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Chapter 1 

Introduction 

Social media sites like Twitter have permeated contemporary communication to such an extent 

that false accounts are becoming more and more common. Bot accounts, usually referred to as 

automated accounts, are established for a variety of malevolent objectives. These profiles have the 

power to distribute false information, sway public opinion, and even find potential terrorist 

recruits. Additionally, the use of false personas for online bullying and harassment may have very 

negative emotional and psychological effects on the targeted. 

 

False Twitter accounts may compromise someone's identity by committing identity theft. 

Cybercriminals may establish a phony profile that looks to belong to a victim by using the victim's 

name, photo, and other personal information. They may then use this account to publish offensive 

material, participate in online bullying, or carry out other nefarious deeds that affect the victim's 

credibility and reputation. 

 

By disseminating incorrect information about an individual, fake Twitter accounts may potentially 

harm that person's reputation. Cybercriminals may create fictitious accounts to disseminate untrue 

or inaccurate information about the victim, harming their reputation and causing them great grief. 

 

The present techniques for finding phony Twitter identities often depend on rudimentary rule- 

based heuristics or manual human analysis, both of which may be costly, time-consuming, and 

unreliable. More sophisticated techniques are urgently required to identify these accounts correctly 

and efficiently since the number of phony profiles on Twitter keeps increasing. 

 

As a result, the issue of locating bogus Twitter accounts utilizing machine learning and artificial 

intelligence approaches has surfaced. These techniques examine a variety of characteristics of a 

Twitter account, including the number of followers, the frequency of tweets, and the substance of 

the tweets, in order to accurately detect phony accounts. By detecting and reporting bogus personas 

that are used for this purpose, such an approach may be used to reduce online abuse. It can also 

help intelligence services identify possible threats. 



In general, social media platforms, users, and authorities are quite concerned about the issue of 

spotting phony Twitter identities. We can contribute to maintaining the integrity of social media 

platforms and making the internet a safer place for all users by creating effective and dependable 

methods to identify these accounts. 

 

1.1 Overview 

Twitter uses a variety of strategies to draw in and keep users. The platform, first of all, has a user- 

friendly layout that makes it simple for individuals to register, establish an account, and begin 

using it. In addition, Twitter offers a number of tools for interaction between users, including direct 

messaging, following other users, enjoying and retweeting content, and retweeting other users' 

postings. 

In addition, Twitter has developed into a center for news, information, and entertainment, with a 

large number of public figures, corporations, and celebrities utilizing the service to interact with 

their constituents. As a result, Twitter now has a stronger feeling of community and is a more 

desirable platform for users to join and remain active on. 

To enhance user experience, Twitter also often upgrades its platform and adds new features. For 

instance, it now offers capabilities like audio tweets, live streaming, and Twitter Spaces, which let 

users take part in audio chats. 

Figure 1: Number of Twitter users worldwide from 2019 to 2024(in millions) 



As more people use Twitter, there is also a greater chance that some people or businesses may 

seek to set up accounts impersonating well-known people, celebrities, or brands. These 

impersonation accounts may be used for a variety of things, such as disseminating false 

information, defaming someone, or phishing personal data. The temptation for malevolent actors 

to establish phony accounts that closely resemble genuine ones grows as the number of possible 

targets rises. 

1.2 Problem Statement 

Due to the growth of social media and the possibility of abuse, the issue of identifying false Twitter 

identities has grown in importance in recent years. The safety and integrity of social media 

platforms are in danger due to the usage of bogus Twitter identities for a variety of nefarious 

activities, such as distributing misinformation, swaying public opinion, and indulging in online 

bullying and harassment. 

 

 

Figure 2: Article that shows how much the fake accounts are increasing. 

 

Simple rules-based heuristics or manual human analysis are two ways that are currently used to 

identify bogus Twitter accounts, but they are time-consuming, costly, and not totally accurate. As 

a result, there is a need for more sophisticated techniques that can quickly and precisely identify 

false accounts. 



Therefore, the issue statement is how to create trustworthy and effective techniques for spotting 

fraudulent Twitter profiles that can successfully find and delete these accounts from social 

networking networks. In order to correctly detect and delete bogus accounts, the solution should 

make use of machine learning and artificial intelligence algorithms to examine numerous Twitter 

account characteristics, such as the number of followers, the frequency of tweets, and the substance 

of the tweets. 

1.3 Proposed Solution 

The suggested answer is to create a system for detecting phony Twitter accounts that reliably and 

quickly locates and deletes them from social media sites using machine learning and artificial 

intelligence approaches. 

The algorithm will examine a range of Twitter account characteristics, including follower count, 

following accounts, description, joining date, tweet volume, content, etc. To find trends that point 

to a phony profile. The technology will also make use of sentiment analysis and natural language 

processing to spot hate speech and other damaging information that could be connected to phony 

accounts. 

A large dataset of actual and fraudulent Twitter accounts will be gathered and categorized for 

training and testing in order to build the system. To discriminate between authentic and false 

profiles, the system will be trained on this dataset using a variety of machine learning methods, 

including deep learning. 

For the purpose of identifying offensive material that may be connected to phony accounts, the 

system will also include hate speech identification technology. The hate speech detection 

technology will use sentiment analysis and natural language processing to identify offensive and 

damaging language, and it will take the necessary steps to remove such material and profiles from 

the site. 

The development of a fake profile detection system that makes use of machine learning and 

artificial intelligence methods in order to precisely and quickly identify and delete phony Twitter 

accounts and related damaging information from social media platforms is the suggested answer, 

in conclusion. To provide all users with a safer and more secure online experience, the system will 

also include a hate speech recognition mechanism. 



1.4 Working Principle 

The working principle of the proposed fake profile detection system involves the use of machine 

learning and artificial intelligence techniques to analyze various attributes of a Twitter account and 

identify patterns that are indicative of a fake profile. 

1. Profile Name Entry 

2. Data Scraping 

3. Account Grouping 

4. Keyword-Based Data Search 

5. Feedback System with Image Analysis 

6. Sentimental Analysis 

7. Botometer Data Collection 

8. Percentage Assignment 

9. Hate Speech Analysis Model 

10. Results Display 

1.4.1 Profile Name Entry 

Entering the profile name against which to check for fake profiles on the website is the first step. 

This may be a public personality, a brand, or any other person or organization having a Twitter 

account. 

1.4.2 Data Scraping 

Once the profile name has been supplied, the system will scrape all Twitter accounts’ data 

associated with that name. This includes the user's profile description, location, number of 

followers, and other pertinent information. 

1.4.2.1 Scraping Users’ Names 

Search for all the profiles related to that name and scrape the usernames of all Twitter 

profiles that come up on the search list. 

1.4.2.2 Scraping Users’ Data 

Scrape the data of every account against all usernames that include profile description, 

location, date of joining, number of followings, number of followers, and other pertinent 

information. 

1.4.3 Account Grouping 

The algorithm will then group accounts with similar characteristics based on the user descriptions. 

Multiple accounts with identical profile descriptions will be placed together, for instance. 



1.4.4 Keyword-Based Data Search 

Next, the algorithm will utilize the group's keywords to search Google for all relevant information. 

This will assist in identifying any further information about the group's members that may not be 

accessible on Twitter. 

1.4.5 Feedback System with Image Analysis 

A feedback mechanism will be utilized to sort accounts according to their profile pictures. This 

may assist in further narrowing the account grouping. 

1.4.6 Sentimental Analysis 

The sentimental analysis will be used to examine user activity, including the sentiment of tweets 

and the posting frequency. This may aid in the identification of accounts that may be engaged in 

spamming or other undesirable activity. 

1.4.7 Botometer Data Collection 

The system will gather data from every user's Botometer across all groups. Botometer is an 

algorithm that uses machine learning to identify Twitter bots. This may assist detect any suspected 

fraudulent accounts that may be manipulating their followers or interaction using bots. 

1.4.8 Percentage Assignment 

The data of users in each category will be compared, and each account will be assigned a 

percentage depending on the likelihood that it is a false profile. To estimate the possibility of a 

fake profile, the algorithm will analyze many parameters, including the number of followers, 

engagement rate, sentiment analysis, and Botometer score. 

1.4.8.1 For Google verified account 

If the OSNT tool finds the Google-verified account, then the system gives 100% 

authenticity to that account, and the remaining accounts are going to get a percentage on 

the basis of their resemblance to that verified account. 

1.4.8.1 For non-verified account 

If the OSNT tool doesn’t find any Google-verified account, then there are two cases: 

1.4.8.1.1 Verified followers: 

If the user's list of followers includes verified accounts, the system will provide that account 

with the highest level of credibility. 



1.4.8.1.1 Machine Learning Algorithm: 

If the user's list of followers doesn’t include verified accounts, the system will pass that 

account to a machine-learning algorithm that decides the percentage of the authenticity of 

that account. 

1.4.10 Results Display 

On the website, the percentage of authenticity and user information will be published. This will 

help people make educated judgments about whom to follow and interact with on Twitter. 

1.5 Objectives 

1.5.1 General Objectives: 

1. Using methods from machine learning and artificial intelligence, design a dependable and 

efficient system for identifying bogus Twitter accounts. 

2. Using machine learning and artificial intelligence approaches, construct a dependable and 

effective system for identifying bogus Twitter accounts. 

3. To establish a safer online environment for all users by recognizing and eliminating 

fraudulent personas that might be used for malevolent objectives, such as propaganda 

dissemination or online bullying and harassment. 

4. To provide intelligence agencies with an efficient method for recognizing possible threats 

on social media networks. 

5. To educate social media users about the risks associated with fake accounts and the 

significance of online safety and security. 

1.5.2 Academic Objectives: 

1. Exploring and analyzing the current literature on false profile detection systems, machine 

learning, and artificial intelligence approaches. 

2. Analyzing the strengths and limits of several ways to detect fake profiles, and to 

determine the most successful and efficient strategies. 

3. To analyze the strengths and limits of several methods for detecting false profiles and to 

determine the most successful and efficient strategies. 

4. To perform tests and assessments to determine the precision and efficacy of the proposed 

method for identifying fake Twitter accounts. 



5. To contribute to scholarly knowledge in the field of social media analytics, particularly in 

the areas of detecting fraudulent profiles and online disinformation. 

6. To disseminate the findings of the research through publications in academic journals and 

conferences, and to contribute to the academic community's understanding of the 

challenges and opportunities in social media analytics. 

1.6 Scope 

This project aims to build a system for detecting bogus Twitter profiles using machine learning 

and artificial intelligence approaches. The technology will be intended to automatically detect false 

Twitter accounts and deliver a percentage of authenticity based on the study of many parameters, 

including the number of followers, tweet frequency, and tweet content. The technology will also 

feature a recognition module for hate speech to identify tweets containing damaging or abusive 

words. 

The project will involve data collection, data preprocessing, feature extraction, model selection, 

and model evaluation. The system will be implemented using Python programming language and 

various machine learning libraries such as scikit-learn, CNN, and Keras. The system will be 

deployed on a website, where users can enter the profile name to check for fake profiles, view the 

percentage of realness, and access the hate speech analysis report. 

The project's scope includes the design, development, and assessment of the system, as well as the 

dissemination of its results through academic papers and conferences. Various parties, including 

social media platforms, intelligence agencies, and individual users, will find the system valuable 

for identifying and eliminating bogus accounts and fostering a safer online environment. 

1.7 Deliverables 

1.7.1 Fake Profile Detection System 

This is the main deliverable of the project, and it involves the development of a system that can 

detect fake Twitter profiles with a high degree of accuracy. The system will use machine learning 

and artificial intelligence techniques to analyze various attributes of a Twitter account, such as the 

number of followers, tweet frequency, and the content of the tweets. The system will also 

incorporate a feedback mechanism to improve its accuracy over time. 



1.7.2 Hateful Speech Detection System 

In addition to detecting fake profiles, the project will also involve the development of a system 

that can detect hateful speech on Twitter. The system will use natural language processing 

techniques to analyze the content of tweets and identify those that contain hateful or abusive 

language. 

 
1.7.3 User Interface 

The project will also involve the development of a user interface that allows users to enter the 

name of a Twitter profile and receive a report on the percentage of fake accounts associated with 

that profile, as well as any instances of hateful speech. The user interface will be intuitive and easy 

to use, with clear and concise reports. 

 
1.7.4 Documentation 

Finally, the project will deliver documentation that includes a detailed description of the system's 

functionality, the algorithms used to detect fake profiles and hateful speech, and the user interface. 

The documentation will also include instructions on how to use the system and any necessary 

installation and configuration instructions. Additionally, the documentation will include any 

relevant research and analysis conducted during the development of the system. 

1.8 Relevant Sustainable Development Goals 

The Socio-Economic problem that we are trying to solve through our project is cyberbullying. 

Our final year project emphasizes the sixteenth Sustainable Development Goal. 

Promote peaceful and inclusive societies for sustainable development, provide access to justice 

for all, and build effective, accountable, and inclusive institutions at all levels. 

1.9 Structure of Thesis 

Chapter 2 contains the literature review and the background and analysis study this thesis is based 

upon. 

Chapter 3 contains the design and development of the project. 

 
Chapter 4 introduces a detailed evaluation and analysis of the code. 



Chapter 5 contains the conclusion of the project. 

 
Chapter 6 highlights the future work needed to be done for the commercialization of this project. 



Chapter 2 

Literature Review 

Understanding the current items on the market and identifying their strengths and flaws is essential 

for the development of a new product. Herein lies the value of the literature review. By doing a 

comprehensive literature analysis, the developers may collect pertinent information about 

comparable current goods, such as their features, functions, and customer feedback. 

In the context of the Detection of Fake Profiles on social media, a literature study may give vital 

insights into the numerous market-available goods, such as which data-gathering platform is the 

most convenient, which parameters are most beneficial, and which methods are the most effective. 

By studying previous work, developers may find market gaps and generate fresh ideas for creating 

a superior solution. 

In addition, a literature study may assist improve the characteristics of current goods by suggesting 

areas for enhancement. For example, if a product lacks certain features or has limits, its creators 

might enhance these qualities and deliver a superior product to the market. 

Overall, completing a literature study is a crucial stage in building a new product since it helps to 

detect market gaps, comprehend current goods, and improve the product's characteristics. 

Our research is divided into the following points. 

1. Existing solutions and their drawbacks 

2. Research Papers 

 

2.1 Existing Solutions and their drawbacks 

2.1.1 “simpin.com” 

Certainly! "smipin.com"[1] is a website that offers online reputation management services, 

which include monitoring and enhancing an individual's or company's online visibility. One of 

the primary services provided by "smipin.com" is the detection and elimination of impersonation. 

When someone establishes a fake account or profile using another person's name, picture, or other 

personal information, this constitutes impersonation. This may be detrimental to the individual or 

business being impersonated since it can result in the propagation of unpleasant comments or 



misleading information online. Additionally, impersonation may be a type of identity theft, which 

can have severe legal and financial repercussions. 

"smipin.com" uses numerous methods and approaches to monitor the Internet for instances of 

impersonation in order to fight impersonation. This may include monitoring social media sites, 

search engines, and other online channels where impersonation is possible. If impersonation is 

found, "smipin.com" may collaborate with the appropriate platform or website to get the bogus 

account or profile deleted. 

Overall, "smipin.com" aims to assist people and businesses in managing their online reputations 

and defending themselves against online dangers, such as impersonation. It is essential to 

recognize, however, that online reputation management is a complicated, continuing process that 

demands careful attention and planning. Although "smipin.com" may provide beneficial services 

in this area, it is always wise to perform extensive research and speak with reputable consultants 

before making any choices about the management of your internet reputation. 

2.1.2 “zerofox.com” 

The website zerofox.com [2] provides a variety of online security and threat prevention services, 

including detection and elimination of impersonation. The impersonation-specific service is 

intended to assist people and organizations in identifying instances of impersonation on social 

media and other online platforms and in removing the impersonating accounts or profiles. 

The impersonation detection and eradication service provided by "zerofox.com" identifies 

probable cases of impersonation using a mix of human and machine-based methodologies. This 

may include monitoring social media accounts and other online channels for signs such as 

fraudulent profiles, unusual account activity, and trademark infringement. After identifying an 

incident of impersonation, "zerofox.com" collaborates with the appropriate platform or website to 

get the impersonating account or profile terminated. 

In addition to detection and removal services, "zerofox.com" also provides training and education 

tools to assist people and businesses understand the hazards associated with impersonation and 

other online security threats and learn how to defend themselves proactively. 

Overall, "zerofox.com" aims to assist people and companies in protecting themselves from online 

security risks and preserving their online reputation. It is essential to emphasize, however, that 

internet security is a continuous process that demands constant awareness and attention to detail. 

Although "zerofox.com" may provide important services in this area, it is always prudent to 



perform extensive study and speak with reputable consultants prior to making choices about 

internet security and reputation management. 

2.1.2 “Botometer.com” 

"Botometer.com" [3] is a website that gives a tool for determining if a Twitter account is likely 

to be a bot. Bots are automated accounts that may be used for several objectives, including 

spamming, disseminating false information, and influencing online debates. 

Simply input the Twitter handle or username you desire to study in order to utilize 

"Botometer.com." The program will then provide a report with a "bot score" reflecting the 

account's chance of being a bot. The bot score is determined by a variety of criteria, such as account 

activity, demographics of followers, and content analysis. 

In addition to the bot score, "Botometer.com" gives a comprehensive report that details the 

account's activity patterns, content topics, and other indicators that may suggest bot activity. This 

information may aid in the identification of possible bots and the protection against their impact. 

Overall, "Botometer.com" aims to assist people and organizations in understanding the existence 

of bots on Twitter and protecting themselves from their impact. It is essential to note, however, 

that "Botometer.com" is not perfect and may not be able to identify every instance of bot activity. 

In addition, it is always advisable to use a variety of tools and strategies to assess online activity 

and make educated judgments about online engagement and strategy. 

 

Figure 2: Features and Drawbacks of existing solutions 



2.2 Research Papers 

We categorized the fake profile detection research into three categories: 

1) research with account-based features 

2) research with text-based features 

3) research with both account- and text-based features. 

In the subsequent sections, we highlight the key findings, limitations, and future scope of the 

proposed models. 

 

2.2.1 Research with Account-Based Features 

Gurajala et al.[4] For the identification of false profiles, a pattern-matching algorithm-based 

approach was presented. Using the method of social web crawling, 62 million user profiles were 

gathered. The filtering method yielded 724 494 groups comprising a total of 6 958 523 accounts. 

For the purpose of further narrowing 724 494 groupings, their screen names were examined, and 

almost similar ones were discovered. Using map-reduction methods and pattern recognition, a 

highly reliable subset of fictitious user accounts was detected. 

 
In 2016, Gurajala et al.[4] Examined the features of Twitter accounts that were fraudulent. Based 

on the profile name and other characteristics, they grouped user profiles into fake and legitimate 

accounts. Their technology accurately identified a portion of users as Fake, and via human 

verification, all projected bogus accounts have been confirmed. Following a time gap of fewer 

than 40 seconds, their investigation indicated that bogus accounts are established in groups on 

weekdays at certain dates and times. On a database of 2016 Twitter users, the program detected 

fake accounts with a 93 percent accuracy rate. 

 
BalaAnand et al.[4] The user's nonverbal behavior was used to identify Fake users on the social 

networking site. On social networking platforms, the nonverbal behavior data of the user helps 

identify numerous accounts and identity fraud. As a dataset, they used Wikipedia's publicly 

accessible logs of prohibited user information and applied classic machine learning-based 

classifiers such as SVM, RF, and adaptive boosting algorithms using the cross-validation method. 

Using the adaptive boosting classifier, they attained the highest accuracy in performance. 



Cresci et al.[4] The author proposed a methodology for identifying fraudulent Twitter followers. 

They used numerous datasets, including Fast Followers, Inter Twitter, and Twitter technology, 

each of which included a sample size of 469, 1481, 1169, 1337, and 845, respectively. 

Furthermore, the dataset was divided into two baseline datasets: the baseline human dataset (1950 

accounts) and the baseline artificial dataset (1950 accounts). For the identification of false and 

spam accounts, a set of ML algorithms are deployed. The SVM classifier correctly categorized 

more than 95% of accounts into their respective groups. 

2.2.2 Research with Text-Based Features 

This section highlights the research that was done using the textual features of the OSN websites 

to detect fake, malicious, or spam accounts. Swe and Myo proposed a model to detect the fake 

account of OSN websites using a blacklist instead of a traditional spam words list. The blacklist is 

created by using the topic modeling approach and a keyword extraction approach. The evaluation 

is done on the 1KS-10KN dataset and also on the Social Honeypot dataset. The traditional spam- 

word-list-based approach on the 1KS-10KN dataset achieved a precision value of 0.854, recall of 

0.904, and F-measure of 0.879, whereas using the proposed methods, the precision, recall, and F1- 

measure were 0.958, 0.950, and 0.954, respectively. The fake account detection rate using the 

proposed model was 95.4%. The false positive rate of the spam-word-list-based approach is 0.154, 

and the false positive rate of the blacklist-based approach using the social honeypot dataset is 

94.9%. The detection rate of the spam-word-list-based approach using the social-honeypot-based 

approach is 91.1%. The blacklist-based approach achieves acceptable accuracy and reduces the 

false positive rate. Their model does not require profile- and network-based features, and hence, it 

reduces the time and cost overhead for extracting these features. 

 
Clark et al. Used natural language processing (NLP) to detect automation on Twitter. Their model 

uses natural language text from humans to provide a criterion for identifying accounts with 

automated messages. Two datasets were collected: first, geo-tweets from the most active 1000 

users, referred to as the Geo-Tweet dataset to classify humans and robots. The second collection 

of data was obtained from the social honeypot experiment. They found that the accuracy of the 

model on the Geo-Tweet dataset increased by increasing the tweets bin's size. The model achieved 

a true positive rate of 86%, which means that most robots have been identified successfully. The 



model uses textual data on its own for prediction purposes, so it is flexible and can be applied to 

any text data beyond the Twitter-sphere. 

 
Khan et al. Segregated spammers and bloggers from real experts on Twitter. Approximately 0.4 

million tweets were collected from approximately 3200 user profiles active in disseminating 

health-related information on Twitter. They used the Hyperlink-Induced Topic Search (HITS) 

approach to classify spammers and bloggers and isolated them from experts in a specific area. 

Their model does not require a large amount of pre-classified data to differentiate bloggers from 

true experts. The top 30% of the 3200 profiles were marked as bloggers with a precision score of 

0.70. Galán-Garciá et al. Have developed a model for identifying fake profiles on Twitter. They 

collected 1900 tweets referring to 19 separate tweeter accounts. The tweets were modeled using 

the vector space model, and then, supervised classification models were applied. In the best case, 

the accuracy of the model was 68.47% using the sequential minimal optimization technique. 

 
2.2.3 Work with Account- and Text-Based Features 

 

Chakraborty et al. have proposed a framework called social profile abuse monitoring. They 

gathered information from the Twitter profile of 5000 users along with their 200 latest tweets. The 

SVM classifier was used to analyze the dataset. They introduced a four-class classification model 

for calculating profile similarity indexing based on fine-grained interface similarity characteristics. 

The F1-score of the proposed approach was 70%, with a precision value of 0.60. Hua and 

Zhang proposed a spam profile identification interface on Twitter. The dataset included 173 spam 

accounts and 285 nonspam account screen names for a total of 458 screen names from emails sent 

by Twitter to followers. The threshold and associative classification techniques were used to 

achieve an accuracy value of 79.26%. This model is slower, but an iterative version of the model 

can be developed to improve performance in the future. Singh et al. suggested a model for 

identifying malicious, nonmalicious, and celebrity users on Twitter. The dataset comprised 7500 

users of the website, and it was divided into a 70:30 ratio for training and testing. A total of five 

classifiers, namely, BayesNet, NB, social media optimization (SMO), J48, and RF, were used for 

model development. In the best case, their model achieved an accuracy of 99.80% using the RF 

classifier. 



Cresci et al. Developed a framework for the identification of fake profiles on Twitter. They 

divided the work into three phases: first, they studied the existing features and rules for the 

identification of anomalies in various contexts, such as the Academy and the Media. Second, it 

developed a dataset for human and fake profile detection, and finally, it designed machine-based 

classifiers designed over the collection of rules and revised features. Their experiment showed that 

the rules used in the Media domain were not useful for the detection of a fake follower, whereas 

the rules and features associated with Academia produced a good result. The built-in model 

successfully detected 95% of fake profiles on training data of Twitter. Alsaleh et al. [4] have 

developed a model to detect Sybil accounts on Twitter. 1.8 million Twitter accounts were 

collected, of which 48.05% were human, 44.42% Sybil, and the remaining 7.53% were hybrid 

accounts. Seventeen features were extracted from the dataset, and five ML-based classifiers were 

used to classify the accounts into three classes. The Weka tool was used for the experiment and 

found the best results with the combination of MLP and gradient descent, where the human, hybrid, 

and Sybil F1-scores were 0.94, 0.22, and 0.93, respectively. 

 
El Azab et al. Used the minimum weighted function collection to detect fake profiles on Twitter. 

They defined a minimized set of key factors that affect the identification of fake Twitter accounts 

and then used various classification methods to assess the factors. They used a dataset called: the 

fake project.13 The dataset consists of 1481 human accounts and 3000 fake profiles. David et 

al. Suggested a model for selecting the appropriate features to identify fake accounts. The dataset 

of 853 bot profiles and the most recent 1000 tweets in each timeline was collected over a week. 

This was complemented by 791 manually labeled human accounts between April and June 2016, 

most of which were Mexican users. User accounts and part of their timelines were extracted via 

the Twitter API. SVM, DT, NB, RF, and single-layer feedforward artificial neural networks 

(ANNs) have been used to classify the accounts. The highest average accuracy was 94% achieved 

with an RF classifier operating on 19 features. The relatively low variation of results across 

classifiers supports the belief that consistency features and subset selection of features play a 

significant role in incorrect predictions. Despite the convergence toward 91–92%, the remaining 

methods have not been similarly effective in terms of growth. 



Chapter 3 

Design and Development 
 

3.1 Profile Name Entry 

When it comes to checking for fake profiles on Twitter, the first step is to log in to our website 

where the fake profile checker is available. Once logged in, the user needs to enter the profile name 

they want to check for authenticity. This profile could belong to a public personality, a brand, or 

any other person or organization having a Twitter account. 

 
It is important to note that the user should enter the exact username or handle of the profile they 

want to check. This is because there may be multiple profiles with similar names or handles, and 

searching for the wrong profile could yield inaccurate results. 

Our website is very interactive and easy to use for any person. I person that can make a social 

media account can use our website. It’s that easy to use for a normal user. 

3.2 Data Scraping 

Selenium is a popular tool for software testing that is also used for web scraping. It enables the 

automation of online browsers, which is beneficial for activities like completing forms, pressing 

buttons, and traversing websites. 

Selenium is used to automate the process of looking for and navigating to Twitter user profiles in 

the context of web scraping Twitter accounts. This may be a time-consuming task when performed 

manually, but Selenium makes it fast and efficient. 

Selenium creates an instance of a web browser (such as Chrome or Firefox) and controls it through 

an application programming interface. This makes it possible to automate online activities such as 

clicking links, filling out forms, and scraping data from websites. 

In the instance of Twitter profile scraping, Selenium is used to automate the process of searching 

for user profiles based on their complete names and then extracting the needed data from the 

accounts. This enables the quick collection of data from a large number of profiles for further 

analysis. 



Data scraping is the extraction of data from a variety of internet sources. In the case of detecting 

Fake Twitter accounts, data scraping is crucial for obtaining information about the profile in the 

issue. Selenium, which is a robust framework for automating web browsers, is one of the most 

used technologies for online scraping. 

In addition, Twitter data may be scraped via bot accounts. Accounts for these bots are established 

particularly for data scraping and may be programmed to conduct certain activities, such as looking 

for profiles and harvesting information from several accounts. 

After the user provides the profile name to the false profile checker, the system scrapes data from 

all Twitter accounts linked with that name. This includes the user's profile description, location, 

number of followers, and any other pertinent information that may be used to determine whether 

or not the profile is Fake. 

The first phase of data scraping is to search for all profiles associated with the provided name. 

Using Selenium, the fake profile checker can automate the search process and scrape the 

usernames of all Twitter accounts on the search results list. This is accomplished by emulating 

user behavior in order to search for profiles, click on relevant links, and collect the required data. 

After scraping all usernames, the next step is to scrape the data of every account against all 

usernames. This includes: 

• Username, 

• Full name, 

• Location, 

• Description, 

• Followers, 

• Following, 

• Join Date, 

• Verification status, 

• Lists, 

• Likes, 

• Birthday, 

• Profession, 

• Tweets, 

• Website 



Using Selenium, the fake profile checker can automate the data scraping process and extract the 

relevant information from each account associated with the username. 

3.3 Account Grouping 

Scikit-learn (Also known as sklearn) is a popular open-source machine-learning library for Python. 

It provides a wide range of tools and algorithms for various machine learning tasks such as 

classification, regression, clustering, and dimensionality red. 

Some of the features provided by scikit-learn include: 

Data preprocessing: handling missing data, feature scaling, feature selection, and encoding 

categorical variables. 

Model selection and evaluation: splitting data into training and testing sets, cross-validation, and 

hyperparameter tuning. 

Supervised learning: algorithms for classification (e.g. logistic regression, decision trees, and 

support vector machines) and regression (e.g. linear regression, random forests, and neural 

networks). 

Unsupervised learning: algorithms for clustering (e.g. k-means, hierarchical clustering, and 

DBSCAN) and dimensionality reduction (e.g. principal component analysis and t-SNE). 

Assembling methods: combining multiple models to improve performance (e.g. bagging, boosting, 

and stacking). 

The use of unsupervised machine learning (ML) algorithms can be helpful in identifying and 

grouping accounts with similar characteristics based on their profile descriptions. This can aid in 

identifying potential fake profiles, as well as providing insight into the types of accounts that are 

associated with the supplied profile name. Unsupervised ML algorithms do not require labeled 

data to learn from, unlike supervised learning algorithms. Instead, they analyze patterns and 

relationships within the data to identify clusters or groups of similar data points. 

Agglomerative clustering is a type of hierarchical clustering algorithm that is used to group data 

points together based on their similarity. It is a machine learning (ML) algorithm used for 

unsupervised learning. 

The algorithm starts by treating each data point as a separate cluster. It then iteratively merges the 

two closest clusters into a single cluster, until all the data points are contained in a single cluster. 

The distance between clusters is typically measured using one of several distance metrics, such as 

Euclidean distance, Manhattan distance, or cosine distance. The choice of distance metric can have 



a significant impact on the clustering results, and it is often chosen based on the characteristics of 

the data being clustered. 

The input parameters for agglomerative clustering are: 

• The data matrix: a matrix of n x m dimensions, where n is the number of observations 

and m is the number of features. 

• The distance metric: a measure of dissimilarity between observations. Common distance 

metrics include Euclidean distance, Manhattan distance, and cosine distance. 

• The linkage criterion: a rule for combining clusters based on the distances between 

observations. Common linkage criteria include single linkage, complete linkage, and 

average linkage. 

• Threshold distance Or Number of Clusters: a cutoff value for the distance between 

clusters. Clusters that are further apart than the threshold distance are not merged. 

Agglomerative clustering[5] processes the data by iteratively merging the two closest clusters 

based on the chosen distance metric and linkage criterion. At each step, the distance matrix is 

updated to reflect the distances between the newly merged cluster and the remaining clusters. 

This process continues until all observations are contained within a single cluster. 

Agglomerative clustering can present data in several ways. One common approach is to use a 

dendrogram, which is a tree-like diagram that shows the hierarchical structure of the clusters. The 

dendrogram starts with each observation as a separate cluster and shows how the clusters are 

merged at each step of the algorithm. Another approach is to assign each observation to a cluster 

label, which can be used for further analysis or visualization. 

If a threshold distance is provided, agglomerative clustering will stop merging clusters once the 

distance between clusters exceeds the threshold. This can be useful for controlling the granularity 

of the resulting clusters or for identifying clusters at a specific level of similarity. 

In the case of the fake profile checker, unsupervised ML algorithms can be used to analyze the 

profile descriptions of the scraped Twitter accounts and group them into clusters based on 

similarities in the descriptions. For example, if multiple accounts have identical profile 

descriptions or use similar phrases and keywords, they may be grouped together. 

Once the accounts have been grouped into clusters, further analysis can be performed to determine 

whether the accounts within each cluster are legitimate or potentially fake. This can involve 



examining the frequency and type of tweets, engagement rates, and other factors to determine 

whether the accounts exhibit suspicious behavior. 

Overall, the use of unsupervised ML algorithms can enhance the fake profile-checking process by 

providing a more efficient and accurate way to identify and group accounts with similar 

characteristics. By leveraging the power of machine learning, the fake profile checker can quickly 

and effectively identify potential fake profiles on Twitter. 

Figure 3: Agglomerative clustering algorithm 

 

 

3.4 OSINT 

OSINT (Open-Source Intelligence) is a process of collecting information from publicly available 

sources, including social media, online databases, and other open sources, to gather intelligence or 

conduct investigations. The fake profile checker algorithm can leverage OSINT techniques to 

further enhance the identification process of potential fake profiles. 

Once the algorithm has grouped Twitter accounts with similar characteristics based on their profile 

descriptions using unsupervised ML algorithms, it can utilize the group's keywords to conduct a 

broader OSINT search on various open-source platforms, including Google. 

The OSINT search can help to gather additional information about the group's members that may 

not be accessible on Twitter. This information can be used to verify the legitimacy of the accounts 

and identify any inconsistencies or red flags that may indicate potential fake profiles. 

For example, if the group's keywords include "political activism" and "protests," the OSINT search 

may reveal news articles, social media posts, and other online content related to political protests 

or activism that the group's members have participated in. This information can be used to verify 



the legitimacy of the accounts and determine whether they exhibit behavior consistent with real 

individuals or fake profiles. 

Overall, the use of OSINT techniques can be a valuable tool in the fake profile-checking process. 

By leveraging open-source intelligence, the algorithm can gather additional information that may 

not be available on Twitter alone, which can help to improve the accuracy of the identification 

process. 

3.5 Feedback System with Image Analysis 

In the face recognition library by Ageitgey, the ResNet-34 architecture is used as a feature extractor 

for face recognition. The pre-trained ResNet-34 model is fine-tuned on a large dataset of faces 

using transfer learning and a triplet loss function to learn highly discriminative features for face 

recognition. 

More specifically, the pre-trained ResNet-34 model is used as a convolutional neural network 

(CNN) feature extractor, which takes as input an image of a face and produces a feature vector, or 

embedding, that represents the facial features of the person in the image. The ResNet-34 

architecture is well-suited for this task because of its deep and complex structure, which enables it 

to learn highly discriminative features at multiple scales. 

The pre-trained ResNet-34 model is fine-tuned on a large and diverse dataset of faces, which The 

ResNet-34 architecture is used as a feature extractor for face recognition in the face recognition 

library created by ageitgey. The pre-trained ResNet-34 model is fine-tuned using transfer learning 

and a triplet loss function on a huge dataset of faces to discover highly discriminative features for 

facial recognition. 

The pre-trained ResNet-34 model is used as a convolutional neural network (CNN) feature 

extractor, which takes an image of a face as input and generates a feature vector, or embedding, 

that represents the facial characteristics of the individual in the picture. The ResNet-34 architecture 

is well-suited to this job because to its deep and complex structure, which allows it to learn highly 

discriminative features across various scales. 

Using transfer learning, the pre-trained ResNet-34 model is fine-tuned on a wide and diversified 

face dataset, including the VGGFace and FaceScrub datasets. Transfer learning is a deep learning 

approach in which a model previously trained on a big dataset is refined on a smaller dataset for a 

particular purpose. This helps the model to acquire task-specific characteristics more quickly and 

with less data than if it were trained from the beginning. 



Training the model using a triplet loss function pushes the model to learn embeddings that 

minimize the distance between embeddings of the same person's face and increase the distance 

between embeddings of different people's faces. This assists the model in learning highly 

discriminative features for face recognition that are resilient to position, lighting, and other 

conditions. 

Overall, employing the ResNet-34 architecture as a feature extractor for face recognition in 

conjunction with transfer learning and a triplet loss function allows the face recognition model in 

ageitgey's library to achieve excellent accuracy and resilience in identifying faces. 

The pre-trained DNN model for face recognition was trained using both the VGGFace and 

FaceScrub datasets. The VGGFace dataset has over 2.6 million photos of over 2,600 individuals, 

while the FaceScrub dataset includes over 100,000 photographs of 530 individuals. 

The VGG16 model was first trained using the ImageNet dataset, a large-scale image recognition 

dataset including over 1.2 million pictures over 1,000 categories. The photos in the collection 

depict a range of items, settings, and backdrops and are tagged with their respective class names. 

The VGG16 architecture was created by the Visual Geometry Group (VGG) at the University of 

Oxford, and it was one of the top-performing models in the 2014 ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC), an annual competition in which participants are tasked with 

classifying images into 1,000 categories. 

The VGG16 architecture is comprised of sixteen convolutional layers, including five max pooling 

layers and three fully linked layers. The convolutional layers include modest 3x3 filters, allowing 

the model to acquire highly discriminative characteristics on a local scale. The max pooling layers 

reduce the spatial dimension of the feature maps and allow the model to acquire spatial invariance 

to tiny translations. 

Overall, the VGG16 model has been shown to be an effective feature extractor for a variety of 

computer vision tasks, such as object identification, scene recognition, and picture captioning, and 

it has become a popular option for transfer learning in deep learning applications. 

Using a feedback system that ranks accounts based on their profile images may assist refine the 

grouping of Twitter accounts and increase the accuracy of the false profile checker algorithm. 

Utilizing deep learning models such as ResNet-34 and VGG16 to accomplish this feedback 

mechanism is one method. These models have been pre-trained on big-picture datasets and are 

capable of classifying photos based on their attributes and properties. 



The ResNet-34 5del is a deep residual network that can reliably and precisely categorize pictures. 

It employs skip connections to enhance the network's performance and has 34 layers. 

The VGG16 model is a convolutional neural network designed for large-scale image recognition 

applications. It has sixteen layers and can accurately categorize photos into a thousand categories. 

In order to apply these models in the bogus profile checker method, the algorithm may take the 

profile images from Twitter accounts and run them through the ResNet-34 and VGG16 models. 

The models will then categorize the photos based on their attributes and allocate them to groups 

according to their similarities. 

The computer may then utilize this information to improve account groupings based on profile 

images. For instance, accounts with similar profile photographs might be grouped together, whilst 

accounts with distinct profile pictures can be divided into separate groups. 

Using deep learning models such as ResNet-34 and VGG16 may increase the accuracy of the false 

profile checker algorithm by refining the categorization of accounts based on their profile images. 

Includes the VGGFace and FaceScrub datasets, using transfer learning. Transfer learning is a 

technique in deep learning where a pre-trained model on a large dataset is fine-tuned on a smaller 

dataset for a specific task. This allows the model to learn task-specific features faster and with less 

data than training a model from scratch. 

The fine-tuning process involves training the model with a triplet loss function, which encourages 

the model to learn embeddings that minimize the distance between embeddings of the same 

person's face and maximize the distance between embeddings of different people's faces. This 

helps the model to learn highly discriminative features for face recognition that are robust to 

variations in pose, illumination, and other factors. 

Overall, using the ResNet-34 architecture as a feature extractor for face recognition, combined 

with transfer learning and a triplet loss function, enables the face recognition model in the 

ageitgey's library to achieve high accuracy and robustness in recognizing faces. 

The pre-trained DNN model for face recognition is trained on a combination of the VGGFace and 

FaceScrub datasets. The VGGFace dataset contains over 2.6 million images of more than 2,600 

people, while the FaceScrub dataset contains over 100,000 images of 530 people. 

The VGG16 [6] model was originally trained on the ImageNet dataset, which is a large-scale 

image recognition dataset consisting of over 1.2 million images in 1,000 categories. The 

images in the 



dataset have a wide variety of objects, scenes, and backgrounds, and are labeled with their 

corresponding class labels. 

The VGG16 architecture was developed by the Visual Geometry Group (VGG) at the University 

of Oxford, and it was one of the top-performing models in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) 2014, which is an annual competition where participants are 

challenged to classify images into 1,000 categories. 

The VGG16 architecture consists of 16 convolutional layers, including five max pooling layers, 

and three fully connected layers. The convolutional layers have small 3x3 filters, which enables 

the model to learn highly discriminative features at a local scale. The max pooling layers reduce 

the spatial dimensionality of the feature maps and enable the model to learn spatial invariance to 

small translations. 

Overall, the VGG16 model has been shown to be a powerful feature extractor for various computer 

vision tasks, including object recognition, scene recognition, and image captioning, and it has 

become a popular choice for transfer learning in deep learning applications. 

The use of a feedback mechanism that sorts accounts according to their profile pictures can help 

further refine the grouping of Twitter accounts and improve the accuracy of the fake profile 

checker algorithm. 

One approach to implementing this feedback mechanism is by utilizing deep learning models like 

ResNet-34 and VGG16. These models are pre-trained on large image datasets and can classify 

images based on their features and characteristics. 

The ResNet-34 model is a deep residual network that can accurately classify images with high 

accuracy. It has 34 layers and utilizes skip connections to improve the performance of the network. 

The VGG16 model is a convolutional neural network that has been trained on large-scale image 

recognition tasks. It has 16 layers and can classify images into 1,000 categories with high accuracy. 

To utilize these models in the fake profile checker algorithm, the algorithm can extract the profile 

pictures of the Twitter accounts and pass them through the ResNet-34 and VGG16 models. The 

models will then classify the images based on their features and assign them to categories based 

on their similarities. 

The algorithm can then use this information to refine the grouping of accounts by the profile 

picture. For example, accounts with similar profile pictures can be grouped together, while 

accounts with dissimilar profile pictures can be separated into different groups. 



Overall, utilizing deep learning models like ResNet-34 and VGG16 can help to improve the 

accuracy of the fake profile checker algorithm by refining the grouping of accounts based on their 

profile pictures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: VGG-16 model. 

 
 

3.6 Sentimental Analysis 

VADER is a lexicon-based sentiment analysis tool designed to analyze and categorize sentiment 

in a social media text. It is a rule-based approach that uses a pre-built lexicon of words and phrases 

with associated sentiment scores to determine the sentiment of a given text. VADER uses a 

sentiment lexicon that is built specifically for social media text, which includes emoticons, slang, 

and other informal languages commonly used in social media. The lexicon contains over 7,500 

lexical features, including positive and negative polarity, intensity modifiers, and degree modifiers. 

Each word or phrase in the lexicon is assigned a sentiment score between -1 (most negative) and 

1 (most positive), with 0 being neutral. 

To perform sentiment analysis using VADER, the text is first tokenized into individual words and 

phrases. Each word or phrase is then compared to the lexicon to obtain its sentiment score. The 

overall sentiment of the text is determined by aggregating the individual scores, taking into account 

the intensity and degree modifiers present in the text. The output of VADER is a sentiment score 

between -1 and 1, where negative values indicate negative sentiment, positive values indicate 

positive sentiment, and 0 indicates neutral sentiment. 

VADER can also provide additional information about the sentiment of the text, such as the 

positive, negative, and neutral scores, as well as the compound score, which is a normalized score 

between -1 and 1 that represents the overall sentiment of the text. In addition, VADER can identify 

specific words and phrases in the text that contributed to the sentiment score. 



Sentiment analysis is a process of analyzing text to determine the emotional tone of the author, 

such as whether they are positive, negative, or neutral. VADER is a lexicon and rule-based 

sentiment analysis tool that has been shown to be particularly effective in analyzing social media 

content. 

By using VADER to analyze user activity, we can gain insights into the sentiment of tweets and 

other social media posts, as well as the frequency with which they are posted. This information 

can be used to identify accounts that may be engaged in spamming or other undesirable activity, 

such as posting excessively negative or inflammatory content. 

For example, if we notice that a particular user account is posting a high volume of tweets with a 

consistently negative sentiment, this could be an indication that the account is engaging in 

spamming or other undesirable behavior. Similarly, if we notice that a user account is posting an 

unusually high volume of tweets in a short period of time, this could also be a sign of spamming 

or other automated activity. 

Overall, using sentiment analysis with VADER can be a powerful tool for identifying potentially 

problematic user accounts and helping to maintain a healthy and positive social media 

environment. 

 

Figure 5: Natural Language toolkit 



3.7 Botometer Data Collection 

Botometer is an algorithm that is designed to identify Twitter bots, which are automated accounts 

that can be used to manipulate social media metrics such as followers, likes, and retweets. By using 

machine learning techniques to analyze patterns in account activity, Botometer can identify 

accounts that exhibit characteristics commonly associated with bots. 

By gathering data from every user's Botometer across all groups, we can gain insights into the 

prevalence of bots within our social media ecosystem. This information can be used to detect 

suspected fraudulent accounts that may be manipulating their followers or interaction using bots. 

For example, if we notice that a particular account has a high Botometer score, indicating that it is 

likely to be a bot, this could be a sign that the account is engaging in spamming or other 

manipulative behavior. Similarly, if we notice that a group of accounts have unusually high levels 

of interaction with each other, this could also be a sign of bot activity. 

Overall, by using Botometer to analyze user activity, we can gain insights into the prevalence of 

bots within our social media ecosystem and take steps to detect and address any suspected 

fraudulent accounts. This can help to ensure that our social media environment remains fair, 

transparent, and free from manipulation. 

The selenium-based bot enters a list or file containing the username of the Twitter accounts into 

the Botometer online tool and gets important information about the account. the information we 

are scrapping for each account from Bototmeter is: 

• Bot Score: the value between 0 – 5, 0 being not bot and 5 being for sure a bot. this value 

tells whether the entered account is a bot or not. This score is generated after passing 

through a machine learning model trained on 19 different datasets. (source bototmeter 

FAQ) 

• Echo-chamber: accounts that engage in follow-back groups and share and delete political 

content in high volume. 

• Fake followers: bots purchased to increase follower counts. 

• Financial: bots that post using hashtags 

• Self-declared: bots from botwiki.org 

• Spammer: accounts labeled as spambots from several datasets 

• Other: miscellaneous other bots obtained from manual annotation, user feedback, etc. 

• Recent tweets per week: number of tweets done by the accounts. 



• Retweet ratio: the percentage of the tweets by the account that are retweeted. 

• Most recent post: the date of the latest tweet 

Tweets by day of week give the frequency of the tweet done per day of the week. 

Tweets by an hour of the day: frequency of the tweet done as per the time of the day. 

3.8 Percentage Assignment 

The data of users in each category will be compared, and each account will be assigned a 

percentage depending on the likelihood that it is a false profile. To estimate the possibility of a 

fake profile, the algorithm will analyze many parameters, including: 

• Usernames score: using NLP model nltk, to give the similarity of the username of both of 

the accounts (the real and fake). 

• Name Score: using NLP model nltk to give the similarity of the name of the both accounts. 

• Location Score: calculating if the location of the account is the same or not. 

• Description score: using NLP to detect how much the description of the real and the fake 

account match each other. 

• Follower score: comparing the followers count of the fake and the real account. 

• Following score: comparing the following count of the fake and the real count. 

• Following/Followers ratio: calculation the ratio of the following and followers of the fake 

and the real account. 

• Join date score: comparing the join date of the real and the fake account here the more the 

fake account’s joining date is far from the real account the less the score. Also is the fake 

account joining date is before the real account then it gives a bonus score. 

• Verification: checking if the fake or the real accounts are verified. If the fake account is 

verified, then it’s given a bonus score. If both have similar status, then the average score 

whereas if real is verified and fake is into then the fake is given less score. 

• Birthday score: comparing the birthdate of both account. 

• Profession: check and compare the profession of both accounts using NLP, if it’s the same 

or not. 

• List score: compare the list count of both accounts in ratio. 

• Likes score: compare the likes count of both accounts in a ratio. 

• Tweets score: compare the no. of tweets of each account in a ratio. 



• Website score: simple check if both have entered any valid website link or not. Its weight 

is very low. 

• Bot score: as the fake account has already been scored with the Botometer so we pass the 

fake account Botometer parameters directly as score (Bot Score, Echo Chamber, Fake 

Followers, Financial, Self-Declared, spammer) 

• Ratio of Bot score: these are the Botometer parameter (Bot score, Echo Chamber, Fake 

Followers, Financial, Self-Declared, spammer). Compares each Botometer parameter of 

both accounts. 

• Most recent post: compare the most recent post of both accounts, this gives the idea of the 

activity of each account. 

• Recent tweets per week: compare the recent tweets per week value of the real and the fake 

account. 

• Retweet ratio score: compare the retweet ratio of the real and the fake account. Her ethe 

retweet ratio of the real account should be more than the fake. 

• Tweets by the day of the week score: here we use cos similarity to find the similarity 

between the tweeting frequency of both accounts as per day of the week. 

• Tweets by the hour of the day: here we use cos similarity to find the similarity between the 

tweeting frequency of both accounts as per hour of the day. 

• Sentiment score: it compares the overall tweets sentiments of both accounts and gives a 

score. 

• Positive score: compare the positive tweets ratio of both accounts. 

• Neutral score: compare the neutral tweets ratio of both accounts. 

• Negative score: compare the negative tweets ratio on both accounts. 

• Picture matching score: check if the fake account and the real accounts have been marked 

as the same picture (data is pulled from the pic_grouping table, and the list of the respective 

group is checked if it contains this fake account username, if yes then the fake account is 

using the same picture as the real user). 

3.9 Hate Speech Analysis Model 

The purpose of a Hate Speech Analysis Model is to automatically identify and classify text as 

either hate speech or not. The model is trained using machine learning algorithms on a labeled 



dataset of hate speech and non-hate speech text. Once trained, the model can be used to analyze 

new texts and determine whether they contain hate speech or not. 

Hate speech can have serious negative consequences, such as spreading bigotry and hatred, inciting 

violence, and causing emotional harm to targeted individuals and communities. By automatically 

detecting hate speech, the model can help social media platforms and other online communities to 

remove or flag offensive content, protect users from harm, and promote a safe and inclusive online 

environment. Additionally, the model can assist law enforcement agencies in identifying potential 

hate crimes and in enforcing hate speech laws. 

3.10 Results Display 

On the website, the percentage of authenticity and user information will be published. This will 

help people make educated judgments about whom to follow and interact with on Twitter. 

 

 

 
 

Figure 6: Working Model 



Chapter 4 

Detailed evaluation and analysis of the code 

4.1 START_HERE.py 

The program will be initiated by START_HERE.py. All the functions will be called from here. 

To start, there is a function called "enteruser()" that is located in a Python module named 

"save1.py". This function takes two parameters: the user's full name and the depth in which to look 

for profiles. The function uses Selenium, which is a package that allows automated web browsing, 

to search for a user on Twitter based on their full name. 

Twitter's algorithm then returns a list of profiles that match the provided name. The function 

extracts the usernames of the profiles from this list. These usernames are then passed to another 

function called "getusernames()" that is located in a different module named "User.py". 

The "getusernames()" function also uses Selenium to scrape information from the profiles of the 

users whose usernames were provided. The information that is scraped includes the user's full 

name, location, description, birthday, number of tweets, number of likes, number of followers and 

following, verification status, profile picture, website, profession, and number of lists. 

Once the data is scraped, it is stored in a database that is based on MYSQL. This database can be 

accessed later for further analysis of the scraped data. 

Overall, this process allows for automated data collection and analysis of Twitter profiles, which 

can provide insights into user behavior and characteristics. 

 

4.2 description1.py 
The next step is to group profiles based on their descriptions. 

The 'Des Clustering()' method applies agglomerative clustering on a collection of Twitter user 

profiles. Each dictionary in 'data1' provides information on a Twitter user's profile, such as their 

username, complete name, and profile description. 

The program collects each profile's description, complete name, and username, then merges them 

into a single string named 'Desc1'. Additionally, it generates a set of dictionaries named 'Info', each 

of which includes the username and combined description text for a single profile. 

The function then utilizes the scikit-learn library's 'TfidfVectorizer' to turn the list of description 

strings into a matrix of weighted feature vectors. The 'AgglomerativeClustering' method is then 



performed to the feature vectors using the input parameter 'Num' to specify the number of clusters. 

If 'distance threshold1' is used, the algorithm will cease merging clusters when the distance 

between clusters reaches the specified threshold. 

The method iterates over each cluster and determines the usernames of the profiles belonging to 

that cluster based on their respective description string. The resultant list of usernames for each 

cluster is saved together with a cluster label and an empty 'Full Name' field in a list of dictionaries 

named 'final list'. 

The function then produces the 'final list', which has a list of dictionaries representing clusters and 

a list of usernames corresponding to each cluster. 

In summary, the function handles the data by transforming the profile descriptions into a matrix 

of feature vectors, applying agglomerative clustering to the feature vectors, and then extracting the 

list of usernames for each cluster that is generated. The method provides a collection of dictionaries 

representing clusters and a list of related usernames. 

The clusters are then returned to the main programme Description1.py, where the cluster leaders 

are initially or temporarily allocated based on the number of maximum followers or the verification 

status. 

The description will also be evaluated, and only relevant data will be collected in order to execute 

OSINT for a specific cluster. 

Then, all clusters will be stored in the database's "group info" table.The next step is to group 

profiles based on their descriptions. 

The 'Des Clustering()' method applies agglomerative clustering on a collection of Twitter user 

profiles. Each dictionary in 'data1' provides information on a Twitter user's profile, such as their 

username, complete name, and profile description. 

The program collects each profile's description, complete name, and username, then merges them 

into a single string named 'Desc1'. Additionally, it generates a set of dictionaries named 'Info', each 

of which includes the username and combined description text for a single profile. 

The function then utilizes the scikit-learn library's 'TfidfVectorizer' to turn the list of description 

strings into a matrix of weighted feature vectors. The 'AgglomerativeClustering' method is then 

performed on the feature vectors using the input parameter 'Num' to specify the number of clusters. 

If 'distance threshold1' is used, the algorithm will cease merging clusters when the distance 

between clusters reaches the specified threshold. 



The method iterates over each cluster and determines the usernames of the profiles belonging to 

that cluster based on their respective description string. The resultant list of usernames for each 

cluster is saved together with a cluster label and an empty 'Full Name' field in a list of dictionaries 

named 'final list'. 

The function then produces the 'final list', which has a list of dictionaries representing clusters and 

a list of usernames corresponding to each cluster. 

In summary, the function handles the data by transforming the profile descriptions into a matrix 

of feature vectors, applying agglomerative clustering to the feature vectors, and then extracting the 

list of usernames for each cluster that is generated. The method provides a collection of dictionaries 

representing clusters and a list of related usernames. 

The clusters are then returned to the main programme Description1.py, where the cluster leaders 

are initially or temporarily allocated based on the number of maximum followers or the verification 

status. 

The description will also be evaluated, and only relevant data will be collected in order to execute 

OSINT for a specific cluster. 

Then, all clusters will be stored in the database's "group info" table. 

4.3 USER_OSINT.py 

Start User() This function initiates the feedback process for OSINT. For the preliminary grouping, 

input is necessary. This feedback is responsible for flagging the famous person's Twitter account 

and providing description clustering for those famous people. To do this, OSINT is carried out. 

To verify the original Twitter account of a person, we must recognize that he or she is a celebrity. 

Google will only then include their data in the Knowledge panel. The issue is that while the Google 

knowledge panel includes the correct description of the person, it does not always include the 

correct Twitter id. For this, an algorithm is developed that verifies whether or not the celebrity has 

a Twitter account. If yes, what is his or her Twitter handle? 

Start User() is a function that extracts and saves the data of Twitter ids (just the group header) in a 

list. This list of usernames is supplied to a function known as link (). 

This function is responsible for displaying the complete names of the persons whose usernames 

are connected. In order to do this, we must first recognize that if there is a Google knowledge panel 

for a certain person, then there must be a corresponding Wikipedia page. OSINT is all about 

discovering vulnerabilities and exploiting them to get the desired data. These vulnerabilities target 



SEO in particular. To get to the genuine famous person based on merely the Twitter user id handle, 

we must first input the Twitter id handle, the entire name of the account, and the Wikipedia text. 

"user-id handle plus Fullname plus Wikipedia." The link() method then just scrapes the first link 

on the page and scrapes the name from that name. This item is added to the list to search1[]. This 

is sent back to Start User (). 

 
After the list to serach1 is acquired, the OSINT() method is called. Due to their notoriety, these 

individuals will always have a Google knowledge panel. From the Google knowledge panel, we 

can now get a description of these celebrities. For Twitter id, there are specific instances 

In the knowledge panel, a Twitter account is listed. 

There is no mention of a Twitter account in the knowledge panel. 

This an extremely uncommon instance in which the referenced Twitter account is a hoax. Out of 

fifty attempts using OSINT, we have only discovered two such accounts after rigorous testing. 

In order for OSINT to function with high precision, it is necessary to develop an algorithm that 

can operate in each of the aforementioned circumstances. Therefore, the OSINT followers() 

method is employed. 

The OSINT followers() method is used to validate the Twitter followers of all investigated 

accounts. Through the account's followers, it is possible to determine if the account is legitimate 

or not. The issue is how to authenticate the followers. We use Google's knowledge panel to 

authenticate our followers. We search Google for the names of the first 20 persons (followers of 

the account under investigation) (first 20 followers that appear on the followers' page are to be 

confirmed since the first 20 followers shown will be the account's most prominent followers). If a 

Google knowledge panel appears, we know that the sought individual is renowned. Now we will 

examine the Twitter accounts listed in the Google Knowledge panel. If it is the same as the Twitter 

id of the follower. The account under investigation is genuine. If the followers' Twitter id handle 

and the Google Knowledge Panel's Twitter id handle do not match, the understudy account is not 

valid, and a list of actual Twitter ids is compiled (of people under study). If the Twitter ID is not 

validated, the list is added with the text "null." This indicates that the user does not have an official 

Twitter account. 



4.4 affiliated_images_for_feature_matching(user_twitter_search, user_osint) 

A function called affiliated_images_for_feature_matching(user_twitter_search, user_osint) 

The parameters of the function are user_twitter_search and user_osint. 

User_twitter_search(the string that contains the name that was entered by the user.): There exists 

a folder that is named after this string. It contains all the image files(profile pictures) of the Twitter 

accounts that appear after the search query is done on Twitter 

User_osint(the string that contains the real name of the person under study): There exists a folder 

that is named after the osint search query that is stored as a string in the user_osint string. 

The use of this function is to detect images that contain similar objects as the images affiliated 

images of the person under study. A list of the usernames is returned after the function call 

Thus the list of matched faces and duplicates along with the list of affiliated images are then 

obtained through a function called filter() This function saves the 3 lists list of matched faces, the 

list of duplicate images, and the list of affiliated images in a way that the list of matched faces and 

list of duplicates is save din one list ajd the affiliated image list is separated. These lists are then 

saved in MySQL. 

4.5 Tweet_Analysis.py 

The program is named Tweet_Analysis.py. this function will be called after pics_Grouping. Its 

input parameters will be a list of usernames. Then we will use each username and using the 

snscrape module to scrape the tweets of the profile. The number of tweets to extract can be adjusted 

accordingly. Snscrape uses Twitter’s API to extract tweets and return the tweet’s data in the form 

of a dictionary containing: tweet-id, tweet-text, datetime, and username. 

Then for each profile, the tweets scrapped will be pushed to the database table 

“users_Tweets_Temp”. 

For each profile we will make a list of tweets and pass it to the module which is VADER sentiment 

analysis. 

To calculate the sentiment score for each word, the Vader model assigns a polarity score to each 

word in the tweet. The polarity score ranges from -1 to 1, where -1 indicates extremely negative 

sentiment, 0 indicates neutral sentiment, and 1 indicates extremely positive sentiment. 

The model then combines the polarity scores of all the words in the tweet to provide an overall 

sentiment score for the tweet. The overall sentiment score ranges from -1 to 1, where -1 indicates 

extremely negative sentiment, 0 indicates neutral sentiment, and 1 indicates extremely positive 



sentiment. In addition to the overall sentiment score, Vader sentiment analysis also provides three 

additional scores: positivity, negativity, and neutrality. These scores indicate the relative 

proportions of positive, negative, and neutral sentiments in the tweet. 

For example, if a tweet has an overall sentiment score of 0.5, it indicates that the tweet has a 

positive sentiment. The positivity score may be 0.8, indicating that 80% of the sentiment in the 

tweet is positive, while the negativity score may be 0.1, indicating that only 10% of the sentiment 

in the tweet is negative. The neutrality score may be 0.1, indicating that the remaining 10% of the 

sentiment in the tweet is neutral. Then on each tweet, we will perform Sentiment analysis using 

VADER Sentiment analysis. Which will return the overall sentiment, positivity, negativity, 

neutrality of each tweet. Then for each person we will take average of each parameters then push 

the data to table “Sentiments”. 

 

 
4.6 Botometer.py 
In this code we prepared a function named Botometer_analysis that takes six arguments (i.e. 

Input_user, List0_file1, Logs_Print, Print_detail, Output_Options, Do_Headless) the default input 

of the arguments are Logs_Print=1, Print_detail=1, Output_Options=0, Do_Headless=0, here the 

arguments means : 

Input_user: enter the list or file address. 

List0_file1: 0 for if you are sending List, 1 for if you are sending file address 

Logs_Print,: 0 for not print logs, 1 for print logs. 

Print_detail: 0 for NOT print the user scrapped detail, 1 for print the user scrapped detail. 

Output_Options: 0 for getting a csv form data output file, 1 for pushing in SQL DB 

Do_Headless: 0 for watching the bot working, 1 for headless. 

The purpose of the function is to use the selenium-based bot to enter the list or file containing 

username of the twitter accounts into the Botometer online tool and get the important information 

about the account. the information we are scrapping for each account from bototmeter is: 

• Bot Score: the value between 0 – 5 , 0 being not bot and 5 being for sure a bot. this value 

tells that that whether the enter account is a bot or not . This score is generated after passing 

through a machine learning model trained of 19 different datasets. (source bototmeter 

FAQ) 



• Echo-chamber: accounts that engage in follow back groups and share and delete political 

content in high volume 

• Fake follower: bots purchased to increase follower counts 

• Financial: bots that post using cashtags 

• Self declared: bots from botwiki.org 

• Spammer: accounts labeled as spambots from several datasets 

• Other: miscellaneous other bots obtained from manual annotation, user feedback, etc. 

• Recent tweets per week: no of tweets done by the accounts 

• Retweet ratio: the percentage of the tweets by the account that are retweeted 

• Most recent post: the date of the latest tweet 

• Tweets by day of week : gives the frequency of he tweet done per day of week 

• Tweets by hour of day : frequency of the tweet done as per the time of the day 

 

 
When the function is called the necessary libraries are imported (selenium) then the chrome drive 

is called. Then the Botometer is called using the website https://botometer.osome.iu.edu/. The bot 

then enters the login credentials which are the twitter account credentials. After that the username 

for which we want the result of the Botometer is inserted and then the necessary data is gathered 

as per requirement. 

 
Botometer_SQL.py: 

It uses the Botometer.py function Botometer_analysis to input the usernames of the currently 

group of the current session into the Botometer tool and get the result (mentioned in the 

botmeter.py) of the each usernames and stores it in the table userprofile_temp of the mysql 

database. Before this the function creates the necessary columns in the table userprofile_temp so 

that the data can be entered into it. This whole function takes place after the feedback module is 

executed and before the Percentage_giver so that the data is prepared for the Percentage_giver. 

The columns created are : 

Bot_Score,Echo_Chamber,Fake_Followers,Financial,Self_Declared,Spammer,Most_Recent_Pos 

t,Likes_Count,Recent_tweets_per_week,Retweet_Ratio,Tweets_by_day_of_week,Sun,Mon,Tue 

s,Wed,Thurs,Fri,Sat,Tweets_by_hour_of_day,12AM,1AM,2AM,3AM,4AM,5AM,6AM,7AM,8 

https://botometer.osome.iu.edu/


AM,9AM,10AM,11AM,12PM,1PM,2PM,3PM,4PM,5PM,6PM,7PM,8PM,9PM,10PM,11PM. 

(Note: these are all the values are get from the Botometer tool for the each entered user) 

 
 

Percentage_giver: 

It is the code that tags the real and fake account of each of the group in the session and then gives 

the percentage to each of the fake account using machine learning and nlp based on their 

resemblance to the real account of the group. Move over this function creates the final json file ( 

named: dataofprediction.json) of the whole session each detail so that is can be used to display 

data on the website. 

Functions: 

The code consists of 11 functions i.e 

tomongo() : converts the final json file containing all the information, including the prediction 

score into the mongodb db so that it can be used for displaying data on website. 

extract_nouns_keywords(text): A function to extract nouns and important keywords from a 

string 

similarity_score(str1, str2): A function to give a similarity score between two strings 

weighted_percentage(data, weight): A function that gives the weightage to the data 

date_diff(date_str): A function that gives the difference is two enter dates. the difference is time 

is seconds. 

date_diff1(date_str): A function that give the difference between the current time and the enter 

date. 

fan_detect_words(list): A function that detects whether the entered word is resembling with fan 

account and contains keywords that make the account fan account. The keywords can be : 

fan','fc',"parody",'fp' 

fan_detect_letters(list): A function that detects whether the entered word contains any letter that 

resembling with fan account used letters. 

fan_detect_overall(list): A function uses the “fan_detect_words” and “ fan_detect_letter_ 

function to return the list of string that are fan account associated. 

Rater(real,real_df,fake_df): A function that gives the entered account scoring of being similar 

to the real account. It compares the real and the each fake account of the group on the basis of 38 

different parameter . The value of each of the parameter of both , the real and the current account, 



is calculated and is given values between 0 and 1. Following are the 38 different parameter with 

there description: 

1. Usernames score: using nlp model nltk, to give the similarity of the username of both of 

the account (the real and fake) 

2. Name Score: using nlp model nltk to give the similarity of the name of the both accounts. 

3. Location Score: calculating if the location of the both account is same or not 

4. Description score: using nlp to detect how much the description of the real and the fake 

account matches to each other. 

5. Follower score: comparing the followers count of the fake and the real account 

6. Following score: comparing the following count of the fake and the real count 

7. Following/Followers ratio: calculation the ratio of the following and followers of the fake 

and the real account 

8. Join date score: comparing the join date of the real and the fake account here the more the 

fake account joining date is far from the real account the less the score. Also is the fake 

account joining date is before the real account then its given bonus score. 

9. Verification: checking if the fake or the real account are verified. If the fake account is 

verified then its given bonus score . If both have similar status then average score whereas 

if real is verified and fake is into then the fake is given less score. 

10. Birthday score: comparing the birthdate of the both account 

11. Profession: check and compare the profession of the both accounts using nlp, if its same or 

not. 

12. List score: compare the list count of the both accounts in ratio 

13. Likes score: compare the likes count of the both accounts in a ratio 

14. Tweets score: compare the no. of tweets of each account ina ratio 

15. Website score: simple check if both have entered any valid website link of not. Its weight 

is very low. 

16. Bot score: as the fake account have already been scored with the botometer so we pass the 

fake account Botometer parameters directly as score ( Bot Score,Echo Chamber,Fake 

Followers, Financial,Self Declared, spammer) 



17. Ratio of Bot score: these are the Botometer parameter (Bot Score,Echo Chamber,Fake 

Followers, Financial,Self Declared, spammer) . Compares the each Botometer parameter 

of the both accounts. 

18. Most recent post: compare the most recent post of the both account, this gives idea of the 

activity of each account. 

19. Recent tweets per week: compare the recent tweets per week value of the real and the fake 

account 

20. Retweet ratio score: compare the retweet ratio of the real and the fake account. Her ethe 

retweet ratio of the real account should be more than the fake. 

21. Tweets by the day of the week score: here we use cos similarity to find the similarity 

between the tweeting frequency of the both account as per fay of the week. 

22. Tweets by the hour of the day: here we use cos similarity to find the similarity between the 

tweeting frequency of the both account as per hour of the day. 

23. Sentiment score: it compares the overall tweets sentiments of the both accounts and gives 

a score 

24. Positive score: compare the positive tweets ratio of the both accounts 

25. Neutral score: compare the neutral tweets ratio od the both account 

26. Negative score: compare the negative tweets ratio o the both accounts 

27. Picture matching score: check if the fake account and the real accounts have been marked 

as the same picture ( data is pulled from the pic_grouping table, the list of the respective 

group is check if it contains this fake account username , if yes then the fake account is 

using the same picture as the real user ) 

 
 

All these parameter give a score between 0 and 1 and then is then weighted as per its importance . 

this weightage is prepared after testing and studying multiple research papers. Here are the 

weightages we have set (between 0 and 1, if you see more than 1 hence it is given bonus 

weightage): 

• Username = 2.0 

• Fullname = 2.0 

• Location = 0.2 

• Description = 1.0 



• Followers = 1.0 

• Following = 1.0 

• F_F_ratio = 1.0 

• joindate = 1.0 

• verified = 10.0 

• Birthday = 0.5 

• Profession = 0.2 

• Lists = 1.0 

• Likes = 1.0 

• Tweets = 0.7 

• Website = 0.2 

• Bot_Score = 2.0 

• ratio1 = 0.5 

• Echo_Chamber = 0.5 

• ratio2 = 0.2 

• Fake_Followers = 0.5 

• ratio3 = 0.2 

• Financial = 0.5 

• ratio4 = 0.2 

• Self_Declared = 0.5 

• ratio5 = 0.2 

• Spammer = 0.2 

• ratio6 = 0.2 

• MRT = 1.0 

• Recent_tweets_per_week = 0.5 

• Retweet_Ratio = 0.5 

• Tweets_by_day_of_week = 1.0 

• Tweets_by_hour_of_day = 1.0 

• fan = 10 



Now the percentage Is generated based on these score and is enter in the mysql db base . the 

percentage is enter in the table userprofiel_temp across the fake account row under the column 

name “prediction”. (note here the more the score, the more the fake account is mimicking the real 

account) 

hence we can see that we not only analyzed the general information count (i.e followers, following) 

but also he pictures with similar, tweeting habits and frequency moreover fake followers( 

Botometer parament), and bot activity to give the percentage of the fake account. 

Note: all the above handle the null case such that if null is present for any parameter of the real 

account then automatically the weight of that parameter is dropped to zero hence this parameter 

does not contribute to the percentage of prediction and if the null is represented in any parameter 

of the fake account then that parameter score for the fake account is given 0 scores. 

4.7 Percentage_giver( ) 

This is the main function that is called when the percentage giver module is run. This function 

takes no arguments and uses the rater function in it. The purpose of this function is to make a 

proper data frame of the groups of the current session such that each group’s each account is passed 

through the Rater function to be given a prediction score. 

First of all, it connects to the database which has been updated after the feedback and osint results, 

also the Botometer values have been added to it. The function looks for the group in the 

after_feedback_groups1_info and pulls each row containing the list of group member usernames 

(under the usernames column) then three possible can cases: 

Case 1: If the real account of the group has been found using the osint tool. 

Case 2: if the real account of the real is not found using the osint but there is a verified account in 

the group so consider it real. 

Case 3: the real account is not found from osint moreover there is no verified account in the group 

hence we call a pre-trained ML model to find the real account from the group on the basis of 

genetic real and fake account behaviors. 

To check if we have case 1, the code searches each username (from the groups’ username list) in 

the feed_back_groups1_info table column ID_twitter, if there is any username from the list, in the 

column ID_twitter, this username account is considered real ( this username is inserted in this 

column via osint previously ) 



To check if we have case 2, it is for sure that case 1 failed, hence now each username from the 

group list is searched in the userprofile_temp table and its verification column is check, if we find 

any username with verification column 1 then it is considered real for the group. 

If case 1 and case 2 fails then automatically case 3 is applied i.e machine learning model that is 

trained on multiple parameters is given all of the groups’ user accounts to find the real and fake 

accounts and give a score of prediction 

Note: in case 1 the real account is given the max real score hence we are sure that we have found 

the real account, for case 2 we are somewhat sure of the real account hence the score is less than 

the case 1 real account. in case 3 we are not sure if the found account is for sure real hence the real 

account is given the least real account score (here the real accounts prediction score will be 

100,95,90 for case 1, case 2, and case 3 respectively, and is always greater then the fake accounts 

of the group) 

after entering any of the three cases two data frame is prepared of all the details of each account 

of the group’s usernames. One data frame is of real account names real_df and the second one if 

all the fake accounts of the group names fake_df. 

Each data frame is passed to the rater to give the score, the returned score is then added back into 

the userprofile_temp table column prediction. 

then all the results i.e () are added into the json file dataofpredction.sjon (it is a json file of the list 

of dictionaries of dictionar. 

in the end, the data of the prediction file is sent to the function to Mongo dB to convert into a 

Mongo dB to be used to display data on the website. 

4.8 Machine Learning Algorithm 

Machine learning program that performs various tasks to train and evaluate a Random Forest 

Classifier algorithm on a dataset. The first step is to load a dataset from a CSV file using the pandas 

library. Then, the program preprocesses the data by converting the "Joining date" column to a 

datetime object and extracting year, month, and day features. The feature columns and target 

column are defined next. 

The dataset is then split into training and testing sets using the train_test_split function from the 

sklearn.model_selection library. A Random Forest Classifier model is defined with 100 estimators, 

and it is trained on the training data using the fit method. 



The model is then evaluated on the test data using the accuracy_score function from the 

sklearn.metrics library. Finally, the program makes predictions on new data using the trained 

model. The program preprocesses the new data by converting the "Joining date" column to a 

datetime object and extracting year, month, and day features. The program removes the Joining 

date from the feature columns as it is not necessary for prediction. The program then makes a 

prediction on the new data using the predict method of the trained model. 

This section of the code starts by loading a CSV file called 'data.csv' into a pandas dataframe using 

the `read_csv()` method. 

Next, it converts the 'join-date' column, which contains the date that a Twitter account was created, 

to a pandas datetime object using the ̀ to_datetime()` method. This makes it easier to extract useful 

features such as year, month, and day from the date. 

Then, it creates three new columns in the dataframe representing the year, month, and day that 

each Twitter account was created. This is done using the `apply()` method with a lambda function 

that extracts the corresponding attribute from the datetime object for each row in the 'Joining date 

of Twitter' column. 

 
2. Defining Features and Target Variable 

This section of the code defines the list of features and the target variable that will be used to train 

the machine learning model. The features are a combination of numerical and categorical variables 

related to Twitter accounts, such as bot score, number of likes, and joining date. The target variable 

is binary, with a value of 1 indicating a real account and a value of 0 indicating a fake account. 

• 'Bot_Score', 

• 'Likes', 

• 'Retweet_ratio', 

• 'Tweets_by_day_of_week_list', 

• 'Tweets_by_hour_of_day_list', 

• 'Following', 'Followers', 

• 'Year of joining', 

• 'Month of joining', 

• 'Day of joining', 

• 'tweetno' 



3. Splitting Data into Training and Testing Sets 

This section of the code uses the `train_test_split()` method from scikit-learn to split the data into 

a training set and a testing set. The `test_size` parameter is set to 0.2, which means that 20% of the 

data will be used for testing and 80% for training. The `random_state` parameter is set to 42 to 

ensure that the same split is obtained every time the code is run. 

 
4. Training the Random Forest Classifier 

This section of the code defines a random forest classifier with 100 trees and a random state of 42. 

It then trains the model on the training set using the `fit()` method. 

 
5. Evaluating Model Performance 

This section of the code uses the trained model to predict the target variable for the testing set 

using the `predict()` method. It then calculates the accuracy score, which represents the proportion 

of correctly classified instances in the testing set, using the ̀ accuracy_score()` function from scikit- 

learn. The accuracy score is printed to the console. 

 
6. Making Predictions on New Data 

In this the algoritm predict the given id is real or fake and if real then the percentage of the realness 

of the account. 

 

4.9 Hate_Speech() 

This will be triggered only when the user wishes to perform hated speech analysis on the real 

profile in the end of program. The function ‘Hate_Speech()’ in Speech_Detection.py will take two 

parameters username, depth, and number of users who were at top in spreading hate tweets. 

Then again using scraper we will scrape the tweets that are either involved in trend against 

username, or name of real profile, then again perform vader sentiment analysis on each of the tweet 

but this time we will only keep those tweets which are negative and keep the record of usernames. 

then we will highlight profiles having large number of hated tweets against real profile. And return 

the data in form of .JSON format where It will be displayed. 

Data to be displayed:: 

1: trends in form of hashtags #username, #name. 



2: top users. (then on each profile we can perform OSINT to tell if they are famous and real or not) 

3: hated tweets. 

4: starting ids. 

4.10 Website 

The website for the fake profile checker will have a frontend made using React, a popular 

JavaScript library for building user interfaces. The frontend will be responsible for displaying the 

results of the authenticity check to the user, including the percentage of authenticity and user 

information. 

Once the authenticity check is complete, the backend will send the results to the frontend. The 

React components will then render the results on the screen in a user-friendly manner, making it 

easy for users to understand the authenticity of the Twitter account in question. 

 
The percentage of authenticity will be displayed prominently on the website, giving users a quick 

and easy way to gauge the authenticity of the account. This percentage will be calculated based on 

the algorithm's analysis of the Twitter account's data, including the account's profile information, 

follower count, activity, and other pertinent information. 

 
In addition to the authenticity percentage, the website will also display the user information that 

was collected during the data scraping process. This information may include the user's profile 

description, location, date of joining, number of followings, number of followers, and other 

pertinent details. 

 
By providing this information to users, the website can help people make educated judgments 

about which Twitter accounts to follow and interact with. This can help to prevent users from 

unwittingly following or interacting with fake or fraudulent accounts, ultimately making Twitter a 

safer and more trustworthy platform. 



Chapter 5 

Conclusion 

In conclusion, the detection of fake profiles on Twitter is a critical issue that has the potential to 

cause significant harm, including the spread of propaganda, manipulation of public opinion, and 

online bullying. The existing methods for detecting fake profiles are often unreliable, time- 

consuming, and expensive. 

 
This project proposes a solution that uses machine learning and artificial intelligence techniques 

to accurately and efficiently detect fake profiles on Twitter. The proposed system has several 

benefits, including the ability to improve the accuracy and effectiveness of detecting fake profiles, 

which will help to create a safer online environment for all users. 

 
The system also includes a hate speech detection model that will be useful in identifying and 

removing accounts that engage in harmful and discriminatory behavior. The project has academic 

objectives such as conducting research on the effectiveness of machine learning and artificial 

intelligence techniques in detecting fake profiles and creating a framework for future studies in 

this field. 

 
The deliverables of this project include a working prototype of the fake profile detection system, 

a research paper detailing the methodology and results, a user-friendly website to access the 

system, and a comprehensive report on the hate speech analysis conducted. 

 
Overall, this project is an important step towards improving the safety and integrity of social media 

platforms, and the proposed system has the potential to make a significant impact in the fight 

against fake profiles and online bullying. 



Chapter 6 

Future Work 

The future work of this project can involve several aspects, including: 

 
 

1. Integration with other social media platforms: Currently, the fake profile detection system is 

designed specifically for Twitter. However, it can be extended to other social media platforms such 

as Facebook, Instagram, and LinkedIn. This can be achieved by developing separate models for 

each platform or by using a unified model that can work across different platforms. 

 
2. Continuous improvement of the detection model: The performance of the current model can 

be further improved by incorporating new features or by using more advanced machine learning 

algorithms. For instance, the use of deep learning models such as Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) can potentially improve the accuracy of the 

model. 

 
3. Collaboration with social media companies: The fake profile detection system can be 

integrated with the APIs of social media companies, allowing them to monitor and remove fake 

profiles more efficiently. This can also involve collaboration with social media companies to share 

data and improve the accuracy of the detection model. 

 
4. Integration with other security systems: The fake profile detection system can be integrated 

with other security systems such as intrusion detection systems and antivirus software to provide 

a comprehensive security solution for users. 

 
5. Development of a user-friendly interface: The current system requires users to enter the name 

of the profile they want to check for fake accounts. However, a more user-friendly interface can 

be developed that allows users to easily scan their entire Twitter follower list for fake accounts. 



Overall, the future work of this project can focus on improving the accuracy, efficiency, and 

usability of the fake profile detection system, and extending its capabilities to other social media 

platforms and security systems. 
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