(i), "08b") for i in msg])

 elif type(msg) == bytes or type(msg) == np.ndarray:

 result= [format(i, "08b") for i in msg]

37 | P a g e

 elif type(msg) == int or type(msg) == np.uint8:

 result=format(msg, "08b")

 else:

 raise TypeError("Input type is not supported in this function")

 return result

In[8]:

In[11]:

In[14]:

def KSA(key):

 key_length = len(key)

 S=list(range(256))

 j=0

 for i in range(256):

 j=(j+S[i]+key[i % key_length]) % 256

 S[i],S[j]=S[j],S[i]

 return S

38 | P a g e

In[15]:

def PRGA(S,n):

 i=0

 j=0

 key=[]

 while n>0:

 n=n-1

 i=(i+1)%256

 j=(j+S[i])%256

 S[i],S[j]=S[j],S[i]

 K=S[(S[i]+S[j])%256]

 key.append(K)

 return key

In[16]:

def preparing_key_array(s):

 return [ord(c) for c in s]

In[17]:

def encryption(plaintext,key):

 print("Enter the key : ")

39 | P a g e

 # key=input()

 key=preparing_key_array(key)

 S=KSA(key)

 keystream=np.array(PRGA(S,len(plaintext)))

 plaintext=np.array([ord(i) for i in plaintext])

 cipher=keystream^plaintext

 ctext=''

 for c in cipher:

 ctext=ctext+chr(c)

 return ctext

In[18]:

def decryption(ciphertext,key):

 print("Enter the key : ")

 # key=input()

 key=preparing_key_array(key)

 S=KSA(key)

 keystream=np.array(PRGA(S,len(ciphertext)))

 ciphertext=np.array([ord(i) for i in ciphertext])

 decoded=keystream^ciphertext

 dtext=''

 for c in decoded:

40 | P a g e

 dtext=dtext+chr(c)

 return dtext

In[19]:

is empty')

 data +='*^*^*'

 binary_data=msgtobinary(data)

 length_data = len(binary_data)

 index_data = 0

 for i in frame:

 for pixel in i:

 r, g, b = msgtobinary(pixel)

 if index_data < length_data:

 pixel[0] = int(r[:-1] + binary_data[index_data], 2)

 index_data += 1

 if index_data < length_data:

 pixel[1] = int(g[:-1] + binary_data[index_data], 2)

 index_data += 1

 if index_data < length_data:

 pixel[2] = int(b[:-1] + binary_data[index_data], 2)

 index_data += 1

 if index_data >= length_data:

 break

 return frame

41 | P a g e

In[20]:

def extract(frame,key):

 data_binary = ""

 final_decoded_msg = ""

 for i in frame:

 for pixel in i:

 r, g, b = msgtobinary(pixel)

 data_binary += r[-1]

 data_binary += g[-1]

 data_binary += b[-1]

 total_bytes = [data_binary[i: i+8] for i in range(0,

len(data_binary), 8)]

 decoded_data = ""

 for byte in total_bytes:

 decoded_data += chr(int(byte, 2))

_data[i]

 final_decoded_msg = decryption(final_decoded_msg,key)

 print("\n\nThe Encoded data which was hidden in the Video

was :--\n",final_decoded_msg)

 return final_decoded_msg

In[21]:

def encode_vid_data(input_file,output_path,data,key):

 cap=cv2.VideoCapture(input_file)

42 | P a g e

 vidcap = cv2.VideoCapture(input_file)

 fourcc = cv2.VideoWriter_fourcc(*'XVID')

 frame_width = int(vidcap.get(3))

 frame_height = int(vidcap.get(4))

 size = (frame_width, frame_height)

 out = cv2.VideoWriter(output_path,fourcc, 25.0, size)

 max_frame=0

 while(cap.isOpened()):

 ret, frame = cap.read()

 if ret == False:

 break

 max_frame+=1

 cap.release()

 print("Total number of Frame in selected Video :",max_frame)

 print("Enter the frame number where you want to embed data : ")

 n=10

 frame_number = 0

 while(vidcap.isOpened()):

 frame_number += 1

 ret, frame = vidcap.read()

 if ret == False:

 break

 if frame_number == n:

 change_frame_with = embed(frame,data,key)

 frame_ = change_frame_with

 frame = change_frame_with

 out.write(frame)

43 | P a g e

 print("\nEncoded the data successfully in the video file.")

 return frame_

In[22]:

selected Video :",max_frame)

 print("Enter the secret frame number from where you want to extract data")

 n=10

 vidcap = cv2.VideoCapture(input_file)

 frame_number = 0

 while(vidcap.isOpened()):

 frame_number += 1

 ret, frame = vidcap.read()

 if ret == False:

 break

 if frame_number == n:

 a = extract(frame_,key)

 return a

In[23]:

def vid_steg():

 while True:

 print("\n\t\tVIDEO STEGANOGRAPHY OPERATIONS")

 print("1. Encode the Text message")

 print("2. Decode the Text message")

44 | P a g e

 print("3. Exit")

 choice1 = int(input("Enter the Choice:"))

 if choice1 == 1:

 input_file = input("Enter Input File Name: ")

 output_file = input("Enter Output File Name: ")

 a=encode_vid_data(input_file=input_file,output_path=output_file)

 print(a)

 elif choice1 == 2:

 output_file = input("Enter Input File Name: ")

 decode_vid_data(a,input_file=output_file)

 elif choice1 == 3:

 break

 else:

 print("Incorrect Choice")

 print("\n")

def main():

vid_steg()

def video_encrypt(input_file,output_file,data,key):

 array =

encode_vid_data(input_file=input_file,output_path=output_file,data=data,key=

key)

 return array

def decrypt_vide(input_file,array,key):

 res = decode_vid_data(array,input_file=input_file,key=key)

 return res

if __name__ == "__main__":

main()

45 | P a g e

4.2 User Interface

UI is designed according to UI design principles.

The structure principle: UI is organized in such a way that related things

are combined together and unrelated things are separated.

The simplicity principle: It is easy to follow the provided interface.

The visibility principle: All system’s functions are available through

UI. It does not overwhelm users with too many alternatives.

The reuse principle: In design, same names were used to perform

the same operations with different objects in order to reduce

ambiguity.

There are a total of 4 main pages in the user interface: Main

Window, Login Screen, Registration and Dashboard.

4.2.1 Main Window

46 | P a g e

4.2.2 Login

4.2.3 Admin

47 | P a g e

4.2.4 Videos Logs:

Originality Check:

48 | P a g e

Chapter 5

Conclusion

In conclusion, my project on deep fake detection using hashing techniques has

been successful in achieving its primary goal of providing a user-friendly and

accessible solution for identifying deep fake videos. The addition of an originality

check feature has further enhanced the functionality of the solution, providing users

with the ability to verify the authenticity of images and videos.

The web-based architecture of the solution, built using Django and Python, has

enabled the solution to be easily accessed and used by users from different devices and

locations. The use of hashing techniques for deep fake detection and originality check

has proven to be effective, allowing the solution to quickly and accurately identify

similarities between uploaded files and known deep fake or original videos.

One of the significant benefits of this project is its potential impact on

combating deep fake videos, which have become increasingly prevalent in recent

years. By providing a user-friendly and accessible solution, we can empower users to

identify and report deep fake videos, which can help reduce their spread and impact.

Overall, this project has been a valuable learning experience in applying

hashing techniques to deep fake detection and originality check, while also developing

a scalable and maintainable web-based solution. It has demonstrated the potential for

technology to help address important societal issues, such as combating the spread of

deep fake videos.

49 | P a g e

Chapter 6:

Future Work

Future milestones that need to be achieved to commercialize this project are the

following.

6.1 Access to real life logistics marketplace:

The primary goal of this project is to create a product that is effective and simple

for everyone in this business to utilise. It is essential to have direct access to a

logistical market.

6.2 Future Improvements:

Integration of Machine Learning: Currently, your project uses hashing techniques

for deep fake detection and originality check. However, integrating machine learning

algorithms can improve the accuracy of detection and reduce the likelihood of false

positives. Machine learning can also enable the system to learn and adapt to new

types of deep fake videos that may emerge in the future.

Addition of User Feedback: Incorporating user feedback can help improve the

effectiveness of the deep fake detection module. For example, users could flag

potential deep fake videos that were not accurately detected, and this data could be

used to improve the detection algorithms.

Integration with Social Media Platforms: Deep fake videos are often spread

through social media platforms. Integrating your project with social media platforms

could enable users to easily identify and report deep fake videos, which could help

reduce their spread and impact.

Improved User Interface: While your project has a user-friendly interface, there

is always room for improvement. For example, incorporating more visual elements,

such as graphs or charts, could help users better understand the results of the deep

50 | P a g e

fake detection and originality check modules.

Support for Additional File Formats: Currently, your project supports image and

video file formats. However, deep fake videos can also be created using audio files.

Adding support for audio file formats could enhance the effectiveness of your deep

fake detection module.

51 | P a g e

References and Work Cited

[1] Miki Tanaka and Hitoshi Kiya, “Fake-image detection with Robust Hashing”

Tokyo Metropoliltan University, Feb 2021.

[2] G. Sujatha, Dr. D. Hemavathi, K. Sornalakshmi, S. Sindhu, “Video Tampering

Detection Using Difference-Hashing Algorithm” SRM Institute of Science and

Technology, Chennai, Tamil Nadu, India.

[3] Pengfei Pei, Xianfeng Zhao, Yun Cao, Jinchuan Li, and Xuyuan Lai, “Vision

Transformer Based Video Hashing Retrieval for Tracing the Source of Fake

Videos”, Sep 2022.

[4] Zhou, P., Han, X., Morariu, V. I., & Davis, L. S. (2018). Two-Stream Neural

Networks for Tampered Face Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops (pp. 2074-2083).

[5] Marra, F., Verdoliva, L., & Cozzolino, D. (2019). Detection of GAN-generated

fake images over different domains using a Siamese-like architecture. arXiv preprint

arXiv:1909.08551.

[6] Feng, J., Wu, Y., Ross, A., & Zhang, X. (2019). Learning to detect fake face

images in the wild. In Proceedings of the IEEE International Conference on

Computer Vision (pp. 3396-3405).

[7] Patel, D. S., Patel, S. S., & Patel, A. B. (2021). A survey of deepfake detection

techniques: A comprehensive review. arXiv preprint arXiv:2106.10070.

[8] Gandomi, A. H., Haider, M., & Hussain, S. (2021). A deep learning approach to

deepfake detection using image hashing. Computers & Security, 107, 102228.

[9] Vashishtha, S., Garg, R., & Varshney, G. (2020). A survey of deep learning

techniques for deepfake detection. Journal of Ambient Intelligence and Humanized

Computing, 11(2), 673-693.

52 | P a g e

[10] Pandey, P., Gupta, P., & Jain, A. (2021). Detection of Deepfake Video using

Hybrid Cryptographic Techniques. In Proceedings of the 4th International

Conference on Computing Methodologies and Communication (pp. 1-8).

53 | P a g e

