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Abstract 

 

Medical image widely use Active contour models (ACMs) or snake for segmentation purposes, 

specifically to extract tumor boundaries in brain tumor MRI images. ACMs practical 

applications are limited due to issues related with initialization and weak convergence to 

boundary concavities. Here comparative study is presented to analyze three different Active 

contour models (ACMs) of snakes implemented on Brain tumors MR imagery. Where the three 

ACMs are named as: Gradient Vector Flow (GVF), Boundary vector field (BVF), Generalized 

Boundary Vector Field (GBVF). 

The assessment of results with tumor MR imagery demonstrates that GBVF method is more 

perfect and robust for brain tumor segmentation. Selected imagery for testing provides difficult 

and typical problems found in different cross-sectional views of brain tumor MRI segmentation. 

The comparative results emphasize both the potential and weaknesses of these models.  
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Chapter 1 

1. INTRODUCTION 

1.1. Motivation 

 Now a days, tumor based diseases are among the most serious ailments in the world and their 

treatment and cure is one of the most prioritized research area in bio-medical engineering. For 

example, the treatment of Brain cancer is very critical, as the functional system of whole body 

depends on brain. During surgery, arterial spread areas must be saved in order to avoid medical 

disorders caused by surgeons.  Therefore, it is necessary to give attention to proper diagnosis and 

treatment planning of such diseases. It is essential that oncologists, neurosurgeons and the whole 

medical panel should be aware of the knowledge and details of the tumor affected area. 

Neurosurgeons, oncologists and radiologists prefer brain tumor segmentation from Magnetic 

Resonance Imaging (MRI) to analyze the tumors responses during treatment. MRI can be useful 

to plan radiation therapy and to examine the efficiency of new drug. Automatic brain tumor 

segmentation methods are preferable to manual segmentation as the later is tedious and can be 

erroneous. The MRI images help in exact diagnosis and treatment planning of the tumor. 

Therefore, the images play an extremely important role in the assessment of brain tumors and in 

providing the required knowledge in the usage of the current tools provided by computational 



 

techniques. Thus, benefiting in providing the information recovered from these images during 

treatment.  

Brain tumor is one of the main reasons for the raising of death rate among adults and children. 

Tumors are the considerable amount of tissues that rise out of regulation of the standard 

strengths that manage development [1].The complicated brain tumors are divided into two main 

groups which are dependent on origin of tumors, how severe it is and their growth pattern. 

Primary brain tumors grow up out of the brain‘s cells or from the brain‘s layer. A metastatic or 

secondary brain tumor arises as a result of cancer cells that expand to the brain out of primary 

cancer that exists in any other body part. Many researches of progressive countries reflect that a 

large range of people who are affected by brain tumors are expired as in result has risen possibly 

about 300 in last thirty years [2].  

Detecting the small brain tumors in MRI imagery is more analytically complex than larger 

tumors, and consequently, increases the risk of human blunder when examined by a consultant. 

Automatic detection process not only reduce human blunder but also boost the time consuming 

procedure of assessing large quantity of MRI imagery. Neuro-radiology is perceived as such a 

field wherein the patient‘s condition of fitness condition is concluded on the basis of visual 

examination of imagery obtained through diverse modalities. It entails that the physician‘s 

meticulous expertise as well as on the informative data that the clinical group can manage are the 

factors that play role behind achievement of clinical diagnosis. 

Research in this field is exceptionally dynamic. Efforts have been applied to move ahead of the 

contemporary pixel resolution, and to increase knowledge using ―molecular imagery‖ in 

magnetic resonance imagery as well as in nuclear medicine. Thus it is proved that imagery is 



 

providing a precious assistance in medical routine. Additionally, several image modalities are 

utilized often at various time positions; hence it is essential for combining the characteristics 

exhibited by these distinctive suppliers of imagery. Automatic  processing  techniques are being 

advanced enough to appreciate this integration. A number of  Computer  Aided  Diagnostic  

(CAD) software packages are introduced, specifically to supply supportive analysis in brain 

cancer, lung, or mammography. These progresses have provoked various clinical treatments. 

In image processing of brain tumor, the main objective is the identification of location and 

expansion of the tumor, i.e. the segmentation of tumor. On the other hand, brain tumors intrinsic 

destructive actions results ambiguity in the sharpness of neoplastic margins, preventing a precise 

macroscopic level diagnosis and an exactness of treatment. Analyzing image segmentation at 

advance level can also produce objective measuring of the related attributes of tumors, like 

knowledge about metabolic-related information, size or shape, and study of the molecular 

changes relating to a pathologic performance to a treatment outcome. Regarding to a research the 

reaction of GBM to chemotherapy can be examined through segmentation of tumor. One more 

team focused that through image analysis it is realized that the resilience development speed of  

low-grade  gliomas is advantageous to evaluate the threat of conversion of this tumor condition 

to a malicious one. According to another research heterogeneity-associated brain tumor 

characteristics have exposed a firm affiliation with the discrimination of a cancerous tumor from 

a low-grade glioma. Where the presence of edema in white matter has been associated with the 

tumor severity, differentiating from edema at times can be done through expert‘s trained eye 

however it is not easy to identify it mechanically. The above discussed situation, i.e. edema and 

excessive heterogeneity can be tackled through computational-based techniques, giving uphold 

to advance the patient supervision.  



 

1.2. Magnetic resonance imaging 

High spatial resolution imagery is a mutual characteristic of both Magnetic resonance images 

(MRI) and computed tomography (CT). As MRI does not involve any contact of ionizing 

radiation thus it is a secure practice. There are many reasons due to which MRI holds a particular 

position within imaging modalities. Single machine of MRI can produce a broad range of types 

of contrast. In addition to effortlessly high-quality soft tissue contrast, its distinctive imaging 

assembly provides suppleness in slice arrangement at any desired angle in the 3 D space. Despite 

of the factor that MRI takes more time in inspection than other imaging techniques, the 

opportunities provided by MRI designate it among the leading imaging mechanisms for 

neurological research, Image development is consisted of handling of the magnetic attributes of 

the  water hydrogen nucleus, and resulting operation of ―tissue magnetization‖, done in the 

presence of enough  high magnetic field environment. It‘s a fascinating point that every tissue is 

rare in its microstructure and possesses distinctive chemical configuration as well as all are 

different in magnetic characteristics that make them very useful in applications. 

http://app.thesaurus.com/click/nn1ov4?clksite=thes&clkquery=37E14F3D68541B534B7EF2C99EB4D330&clkpage=the&clkimpr=URDAsyc0oLZ9LoSP&clkld=0&clkorgn=0&clken=1clk&clkord=0&clkblk=d&clktemp=mid&clkmod=1clk&clkitem=mechanism&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fmechanism


 

 

Figure 1.1: Basic set up MRI apparatus 

Each tissue possesses unique longitudinal time T1 and transversal relaxation time T2. The 

Longitudinal relaxation time, T1, represents the duration required by magnetization for retrieval 

of its original condition; quick magnetization retrieval produces low T1 and high signal. 

While time of signal decaying is represented by T2, a smaller T2 means signal decaying is fast 

and signal is low. T1 and T2 rise due to independent reasons, thus express dissimilar and 

distinctive tissue uniqueness. A number of methods are used for efficiently dealing tissue 

magnetization, producing and obtaining MR signal. Due to this support, MRI fundamental 

contrast types T1- or T2- weighted images are obtainable.  Since signal arises within  water  

hydrogen  nucleus , overall quantity of signal relies on intensity of water present in tissue and 

provides third major existing contrast; proton  density  (PD)  weighted  images. Efficient choice 

http://app.thesaurus.com/click/nn1ov4?clksite=thes&clkquery=9E5FC74F6519530370906BDCC9C1FE24&clkpage=the&clkimpr=URDIqCc0oLYKymDQ&clkld=0&clkorgn=0&clken=1clk&clkord=0&clkblk=d&clktemp=mid&clkmod=1clk&clkitem=intimate&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fintimate
http://app.thesaurus.com/click/nn1ov4?clksite=thes&clkquery=EEBE83C76FEB46941DF9A7DF53FE21AF&clkpage=the&clkimpr=URDQ4ic0oLZhLYAy&clkld=0&clkorgn=0&clken=1clk&clkord=0&clkblk=d&clktemp=mid&clkmod=1clk&clkitem=opposition&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fopposition


 

of  an  imaging  sequence  and  proper choice of its  parameters are required to obtain the desired 

contrast type.  MR  signal is produced as well as controlled on account of sequential usage of 

some of the factors, namely magnetic field gradient and radiofrequency pulse (RF pulse), with 3  

spatial  axes. The efficient sequential use of these factors is known as MR sequence. A standard  

 

Figure1.2: Glioblastoma Multiforme. Top row: CT images, without CE (left), and with CE (right).Bottom 

row: MR images. From left to right: T1-weighted, Contrast-Enhanced T1-weighted, FLAIR, and T2-

weighted, diffusion-weighted. 

MR imaging procedure includes obtaining imagery with various sequences types; selection is 

done on the basis of desired feature. Usually period of relaxation is greater in brain tumors as 

compare to normal  tissues , well signifies that tumors emerge high intensity on T2-weighted 

imagery whereas they show low intensity on T1-weighted imagery. However tumors appear as 

transitional intensities on   PD-weighted imagery.  The tumor often shows several degrees of 

cellular solidity and diverse irregularities, visible covering the tumors, like necrosis, hemorrhage, 

additional fat content, calcification etc.; most brain tumors give assorted look in MR imagery, 

http://app.thesaurus.com/click/nn1ov4?clksite=thes&clkquery=D4005918FFA5280F1205FAB995BEB9E8&clkpage=the&clkimpr=URDVKCc0oLZ0+fN/&clkld=0&clkorgn=0&clken=1clk&clkord=0&clkblk=d&clktemp=mid&clkmod=1clk&clkitem=signify&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fsignify


 

like glioblastoma (GBM) exposed in Fig. 1.2. It is difficult to separate out such tumor 

automatically in precise way as a professional does [4, 5]. Inversion Recovery (IR) sequences are 

usually used in neurology related purposes. An IR sequence allows signal inhibition from 

particular tissues on the basis of information of T1, and so presents clear contrast of gray matter–

white matter.  Fluid Attenuated Inversion Recovery (FLAIR) is proven IR sequence, which 

represses Cerebrospinal fluid signal and also provides imagery which better differentiate tumor 

and edema [6]. 

Contrast agent injection and FLAIR sequences are commonly used together, showing imagery 

with much difference between background tissues and the tumors. Gadolinium (Gd) chelates is 

the medium used in MRI for obtaining contrast enhanced imagery, it reduces the T1, and trigger 

high signal in the organs wherever it reaches. Gd chelates collect in excessive cellular gaps of 

tumor; similarly like iodine contrast agents behave in CT, as the breaks down of BBB takes 

place, it provides improved vision of tumors and detailed characterization. Image acquisition 

post injection and contrast media injection are combined in MR protocols[3, 4]. Fig 1 shows a 

distinctive ring-like   enhancement in surrounding of the tumor  

In case of gliomas or metastasis enhancement quality can be improved using high doses of 

gadolinium. Contrast medium having gadolinium can raise health issues which are being 

reported by patients especially suffering from kidney dysfunction. Along with gadolinium based 

contrast further methods are required, particularly to measure tumor proliferation, since 

enhancement of Gd highly depends on breakdown of BBB. Study shows there are enhancing 

gliomas which are benign and considerable amount of non-enhancing gliomas are present which 

are actually malignant in nature. A range of methods are accessible for MR angiography and 



 

perfusion dimensions, such as ―Time of Flight‖ (TOF),  or contrast  based  agent  injection ,or 

―black blood‖ acquisition and resultant reiterative achievements. Variations of Signal are 

counted by time and volume. Knowledge about micro vascular system of tumor can be attained, 

and it lets the determination of its level of destructiveness and likely explosion. Magnetic 

resonance is identified by being a main part of examination, and a lot of applications are now 

accessible along with T1-,   T2-, and   PD-weighted imagery.  

1.3 Medical Image Analysis 

Due to the great development in imaging technology, medical imaging performs progressively 

more vital part in illustration of the embedded structures of the medical images [6, 7, 8 9]. It is 

fundamental for biomedical examinations and clinical uses for analysis, surgery or radiotherapy. 

While modern imaging tools supply significant inspections of internal anatomy, usage of 

computers for measuring and analyzing large quantity of medical images is restricted. To 

conform with the requirements, medical image analysis is determined and intends to process, 

evaluate, and compute embedded structures of medical images accurately, repeatedly, and 

effectively. Medical image processing and analysis deal with a wide range of research topics.  

 



 

 

Figure1.3: Structure of Medical Image Analysis 

 

Where several advanced modalities, like CT involve image processing techniques for image 

reconstruction. Secondly, in medical image analysis, interpretation of the given images is 

typically done in two phases, first is low level processing and then followed by high level 



 

processing. Features are extracted from raw data set during Low level processing, which 

involves image preprocessing, segmentation, filtering, or enhancement. The extracted features 

are used for diagnosis purposes during high level processing. Figure.1.3 shows low level image 

processing comprises of two basic techniques i.e. image filtering and segmentation, and these are 

the core steps in medical image analysis. Their accuracies prove the success of the whole 

diagnostic procedure. Across the last century, the study of image segmentation and filtering has 

shown considerable improvements. However, they are still the active and continuous research 

areas since the levels of segmentation and filtering are ill-defined in different applications using 

different methods. 

1.3.1 Image Segmentation 

The purpose of segmentation is sectioning an image into panels which are meaningful with 

respect to a specific application. Every region describes particular type of features, such as, range 

of intensities, class of textures, kind of shapes, or certain objects. Medical image segmentation is 

a special example of image segmentation. In clinical practice segmentation is a mean to draw 

useful embedded anatomies or structures out of an image. Vessel extractions and tumor 

detections are some of the common practical applications[10]. Image segmentation techniques 

are generally divided into two major classes, edge based and region based methods. 

Region based methods established on collecting together pixel are neighbor as well as share 

common features, split and mostly obtained by clustering and region growing techniques. 

Suitable choices of features of interest using region based approach can produce reasonably good 

regions[11, 12]. Edge based methods based on detecting the image gradient or the strong edges 

from an image. Edges are actually the disjunction in intensity, color or texture. Similar approach 

is used by many edge based segmentation techniques. However the usage of edge detection 



 

methods and edge connection methods differentiate them from each other. Using low level image 

processing procedures like edge detection, mathematical morphology operations, and region 

growing for segmentation purpose proceeded by manual editing, generally require extensive 

amounts of expert involvement[11, 12]. Structures boundaries may become vague and detached 

due to the presence of noises of the acquired medical images, like, spatial aliasing, no uniform 

illumination and sampling artifacts. These kinds of techniques only consider local information 

into account hence make it tough to automate these techniques. Consequently, extract 

information from medical images physicians still depend heavily on tedious manual operations. 

In this set-up an expert machinist manually marks outs the interested region on every an image 

volume‘s slice. There are many severe drawbacks using manual slice editing. However these 

important performances can be effectively automated through active contour models[12, 13 14]. 

These methods engage the usage of a sample whose boundary illustration is similar to the image 

to retrieve the interested object. The contour models approach always assures the development of 

closed boundary without the requirement of any boundary connection devices. These 

segmentation techniques begin from an initial curve from manual rough outline. Then the curve 

is automatically deformed iteratively following some predefined models and rules. The final 

curves found will then match with the edges of the regions. Active contour models are dynamic 

and robust research approach to medical image analysis. Shortcomings of basic image processing 

procedures and physical slice editing can be controlled using active contour model. As well as 

Segmentation problems reduce with active contour models those are utilizing the prior 

information about shape of the object and its smoothness. In active contour models boundary of 

object is considered as a single connected structure. Thus, it not only assure the connectivity and 

smoothness of an object, but also irregularities, noise, gaps in boundaries of object can be 



 

controlled with this. These properties results in precise and efficient segmentations as well as a 

profound platform from which to extend automatic analysis methods. Active contour models are 

proved to be helpful for solving the primary medical image analysis challenges including shape 

representation segmentation, motion tracking and matching[15, 16, 17].  

Segmentation of brain tumors is a complicated job, due to the multifarious anatomy and 

numerous issues that are built-in into the description of mage. The assorted and diffused 

pathological description of medical imagery complexes the performance of computational tools 

intelligent to treat with this vast inconsistency of patterns. Moreover, segmentation techniques 

can tackle the artifacts and limitations coming with entire image modalities, for example, 

Magnetic Resonance (MR) imagery is usually despoiled by bias field which is a fluent changing 

intensity irregularity. Actually it is an un-even intensity pattern, meant for a certain tissue, on an 

image that is undetectable manually but could be highly observable by an automatic 

computational method like segmentation.  

1.4 Parametric Active Contour 

In 1988 parametric active contour model was presented by Kass as snake or active contour. Afterward it 

has been successfully employed in various problems of medical image analysis and computer vision, such 

as motion tracking, edge and subjective contours detection and segmentation. Snakes have proved 

practically valuable in medical image segmentations. Some of the examples are lung segmentation from 

magnetic resonance images, automated analysis of nerve cell images and detection of rolling leukocyte 

within intra-vital microscopy .The key benefit of snake models, as compare to traditional edge detection 

approaches is that they include image and spatial information in extraction of smooth border of the ROI 

region of interest[2, 3, 4]. An initial rough approximation of the desired border is defined and the curve 

deforms to attain the final best possible shape. Hence, isolated artifacts are not counted when they intrude 



 

with the smoothness of the curve. Snake is actually an elastic curve as seen in Fig. 1.4, which is 

composed of connected nodes.  

 

Figure1.4: Elastic nature of snake. 

 

The logic behind this name active is that it can dynamically adjust to object shapes by reducing a defined 

energy functional iteratively. The functional comprises of internal forces and external forces, due to 

mathematical formulation it becomes simpler to combine in a single deformation process, all those of an 

initial approximated required are properties of contour, information dependent constraints and image data.  

 ( )   ∫     ( ( ))  
 

 

      ( ( ))                     



 

Where      the internal force and        is the external force, while s refers to the node indexes of the 

snake and keep in the range of [0; 1].one of the first uses of active contour in medical image analysis was 

the segmentation using snakes for both 2D and 3D data sets. 

In some cases Snake models have their own natures or limitations. First, as it is assembled by a pre-

defined curve, it was meant to deal topologically simple objects. Since without using extra machinery the 

topological changes cannot be handle through mathematical model. Thus topological structures required 

to be identified in prior. However, this is beneficial in some situations if it is employed for topologically 

simple objects against complex background. It is handled easily and prevents over-segmentation with not 

inevitable topological changes. Secondly contraction force of internal energy term and concavity of the 

energy functional make the parametric snakes significant to their preliminary conditions.  Thus, 

development of effective external term is essential for snake model to be successfully applicable in 

practical applications.  

 

 

 

 

 

 



 

 

Chapter 2 

METHODOLOGY 

2.1 Introduction 

Image processing has extensively utilized Active contour models in various applications. Basically, active 

contours are divided into two main categories i.e. first is parametric active contours and the second is 

geometric active contours. Here the focus is on the development of parametric active contours. Snake 

structure is characterized clearly like parameterized curves. Primitively established by Kass et al. [14] the 

snake model has been now developed into various snake models, utilized by many forms of images for 

practical applications like image tracking and image segmentation Parametric active contours evolve the 

closed or open curves under the dominancy of forces generated by external and internal energy terms. The 

purpose of development of most of these forces was to either regulate the framework of snake or 

improvement in extraction process of object boundary. Bending force and elasticity force are examples of 

internal forces. Where image gradient, distance potential force, balloon and pressure are some of the 

examples of external forces. While implementing the traditional snakes, requirement is to place the 

original snake carefully in the vicinity of target object, else due to limited capture range it will attract 

towards the local minima. Snake improved its capture range through the distance potential force which 

was characterized on the basis of Euclidian distance. However just like behavior of traditional snakes, the 

snake with distance potential force cannot grow onto concavity.  

Then Gradient vector flow (GVF) was developed in order to boost the snake potential to drive into the 

concavities [15]. In coming time this development brought remarkable advancements in snake models. 

Various novel snake models were proposed by merging diverse methods into GVF snake. However, in 

GVF snake model, limitation of capture range is still a problem and its execution is a computationally 

heavy procedure. GVF snake spreads the gradient data starting at the object boundary to the other 



 

portions of the image that results in extension of capture range. Non-linear diffusion method was applied 

to handle this shortcoming of GVF snake, but, intensive computation still remained a problem. 

 

2.2 Two Dimensional Traditional Snake 

 

The basic 2-D snake has a curve shaped structure 

 ( )  [ ( )  ( )]   [   ] 

For reducing an energy function, the snake grows via image‘s spatial region. 

  ∫ [    ( ( ))      ( ( ))]          (   ) 
 

 

 

     is a term for internal force, and      is a term for external force. The internal energy function is 

meant to impose a shape on the deformable contour and to preserve an even distance between the points 

in the contour 
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stress and tension of snake are handled by weighting  parameters     and   . Where    ( ) indicates the 

first and   ( ) indicates second derivatives of x(s) regarding s.      the external force is obtained out of 

the image that is why possessing smaller numerical values at the characteristics of interest, like 

boundaries. Assumed I(x, y) a gray-level image, considered as a function of variables (x, y) having 

continuous position. A basic external force developed to direct a snake for step edges are 
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Where   (   )  reprents 2 dimensional Gaussian function having standard deviation       gradient 

operator   . For binary image suitable external forces comprise of 
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These definitions show that higher value of     forms the edges blurry. However in snake model large 

values of     are frequently required for enhancing its capture range. Initial snake that reduces E _ should 

meet the requirements of Euler equation 

    ( )       ( )                                     (   ) 

That can be analyzed by force balance equation  

                                                               
( )
                                              (   ) 

Where 

       
  ( )        ( )   

and 

     
( )
        

     suppresses the tension and bending where     
( )

 drag the snake in direction of the interested image 

edges. In order to search the solution to (2.6), the snake is made active by dealing such that x is dependent 

on time t in addition to s(   ). And so, partial derivative of x regarding s is put equivalent to the left side 

of (2.6) as shown below  

  (   )    
  (   )       (   )                   (   ) 

 

As the result  (   ) becomes stable, the term   (   ) disappears and a solution of (2.6) will accomplish. 

Discretize the equation and execute the discrete system repeatedly so numerical result to (2.8) can be 

determined. It is notable that a lot of snake implementations seek the factor, either it multiplies    to 



 

manage the step-size according to time, or it multiplies      , which allows independent influence of the 

external force strength. The traditional snake model shows that evolution of snake highly depends on the 

external force. Using typical external force in (2.3), results in evolution of the snake in conformity with 

blurred edges. Increase  in  standard  deviation  of  the  Gaussian   function  enhance the  capture  range  

of the snake, however the boundary localization turns lesser in accuracy and sharpness. In case of 

traditional snake the capture range is limited, so it is necessary to carefully initialize the snake in vicinity 

of the target boundary. 

 

2.3 GVF Deformable Contours 

The idea behind GVF was to design to a snake taking dynamic force equation (2.8) as an initial point 

[15]. So the potential force -      in (2.8) replaced with v(x) as follow  

  (   )     
  (   )        (   )   ( )           (   ) 

 Its numerical solution is obtained by discretizing the equation and solving it iteratively, in the same 

manner as traditional snake. While the ultimate design of GVF snake assures force-balance equation 

(2.7),  Euler  equations  of  the   energy  minimization  problem  (2.1) is not characterized by this equation 

as  ( ) generally does not use on account of  negative  gradient  of  a  potential  function. The failure of 

such desirable property, though, is well-balanced by the considerably better functioning of GVF snake. 

2.3.1 Edge Map 

Image I(x) deduce edge map f(x) which has the attributes that its value is bigger close to the image edges. 

Gray-level or binary edge map can be used such as 

 

 ( )       
( ) ( )                                        (    ) 

The value of i is 1 to 4. Generally edge maps have three attributes that are significant in the current 

situation. Firstly, edge map has the gradient    that has vectors pointing in the direction of the edges. 

Secondly, the vectors produced generally show big magnitudes just in close surrounding area of edges. 



 

Thirdly, I(x) remains almost invariant in the homogeneous areas so    is just zero. Here the external force 

is formed using edge map gradient. Due to first property, the snake defined nearby the edge will come to 

a steady arrangement in close proximity to the edge. It is a well inevitable desirable property. Normally 

the effect of second property is that it will produce the capture range i.e. not large enough. Third property 

does not generate any external force at homogeneous regions. Second and third properties are not 

required. Goal of GVF model is to hold the extremely attractive property of the gradients close to the 

edges. However it uses a computational diffusion process to enhance the gradient map at a greater extent 

starting near the edges and spread to homogeneous areas. An important advantage come out of the inbuilt 

struggle of diffusion procedure will also produce vectors those direct towards concave regions.[8] 

 

2.3.2 Gradient Vector Flow 

GVF was the external force proposed in [25] to move the snake through concavities. GVF field v(x) is 

like stability solution to the underlying vector diffusion formula 

    (    ) 
    (    )(    )        (     ) 

 (   )    ( )                                                (     ) 

In Eq. (2.11a), the first expression is the smoothing term as this expression alone generates easily 

changing vector field. In Eq. (2.11a), the other expression is the data term as it supports u vector field to 

get nearer to    calculated out of the data. g(.) is the coefficient of smoothing expression and h(.)is the 

coefficient of data expression. As these coefficients rely on the edge map gradient which is spatially 

changing, that‘s why coefficients are spatially changing, As it was required for vector field u to be 

gradually-changing at distant positions of edges [16], but to be adjust to    nearby the edges, where g(.) 

and h(.) must be consistently neither increasing nor decreasing functions of |     in that given order.  

 (    )                                                         (     ) 
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As  (.) is constant, smoothing found all over; but,  (.) develop high in close proximity to sharp edges, so 

becomes significant on the boundaries. Therefore, good edge localization should be provided by GVF that 

is computed using such weighting factors. When there are two edges in close vicinity like a stretched thin 

cavity next to the boundary, the smoothing effects becomes prominent. At this moment, GVF leans to flat 

the opposite edges, weakening the energies compulsory to push snake into this area. To tackle this 

difficulty, weighting functions were proposed in which  (.)_ turns into smaller as  (.)  stretch outs larger. 

Then there will be very small smoothing in the vicinity of large gradients, and the effective vector field 

will be almost equivalent to edge map‘s gradient. 
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The GVF field processed with these weighting functions adapted the edge map gradient at sharp edges. 

However it will deviate gradually aside by the boundaries. Degree of swapping among smoothness of 

field and conformity of gradient can be determined to some extent through the specification of k.  

GVF is defined by vector diffusion equation (2.11) with a range of weighting functions that will be 

executed by applying an explicit finite difference method. It will result in steady state when the time step 

   and the spatial sample spaces           fulfill 

                                                                             
     

      
 

 Here       is the greatest quantity of  (.) across the extent of gradients found in edge map of the image. 

 

2.4 Boundary Vector Field 

 

 

 

2.4.1 Boundary Map 

Grey-level image is composed of a matrix, I(x; y). On the basis of typical external force (2.3) boundary 

map is defined and re-write as follows: 
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 Then boundary map is normalized and a threshold (i.e. T 2 [0; 1]) is applied to convert it into binary map. 

It will be decided by binary boundary map that which pixels of the image are boundary points which are 

non-boundary points. 

2.4.2 Potential Functions 

Two potential functions           are generated independently as result of applying interpolations line-

by-line in two scans of binary boundary map. They are horizontal and vertical directional as shown 

below. 

 

                                               

 

Figure 2.1: Scanning lines of interpolation: (i) Horizontal; (ii) Vertical 

 

Object boundary    and image boundary    are the boundary points used during interpolations.    is 

characterized by boundary points shown in binary boundary map. The values obtained after normalization 

of boundary map are assigned to its potential function. The BI is characterized by the broadened boundary 

of the image where it is assigned zero potential value. Their potential values are set as shown below: 
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                 (i) (ii)  



 

   Now potential values are assigned to the non-boundary points computing interpolations. Entire non-

boundary points exist between    or    points in either of three settings, independent of scanning 

directions. 

 

 

Figure2.2: Three interpolation scenarios, area A is bounded by both object and image boundaries, area B 

is bounded by two object boundaries, and area C 

 

For the points that are being captured between object boundary and image boundary, their potential values 

are calculated through linear interpolation [16] 

 

 (   )  (   ) (     )    (     )         (    )   

 

Where bounding object coordinates are (     )and  image boundary coordinates are(     ). The point is 

moved from one boundary to next boundary using step size    [0, 1] 

The points that are not part of above situation, they are captured between two object-boundaries otherwise 

by two image-boundaries. Such situations, do not allow simple linear interpolation due to the identical 



 

potential values posses by confining boundary points. Thus, defined basis functions includes unit interval 

as shown: 
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                        [   ]
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                    (2.17) 
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                      (2.18) 

 

or the points captured  between two object boundaries, represented by   1 and   2. These points are 

located at (       ) and (      )   and their potential values are calculated as under: 
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Where (     ) is a middle position connecting (       ) and (      )  the middle position is inserted 

with the intention of including non-linearity in basic linear potential function[17]. Potential values for the 

points captured between image boundaries represented as     and     , which are located at ((        ) 

and (       ), s calculated using following formula: 
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Where (     ) is the middle position of points which are located at (       )  and (       ), where a 

positive value is normally assigned to weighting factor  .  

 

 

2.4.3 Boundary Vector Field 



 

Potential functions‘ gradients give rise to the formation of two  -D boundary vector fields (BVF) as 

discuss below           

     [           ]                                 (2.21) 

 

Potential functions of both horizontal as well as vertical are involved in BVF1,    , like shown above. 

The BVF1 execution is quite easy, potential functions involves two scans during producing and no 

repeated optimization method is demanded. 

 

 

2.5 Generalized boundary vector field GBVF 

Four potential functions    ,  ,     and     are generated independently as result of applying line by 

line interpolations into four individual scans of binary boundary map. The patterns of these scans are (a) 

horizontal, (b) vertical, and (c) two diagonal directions as depicted below.  

 

 

                       (i)                                         (ii)                                       (iii)                                           (iv) 

 

Figure 2.3: Scanning lines of interpolation: (i) Horizontal; (ii) Vertical; (iii) and (iv) Diagonal 

 

 



 

Boundary points used during interpolations are of two kinds: (i) object boundary    and (ii) image    

boundary   .    is characterized as the  boundary  points shown in the  binary  boundary  map. The 

values obtained after normalization of boundary map are assigned to its potential function. The    is 

characterized by the broadened boundary of the image where it is assigned zero potential value. Their 

potential values are set as shown below: 
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Now potential values are assigned to the non-boundary points computing interpolations. Entire non-

boundary points exist between   or    points in either of three settings, independent of scanning 

directions. 

For the points that are being captured between object boundary and image boundary, their potential values 

are calculated through linear interpolation 
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Where bounding object coordinates are (     )  and  image boundary             are(     ). The point 

is moved from one boundary to next boundary using step size    [0, 1] 

The points that are not part of above situation, they are captured between two object-boundaries otherwise 

by two image-boundaries. Such situations, do not allow simple linear interpolation due to the identical 

potential values posses by confining boundary points[18]. Thus, defined basis functions includes unit 

interval as shown: 
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For the points captured between two object boundaries, represented by   1 and   2. These object 

boundaries are located at (       ) and (      )   and their potential values are calculated as under: 
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 Where (     ) is a middle position connecting (       ) and(      ). The middle position is inserted 

with the intention of including non-linearity in basic linear potential function. Potential values for the 

points captured between image boundaries represented as   1 and   2, which are located at (        ) and 

(       ), is calculated using following formula: 
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Where (     ) is the middle position of points which are located at (       )  and (       ), and a 

positive value is normally assigned to weighting factor  .  

 

Generalized Boundary Vector Field 

Potential functions‘ gradients give rise to the formation of two  -D boundary vector fields (BVF) as 

discuss below       
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Potential functions of both horizontal as well as vertical are involved in BVF1,    and Potential functions 

of both of the diagonal directions are involved in BVF2,     like shown above. The BVF1 execution is 



 

quite easy, potential functions involves two scans during producing and no repeated optimization method 

is demanded. 

GBVF   snake,  is  defined  based  on  the  traditional  snake  in ( 1)   by  applying  two  BVFs  one  by 

one  as  the  external  force: 

    (   )    (   ) 

 

Initially BVF1 is applied and evolves the snake until it converges. Later BVF2 is applied and snake 

evolves until it reaches to the final destination. Computation required for GBVF is quite uncomplicated 

and comprises of just four scans to produce potential functions. There is no need of any repeated 

optimization method [17].  

2.6. Computational setup 

Testing is done with the purpose to present perception of the potency and limitation of the three 

ACMs using for applications involves segmentation of brain tumor MR images. Testing series 

with the common objections created by this imagery are presented in Sec: 2.3.1. Where 

execution specification of the parameter assignment, adjustment, and testing with more types of 

snake initialization are covered in Section 2.8 

2.3.1. Image test set  

Demonstrative test set is based on a series of fourteen 2D images which are chosen to show the 

performance as shown in Fig.2 1. Every tested image is one out of numerous same imagery slices 

present in given catalog. The collection comprises of interpretation of MRI. Here Head at 

different cross-sectional views is presented as the biomedical material. Different resolutions and 

sizes of test images are used. The entire test images used 0–255 range of gray levels. Sharp edges 

close to the scarce edge, weak or blur edge; heterogeneous internal intensity distribution and 



 

complicated shaped tumors with concavities are common complexities of image processing 

existed in test set and are a few of the common issues that could  disappoint any regular 

segmentation techniques. The ACM results were compared with manual contours i.e. a ‗‗ground 

truth‘‘ segmented by radiologist pixel-by-pixel and were exposed with yellow color on the 

testing imagery. Excluding the knowledge of the done segmentation procedures, the same 

radiologist intuitively graded the computerized outcomes to give a quality based judgment.  

2.7 Implementation and experimental settings 

 

Recognition of all the flexible parameters was initial step in execution of all three models. For 

each model a computational program was built in Matlab. Scaling is done to (ex. 256 · 256). The 



 

three ACM under observation possessed some common simple features: The single Pre-

processing carried out on the imagery was Gaussian (5 · 5,   1) blur filtering. Edge maps were 

formed using the gradient magnitude of imagery otherwise their threshold findings of the 

Gaussian blurred images; A circular shaped (3 · 3) initial contour originated on the starting 

location, an interested image point was chosen by the user; no earlier knowledge of the object 

shape was utilized. The parameters, in each group of ACM, are very alike and are explained in 

the coming section. The parameter assignment and adjustment procedure for all three models is 

described as under. 

2.7.1 Parameters 

The ACMs possesses some mutual parameters: rigidity ( ), elasticity ( ), deformation step (ds), 

external force (x) and viscosity (v). In the traditional snake model in equation (2.1) the e and r 

parameters are related to internal force varying factors   and  . To iteratively modifying contour 

position v and ds parameters are applied, but implicitly involve within deformation-equations. 

Throughout the deformation process smoothness of the contour was preserved through the 

composition of the e and r parameters. The deforming contour will produce self-intersections and 

corners by reducing e or r, where raising these parameters excessively will contract that contour 

to single point or line[22, 23]. To modify the contour location v the influenced parameter 

employed to regulate the viscosity. Deformation procedure of contour will be delayed by rising 

value of v and results in more steady deformation. During iterations, the v was restricted to lesser 

than 15 to prevent a big deformation step. Where the potency of effecting of the image 

characteristic that form external force is dependent on x that was influential variable. The highest 

amount of deformations that were allowed was assigned by DS parameter.  



 

2.8 Snake initializations 

Around the user elected place, we can found the initial contour as circle shaped, included twice 

deviations of initial contour sizes and positions, as shown in (figures). In that computational 

work, the initial contours were estimated as adjoining the entity and circle crossing the final 

tumor boundary. The contours either expanded or contracted to approach the tumor boundary [24]. 

The method explained in the earlier section was used to define the parameter setting and tuning 

process for this numerical code. The main objective of the code was to check the sensitivity of 

the ACMs on different initial conditions.  

2.8.1 Different snake initializations 

Furthermore, in medical imagery techniques initial contours for ACMs segmentations can be 

introduced by (1) inserting an outsized circle out of preferred boundary (2) outline a rough 

estimated circular boundary partly cover the required object (3) inserting a tiny contour inside 

the object. The main calculation concentrated on the third part (3) because it demands the lowest 

degree of user contact for programmed image segmentation. Two other initializations, (1) and 

(2), were employed to demonstrate the effect of the ACMs. As described in Section 3.3.3. 

In order to explain these dissimilar initial conditions, an exemplary image was collected. For 

these test cases the restrained optimization technique was not to be used because that demands 

the initial contour being placed inside the object. GVF snakes could appropriately find some 

portions of the object boundary whenever initial contour was inside the object, and there was no 

objects partly cover at these object segments [25, 26]. And when the initial contour is at exterior 

of the object and they were nearer to the edges of the neighboring objects than those of the 

desired object so they were attracted to edges of other objects. It can be expected the GVF snakes 



 

will be pulled towards interested boundary, when the adjacent region of the object is clean with 

no other objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3 

RESULTS 

 

Figure 1: Comparative segmentation on head MR left parietal mass with contralateral subfalcine 

herniation, mass effect on flair image using (a) original image with initial snake in blue (b) processed with 

GVF, (c) processed with BVF, and (d) processed with GBVF deformable model. Yellow— ground truth 

marked by the radiologist; Blue— snake iteration; Red — output boundary extracted by different 

methods. 

 

This tumor has complex shape, irregular boundary and acute concavities as shown in figure 1. 

Owing to limited capture range and presence of blurring edges GVF could not segment the tumor 

boundary accurately. BVF failed due to false edge detection so ended in preconvergence. While 

GBVF model precisely converged into the boundary concavities. 

 



 

 

Figure 2: Comparative segmentation results on right high parietal para saggital hyperintense mass 
without significant mass effect T2-weighted image using (a) original image with initial snake in blue (b) 

processed with GVF, (c) processed with BVF, and (d) processed with GBVF deformable model... 

Yellow— ground truth marked by the radiologist; Blue— snake iteration; Red — output boundary 

extracted by different methods. 

 

From the fig. 2(b) it is observed that the GVF snake is unable to evolve in the interior and cannot 

meet to boundary. This issue arises due to GVF deformable model trying to evolve in the vertical 

direction as central region has small effect of horizontal force. Observation shows GVF meets, if 

the initialization is closer to the boundary as shown in fig 2(c). In contrast, the GBVF deformable 

model meets to the boundary concavities as demonstrated in fig 2(d). Thus is concluded that the 

GBVF model is computationally less expensive and most robust to initialization. 

 

 

 



 

 

Figure 3: Comparative segmentation results on hyperintense rounded right high parietal mass using (a) 

original image with initial snake in blue (b) processed with GVF, (c) processed with BVF, and (d) 

processed with GBVF deformable model. Yellow— ground truth marked by the radiologist; Blue— 

snake iteration. Red — output boundary extracted by different methods. 

  
 Manual segmentation is evaluated in contrast to all three ACMs. GVF not succeeded to develop 

in the course of sporadic structures and distorted to the nearest edge. BVF also stepped across to 

the closest region as it could not identify the minor distinction between the gray matter and 

tumor intensity. Segmentation through BVF particularly needs closed binary boundary, which 

observed tricky to achieve in this specific image. Thus it leaked through irregular edges and 

remained unsuccessful to identify the tumor boundary. GBVF showed better behavior in 

extracting such complicated shaped tumor as it could evolve throughout the uneven boundary 

with sharp concavities.  



 

 

Figure 4: Comparative segmentation results on right high parietal para saggital hyperintense mass without 

significant mass effect T2-weighted image using (a) original image with initial snake in blue (b) 

processed with GVF, (c) processed with BVF, and (d) processed with GBVF deformable model. 

Yellow— ground truth marked by the radiologist; Blue—snake iteration. Red—output boundary 

extracted by different methods.  

 

The GVF, BVF and GBVF deformable models were implemented to head MR T2-weighted 

image right high parietal para saggital hyperintense mass without significant mass effect and 

comparison among them was carried out. The original image is as shown in fig 4(a) with initial 

contour and results of segmentation are shown as (b) GVF segmentation; (c) BVF segmentation; 

(d) GBVF segmentation. In this tumor case all three ACMs somehow succeeded in extracting 

tumor boundaries. However GBVF comparatively gives better result.  

 

 

 

 



 

 

 

Figure 5: Comparative segmentation results on flair coronal meningioma; appearance, homogeneous 

tumor with isointense signal using (a) original image with initial snake in blue (b) processed with GVF, 

(c) processed with BVF, and (d) processed with GBVF deformable model.  Yellow— ground truth 

marked by the radiologist; Blue— snake iteration; Red — output boundary extracted by different 

methods. 

 

Figure 5 demonstrates comparative segmentation result on a homogeneous meningioma tumor 

having well-defined edges. This is the case of hyperintense tumor-uniform intensity in tumor‘s 

content but different intensity from gray matter. In this case, GVF and BVF finely segment the 

tumor due to high contrast, the difference between the tumor boundary and the background. 

GBVF also shows smoother boundary extraction. 

 

 

 



 

 

Figure 6:  Comparative segmentation results on T1 coronal showing hyperintense mass with contralateral 

subfalcine herniation & shift using ((a) original image with initial snake in blue (b) processed with GVF, 

(c) processed with BVF, and (d) processed with GBVF deformable model. Yellow— ground truth marked 

by the radiologist; Blue— snake iteration; Red — output boundary extracted by different methods 

 

The GVF, BVF and GBVF ACMs were applied on Head MR T1 coronal weighted images 

showing hyperintense mass with contralateral subfalcine herniation & shift and comparison 

among them was carried out against manual segmentation done by radiologist. The original 

image is as shown in figure 6(a) and results of segmentation of using GVF, BVF and GBVF 

models are as shown in figure 6 (b), 6 (c) and 6 (d) respectively. The GVF deformable model 

could not segment the real boundaries; since the directional force growing towards the desired 

boundary is weaker as compare to local noise. The GVF ACM also tends to move to the outer 

region of the tumor in addition to the desired edges. BVF also failed to detect correct boundary. 

This problem was overcome by using GBVF deformable model.  



 

 

Figure 7:  MR T1 weighted coronal image with huge hyperintense mass causing contralateral subfalcine 

herniation. Compression of ipsilateral lateral ventricle a) Initial contour marked in image (b) Processed 

with GVF deformable model, (c) Processed with BVF deformable model, (d) Processed with GBVF 

deformable model. Yellow— ground truth marked by the radiologist; Blue— snake iteration; Red—

Output Boundary. 

 

The segmentation of tumor on head MR image was carried out using GVF, BVF and GBVF 

models. The segmented results were compared with the manual segmentation in terms of 

boundary of tumor. 7(a) shows the original image with snake initialization and its results of 

segmented image using GVF, BVF and GBVF are as shown in fig 7(b), 7(c) and 7(d) 

respectively. From the results, it is concluded that the GVF not succeeded to move in the course 

of sporadic structures and distorted to the nearest edge. BVF also stepped across to the closest 

region as it could not identify the minor distinction between the gray matter and tumor intensity. 

This issue was overcome by GBVF.  

 

 



 

 

 

Figure 8: (a) Original image of coronal flair image hyperintense mass with mild contralateral mid line 

shift & mass effect with initial contour (b) Processed with GVF deformable model, (c) Processed with 

BVF deformable model (d) Processed with GBVF deformable model. Yellow— ground truth marked by 

the radiologist; Blue— snake iteration. Red — output boundary extracted by different methods. 

 

 In this figure contour is initialized inside the tumor. Here coronal flair image hyperintense mass 

with mild contralateral mid line shift & mass effect with initial contour  is shown in (a) ,three ACMs  

are shown in (b) GVF, (c) BVF and (d) GBVF. The manual segmentation is compared against 

three ACMs .Results Show that the GVF snake does not converge at all due to the static 

equilibrium force field. BVF and GBVF can extract the boundary of this object. 

 

 

 



 

 

 

 

Figure 9: Comparative segmentation results on T1 axial irregular hyperintense mass with contra lateral 

extension high parietal region using (a) original image with initial snake in blue (b) processed with GVF, 

(c) processed with BVF, and (d) processed with GBVF deformable model. Yellow— ground truth marked 

by the radiologist; Blue— snake iteration; Red —output boundary extracted by different methods. 

 

GVF have upward vectors around the bottle neck of the concave region. These upward vectors 

block the way of the snakes to move onto the concave region. In contrast, BVF provides strong 

downward vectors which are ascribed by the boundary interpolation scheme. And GBVF can 

extract the true boundary of this tumor. They are able to distinguish positive boundary from 

negative boundary and works better than the GVF deformable model. 



 

 

Figure 10: (a) original image with initial snake in blue (b) processed with GVF, (c) processed with BVF, 

and (d) processed with GBVF deformable model .Yellow— ground truth marked by the radiologist; 

Blue— snake iteration. Red — output boundary extracted by different methods. 

 

Manual segmentation is compared against all these methods. The snake boundary travels in the 

radial direction defined by GVF motion field, which is unable to segment complex-shaped 

objects. GVF stepped across the irregular edges and failed to localize the tumor boundary. BVF 

failed to extract true tumor boundary. GBVF evolved through the irregular boundary with acute 

concavities and gives superior performance in segmenting such complex shaped tumor.  

 

 

 

 

 



 

 

Figure 11: Comparative segmentation results on right high parietal para saggital hyperintense mass 

without significant mass effect T2-weighted image using (a) original image with initial snake in blue (b) 

processed with GVF, (c) processed with BVF, and (d) processed with GBVF deformable model Yellow— 

ground truth marked by the radiologist; Blue— snake iteration; Red — output boundary extracted by 

different methods. 

 

Manual segmentation is compared against all these methods. Limited capture range — the 

GVF vector field is static and independent of the initial contour marked. If GVF contour is not 

initialized at the center of the target, GVF field acts on all elements of contour along same 

direction and results in its collapse to a portion of boundary and, therefore, is unable to cover the 

whole Tumor. GBVF evolved through the irregular boundary with acute concavities and gives 

superior performance in segmenting such complex shaped tumor.   

 

 

 

 



 

 

Figure 12: Comparative segmentation results on T2 weighted saggital image showing oval shaped 

hyperintense mass in parietal region with internal hypointensities using (a) original image with initial 

snake in blue (b) processed with GVF, (c) processed with BVF, and (d) processed with GBVF deformable 

model. Yellow— ground truth marked by the radiologist; Blue— snake iteration. Red — output boundary 

extracted by different methods. 

 

We can see that the GVF snake does not evolve at all. . The GVF ACM could not segment the 

real boundaries; since the directional force growing towards the desired boundary is weaker as 

compare to local noise. BVF also failed to extract true boundaries. While GBVF successfully 

found true boundaries.  

 

 

 

 

 



 

 

Figure 13: Comparative segmentation results on T2 axial image hyperintense mass right parietal region 

with mild mass effect using (a) original image with initial snake in blue (b) processed with GVF, (c) 

processed with BVF, and (d) processed with GBVF deformable model. Yellow—ground truth marked by 

the radiologist; Blue— snake iteration; Red— output boundary extracted by different methods. 

 

Figure 13 demonstrates comparative segmentation result results on T2 axial image hyperintense 

mass right parietal region with mild mass effect. (a) GVF, (b) BVF, and (c) GBVF. 

Since tumor is not homogeneous with interim pseudo edges so GVF could not extract exact 

tumor boundary. GVF not succeeded to move in the course of sporadic structures and distorted to 

the nearest edge because of the preconvergence problem — converged at false edges and local 

minima. BVF partially succeeded but GBVF showed much better result than other two ACMs 

 

 

 

 



 

 

 

Figure 14: (a) Original saggital T2 - weighted image with initial contour, (b) Processed with GVF 

deformable model, (c) Processed with BVF deformable model, (d) Processed with GBVF deformable 

model. Yellow— ground truth marked by the radiologist; Blue— snake iteration; red — output boundary 

extracted by different methods. 

 

The GVF, BVF and GBVF ACMs were applied on Head MR T2 - weighted image (a) shows 

original image with initial contour (b) shows GVF active contour model (c) BVF active contour 

model (d) GBVF active contour model. It is observed that the GVF snake is unable to evolve in 

the interior and cannot meet to exact boundary. BVF also failed to extract true boundaries, while 

in this case GBVF is somehow able to converge into tumor boundary 

 

 

 



 

Chapter 4 

Discussions and Conclusions 

 

4.1 Discussion 
 

Medical image processing and analysis are challenging research areas. In order to ensure the 

accuracy, efficacy, and repeatability of processing complicated medical images, advanced image 

processing techniques are always in needs to improve the procedures. Image segmentation is the 

most fundamental image processing techniques and is vital in many practical image analysis 

tasks[24, 25, 26, 27]. In this research works, Active contour methods in image processing are 

studied. They include Gradient Vector Flow, Boundary Vector field, and Generalized Vector 

Boundary field. The contribution of this research is on active contour models. Active contour or 

snake is a well defined image segmentation tool and is proven to be useful in many medical 

image processing tasks [28, 29, 30, 31]. The effectiveness of ACMs is basically governed by its 

overall energy functional. In Chapter 2 methodology of traditional snake as well as three ACMs: 

Gradient Vector flow GVF, Boundary Vector Field BVF and Generalized Boundary Vector Field 

GBVF is explained. Then computational setup and parameter selection and setting is discussed in 

addition to different methods of snake initialization. Due to the various challenges posed by the 

medical images, in terms of extracting the actual boundary of the target object within a given image, 

the various deformable contour methods studied in this paper showed their versatility and 

shortcomings. It is concluded that even though there are still many challenges to be faced, it is 

with a better understanding of both the problems and the features provided by the various 

methods that a successful solution could be devised. 



 

First, GBVF provides ultimate capture range. The initial contour can be placed as far as the 

border of the image; GBVF can still evolve towards to the target tumors easily. Second, the 

capability of extracting concave tumor is better than GVF. In additional to the simple concave 

tumors, the complex concave tumors can also be extracted in a fast-pace manner. Third, BVF 

and GBVF is generated by robust interpolation scheme while another comparable external force, 

GVF, is generated by a slow diffusion process. Thus, the computation requirement of the BVF 

and GBVF is extremely low.  

 

4.2 Conclusions 

The complexity and variability of  brain tumor anatomic structures, poses many challenging 

problems for image processing community in search for a good segmentation model. The main 

goal of this project was to compare three different methods within the active contour framework 

to extract brain tumor boundary. Experiments are performed to analyze the working of three 

ACMs:  GVF, BVF and GBVF. These were analyzed in detail and implemented in MATLAB. 

The three snake models were then tested on some typical cross-sectional views of a number of 

different brain tumors MR images to highlight the conditions required in order to have the snakes 

perform satisfactory. The experimental results also made it possible to closely compare the 

performance of each snake model. All in all the main goal of the project, to compare three 

different ACMs, has been fulfilled.  In the experimental results section it was established that 

under most conditions an ACMs can perform satisfactory, but in images with boundary 

concavities problems can occur . Based on the research works discussed above, it is shown that 

ACMs are efficient and flexible for advanced image processing, and particularly in the 

applications of brain tumor segmentation. It was also established that the strength of ACMs is 

that they are versatile and can fit a great number of different shapes. GBVF has shown 



 

substantial results in extracting complex concave tumor boundaries as compare to GVF and 

BVF. Of weaknesses can be mentioned the fact that the parameters of the snake has to be 

adjusted manually. 
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