
i | P a g e

HARDWARE BACKDOOR ANALYSIS TOOLKIT

(HBAT)

By

Bushra Batool

Asma Rashid

Tehreem Fatima

Izza Batool

Supervised by:

Dr. Haider Abbas

Submitted to

Faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad,

in partial fulfillment for the requirements of

 B.E Degree in Electrical (Telecommunication) Engineering.

June 2023

ii | P a g e

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report

“Hardware Backdoor Analysis Toolkit”

is carried out by

Bushra Batool, Asma Rashid, Tehreem Fatima and Izza Batool

under my supervision and that in my judgement, it is fully ample, in scope and excellence, for

the degree of Bachelor of Electrical (Telecom.) Engineering in Military College of Signals,

National University of Sciences and Technology (NUST), Islamabad.

Approved by

Supervisor

Dr. Haider Abbas

HoD, Information Security Department

Department of Electrical Engineering

Military College of Signals (MCS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

 Date: ___________

iii | P a g e

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been submitted in support

of another award or qualification in either this institute or anywhere else.

iv | P a g e

ACKNOWLEDGEMENTS

Allah Subhan Wa Ta’ala is the sole guidance in all domains.

We would like to express our gratitude to our parents, teachers and our supervisor Dr. Haider

Abbas for his professional guidance and support throughout this thesis.

.

v | P a g e

This is dedicated to individuals who exhibit diligence and hard work, those who display

unwavering devotion and persistence, those who demonstrate resilience when confronted

with misfortune, and all those who strive to bring positivity in times of darkness. This is

dedicated to those who never give up.

vi | P a g e

ACRONYMS

B

BAT Binary Analysis Toolkit

C

CLI Command Line Interface

CVE Common Vulnerabilities and Exposures

E

eMMC Embedded Multi Media Card

F

FAT Firmware Analysis Toolkit

FACT Firmware Analysis and Comparison Toolkit

G

gzip GNU zip

H

HBAT Hardware Backdoor Analysis Toolkit

I

IoT Internet of Things

IP Internet Protocol.

J

JFFS2 Journaling Flash File System version 2

JTAG Joint Test Action Group

N

vii | P a g e

NAS Nordic Automation Systems

O

OS Operating System

Q

QEMU Quick Emulator

R

ROM Read Only Memory.

S

SDG Sustainable Development Goal.

U

UART Universal Asynchronous Receiver-Transmitter.

UI User Interface.

viii | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has ____ similarity index. Turnitin report endorsed by Supervisor is

attached.

Bushra Batool

NUST Serial no 00000294137

Asma Rashid

NUST Serial no 00000282833

Tehreem Fatima

NUST Serial no 00000325369

Izza Batool

NUST Serial no 00000291543

Signature of Supervisor

ix | P a g e

ABSTRACT

Technology has become an indispensable part of society and everyday life. Amidst the

emerging technology, embedded devices have made a remarkably huge entry into the market,

with the most popular category being IoT devices. These devices have firmware embedded in

them. However, the firmware might be subjected to some vulnerabilities. This is a crucial issue

in the present-day world that cannot be avoided knowing the increase in potential attack

surface. Considering the importance of this issue, it is highly essential to build measures for

the protection and prevention of these devices from the attacker. In the present world several

devices like routers, printers, and smartphones have undergone vulnerability analysis and

analysis reports of these devices are available online. A variety of analysis tools are available

online but the shortcomings they face are their particularity. Most tools are intended for a

specific aspect of firmware analysis. However, the aim of our project is to provide a compact

backdoor analysis toolkit that would cater to IP cameras of vendors locally and internationally

and perform a detailed security analysis on them.

In this thesis, we developed a complete framework combining online existing tools using static

and dynamic analysis to verify the complications and challenges that are faced in large-scale

security analysis. We have collected firmware images belonging to both local and international

vendors.

x | P a g e

TABLE OF CONTENTS

1 Introduction…………………………………………………………………………01

1.1 Overview………………………………………………………………...........01

1.1.1 Firmware…………………………………………………………………02

1.1.2 Firmware Segments…………………………………………………...03

1.1.2.1 Initial Bootloader……………………………………………….03

1.1.2.2 Second Level Boot Loader……………………………………….03

1.1.2.3 Boot Loaders Environment variables……………………………03

1.1.2.4 Linux Kernel…………………………………………………….. 03

1.1.2.5 Root File System…………………………………………………04

1.1.3 Need for Firmware Analysis……………………………………….....05

1.2 Problem Statement…………………………………………………………..05.

1.3 Proposed Solution……………………………………………………………05

1.3.1 Software…………………………………………………………........05

1.3.2 Hardware……………………………………………………………...05

1.4 Contributions……………………………………………………….………..07

1.5 Challenges……………………………………………………………….…..08

1.5.1 Acquiring the Firmware……………………………………………....08

1.5.2 Acquiring the Source Code…………………………………………...08

1.5.3 Encrypted Firmware……………………………………………..…...08

xi | P a g e

1.5.4 Unpacking Firmware……………………………………………..…..08

1.5.5 Identifying JTAG Pins……………………………………………......09

1.6 Objectives…………………………………………………………………...10

1.6.1 General Objectives…………………………………………………..10

1.6.2 Academic Objectives………………………………………………...10

1.7 Scope……………………………………………………………………….10

1.8 Deliverables………………………………………………………………...10

1.8.1 Firmware Extraction Tool……………………………………………10

1.8.2 Firmware Decryption Tool…………………………………………...10

1.8.3 Vulnerability Analysis Tool………………………………………......11

1.8.4 Detailed Report ………………………………………………………11

1.9 Sustainable Development Goals………………………………………........11

1.9.1 Primary SDG…………………………………………………………11

1.9.2 Secondary SDG………………………………………………………11

1.10 Outline……………………………………………………………………...11

2 Background………………………………………………………………..............12

2.1 Industrial Background………………………………………………………12

2.1.1 What is Firmware Analysis………………………………………12

2.1.2 What is Backdoor Analysis Toolkit? ……………………………......13

2.2 Existing Solutions and their Drawbacks……………………………………14

xii | P a g e

2.2.1 Conventional Security Technologies………………………………..14

2.2.2 Manual Code Review………………………………………………..14

2.2.3 Tools for Static Code Analysis………………………………………15

2.2.4 Dynamic Analysis Tools………………………………………….....15

2.2.5 Machine learning-based tools…………………………………….....15

2.2.6 Commercial Solutions…………………………………………….....15

2.3 Research Papers………………………………………………………........16

2.3.1 Firmware Analysis and Stimulation…………………………………16

2.3.2 Survey of Firmware Extraction and Modification Techniques……...17

3 Methodology………………………………………………………………………18

3.1 Problem……………………………………………………………………18

3.2 Design……………………………………………………………………..18

3.2.1 Datasets……………………………………………………………..18

3.3 Pre-Existing Tools………………………………………………………...20

3.3.1 Binwalk……………………………………………………………..20

3.3.2 Firmadyne.………………………………………………………….20

3.3.3 Firmwalker………………………………………………………….20

3.3.4 QEMU……………………………………………………………....20

4 Implementation……………………………………………………………………21

4.1 Development Environment………………………………………………..21

xiii | P a g e

4.2 Toolkit Design…………………………………………………………….22

4.2.1 Interface……………………………………………………………...22

4.2.2 Architecture………………………………………………………….22

4.2.3 Supporting Systems………………………………………………….23

4.2.4 System Tools…………………………………………………………24

4.2.5 Dependencies…………………………………………………………24

4.2.6 Generic………………………………………………………………..25

4.2.7 Static and Dynamic Analysis…………………………………………26

4.2.8 Cross Platform………………………………………………………..26

4.3 Unpacking and Extraction Tools……………………………………………..26

4.3.1 Binwalk………………………………………………………………26

4.3.2 Gunzip……………………………………………………………….28

4.3.3 Unsquash…………………………………………………………….29

4.3.4 Unlzma……………………………………………………………....29

4.4 Emulation…………………………………………………………………….29

4.4.1 QEMU……………………………………………………………….29

4.5 Tp Link Firmware…………………………………………………………….30

4.5.1 Analysis……………………………………………………………...30

4.5.2 Results……………………………………………………………….34

5 Conclusion………………………………………………………………………...35

xiv | P a g e

5.1 Limitations…………………………………………………………………35

6 Future Work………………………………………………………………………36

Bibliography………………………………………………………………………38

xv | P a g e

LIST OF FIGURES

Figure 1: Percentage Ratio of Most Hacked IoT Devices…………………………………..02

Figure 2: Firmware segments……………………………………………………………….04

Figure 3: Proposed Block Diagram…………………………………………………………07

Figure 4: Identifying JTAG pin……………………………………………………………..09

Figure 5: H-BAT Architecture………………………………………………………………23

Figure 6: OS Applications…………………………………………………………………..25

1 | P a g e

Chapter 1: Introduction

1.1 Overview

Presently, we live in a world where technology has become a necessity. From a simple smartphone

to compact smart watches, from home internet routers to internet protocol cameras installed

everywhere; we’re heading towards technological advancement at a greater pace than ever. Talking

about these technological and internet-connected devices, it is essential to know how these devices

work, in order to protect them from cyberattacks.

All these IoT devices possess small, embedded software that makes them specific to their tasks.

This software is called Firmware. Reverse engineering [1] is a vital topic of discussion when it

comes to firmware security analysis. It is an ethical way of learning about a device or system by

obtaining its information through an authorized party. However, obtaining the firmware itself is a

hectic task as the vendors have taken measures to limit access to the firmware source code, or even

have not given public access to these firmware images.

According to a report by Kaspersky, 1.5 billion IoT cyberattacks took place in just the initial six

months of 2021 [2]. With the advancement in technology, cyber-attacks have greatly impacted

society. The interconnection of various devices makes it even more threatening to the data

possessed by them. The hacker can access the data of all the devices by just getting access to one

of these interconnected devices. Networking companies have security assessment teams that

stimulate cyberattacks and reverse-engineer these attacks for vulnerability assessments. This helps

in the security assessment of devices to assure their protection against such cyberattacks. Reverse

2 | P a g e

engineering [1] allows us to find a backdoor to the embedded systems through their firmware and

exploiting these backdoors forms the basis of security analysis.

Figure 1: Percentage Ratio of Most Hacked IoT Devices

1.1.1 Firmware

Firmware is a set of codes that are kept on a computer hardware device to accomplish an

explicit task that a vendor wants that device to perform.

There exist various fields where firmware has spread its roots including networking devices like

routers, switches, smartphones, your laptops, desktops, smartwatches, and cameras.

3 | P a g e

1.1.2 Firmware Segments

1.1.2.1 Initial Boot Loader:

The initial bootloader is the first phase of firmware that runs when the device is

powered on. It initializes the hardware and starts the boot process. The primary function of

the initial boot loader is to locate and load the second-level boot loader.

1.1.2.2 Second-Level Boot Loader (U-Boot):

The second-level boot loader, also known as the Universal Boot Loader (U-Boot),

is a more complex and feature-rich bootloader than the initial boot loader. It is responsible

for loading the operating system kernel and other necessary components of the firmware.

1.1.2.3 Boot Loader Environment Variables:

The Boot Loader Environment (BLE) is a section of the firmware that stores

configuration settings for the boot loader, such as kernel command line arguments, memory

settings, and other system parameters. These variables can be changed by the user to modify

the boot process or system behavior.

1.1.2.4 Linux Kernel:

The Linux kernel is the core component of the firmware that manages the system's hardware

and provides low-level services to other components of the firmware. It is responsible for managing

system resources such as memory, input/output devices, and network interfaces.

4 | P a g e

1.1.2.5 Root File System:

The root file system is the top-level directory structure of the firmware, which

contains all system files and directories necessary for the firmware to function. It includes

configuration files, system binaries, and libraries, as well as user data and applications. The

root file system is mounted by the Linux kernel during the boot process, and it is the starting

point for all file operations in the firmware.

Figure 2: Firmware segments

5 | P a g e

1.1.3 Need for Firmware Analysis

 As we have seen, the firmware s a huge applicability. It also comes with vulnerabilities which

can lead to:

• Classified data disclosures like passwords, API keys, private certificates, etc.

• Conceding devices and corrupting with data.

• Imitating the firmware image with malicious scripts.

• Comprehending the working of the firmware.

1.2 Problem Statement

Large-scale analysis of firmware images requires a great deal of time if done manually through

already existing tools like Binwalk [3]. Despite the presence of various tools that are used for the

security analysis of firmware-embedded devices, there is a limitation to it. Most tools are very

specific in the analysis and only provide a certain aspect of vulnerability assessment. This thesis is

intended to provide a compact mod kit that provides an automated analysis of IP cameras and

generates a detailed vulnerability assessment report that can act as a basis for improving the device’s

stability and making future devices resistant to such attacks. Furthermore, this thesis focuses on

both the software and hardware aspects of firmware analysis.

1.3 Proposed Solution

1.3.1 Software:

The solution consists of a step-by-step approach, which is as follows:

Stage 1

6 | P a g e

Data collection and research:

For firmware Analysis, the foremost step is to gather data and information using online

search engines regarding the target firmware.

Stage 2

 Obtaining firmware:

 The following are the possible methods for obtaining firmware images:

• Download it from the vendor’s website

• Capture it during the firmware update process of the respective device

• Extract it directly from the hardware

Stage 3

Analyzing firmware:

 This step helps determine the type of firmware and its encryption. Entropy analysis [4] is

used to identify whether the firmware is encrypted or not. This can be done using binwalk [3].

Stage 4

Extracting File Systems:

 This step involves the extraction of file systems from the firmware image which can also be

done using binwalk [3]. These file systems include gzip [5], SquashFS [6], CramFS [7], and JFFS2

[8].

Stage 5

Analyzing the contents of the filesystem:

7 | P a g e

This step involves examining the filesystem contents such as the files and the directories

present within a filesystem. This can be done by first mounting the filesystem on your computer or

virtual machine [9].

To analyze a filesystem’s contents, we can use tools such as Firmwalker [10].

Stage 6

Firmware Emulation:

This stage is the most essential one as it marks the basis for identifying common

vulnerabilities and exposures CVE [11]. Emulation [12] can be done using different approaches;

full system, partial system, or using a virtual machine [9].

Figure 3: Proposed Block Diagram

1.4 Contribution

Our framework provides an interface for the large-scale security analysis of IP cameras’ firmware

images. Two major local and international vendors were targeted for this analysis; D-Link and TP-

8 | P a g e

Link. We gathered various firmware, out of which all were successfully extracted and analyzed.

We have also provided a user-friendly interface that can be used by the vendors easily.

1.5 Challenges

 With large-scale analysis come huge challenges that need to be faced and addressed in order

to run a successful security analysis.

 1.5.1 Acquiring the Firmware

Obtaining the firmware itself is a great challenge. The vendors of the devices usually do not

provide the firmware of the devices on their websites as mentioned in section 1.1.

Few firmware is present as an open source for the public to access.

Extracting the firmware directly from the device also requires access to the device. It’s not feasible

to buy or access every single device to extract its firmware.

 1.5.2 Acquiring Source Code

Not only obtaining the firmware is an issue that is faced while firmware analysis, but also

acquiring the source code of the device. Vendors usually

 1.5.3 Encrypted Firmware

 The greatest challenge is to analyze the firmware that encrypted. It’s a hectic task to find

the encryption schemes for the encrypted firmware through brute force attacks.

 1.5.4 Unpacking Firmware

9 | P a g e

 It can be a challenge to unpack the firmware because this might generate false positives

such as repetitive random binaries that may result in an accident or be created by the vendors for

the purpose of obfuscation in order to prevent the hacker from correct extraction of the firmware.

 1.5.5 Identifying JTAG Pins

 Finding the JTAG pins on the circuit board can usually be quite a laborious act. Some pins

may be hidden under other components like the battery or a capacitor. Vendors often obfuscate or

disable the JTAG interfaces which can make it a challenge to extract the firmware through the

hardware device.

Figure 4: Identifying JTAG Pins

10 | P a g e

1.6 Objectives

 1.6.1 General Objectives:

“To replace manual analysis by automated bulk analysis of IP camera firmware images

using well-known tools and forming a customized toolkit for hardware backdoor security analysis.”

 1.6.2 Academic Objectives:

- To form a security analysis toolkit for IoT devices

- To implement Cyber Security techniques and enhance knowledge in this domain.

- To lead a successful team by working together

- To benefit society with our project

1.7 Scope

This project is a vital tool for vendors operating IoT devices such as IP cameras. It can be used by

vendors to check the security of their IP cameras to ensure customer satisfaction and confidentiality.

Its user-friendly interface is feasible use for those who have little to no knowledge of running a

security analysis manually.

1.8 Deliverables

 1.8.1 Firmware Extraction Tool:

 This toolkit serves as a tool that can extract the firmware from a device whether they are

encrypted or not.

 1.8.2 Firmware Decryption Tool:

 The Hardware Backdoor Analysis Toolkit is equipped that it is capable of decrypting

encrypted firmware of specific IoT devices.

11 | P a g e

 1.8.3 Vulnerability Analysis Tool:

 This toolkit is capable of detecting and alleviating potential backdoors.

 1.8.4 Detailed Report:

 A thorough report comprising all the results of vulnerability analysis, containing identified

vulnerabilities and backdoors.

1.9 Sustainable Development Goals

 1.9.1 Primary SDG

• Industry, innovation, and infrastructure

1.9.2 Secondary SDG

• Security of IoT devices against cyberattacks.

• Assisting local vendors in achieving customer satisfaction by protecting this privacy.

1.10 Outline

Chapter 2 contains the literature review and the background and analysis study this thesis is based

upon.

Chapter 3 contains the design and development of the project.

Chapter 4 introduces a detailed evaluation and analysis of the code.

Chapter 5 contains the conclusion of the project.

Chapter 6 highlights the future work needed to be done for the commercialization of this project.

12 | P a g e

Chapter 2: Background

A new product is launched by modifying and enhancing the features of previously launched similar

products. A literature review is an important step in the development of an idea for a new product.

Likewise, for the development of a product, and for its replacement, related to the traffic system, a

detailed study regarding all similar projects is compulsory. Our research is divided into the

following points.

• Industrial Background

• Existing solutions and their drawbacks

• Research Papers

 2.1 Industrial background

2.1.1 What is Firmware Analysis?

The process of evaluating the software that is embedded in a hardware device is referred to as

firmware analysis. Firmware is a sort of software that controls the behavior of a device and is stored

in non-volatile memory (such as ROM or flash memory). Firmware can be found in a variety of

devices, such as routers, printers, cameras, and even some appliances.

Firmware analysis can be performed for a variety of reasons, including learning how a device

operates, discovering security flaws, reverse engineering [1], and debugging. Typically, the

procedure entails employing specialized tools and techniques to extract the firmware from the

device, analyze it for flaws or defects, and obtain insights into its behavior. Examining the firmware

code, looking for specific strings or patterns, or analyzing the firmware's behavior under different

settings, can all be a part of this.

13 | P a g e

2.1.2 What is backdoor Analysis Toolkit?

A backdoor analysis toolkit is a software tool created to assist in identifying and analyzing the

potential vulnerabilities in existing firmware. A backdoor is a covert means of getting around

standard authentication or security mechanisms in a computer system.

It can be difficult to identify backdoors in software or hardware systems because attackers may

employ sophisticated techniques to hide their presence. Backdoors can be intentionally or

accidentally placed into these systems. A backdoor analysis toolkit employs a range of methods to

find and evaluate suspected backdoors, including scanning for anomalous network traffic, checking

system logs for suspicious activity, and looking for tampering indications in software or firmware

code.

• Industrial Uses:

Such a tool could have industrial uses such as identifying and stopping cyberattacks or espionage

attempts on business or government computer networks, assessing the security of hardware and

software systems, or investigating the strategies and tactics employed by attackers to compromise

systems.

The backdoor analysis toolkit's industrial roots can be traced to the growing demand for

cybersecurity in sectors including manufacturing, healthcare, finance, and government. Backdoors,

a form of malware, pose a serious risk to the security of these sectors since they permit unauthorized

access to computer systems.

14 | P a g e

• Advancements:

Cybersecurity professionals created backdoor analysis toolkits, which are computer programs made

to find and analyze backdoors in computer systems, to counteract this issue. These toolkits discover

backdoors and their properties using a range of methodologies, including static analysis, dynamic

analysis, and machine learning algorithms.

The creation of backdoor analysis toolkits is a continuous process since hackers are always

improving the methods, they use to get around existing security measures. As a result, to remain

ahead of the most recent threats, these toolkits are constantly updated and enhanced.

Backdoor analysis toolkits are now a crucial part of many industrial sectors' cybersecurity arsenals

since they offer vital defense against backdoor malware and other online threats.

 2.2 Existing Solutions and their Drawbacks

2.2.1 Conventional Security Technologies:

 Conventional security technologies, such as firewalls and intrusion detection systems, may

not be effective against more complex attacks, but they can assist in detecting some forms of

backdoors. Furthermore, they could produce a lot of false positives, which take time to investigate.

2.2.2 Manual Code Review:

Manual code review is a costly and time-consuming technique, but it has the potential to be

successful in locating backdoors. This approach, however, can only be used on a small scale and

calls for highly qualified individuals.

15 | P a g e

2.2.3 Tools for Static Code Analysis:

 Static code analysis tools are automated programs that examine software's source code

without running it. Although these tools can find backdoors, they could produce a lot of false

positives and could not be able to find some forms of backdoors that are only active in specific

circumstances.

2.2.4 Dynamic Analysis Tools:

 Dynamic analysis tools analyze software as it is being used, which can be used to find

backdoors that are enabled under specific circumstances. Although these solutions may not be

effective against all sorts of backdoors, they can be expensive and time-consuming to set up.

2.2.5 Machine learning-based tools:

 These tools analyze data using algorithms, making them useful for finding backdoors.

However, these technologies need a lot of training data, and they could be exposed to hostile

attempts that trick the algorithm.

2.2.6 Commercial Solutions:

 There are several commercial backdoor analysis tools available, but they can be pricey and

are not always effective. Furthermore, these tools could not be adaptable or might need specialized

knowledge to operate well.

Overall, there isn't a one-size-fits-all approach to backdoor analysis, and organizations may need to

employ a variety of tools and strategies to efficiently find and close system backdoors.

16 | P a g e

 2.3 Research Papers

After thorough reading and mutual understanding, we selected a few research papers that would

help us to get near our goal.

• Firmware Analysis and Simulation https://www.exploit-db.com/docs/49201

• Breaking all the things: a systematic survey of firmware extraction and modification

techniques for IoT devices by Sebastia Vasile, David Oswald, and Tom Chothia.

https://research.birmingham.ac.uk/en/publications/breaking-all-the-things-a-

systematic-survey-of-firmware-extractio

• Methods for extracting firmware from OT devices for vulnerability research by Nozomi

Networks Labs, 2022. https://www.nozominetworks.com/blog/methods-for-extracting-

firmware-from-ot-devices-for-vulnerability-research/

 2.3.1 Firmware Analysis and Simulation:

Firmware analysis is a procedure that can be a useful tool for finding flaws and vulnerabilities

in firmware. One method of performing firmware analysis is to extract the firmware and simulate

it with an expert operating system like attifyOS [14]. This can aid in locating potential backdoors,

unsafe protocols, and other potential vulnerabilities.

It might be useful to uncover potential vulnerabilities that can be exploited using a web application

by simulating firmware on an interface based on a web application. This can assist in locating

potential attack pathways and aid in thwarting harmful assaults.

Overall, Firmware analysis can be a useful method for finding firmware flaws and enhancing the

general security of systems that use firmware.

17 | P a g e

2.3.2 Survey of Firmware Extraction and Modification Techniques:

This paper describes a study that examined multiple hardware-based firmware extraction

techniques for commonly used products like smart voice assistants, access control and alarm

systems, and home automation gadgets. Over 45% of the study revealed, a publicly accessible

UART [15] interface sufficed to obtain a firmware dump, although in other circumstances, more

sophisticated but still practical techniques like JTAG [13] or eMMC [16] readout were needed.

It also contains a full analysis of the security concept for the Amazon Echo Plus, which covers

crucial safeguards against hardware-level breaches. Based on the results of the inquiry, the report

suggests countermeasures to weaken the pertinent techniques.

Overall, the study emphasizes the significance of firmware security for commonly used products

and offers information on potential weaknesses and extraction techniques for software.

Additionally, it highlights the necessity for manufacturers to put strong security measures in place

to guard against hardware-level attacks and stop unauthorized access to private data.

18 | P a g e

Chapter 3: Methodology

3.1 Problem

Over 2200 cyberattacks are borne every single day around the world, which is a considerable

amount. Every home or office device that is connected to the internet has a loophole for the hacker

to attack through, and so is the case with IP cameras. Despite the presence of tons of security

analysis tools for IoT devices, most of them are focused on one certain aspect of analysis such as

static analysis, emulation [12], and extraction. Fewer such frameworks are present that provide the

vendors with automated security analysis by incorporating existing tools.

3.2 Design

A framework has been implemented for the purpose of obtaining the objective by integrating

several security analysis tools like binwalk [3], Firmadyne [17], Firmware Analysis Toolkit (FAT)

[18], and QEMU [19].

3.2.1 Dataset

To obtain the firmware, we initially opted for two vendors, one international and one local.

The firmware was obtained in the three following ways:

• Through the website of the vendors

• Contacting the vendor through email

• Obtaining it directly from hardware using JTAG [13]

19 | P a g e

Obtaining the firmware was a long process and with it came challenges such as no response to

emails or unavailability of firmware images on the websites. However, most of the firmware images

belonged to D-Link and TP-Link as they were available on the website.

Another considerable aspect of this thesis is that we obtained the firmware images of different

versions of the same IP camera in order to validate if the new version possesses the same

vulnerability as the previous versions or if has it been addressed and catered for.

The following tables show the statistics of the dataset.

Table 3.2.1 Firmware with respect to vendors

Vendor Total No. of Firmware

D-Link 3

TP-Link 7

Table 3.2.2 Firmware Versions

D-Link TP-Link

DCS-935L_A1_FW_1.07.03 TL-WR841N(US)_V14.8

DCS-935L_A1_FW_1.06.02 TL-WR841N(US)_V14.6

DCS-935L_A1_FW_1.10.01 TL-WR841N_V14

 TL-WR841N(US)_V13

 TL-WR841N(US)_V12

 TL-WR841N_V11

 TL-WR841N_V9

20 | P a g e

3.3 Pre-Existing Tools

 3.3.1 Binwalk:

It is a widely used software tool that offers fast and user-friendly functionality for analyzing,

extracting, and reverse engineering [1] firmware images. It is particularly known for its signature

analysis and extraction capabilities and is often integrated into other analysis tools.

 3.3.2 Firmadyne:

 Firmadyne [17] is a dynamic analysis tool that utilizes QEMU [19] to emulate the firmware.

 3.3.3 Firmwalker

 Its function is to search for specific predefined patterns, including sensitive configuration

files, saved passwords, IP addresses, scripts, and other information that can be helpful to analysts

in identifying and verifying vulnerabilities.

 3.3.4 QEMU

 QEMU [20] is a versatile system emulator that can support a range of architectures. It is an

invaluable tool for testing and debugging vulnerabilities in situations where physical access to

firmware on a device is not possible. Firmadyne [17] leverages the power of QEMU [19] to emulate

firmware for analysis purposes.

21 | P a g e

Chapter 4: Implementation

4.1 Development Environment

Operating System:

Ubuntu 22.04

Development:

Programming Language: Python 3.10.6, Bash, HTML, CSS.

IDE: Pycharm, VS Code.

Hardware Platform:

Laptop: Dell Alienware 14

Memory: 16 GB

System type: 64-bit operating system, x64-based processor

22 | P a g e

4.2 Toolkit Design

 4.2.1 Interface

4.2.2 Architecture

The architecture of hardware backdoor analysis toolkit comprises of various modules as

described below:

4.2.2.1 Extraction Module:

The extraction module of Hardware Backdoor Analysis Toolkit is a crucial component of

the hardware backdoor analysis toolkit that focuses on extracting the firmware from a device to

initiate the analysis process. It consists of several submodules, namely file system extraction,

architecture detection, file detection, and root detection. The primary objective of this module is to

facilitate the extraction and preparation of the firmware for subsequent analysis, decryption, and

vulnerability assessment.

23 | P a g e

4.2.2.1.1. File System Extraction:

The file system extraction submodule is responsible for extracting the firmware from the

device. It employs techniques and methods to identify and retrieve the firmware data stored within

the device. This process involves accessing the device's memory, storage, or firmware update

mechanisms to obtain the firmware image or relevant firmware files.

4.2.2.1.2. Architecture Detection:

The architecture detection submodule focuses on determining the hardware architecture of

the device. It analyzes the extracted firmware to identify the underlying processor architecture, such

as ARM, MIPS, x86, or others. This information is crucial for subsequent stages of analysis, as it

helps in selecting the appropriate tools and techniques specific to the device's architecture.

4.2.2.1.3. File Detection:

The file detection submodule aims to identify and extract specific files within the firmware

image that are relevant to the analysis. It employs file signature analysis, pattern matching, or

known file structures to locate critical files such as executables, configuration files, libraries, or

other firmware components. This step helps in isolating the essential components for further

analysis.

4.2.2.1.4. Root Detection:

24 | P a g e

The root detection submodule focuses on identifying the root file system within the

firmware. It aims to locate and extract the top-level directory structure, which contains system files,

directories, configurations, and other essential components necessary for the device's functioning.

Analyzing the root file system provides valuable insights into the device's software stack and

potential areas of vulnerability.

The extraction module plays a pivotal role in the hardware backdoor analysis toolkit, as it

sets the foundation for subsequent stages of analysis, including decryption, reverse engineering,

vulnerability assessment, and mitigation. By effectively extracting and preparing the firmware, the

toolkit enables researchers and security professionals to delve deeper into the firmware's inner

workings, identify potential backdoors, and enhance the overall security of the device through

vulnerability analysis and mitigation strategies.

4.2.2.2 Vulnerability Analyzer Module:

The vulnerability analyzer module is a crucial component of the hardware backdoor analysis

toolkit, designed to identify and assess potential vulnerabilities within the firmware of a device. It

consists of several submodules, including finding weak configuration files, version detection, user

mode emulation, and kernel details analysis. The main objective of this module is to enhance the

security of the device by uncovering and mitigating potential vulnerabilities.

4.2.2.2.1. Finding Weak Configuration Files:

25 | P a g e

The submodule for finding weak configuration files focuses on analyzing the extracted

firmware to identify any configuration files that may contain weak settings or credentials. It scans

through the configuration files, such as network configurations or administrative settings, to detect

common security flaws like default passwords, exposed credentials, or insecure protocols. By

identifying and addressing these weaknesses, the module helps strengthen the overall security

posture of the device.

4.2.2.2.2. Version Detection:

The version detection submodule aims to determine the specific versions of software and

libraries used within the firmware. It analyzes the extracted firmware to identify version

information of critical components such as the operating system, third-party libraries, or firmware-

specific modules. This information is crucial for vulnerability assessment, as it allows researchers

to match known vulnerabilities associated with specific software versions and assess the device's

exposure to such risks.

4.2.2.2.3. User Mode Emulation:

The user mode emulation submodule focuses on emulating the device's user environment

within a controlled virtual environment. It enables the analysis of the firmware's behavior and

interaction with various user-level processes. By simulating user interactions, the module can

identify any potential vulnerabilities or malicious activities initiated through user interactions. This

helps in detecting backdoors or suspicious behavior that may go unnoticed in a static analysis of

the firmware.

26 | P a g e

4.2.2.2.4. Kernel Details Analysis:

The kernel details analysis submodule aims to extract and analyze the firmware's kernel

components. It focuses on identifying the specific version, patch level, and configuration of the

underlying kernel used in the device. This information is crucial for evaluating potential kernel-

level vulnerabilities, including known vulnerabilities or misconfigurations that can be exploited by

attackers. By assessing the kernel details, the module aids in identifying and mitigating potential

risks associated with the device's kernel.

The vulnerability analyzer module plays a vital role in the hardware backdoor analysis

toolkit by systematically evaluating the firmware for potential vulnerabilities. By analyzing weak

configuration files, detecting software versions, performing user mode emulation, and assessing

kernel details, the module enables security professionals to identify and mitigate potential

backdoors and vulnerabilities, thus enhancing the overall security of the device.

4.2.2.3 System Emulation:

The system emulation module is a crucial component of the hardware analysis toolkit,

designed to simulate the behavior of the device's firmware in a controlled environment. It consists

of several submodules, including pre-emulation, network identification, final emulation, and a

testing module comprising tools such as Nmap Port scanner, Binwalk, Firmadyne, and FirmAE.

The primary aim of this module is to extract, decrypt, and analyze the firmware, perform reverse

engineering, identify potential backdoors, and enhance the device's security through vulnerability

analysis.

27 | P a g e

4.2.2.3.1. Pre-emulation:

The pre-emulation submodule prepares the environment for system emulation. It involves

setting up the necessary virtualized environment, configuring the emulated system, and providing

the required resources for firmware analysis. This submodule ensures that the emulation

environment closely resembles the actual device to achieve accurate results during analysis.

4.2.2.3.2. Network Identification:

The network identification submodule focuses on identifying and analyzing the network-

related aspects of the firmware. It involves examining network configurations, protocols, and

communication channels used by the device. By identifying network vulnerabilities and potential

backdoors, this submodule contributes to enhancing the security of the device's network

connectivity.

4.2.2.3.3. Final Emulation:

The final emulation submodule executes the emulated firmware in the controlled

environment. It simulates the device's behavior, including its interactions with the operating system,

applications, and external components. By running the firmware in an emulated environment, this

submodule enables thorough analysis, reverse engineering, and detection of potential backdoors or

suspicious activities.

28 | P a g e

4.2.2.3.4. Testing Module:

The testing module is a crucial part of the system emulation module and comprises various

tools used for analysis and vulnerability assessment. This includes:

- Nmap Port scanner: Nmap is a powerful port scanning tool that can be used to identify

open ports and services running on the emulated device. It helps detect potential security

vulnerabilities or misconfigurations associated with network services.

- Binwalk: Binwalk is a firmware analysis tool that enables the extraction of files and data

from the firmware image. It helps in identifying embedded components, such as executable code,

libraries, or configuration files, which may contain potential backdoors.

- Firmadyne: Firmadyne is a firmware emulation and analysis framework specifically

designed for embedded devices. It enables the emulation of firmware to identify vulnerabilities and

perform detailed analysis of the device's behavior.

- FirmAE: FirmAE is a firmware analysis environment that focuses on identifying and

analyzing potential backdoors and vulnerabilities in embedded systems. It provides tools and

techniques for comprehensive analysis, including dynamic and static analysis methods.

29 | P a g e

These tools within the testing module enable deep analysis, vulnerability identification, and

backdoor detection, contributing to the overall goal of enhancing the device's security through

effective firmware analysis and vulnerability mitigation.

The system emulation module plays a vital role in the hardware analysis toolkit by providing

a controlled environment for firmware analysis, emulation of device behavior, and comprehensive

testing. By utilizing tools like Nmap Port scanner, Binwalk, Firmadyne, and FirmAE, this module

assists in the extraction, decryption, reverse engineering, and identification of potential backdoors

and vulnerabilities, ultimately enhancing the security of the analyzed device.

4.2.2.4 Report Generator:

The report generator module is a crucial component of the hardware backdoor analysis

toolkit, designed to generate comprehensive reports based on the results obtained from the firmware

analysis and vulnerability assessment. This module consists of several submodules, including

license collector, vulnerability aggregator, sum of exploits, vulnerability report, and web reports.

The primary aim of this module is to compile all the findings and analysis into a structured and

informative report, aiding in the identification and mitigation of potential vulnerabilities, and

enhancing the overall security of the analyzed device.

4.2.2.4.1. License Collector:

The license collector submodule focuses on gathering information about the licenses and

third-party components used in the firmware. It identifies the licenses associated with different

30 | P a g e

software or libraries embedded within the firmware. This submodule ensures compliance with

license agreements and provides transparency regarding the use of third-party software.

4.2.2.4.2. Vulnerability Aggregator:

The vulnerability aggregator submodule collects and consolidates information about the

vulnerabilities identified during the analysis. It compiles data from various sources, including

vulnerability databases, security advisories, and the toolkit's own analysis results. This submodule

ensures a comprehensive overview of potential security weaknesses in the device's firmware.

4.2.2.4.3. Sum of Exploits:

The sum of exploits submodule calculates the severity and impact of identified

vulnerabilities by assessing the available exploits associated with each vulnerability. It determines

the potential risk level and helps prioritize the vulnerabilities based on their criticality. This

submodule aids in understanding the potential consequences and assists in making informed

decisions regarding vulnerability mitigation.

4.2.2.4.4. Vulnerability Report:

The vulnerability report submodule generates a detailed report summarizing the

vulnerabilities, their impact, and potential mitigation strategies. It includes information about the

identified backdoors, weak configurations, insecure protocols, and other security weaknesses. This

submodule provides a clear and concise overview of the vulnerabilities detected during the analysis.

31 | P a g e

4.2.2.4.5. Web Reports:

The web reports submodule focuses on generating user-friendly reports that can be accessed

through a web-based interface. It provides interactive dashboards, graphical representations, and

drill-down capabilities for easier navigation and exploration of the analysis results. This submodule

enhances the usability and accessibility of the generated reports.

By incorporating these submodules, the report generator module ensures the comprehensive

documentation of the analysis findings. The generated reports assist security professionals and

stakeholders in understanding the vulnerabilities, making informed decisions, and implementing

effective mitigation strategies. The report generator module plays a critical role in communicating

the outcomes of the hardware backdoor analysis, promoting transparency, and ultimately enhancing

the security of the analyzed device.

The following diagram describes the design of HBAT:

32 | P a g e

Figure 5: H-BAT Architecture

4.2.3 Supporting Systems

HBAT supports the following architectures:

1. MIPS

2. ARM

4.2.4 System tools

The installer installs all the necessary external tools for smooth operation but requires many

system-internal tools.

33 | P a g e

Awk basename bc cat chmod chown

Cp cut date dirname dpkg-deb echo

Eval find grep head kill ln

Ls md5sum mkdir mknod modinfo mv

Netstat printf pwd readelf realpath rm

Rmdir rpm sed seq sleep sort

Strings wc touch uniq tree unzip

4.2.5 Dependencies

H-BAT uses numerous external tools, which are installed with the installer script. The

applications that must be installed on the OS for the toolkit to work properly are listed here:

• OpenJDK:

The Java class library, Java compiler, Java Runtime Environment (JRE), and Java virtual

machine (JVM) are some of the important parts that make up the OpenJDK project.

• GHIDRA:

 Ghidra is a framework for software reverse engineering (SRE).

• OpenSSL:

OpenSSL is a free command-line program that you can use to install your SSL/TLS

certificate, make CSRs, generate private keys, and find certificate details.

• Nmap Port Scanner:

You can use the Nmap Port Scanner to test the effectiveness of your firewall and security

settings.

34 | P a g e

Figure 6: OS Applications

4.2.6 Generic

H-BAT is devised with the assumption that the firmware to be analyzed is either compressed

or encrypted. Various pre-processing formulation is performed prior to the processes of extraction

and unpacking. In addition, it is rather simple to improve the toolkit by adding more features to the

existing framework. There are two steps involved in integrating each tool. The first step creates a

docker image which is a lightweight, standalone, and executable package that includes everything

needed to run an application, including the code, libraries, and system dependencies. The docker

image encapsulates an environment in which an application can run, making it easy to deploy and

manage across different systems. The second step is a Python automation script that executes the

tool either on the original firmware image or the output generated.

4.2.7 Static and Dynamic Analysis

The analysis performed in the hardware backdoor analysis toolkit involves both static and

dynamic analysis.

35 | P a g e

Static analysis is performed on the extracted firmware image to identify potential vulnerabilities

and hidden backdoors. This involves examining the firmware code without executing it, looking

for suspicious patterns, and analyzing the behavior of specific functions and modules.

Dynamic analysis is also performed to test the behavior of the firmware in a controlled environment.

This involves running the firmware image on a virtual machine and monitoring its execution to

identify potential vulnerabilities and backdoors.

Together, both static and dynamic analysis techniques are used to comprehensively evaluate the

firmware image and identify any potential security weaknesses.

4.2.8 Cross Platform

The framework utilizes Docker to encapsulate all its tools, and the corresponding Docker

images are available on Docker Hub for public access. This allows any user to download and use

the tool.

4.3 Unpacking and Extraction Tools

 4.3.1 Binwalk

 Binwalk [3] is the tool used for processing raw firmware images. It helps to unpack the

firmware and read its filesystems. It gives a great deal of information about the filesystems, the

compression type, the file header, etc.

It can also help in entropy analysis, for example, if extraction fails, based on the entropy, it’s

possible to determine whether the image is encrypted, compressed, or has been archived using a

custom proprietary format.

36 | P a g e

To extract firmware images, a combination of extraction and signature analysis is employed.

Binwalk [3] offers the options of -eMr to perform this task, which can recursively extract the

firmware along with the archived carved files, such as a filesystem, up to a maximum of 8 levels.

Additionally, Binwalk’s [3] primary functionality lies in its signature analysis, which is applied by

default.

37 | P a g e

4.3.2 Gunzip

Files that have been compressed using the gzip command or the.gz file extension can be unzipped

using the gunzip command.

 4.3.3 Unsquash

 4.3.4 Unlzma

The unlzma command is used to decompress files that have been compressed with the high-

compression LZMA algorithm.

38 | P a g e

4.4 Emulation:

 4.4.1 QEMU

 For the filesystems that are not compatible with the host computer architecture, QEMU is

used to emulate them. QEMU supports full system emulation using prebuilt images.

4.5 Tp Link Firmware:

 4.5.1 Analysis:

1. Examine all available files and use deep extraction mode to extract as much

information as possible.
2. Analyze the firmware using binwalk and ent, select and extract the appropriate

modules, and store the firmware structure in log files.

3. Search for files that may indicate the operating system and scan for markers of

known distributions. Also, identify binaries that use weak functions, search for

device tree blobs and startup files, and check for default run level.
4. Check for HTTP and webserver-related files with weak permissions, and look for

password-related files to extract passwords and root accounts.

5. Scrape firmware for certification files and check their expiration date, printing a

warning for outdated certificates.
6. Search for command injection by examining web-based files in folders such as

www and looking for basic code execution patterns within them.

39 | P a g e

Analysis results:

40 | P a g e

41 | P a g e

42 | P a g e

4.5.2 Results:

43 | P a g e

Chapter 5: Conclusion

In this thesis, we discussed how reverse engineering [1] can lead to backdoors that can help

identify the vulnerabilities that an IP camera device may be subjected to. These vulnerabilities act

as a threat and can lead to providing an attack surface to the hacker. Our proposed toolkit runs a

security analysis on the IP cameras and thus analyses their firmware to generate a vulnerability

assessment report. It includes a selection of instruments and procedures for finding, examining, and

eliminating backdoors from software systems. We have used already existing tools such as binwalk

[3], firmadyne [17], and firmware analysis toolkit (FAT) [18]. Our backdoor analysis toolkit can

assist organizations in strengthening their overall security posture and lowering the likelihood that

an attacker will use a backdoor. It's crucial to remember that no toolkit or tool is impenetrable, and

security must be viewed as an ongoing process that calls for constant oversight and development.

5.1 Limitations

• HBAT is limited to D-Link and TP-Link IP camera firmware series.

• It is time-consuming

• It cannot perform bulk analysis

44 | P a g e

Chapter 6: Future Work

1. Expansion of Capabilities:

This toolkit can be extended to examine the firmware for an extensive range of IoT devices. It could

be performed by acquiring different methodologies for analyzing firmware for various architectures

or by recognizing unfamiliar means for extracting and decrypting firmware.

2. Development of Advanced Vulnerability Analysis Techniques:

Supplementary backdoor analysis techniques could be developed to detect further subtle and

sophisticated vulnerabilities. Various researchers and pen testers can study using different machine-

learning algorithms to examine firmware performance and detect unfamiliar patterns which might

suggest the presence of vulnerability within a device.

3. Integration of a Larger Backdoor and Vulnerability Database:

The toolkit can be developed to incorporate a wider database of previously found vulnerabilities

that researchers and pen testers can utilize to evaluate against the firmware being targeted. This

could aid in detecting vulnerabilities that had been found earlier and offer a quicker and more

accurate analysis method.

4. Development of a User-Friendly Interface:

An intelligible interface for the toolkit could be developed to make it further available to people

who are not experts in this field. This would make it more accessible to the users increasing its

scalability by eventually enhancing the protection of various IoT devices.

5. Collaboration with Device Manufacturers:

45 | P a g e

Further work might involve association with the device’s manufacturers to feature the toolkit in

their security assessing, authentication, and authorization stages. This will help in detecting and

alleviating probable backdoors in IoT devices prior to their release in the target market.

Conclusively, the Hardware Backdoor Analysis Toolkit has the substantial capability for imminent

advancements and expansion. Through persistent refinement and expansion of the capabilities of

the toolkit, researchers and pen testers can stay on top of growing threats and secure their devices

from probable backdoors.

46 | P a g e

Bibiography

1. Reverse Engineering [online] Available at:

<https://en.wikipedia.org/wiki/Reverse_engineering>

2. Report by Kaspersky [online] Available at: <https://www.pymnts.com/news/security-and-

risk/2021/kaspersky-detects-iot-cyberattacks-double-last-year/amp/>

3. Binwalk [online] Available at: <https://www.kali.org/tools/binwalk/ >

4. Entropy Analysis online Available at:

<https://reverseengineering.stackexchange.com/questions/21555/what-is-an-entropy-

graph>

5. Gzip Compression [online] Available at: <https://www.javatpoint.com/linux-gzip>

6. Squashfs Filesystem online Available at:

<https://www.kernel.org/doc/html/next/filesystems/squashfs.html >

7. Cramfs Filesystem online Available at:

<https://www.kernel.org/doc/html/latest/filesystems/cramfs.html>

JFFS2 Filesystem online Available at: https://en.wikipedia.org/wiki/JFFS2

9. Virtual Machine online Available at:

<https://www.vmware.com/topics/glossary/content/virtual-machine.html>

10. Firmwalker online Available at: <https://github.com/craigz28/firmwalker>

11. CVE online Available at:< https://www.balbix.com/insights/what-is-a-cve/>

https://en.wikipedia.org/wiki/JFFS2
https://en.wikipedia.org/wiki/JFFS2
https://www.balbix.com/insights/what-is-a-cve/

47 | P a g e

12. Emulation online Available at: <https://www.fortinet.com/blog/threat-research/Using-

emulation-against-anti-reverse-engineering-technique>

13. JTAG online Available at: <https://www.alexforencich.com/wiki/en/reverse-engineering>

14. AttifyOS online Available at: < https://www.attify.com/attifyos >

15. UART online Available at: <http://blog.k3170makan.com/2019/06/hardware-reverse-

engineering-uart.html >

16. EMMC online Available at: < https://www.riverloopsecurity.com/blog/2020/03/hw-101-

emmc>

17. Firrmadyne online Available at: < https://github.com/firmadyne/firmadyne >

18. Firmware Analysis Toolkit FAT online Available at: < https://github.com/attify/firmware-

analysis-toolkit >

19. QEMU online Available at: <https://ariadne.space/2021/05/05/using-qemu-user-emulation-

to-reverse-engineer-binaries >

20. Breaking all the things: a systematic survey of firmware extraction and modification

techniques for IoT devices by Sebastian Vasile, David Oswald, and Tom Chothia online

Available at: <https://research.birmingham.ac.uk/en/publications/breaking-all-the-things-

a-systematic-survey-of-firmware-extraction>

21. Methods for extracting firmware from OT devices for vulnerability research by Nozomi

Networks Labs, 2022 online Available at:

https://www.nozominetworks.com/blog/methods-for-extracting-firmware-from-ot-

devices-for-vulnerability-research

https://www.riverloopsecurity.com/blog/2020/03/hw-101-emmc
https://www.riverloopsecurity.com/blog/2020/03/hw-101-emmc
https://research.birmingham.ac.uk/en/publications/breaking-all-the-things-a-systematic-survey-of-firmware-extraction
https://research.birmingham.ac.uk/en/publications/breaking-all-the-things-a-systematic-survey-of-firmware-extraction
https://www.nozominetworks.com/blog/methods-for-extracting-firmware-from-ot-devices-for-vulnerability-research
https://www.nozominetworks.com/blog/methods-for-extracting-firmware-from-ot-devices-for-vulnerability-research

