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ABSTRACT  

Over the years, computers have undergone significant improvements, changing from bulky, 

expensive machines with few capabilities to sleek, potent gadgets that are portable. Nearly 97% of 

Americans, according to a survey, own a personal device. Personal computers and cellphones are 

far more susceptible to cyberattacks since they store private and sensitive information. Malicious 

software, commonly known as malware, has the ability to disrupt the entire network while 

stealing valuable information. Naturally, such attacks frequently go unnoticed. As a result, 

understanding malware attribution and threat-actor attribution is essential for spotting and 

evaluating criminal malicious activity. 

Malware attribution is the process of mapping a cyberattack to its threat actor. An individual, 

group, or organization that poses a threat to a computer system or network is referred to as a threat 

actor. The existing attribution systems use code similarity in APT malwares to analyze Indicators 

of Compromise (IOC data). With the emergence of polymorphic [12] malwares, attackers generate 

new signatures through slight code variations. Thus, code similarity techniques are inefficient for 

attribution. Our project's goal is to identify the threat actors behind Windows malware using 

systems event logs and registry files. It uses an anomaly-based approach to identify and classify 

malware. To begin with, it makes use of Sysmon to produce Windows-based operating system 

logs. For the purpose of identifying activity, the logs are analyzed to separate harmful from non-

malicious actions. Secondly, data registries are a useful tool for locating and minimizing risks in 

the surroundings of threat actors. A data registry is a centralized database that houses details about 

user preferences, system setup, application settings, and other crucial information that an operating 

system or application uses. Natural Language Processing algorithms are used for classification. 

Malware attribution system ensures data integrity and security by timely attribution of the threat 

actor group. 

 

Keywords: Malware, Malicious Software, Data Privacy and Security, Personal Gadgets, Cyber-

attacks, Cyber-risk, BERT, Machine Learning, Indicators of Compromise (IOC), Data Registry 
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Chapter 1: Introduction 

Security has long been a need of humans. It has cultivated a sense of stability in humans; and links 

to their physical and emotional development of traits. The digital world of '0s' and '1s' reflects a 

similar ideology.  

With the advent of computers and the internet, the world has shifted from an analog to a digitally 

enabled globe. The rapid growth has created a vast network relaying important information and 

instructions; crucial for system functioning. These computer-based systems have become an 

essential human-life component, from the military to the healthcare systems. In today's world, 

hardly any office or hospital functions without these technological appliances.  

Cybersecurity aims to protect valuable data from potential malicious attacks. The present-day 

problems demand automatic solutions that are efficient. Data breach problems due to malware 

should also be dealt with solutions based on the latest technology. 

1.1 Overview 

Cybersecurity is an under looked concept in the low-and middle-income countries. These countries 

have recently started investing in digital infrastructure to boost their economy and relying on it for 

crucial system operations. This enhanced dependency on digital infrastructure requires efficient and 

swift cybersecurity solutions. The lack of these solutions led to the Colonial Pipeline ransomware 

attack: a large-scale attack on an oil and gas company. Only a comprehensive analysis of malware 

attacks can prevent future hazards. A study shows that the manufacturing and finance sectors were 

more vulnerable to malicious attacks in 2022. 

It is the need of the hour to fashion some policy or mechanism to avoid these malware attacks. 

Hence in our proposed system of malware attribution, we focus on prevention through a detailed 

analysis of malware characteristics. 
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Figure 1 Distribution of cyberattacks across worldwide industries in 2022 [9] 

 

1.2 Problem Statement 

Cyberattacks can hurt a corporation by jeopardizing its systems, networks, devices, and end users' 

confidentiality, integrity, and availability. Malware assaults are one of the most prevalent types of 

cyberattacks. Malware causes a variety of harm, including the theft of private information and the 

disruption of network functions. They routinely bypass conventional protection tools like anti-

viruses. 

In the current cybersecurity environment, the creation of a malware and threat actor attribution 

system has become crucial. By linking new malware samples or campaigns to old or new 

campaigns, the system hopes to find and identify any novel malware samples or campaigns. The 

goal is to develop a system that can analyze, identify, and correlate malware capabilities with the 

already-existing dataset to improve threat intelligence.  The system will be able to examine malware 

behaviour and spot trends that could be used to connect it to earlier operations.  
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A thorough understanding of the capabilities of threat actors and the behaviour of malware will be 

necessary for the system's implementation. To offer another line of defense against cutting-edge 

attacks, it will also need to interact with the already-existing security architecture. Overall, a 

company's cybersecurity posture and defense against cutting-edge threats will be greatly improved 

by the malware and threat actor attribution system. 

1.3 Proposed Solution 

The proposed system is based on an attribution engine that has been improved using several 

examples of current malware and is aimed to categorize unknown malware samples using machine 

learning techniques. To assess incoming virus behaviour and establish attribution, the engine looks 

into the Windows Event Logs and data registry files. It's crucial to remember that the suggested 

architecture is more of a method for attribution rather than a malware detection engine. The 

framework makes use of machine learning methods - BERT transformer algorithm, and is not 

restricted to a single form of malware, enabling continuous attribution.  

• Collection of malware samples. 

• Collection of Windows Event Logs generated by the malware samples. 

• Collection of Registry Files. 

• Application of NLP algorithm 

1.4 Working Principle 

The project mainly works on the principles of cybersecurity with machine learning algorithms. The 

project is divided into different modulus and every module is inter-woven with the next module. 

The list of modules is as under: 

• Datasets and annotations 

• Dataset training and processing  

• Feature Extraction 

• Integration  
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 1.4.1 Datasets and annotations: 

The integral part of the project is the preparation of datasets. In order to complete this 

project, data must be gathered from a variety of sources, including network logs, system 

logs, registry files and other databases pertaining to cybersecurity. 

1.4.2 Dataset training and processing: 

The prepared dataset is used as input to train models using machine learning for attribution. 

This module chooses the features that are pertinent to getting the intended result.  

1.4.3 Feature Set 

A feature set is a group of features that are taken from raw data in machine learning and 

data analysis and used to represent each data point as a numerical vector.  

An attribute or characteristic of the data that is quantifiable and useful to the analysis of the 

problem is referred to as a feature. The frequency with which certain words or phrases 

appear in an email might be regarded as a feature when spam email detection is being 

performed. 

The feature set is crucial since it serves as the foundation for the machine learning model 

that will be applied to predict or categorize data. The effectiveness and performance of the 

model may be significantly impacted by the features' relevancy and quality. As a result, one 

of the most important steps in the machine learning process is frequently choosing and 

extracting the most valuable characteristics. 

 1.4.4 Integration: 

The different modules are then integrated in to one stand-alone entity. This stand-alone 

entity is essential for a compact solution.    
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1.5  Objectives 

1.5.1 Creation of Malware Database for Researches 

Building an effective malware database is a key component of creating cybersecurity 

solutions. Developing such a database, which would contain examples of dangerous 

software from various malware families, is the goal of this project. The database will also 

include the extracted log files produced by these malware samples, which will offer 

important details about how these threats behave and act. 

Researchers can better understand how these threats operate and spot patterns and trends in 

their behaviour by gathering and analyzing data from these malware samples. This can 

enhance the efficacy of current cybersecurity solutions and provide information for the 

creation of new ones. 

1.5.2 Academic Objectives: 

• Understanding the underlying ideas and approaches used to analyze malware, such 

as code analysis, behaviour analysis, and memory forensics, entails becoming 

familiar with its principles and procedures. 

• Investigating malware attacks include understanding how to find the source of an 

attack's origin and cause as well as creating efficient treatment plans. 

• Studying how to reverse engineer malware to comprehend its capabilities, 

behaviour, and evasion tactics is necessary to become proficient in this field. 

• Keeping abreast with the most recent malware trends and methods attackers employ 

to avoid detection and compromise systems. 

1.6 Scope 

The ability to identify and stop attacks in real-time makes this project applicable to a variety of 

fields, including e-commerce, organizations, the healthcare industry, and the nation's overall 

security sector. It can lessen breached privacy in banks and safeguard additional sensitive data. 
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The project's main goal is to attribute malware swiftly while supplying resistance against attacker 

evasion. Therefore, we intend to use this project to integrate our theoretical knowledge with real-

world experiences to enhance the security of network systems. With its machine learning detection 

system and a raspberry gateway to analyze attacks, this project seeks to develop a comprehensive 

security solution. 

For development of Threat Attribution System, we will be requiring sound knowledge of: 

• Programming (Python) 

• Network Security (Attacks, Defences, Security Architecture) 

• Malware Disassembler, Debuggers 

For attribution of malware, we will be requiring hand-on expertise of: 

• Sysmon Tool 

• Log Extraction and Analysis 

• Sandbox Solutions 

• Python Scripting  

1.7 Deliverables 

The deliverable of this project is a system that attributes malwares. 

1.8 Relevant Sustainable Development Goals 

This project aligns with SDG 9: Industry Innovation and Infrastructure. Malicious actors launch 

deadly cyberattacks against vital infrastructure, including businesses, humanitarian NGOs, 

hospitals, clinics, and labs in an effort to demand ransom payments, exfiltrate data, or otherwise 

disrupt operations, endangering not just the safety of the data but also the lives of the people within. 

The faith in international and national organizations will decrease as a result of ongoing 

cyberattacks that will worsen disputes. We want to provide the groundwork for a peaceful internet 

that is accessible to everyone, everywhere. 
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1.9 Structure of Thesis 

Chapter 2 contains the literature review and the background and analysis study this thesis is based 

upon. 

Chapter 3 contains the design and development of the project. 

Chapter 4 contains the result of the project. 

Chapter 5 contains the conclusion of the project. 

Chapter 6 highlights the future work needed to be done for the commercialization of this project. 

1.10 Chapter Summary 

The thesis's introductory chapter gives a brief summary of the study's problem statement, 

objectives, methods, importance, and thesis structure. It establishes the context, highlights the 

importance, and sets the direction for the rest of the thesis.  
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Chapter 2: Literature Review 

Overview 

This chapter deals with comprehensive details of Malware attribution offered worldwide, their 

limitations and the uniqueness of our proposed solution. 

2.1 Introduction 

The thesis aims to discuss the preliminary research conducted before the project's design and 

development phase. This section provides a concise overview of the current attribution systems. 

2.2 Project Domain 

Malicious software is designed to cause harm to computer systems and users by gaining 

unauthorized access to personal information inserting harmful code word deceiving users to extract 

money malware creators are always looking for vulnerabilities to exploit and they frequently update 

their code to evade detection by malware detection software. Malware developers often attempt to 

disguise their malicious code as benign to avoid detection, making recognition a challenging task. 

2.3 Industrial Background  

Today’s digital era greatly relies on exchanging information between different sectors and firms; 

therefore, information security [14] is crucial to protect any organization’s data assets. 

A significant increase in the occurrence of malware attacks and ever-changing threat to the 

community has been observed in today’s world, which has led the researchers to adopt malware 

analysis to avoid such incidents in future. The major purpose of Malware Attribution is to deeply 

examine the malware samples, study its origin, tactics, functioning and different procedures.  

Various Industries are inclining to deploy combination of techniques to protect against cyber threats 

while each strategy has its own advantage and disadvantages for instance the security system may 

use signature based detection to quickly identify known threats while also incorporating machine 

learning behavioral analysis to identify new and evolving threats this helps organization to detect 

and prevent cyber-attacks more effectively similarly another common approach is the use of 
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indicators of compromise IOC’s which are specific behaviors or are defects associated with known 

malware or threat actors file extension block list can be used to prevent the execution of certain file 

types that are commonly used to distribute malware.   

2.4 Literature Review 

Numerous research and solutions have been proposed to improve the detection and analysis 

techniques; however, these methodologies have some shortcomings i.e., attackers have adopted 

new trend of IDs, similarly many evaluations are only based on limited dataset, or many approaches 

cannot identify a suitable number of features to train a classifier or compatibility in scaling large 

number of samples. This literature review aims to gain an understanding relevant to our project, 

Malware Attribution. 

2.4.1  Malware Analysis Attribution Using Generic Information: Maggi 

The article discusses a system that was developed to analyze malware using concepts from 

science and linguistics. To group malware into families, the system makes use of several 

approaches, including static, dynamic, behavioral, and functional analysis [2]. With the use 

of this research, defenses may be created quickly, future attacks can be predicted, and 

theories regarding the malware's origin can be put forth. The scope of our project is non 

generic and completely based on TTPs, without the application of reverse engineering. The 

system then compares behavioral profile of the malware with the profiles of non-malware 

families to determine attribution. The authors demonstrate the effectiveness of this approach 

through experimentation and evaluation.  

Despite its promise the Maggi approach has also several limitations 

• It may not be effective against highly polymorphic malware, which can change their 

behaviors to evade detection. 

•  Another issue is that the approach relies on metadata which can't be manipulated by 

attackers to fool the system. 

• The system may produce false positives if the behavioral profile of a system of 

malware is like multiple known malware families. 



11 | P a g e  

 

2.4.2  Kaspersky Threat Attribution Engine 

Kaspersky Threat Attribution Engine [3] is a malware analysis tool that offers insight into 

the source and potential authors of the any malware. It helps prioritize high-risk attacks for 

prompt defensive measures by swiftly attributing a threat to a known Advanced Persistent 

Threat (APT). The system uses a combination of machine learning algorithms an expert 

analysis to identify the origins and motives of malicious actors [4]. It analyzes multiple 

factors, including the code and infrastructure used by the attacker, as well as victimology of 

the targets to generate hypothesis about the identity of attacker however like any attribution 

system Kaspersky threat attribution engine has its limitations.  

• Firms and governments are concerned that this software might serve as a listening 

or monitoring agent for a foreign power, endangering the security of their data.  

• Attribution can be complicated by use of false flags or use of infrastructure owned 

by a third party. 

•  Difficulty of obtaining accurate and complete data about cyber-attacks which make 

it challenging to identify the true source of an attack. 

 

Figure 2 Kaspersky Internet Security 
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2.4.3  Advanced persistent threat analysis using Splunk. 

Advanced persistent threat analysis explores the use of Splunk [5], A popular security 

information and event management (SIEM) tool [19], for advanced persistent threat 

analysis. The system outlines various data sources and collection methods that can be used 

to detect and investigate APT’s, including log files, network traffic and endpoint data. The 

author also proposes A methodology for using Splunk to analyze APT’s, which includes 

developing and tuning detection [8] rules, performing correlation an analysis conducting 

threat intelligence research.  

However, like any APT analysis system there are some drawbacks to using Splunk. 

 

• One major challenge is the need for skilled analysts with expertise in both 

cybersecurity and Splunk. The system generates a large volume of data which 

requires skilled analysts to process and interpret. 

•  Additionally, Splunk is a commercial tool and can be costly to implement and 

maintain, which can limit its accessibility for small and medium sized organizations.  

• Another drawback is the need for continuous updates and maintenance of detection 

rules, as APT’s are constantly evolving and adapting to new security measures. 

 

 

 

Figure 3 Splunk 
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2.5 Research Based Results 

2.5.1 Malware Classification with BERT 

This research paper explores the use of Bidirectional Encoder Representation from 

Transformers [10] language model for malware classification. The paper explains that 

BERT can be used to learn representation of malware samples based on their textual 

description which can then be used to classify malwares into different families the paper 

proposes A methodology for fine tuning BERT for malware classification [18] and evaluates 

its performance on data set of over 2000 malware samples. 

Following are the security flaws while studying the classification with BERT [1,18]. 

• One of the drawbacks of this approach is that it requires a large amount of labeled 

data for training which can be difficult to obtain for certain malware families.  

• Another drawback is that the approach relies on textual description of malware 

samples which may not always be available or may not contain enough information 

to accurately classify the malware in addition the performance of the approach may 

be affected by the quality of descriptions and variability in the language [6] used to 

describe the malware. 

• Another potential drawback is that the approach may be vulnerable to adversarial 

attacks where an attacker modifies the malware sample in a way that changes its 

classification while preserving its functionality this can be particularly problematic 

if the approach is used in a security system that relies on accurate malware 

classification to detect and prevent attacks. 

 

2.5.2 Clustering analysis for malware behavior detection using registry 

data. 

The research paper “Clustering analysis for malware behavior detection using registry data” 

[16] proposes an approach for detecting malware by analyzing the behavior of the system 
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through registry data. The method involves clustering the registry keys and values, and then 

identifying abnormal pattern that may indicate the presence of malware the study found that 

this approach is effective in detecting malware and can be used as complementary method 

to traditional signature-based detection. The method first collects registry data from a target 

system and performs preprocessing to remove irrelevant data [20]. Then the data is clustered 

using K-means algorithm to identify patterns of behavior that are indicative of malware. 

• Firstly, it heavily relies on the accuracy of the clustering algorithm, which can be 

influenced by various factors such as the choice of distance measure and number of 

clusters. 

• The method requires access to the systems registry data which may not always be 

feasible in certain environments or scenarios.  

• The approach relies on the assumption that malware behavior will always be 

reflected in registry data, which may not always be the case.  

• The method is limited to detecting malware that exhibits registry related behavior 

and may not detect other types of malwares. 

• The clustering approaches vulnerable to false positives, which may result in 

legitimate software being flagged as malware. 

2.6 Conjecture 

Existing solutions suffer from a range of issues and complications that undermine their reliability 

and safety. Users are seeking a more effective and innovative solution that can provide them with 

complete anonymity and security, align their concerns with cyber threats and vulnerabilities. As 

cybercrime continues to grow it is critical that users have access to a solution that can deliver a high 

degree of protection, safeguarding their online activities and personal information therefore the 

need for a digital robust and reliable solution has become increasingly urgent in today's digital age. 
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2.7 Chapter Summary 

The literature review chapter offers a thorough analysis of previous scholarly research concerning 

the Maggi research paper, Kaspersky Threat Attribution System, and advanced persistent threat 

analysis utilizing Splunk. It examines significant themes, evaluates methodologies, and identifies 

gaps in research. 
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Chapter 3: Project Design and Methodology 

3.1 Overview 

This chapter covers the project's technical requirements as well as the specifics of the project's key 

steps as it progresses. 

3.2. Block Diagram 

 
 

3.3. Methodology 

For our research on malware attribution, we have chosen to implement two different methodologies 

to collect relevant data for analysis.   

• The first methodology involves the collection of windows log events by Sysmon [15], which 

will allow us to gather a wide range of system level events and activities.  

• The second methodology involves the collection of registry data from known malware 

samples, which will provide us with detailed information about the specific behavior and 

actions of the malware.  

To process and analyze the collected data we will utilize BERT, a powerful machine learning model 

that is specifically designed for natural language processing tasks. They collected data into bird, we 
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will be able to extract relevant features and perform clustering analysis to identify similar behaviors 

and patterns among the collected data, this approach shall further be discussed in detail in Chapter 

4. 

Ultimately our goal is to use these methodologies and tools to accurately attribute malware to 

specific threat actors or groups providing valuable insights into the tactics, techniques, and 

procedures used by these malicious actors. 

Prior to implementing any approach, it is necessary to establish an appropriate virtual environment 

and download malware samples as a preliminary step. This entails creating a self-contained and 

isolated environment that enables the installation and configuration of necessary software packages 

and tools without interfering with the underlying operating system. 

 

3.3.1 Setting Up a Virtual Environment 

A virtual machine that provides an isolated and secure environment (sandbox) to execute 

malware samples. It runs in a separate system therefore protecting the host and network 

infrastructure. For this project, we simulated the host operating system with VMware [13] 

workstation pro (version 17.2), the snapshot feature of VMware is the eminent advantage . 

This feature enables you to record the state of a virtual machine at a particular point in time. 

It restores it to a previous state in case something goes wrong, creates a delta file when you 

take a snapshot of a virtual machine. Installing Windows operating system is the next step 

after the program has been installed. 

 

3.4 Log Events Collection  

3.4.1 System Monitor (Sysmon) 

Windows operating system has an inbuilt service – Event Viewer, that keeps a track of every 

activity performed. Sysmon provides an added advantage to monitor Windows event logs 

and activities: network connection, process creation and termination, process ID etc. These 

assist in malware analysis [11] by capturing malicious events. 
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3.4.2  Sample Collection  

Different malware samples have been collected from various sources on the internet which 

offer free access for research and evaluation purpose i.e. GitHub, malware bazaar [22] etc. 

https://github.com/mikesiko/PracticalMalwareAnalysis-Labs 

https://github.com/fabrimagic72/malware-samples 

Windows event logs, that capture a variety of system events such as process launches, 

network activity, and security-related events, can be a crucial source of data for malware 

investigation. Event logs can be collected and analyzed to find abnormal activity and 

possible malware-related indicators of compromise (IOCs). 

 

Sysmon logs can be generated verbose. The huge amount of data generated requires careful 

filtering and analysis. In order to ensure data integrity, it’s necessary to that the Sysmon 

logs are stored securely and obscured from unauthorized entry. 

For our project, we have collected a dataset of total 120 different samples from publicly 

available malware repositories. For the purpose of our research, we will only be focusing 

on 5 distinct categories of malware as it’s important to remember that malware evolves 

continually and new variants are constantly appearing; trojans, keyloggers, spyware, 

rootkits and worms. 

3.4.3 Automated Log Extraction 

The process of gathering and examining event logs automatically, produced by the 

operating system and different apps running on a Windows PC is recognized as automated 

log extraction in Windows. Event logs can be used to troubleshoot problems and diagnose 

issues since they provide details about system events like errors, warnings, and 

informational messages.  

Automated log extraction often requires collecting event logs from several sources, like 

Windows Event Viewer or third-party log sources, and then examining them for patterns or 

anomalies using specialized software tools. This procedure can assist IT specialists in 

locating flaws or potential security vulnerabilities before they become serious difficulties. 

https://github.com/mikesiko/PracticalMalwareAnalysis-Labs
https://github.com/fabrimagic72/malware-samples
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For our project, Python script is used to automate the process of gathering event logs 

produced by the operating system.  

3.4.3.1 Preferred Installer Program (PIP) 

The Python programming language has a tool called pip for installing packages. It is a 

command-line utility used to manage Python packages and their related dependencies, and 

additionally to install and upgrade Python packages. Pip on the Windows Command 

Prompt, uses command, "pip", including the package name to be installed or the location of 

a requirements file. Other helpful capabilities offered by Pip include the capacity to uninstall 

programs, list installed packages, and look for packages that are open for download. Pip is 

an important tool for Python programming since it makes it easier to manage and install 

dependencies. 

We have installed two libraries through pip by using the following commands. 

• Pip install win32evtlog. 

• Pip install xmltodict 

A Python package called win32evt gives users access to the Windows Event Log. You may 

employ it to obtain events from the log, write events to the log, and manage the log itself 

(like adding new event sources or deleting the log). 

Python's xmltodict package offers a simple method for working with XML data. It enables 

you to transform data from XML to a Python dictionary and the other way around. The 

markup language XML (eXtensible Markup Language) is frequently used for data exchange 

between various systems. To specify data pieces and their connections, it uses tags. 

Although XML is a frequently used data format, working with it in Python can be 

challenging because the default library does not offer a simple method to parse XML data. 
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3.5 Registry Keyset Collection 

Registry keys of malware samples [21] were obtained from various sources such as Virus total [17] 

and manual analysis, and were subsequently compiled into a structured format, in the CSV format. 

This process involved extracting relevant information from the registry keys, organizing and 

formatting the data, and then consolidating them into a single file, organizing the registry key data 

into a suitable format for input into Bert, which could then potentially reveal significant features or 

patterns in the data that could aid in understanding the characteristics and behavior of the malware. 

 

Figure 4 Registry Key Dataset 

 

Four families of malware, namely Winnti, DarkHotel, Gorgon, and Energetic Bear were studies for 

this project. 

1. Winnti: Winnti is a type of advanced persistent threat (APT) malware that mainly targets 

organizations in the gaming, healthcare, and technology industries. Some of the key features 

of Winnti include: 

• Using multiple components to avoid detection and persist on the system. 

• Being capable of downloading and executing additional malicious payloads. 
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• Using custom encryption to protect its communication channels. 

2. DarkHotel: DarkHotel is a type of APT malware that primarily targets high-profile 

individuals such as executives and government officials who are staying in luxury hotels. 

Some of the key features of DarkHotel include: 

• Being capable of exploiting zero-day vulnerabilities to infect systems. 

• Using phishing emails and social engineering techniques to lure victims into 

downloading the malware. 

• Monitoring network traffic to steal sensitive information such as login credentials and 

intellectual property. 

3. Gorgon: Gorgon is a type of malware that is primarily used for cyber espionage and data 

theft. Some of the key features of Gorgon include: 

• Being capable of using multiple infection vectors such as email attachments and 

malicious websites 

• Using a modular architecture to execute different functions such as keylogging and data 

exfiltration. 

• Using custom encryption to protect its communication channels. 

4. Energetic Bear: Energetic Bear is a type of malware that is primarily used for cyber 

espionage and sabotage against organizations in the energy and industrial sectors. Some of 

the key features of Energetic Bear include: 

• Being capable of infecting both Windows and Linux-based systems 

• Using social engineering techniques such as spear-phishing to infect targeted systems. 

• Using custom protocols and encryption to avoid detection and protect its communication 

channels. 
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3.6 Machine Learning Algorithm 

In this project, we plan to employ the BERT algorithm, a cutting-edge natural language processing 

model, as a key tool in our analysis. Specifically, we intend to use BERT to analyse registry keys 

extracted from malware samples, with the goal of identifying potential patterns or relationships 

between the keys that could shed light on the origin, authorship, or behaviour of the malware. 

To achieve this goal, we will describe in detail in Chapter 4 of our thesis how we plan to leverage 

the power of BERT to analyse the registry key data. This will include a discussion of the specific 

techniques we will use to pre-process the data and prepare it for input into the BERT model, as well 

as the criteria we will use to evaluate the results of our analysis. 

By incorporating BERT into our malware attribution project, we aim to improve the accuracy and 

efficiency of our analysis, and to gain new insights into the behavior and characteristics of the 

malware samples we are studying. Ultimately, our goal is to contribute to the field of cybersecurity 

by advancing our understanding of how malware operates and who may be responsible for it. 

 

3.7 Chapter Summary 

The research methodology chapter outlines the study's data gathering procedures, analysis methods, 

and research design. It describes the methodical process used to compile and examine data in order 

to guarantee the validity and reliability of the study. A detailed plan for carrying out the study is 

provided in the chapter. 
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Chapter 4: Machine Learning in Threat Attribution 

4.1 Chapter Overview 

This chapter presents the methodology employed for attributing malware to their respective threat 

groups using machine learning techniques. Specifically, we utilize Windows event registries and 

apply deep learning algorithms, including BERT, to generate embeddings and classify malware into 

four major threat groups: Dark Hotel, Winniti, Gorgon Group, and Energetic Bear. This chapter 

outlines the steps involved in preprocessing the data, training the machine learning model, and 

evaluating its performance. 

 

4.2  Machine Learning Algorithm  

4.2.1  Natural Language Processing 

Word embeddings, a type of rich information extracted from sentences of a language using 

NLP (natural language processing) techniques, can be used to fill in the gaps in phrases or 

determine the meaning of a sentence. The relationship between each word in a phrase and 

every other word is extracted by NLP models. In the input dataset it is given, the model 

combines together keywords with similar meanings and maps them onto a space with greater 

dimensions. NLP models can perform a variety of categorization and prediction tasks with 

the aid of this knowledge. 

 

To create embeddings for malware samples, NLP models can be applied to the field of 

malware recognition. The malware samples from the same group would share similar 

characteristics. Classifiers might make use of this data to put malware samples from the 

same family in a single category.  
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Figure 5 Bert Algorithm 

4.2.2 Word Embedding 

Word embeddings [7], which capture the significance and implications of the language they 

are employed in, are numerical representations of words or sentences.  

4.2.3 BERT 

BERT is a transformer-based NLP model that handles language-based tasks like sentiment 

classification, masked word prediction, and other classification tasks [1]. The architecture 

is nothing more than a collection of skilled Transformer Encoders. By also considering the 

context in which a word was used, a technique known as contextualized word embeddings, 

BERT is able to provide the word embedding for a specific word. This is how BERT works: 

 

1. Data Preprocessing: Before the raw data is input into the BERT model, it must first undergo 

preprocessing. To do this, the text must be tokenized, put into numerical format, and divided 

into train and test sets. 

2. Fine-tuning BERT: BERT is a model that has already been trained using a lot of text data. 

We must adjust it for our particular goal in order to use it for malware investigation. This 

includes employing methods like transfer learning to train the model on our dataset. 

Processing data 

Generate word 

Embeddings. 
BERT 

Multiclass 

classification 
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3. The BERT model can be used to extract characteristics from the samples of malicious and 

benign software in our dataset once it has been tweaked. The samples are placed through 

the BERT model, and one of the layers' outputs are extracted. 

4. Following the features' extraction from the samples, we may utilize them to train a classifier. 

This entails classifying the samples as malicious or benign using supervised learning 

techniques like decision trees, logistic regression, or support vector machines. 

5. Metrics like accuracy, precision, recall, and F1 score can be used to assess the classifier's 

performance after it has been trained. Cross-validation is one method we can use to make 

sure our findings are reliable. 

6. At last, we can use the learned classifier to identify and stop malware attacks in a network 

security system or antivirus programme. 

4.3 Data Preprocessing 

Data pre-processing is a crucial step in machine learning and data analysis, as it involves 

transforming raw data into a suitable format for further analysis. This section discusses the initial 

steps involved in pre-processing a dataset containing Windows event log data related to malware 

instances. The goal is to prepare the data for subsequent analysis, ensuring accurate and reliable 

results in malware detection. 

1. Importing the necessary libraries: To begin the data pre-processing, several libraries are 

imported. These libraries include: 

• TensorFlow: A popular open-source machine learning framework. 

• TensorFlow Hub: A library that provides pre-trained models and reusable 

components. 

• TensorFlow Text: An extension of TensorFlow specifically designed for text-based 

tasks. 

• Pandas: A powerful data manipulation and analysis library in Python. 

• NumPy: A fundamental package for scientific computing in Python. 

2. Loading the dataset: The dataset is loaded from a CSV (Comma Separated Values) file, 

which contains Windows event log data associated with malware instances. This dataset 
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likely consists of various features or columns that describe the characteristics of each event 

log entry, such as event ID, timestamp, source, and message. 

3. Pre-processing to remove newline characters: In some cases, the dataset might contain 

newline characters ("\n") within the text data, which can interfere with subsequent analysis 

or modelling. Therefore, a pre-processing step is performed to remove these newline 

characters from the dataset. This can be done using appropriate string manipulation 

techniques or regular expressions, ensuring that the data remains intact and meaningful. 

4. Examining the distribution of malware labels: It is essential to understand the distribution 

of the malware labels within the dataset. This step helps ensure that the dataset is balanced, 

meaning that each label class has a sufficient number of instances for accurate model 

training and evaluation. By analysing the distribution, it becomes possible to identify any 

class imbalances or biases that might affect the overall performance of the malware 

detection system. 

4.4 Data Splitting 

Dataset splitting allows for the evaluation and validation of models on unseen data. We will discuss 

the process of splitting a dataset containing Windows event log data related to malware instances 

into training and testing sets. The dataset is divided using the train_test_split function from the 

scikit-learn library. The aim is to create a balanced and representative split, ensuring accurate model 

assessment for malware detection. 

Our dataset is divided into two subsets: the training set and the testing set. This separation is 

necessary to evaluate the performance of the model on unseen data, simulating real-world scenarios. 

1. Importing the necessary libraries: To perform the dataset splitting, we utilize the 

train_test_split function from the scikit-learn library. Scikit-learn is a widely used machine 

learning library in Python that provides various tools for data manipulation, pre-processing, 

and modelling. 

2. Splitting the dataset: The train_test_split function takes the dataset as input and splits it into 

two subsets based on a specified ratio. In this case, the dataset is divided into 80% for 

training and 20% for testing. This ratio can be adjusted depending on the specific 

requirements of the analysis. 
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3. Stratification for label preservation: Preserving the distribution of malware labels is 

essential to ensure that both the training and testing sets have a representative distribution 

of classes. It helps prevent biases and ensures that the model learns to generalize well across 

different malware categories. 

4. Evaluation on unseen data: By separating the dataset into training and testing sets, we can 

train the model on the training set and evaluate its performance on the testing set. This 

evaluation provides insights into the model's ability to generalize to new, unseen instances 

and helps assess its effectiveness in detecting malware. 

 

4.5 Embedding generation with BERT 

Embedding generation plays a crucial role in natural language processing tasks, including malware 

detection. This will focus on the process of generating embeddings using the BERT (Bidirectional 

Encoder Representation Transformers) pre-trained model provided by TensorFlow Hub. The BERT 

model enables the creation of semantic representations of text data, allowing machine learning 

models to understand the patterns and attributes of malware instances. 

1. Utilizing the BERT Pre-trained Model: BERT is a powerful language model that has been 

pre-trained on a massive amount of text data. By leveraging the pre-trained BERT model 

provided by TensorFlow Hub, we can benefit from its learned representations and apply 

them to specific tasks, such as malware detection. 

2. Creating an Input Layer for Text: To generate embeddings, we need to provide the text data 

as input to the BERT model. Therefore, an input layer is created specifically for text, 

allowing us to feed the raw text data into the BERT model. 

3. Passing through the BERT Encoder: After pre-processing, the text data is passed through 

the BERT encoder. The BERT encoder consists of multiple transformer layers, which 

capture the contextual information and relationships between words in the text. The encoder 

performs deep bidirectional learning, considering the context both before and after each 

word. As a result, the BERT encoder generates high-quality contextualized word 

embeddings. 
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4. Generating Embeddings: The output of the BERT encoder is a sequence of embeddings 

representing each word in the text. These embeddings capture the semantic representation 

of the text, encoding important information about the meaning and context of the words. By 

leveraging these embeddings, the machine learning model can better understand the 

underlying patterns and attributes of the malware instances, leading to improved detection 

performance. 

 

4.6 Model Architecture 

In our pursuit of accurately classifying malware based on threat groups, we have adopted a deep 

learning approach. This methodology incorporates the utilization of BERT (Bidirectional Encoder 

Representations from Transformers) embeddings as the model's input. BERT embeddings are pre-

trained language representations that capture the contextual information of words and sentences, 

making them highly effective in comprehending the distinctive characteristics of malware. 

To preprocess the textual data, we employ a dedicated preprocessor model called 

Bert_en_uncased_preprocess. This preprocessor is specifically designed to complement the BERT 

architecture, which has demonstrated exceptional performance across various natural language 

processing tasks. By employing this preprocessor, we effectively tokenize, normalize, and encode 

the input text, facilitating the extraction of significant features for subsequent analysis. 

The encoder model is constructed using the small_bert/bert_en_uncased_L-2_H-128_A-2/2 

architecture. This architecture comprises two hidden layers, each having a hidden size of 128, as 

well as two attention heads. This selection of a compact yet powerful encoder model allows us to 

capture the intricate relationships and dependencies present within the textual data, enabling the 

generation of precise representations of the input data. 

Throughout the training phase, we leverage the Adam optimizer, a widely used optimization 

algorithm in the field of deep learning. The Adam optimizer dynamically adjusts the learning rate 

for each parameter, leading to effective model optimization. In our case, we set the learning rate to 

0.1, allowing the model to make substantial updates during training. Additionally, we incorporate 

a decay mechanism with a decay rate of 0.96 and decay steps of 2. This approach facilitates model 
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convergence by gradually reducing the learning rate over time, ensuring a balance between 

exploration and exploitation. 

To ensure effective model training, we conduct multiple epochs, specifically 100 epochs. This 

extended training period provides the model with ample exposure to the training data, enabling it 

to learn complex patterns and generalize well to unseen instances. During training, we employ the 

sparse categorical cross-entropy loss function, which is widely used in multi-class classification 

tasks such as our malware classification problem. This loss function effectively measures the 

discrepancy between the predicted labels and the true labels of the malware samples, guiding the 

model towards optimal performance. 

By effectively combining the BERT embeddings, the chosen encoder model architecture, the Adam 

optimizer with a learning rate schedule, and the sparse categorical cross-entropy loss function, we 

have developed a robust and accurate model for classifying malware according to threat groups. 

The BERT embeddings capture vital contextual information and provide a comprehensive 

representation of the malware samples. The dense output layer, with its corresponding number of 

output classes and threat categories, allows for precise predictions for each threat group. The 

utilization of the Adam optimizer with a learning rate schedule ensures effective parameter 

adjustments during training, facilitating optimal learning and adaptation. Ultimately, this 

comprehensive approach equips us with a powerful tool to classify malware accurately and address 

associated security concerns. 

Here is the list of the model parametres: 

Preprocessor Model =Bert_en_uncased_preprocess 

Encoder Model =small_bert/bert_en_uncased_L-2_H-128_A-2/2 

Hidden Layers=2 

Hidden Size=128 

Attention Heads=2 

Epochs=100 

Optimizer=Adam  

Learning rate=0.1 

Decay_steps=2 

Decay_rate=0.96 



32 | P a g e  

 

Loss= Sparse Categorical CrossEntropy 

4.7 Model Training and Evaluation  

We use our deep learning model to implement the task of classifying malware into their respective 

threat groups and conduct a thorough training and evaluation process. Our labelled dataset is first 

split into training and testing sets to make sure the data distribution reflects the real-world 

circumstances we want to address. 

The fit function is used to feed the training set into the model to start the training process. Utilizing 

methods like backpropagation and gradient descent, this function iteratively optimizes the model's 

parameters in an effort to reduce loss and boost the model's ability to predict the future. To track 

the model's development and avoid overfitting, we add the validation data, which serves as a distinct 

subset of the training set, throughout training. We can examine the model's capacity to generalize 

to new cases and, if necessary, make improvements by periodically reviewing the model's 

performance on the validation data. 

The number of times the model iterates over the complete training dataset depends on how long we 

train the model for, or the number of epochs. In this instance, we train the model over 100 epochs, 

enabling it to discover intricate linkages and patterns in the data. This prolonged training period 

enhances the model's robustness and accuracy. 

 

The model's performance is assessed when training is finished using the testing set, which consists 

of labelled instances that the model has never seen before. We evaluate the generalization capacity 

of the model and evaluate its performance in real-world scenarios by measuring the model's 

accuracy on an independent dataset. This evaluation allows us to evaluate the model's performance 

and determine how well it can categories malware according to related threat groups. 

Additionally, our trained model is an effective tool for identifying the threat group of previously 

unknown malware infections. We can generate predictions about the corresponding threat groups 

by feeding brand-new, previously undiscovered malware samples into the trained algorithm. Due 

to our capacity to swiftly and effectively identify potential hazards linked to malware that hasn't 

been seen before, proactive and efficient cybersecurity actions are made possible. 
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The model is trained on the labelled training set, performance is monitored using validation data, 

and accuracy is assessed using an independent testing set in our comprehensive approach. We can 

confidently forecast the threat category of undiscovered malware instances using our trained model, 

enabling us to proactively strengthen security precautions and counteract prospective attacks. 

4.8 Chapter Summary 

This chapter has presented a comprehensive methodology for attributing malware to their respective 

threat groups using machine learning techniques. By leveraging Windows event registries and 

employing BERT embeddings, we have demonstrated the effectiveness of deep learning algorithms 

in classifying malware. The results obtained from this methodology contribute to enhancing our 

understanding of malware attribution and provide valuable insights for cybersecurity professionals 

in combating evolving threats. 

Overall, this chapter highlights the significance of machine learning in the field of malware analysis 

and emphasizes the potential for further advancements in the application of deep learning models 

for cybersecurity purposes. 
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Chapter 5: Results 

5.1 Overview 

The research study's findings are presented in the results chapter along with data analysis, statistical 

testing, and result interpretation. This chapter adds to the research goals and body of knowledge in 

the topic. 

Over the years, data scientists and researchers have created a wide variety of model interpretability 

techniques. Listed below are the results of the BERT algorithm used in this project. 

5.2 Model Accuracy 

A particular sort of visualization that demonstrates how the accuracy of a machine learning model 

alters over time or with various parameters is a model accuracy graph. One of the most used metrics 

for assessing a machine learning model's performance is accuracy. Out of all outcomes, it calculates 

the proportion of accurately predicted outcomes. The following formula is used to determine 

accuracy: 

Accuracy = (Number of Correct Predictions) / (Total Predictions) 

The graph below demonstrates that accuracy of 0.85, or 85%, is attained. 

 

Figure 6 Model Accuracy Curve 



36 | P a g e  

 

5.3 Model Loss 

A sort of visualization called a "model loss graph" demonstrates how a machine learning model's 

loss varies over time or in response to varied parameter values. Loss is a metric for gauging a 

model's accuracy in predicting the right result from a given input. It calculates the discrepancy 

between production as projected and output as actually produced. 

Lower train and validation loss levels can be seen in the graph below. But the latter outperforms 

the former by only a slight difference. When this occurs, the model may be overfit and have 

problems extending to new data. Cross-validation, diversified data collection, model complexity 

reduction, and hyperparameter modification can all be utilized to resolve this issue. With the aid of 

these methods, model performance can be enhanced by lowering overfitting, enhancing 

generalization, and closing the gap between training and validation loss. 

 

Figure 7 Model Loss Curve 
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5.4 Confusion Matrix 

The confusion matrix is a table that contrasts the actual class labels in the dataset with the 

anticipated class labels of a classification model. Information on true positives, true negatives, false 

positives, and false negatives are provided. Accuracy, precision, recall, specificity, and the F1 score 

are among the evaluation metrics that are computed using these variables. The confusion matrix 

aids in highlighting flaws in the model, locating inaccuracies, and suggesting improvements. It 

helps with modifying the classification threshold, resolving class imbalances, and identifying 

misclassification tendencies. The confusion matrix, in general, is a useful tool for assessing and 

improving classification models since it offers a thorough understanding of their performance and 

enables reasoned decision-making for optimization. 

 

 

 

Figure 8 Confusion Matrix for Training and Validation Process 
   

 



38 | P a g e  

 

5.5 Chapter Summary 

In the results chapter, the classification model is evaluated using the model loss, model accuracy, 

and confusion matrix metrics. These metrics, which provide information on the model's 

functionality, accuracy, and mistake types, serve as a reference for the model's interpretation and 

potential improvements.  



39 | P a g e  

 

 

 

 

 

 

 

CHAPTER 6: CONCLUSION AND ENHANCEMENTS 

  



40 | P a g e  

 

Chapter 6: Conclusion and Enhancements 

6.1 Overview 

The research findings are outlined in the conclusion and future works chapter, with an emphasis on 

the most important contributions and insights. It addresses the research objectives, evaluates the 

study's consequences, and proposes prospective directions for additional study. It also provides 

recommendations and guidelines for further research. 

6.2 Conclusion 

In this thesis, we discussed a malware attribution system that analyses malicious events and identify 

malwares on basis of it. Our proposed system has an advantage over other traditional systems since 

attackers are using new ID trends, and many evaluations are also based on small datasets or fail to 

find enough features to scale enough samples or a sufficient number of features to train a classifier. 

Techniques used in our proposed system; sample collection, log extraction, and Machine Learning 

Natural Language Processing (NLP) algorithms, that by default generates word embeddings for the 

dataset, and classifies the malwares; are briefly explained including their working and importance, 

The purpose of increasing productivity and overcoming problems in existing solutions is being 

achieved by using the modern techniques. Additionally, the objectives creation of malware 

database. 

 

The degree of accuracy of training data, the complexity of the malware samples, and the particular 

task being carried out (for example, binary classification or multi-class classification) all affect how 

accurate BERT is in analyzing malware. The algorithm shows a 75% accuracy. It's crucial to keep 

in mind that 75% accuracy could not be enough for some applications, like protecting key 

infrastructure or maintaining national security. We have also used registry files as the dataset, that 

analyzes and classifies malwares into the threat actor group. The process of locating the individuals 

or entities behind a cyberattack is known as threat attribution. Analysis of the attackers' artefacts, 

such as registry files, is one method for threat attribution. Windows operating systems keep 

configuration settings and other system data in a single database called the registry. Registry file 
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analysis can provide crucial information about the attack, including the infrastructure used by the 

attackers as well as the tools and methods they employed. The algorithm shows an 85% accuracy.  

6.3 Enhancements and Future Work 

Future milestones that need to be achieved to commercialize this project are the following. 

1. When malware infects a machine or interacts with a command-and-control server, it 

frequently displays particular behaviour patterns. By improving our sequential data, such as 

network traffic logs or system call traces, can assist find these patterns and comprehend how 

the malware behaves. 

2. Initially, the machine learning algorithm – BERT, was trained on a dataset of 500 samples. 

In future, the enhancement of the dataset would lead to increased accuracy of classification. 

3. In the rapidly expanding field of machine learning, novel strategies and algorithms are 

continually being created i.e., the most recent generative models include Autoregressive 

Models, Variational Autoencoders (VAEs), and Generative Adversarial Networks (GANs). 

4. Data from network logs, malware samples, and open-source information would be extracted 

and combined. Our Malware Attribution System will advance through feature selection, 

automated data preparation, and fusion techniques. 

 

6.4 Chapter Summary 

The current section summarizes the entire documentary by highlighting the most crucial aspects of 

the project, Threat Attribution System, and finishes the thesis by suggesting further work to be done 

in order to broaden the scope of our research. 
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