

1

IMSI Catcher

By

GC M Bilal Mughal

GC Afaq Ahmad

GC Faraz Kanwar

GC Khan Nabi

Supervised by:

Lt Col M Imran Javaid

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology,

Islamabad,

in partial fulfillment for the requirements of B.E Degree in Electrical (Telecom)

Engineering.

June 2023

2

In the name of ALLAH, the Most benevolent, the Most Courteous

3

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report

“IMSI Catcher”

is carried out by

GC M Bilal Mughal

GC Afaq Ahmad

GC Faraz Kanwar

GC Khan Nabi

under my supervision and that in my judgement, it is fully ample, in scope and

excellence, for the degree of Bachelor of Electrical (Telecom.) Engineering in

Military College of Signals, National University of Sciences and Technology

(NUST), Islamabad.

Approved by

Supervisor

Lt Col. M Imran Javaid

Department of EE, MCS

Date: ___________

4

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted

in support of another award or qualification in either this institute or anywhere else.

5

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues and most of all supervisor, Lt Col. M Imran Javaid without

your guidance.

The group members, who through all adversities worked steadfastly.

6

PLAGIARISM CERTIFICATE (Turnitin Report)

This thesis has 16% similarity index. Turnitin report endorsed by Supervisor is

attached.

 GC M Bilal Mughal

325601

 GC Afaq Ahmed

325041

GC Faraz Kanwar

325032

GC Khan Nabi

325037

Signature of Supervisor

7

ABSTRACT

Electronic Warfare is one of the major deciding factors in success of

conventional and unconventional warfare. As RF technology is advancing with a very

high pace, the conventional Electronic Warfare equipment are getting obsolete along

with. Pakistan Army has indoctrinated a large quantity of Electronic Warfare

equipment and still more is required to compete current requirement, owing to high

tension scenario at borders and operational areas. These high-cost equipment are prone

to frequent upgradation and maintenance as well as they are highly resource dependent.

Considering above mentioned issues related to the EW equipment that Pak Army is

using, they are seldom utilized for difficult terrains and border areas and are to be kept

as reserve for conventional warfare. To aid heavily strained sector of EW, we utilized

Software Defined Radios (SDR) to form a small portable detachment that can analyze

RF spectrum, demodulate, decode and Identify Radio Sets being used in the vicinity of

operator. These detachments being highly mobile and very less resource demanding,

can be moved to any location for operation. We made considerable efforts in

demodulation of non-encrypted radio channels and RF finger printing of radio by

analyzing their frequency spectral density and frequency-time graphs. As Software

Defined Radios are entirely computer dependent, the possibility of obsoletion of

equipment is considerably reduced. New protocols can be programmed using

opensource software and they can be implemented by SDR connected to computer via

USB. All the computation and Digital Signal Processing (DSP) is to be handled by

computer attached to SDR, hence performance of SDR is directly dependent on

processing power of computer they are attached with, which is very cheap in

comparison to traditional EW equipment upgradation. The RF fingerprinting is an

important enhancement to EW sector, as this technology was not available to Pak

Army, and we proudly have for the first time provided possible methodology and

promising result.

8

Table of Contents

PLAGIARISM CERTIFICATE (Turnitin Report) ... 6

ABSTRACT ... 7

Table of Contents .. 8

Chapter 1 .. 11

INTRODUCTION ... 11

1.1 Background, Scope and Motivation .. 11

1.2 SDR: ... 12

1.2.1 RTL-SDR .. 13

1.3 Hack-RF One ... 14

1.4 Flow Graph of Hack-RF Jammer .. 16

1.4.1 Osmocom Sink: .. 16

1.4.2 Noise Source: .. 17

1.4.3 WX GUI Slider: .. 17

1.6.4 USRP Sink: ... 18

1.4 Waveform Generators .. 20

1.5 Modulators ... 20

1.7 Filters: .. 21

Chapter 2 .. 22

LITERATURE REVIEW ... 22

2.1 Limitations and Areas of Improvement .. 23

2.2 Existing solutions and their drawbacks ... 25

Chapter 3 .. 27

PROBLEM DEFINITION ... 27

3.1 Working Principle ... 27

3.2 Components and Functionality: ... 28

3.3 Project Procedure: .. 29

3.3.1 Design and Planning .. 29

3.3.2 Development and Implementation .. 29

3.3.3 Testing and Evaluation .. 30

Chapter 4 .. 31

METHODOLOGY ... 31

4.1 Project Steps: ... 31

4.1.1 Hardware Setup: .. 31

4.1.3 Creating a Downgrade Script ... 31

4.1.4 Capturing the Downgraded Signal ... 32

4.1.5 Extracting IMSI Information .. 32

9

4.1.6 Storing IMSI Information ... 33

4.1.7 Creating a User Interface .. 33

4.1.8 Testing ... 33

4.2 Working Principle ... 34

4.2.1 The Hack-RF Jammer ... 34

4.2.2 Downgrading the 4G Signal .. 34

4.2.3 The RTL-SDR .. 34

4.2.4 Capturing the Downgraded Signal ... 34

4.2.5 Extracting IMSI Information .. 35

4.2.6 Storing IMSI Information ... 35

4.2.7 User Interface ... 35

Chapter 5 .. 36

DETAILED DESIGN AND ARCHITECTURE .. 36

5.1 System Architecture: .. 36

5.2 Hardware and Software Components: .. 36

5.3 Signal Processing ... 38

5.4 User Interface .. 38

5.5 Security and Privacy ... 39

Chapter 6 .. 40

IMPLEMENTATION AND TESTING .. 40

6.1 IMSI Catcher: ... 40

6.1.1 API Code: This code will connect frontend of the project with its backend. It will tell the
front end that IMSI CATCHER has started and storing the IMSI number in its database
and will give it a signal to start showing the output on GUI. ... 55

6.2 Using GSMTAP Library: ... 59

6.2.1 Setup and Initialization: .. 60

6.2.2 Signal Processing and Capture: .. 60

6.2.3 User Interface ... 60

6.2.4 Security and Privacy .. 66

6.3 HackRF Customized Jammer: ... 66

6.3.1 Code: ... 67

Chapter 7 .. 75

RESULTS AND DISCUSSION ... 75

7.1 Results: ... 75

7.2 Discussion: ... 77

Chapter 8 .. 79

CONCLUSIONS AND FUTURE WORK ... 79

8.1 Future Work .. 79

References .. 81

Meeting Logs & Plagiarism Report ... 82

10

LIST OF FIGURES

Figure 1: SDR workflow ..12

Figure 2: Hack-RF One ..14

Figure 3: Hack-RF Jammer ..16

Figure 4: Example of Osmocom Sink ..17

Figure 5: Example of USRP Sink ..19

Figure 6: Components of desired IMSI Catcher ..29

Figure 7 A and B: Extracting the IMSI Information .. 31 & 32

Figure 8: Flowchart of Project ...35

Figure 9: HackRF ONE & RTL SDR ..36

Figure 10: Flowgraph of Jammer ...37

Figure 11: Graphical User Interface ..38

Figure 12: Flowgraph of Jammer ...65

Figure 12: Storing IMSI Numbers to Database ...73

Figure 12: Locating GSM Tower ...74

Figure 12: Cell Tower Location ...74

11

Chapter 1

INTRODUCTION

The research work in this dissertation has been presented in three main parts.

First part is related to the wireless spectrum monitoring and investigation of

unknown signal frequencies. The objective of this part is to formulate possible methods

for wireless spectrum monitoring and interception of any unencrypted analogue and

digitally modulated signal. The second part includes jamming and other wireless

attacks that can be launched to signal of interest. Finally, third part revolves around

signal identification and fingerprinting of radio sets by various techniques that can be

adopted using SDR.

1.1 Background, Scope and Motivation

In today's world, mobile phones have become an essential part of our lives. It

has become imperative for various organizations and governments to monitor the

communication activities of individuals for national security purposes, intelligence

gathering, and law enforcement activities. To cater to these needs, the concept of IMSI

Catcher was introduced. IMSI Catcher has gained significant importance and

popularity due to its ability to provide real-time monitoring of mobile phones in a

specific area.

Software Defined Radios are highly dynamic radio sets that can perform any

digital signal processing via computer attached to them with USB or ethernet interface.

Since the signal processing is done using a computer software, this gives the fluidity to

software defined radios in comparison to traditional hardware radios in which signal

processing is usually done using analogue elements and circuitry. A traditional

hardware RF device can fulfill a single purpose for which it was manufactured, for

example a Wi-Fi modem cannot demodulate FM radio signals and same applies for an

FM radio. But a single circuitry of SDR can perform both functions because the signal

processing depends only on software and is independent of hardware. The

computational power, being cheaper than complex hardware radios provide very cost-

effective alternatives to its counterparts.

12

This feature or dynamicity in Software Defined Radios motivated us to research

methods that could aid EW, particularly jamming and interception. As only software is

required to change its function, hence a single SDR and a laptop is enough to provide

all functions that were required. Moreover, new methods of encoding and modulating

data over wireless signal can be adopted easily by few amendments in software.

The SDR which we have chosen for our project is HackRF One which is a complete

opensource equipment and is available in market easily for a very low cost. It has ability

to transmit as well as receive signals and is half duplex in nature.

1.2 SDR:

Concept of SDR is briefly explained above. In this paragraph I would like to

explain conceptual working methodology of SDR, which will further improve overall

understanding of this equipment. An ideal SDR converts desired signal into bits of

information and feeds it to computer for further processing, the computer is mainly

responsible for all digital signal processing. Responsibility of SDR lies with catching,

pre-filtering, pre-amplifying, and converting an analogue signal into digital signal and

then packing digital signals into predefined bits. After this, it sends these signals to

computer via USB interface.

Figure 1: SDR workflow

13

1.2.1 RTL-SDR

Register Transfer Level is a hardware design methodology used in digital circuit

design. It describes the behavior of a digital system by specifying the flow of data

between registers.

In RTL design, the system is broken down into small components called

registers, which are interconnected using data paths. These data paths are represented

using logic gates and other electronic components. Each register in the system

represents a specific state or value of the system.

The design process starts with defining the functionality of the system, which

is then broken down into a set of operations that can be implemented using a

combination of registers and logic gates. The registers are used to store the intermediate

results of the operations.

Once the design is complete, it is verified using simulation tools that check

whether the behavior of the system is consistent with the design specifications. The

simulation also helps identify any potential errors or bugs in the design.

RTL is widely used in the design of digital circuits and systems, including

microprocessors, digital signal processors, and other digital circuits. It is an important

tool for creating complex digital systems that can perform a wide range of tasks with

high efficiency and reliability.

RTL-SDR stands for "Realtek Software Defined Radio", and refers to a type of

low-cost software-defined radio receiver that uses a Realtek RTL2832U chipset to

receive and decode various types of radio signals. Here are some general specifications

for RTL-SDR devices:

Frequency range: Typically between 24 MHz and 1766 MHz, although some devices

can tune up to 2.4 GHz or higher.

Tuning resolution: Usually 1 kHz or better.

Bandwidth: Typically between 2.4 MHz and 3.2 MHz, although some devices can

achieve up to 10 MHz or more.

Dynamic range: Varies depending on the specific device, but generally falls between

14

40 dB and 60 dB.

ADC resolution: 8 bits, although some devices may have an option for 12-bit

sampling.

Connection: USB 2.0 or 3.0.

Compatibility: RTL-SDR devices are supported by many software-defined radio

applications, including SDR#, HDSDR, GQRX, and more.

Price: RTL-SDR devices are relatively inexpensive, with some models available for as

little as $20 USD.

1.3 Hack-RF One

Hack-RF One is an open source SDR designed and developed by

Great Scott Gadgets which can transmit and receive radio signals from 1

Mega Hertz up to 6 Giga Hertz. It is specifically developed to provide testing

and development platform for next generation radio technologies. It is to be

connected to a computer via USB interface.

 Figure 2: Hack-RF One

15

Following table explains important features of Hack-RF One SDR.

Table 1: Hack-RF One features

Operating Frequency 1Mhz – 6GHz

Mode of Operation Half Duplex

Samples per second 20 million

Quadrature Samples 8-bit

Compatibility GNU Radio, SDR#, GQRX

Antenna Port Power 50mA at 3.3V (Software Controlled)

Hardware Open Source

16

1.4 Flow Graph of Hack-RF Jammer

Instrumentation are very useful blocks for analyzing received or transmitted

signals visually.

Figure 3: Hack-RF Jammer

1.4.1 Osmocom Sink:
The Osmocom sink works by taking the raw I/Q samples from the SDR

hardware and converting them into a digital signal that can be decoded using various

algorithms. The Osmocom sink is essentially a demodulator that can decode the

physical layer of a GSM signal, which includes the modulation, timing, and frequency

parameters.

The Osmocom sink supports a wide range of SDR hardware, including the

popular RTL-SDR, HackRF, and USRP devices. It also supports multiple modulation

schemes, including GMSK, 8PSK, and QPSK, which are used by GSM, GPRS, and

EDGE respectively.

17

Figure 4: Example of Osmocom Sink

1.4.2 Noise Source:

A noise source is an electronic component used in radio frequency (RF)

systems, including Hack-RF jammers, to introduce random noise into the RF signal.

The purpose of a noise source is to increase the signal-to-noise ratio (SNR) of the

system, which can improve the overall performance of the system.

In a Hack-RF jammer, a noise source is used to add random noise to the

jamming signal. The jamming signal is a radio signal that is transmitted on the same

frequency as the target signal, which can disrupt or block the target signal. The noise

added to the jamming signal by the noise source can make the jamming signal more

effective by increasing its power and reducing the signal quality of the target signal.

1.4.3 WX GUI Slider:

WX GUI Slider is a graphical user interface (GUI) component that can be

18

used in Hack-RF jammer software to adjust the power level of the jamming signal.

The slider provides a visual representation of the power level, and users can adjust the

power level by dragging the slider handle to the desired position.

The WX GUI Slider component is based on the wxPython toolkit, which is a

popular GUI toolkit for Python. It allows developers to create a wide range of GUI

components that are compatible with Hack-RF software.

In a Hack-RF jammer, the WX GUI Slider is typically used to adjust the

power level of the jamming signal. The power level is a critical parameter in

jamming, as it determines the strength of the jamming signal and how effectively it

can disrupt or block the target signal.

The WX GUI Slider component can be customized to suit the needs of the

user. This includes changing the range of the slider, adjusting the minimum and

maximum values, and setting the initial value. The component can also be styled to

match the overall design of the jammer software.

In addition to adjusting the power level of the jamming signal, the WX GUI

Slider component can also be used to display other parameters of the jammer, such as

frequency and modulation. This allows users to have a more comprehensive view of

the jamming signal and adjust it accordingly.

1.6.4 USRP Sink:

USRP Sink is a component of the Universal Software Radio Peripheral

(USRP) hardware and software system. The USRP is a software-defined radio (SDR)

platform that is widely used for research, education, and experimentation in wireless

communication.

The USRP Sink component is used to transmit RF signals from a computer to

an attached USRP hardware device. The USRP Sink takes a stream of digital samples

and converts them into an analog signal that can be transmitted over the air by the

19

USRP hardware.

The USRP Sink component can transmit a wide range of signals, including

radio signals, audio signals, and digital data. The component supports multiple

modulation schemes, including amplitude modulation (AM), frequency modulation

(FM), and phase-shift keying (PSK), among others.

The USRP Sink component is typically used in research and experimentation

in wireless communication systems. Researchers and students can use the USRP Sink

component to transmit and receive signals and analyze the performance of wireless

communication systems.

One of the key features of the USRP Sink component is its ability to transmit

signals in real-time. This allows researchers to test and evaluate wireless

communication systems in real-world scenarios, without the need for expensive

equipment or specialized facilities.

The USRP Sink component is compatible with various software tools,

including GNU Radio, which is an open-source software toolkit for SDR. GNU Radio

provides a graphical interface for designing and testing SDR systems and can be used

to create custom signal processing blocks and implement complex signal processing

algorithms.

 .Figure 5: Example of USRP Sink

20

1.4 Waveform Generators

Constant Source: A constant source of signal (DC).

Noise Source: Can produce Active White Gaussian Noise or random noise.

Signal Source (e.g. Sine, Square, Saw Tooth): These generate signals of our choice

(cosine, square, Saw Tooth etc.) and desired frequency.

1.5 Modulators

 AM Mod/Demod: This block can perform Amplitude Modulation and

demodulation with provided sample rate.

 Continuous Phase Modulation: This block will take data in complex form

and modulate this data with a sine wave of provided frequency and mentioned sample

rate

 PSK Mod / Demod: This block will perform phase shift keying modulation and

demodulation on provided digital data.

 GFSK Mod / Demod: Gaussian Frequency Shift Keying is a type of

Frequency Shift Keying modulation where signal is passed through a gaussian filter

to shape the pulses before modulating which greatly reduces spectral bandwidth and

out-of-band spectrum. This is helpful when adjacent channel has high power and

there is a chance of interference between channels. This block modulates data into

GFSK and demodulates GFSK signal into data.

 GMSK Mod / Demod: Gaussian Mean Shift Keying Modulation/

Demodulation.

 QAM Mod / Demod: Quadrature Amplitude Modulation/ Demodulation.

 WBFM Receive: Wide Band Frequency Modulation / Demodulation.

NBFM Receive: Narrow Band Frequency Modulation / Demodulation.

21

1.7 Filters:

Filters are basic components of DSP and their use is almost

compulsory in every signal flowgraph. Few filter blocks provided by

SDR are:

 Band Pass / Reject Filter

 Low / High Pass Filter

 IIR Filter

 Generic Filter bank

 Hilbert

Tasks as signal normalization, sync and visualization can be done by

making a suitable signal processing flow graph. Just by connecting

appropriate block one after other a complete system is made. There is also

option of writing own block in python if some logic is not already present is

available blocks.

It is important to consider GNU Radio is primarily a structure for the

development of signal processing blocks and their interaction. It has inbuilt

extensive library of blocks. But it should be borne in mind that GNU Radio

itself is not a software that is ready to do something specific. it is the

operator's task to make something useful out of it.

22

Chapter 2

LITERATURE REVIEW

IMSI catchers, also known as "Stingrays," are tools that can be used to intercept

and track mobile phone communications. These devices work by simulating a cell

phone tower, tricking nearby phones into connecting to the IMSI catcher instead of a

legitimate tower. Once connected, the IMSI catcher can intercept and monitor the

phone's communications, including voice calls, text messages, and data transmissions.

The use of IMSI catchers by law enforcement agencies and government entities

has been a subject of controversy in recent years, as their use raises concerns about

privacy and civil liberties. While some jurisdictions have placed restrictions on their

use, IMSI catchers remain a valuable tool for law enforcement agencies in certain

situations.

In recent years, there have been a number of open-source projects aimed at

developing IMSI catchers using software-defined radios and other off-the-shelf

components. This IMSI Catcher is a Python-based IMSI catcher.

 It is based on a software-defined radio (SDR) device, which allows for flexible,

programmable reception of wireless signals. The software is designed to run on a

Linux-based operating system, such as Kali Linux or Ubuntu.

The Python code used in the IMSI catcher is designed to perform a number of

different functions, including scanning for nearby cell towers, identifying the

International Mobile Subscriber Identity (IMSI) numbers of nearby phones, and

intercepting phone calls and text messages. The software is also capable of spoofing

cell tower signals, allowing it to intercept communications even if the phone is not in

range of a legitimate tower.

23

One of the key advantages of this IMSI catcher is that it is open-source,

allowing other developers to modify and improve upon the code as needed. This has

led to the development of a number of additional tools and modules that can be used in

conjunction with the IMSI catcher, such as modules for GPS tracking and geolocation.

While the use of IMSI catchers is controversial, there are legitimate use cases

for these devices, such as in the tracking of suspected criminals or terrorists. This IMSI

catcher, with its flexible and customizable software, provides a powerful tool for law

enforcement agencies and other organizations that need to track and monitor mobile

communications.

However, it is important to note that the use of IMSI catchers can also have

unintended consequences. For example, innocent bystanders could have their

communications intercepted, and the use of IMSI catchers could potentially interfere

with legitimate cellular network operations. Therefore, it is important to use these

devices responsibly and within the bounds of the law.

In conclusion, this Python-based IMSI catcher developed by provides a

powerful tool for the interception and monitoring of mobile phone communications.

While controversial, the use of IMSI catchers can have legitimate use cases in law

enforcement and other areas. As with any powerful technology, it is important to use

these devices responsibly and with a full understanding of their capabilities and

limitations.

2.1 Limitations and Areas of Improvement

One major limitation of IMSI catchers is their reliance on software-defined

radio (SDR) technology. While SDR devices are highly flexible and programmable,

they are also subject to a number of technical limitations, including limited bandwidth

and sensitivity. This can make it difficult to detect and intercept mobile phone

communications in areas with high levels of interference or signal noise.

24

Another limitation of IMSI catchers is their potential impact on legitimate

cellular network operations. By spoofing cell tower signals and intercepting phone

communications, IMSI catchers can potentially cause interference and disrupt network

operations. This can be especially problematic in areas with high levels of cellular

traffic, such as busy urban areas or large events.

IMSI catchers are also limited by the accuracy of their tracking and geolocation

capabilities. While these devices can be used to track the movements of mobile phones,

the accuracy of this tracking is dependent on a number of factors, including the strength

of the cell signal and the location of nearby cell towers. This can make it difficult to

track mobile phones in certain areas or under certain conditions.

In terms of areas for improvement, there are several potential avenues for future

development. One area is the development of more sophisticated and powerful SDR

devices, which could improve the accuracy and sensitivity of IMSI catchers.

Additionally, improvements in machine learning and artificial intelligence could be

used to improve the accuracy of tracking and geolocation capabilities.

Another area for improvement is the development of more advanced and

sophisticated signal processing algorithms. By improving the ability of IMSI catchers

to filter out noise and interference, these devices could become more effective at

intercepting and monitoring mobile phone communications.

Finally, there is a need for greater transparency and accountability in the use of

IMSI catchers by law enforcement agencies and other organizations. As the use of these

devices becomes more widespread, it is important to ensure that they are being used in

accordance with the law and that the privacy rights of individuals are being protected.

In conclusion, while IMSI catchers are a powerful tool for intercepting and

monitoring mobile phone communications, there are also limitations and areas for

25

improvement that must be considered. By addressing these limitations and focusing on

areas for improvement, it may be possible to develop more effective and accurate IMSI

catchers in the future.

2.2 Existing solutions and their drawbacks

There are a number of existing solutions for intercepting and monitoring mobile

phone communications, including IMSI catchers, cell site simulators, and mobile

network analysis tools. While each of these solutions has its own advantages and

drawbacks, there are a number of common limitations and challenges that must be

considered.

One of the most commonly used solutions for intercepting mobile phone

communications is the IMSI catcher, also known as a "Stingray." These devices work

by simulating a cell phone tower, tricking nearby phones into connecting to the IMSI

catcher instead of a legitimate tower. Once connected, the IMSI catcher can intercept

and monitor the phone's communications.

While IMSI catchers can be effective at intercepting mobile phone

communications, they are also subject to a number of technical limitations. For

example, they are often limited by the range and sensitivity of the software-defined

radio (SDR) device used to power the IMSI catcher. Additionally, they can potentially

interfere with legitimate cellular network operations, causing disruption and

interference.

Another solution for intercepting mobile phone communications is the cell site

simulator, also known as a "Hailstorm" or "DRTbox." These devices work by

broadcasting a signal that is stronger than that of nearby cell towers, causing mobile

phones to connect to the simulator instead. Once connected, the simulator can intercept

and monitor the phone's communications. This concept we will used for jamming the

3G & 4G signals in our jammer.

26

While cell site simulators can be effective at intercepting mobile phone

communications, they are also subject to a number of limitations and drawbacks. For

example, they are often expensive and difficult to use, requiring specialized training

and technical expertise. Additionally, they can potentially interfere with legitimate

cellular network operations, causing disruption and interference.

Finally, there are a number of mobile network analysis tools that can be used to

monitor and intercept mobile phone communications. These tools work by analyzing

network traffic and identifying patterns and anomalies that may indicate suspicious

activity.

While mobile network analysis tools can be effective at identifying and

intercepting mobile phone communications, they are also subject to a number of

limitations and drawbacks. For example, they are often expensive and require

specialized technical expertise to use effectively. Additionally, they may be subject to

false positives and false negatives, leading to inaccurate results and potentially putting

innocent individuals at risk.

In conclusion, there are a number of existing solutions for intercepting and

monitoring mobile phone communications, including IMSI catchers, cell site

simulators, and mobile network analysis tools. While each of these solutions has its

own advantages and drawbacks, they are all subject to common limitations and

challenges, including technical limitations, the potential for interference with

legitimate network operations, and the risk of false positives and false negatives. As

with any powerful technology, it is important to use these solutions responsibly and

with a full understanding of their capabilities and limitations.

27

Chapter 3

PROBLEM DEFINITION

The aim of our project report is to present the design, development, and

evaluation of a cutting-edge technology named IMSI Catcher. IMSI Catcher is a highly

specialized and sophisticated device that is used for surveillance purposes. It provides

a comprehensive solution for monitoring and tracking mobile phones in a specific area.

The project report will highlight the technical aspects of the IMSI Catcher, its design

and development methodology, the outcome and results, and future recommendations.

3.1 Working Principle

The IMSI Catcher works by first scanning all the GSM communication

frequencies in the respective cell and then tune into one of them. Once the packets

starts getting captured, the IMSI Catcher can then intercept the mobile phone signals

and retrieve the IMSI number of each mobile phone, providing real-time monitoring of

communication activities.

The working principle of an IMSI catcher involves mimicking a legitimate cell

tower and tricking nearby mobile phones into connecting to it. Once a phone is

connected to the IMSI catcher, it can intercept and record all the communications

between the phone and the legitimate network.

Here are the steps involved in the working principle of an IMSI catcher:

 The IMSI catcher is set up and activated in an area where the target phones are

expected to be present.

 The IMSI catcher will tuned in to the frequency of the network available in the are

and will start intercepting its traffic.

 The IMSI catcher collects the IMSI numbers of all the connected phones. These

IMSI numbers are used to identify the phone users and track their movements.

 The IMSI catcher then will store all the IMSI numbers in the database.

 Once the phones are connected to the IMSI catcher, it can intercept and record all

the communications between the phone and the network, including voice calls, text

28

messages, and data transmissions.

 The IMSI catcher can also spoof the location of the phones by altering the signal

strength and timing of the transmissions, making it difficult to track the actual

location of the phones.

IMSI catchers are often used by law enforcement agencies and intelligence

services for surveillance and intelligence gathering purposes. However, they can also

be used by criminals and malicious actors for illegal activities such as identity theft and

cyber espionage.

3.2 Components and Functionality:

The IMSI Catcher consists of various components that perform specific

functions. Some of the critical components are:

Antenna: The antenna is used to emit the signal that tricks the mobile phones

to connect to the fake tower.

Radio Frequency (RF) Transmitter: The RF transmitter is responsible for

transmitting and receiving signal.

Signal Processing Unit: The signal processing unit is used to process the

intercepted mobile phone signals and retrieve the IMSI number.

Control Unit: The control unit manages the overall functionality of the IMSI

Catcher and provides a user interface for monitoring and tracking the mobile phones.

29

Figure 6: Components of desired IMSI Catcher

3.3 Project Procedure:

 We completed our project in milestones using the following listed steps:

3.3.1 Design and Planning

The design and planning phase involved the detailed study and analysis of the

requirements and specifications of the IMSI Catcher. The design was based on the

principles of effective signal transmission and processing to ensure the device provides

accurate results. The project plan was also developed to ensure the timely delivery of

the IMSI Catcher.

3.3.2 Development and Implementation

The development and implementation phase involved the actual construction of

the IMSI Catcher, including the assembly of all the components and the integration of

software systems. This phase required close collaboration between the technical team

and the project stakeholders to ensure that the device met the required specifications

and standards. The software systems were tested and refined to ensure they provided

real-time monitoring and tracking capabilities.

30

3.3.3 Testing and Evaluation

The testing and evaluation phase involved a thorough assessment of the IMSI

Catcher's performance and capabilities. The device was subjected to various tests,

including signal strength, accuracy, and stability, to ensure it provided reliable and

consistent results. The testing phase also included a comprehensive evaluation of the

software systems, including their user-friendliness and functionality.

31

Chapter 4

METHODOLOGY

4.1 Project Steps:

In this chapter, we will discuss the methodology used in the development of

this IMSI Catcher to catch 3G & 4G network signals by downgrading them into 2G

using a Hack-RF Jammer and RTL-SDR.

4.1.1 Hardware Setup:

The first step in developing an IMSI Catcher is to set up the required hardware.

For this project, we will need a Hack-RF ONE to create a Jammer and an RTL-SDR

for interception. The Hack-RF Jammer will be used to downgrade the 4G & 3G signal

to 2G, and the RTL-SDR will be used to capture the downgraded signal.

4.1.2 Software Installation

Once the hardware setup is complete, the next step is to install the required

software. We will be using Python as the programming language for this project. We

will also need to install various Python libraries such as Scapy, PyUSB, and RTL-SDR.

4.1.3 Creating a Downgrade Script

The next step is to create a flowgraph in GNU RADIO that will downgrades the

4G & 3G signal to 2G. We will be using the Hack-RF Jammer for this purpose. The

Hack-RF Jammer can be controlled using Python, and we will be sending commands

to the Jammer from our Python script to downgrade the signal.

32

4.1.4 Capturing the Downgraded Signal

Once the signal is downgraded to 2G, we will use the RTL-SDR to capture the

signal. The RTL-SDR is a software-defined radio that can be controlled using Python.

We will use the Python RTL-SDR library to capture the downgraded signal.

4.1.5 Extracting IMSI Information

The captured signal will contain information about the IMSI of the devices

connected to the network. We will use the Python Scapy library to extract the IMSI

information from the captured signal. Scapy is a powerful packet manipulation library

that can be used to analyze network traffic.

33

 Figure 7 A and B: Extracting the IMSI Information

4.1.6 Storing IMSI Information

Finally, we will store the extracted IMSI information in a database. We will be

using SQLite for this purpose, as it is a lightweight database that can be easily

integrated with Python.

4.1.7 Creating a User Interface

To make it easier to use the IMSI Catcher, we will create a user interface using

Python's Tkinter library. The user interface will allow the user to start and stop the

IMSI Catcher and view the captured IMSI information.

4.1.8 Testing

Once the IMSI Catcher is complete, we will test it in a controlled environment

to ensure that it is working as expected. We will also perform various tests to ensure

that the IMSI information is being captured correctly and stored in the database.

34

4.2 Working Principle

An IMSI Catcher is a device that can intercept and collect the International

Mobile Subscriber Identity (IMSI) of mobile devices connected to a cellular network.

This project aims to create an IMSI Catcher using Python, a Hack-RF Jammer, and an

RTL-SDR to capture 4G internet signals by downgrading them into 2G.

4.2.1 The Hack-RF Jammer

The Hack-RF Jammer is a software-defined radio that can be controlled using Python.

It can be programmed to transmit and receive radio signals of various frequencies and

modulation schemes. In this project, we will be using the Hack-RF Jammer to

downgrade the 4G signal to 2G.

4.2.2 Downgrading the 4G Signal

The 4G signal is downgraded by sending a command to the Hack-RF Jammer to

transmit a signal that is at a lower frequency and modulation scheme than the original

4G signal. This causes the mobile device to switch to 2G mode, and the IMSI Catcher

can then capture the downgraded signal.

4.2.3 The RTL-SDR

The RTL-SDR is a software-defined radio that can be used to capture and analyze radio

signals. It can be controlled using Python, and it is capable of capturing signals in a

wide range of frequencies. In this project, we will use the RTL-SDR to capture the

downgraded 2G signal.

4.2.4 Capturing the Downgraded Signal

The downgraded 2G signal can be captured using the RTL-SDR and the Python RTL-

SDR library. The captured signal will contain information about the IMSI of the mobile

devices connected to the network.

35

4.2.5 Extracting IMSI Information

To extract the IMSI information from the captured signal, we will use the Python Scapy

library. Scapy is a powerful packet manipulation library that can be used to analyze

network traffic. It can extract the IMSI information from the captured signal and

provide it in a usable format.

4.2.6 Storing IMSI Information

The extracted IMSI information will be stored in a database using SQLite. SQLite is a

lightweight database that can be easily integrated with Python. It can be used to store

and retrieve IMSI information for further analysis.

4.2.7 User Interface

To make the IMSI Catcher easier to use, we will create a user interface using REACT

APP and FLASK. The user interface will allow the user to start and stop the IMSI

Catcher and view the captured IMSI information and can also search for specific IMSI

in the database.

36

Chapter 5

DETAILED DESIGN AND ARCHITECTURE

This section will provide a design detail of our application including high level

system as per the project and its system model.

5.1 System Architecture:

A high-level overview of the system architecture, including the different

components and how they interact with each other.

A diagram of the system architecture, showing the relationships between the

components and their roles.

 Figure 8: Flowchart of Project

5.2 Hardware and Software Components:

A description of the hardware and software components used in the project,

including the HackRF jammer, RTL-SDR, and any other components.

37

Detailed specifications for each component, including their capabilities and limitations.

 Figure 9: HackRF one & RTL SDR

38

5.3 Signal Processing

A detailed explanation of how the signal processing works in the IMSI catcher,

including how the HackRF jammer is used to downgrade the 4G signal to 2G, and how

the RTL-SDR is used to capture the downgraded signal.

 Figure 10: Flowgraph of Jammer

5.4 User Interface

A description of the user interface used to control the IMSI catcher, including

any buttons, sliders, or other controls used to adjust the jamming signal.

Screenshots of the user interface, showing the different controls and their functions.

39

 Figure 11: GUI

5.5 Security and Privacy

A discussion of the security and privacy implications of using an IMSI catcher,

including the potential risks and ways to mitigate them.

An explanation of any security or privacy features built into the IMSI catcher, such as

encryption or anonymization.

These are just some of the elements that are included in a detailed design and

architecture section for a project involving an IMSI catcher using a HackRF jammer

and RTL-SDR.

40

Chapter 6

IMPLEMENTATION AND TESTING

 In this chapter we discuss the implementation and programming techniques

that we use, we discuss how we convert the system from analysis state into real

system that can be used by android users.

6.1 IMSI Catcher:

 The code utilizes the Flask framework for building a web application and

SocketIO for real-time communication between the server and clients. The code

establishes a connection to a MySQL database to store IMSI records.

import ctypes

import json

from optparse import OptionParser

import datetime

import io

import socket

imsitracker = None

class tracker:

 imsistate = {}

 imsis = []

 tmsis = {}

 nb_IMSI = 0

 mcc = ""

 mnc = ""

 lac = ""

 cell = ""

41

 country = ""

 brand = ""

 operator = ""

 purgeTimer = 10

 show_all_tmsi = False

 mcc_codes = None

 sqlite_con = None

 mysql_con = None

 mysql_cur = None

 textfilePath = None

 output_function = None

 def __init__(self):

 self.load_mcc_codes()

 self.track_this_imsi("")

 self.output_function = self.output

 def set_output_function(self, new_output_function):

 self.output_function = new_output_function

 def track_this_imsi(self, imsi_to_track):

 self.imsi_to_track = imsi_to_track

 self.imsi_to_track_len = len(imsi_to_track)

 def str_tmsi(self, tmsi):

 if tmsi != "":

 new_tmsi = "0x"

 for a in tmsi:

 c = hex(a)

 if len(c) == 4:

42

 new_tmsi += str(c[2]) + str(c[3])

 else:

 new_tmsi += "0" + str(c[2])

 return new_tmsi

 else:

 return ""

 def decode_imsi(self, imsi):

 new_imsi = ''

 for a in imsi:

 c = hex(a)

 if len(c) == 4:

 new_imsi += str(c[3]) + str(c[2])

 else:

 new_imsi += str(c[2]) + "0"

 mcc = new_imsi[1:4]

 mnc = new_imsi[4:6]

 return new_imsi, mcc, mnc

 def str_imsi(self, imsi, packet=""):

 new_imsi, mcc, mnc = self.decode_imsi(imsi)

 country = ""

 brand = ""

 operator = ""

 if mcc in self.mcc_codes:

 if mnc in self.mcc_codes[mcc]:

 brand, operator, country, _ = self.mcc_codes[mcc][mnc]

 new_imsi = f"{mcc} {mnc} {new_imsi[6:]}"

 elif mnc + new_imsi[6:7] in self.mcc_codes[mcc]:

 mnc += new_imsi[6:7]

 brand, operator, country, _ = self.mcc_codes[mcc][mnc]

 new_imsi = f"{mcc} {mnc} {new_imsi[7:]}"

43

 else:

 country = f"Unknown MCC {mcc}"

 brand = f"Unknown MNC {mnc}"

 operator = f"Unknown MNC {mnc}"

 new_imsi = f"{mcc} {mnc} {new_imsi[6:]}"

 try:

 return new_imsi, country, brand, operator

 except Exception:

 print("Error", packet, new_imsi, country, brand, operator)

 return "", "", "", ""

 def load_mcc_codes(self):

 with io.open('mcc-mnc/mcc_codes.json', 'r', encoding='utf8') as file:

 self.mcc_codes = json.load(file)

 def current_cell(self, mcc, mnc, lac, cell):

 brand = ""

 operator = ""

 country = ""

 if mcc in self.mcc_codes and mnc in self.mcc_codes[mcc]:

 brand, operator, country, _ = self.mcc_codes[mcc][mnc]

 else:

 country = f"Unknown MCC {mcc}"

 brand = f"Unknown MNC {mnc}"

 operator = f"Unknown MNC {mnc}"

 self.mcc = str(mcc)

 self.mnc = str(mnc)

 self.lac = str(lac)

 self.cell = str(cell)

 self.country = country

44

 self.brand = brand

 self.operator = operator

 def sqlite_file(self, filename):

 import sqlite3

 print("Saving to SQLite database in %s" % filename)

 self.sqlite_con = sqlite3.connect(filename)

 self.sqlite_con.text_factory = str

 # FIXME

 self.sqlite_con.execute("CREATE TABLE IF NOT EXISTS

observations(stamp datetime, tmsi1 text, tmsi2 text, imsi text, imsicountry text,

imsibrand text, imsioperator text, mcc integer, mnc integer, lac integer, cell

integer);")

 def text_file(self, filename):

 txt = open(filename, "w")

 txt.write("stamp, tmsi1, tmsi2, imsi, imsicountry, imsibrand, imsioperator,

mcc, mnc, lac, cell\n")

 txt.close()

 self.textfilePath = filename

 def mysql_file(self):

 import os.path

 if os.path.isfile('.env'):

 import MySQLdb as mdb

 from decouple import config

 self.mysql_con = mdb.connect(config("MYSQL_HOST"),

config("MYSQL_USER"), config("MYSQL_PASSWORD"),

config("MYSQL_DB"))

 self.mysql_cur = self.mysql_con.cursor()

 if self.mysql_cur:

 print("mysql connection is success :)")

 else:

45

 print("mysql connection is failed!")

 exit()

 else:

 print("create file .env first")

 exit()

 def output(self, cpt, tmsi1, tmsi2, imsi, imsicountry, imsibrand, imsioperator,

mcc, mnc, lac, cell, now, packet=None):

 print(f"{str(cpt):7s} ; {tmsi1:10s} ; {tmsi2:10s} ; {imsi:17s} ;

{imsicountry:16s} ; {imsibrand:14s} ; {imsioperator:21s} ; {str(mcc):4s} ;

{str(mnc):5s} ; {str(lac):6s} ; {str(cell):6s} ; {now.isoformat():s}")

 def pfields(self, cpt, tmsi1, tmsi2, imsi, mcc, mnc, lac, cell, packet=None):

 imsicountry = ""

 imsibrand = ""

 imsioperator = ""

 if imsi:

 imsi, imsicountry, imsibrand, imsioperator = self.str_imsi(imsi, packet)

 else:

 imsi = ""

 now = datetime.datetime.now()

 self.output_function(cpt, tmsi1, tmsi2, imsi, imsicountry, imsibrand,

imsioperator, mcc, mnc, lac, cell, now, packet)

 if self.textfilePath:

 now = datetime.datetime.now()

 txt = open(self.textfilePath, "a")

 txt.write(f"{str(now)}, {tmsi1}, {tmsi2}, {imsi}, {imsicountry}, {imsibrand},

{imsioperator}, {mcc}, {mnc}, {lac}, {cell}\n")

 txt.close()

 if tmsi1 == "":

 tmsi1 = None

 if tmsi2 == "":

46

 tmsi2 = None

 if self.sqlite_con:

 self.sqlite_con.execute(

 u"INSERT INTO observations (stamp, tmsi1, tmsi2, imsi, imsicountry,

imsibrand, imsioperator, mcc, mnc, lac, cell) " + "VALUES (?, ?, ?, ?, ?, ?, ?, ?,

?, ?, ?);",

 (now, tmsi1, tmsi2, imsi, imsicountry, imsibrand, imsioperator, mcc,

mnc, lac, cell)

)

 self.sqlite_con.commit()

 pass

 if self.mysql_cur:

 print("saving data to db...")

 query = ("INSERT INTO `imsi` (`tmsi1`, `tmsi2`, `imsi`,`mcc`, `mnc`,

`lac`, `cell_id`, `stamp`, `deviceid`) VALUES (%s, %s, %s, %s, %s, %s, %s, %s,

%s)")

 arg = (tmsi1, tmsi2, imsi, mcc, mnc, lac, cell, now, "rtl")

 self.mysql_cur.execute(query, arg)

 self.mysql_con.commit()

 def header(self):

 print(f"{'Nb IMSI':7s} ; {'TMSI-1':10s} ; {'TMSI-2':10s} ; {'IMSI':17s} ;

{'country':16s} ; {'brand':14s} ; {'operator':21s} ; {'MCC':4s} ; {'MNC':5s} ;

{'LAC':6s} ; {'CellId':6s} ; {'Timestamp':s}")

 def register_imsi(self, arfcn, imsi1="", imsi2="", tmsi1="", tmsi2="", p=""):

 do_print = False

 n = ''

 tmsi1 = self.str_tmsi(tmsi1)

 tmsi2 = self.str_tmsi(tmsi2)

 if imsi1:

47

 self.imsi_seen(imsi1, arfcn)

 if imsi2:

 self.imsi_seen(imsi2, arfcn)

 if imsi1 and (not self.imsi_to_track or imsi1[:self.imsi_to_track_len] ==

self.imsi_to_track):

 if imsi1 not in self.imsis:

 do_print = True

 self.imsis.append(imsi1)

 self.nb_IMSI += 1

 n = self.nb_IMSI

 if self.tmsis and tmsi1 and (tmsi1 not in self.tmsis or self.tmsis[tmsi1] !=

imsi1):

 do_print = True

 self.tmsis[tmsi1] = imsi1

 if self.tmsis and tmsi2 and (tmsi2 not in self.tmsis or self.tmsis[tmsi2] !=

imsi1):

 do_print = True

 self.tmsis[tmsi2] = imsi1

 if imsi2 and (not self.imsi_to_track or imsi2[:self.imsi_to_track_len] ==

self.imsi_to_track):

 if imsi2 not in self.imsis:

 do_print = True

 self.imsis.append(imsi2)

 self.nb_IMSI += 1

 n = self.nb_IMSI

 if self.tmsis and tmsi1 and (tmsi1 not in self.tmsis or self.tmsis[tmsi1] !=

imsi2):

 do_print = True

48

 self.tmsis[tmsi1] = imsi2

 if self.tmsis and tmsi2 and (tmsi2 not in self.tmsis or self.tmsis[tmsi2] !=

imsi2):

 do_print = True

 self.tmsis[tmsi2] = imsi2

 if not imsi1 and not imsi2 and tmsi1 and tmsi2:

 if self.tmsis and tmsi2 in self.tmsis:

 do_print = True

 imsi1 = self.tmsis[tmsi2]

 self.tmsis[tmsi1] = imsi1

 del self.tmsis[tmsi2]

 if do_print:

 if imsi1:

 self.pfields(str(n), tmsi1, tmsi2, imsi1, str(self.mcc), str(self.mnc),

str(self.lac), str(self.cell), p)

 if imsi2:

 self.pfields(str(n), tmsi1, tmsi2, imsi2, str(self.mcc), str(self.mnc),

str(self.lac), str(self.cell), p)

 if not imsi1 and not imsi2:

 if self.tmsis and tmsi1 and tmsi1 in self.tmsis and "" != self.tmsis[tmsi1]:

 self.imsi_seen(self.tmsis[tmsi1], arfcn)

 if self.show_all_tmsi:

 do_print = False

 if tmsi1 and tmsi1 not in self.tmsis:

 do_print = True

 self.tmsis[tmsi1] = ""

 if tmsi1 and tmsi1 not in self.tmsis:

49

 do_print = True

 self.tmsis[tmsi2] = ""

 if do_print:

 self.pfields(str(n), tmsi1, tmsi2, None, str(self.mcc), str(self.mnc),

str(self.lac), str(self.cell), p)

 def imsi_seen(self, imsi, arfcn):

 now = datetime.datetime.utcnow().replace(microsecond=0)

 imsi, mcc, mnc = self.decode_imsi(imsi)

 if imsi in self.imsistate:

 self.imsistate[imsi]["lastseen"] = now

 else:

 self.imsistate[imsi] = {

 "firstseen": now,

 "lastseen": now,

 "imsi": imsi,

 "arfcn": arfcn,

 }

 self.imsi_purge_old()

 def imsi_purge_old(self):

 now = datetime.datetime.utcnow().replace(microsecond=0)

 maxage = datetime.timedelta(minutes=self.purgeTimer)

 limit = now - maxage

 remove = [imsi for imsi in self.imsistate if limit >

self.imsistate[imsi]["lastseen"]]

 for k in remove:

 del self.imsistate[k]

class gsmtap_hdr(ctypes.BigEndianStructure):

 pack = 1

50

 fields = [

 ("version", ctypes.c_ubyte),

 ("hdr_len", ctypes.c_ubyte),

 ("type", ctypes.c_ubyte),

 ("timeslot", ctypes.c_ubyte),

 ("arfcn", ctypes.c_uint16),

 ("signal_dbm", ctypes.c_ubyte),

 ("snr_db", ctypes.c_ubyte),

 ("frame_number", ctypes.c_uint32),

 ("sub_type", ctypes.c_ubyte),

 ("antenna_nr", ctypes.c_ubyte),

 ("sub_slot", ctypes.c_ubyte),

 ("res", ctypes.c_ubyte),

]

 def __repr__(self):

 return "%s(version=%d, hdr_len=%d, type=%d, timeslot=%d, arfcn=%d,

signal_dbm=%d, snr_db=%d, frame_number=%d, sub_type=%d,

antenna_nr=%d, sub_slot=%d, res=%d)" % (

 self.__class__, self.version, self.hdr_len, self.type,

 self.timeslot, self.arfcn, self.signal_dbm, self.snr_db,

 self.frame_number, self.sub_type, self.antenna_nr, self.sub_slot,

 self.res,

)

def find_cell(gsm, udpdata, t=None):

 global mcc

 global mnc

 global lac

 global cell

 global country

51

 global brand

 global operator

 if gsm.sub_type == 0x01:

 p = bytearray(udpdata)

 if p[0x12] == 0x1b:

 # FIXME

 m = hex(p[0x15])

 if len(m) < 4:

 mcc = m[2] + '0'

 else:

 mcc = m[3] + m[2]

 mcc += str(p[0x16] & 0x0f)

 m = hex(p[0x17])

 if len(m) < 4:

 mnc = m[2] + '0'

 else:

 mnc = m[3] + m[2]

 lac = p[0x18] * 256 + p[0x19]

 cell = p[0x13] * 256 + p[0x14]

 t.current_cell(mcc, mnc, lac, cell)

def find_imsi(udpdata, t=None):

 if t is None:

 t = imsitracker

 gsm = gsmtap_hdr.from_buffer_copy(udpdata)

 if gsm.sub_type == 0x1:

52

 find_cell(gsm, udpdata, t=t)

 else:

 p = bytearray(udpdata)

 tmsi1 = ""

 tmsi2 = ""

 imsi1 = ""

 imsi2 = ""

 if p[0x12] == 0x21:

 if p[0x14] == 0x08 and (p[0x15] & 0x1) == 0x1:

 imsi1 = p[0x15:][:8]

 if p[0x10] == 0x59 and p[0x1E] == 0x08 and (p[0x1F] & 0x1) ==

0x1:

 imsi2 = p[0x1F:][:8]

 elif p[0x10] == 0x4d and p[0x1E] == 0x05 and p[0x1F] == 0xf4:

 tmsi1 = p[0x20:][:4]

 t.register_imsi(gsm.arfcn, imsi1, imsi2, tmsi1, tmsi2, p)

 elif p[0x1B] == 0x08 and (p[0x1C] & 0x1) == 0x1:

 tmsi1 = p[0x16:][:4]

 imsi2 = p[0x1C:][:8]

 t.register_imsi(gsm.arfcn, imsi1, imsi2, tmsi1, tmsi2, p)

 elif p[0x14] == 0x05 and (p[0x15] & 0x07) == 4:

 tmsi1 = p[0x16:][:4]

 if p[0x1B] == 0x05 and (p[0x1C] & 0x07) == 4:

 tmsi2 = p[0x1D:][:4]

 else:

53

 tmsi2 = ""

 t.register_imsi(gsm.arfcn, imsi1, imsi2, tmsi1, tmsi2, p)

 elif p[0x12] == 0x22:

 if p[0x1D] == 0x08 and (p[0x1E] & 0x1) == 0x1:

 tmsi1 = p[0x14:][:4]

 tmsi2 = p[0x18:][:4]

 imsi2 = p[0x1E:][:8]

 t.register_imsi(gsm.arfcn, imsi1, imsi2, tmsi1, tmsi2, p)

def udpserver(port, prn):

 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 server_address = ('localhost', port)

 sock.bind(server_address)

 while True:

 udpdata, address = sock.recvfrom(4096)

 if prn:

 prn(udpdata)

def find_imsi_from_pkt(p):

 udpdata = bytes(p[UDP].payload)

 find_imsi(udpdata)

if __name__ == "__main__":

 imsitracker = tracker()

 parser = OptionParser(usage="%prog: [options]")

 parser.add_option("-a", "--alltmsi", action="store_true",

dest="show_all_tmsi", help="Show TMSI who haven't got IMSI (default : false)")

 parser.add_option("-i", "--iface", dest="iface", default="lo", help="Interface

54

(default : lo)")

 parser.add_option("-m", "--imsi", dest="imsi", default="", type="string",

help='IMSI to track (default : None, Example: 123456789101112 or "123 45

6789101112")')

 parser.add_option("-p", "--port", dest="port", default="4729", type="int",

help="Port (default : 4729)")

 parser.add_option("-s", "--sniff", action="store_true", dest="sniff", help="sniff

on interface instead of listening on port (require root/suid access)")

 parser.add_option("-w", "--sqlite", dest="sqlite", default=None, type="string",

help="Save observed IMSI values to specified SQLite file")

 parser.add_option("-t", "--txt", dest="txt", default=None, type="string",

help="Save observed IMSI values to specified TXT file")

 parser.add_option("-z", "--mysql", action="store_true", dest="mysql",

help="Save observed IMSI values to specified MYSQL DB (copy .env.dist to .env

and edit it)")

 (options, args) = parser.parse_args()

 if options.sqlite:

 imsitracker.sqlite_file(options.sqlite)

 if options.txt:

 imsitracker.text_file(options.txt)

 if options.mysql:

 imsitracker.mysql_file()

 imsitracker.show_all_tmsi = options.show_all_tmsi

 imsi_to_track = ""

 if options.imsi:

 imsi = "9" + options.imsi.replace(" ", "")

 imsi_to_track_len = len(imsi)

 if imsi_to_track_len % 2 == 0 and imsi_to_track_len > 0 and

imsi_to_track_len < 17:

 for i in range(0, imsi_to_track_len - 1, 2):

55

 imsi_to_track += chr(int(imsi[i + 1]) * 16 + int(imsi[i]))

 imsi_to_track_len = len(imsi_to_track)

 else:

 print("Wrong size for the IMSI to track!")

 print("Valid sizes :")

 print("123456789101112")

 print("1234567891011")

 print("12345678910")

 print("123456789")

 print("1234567")

 print("12345")

 print("123")

 exit(1)

 imsitracker.track_this_imsi(imsi_to_track)

 if options.sniff:

 from scapy.all import sniff, UDP

 imsitracker.header()

 sniff(iface=options.iface, filter=f"port {options.port} and not icmp and udp",

prn=find_imsi_from_pkt, store=0)

 else:

 imsitracker.header()

 udpserver(port=options.port, prn=find_imsi)

6.1.1 API Code: This code will connect frontend of the project with its backend.

It will tell the front end that IMSI CATCHER has started and storing the IMSI

number in its database and will give it a signal to start showing the output on GUI.

import json

import flask as fl;

from flask_socketio import SocketIO;

from flask_cors import CORS, cross_origin;

import mysql.connector

56

async_mode = None

app = fl.Flask(_name_)

socket_ = SocketIO(app, async_mode='eventlet',cors_allowed_origins="*")

cors = CORS(app, resources={r"/api/": {"Access-Control-Allow-Origin": ""}})

myDb = mysql.connector.connect(host='localhost', user='root',

password='P@$$word01',database="imsi_catcher")

dbController = myDb.cursor();

dbController.execute("DROP TABLE imsi_record")

dbController.execute("SHOW TABLES")

isTableExist = False;

for x in dbController:

 if x[0] != 'imsi_record' and isTableExist != True:

 isTableExist = False

 else:

 isTableExist = True

tmsi1, tmsi2, imsi, imsicountry, imsibrand, imsioperator, mcc, mnc, lac, cell, now

if isTableExist == False:

 print("creating table")

 dbController.execute("CREATE TABLE imsi_record (id INT

AUTO_INCREMENT PRIMARY KEY, tmsi1 VARCHAR(255), tmsi2

VARCHAR(255), imsi VARCHAR(255), imsicountry VARCHAR(255), imsibrand

57

VARCHAR(255), imsioperator VARCHAR(255), mcc VARCHAR(255), mnc

VARCHAR(255), lac VARCHAR(255), cell VARCHAR(255), now

VARCHAR(255))")

@app.route('/get-records', methods=['Get'])

@cross_origin()

def check():

 sql = "SELECT * FROM imsi_record ORDER BY id DESC"

 dbController.execute(sql)

 data = dbController.fetchall()

 return fl.jsonify({

 "code": 1,

 "msg": 2,

 "data": data

 })

@app.route('/getbyimsi', methods=['POST'])

@cross_origin()

def getDataByIMSINumber():

 body = fl.request.get_data().decode('utf-8')

 body = json.loads(body)

 searchStr = body['search'];

 sql = "SELECT * FROM imsi_record WHERE imsi LIKE %s"

 val = (searchStr,)

 dbController.execute(sql, val)

58

 data = dbController.fetchall()

 print(data);

 return fl.jsonify({

 'code': 1,

 'data': data,

 'msg': 'data found!'

 })

tmsi1, tmsi2, imsi, imsicountry, imsibrand, imsioperator, mcc, mnc, lac, cell, now

@app.route('/save', methods=['POST'])

@cross_origin()

def save():

 body = {

 'tmsi1': fl.request.values.get('tmsi1'),

 'tmsi2': fl.request.values.get('tmsi2'),

 'imsi': fl.request.values.get('imsi'),

 'imsicountry': fl.request.values.get('imsicountry'),

 'imsibrand': fl.request.values.get('imsibrand'),

 'imsioperator': fl.request.values.get('imsioperator'),

 'mcc': fl.request.values.get('mcc'),

 'mnc': fl.request.values.get('mnc'),

 'lac': fl.request.values.get('lac'),

 'cell': fl.request.values.get('cell'),

 'now': fl.request.values.get('now'),

59

 }

 print("saving recode", body)

 sql = "INSERT INTO imsi_record (tmsi1, tmsi2, imsi, imsicountry, imsibrand,

imsioperator, mcc, mnc, lac, cell, now) VALUES (%s, %s, %s, %s, %s, %s, %s, %s,

%s, %s, %s)"

 val = (body['tmsi1'], body['tmsi2'], body['imsi'], body['imsicountry'],

body['imsibrand'], body['imsioperator'], body['mcc'], body['mnc'], body['lac'],

body['cell'], body['now'])

 dbController.execute(sql, val)

 myDb.commit()

 socket_.emit('hello', 'refresh')

 return fl.jsonify({"success": True, 'code': 1, "msg": 'data-saved'})

@socket_.on('message')

def handle_message(data):

 print(data)

 socket_.emit("hello", "handshak too")

if(_name_ == '_main_'):

 socket_.run(app, debug=True)

6.2 Using GSMTAP Library:

Intercepting GSM traffic using a GSMTAP library involves the following

steps:

Connect to the SDR device: The first step is to connect to the Software-Defined

Radio (SDR) device. This is usually done using a library like PyBombs or GNU

60

Radio Companion.

Configure the SDR device: Once connected to the SDR device, you need to

configure it to capture GSM traffic. This is done by setting the appropriate

frequency, gain, and other parameters.

Capture the GSM traffic: Once the SDR device is configured, you can start

capturing GSM traffic. This is usually done by setting up a flow graph that

captures the traffic and then processing it using a signal processing library like

GNURadio.

Decode the GSM traffic: Once the GSM traffic is captured, you need to decode it

to extract useful information. This can be done using a library like libosmocore or

pySim.

Analyze the decoded traffic: Finally, you can analyze the decoded traffic to

extract information like IMSI numbers, SMS messages, and voice calls.

6.2.1 Setup and Initialization:

 First, you will need to initialize the HackRF jammer and RTL-SDR

components and set up the required parameters. For example, you can use the

pyrtlsdr and hackrf libraries to initialize the components.

6.2.2 Signal Processing and Capture:

Next, you can use the GSM library to capture and decode the downgraded

signal. For example, you can use the gsmtap() function to capture and decode the

signal.

6.2.3 User Interface

A user interface can be implemented using a REACT APP and FLASK.

6.2.3.1 App.css Code:

.App {

61

 text-align: center;
 background: url(../public/ISMI.jpg);
 background-repeat: no-repeat;
}

.wrapper {
 display: flex;
 flex-direction: column;
}

.page-header {
 display: flex;
 flex-direction: column;
 flex-grow: 1;
}

.title {
 width: 100%;
 color: #c6e5ff;
 font-size: 55px;
 font-family: sansrif;
 font-weight: bolder;
 letter-spacing: 10px;
}

.searcher-container{
 display: flex;
 justify-content: end;
 align-items: center;
}

.search-inp{
 width: 400px;
 margin-right: 10px;
}
.search-btn{
 width: 100px;
}

.table-container{
 margin: 10px;
 height: 80vh;
 overflow-y: scroll;
 color: #ffff !important;
}
th{
 color: #ffff !important;
}
.not-found-container{
 width: 100%;

62

 display: flex;
 justify-content: center;
}

.App-logo {
 height: 40vmin;
 pointer-events: none;
}

@media (prefers-reduced-motion: no-preference) {
 .App-logo {
 animation: App-logo-spin infinite 20s linear;
 }
}

.App-header {
 background-color: #282c34;
 min-height: 100vh;
 display: flex;
 flex-direction: column;
 align-items: center;
 justify-content: center;
 font-size: calc(10px + 2vmin);
 color: white;
}

.App-link {
 color: #61dafb;
}

@keyframes App-logo-spin {
 from {
 transform: rotate(0deg);
 }

 to {
 transform: rotate(360deg);
 }
}

6.2.3.2 App.js Code:

import './App.css';

import 'bootstrap/dist/css/bootstrap.min.css';

import Button from 'react-bootstrap/Button';

import Form from 'react-bootstrap/Form';

import Table from 'react-bootstrap/Table';

import { useEffect, useState } from 'react';

63

import axios from 'axios';

import io from 'socket.io-client';

const socket = io('http://127.0.0.1:5000');

function App() {

 let search = sessionStorage.getItem('search') != '' ?

sessionStorage.getItem('search') : ''

 let [record , setRecord] = useState([]);

 useEffect(()=>{

 if(!record.length){

 getAllRecords();

 }

 socket.on('connect', () => {

 console.log("connected");

 });

 socket.on('hello', (d) => {

 if(!search || search.trim() == ''){

 console.log("current v==>",search)

 getAllRecords()}

 // setRecord(()=>)

 });

 },[])

 useEffect(()=>{},[search])

 const getAllRecords = () =>{

 let data = [];

 axios.get('http://127.0.0.1:5000/get-records').then((res)=>{

 data = res.data.data;

 setRecord(()=> data);

 })

 }

64

 const onSearchChange = (event) =>{

 search = event.target.value;

 // setSearch(()=> _s)

 sessionStorage.setItem('search', search);

 console.log(search);

 if(!search || search.trim() == ''){

 console.log("ppp")

 getAllRecords();

 }else{

 axios.post('http://127.0.0.1:5000/getbyimsi',{

 search: search

 }).then((res)=>{

 let data = res.data.data;

 setRecord(()=> data);

 })

 }

 }

 return (

 <div className="App">

 <div className="wrapper">

 <div className='page-header'>

 <div className='title'>IMSI-Catcher</div>

 <div className='searcher-container'>

 <div className='search-inp'>

 <Form>

 <Form.Control type="text" placeholder="Search IMSI number here..."

onChange={onSearchChange} />

 </Form>

 </div>

 {/* <div className='search-btn'>

 <Button variant="outline-primary" >Search</Button>

 </div> */}

65

 </div>

 </div>

 <div className='table-container'>

 {

 record.length > 0 && <Table striped bordered hover>

 <thead>

 <tr>

 <th>#</th>

 <th>Tmsi1</th>

 <th>Tmsi2</th>

 <th>Imsi</th>

 <th>Imsi Country</th>

 <th>Imsi Brand</th>

 <th>Imsi Operator</th>

 <th>mcc</th>

 <th>mnc</th>

 <th>lac</th>

 <th>cell</th>

 <th>TimeStamp</th>

 </tr>

 </thead>

 <tbody>

 {

 record.map((ele,indR)=>{

 return (

 <tr>

 {

 ele.map((_e)=>{

 return(

 <th>{_e}</th>

)

 })

 }

 </tr>

66

)

 })

 }

 </tbody>

 </Table>

 }

 {

 record.length <= 0 && <div className='not-found-container'>

 <h1>Data not found</h1>

 </div>

 }

 </div>

 </div>

 </div>

);

}

6.2.4 Security and Privacy

You can implement security and privacy features using encryption and

anonymization techniques.

	

6.3	HackRF	Customized	Jammer:	

The flowgraph defines a GNU Radio that generates a jamming signal

using a HackRF software-defined radio. The signal is generated with the

following parameters that can be adjusted using sliders in the graphical user

interface (GUI):

 RF gain

 IF gain

 Center frequency

67

 Baseband gain

 Bandwidth

The code sets up the GUI using the PyQt5 library and defines the slider

widgets using the RangeWidget class. It also creates an instance of the

osmosdr.sink block, which is a GNU Radio block for transmitting data through an

SDR. The osmosdr.sink is configured with the parameters set by the sliders in the

GUI, and it is used to transmit the jamming signal generated by the flowgraph.

 Figure 12: Flowgraph of Jammer

6.3.1 Code:

from distutils.version import StrictVersion

if _name_ == '_main_':

 import ctypes

 import sys

68

 if sys.platform.startswith('linux'):

 try:

 x11 = ctypes.cdll.LoadLibrary('libX11.so')

 x11.XInitThreads()

 except:

 print("Warning: failed to XInitThreads()")

from gnuradio import analog

from gnuradio import gr

from gnuradio.filter import firdes

import sys

import signal

from PyQt5 import Qt

from argparse import ArgumentParser

from gnuradio.eng_arg import eng_float, intx

from gnuradio import eng_notation

from gnuradio.qtgui import Range, RangeWidget

import osmosdr

import time

from gnuradio import qtgui

class jammer_gen(gr.top_block, Qt.QWidget):

 def _init_(self):

 gr.top_block._init_(self, "Jammer Gen")

 Qt.QWidget._init_(self)

 self.setWindowTitle("Jammer Gen")

 qtgui.util.check_set_qss()

 try:

 self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))

 except:

 pass

 self.top_scroll_layout = Qt.QVBoxLayout()

 self.setLayout(self.top_scroll_layout)

69

 self.top_scroll = Qt.QScrollArea()

 self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)

 self.top_scroll_layout.addWidget(self.top_scroll)

 self.top_scroll.setWidgetResizable(True)

 self.top_widget = Qt.QWidget()

 self.top_scroll.setWidget(self.top_widget)

 self.top_layout = Qt.QVBoxLayout(self.top_widget)

 self.top_grid_layout = Qt.QGridLayout()

 self.top_layout.addLayout(self.top_grid_layout)

 self.settings = Qt.QSettings("GNU Radio", "jammer_gen")

 try:

 if StrictVersion(Qt.qVersion()) < StrictVersion("5.0.0"):

 self.restoreGeometry(self.settings.value("geometry").toByteArray())

 else:

 self.restoreGeometry(self.settings.value("geometry"))

 except:

 pass

 ##

 # Variables

 ##

 self.var_rf_gain = var_rf_gain = 10

 self.var_if_gain = var_if_gain = 10

 self.var_cent_freq = var_cent_freq = 2115000000

 self.var_bb_gain = var_bb_gain = 10

 self.var_bandwidth = var_bandwidth = 10e6

 self.samp_rate = samp_rate = 5e6

 self.rf_gain = rf_gain = var_rf_gain

 self.if_gain = if_gain = var_if_gain

 self.cent_freq = cent_freq = var_cent_freq

 self.bb_gain = bb_gain = var_bb_gain

 self.bandwidth = bandwidth = var_bandwidth

70

 ##

 # Blocks

 ##

 self._rf_gain_range = Range(10, 60, 10, var_rf_gain, 200)

 self._rf_gain_win = RangeWidget(self._rf_gain_range, self.set_rf_gain, 'RF

gain', "counter_slider", float)

 self.top_grid_layout.addWidget(self._rf_gain_win)

 self._if_gain_range = Range(10, 60, 10, var_if_gain, 200)

 self._if_gain_win = RangeWidget(self._if_gain_range, self.set_if_gain, 'IF

gain', "counter_slider", float)

 self.top_grid_layout.addWidget(self._if_gain_win)

 self._cent_freq_range = Range(900e6, 2200e6, 500, var_cent_freq, 200)

 self._cent_freq_win = RangeWidget(self._cent_freq_range,

self.set_cent_freq, 'Freq', "counter_slider", float)

 self.top_grid_layout.addWidget(self._cent_freq_win)

 self._bb_gain_range = Range(10, 60, 10, var_bb_gain, 200)

 self._bb_gain_win = RangeWidget(self._bb_gain_range, self.set_bb_gain,

'BB gain', "counter_slider", float)

 self.top_grid_layout.addWidget(self._bb_gain_win)

 self._bandwidth_range = Range(2e6, 50e6, 10, var_bandwidth, 200)

 self._bandwidth_win = RangeWidget(self._bandwidth_range,

self.set_bandwidth, 'Bandwidth', "counter_slider", float)

 self.top_grid_layout.addWidget(self._bandwidth_win)

 self.osmosdr_sink_0 = osmosdr.sink(

 args="numchan=" + str(1) + " " + 'hackrf=0'

)

 self.osmosdr_sink_0.set_time_unknown_pps(osmosdr.time_spec_t())

 self.osmosdr_sink_0.set_sample_rate(bandwidth+bandwidth/80)

 self.osmosdr_sink_0.set_center_freq(cent_freq, 0)

 self.osmosdr_sink_0.set_freq_corr(0, 0)

 self.osmosdr_sink_0.set_gain(rf_gain, 0)

 self.osmosdr_sink_0.set_if_gain(if_gain, 0)

 self.osmosdr_sink_0.set_bb_gain(bb_gain, 0)

71

 self.osmosdr_sink_0.set_antenna('', 0)

 self.osmosdr_sink_0.set_bandwidth(bandwidth, 0)

 self.analog_noise_source_x_0 =

analog.noise_source_c(analog.GR_GAUSSIAN, 50, 0)

 ##

 # Connections

 ##

 self.connect((self.analog_noise_source_x_0, 0), (self.osmosdr_sink_0, 0))

 def closeEvent(self, event):

 self.settings = Qt.QSettings("GNU Radio", "jammer_gen")

 self.settings.setValue("geometry", self.saveGeometry())

 event.accept()

 def get_var_rf_gain(self):

 return self.var_rf_gain

 def set_var_rf_gain(self, var_rf_gain):

 self.var_rf_gain = var_rf_gain

 self.set_rf_gain(self.var_rf_gain)

 def get_var_if_gain(self):

 return self.var_if_gain

 def set_var_if_gain(self, var_if_gain):

 self.var_if_gain = var_if_gain

 self.set_if_gain(self.var_if_gain)

 def get_var_cent_freq(self):

 return self.var_cent_freq

 def set_var_cent_freq(self, var_cent_freq):

 self.var_cent_freq = var_cent_freq

72

 self.set_cent_freq(self.var_cent_freq)

 def get_var_bb_gain(self):

 return self.var_bb_gain

 def set_var_bb_gain(self, var_bb_gain):

 self.var_bb_gain = var_bb_gain

 self.set_bb_gain(self.var_bb_gain)

 def get_var_bandwidth(self):

 return self.var_bandwidth

 def set_var_bandwidth(self, var_bandwidth):

 self.var_bandwidth = var_bandwidth

 self.set_bandwidth(self.var_bandwidth)

 def get_samp_rate(self):

 return self.samp_rate

 def set_samp_rate(self, samp_rate):

 self.samp_rate = samp_rate

 def get_rf_gain(self):

 return self.rf_gain

 def set_rf_gain(self, rf_gain):

 self.rf_gain = rf_gain

 self.osmosdr_sink_0.set_gain(self.rf_gain, 0)

 self.osmosdr_sink_0.set_gain(self.rf_gain, 1)

 self.osmosdr_sink_0.set_gain(self.rf_gain, 2)

 def get_if_gain(self):

 return self.if_gain

73

 def set_if_gain(self, if_gain):

 self.if_gain = if_gain

 self.osmosdr_sink_0.set_if_gain(self.if_gain, 0)

 self.osmosdr_sink_0.set_if_gain(self.if_gain, 1)

 self.osmosdr_sink_0.set_if_gain(self.if_gain, 2)

 def get_cent_freq(self):

 return self.cent_freq

 def set_cent_freq(self, cent_freq):

 self.cent_freq = cent_freq

 self.osmosdr_sink_0.set_center_freq(self.cent_freq, 0)

 def get_bb_gain(self):

 return self.bb_gain

 def set_bb_gain(self, bb_gain):

 self.bb_gain = bb_gain

 self.osmosdr_sink_0.set_bb_gain(self.bb_gain, 0)

 self.osmosdr_sink_0.set_bb_gain(self.bb_gain, 1)

 self.osmosdr_sink_0.set_bb_gain(self.bb_gain, 2)

 def get_bandwidth(self):

 return self.bandwidth

 def set_bandwidth(self, bandwidth):

 self.bandwidth = bandwidth

 self.osmosdr_sink_0.set_sample_rate(self.bandwidth+self.bandwidth/80)

 self.osmosdr_sink_0.set_bandwidth(self.bandwidth, 0)

 self.osmosdr_sink_0.set_bandwidth(self.bandwidth, 1)

 self.osmosdr_sink_0.set_bandwidth(self.bandwidth, 2)

def main(top_block_cls=jammer_gen, options=None):

74

 if StrictVersion("4.5.0") <= StrictVersion(Qt.qVersion()) <

StrictVersion("5.0.0"):

 style = gr.prefs().get_string('qtgui', 'style', 'raster')

 Qt.QApplication.setGraphicsSystem(style)

 qapp = Qt.QApplication(sys.argv)

 tb = top_block_cls()

 tb.start()

 tb.show()

 def sig_handler(sig=None, frame=None):

 Qt.QApplication.quit()

 signal.signal(signal.SIGINT, sig_handler)

 signal.signal(signal.SIGTERM, sig_handler)

 timer = Qt.QTimer()

 timer.start(500)

 timer.timeout.connect(lambda: None)

 def quitting():

 tb.stop()

 tb.wait()

 qapp.aboutToQuit.connect(quitting)

 qapp.exec_()

if _name_ == '_main_':

75

Chapter 7

RESULTS AND DISCUSSION

7.1 Results:

A GSM IMSI catcher can be used for various purposes, both legal and

illegal. In general, the results of using a GSM IMSI catcher depend on the purpose

for which it is used. Here are some theoretical results of using a GSM IMSI

catcher:

Intercepting and recording GSM communications: A GSM IMSI catcher can

be used to intercept and record GSM communications, including voice calls and

SMS messages. This can be useful for law enforcement agencies to monitor

criminal activity, but it can also be used by criminals to spy on individuals.

Figure 13: Storing IMSI Numbers to Database

Location tracking: A GSM IMSI catcher can also be used to track the location of

a mobile device. This can be useful for tracking lost or stolen devices, but it can

also be used by stalkers to track the location of their victims.

76

Figure 14: Locating GSM Tower

Figure 15: Cell Tower Location

Mass surveillance: A GSM IMSI catcher can be used for mass surveillance to

monitor the communication of a large number of individuals in a particular area.

This can be useful for intelligence agencies to gather information on potential

threats, but it can also be a violation of privacy and civil liberties.

Man-in-the-middle attacks: A GSM IMSI catcher can be used to carry out man-

in-the-middle attacks, where the attacker intercepts and alters the communication

between two parties. This can be used to steal sensitive information, such as

77

passwords and banking details.

7.2	Discussion:	

The IMSI catcher project that uses a special jammer to convert 4G signals into 2G

and access them is an interesting and complex project that involves a deep

understanding of wireless communication, signal processing, and security

protocols.

In essence, an IMSI catcher is a device that can capture and intercept mobile phone

signals in a particular area, allowing the operator to monitor and analyze the activity

of mobile phones in that area. This project uses a HackRF jammer to downgrade

4G signals to 2G signals, making them easier to capture and access.

The HackRF jammer is a specialized device that can generate radio frequency (RF)

signals in a specific frequency range, which can be used to jam or disrupt wireless

signals. In this project, the HackRF jammer is used to downgrade 4G signals to 2G

signals by generating a 4G signal in the same frequency range as the 4G signal. This

allows the signal to be get jammed and downgrade for communication.

To capture and process the downgraded signal, the project uses RTL-SDR, a

software-defined radio receiver that allows the user to capture and process radio

signals in real-time. The downgraded signal is captured using RTL-SDR using the

GSMTAP library, which is a Python library that provides functions for decoding

GSM signals.

The project involves multiple components, including the HackRF jammer, RTL-

SDR, and the GSMTAP library, as well as various signal processing and security

protocols. The project requires a deep understanding of the protocols and algorithms

used in wireless communication, as well as expertise in software-defined radio and

Python programming.

78

In terms of security and privacy, the project raises concerns about the legality and

ethics of intercepting mobile phone signals without the consent of the users. It is

important to ensure that the project is used only for lawful purposes and that

appropriate security measures are in place to protect the privacy of mobile phone

users.

Overall, the IMSI catcher project that uses a special jammer to convert 4G signals

into 2G and access them is a complex and challenging project that requires a deep

understanding of wireless communication, signal processing, and security

protocols. The project has significant implications for privacy and security and

should only be used for lawful purposes.

79

Chapter 8

CONCLUSIONS AND FUTURE WORK

The IMSI Catcher is a highly specialized and sophisticated device that provides

a comprehensive solution for monitoring and tracking mobile phones in a specific area.

The device has been designed and developed to meet the requirements and

specifications of various organizations and governments, providing accurate and real-

time monitoring capabilities. The project report has highlighted the technical aspects,

design and development methodology, outcome and results, and future

recommendations of the IMSI Catcher.

8.1 Future Work

There are several areas of future work and scope for IMSI catchers that could improve

their capabilities and effectiveness. One potential area of focus is the development of

more sophisticated and powerful software-defined radio (SDR) devices, which could

improve the accuracy and sensitivity of IMSI catchers. Additionally, the use of machine

learning and artificial intelligence could be explored to improve the accuracy of

tracking and geolocation capabilities.

Another area of future work is the development of more advanced signal processing

algorithms, which could help IMSI catchers filter out noise and interference more

effectively, leading to more accurate intercepts of mobile phone communications.

Additionally, the development of more advanced encryption and obfuscation

techniques could make it more difficult for IMSI catchers to intercept and monitor

mobile phone communications.

The use of IMSI catchers by law enforcement and intelligence agencies also raises

important legal and ethical questions, such as concerns over privacy and the potential

80

for abuse. Future work in this area could focus on developing more transparent and

accountable systems for the use of IMSI catchers, including greater oversight and

regulation.

Finally, the ongoing evolution of mobile phone technology will continue to present

new challenges and opportunities for IMSI catchers. As new wireless protocols and

encryption techniques are developed, IMSI catchers will need to adapt and evolve in

order to remain effective. Additionally, the ongoing proliferation of IoT devices and

other connected technologies could provide new opportunities for IMSI catchers to

intercept and monitor communications beyond traditional mobile phones.

In conclusion, there is significant potential for future work and scope in the

development and use of IMSI catchers. By focusing on improving their technical

capabilities, developing more transparent and accountable systems for their use, and

adapting to ongoing changes in mobile phone technology, it may be possible to develop

more effective and responsible systems for intercepting and monitoring mobile phone

communications.

81

References

David, Paul Clark, ed. (2016) Expedient of SDR Fields, Vol 2 .1st edition.

RegistryMeadow, ULC

Qing Huang, Lin Yang. Inside theRadio: Defense and Attack Guide. 1st ed.Springer:

Singapore

Kozel Derek, GIU SDR Wikipedia, 1 July 2020,

https://wikipedia.ganurdio.com/Main_Page/index.php

Macheel Usman, Great Gadgets, Scott, 2020, https://scottgreatgadgets.org/one/hackrf/

Martino De Andrea. edition (2021) Initials to Modern Systems EW. UK: Arztech

House

Trevor Bihl J, "Feature Classifier and Selection Development for Frequency Radios"

(2016). Thesis and Dissectations. 321.

https://articlesscholar.afit.og/edu/321

Donald A. Raising, RD-II, Usage and Exploitation of Hack-RF for Fequency Devices

Verification and Classification Using VQIGRL Processing DS-ENG -04-12

82

Meeting Logs & Plagiarism Report

83

84

85

86

