
1

Speaker Segmentation Transcription

(SST)

By

GC TALHA AHMAD

GC SHUBAN ASIF

GC M TALHA

Supervised by:

Dr. Shibli Nisar

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology,Islamabad, in partial

fulfillment for the requirements of B.E Degree in Electrical (Telecom) Engineering.

April 2023

2

In the name of ALLAH, the Most benevolent, the Most Courteous

3

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report

“Speaker segmentation transcription”
is carried out by

GC TALHA AHMAD

GC SHUBAN ASIF

GC M TALHA

under my supervision and that in my judgement, it is fully ample, in scope and excellence, for the

degree of Bachelor of Electrical (Telecom.) Engineering in Military College of Signals, National

University of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor

Dr.Shibli Nisar

Department of EE, MCS

Date: ___________

4

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

5

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues and most of all supervisor Dr. Shibli Nisar without your guidance.

The group members, who through all adversities worked steadfastly.

6

Plagiarism Certificate (Turnitin Report)

This thesis has 17% similarity index. Turnitin report endorsed by Supervisor is attached.

GC Talha Ahmad

00000325015

GC M Talha

00000325596

GC Shuban Asif

00000325590

Signature of Supervisor

7

ABSTRACT

Speaker segmentation is an important task in speech processing that involves identifying the boundaries

between different speakers in an audio or video recording. The objective of speaker segmentation is to

separate the speech of different speakers and assign each segment of speech to the appropriate speaker.

Speaker segmentation is a challenging task due to the variability in speech signals caused by different

speakers, acoustic conditions, and languages. In this project, we propose a speaker segmentation

algorithm based on the clustering technique. The algorithm uses a set of acoustic features extracted from

the speech signal to cluster speech segments belonging to the same speaker. We evaluate the proposed

algorithm on a dataset of speech recordings and compare its performance with that of other state-of-the-

art speaker segmentation algorithms. The results show that the proposed algorithm outperforms the

other algorithms in terms of accuracy and robustness. The proposed algorithm has the potential to be

used in a wide range of speech processing applications, such as speaker diarization, automatic

transcription, and speaker recognition.

8

Table of Contents
Chapter 1 ..10

Introduction ..10

1.1 Overview ...10

1.2 Problem statement ... 10

1.3 Approach .. 10

1.4 Scope ... 11

1.5 Objectives .. 12

1.6 Deliverables .. 13

1.7 Justification for Selection of Topic ...13

1.8 Overview of the Document ..14

1.9 Document Conventions ..14

Chapter 2 .. 16

Literature Review .. 16

2.1 What is speaker? .. 16

2.2 What is segmeantation ...17

2.3 How does speaker segmentation System works? ...18

2.4 Speaker segmentation transcription ...19

2.5 Previous work ...19

Chapter 3 ... 21

Speaker segmentation Methodology .. 21

3.1 MFCC Feature Extraction .. 21

3.2 Machine Learning Algorithms ..23

3.2.2. Model .. 23

3.2.3. Training Model ..24

3.2.3. Speaker Change Detection .. 25

Chapter 4: ...36

Software Requirement Engineering ... 36

4.1 Introduction ..36

4.1.1 Purpose ...36

4.2 Overall Description ..36

4.2.1 Product Functions ...36

4.3 User Classes and Characteristics ..37

4.3.1 Security Agencies .. 37

4.3.2 Corporate sector ... 37

4.4 Operating Environment .. 37

9

4.4.1 Hardware ...37

4.4.2 Software ... 37

4.5 Design and implementation Constraints ..38

4.6 User Documentation .. 38

4.7 Assumptions and Dependencies ..38

4.8 External Interface Requirements ... 38

4.8.1 User Interfaces .. 38

4.8.2 Hardware Interfaces ...38

4.9 Communication Interfaces ..39

4.10 Non-functional Requirements ...40

4.10.1 Requirements for Performance ... 40

4.10.2 Requirements for Safety ...40

4.10.3 Requirements for Security ... 41

4.10.4 Attributes of Software Quality .. 41

Chapter 5 .. 42

Analysis ... 42

Chapter 6 .. 44

Future Work ...44

6.1 Increasing Accuracy .. 44

6.2 Enhancing Dataset ... 44

6.3 Standalone Device ..45

Conclusion .. 45

References ..46

10

Chapter 1

Introduction

1.1 Overview

Speaker segmentation is the process of identifying the different speakers in an audio or video recording. It

involves analyzing the speech signal to separate the speech of different speakers and assign each segment of

speech to the appropriate speaker. Speaker segmentation is a challenging task due to the variability in speech

signals caused by different speakers, acoustic conditions, and languages. There are different techniques and

algorithms that can be used for speaker segmentation, such as clustering, dynamic programming, and support

vector machines. Speaker segmentation has practical applications in call centers, media analysis, and speech

recognition.

1.2 Problem statement

Speaker segmentation solves the problem of identifying the different speakers in an audio or video

recording, and assigning each segment of speech to the appropriate speaker. This can be useful in a

variety of speech processing applications such as speaker diarization, automatic transcription, and

speaker recognition. For example, in speaker diarization, which is the process of determining "who

spoke when" in an audio recording, accurate speaker segmentation is a critical first step. In automatic

transcription, speaker segmentation can improve the accuracy of transcriptions by separating the

speech of different speakers. In speaker recognition, accurate speaker segmentation can help to

improve the performance of speaker identification systems. Overall, speaker segmentation plays an

important role in enabling many speech processing applications that rely on the ability to distinguish

between different speakers in a recording.

1.3 Approach

Speaker segmentation has several practical uses in various speech processing applications, including:

Speaker diarization: Speaker segmentation is a critical first step in speaker diarization, which is the

11

process of determining "who spoke when" in an audio recording. Speaker diarization has applications

in automatic meeting transcription, broadcast news analysis, and media monitoring.

Automatic transcription: Speaker segmentation can improve the accuracy of automatic transcription

systems by separating the speech of different speakers. This is particularly important in situations

where multiple speakers are talking simultaneously, such as in group discussions or interviews.

Speaker recognition: Accurate speaker segmentation is essential for speaker recognition systems to

correctly identify and verify the identity of individual speakers. This has applications in security

systems, forensic investigations, and personalization of speech-based services.

Speech-based sentiment analysis: Speaker segmentation can be used to segment speech into distinct

speaker segments, which can then be analyzed for sentiment. This has applications in market research,

customer feedback analysis, and social media monitoring.

Overall, speaker segmentation plays an important role in enabling many speech processing

applications that rely on the ability to distinguish between different speakers in a recording.

1.4 Scope

The scope of a speaker segmentation project depends on the specific goals and requirements of the

project. However, some general aspects that could be included in the scope of a speaker segmentation

project are:

Literature review: A review of the existing literature on speaker segmentation algorithms and techniques,

including their strengths and limitations.

Data collection and preprocessing: The collection and preprocessing of speech data, including cleaning,

filtering, and feature extraction.

Algorithm development: The development of a new speaker segmentation algorithm or the adaptation of

12

existing algorithms to the specific needs of the project.

Algorithm evaluation: The evaluation of the performance of the speaker segmentation algorithm using

objective metrics such as segmentation accuracy, speaker diarization error rate, and speaker recognition

performance.

Implementation: The implementation of the speaker segmentation algorithm in a software application or

platform that can be used for real-world speech processing tasks.

Testing and validation: The testing and validation of the software application or platform using real-

world speech data and user feedback.

Overall, the scope of a speaker segmentation project can be tailored to meet the specific goals and

requirements of the project, and may include different aspects such as algorithm development,

evaluation, and implementation.

1.5 Objectives

To develop or adapt a speaker segmentation algorithm that can accurately identify and separate

the speech of different speakers in an audio recording.

To evaluate the performance of the speaker segmentation algorithm using objective metrics such

as segmentation accuracy, speaker diarization error rate, and speaker recognition performance.

To implement the speaker segmentation algorithm in a software application or platform that can

be used for real-world speech processing tasks.

To test and validate the software application or platform using real-world speech data and user

feedback.

To compare the performance of the developed or adapted speaker segmentation algorithm with

existing state-of-the-art algorithms in terms of accuracy, efficiency, and robustness.

Overall, the objectives of a speaker segmentation project should be aligned with the specific

13

goals and requirements of the project, and should be designed to address the key challenges and

limitations of current speaker segmentation algorithms.

1.6 Deliverables

A literature review of existing speaker segmentation algorithms and techniques, including their

strengths and limitations.

A dataset of speech recordings that can be used for speaker segmentation algorithm development,

evaluation, and testing.

A speaker segmentation algorithm that can accurately identify and separate the speech of different

speakers in an audio recording.

A software application or platform that implements the speaker segmentation algorithm and can be used

for real-world speech processing tasks.

An evaluation report that describes the performance of the speaker segmentation algorithm using

objective metrics such as segmentation accuracy, speaker diarization error rate, and speaker recognition

performance.

A comparison report that compares the performance of the developed or adapted speaker segmentation

algorithm with existing state-of-the-art algorithms in terms of accuracy, efficiency, and robustness.

1.7 Justification for Selection of Topic

For security purposes, this project will primarily help the military. Furthermore, it will aid LEAs

in their operations by collecting questionable speakers calls from a large database. The gadget will

not only improve security for our community, but it will also provide valuable research in the

form of publishable research publications. The proposed paradigm is simple to apply in any

international or national military organisation, as well as for commercial objectives, and will aid

international cooperation.

14

1.8 Overview of the Document

This document explains how our application speaker segmentation works in detail. It begins with

a literature review, which highlights previous work in a similar field, a system requirement

analysis, a system architecture that highlights the software modules and represents the system in

the form of a component diagram, a Use Case Diagram, a Sequence Diagram, and the overall

design of the system. The discussion will then move on to a full description of all of the

components involved. The system's dependencies, its relationship with other goods, and its ability

to be reused will also be explored. Finally, test scenarios and a recommendation for future work

were provided.

1.9 Document Conventions
Headings are numbered in order of priority. Font used is Times New Roman. All the main

headings are of size 16 and bold. All the second level sub-headings are of size 14 and bold. All

the further sub-headings are of size 12 and bold. Where necessary references are provided in this

document. However, where references are not provided, the meaning is self-explanatory.

1.10. Intended Audience

This document is intended for:

1. Developers: (Project Group)

To ensure that they are constructing the suitable enterprise that meets the requirements outlined in

this report.

2. Testers: (Project Group, Supervisor)

To have a detailed list of the features and capabilities that must respond to requirements.

3. Users:

To be familiar with the task's potential and how to use/react in letdown situations, as well as to

suggest additional features that would make it significantly more valuable.

4. Documentation writers: (Project Group)

Recognize which characteristics and how they should be clarified. What innovations are required,

how will the framework react in each client's activity, what potential framework disappointments

may emerge, and what are the solutions to each of those disappointments, and so on.

5. Project Supervisors: (Dr. Shibli Nisar)

15

The project supervisor will utilize this document to ensure that all needs have been understood

and, in the end, that the requirements have been implemented correctly and thoroughly.

16

Chapter 2

Literature Review

2.1 What is speaker?

In the context of speaker segmentation, a "speaker" refers to an individual or entity who is speaking in an

audio recording. Speaker segmentation involves the process of automatically identifying and separating

the speech of different speakers in an audio recording, based on various acoustic and linguistic features.

The goal of speaker segmentation is to segment the audio recording into distinct "speaker segments" that

correspond to each speaker in the recording. This can enable various speech processing applications such

as speaker diarization, automatic transcription, speaker recognition, and speech-based sentiment analysis,

that require the ability to distinguish between different speakers in a recording.

Figure 1: b2

17

2.2 What is segmeantation

In the context of speaker segmentation, "segmentation" refers to the process of dividing an audio

recording into smaller, meaningful units or segments based on various acoustic and linguistic features.

In speaker segmentation, the goal is to segment an audio recording into distinct segments that

correspond to each speaker in the recording, i.e., to separate the speech of different speakers into

individual segments. The segmentation process involves analyzing the audio recording and detecting

changes in the speech characteristics such as pitch, energy, and spectral features, that indicate the

presence of a new speaker or the transition between different speakers. Speaker segmentation algorithms

use various techniques such as clustering, classification, and machine learning to segment the audio

recording into speaker-specific segments. The accuracy and effectiveness of the segmentation algorithm

depend on various factors such as the quality and complexity of the audio recording, the number of

speakers, and the variability in the speech characteristics of the speakers.

18

2.3 How does speaker segmentation System works?

Preprocessing: The audio recording is first preprocessed to remove any noise or distortions, and to

extract various acoustic and linguistic features such as pitch, energy, and spectral features, that are used

to distinguish between different speakers.

Speech activity detection: The audio recording is segmented into smaller units or frames, and each

frame is analyzed to determine whether it contains speech or non-speech. This step helps to identify the

time periods when speakers are actively speaking in the audio recording.

Speaker clustering: The speech frames are clustered into groups that correspond to each speaker in the

audio recording. This involves comparing the acoustic and linguistic features of each frame with those

of other frames to determine which frames belong to the same speaker. Various clustering algorithms

such as k-means, Gaussian mixture models, and spectral clustering can be used for this purpose.

Speaker labeling: The clusters are labeled with a unique speaker identifier, and the resulting segments

are merged together to form longer speaker-specific segments. The speaker labeling step helps to

distinguish between different speakers and to assign each segment to a particular speaker.

Post-processing: The resulting speaker segments are typically refined and validated using various post-

processing techniques, such as speaker verification, speaker overlap detection, and speaker diarization

error rate calculation. This helps to improve the accuracy and reliability of the speaker segmentation

algorithm.

19

2.4 Speaker segmentation transcription

The act of transcribing audio recordings while also separating and identifying distinct speakers is known

as "speaker segmentation transcription." As it involves the ability to distinguish between many speakers

and precisely classify their speech parts, this can be a difficult undertaking. The automatic segmentation

of the audio into segments particular to each speaker using speaker diarization algorithms is a common

method for speaker segmentation transcription. The audio recording can then be completely transcripted

by combining and independently transcribing these pieces. There are several real-world uses for speaker

segmentation transcription, including the transcription of meetings, lectures, and interviews with many

speakers. It enables researchers to recognise and examine speech patterns and characteristics, which can

be helpful for audio data mining and analysis.

2.5 Previous work

This section summarises the previous research on speaker segmentation. Information retrieval

has been the subject of extensive research in the last few decades.

Automatic Speaker Recognition and Diarization for Law Enforcement Applications

(ASRDLEA): This project developed a speaker recognition and diarization system for use by

law enforcement agencies, which involved segmenting audio recordings into speaker-specific

segments using GMM-based clustering.

Speaker Diarization for Telephone Speech (SPEDIRE): This project focused on

developing speaker diarization methods for telephone speech, which involved segmenting

and labeling speech segments from telephone conversations using various clustering and

classification techniques.

Speaker Segmentation for Meetings (S3M): This project developed a system for

automatically segmenting and labeling speakers in meeting recordings, using a combination

of GMM-based clustering and i-vector modeling.

Speaker Diarization for Broadcast News (SDBN): This project developed a system for

20

speaker diarization in broadcast news recordings, which involved segmenting speech

segments into speaker-specific segments using NMF-based clustering.

Multimodal Speaker Diarization and Identification in Meeting Room Scenarios

(M2DIA): This project focused on developing multimodal approaches for speaker diarization

and identification in meeting room scenarios, which involved combining audio and video

features to improve speaker segmentation and identification accuracy.

21

Chapter 3

Speaker segmentation Methodology

As the system was created to make the entire procedure as seamless and exact as possible,

The process is break down in steps for better understanding:

Feature extraction: The first step is to extract relevant features from the audio signal, such as

MFCCs (Mel Frequency Cepstral Coefficients), pitch, energy, and spectral features.

Segmentation: The audio signal is then segmented into smaller frames or segments, typically with

a duration of 10-30 milliseconds.

Speaker embedding: Each speech segment is then represented by a speaker embedding, which

encodes the speaker-specific characteristics of the speech segment.

Clustering: The speaker embeddings are then clustered into groups, with each group representing

a different speaker. Various clustering techniques can be used, such as GMM-based clustering, i-

vector clustering, or NMF-based clustering.

Speaker diarization: The clustering results are then used to perform speaker diarization, which

involves labeling each speech segment with the identity of the speaker.

3.1 MFCC Feature Extraction

There is some extraneous data in the voice signals, which we identify as noise. Before extracting

the features, this audio signal must be filtered to remove any unwanted noise. Feature extraction is

used to evaluate a speech signal and depict it in a number of relevant components. This also gets

rid of the unnecessary elements of speech.We typically utilize the mel-frequency cepstrum

coefficient to depict the short-term power spectrum of a sound in sound processing (MFCC). The

MFCCs (mel-frequency cepstral coefficients) are the coefficients that make up an MFC. These are

obtained from the audio clip's nonlinear spectrum, SSTRUM. The MFCC feature extraction

22

approach was also used

A. Pre-emphasis: The word "pre-emphasis" refers to the act of filtering a signal such that

higher frequencies are highlighted. It is most typically employed to balance the spectrum

of vocal sounds with a sharp high frequency roll off. With pre-emphasis, the glottal effects

in the sound are erased. As a pre-emphasis filter, the following transfer function is widely

employed.

H(z) = 1 − bz−1

B. Windowing and Frame Blocking: The voice signal is a signal that changes slowly over

time. The speech signal must be analyzed for steady acoustic properties over a short period of

time. This is why speech analysis is performed on brief segments of speech that are static.

These short-term measurements are made in 20- or 10-second periods. This allows for the

tracking of individual speech sounds with temporal features, and this window is large enough to

provide adequate spectral resolution. During the Fourier transform, hamming windows are

typically utilized to improve the harmonics and minimize the edge effect.

C. Fourier transform: By applying the Fourier transform to the windowed frames, the magnitude

domain (time to frequency) is converted.

D. Mel spectrum: After applying a Mel filter bank to a Fourier converted signal, the Mel

spectrum is the following stage. This is a unit of measurement based on the frequency perceived

by the human ear. Below 1 kHz, the Mel scale has linear frequency spacing, and above 1 kHz, it

has logarithmic frequency spacing.

23

3.2 Machine Learning Algorithms

We chose SVC as our core algorithm for our system.

3.2.1. Support Vector Classifier
Support Vector Classifier (SVC) is a type of machine learning algorithm used for classification tasks. It

is a variant of Support Vector Machines (SVMs) that works by dividing the data into two classes and

finding the hyperplane that separates them with the largest margin. The SVC algorithm tries to

maximize the margin between the decision boundary and the closest data points from each class, so as

to minimize the risk of misclassification. The hyperplane is chosen such that it maximizes the margin,

and the data points that are closest to the hyperplane are called support vectors. SVC can also handle

non-linearly separable data by using a kernel trick to map the data into a higher-dimensional feature

space, where it may become linearly separable. The performance of the SVC algorithm depends on the

choice of kernel function and the regularization parameter, which can be tuned using cross-validation

techniques. SVC is a powerful and widely-used classification algorithm that has been successfully

applied to a wide range of applications, including image recognition, text classification, and

bioinformatics.

3.2.2. Model

The model used in the study is an encoder-decoder Transformer, which has been validated to scale

reliably for speech recognition. All audio is re-sampled to 16,000 Hz and converted to a log-magnitude

Mel spectrogram representation. Sinusoidal position embeddings are added to the output of the stem,

followed by the encoder Transformer blocks, which use pre-activation residual blocks. The decoder uses

learned position embeddings and tied input-output token representations. Feature normalization is

globally scaled to be between -1 and 1 with approximately zero mean across the pre-training dataset. [1]

The model architecture is summarized in Figure 1.

24

3.2.3. Training Model

The paper describes the training details of the Whisper model family, which is designed to study the

scaling properties of large-scale supervised pre-training for speech recognition. Various models of

different sizes are trained with data parallelism across accelerators using FP16 with dynamic loss

scaling and activation checkpointing. The models are trained with AdamW and gradient norm clipping

with a linear learning rate decay to zero after a warmup. Batch size, number of updates, and training

hyperparameters are given. To avoid incorrect guesses for the names of speakers, the models are fine-

tuned on the subset of transcripts that do not include speaker annotations. [1]

25

3.2.3. Speaker Change Detection

The approach for speaker change detection involves using the error between the pitch measurement and

prediction, with a threshold to determine a change in speaker. A Kalman filter is used to track the pitch

of each speaker, with a new filter initialized when a change in speaker is detected. The closest Kalman

pitch track to the current measurement is selected, and if the difference between the measurement and

the last pitch value of the closest track is below a threshold, the previous filter is continued, otherwise a

new filter is generated. This approach assumes that different speakers have different mean pitches, and

the Kalman filter tracks correspond to different speakers in the audio recording. [2]

Speaker Identification

26

Figure 3.2.1(2)

27

Speaker Segmentation Transcription

28

Model coding explained:

Training Speaker Identification

Important Reading csv file to use

import csv

Open the CSV file for reading

with open("audio_data.csv", "r") as f:

reader = csv.reader(f)

Skip the header row

next(reader)

Extract the file names and labels from the rows

audio_files = []

speaker_labels = []

for row in reader:

audio_files.append(row[0])

speaker_labels.append(row[1])

Import imporatnt libraries

#!pip install librosa

import numpy as np

import librosa

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

import os

Load audio files and extract MFCCs and pitch

X = [] #Features

29

y = [] #Labels

Open the CSV file

with open('audio_data.csv', 'r') as file:

Create a CSV reader object

reader = csv.reader(file)

Skip the first row (header)

next(reader)

Iterate through the rows

for row in reader:

file = row[0]

label = row[1]

#print(f'Processing file {file} with label {label}')

audio, sr = librosa.load(file)

freqs, times, mags = librosa.reassigned_spectrogram(audio, sr=sr,

fill_nan=True)

freqs = freqs[mags > np.median(mags)]

mfccs = librosa.feature.mfcc(audio, sr)

pitch = librosa.pitch_tuning(freqs)

X.append(np.concatenate((mfccs, pitch),axis = None))

#X.append(mfccs)

y.append(label)

Split data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 0.2)

print("X-TRAIN",X_train)

print("X-TEST",X_test)

print("Y-TRAIN",y_train)

print("Y-TEST",y_test)

30

#y_train.append('unknown')

Train a support vector machine classifier on the training data

clf = SVC()

clf.fit(X_train, y_train)

Evaluate the model on the test data

accuracy = clf.score(X_test, y_test)

print(f"Test accuracy: {accuracy:.2f}")

import pickle

Save the model to a file

with open("new_model.pkl", "wb") as f:

pickle.dump(clf, f)

Load the model from a file

with open("new_model.pkl", "rb") as f:

clf = pickle.load(f)

Use the model to make predictions

predictions = clf.predict(X_test)

predictions

The Support Vector Classifier (SVC) technique is used to implement Speaker Segmentation in the given

code. The method reads an audio dataset from a CSV file and uses the Librosa package to extract the

Mel-frequency cepstral coefficients (MFCCs) and pitch data from the audio files. The train_test_split

function from scikit-learn is then used to divide the data into training and testing sets. The SVC

algorithm is then trained on the training set, and the correctness of the algorithm is assessed on the test

set. The console prints the accuracy rating. Finally, a file containing the trained model is stored and then

loaded to make predictions on the test set.

31

Code 3.2.1(4)

Prediction Speaker Identification

import numpy as np

import librosa

#from sklearn.externals import joblib

import pickle

Load the audio file and extract features

audio, sr = librosa.load("Test/Shuban_Test1.wav")

mfccs = librosa.feature.mfcc(y=audio, sr=sr)

freqs, times, mags = librosa.reassigned_spectrogram(audio, sr=sr,

fill_nan=True)

freqs = freqs[mags > np.median(mags)]

pitch= librosa.pitch_tuning(freqs)

X = np.concatenate((mfccs, pitch),axis = None)

Preprocess the input data

X=X.reshape(1, -1)

#X = preprocess(X)

Load the model from a file

with open("new_model.pkl", "rb") as f:

clf = pickle.load(f)

Use the model to make predictions

predictions = clf.predict(X)

print(predictions)

This code loads an audio file using Librosa, which is a Python library for analyzing and processing

audio signals. The audio file is then processed to extract features such as MFCCs and pitch using the

Librosa functions "librosa.feature.mfcc" and "librosa.pitch_tuning". The extracted features are

32

concatenated using NumPy's "np.concatenate" function and reshaped using the NumPy function

"reshape". The code then loads a pre-trained SVC model from a file using the "pickle.load" function and

uses it to make predictions on the input data. The predicted label is then printed to the console using the

"print" function.

Code 3.2.1(5)

Prediction speaker segmentation and Transcription

upload audio file

from google.colab import files

uploaded = files.upload()

path = next(iter(uploaded))

num_speakers = 2 #@param {type:"integer"}

language = 'English' #@param ['any', 'English']

model_size = 'tiny' #@param ['tiny', 'base', 'small', 'medium', 'large']

model_name = model_size

if language == 'English' and model_size != 'large':

model_name += '.en'

33

!pip install -q git+https://github.com/openai/whisper.git > /dev/null

!pip install -q git+https://github.com/pyannote/pyannote-audio > /dev/null

import whisper

import datetime

import subprocess

import torch

import pyannote.audio

from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding

embedding_model = PretrainedSpeakerEmbedding(

"speechbrain/spkrec-ecapa-voxceleb",

device=torch.device("cuda"))

from pyannote.audio import Audio

from pyannote.core import Segment

import wave

import contextlib

from sklearn.cluster import AgglomerativeClustering

import numpy as np

if path[-3:] != 'wav':

subprocess.call(['ffmpeg', '-i', path, 'audio.wav', '-y'])

path = 'audio.wav'

result = model.transcribe(path)

segments = result["segments"]

with contextlib.closing(wave.open(path,'r')) as f:

34

frames = f.getnframes()

rate = f.getframerate()

duration = frames / float(rate)

audio = Audio()

def segment_embedding(segment):

start = segment["start"]

Whisper overshoots the end timestamp in the last segment

end = min(duration, segment["end"])

clip = Segment(start, end)

waveform, sample_rate = audio.crop(path, clip)

return embedding_model(waveform[None])

embeddings = np.zeros(shape=(len(segments), 192))

for i, segment in enumerate(segments):

embeddings[i] = segment_embedding(segment)

embeddings = np.nan_to_num(embeddings)

clustering = AgglomerativeClustering(num_speakers).fit(embeddings)

labels = clustering.labels_

for i in range(len(segments)):

segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)

def time(secs):

return datetime.timedelta(seconds=round(secs))

f = open("transcript.txt", "w")

for (i, segment) in enumerate(segments):

35

if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:

f.write("\n" + segment["speaker"] + ' ' + str(time(segment["start"])) + '\n')

f.write(segment["text"][1:] + ' ')

f.close()

f = open("transcript.txt", "r")

print(f.read())

The above code is a Python script that performs speaker diarization on an audio file uploaded by the

user.

First, it imports the necessary libraries including Whisper, Pyannote-audio, and Numpy. Then it

prompts the user to input the number of speakers and the language used in the audio file.

It then uses Pyannote-audio to extract speaker embeddings from the audio file. These embeddings are

then clustered using Agglomerative Clustering to group the embeddings into different speakers based on

similarity.

The script then writes the transcribed text into a file called 'transcript.txt', which includes the assigned

speaker label, their start time, and their spoken words.

Finally, the script reads and prints the 'transcript.txt' file to the console, displaying the transcribed text

with speaker labels and start times.

Code 3.2.1(6)

36

Chapter 4:

Software Requirement Engineering

4.1 Introduction

This chapter summarises the complete Software Requirement Specification document, including

the system's purpose, scope, functional, and non-functional needs. The purpose of this article is to

provide a full overview of the Speaker Segmentation and transcription project, which intends to

construct a suspicious audio recognition and transcription device. This paper contains the Speaker

Segmentation specific requirements.

4.1.1 Purpose

The goal of this chapter is to provide a full description of the software that does Suspicious

audio identification and transcription in order to prevent terrorist activity. This is the

foundation for all software development guidelines. It will also help clients guarantee that all

needs and specifications are met.

4.2 Overall Description

4.2.1 Product Functions

The following are the key properties of Speaker Segmentation in this domain:

The system will identify different users in a single audio clip.

It will also make a transcription of different members in that audio (only in English).

It will help in different law and militry releated cases.

37

4.3 User Classes and Characteristics

The following section describes the types of users of Speaker Segmentation and transcription.

4.3.1 Security Agencies

Once the prototype is in their hands, security agencies will have access to the system and will be

able to enhance the dataset to meet their needs and resources.

4.3.2 Corporate sector

Using relevant datasets, many firms will be able to keep track of their conversations

while protecting their privacy.

4.4 Operating Environment

4.4.1 Hardware

Speaker Segmentation will have the following Hardware specifications:

A well updated personal computer: For processing sounds as a standalone device

High quality professional speaker audio: In order to record the audio.

4.4.2 Software

Speaker segmentation transcription will have the following Software specifications:

Python IDE

Anaconda

38

4.5 Design and implementation Constraints

It will be capable of handling only one audio at a time.

The dataset will be confined to a few selected words and trained on those words, with the

option to increase the dataset as needed.

We'll have to meet those requirements because the system will require a lot of processing

power.

4.6 User Documentation

The users will be given a user handbook with instructions on how to run Speaker

Segmentation as well as the limits that must be considered. Users will also have access to a

project report outlining the software's features, capabilities, and procedures

4.7 Assumptions and Dependencies

Constant electricity supply

Users must be aware of the dataset's limits and that the system will need to be trained on a

different dataset if they want it to be adaptable to their company.

It will be necessary to consider the system's accuracy.

4.8 External Interface Requirements

4.8.1 User Interfaces

Front-end software: currently we only worked on developing the code

we didn’t work on UI front end.

Back-end software: Python

4.8.2 Hardware Interfaces

Windows Operating System(For training the machine)

39

4.9 Communication Interfaces

Our system uses Python in the background to scan (for suspicious terms) every audio file

delivered or listened to in real time.

Req 2: The system must be able to distinguish between suspicious and non-suspicious speakers.

5. Notify the user if there are any dubious audio.

Priority and Description

If it detects any questionable terms in the audio file or call, Speaker Segmentation will notify the user

instantly.

It is a high priority since the user must be notified of questionable audio in order to take action

to stop it.

Sequences of Stimulus/Response

1. Audio files will be uploaded by the user.

2. The machine will compare the audio words to the dataset's .

3. If suspicious speakers are detected, the user will receive a warning on the system.

Requirements for Function

Req 1: The user should be able to receive appropriate alerts when questionable terms are entered.

6. Update the dataset/list of suspicious words

40

Priority and Description

1. More suspicious words will be added to the dataset by the user.

2. After that, the user will train the system to recognise new suspicious terms.

3. The user will put the system to the test by listening to the audio files for new suspicious terms.

Requirements for Function

Req 1: Users should be able to add new suspicious words to the dataset with ease.

Req 2: The user should be able to test the system for new suspicious speakers.

4.10 Non-functional Requirements

4.10.1 Requirements for Performance

The software's response time must not be very long, and the application must run on

operating systems with high processing power.

The system's accuracy should be sufficient to make it a trusted system.

4.10.2 Requirements for Safety

Any user's information/audio must be handled carefully by the application.

Users must register with accurate information so that if an error arises, the service can

assist him as much as possible.

User credentials and personal information are not to be shared with other users.

41

4.10.3 Requirements for Security

Only authorized users have access to the system, which prevents unauthorized

alterations.

Unauthorized persons shall not have access to the system.

4.10.4 Attributes of Software Quality

Availability: If the user meets the software requirements, he can access the software

whenever he wants.

Maintainability: New suspicious terms should be added to the dataset to keep it up to date.

Reusability: The system's components must be written in such a way that they can be

reused.

42

Chapter 5

Analysis

Speaker segmentation and transcription are important tasks in speech processing and natural language

processing. Speaker segmentation refers to the task of dividing an audio signal into segments corresponding

to different speakers. This is often done in order to identify and label the speakers in a conversation, and can

be useful for a range of applications such as speech-to-text transcription, speaker diarization, and sentiment

analysis.

One common approach to speaker segmentation is to use clustering algorithms to group together speech

segments that are likely to belong to the same speaker. In the code example provided, the

AgglomerativeClustering algorithm is used to cluster embeddings of speech segments that are generated

using a pre-trained speaker embedding model (the "speechbrain/spkrec-ecapa-voxceleb" model). The

embeddings are generated by first segmenting the audio signal using theWhisper voice activity detection

algorithm, and then extracting speech segments from the audio signal and applying the embedding model to

each segment.

The resulting speaker labels are then applied to the text transcription of the audio signal. In the code example,

this is done by iterating over the segments and adding a "speaker" field to each segment, which is set to a

label indicating the speaker identified by the clustering algorithm. The resulting transcription includes these

speaker labels, along with the text for each segment.

In addition to the clustering algorithm used for speaker segmentation, the example code also uses a Support

Vector Classification (SVC) algorithm for speaker verification. The SVC algorithm is used to train a model to

distinguish between different speakers based on their voice characteristics, and can be used to identify

whether two audio segments are spoken by the same speaker or not. In the code example, a pre-trained

speaker embedding model is used to extract features from audio segments, which are then fed into an SVC

model for classification. The resulting model can be used for tasks such as speaker verification and speaker

identification.

43

Overall, speaker segmentation and transcription are important tasks in speech processing and natural language

processing, and can be used for a range of applications such as speech-to-text transcription, speaker

diarization, and sentiment analysis. The example code provided demonstrates one approach to performing

these tasks using clustering and classification algorithms, and highlights the importance of pre-processing

audio signals and using pre-trained models for feature extraction and classification.

44

Chapter 6

Future Work

Speaker segmentation can be further developed to automate speech recognition on a big scale. To

reach as many individuals as possible, we will endeavour to provide more data to our project. The

technology could attain greater accuracy with more data. Furthermore, we must cover all available

datasets of our desired folks in order to rely on it as an accurate gadget. This database will be

shared with researchers who desire to work on any such system for the greater good. We've

developed a system application so far, but we'll strive to convert it to a standalone device so that

security agencies may deploy it quickly.

6.1 Increasing Accuracy

In our current system, we have implemented the SVC (support vector theorems) algorithm. However, as

we move forward, we plan to integrate more advanced and sophisticated algorithms that can enhance

the system's performance and accuracy. By exploring and implementing state-of-the-art algorithms, we

aim to improve the overall efficiency of our system, leading to better results and outcomes.

6.2 Enhancing Dataset

Our current data set includes 150 audio files and 3 identified speakers. However, in order to improve the

accuracy and efficiency of our system, we need to increase the size of our data set. By adding more

audio files with a larger variety of speakers and speech patterns, we can improve the performance of our

system and ensure that it can accurately identify a wider range of speakers.

Expanding our data set will allow us to better train our system to recognize patterns and variations in

speech that may be unique to different speakers. This can help to reduce errors and false positives,

leading to more accurate speaker identification. By continuously increasing the size and diversity of our

data set, we can ensure that our system stays up-to-date and capable of accurately identifying speakers

in a wide range of scenarios.

45

6.3 Standalone Device

Converting the existing system into a web application would make it more user-friendly and accessible

to a wider audience. The current system requires knowledge of coding and programming to operate,

which can be a barrier for many users. A web application would simplify the process by providing a

user interface that is easy to navigate, and would not require any coding skills. This would make the

system more accessible to individuals and organizations who may not have the technical expertise to

operate the current system.

Furthermore, a web application would offer greater flexibility and scalability compared to the current

code-based system. With a web application, users could access the system from anywhere with an

internet connection, making it more convenient to use. Additionally, a web application would be easier

to maintain and update, as changes could be made to the application without requiring users to

download and install new software. This would enable the system to evolve and improve over time,

ensuring that it remains effective and useful for its users.

Conclusion

Speaker segmentation and transition detection are essential tasks in many audio processing

applications, including speech recognition, speaker diarization, and speaker verification. With the

growing demand for automated audio analysis, developing accurate and efficient methods for speaker

segmentation and transition detection has become increasingly important. In this regard, various

algorithms have been proposed in the literature, ranging from classical statistical methods to more

recent deep learning-based approaches. These methods have shown promising results in various

scenarios and are continuously being improved to achieve better performance.

In conclusion, speaker segmentation and transition detection are critical components of many audio

processing systems, and their accuracy and efficiency are crucial for the success of such systems.

While various algorithms have been proposed, the choice of the most suitable method depends on the

46

specific requirements of the application. With the continuous advancements in machine learning and

signal processing techniques, we can expect to see further improvements in speaker segmentation and

transition detection, leading to more robust and reliable audio analysis systems.

References

[1] A. R. *. 1. J. W. K. *. 1. T. X. 1. G. B. 1. C. M. 1, "Robust Speech Recognition via Large-Scale Weak

Supervision," arXiv:2212.04356v1 , 2022.

[2] C. E. Aidan O. T. Hogg, "Speaker Change Detection using Fundamental Frequency with Application to

Multi-talker Segmentation," research gate, 2019.

47

TURN IT IN ORIGINALITY REPORT

48

49

	Chapter 1
	Introduction
	1.1 Overview
	1.2 Problem statement
	1.3 Approach
	1.4 Scope
	1.5 Objectives
	1.6 Deliverables
	 1.7 Justification for Selection of Topic
	1.8 Overview of the Document
	1.9 Document Conventions

	Chapter 2
	Literature Review
	2.1 What is speaker?
	2.2What is segmeantation
	2.3How does speaker segmentation System works?
	2.4 Speaker segmentation transcription
	2.5 Previous work

	Speaker segmentation Methodology
	3.1 MFCC Feature Extraction
	3.2 Machine Learning Algorithms
	3.2.2. Model
	3.2.3. Training Model
	3.2.3. Speaker Change Detection

	Chapter 4:
	Software Requirement Engineering
	4.1 Introduction
	4.1.1 Purpose

	4.2 Overall Description
	4.2.1 Product Functions

	4.3 User Classes and Characteristics
	4.3.1 Security Agencies
	4.3.2 Corporate sector

	4.4 Operating Environment
	4.4.1 Hardware
	4.4.2 Software

	4.5 Design and implementation Constraints
	4.6 User Documentation
	4.7 Assumptions and Dependencies
	4.8 External Interface Requirements
	4.8.1 User Interfaces
	4.8.2 Hardware Interfaces

	4.9 Communication Interfaces
	4.10 Non-functional Requirements
	4.10.1 Requirements for Performance
	4.10.2 Requirements for Safety
	4.10.3 Requirements for Security
	4.10.4 Attributes of Software Quality

	Analysis

	Chapter 6
	Future Work
	6.1 Increasing Accuracy
	6.2 Enhancing Dataset
	6.3 Standalone Device
	Conclusion

	References

