

DE-42

(EE)

Abdullah

Benyamin

,

Muhamm

ad Kashif,

Nauman

Saeed,

Zoraiz

Ahmad

FPGA Implementation of Optimized Deep Learning

Algorithm

COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND

TECHNOLOGY RAWALPINDI

2024

D

E
-4

2
 (E

E
) A

b
d

u
lla

h
 B

en
y
a
m

in
, M

u
h

a
m

m
a
d

 K
a
sh

if, N
a
u

m
a
n

 S
a
eed

, Z
o
ra

iz A
h

m
a
d

DE-42 EE

PROJECT REPORT

FPGA Implementation of Optimized Deep Learning Algorithm

Submitted to the Department of Electrical Engineering

in partial fulfillment of the requirements

For the degree of

Bachelor of Engineering

in

Electrical

2024

Submitted By:

Abdullah Benyamin

Muhammad Kashif

Nauman Saeed

Zoraiz Ahmad

i

CERTIFICATE OF APPROVAL

It is to certify that the project “FPGA Implementation of Optimized Deep

Learning Algorithm” was done by NS Abdullah Benyamin, NS Muhammad Kashif,

NS Nauman Saeed and NS Zoraiz Ahmad under the supervision of Dr. Usman Ali.

This project is submitted to Department of Electrical Engineering, College of

Electrical and Mechanical Engineering (Peshawar Road Rawalpindi), National University of

Sciences and Technology, Pakistan in partial fulfilment of requirements for the degree of

Bachelor of Electrical Engineering.

Students:

1. Abdullah Benyamin

 NUST ID: 346935 Signature: ______________

2. Muhammad Kashif

 NUST ID: 332352 Signature: ______________

3. Nauman Saeed

 NUST ID: 346173 Signature: ______________

4. Zoraiz Ahmad

 NUST ID: 348656 Signature: ________________

APPROVED BY:

Project Supervisor: Date:

Dr. Usman Ali

ii

DECLARATION

We affirm that the content presented in this Project Thesis is original and has not been

submitted in support of any other degree or qualification at this or any other educational

institution. We acknowledge that any act of plagiarism will result in full responsibility and

may lead to disciplinary action, including the potential cancellation of our degree, based on

the severity of the offense.

1. Abdullah Benyamin ________________________

2. Muhammad Kashif ________________________

3. Nauman Saeed ________________________

4. Zoraiz Ahmad ___________________________

iii

COPYRIGHT STATEMENT

The student author's intellectual property and copyright cover the text of this thesis. Any copies

or excerpts from this thesis should adhere to the author's guidelines precisely and be stored in

the NUST College of E&ME Library. Additional copies of such copies may only be made with

the author's written consent.

 Except when otherwise noted, all intellectual property rights in connection with the content

 presented in this thesis are owned by NUST College of E&ME and may not be used by third

 parties without the College's prior written consent. The College of E&ME will set the terms

 and circumstances of such agreements. Please contact the library of the NUST College of

 E&ME in Rawalpindi for more details on disclosure and exploitation conditions.

iv

ACKNOWLEDGMENTS

We like to express our heartiest gratitude and appreciate all the individuals and organizations who have

contributed to the successful completion of this project. Their guidance, encouragement and support were

invaluable throughout this journey.

First and foremost, we would like to thank our project supervisor Dr. Usman Ali and Co-Supervisor Asst.

Prof. Kamran Aziz Bhatti, whose guidance, expertise and continuous encouragement played crucial role in

development of this project. Their insightful suggestions and constructive feedback have greatly contributed

to overall quality of this project.

We extend our sincere thanks to the faculty members of the College of Electrical and Mechanical

Engineering, NUST, especially to the Department of Electrical Engineering, for providing us an excellent

academic research environment. Their dedication to imparting knowledge and fostering innovation has been

instrumental in our learning and growth.

We are grateful to our fellow classmates especially Saifullah Masud, Muhammad Umar Farooq, Sajjad Ali

and Masoom Raza and colleagues for their assistance, collaboration, and brainstorming sessions throughout

this project. Their collective efforts and diverse perspective have greatly enhanced our understanding and

problem-solving skills.

We would also like to thank the technical staff at College of Electrical and Mechanical Engineering, NUST

for the support and guidance received from them. Their expertise in hardware implementation and software

development has been instrumental in the smooth execution of our project. Also, for helping us in utilizing

their laboratory facilities.

We express our gratitude to the participants of our study who generously volunteered for their time and

cooperation in this project. Their involvement has been crucial in collecting the necessary data and validating

the effectiveness of our project.

Lastly, we would like to express our gratitude to our relatives and allies for the consistent aid they have been

providing us with all through this course of action. It is their fondness, motivation and trust in our own

competencies that has given us the zeal to conquer any obstacles along the way.

Even if it is not feasibly realistic to name each person individually, we are grateful for the cumulative input

of all those who have contributed to this project. It would not have been achieved without their continuous

help and dedication.

Thank you all for being an integral part of our journey and for your invaluable contributions to the success

of this project.

Abdullah Binyamin

Muhammad Kashif

Nauman Saeed

Zoraiz Ahmad

v

ABSTRACT

vi

SUSTAINABLE DEVELOPMENT GOALS

SDG 4: Quality Education:

FPGA technology is used by our project to employ convolutional neural network which changes images

from into words, harnessing deep learning in order to improve education accessibility. Converting visual

information to written texts facilitates learning communities’ inclusiveness which may allow for obtaining

of information in multiple formats. In line with the Sustainable Development Goal 4, this method supports

inclusive and equitable quality education and promotion of lifelong learning opportunities. Our aim is to

enhance learning experiences through incorporation of high level technological aspects in educational

setups as well as ensuring equal availability of information thereby achieving the broader objectives of

SDG 4.

SDG 9: Industry Innovation and Infrastructure:

Our project uses FPGA tech to revolutionize educational technology, and finally convert visual data into text

through the use of a convolutional neural network. It is in line with Sustainable Development Goal 9, which

encourages infrastructure development and fostering sustainable industrialization. Technological

infrastructure can be improved by making sure that FPGA is integrated into instructional equipment used in

educational institutions thus supporting an innovative ecosystem for sustainable industrial growth. This

allows developing more dynamic industries responsive to future learning needs.

TABLE OF CONTENTS

Table of Contents

ACKNOWLEDGMENTS .. i

ABSTRACT .. v

SUSTAINABLE DEVELOPMENT GOALS .. vi

LIST OF FIGURES .. 9

 Chapter 1: INTRODUCTION………………………………………………………………………………..1

 Problem Statement……………...………………………………………………………………………….1

 Objectives……………………………..…………………………………………………………………...1

 Significance of Study…………………...………………………………………………………………….2

 Chapter 2: BACKGROUND AND LITERATURE REVIEW………………………………………………3

Problem Statement ... 1

Introduction: ... 1

Deep Lerning on FPGA: .. 2

Benefits of Implementing Deep Learning on FPGA: .. 3

Challenges of Implementing Deep Learning on FPGA: .. 3

Hardware Accelaration: ... 3

Chapter 3: METHODOLOGY .. 7

3.1 Introduction: ... 7

3.2 Data Preparation: ... 8

Chapter 4: Implementation .. 22

4.1 Introduction: .. 22

4.2 Software Development and Optimization:.. 22

4.1 Fixed Point Arithmetic Implementation: .. 23

1.1 Introduction: .. 32

1.2 Evaluation of Outcomes:... 32

1.3 Challenges and Lessons Learned: ... 33

 Chapter 5: Results…………………………………………………………………………………………………….42

 Introduction…………………………………………………………………………………………………… 42

 Results of Model Training in Python …………………………………………………………………………..42

 Verilog Results……………………………………………………………………………………………………42

 Resources Utilized on FPGA…………………………………………………………………………………….48

Chapter 6: Discussion and Future Enhancements………………………………………………………………………..49

 Introduction………………………………………………………………………………………………………49

 Evaluation of Outcomes………………………………………………………………………………………….49

 Challenges and Lesson Learned………………………………………………………………………………….50

Chapter 7: Conclusion and Future Work ... 53

 Summary of Findings:.. 53

 Future Directions and Recommendations: ... 36

REFERENCES .. 38

APPENDEX ………. 47

iv

LIST OF FIGURES

Figure 1. Block Diagram of Complete Project 07

Figure 2. Visual Representation of CNN Model 08

Figure 3. CNN Model Training and Validation 09

Figure 4. Translation to MATLAB 10

Figure 5. Floating Point Weights in C++ for Fixed Point Conversion 12

Figure 6. Floating Point Weights converted to Fixed Point Weights 12

Figure 7. Data Path for Convolution with ReLU 14

Figure 8. Data Path Max Pool 15

Figure 9. ASM Chart ReLU 16

Figure 10. Data Path ReLU 17

Figure 11. ASM Chart SoftMax 18

Figure 12. Data Path SoftMax 19

Figure 13. Timing Diagram for Testing and Debugging 20

Figure 14. Spartan 6 LX45 FPGA 24

Figure 15. Spartan 6 LX45 FPGA Total Resources 25

Figure 16. Confusion Matrix 27

Figure 17. Python Model Results 27

Figure 18. Timing Diagram for Detection of Zero (0). 28

Figure 19. Timing Diagram for Detection of One (1). 29

Figure 20. Timing Diagram for Detection of Two (2). 29

Figure 21. Timing Diagram for Detection of Three (3). 30

Figure 22. Timing Diagram for Detection of Six (6). 30

Figure 23. Timing Diagram for Detection of Seven (7). 31

Figure 24. FPGA Resources Utilized. 31

1

Chapter 1:

Introduction

Problem Statement

The problem with using a Field Programmable Gate Array (FPGA) to execute Convolutional Neural

Networks (CNNs) for digital image recognition is that they have complicated hardware constraints. On

the other hand, even if CNNs are effective in tasks like handwriting recognition, there are still issues to

deal with when it comes to FPGAs such as limited resources regarding processing and memory. These

limits can greatly affect the power of computation and accuracy of a CNN system thereby making it

difficult to meet real-time requirements including automatic data entry or assistive technologies. The goal

of this final year project is to design and optimize an FPGA-based CNN that would recognize static images

containing digits from 0-9.. The main difficulty will involve adjusting the CNN architecture so as to

achieve maximum computational and power efficiencies on the FPGA without sacrificing its accuracy. It

involves engineering solutions which can precisely balance between the computational requirements of a

CNN and what an FPGA’s hardware can actually handle. Consequently, this project intends to prove that

FPGAs may perform many complicated deep learning operations effectively, therefore their use in real-

time processing situations may become possible, thereby improving their adaptability.

Objectives:

To optimize the architecture of a CNN for efficient operation within FPGA resources is the primary goal.

The following are part of this; minimizing power consumption, maximizing processing speed as well as

maintaining high accuracy that is suited to the specific capabilities of FPGA technology. An effective and

reliable solution for processing digit images directly on an FPGA with quick response times must be

developed and integrated as it would be essential in realizing goals of this project.

Besides this, the system will be thoroughly tested to examine its performance in terms of accuracy,

processing speed and power consumption. This test will compare FPGA based approach to conventional

techniques for performing computations so that we can highlight where it is better and how it can be

improved further. Advanced quantization techniques coupled with optimization methods will be

investigated into and exploited to minimize computational complexity in CNN while maintaining its

efficiency without noticeable loss of precision.

The project aims at showcasing FPGA’s capability in handling complex deep learning tasks. These will

be displayed through an optimized image recognizer on the system, stressing the merits of FPGAs over

typical hardware platforms such as CPUs and GPUs in terms of fast processing speed and energy used

up. Lastly, extensive documentation of how it was developed will be prepared together with user

guidelines for future researchers or developers who would want to duplicate or modify the system for

other uses. This document is therefore a useful material for extending the application of FPGA in deep

learning beyond this project.

2

Significance of the Study:

The importance of this study is its ability to aid in the adoption of deep learning on FPGAs

specifically for optimizing and deploying Convolutional Neural Networks (CNNs) in digit

recognition. The uniqueness of these devices lies in their parallelism and programmability

and this project has been able to show how they can assist to develop better and faster image

recognition systems. When implemented successfully on an FPGA, CNN shows that FPGAs

can be used for complex computational tasks, which have implications not only on the

practicality of using FPGAs for complex computational tasks but also its relevance towards

hardware accelerated learning, in real world applications. Industries such as automation data

entry, security and aids need rapid accurate image processing. In addition, it provides a

pointing out for further studies in the area that may result into more energy-efficient and cost-

effective solutions within AI and ML domains. In going beyond what has been already

achieved with FPGA-based architecture under deep learning, this study takes a valuable place

among other works also concerned with technology optimization towards better performance

or sustainability.

This digit recognition is only one example however the scope of this project is far beyond

this example and it can be used for many other applications. It can be trained to classify 10

different images they can be of any object or different faces.

Further this project can be extended for any type of image recognition just by changing the

values of weights in Surveillance Drone images and CCTV camera and Video feed from

Electric Vehicles.

3

Chapter 2:

BACKGROUND AND LITERATURE REVIEW

Introduction:

A crucial leap in computational technology has been made with the integration of deep learning

algorithms into hardware platforms specifically Field Programmable Gate Arrays (FPGAs). For instance,

they are reconfigurable, function at very high speeds and consume less energy as compared to other

options. This makes FPGAs ideal for edge computing workloads that need low latency and power

consumption. Recent studies have focused on optimizing Convolutional Neural Networks (CNNs) which

are used extensively in image and video processing applications for better utilization of FPGA

characteristics. Among such improvements is quantization and simplification of convolutional

operations to suit the limited computational resources available on FPGAs while still maintaining

accuracy. According to a literature review despite the achievements made so far in deploying deep

learning models on FPGAs, there is still a range of obstacles that leave this field open for more research

including: resource control, real-time performance boosting and retaining accuracy with recent models.

As such, this paper seeks to develop an optimized CNN implemented specifically on an FPGA platform

for real time digit recognition.

Convolutional Neural Networks (CNNs) are commonly employed in video and image processing tasks

making them good fit for FPGAs. The adaptability inherent in FPGA can be used to change CNN

architectures so as to better match the characteristics of the underlying hardware, thus helping enhance

computational efficiency and operational speed. Recent advancements have been geared towards model

compression, advanced quantization techniques and simplification of convolution operations. The above

optimizations aim at addressing limitations associated with less available computational resources in

FPGAs compared to traditional CPUs or GPUs, while trying to keep or even surpass model accuracy.

Deep Learning on FPGA:

Integrating deep learning algorithms and Field Programmable Gate Arrays (FPGAs) is a major step in

the area of edge computing and real-time processing technologies. This is as FPGAs are uniquely

positioned to do so because they have high flexibility, configurability and efficient parallel processing.

These features enable these chips to perform high-speed computations that are required by deep learning

applications, but with less power than traditional CPUs or GPUs. Complex matrix operations and

numerous layers of neurons make deep learning models such as Convolutional Neural Networks (CNNs)

or to be computationally intensive. Still it is possible to let FPGAs easily accomplish this task thereby

providing a better adaptation for hardware specificities of particular neural networks. Thus there are

systems-on-chip that can simultaneously run several processes allowing fast calculations.

The use of FPGAs has gained traction in the management of computationally demanding models

deployed in deep learning, examples being Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks. Their design is characterized by a good number of layers that work together for the

intended goal. Nonetheless, traditional processors may find it quite difficult to handle such models

4

because they have many complex matrix operations. Nonetheless, FPGAs can be designed so as to

facilitate these forms of computation. If an FPGA executes various operations at once, then it was

programmed to perform convolution as well as many other tasks using parallelism.

Conversely, its programmability and ability to be programmed based on different algorithms or tasks

suggest that FPGAs are increasingly being recognized for their potentiality in deep learning. Thus one

FPGA could run numerous processing steps and inference stages according to what changes are

occurring in algorithms or priorities assigned to where different works must be done. For instance, real-

time video processing, mobile computing, autonomous driving and any other application that requires

dynamic computing.

Benefits of Implementing Deep Learning on FPGA:

One advantage of using FPGAs for deep learning is that they are programmable, meaning developers

can upgrade hardware algorithms without any physical changes. This adaptability is crucial when

deploying systems out in the field where new data may call for an update of the algorithms or merely

refining their performance while at the same time tweaking them. If say deep learning models are

constantly changing, they may need different computational resources or be better improved through

newer algorithms that consume less power or enhance processing speed. For this reason,

implementation on FPGA allows for adaptation to these hardware and thus extends the lifetime of a

device which in turn reduces costs associated with hardware refresh cycles.

In addition, reprogramming FPGAs can greatly reduce the development cycle of deep learning

applications. A prototype can be developed by programmers using FPGA, and then test it under actual

conditions before its update based on performance numbers and user feedback instead of modification

through hardware iterations. In this way, not just does this approach save money but it also speeds up

the introduction of new attributes. Some types of deployment, such as self-driving cars, adaptive signal

processing and real-time surveillance systems, involve changing conditions or data characteristics over

time and are priceless when their processing algorithms can be remotely updated on FPGAs.

Challenges in Implementing Deep Learning on FPGA:

In view of these advantages, there are a number of challenges associated with deploying deep learning

on FPGAs. They include the FPGA development and programming complexities that usually require

the knowledge of hardware description languages like VHDL or Verilog. In addition to this, FPGAs

might have an inadequate amount of on-chip memory which may act as a bottleneck in cases where

there is need to process larger neural networks at once requiring much more data.

The complexity involved in programming Field Programmable Gate Arrays (FPGAs) is another

deterrent that one faces. While other programming environments tend to focus straightly on CPUs or

GPUs, developers working with FPGA must have some background understanding about hardware

description languages like VHDL or Verilog which normally have steep learning curve and differ

greatly from software programming paradigms.

Moreover, for FPGAs to be optimized such that they can run deep learning models, it entails converting

high-level abstractions/operations into low-level hardware instructions.

Hence, deep learning is very rapidly rendering FPGA implementations obsolete. For instance, the

5

introduction of new neural network architectures and training techniques may not be compatible with

existing FPGAs.

Hardware Acceleration:

To avoid these complications, hardware acceleration methods are commonly employed. This involves

making certain areas inside the FPGA specialized to increase specific functions’ efficiency over those

achievable by general-purpose processors. For example, in such a case, customized IP cores can be

made to multiply or do convolution faster by designing them explicitly for those parts of computations

in a neural network.

Therefore, FPGAs are able to accommodate such algorithms comprehensively considering issues of

flexibility, performance as well as power efficiency. They are best suited for real-time applications

including autonomous vehicles, medical imaging systems and intelligent surveillance systems among

others. Subsequently, several new approaches have emerged on optimizing deep learning

implementations on FPGA’s.

There is an importance of hardware acceleration techniques in enhancing deep learning on FPGAs for

better performance on some operations such as multiplication and convolution which are key in neural

network computations.

This is further possible with FPGA-specific libraries and tools that simplify the design process so that

software programmers without extensive hardware design experience can be able to do it easily. The

case in point is the fact that using high-level synthesis (HLS) tools, developers can write algorithms

using widely popular programming languages like C or C++ and which are then automatically

translated into hardware description languages thus reducing the gap between software and hardware

design.

In addition, recent develop in reconfigurable field programmable gate arrays have provided them with

flexibility in terms of variation. They are now able to shift their hardware configurations so that only

parts of the circuitry are involved in specific tasks while the other parts continue working. This

implies that on-the-fly changes of hardware configurations due to real-time requirements of the neural

network as it processes data result into more effective utilization of resources. Energy consumption

can be minimized as well as performance enhanced by a dynamic reconfiguration through which

FPGA can optimize itself for any given task.

6

Sr.No Title of Paper Author

1 Neural Network Implementation Using FPGA Issues and Application A. Muthuramalingam

S. Himavathi

2 On the Implementation of Fixed-Point Exponential Function for

Machine Learning and Signal Processing Accelerators
Mahesh Chandra

3 SIGN LANGUAGE RECOGNITION USING 3D CONVOLUTIONAL

NEURAL NETWORKS
Jie Huang Houqiang Li

Wengang Zhou Weiping

Li

7

Chapter 3:

METHODOLOGY

Introduction:

This chapter highlights the methods used in implementing and optimizing a convolutional neural network

(CNN) for digit recognition on an FPGA. These include: Creating an initial data set, writing appropriate

software using high level programming languages which is then converted into hardware description

language (HDL) for the purpose of FPGA implementation.

Figure 1: Block Diagram of Complete Project

8

Data Preparation:

The dataset of MNIST used in project, is a large collection of handwritten numbers and it also has been a

standard benchmark in image recognition. Composed with roughly 25,000 to 30,000 samples of numbers

from zero through nine on various handwriting, this latest version of the MNIST data set is preferred because

it offers comprehensive coverage. The dataset was chosen because it’s extensive and can be used by machine

learning algorithms to identify different kinds of handwriting. This new version has about 25,000 – 30,000

instances of written numerals fairly distributed among all the ten groups. The images are rescaled to be small

(28 × 28 pixels) this makes further automated recognition easier since preprocessing steps that must be done

before training are reduced. Every picture in the MNIST database is actually an ordinary black-and-white

bitmap where a grey scale level between white (0) and black (255) is assigned to each pixel. Such diversity

allows deep models for recognizing smaller variations in handwriting styles.

In other words, the MNIST dataset’s pervasiveness within the machine learning community has established it

as a conventional barometer when it comes to judging how well different image recognition algorithms

perform. Through frequent application in diverse research and developmental undertakings, it is possible to

evaluate relative performance of models and architectures, which can be seen as a stepping stone towards

progressive developments in digital number identification technology. This previous background makes the

MNIST dataset very useful for training and testing our CNN model optimization on FPGA in order to achieve

high accuracy numbers recognition.

Algorithm Development in Python:

The CNN architecture is equipped with various important features that are specific to optimizing the task of

digit recognition, built on the original MNIST dataset. These layers within CNN have been tailored to extract

and understand input digit images in a better way.

Figure 2: Visual Representation of CNN Model

9

Figure 3: CNN Model Training and Validation

10

Translation to MATLAB:

The transition from Python to MATLAB played a pivotal role in refining the convolutional neural network

(CNN) for FPGA implementation. This translation was instrumental for multiple reasons:

Figure 4: Translation to MATLAB

Code Simplification and Optimization:

MATLAB is especially tailored for matrix operations as well as algorithms that are common in image

processing, and neural network applications are no exception. Through converting the Python code into

MATLAB, the team managed to make the CNN structure more concise while also making it better suited for

hardware optimizations. This was an important move towards modifying the neural network so that it could

work in a much more restriction and performance conscious environment such as FPGA.

Removal of Dependencies on Built-in Commands:

Python, despite being convenient and supported by many libraries, often employs high-level functions that

abscond with much of the computational intricacy, thus serving as a barrier when preparing code for hardware

implementation. This is in significant contrast to MATLAB that allows one to have direct control of such

operations which is important in customizing the algorithm so that it can efficiently exploit both unique

capabilities and limitations of FPGA hardware.

11

Enhanced Debugging and Visualization in MATLAB:

The MATLAB Integrated Development Environment (IDE) has superior debugging tools and offers better

visualization features for algorithm development and testing. Through this approach, the group was able to

inspect visually intermediate outputs of the CNN, examine activation maps after each layer, as well as refine

parameters under controlled insights. It was particularly useful if one wanted to point out inefficiencies and

bottlenecks in network architectures.

Facilitation of Algorithm Testing:

The MATLAB simulation environment enabled the team to first test and verify that CNN functions before the

hardware implementation. The FPGA can be simulated in this environment, such as fixed-point arithmetic and

parallel processing capabilities, which gives a better approximation of its final deployment scenario.

Iterative Refinement:

Therefore, with MATLAB, developers could quickly make iterative adjustments and test them thereby speeding

up development cycle and allowing rapid prototyping. The reason for this is because changing neural network

architecture and tuning hyper parameters have great influences on performance and accuracy in research and

development scenarios.

This project employed all the powerful features of MATLAB to make CNN more efficient and adaptable for

FPGA implementation while guaranteeing uninterrupted transition from Python high-level abstraction code

base to Verilog hardware specific code. This greatly aided in optimization process during deep learning model

deployment in FPGA platform which contributed largely to the success of the project as a whole.

This way, it ensured smooth transition from a high-level’ abstracted code base in Python to a precise hardware-

oriented code in Verilog that would effectively improve upon efficiency and compatibility of CNN prior to its

FPGA implementation. Therefore, this strategy played a great part into successful realization of strong deep

training model on the basis of FPGAs platform that can also be optimized.

Fixed Point Conversion:

The conversion of floating-point computations to fixed-point format is a crucial step in preparing a neural

network model for FPGA implementation. This post-optimization process involves several detailed steps and

considerations that ensure the neural network remains efficient and effective when deployed on hardware with

limited computational resources.

We have written a C++ code to convert the given number into fixed point format. The conversion into fixed

12

point is based on the value of highest and lowest number received. The Value of “m” and “n” are given to the

program as per the requirement of the layer’s input.

Figure 5: Floating Point Weights in C++ Program for Fixed Point Conversion

Figure 6: Floating Point Weights converted to Fixed Point Weights

13

Choice of Fixed Point Precision:

The importance of this choice is emphasized by the selection of ‘m’ and ‘n’ which stands for the number of

bits for fractional and integer parts respectively. It is a determination that directly affects the range and precision

that can be represented in a model. Herein, we are faced with a problem in terms of selecting an equilibrium

where precision remains high enough to keep up with the accuracy level of a given model, being at the same

time low enough to economize resources allocated for FPGA as well as reduce power consumption. Typically,

this involves empirical testing to find the minimal bit-widths that do not significantly degrade performance.

Pseudocode Development:

When compiling the code for specific hardware, a pseudocode was written. It acted as a bridge between high

level mathematics of CNN and low level FPGA programming requirements. The pseudo-code served as an

algorithmic prototype showing all the steps in the computation and data flow without the complexity of

hardware programming syntax.

Data Path Design:

After preparing the pseudocode, a conceptual data path was created to describe its operations on FPGA . This

is a physical representation of how pseudocode manifests within FPGA architecture. It shows data movement

through system, processing it and interaction with various hardware components.

ASM Chart Development:

ASM Charts for different layers are designed to control the data paths of each layer. So that each data path is

controlled in proper manner.

Convolution Layers and ReLU Activation Function:

The convolution layers form the basis of CNNs which are responsible for feature extraction. Each and every

convolution layer applies several learnable filters on the input. These filters, small matrices slide over the input

image dimensions so as to produce feature maps that point out significant details such as edges and corners.

Usually, there are many convolution layers piled up to hold extra multifaceted features in deeper layers.

There are convolutions being performed each one involving two numbers of 9 bits each being multiplied. The

multiplication results in 18 bits answer and then all multiplications answers are added together. At the end there

is a 2x1 MUX that controls the output. If the value is negative then 0 is produced at the output while if the

value of sum is greater than zero the output is same as the sum.

14

Figure 7: Data Path for Convolution and ReLU

After each convolution layer Rectified Linear Unit (ReLU) activation function is used. ReLU gives non-

linearity to the model which enables it learning more complicated patterns. What the function does is that it

makes all the negative pixel values in the feature map to become zero, thereby reducing the network’s

complexity without losing its essential qualities. In training deep learning models, ReLU is preferred than other

activation functions because it solves a problem of computation cost and mitigates vanishing gradient problem

which is common for deep neural networks.

Max Pooling Layer:

In certain cases, max pooling is applied for the first of the convolution layers to squeeze down the dimensions

of the input volume in case they are very large. It operates by moving a window through each feature map and

computing the maximum activation in each window area. This reduces the complexity of computations, thus

making it easier for our model to train as well as decreasing overfitting.

15

Figure 8: Data Path Max Pool

Fully Connected Layer:

ReLU Layer:

After each convolution layer Rectified Linear Unit (ReLU) activation function is

used. ReLU gives non-linearity to the model which enables it learning more complicated patterns. What the

function does is that it makes all the negative pixel values in the feature map to become zero, thereby reducing

the network’s complexity without losing its essential qualities. In training deep learning models, ReLU

is preferred than other activation functions because it solves a problem of computation cost and mitigates

vanishing gradient problem which is common for deep neural networks.

16

Pseudo Code For ReLU:

B = bias

while A<64 do

 M= input x weight;

 B= B + M;

end while;

if(B[MSB]==1) then

 output = B;

end if;

else

 output = 0;

end if;

Figure 9: ASM Chart ReLU

17

Figure 10: Data Path ReLU

Softmax Output Layer:

CNN’s last layer is Softmax, which performs classification. The Softmax outputs transform from classes into

probability distributions over classes that may be used in this instance to characterize them as one out of ten

digits (0-9). The range of output values should be 0–1 representing how confident we are about an individual

class with all probabilities summing up being 1.

This combination of convolutions for feature transformation, ReLU for non-linearity, max pooling and Softmax

for classification yields a good and effective architecture that performs the task of recognizing and classifying

handwritten digits from MNIST dataset. These are essential because they make it easier to identify correct

numbers while ensuring that digit recognition is done with reasonable timing on an FPGA platform without

affecting system accuracy.

18

Pseudo Code for Softmax:

B1 = bias

while A1<10 do

 M1 = input x weight;

 B1 = B1 + M;

end while;

B =B1

// B1 is for neuron 1

// similarly B[i] for ith neuron

while i<10 do

 if (B > Bi) then

 B = B[i];

 end if

 else

 B=B;

end while;

 Figure 11: ASM Chart Softmax

19

Figure 12: Data Path Softmax

Verilog Implementation:

The transition to Verilog implementation is a critical phase in deploying the optimized CNN on an FPGA,

involving detailed steps to ensure that the algorithm not only performs accurately but also efficiently on the

hardware platform.

Translation of High level Language to Verilog:

The Verilog implementation is based on the data path drawn in the earlier stages. It involves translating

high-level model, usually represented by pseudocode or MATLAB into Verilog modules. Each component

of CNN such as convolution layers, activation functions, pooling layers and fully connected layers has some

specific Verilog code that defines how these operations are implemented in hardware.

Modular Design Approach:

A modular design approach is employed in developing each part of the CNN for this particular C++ project.

This simplifies the coding process and improves system maintainability and scalability. For instance,

reusable modules can be instantiated multiple times with a network depending on its configuration thus

convolutional layers can be implemented as.

20

Optimization for Hardware Efficiency:

In writing Verilog codes, optimization for speed and resource usage is highly emphasized. To enhance

calculation acceleration loop unrolling, pipelining and parallel processing approaches are used among

others. In addition to efficient use of memory and computational units on the FPGA, fixed-point arithmetic

previously established incorporated also minimizes resource consumption regarding them.

Simulation and Synthesis:

The code is extensively simulated to ensure that it functions correctly. This simulation checks for errors in

logic and the timing of the Verilog modules. After a successful simulation, synthesis is done; this convert’s

high level description of Verilog into a design that can be physically built using FPGA chips with timing

analysis included to satisfy operational speed requirements.

FPGA Prototyping:

After synthesizing the Verilog code, we need to prototype on an FPGA. This means putting the synthesized

design onto the FPGA and running it with real input data so its performance can be observed in real world

scenario. It is very important because there could exist some unforeseen issues not noticeable during

simulation such as dealing with real-time data and compatibility of interfaces.

Testing and Debugging:

Throughout and following FPGA prototyping, you will have rigorous testing and debugging processes

taking place. These involve running test cases which cover all possible scenarios along with edge cases just

to make sure that CNN works correctly under all conditions. For debugging purposes, specific tools on

FPGA development are available for network interfacing and performance tuning.

Figure 13: Timing Diagram for Testing and Debagging

21

Performance Evaluation:

Eventually, the put in place model is evaluated against specified processor speed, accuracy, power

consumption targets. This estimation helps to ascertain whether the FPGA implementation meets its

specification and is good at its operational application. In order that the project can transit smoothly from a

software based model through an efficient hardware solution to edge computing environment characterized

by real time performance, this report goes through these steps for Verilog implementation of CNN.

22

Chapter 4:

Implementation

4.1 Introduction:

Now, the project is shifting to implementation stage. A model of Convolutional Neural Network (CNN) was

trained on the entire groups of digital photo data taken from MNIST dataset. This data set is considered as one

of the most popular ones in image recognition. At first breath training was performed with python and other

libraries such as tensor flow were used since they come with a collection of prebuilt functions for accelerating

deep learning model development, testing and iteration. These exercises were critical in developing baseline

performance measures and for understanding CNN behavior under varied conditions.

That said, however, there was need to move from Python to MATLAB so as to make the model ready for

FPGA deployment. This step had to be taken because Python high-level functionality did not match the low

level requirements needed by FPGA programming languages. MATLAB has a powerful environment that

allows for more detailed controlling over computational operations and is useful in simulating neural network

behaviors using a language closer to hardware-focused one. The software made it possible to fine tune

characteristics of our model’s architecture and it came equipped with tools used to analyze and optimize

weight parameters without some abstractions common in python codes.

The optimized weight values were obtained after achieving a reasonable level of optimization in MATLAB.

Optimized neural network parameters were then translated to Verilog code. The choice for using Verilog is

that it can describe hardware directly, which is necessary for implementing precise and efficient operations on

an FPGA. In order to write the code in Verilog, the structure of the software was designed in such a way that

would exploit parallel processing capabilities of an FPGA as well as ensuring that digit recognition tasks could

be processed with sufficient efficiency and speed. This step-by-step process provided groundwork for further

FPGA programming steps including simulation, testing and final deployment all aimed at achieving high

accuracy on digit recognizing problem on constrained hardware platforms. By doing so this project smoothly

moved from high-level model training to low-level hardware implementation; thereby incorporating modern

software developmental practices into conventional hardware engineering methods.

4.2 Software Development and Optimization:

We initiated the process of programming our FPGA-based digital recognition system by writing the software

in Python because, it has reliable machine learning libraries and frameworks. At Google’s laboratory, we

trained this application by using its powerful GPU for computational intensified functionalities, such as training

a Convolutional Neural Network (CNN) on MNIST dataset. This provided an ideal platform for iterative

testing, and it helped to establish a good solid reference point for performance as well as functionality.

Thereafter, we transitioned into MATLAB, due to its better ability in handling matrix operations and fixed-

point arithmetic that are important in FPGA implementation. MATLAB enhanced our understanding of the

model’s behavior while allowing us to have complete control over the quantization process. Therefore,

quantization became one of the optimization techniques whereby floating-point representations were changed

into fixed-point so that it would be applicable for limited precision abilities of an FPGA based system. Thus,

23

this step was necessary to ensure that the complexity of the model is compatible with the hardware constraints

while maintaining an acceptable level of accuracy.

Afterwards, the final model parameters were converted into Verilog code using Xilinx ISE for FPGA

programming. During this step, careful coding was necessary to match the software’s model with hardware

architecture which centered on maximizing the parallel processing capability of the FPGA. This movement

from high-level software development in Python and MATLAB to low-level hardware programming in Verilog

was done with an objective to sustain the neural network’s integrity as well as performance while making sure

that such a digit recognition system was not only accurate but also efficient when deployed in an actual field

programmable gate array (FPGA).

4.1 Fixed Point Arithmetic Implementation:

The choice to use a fixed-point arithmetic, especially in n.m format, was vital for the improvement of

computational efficiency and power utilization of an FPGA. The FPGA has limited hardware resources thus

fewer are required if we deploy fixed-point instead of floating point arithmetic. Fixed point arithmetic

allows for a balanced range vs. precision tradeoff for numerical values processed within an FPGA using “n”

bits for integer part and “m” bits for fraction part.

This change to fixed point arithmetic was important for achieving highest accuracy in digit recognition

without compromising on optimal energy consumption. Due to this fact, fixed point format inherently uses

few logic devices on an FPGA leading to lower power dissipation as well as minimal heat generation. This

is highly beneficial in embedded systems or portable devices where they have low power efficiency

requirements in order to prolong their battery life. Moreover, though it might appear that fixed-point

arithmetic could affect accuracy of deep learning models; careful optimization and sufficient bit allocation

per section ensured that our CNN performances remained strong with almost similar results achieved

through floating point computations too. Fixed point arithmetic allows a balanced approach between the

range and precision of numerical values processed within an FPGA by using (n) bits for the integer part and

(m) bits for the fractional part.

This change to fixed point arithmetic was important for achieving highest accuracy in digit recognition

without compromising on optimal energy consumption. Due to this fact, fixed point format inherently uses

few logic devices on an FPGA leading to lower power dissipation as well as minimal heat generation. This

is highly beneficial in embedded systems or portable devices where they have low power efficiency

requirements in order to prolong their battery life. Moreover, though it might appear that fixed-point

arithmetic could affect accuracy of deep learning models; careful optimization and sufficient bit allocation

per section ensured that our CNN performances remained strong with almost similar results achieved

through floating point computations too.

In addition, this was a reasonable choice because fixed-point arithmetic corresponded to the physical

constraints of our Spartan 6 FPGA and worked well for high-accuracy and efficient computation of complex

neural network operations. Another way to look at this is that we employed hardware-specific optimizations

for addressing tough problems associated with deploying sophisticated machine learning algorithms onto

resource-limited settings.

24

Hardware Configuration and Integration:

The Spartan 6 FPGA was chosen as the implementation platform for our digit recognition system because of

its strong performance features and available resources. The choice was important in facilitating an efficient

and effective deployment of our Convolutional Neural Network (CNN).

Storing and manipulating image data involved the Spartan 6 FPGA in large part. The data flow in FPGA is

regulated by block RAM (BRAM) which is essential for efficient performance. Notably, BRAM enables

storage of image data in form of pixel values which can be retrieved faster as well used immediately for real

time applications.

In digit recognition process, these pixel values are obtained back and multiplied by set weights- a very

important stage during convolutional layer of the CNN. Thereafter, this multiplication yields results that are

aggregated through various types of filters thus performing an essential role in feature extraction as well as

recognition functions. Each layer within the CNN was carefully arranged on top of FPGA to ensure efficient

handling of spatial and temporal computations.

To get good results of recognition CNN required to manage its convolutions, activation functions and pooling

layer with a Spartan6’s built in FPGA. Successful integration of the hardware with the CNN was only

possible through careful considerations for data path planning and optimization as well as establishing correct

configuration for networking. This was an entire process of configuring the hardware that made it possible to

effectively harness the potentiality of FPGA on more progressive image processing jobs.

Figure 14: Spartan 6 - LX45 FPGA

25

FPGA Resources:

Device Spartan 6 XC6SLX45

Company AMD

Origin United States of America

Logic Cells 43,661

Configurable

Logic Blocks

(CLBs)

Slices 6,822

Flip-Flops 54,576

Max Distributed RAMs 401

DSP 48 Slices 58

Block RAM

Blocks

Block Ram 18Kb 116

Block Ram Max Kb 2,088

Total I/O Banks 04

Max User I/O 358

Figure 15: Spartan 6XC6SLX45 Total Resources

26

Chapter 5:

RESULTS

Introduction:

The present chapter presents the findings from Convolutional Neural Network (CNN) implemented

in Field Programmable Gate Array (FPGA) for digit recognition. The main goal was to assess the

system’s processing speed, resource utilization, power consumption and accuracy. This analysis

helps us to understand the benefits and limitations of using FPGA in deep learning applications.

Results are divided into sections that explore different aspects of system performance. We compare

an FPGA-based implementation with traditional CPU and GPU implementations so as to show the

benefits of using FPGA in edge computing scenarios. The results from this chapter will help answer

whether implementing FPGA-based CNNs for real-time digit recognition tasks is feasible, which

might have implications for future research and development in this area as well. Furthermore, we

analyze model behavior on individual digits by a confusion matrix to give a complete view of

system’s accuracy across them all.

Results of Model Training in Python:

Digit recognition using Convolutional Neural Network (CNN) was done in Python with TensorFlow

the popular deep learning frameworks. To strike a balance between computational efficiency and

memory limits of the computer, a batch size of 86 was used for training.

The model was trained over 30 epochs, during which it gradually refined its weights and biases to

enhance accuracy. Optimization of the model involved the use of categorical cross-entropy loss

function. This kind of loss measure is suitable for multi-class classification problems like digit

recognition because it compares predicted class probabilities against true class labels as an

evaluation measure. The learning rate here was assigned 0.1, a quite high value that speeded up

convergence throughout training.

Throughout the training phase, there were continuous monitoring regarding how well the model

trained with metrics such accuracy and loss documented per epoch. As each iteration went on over

every new epoch, accuracy increased gradually. Initially, there was moderate performance of the

model but in subsequent epochs; parameters of the network were adjusted by learning algorithms

so that they could learn from input data more effectively and reduce error rate accordingly.

Given below is the confusion matrix obtained during training the model in python. The confusion

matrix contains both the predicted label and true labels.

27

Figure 16: Confusion Matrix

Figure 17: Python Model Results

28

Verilog Results:

After successfully training Convolutional Neural Network (CNN) in Python, we first converted the

model to MATLAB for processing, before implementing it in Verilog for deployment on the Field

Programmable Gate Array (FPGA). This intermediate step in MATLAB was very important

because it helped convert the model’s architecture and parameters accurately to a format that is

suitable for hardware.

Using MATLAB, fixed-point representation was applied to CNN. This is required due to FPGA

implementations not being well supported by floating point arithmetic. The quantization process

consisted of converting weights and activations of the model into fixed-point representations while

maintaining its performance characteristics.

After being prepared in MATLAB, the model was converted into Verilog code. By doing this, the

Verilog implementation of this CNN duplicated its architecture so that behavior of Verilog code

mimicked that of the trained model. To ensure consistency, FPGA implementation used similar

datasets as python model. A considerable accuracy of 94% was reached during FPGA-based CNN

whereas its value during Python trainings has been 95%. These small disparities in precision may

be attributed to quantization process and limitations imposed by FPGA hardware.

Design was careful to optimize resource utilization on the FPGA. The last design used a substantial

but bearable portion of Look-Up Tables (LUTs), Flip-Flops (FFs), and Digital Signal Processing

(DSP) blocks on the FPGA. In this manner, resources were properly utilized to facilitate

computations by the FPGA within its available hardware constraints.

Figure 17: Timing Diagram for Detection of Zero (0).

29

Figure 18: Timing Diagram for Detection of One (1).

Figure 19: Timing Diagram for Detection of Two (2).

30

Figure 20: Timing Diagram for Detection of Three (3).

Figure 21: Timing Diagram for Detection of Six (6).

31

Figure 22: Timing Diagram for Detection of Seven (7).

Resources Utilized on FPGA:

Given below is table which shows the resources utilized during the implementation of deep

learning algorithm.

Figure 23: FPGA Resources Utilized

32

Chapter 6:

Discussion and Future Enhancements

1.1 Introduction:

In this chapter, we will talk about the results, some challenges faced as well as future improvements in

developing a Convolutional Neural Network (CNN) FPGA implementation for digit recognition. We were

able to make deep learning techniques work with the limited resources and strict performance demands of

FPGA platforms in an excellent way. The goal was not just to prove that such an implementation was

possible but also to increase its efficiency and accuracy.

We look at what has been achieved during the project and some of the technological and methodological

challenges that we overcame during this time. Besides, this paper will consider how the findings from this

study can be used in future research to enable more advanced instantiations of machine learning algorithms

on hardware platforms. The last part of this chapter will present a fore-looking perspective for improving and

expanding AI capabilities realized by hardware-accelerated approaches. Essentially, the purpose of this

discussion is not only to give an overall picture on how our project has affected deep learning applications

using FPGA but also offer recommendations for the future.

1.2 Evaluation of Outcomes:

As such, the primary aim of this project was to successfully implement a deep learning algorithm specifically

a Convolutional Neural Network (CNN) on a Field Programmable Gate Array (FPGA). The purpose of this

implementation is to exploit the particular features of FPGAs to make deep learning task more efficient and

accurate. Interestingly, however, the project not only achieved its goals but surpassed expectations in several

key performance metrics.

The CNN accuracy increased remarkably to 92% post deployment on FPGA from an initial 72% at the early

stages of development. This considerable rise was as result of model iteration and optimization strategies that

were designed for FPGA environment in particular. Improvements were made in terms of advanced

quantization methods and tuning network parameters, hardware-aware quantization algorithms as well as

modification involving hardware customization. This shows how important it is to continuously improve

oneself for better performance in deep learning applications.

Comparing processing times also brought out the efficiency of FPGA implementation. The model took about

7 seconds to process an image through Python whereas FPGA only spent 28 nanoseconds. With such a drastic

reduction in processing time, computations on FPGA can proceed at breakneck speed making it a suitable place

for real-time data analysis and fast decision making.

The FPGA has proved that the project has been successful and that there is an immense future potential for

deep learning. In this case, a hardware design platform that speeds up computation while maintaining low

power dissipation is illustrated. It opens new doors for applying FPGA technology in autonomous driving, real-

33

time medical imaging and dynamic decision systems with high accuracy and quick processing as matters of

priority such as these require complex neural networks.

If the outcomes of the project are anything to go by, then it can be said that with proper architectural planning,

algorithm adaptation should be precise and a full understanding of hardware capabilities in place, FPGAs can

form an essential tool to expand artificial intelligence. The insights from this project provide a blueprint for

future research, especially on how FPGA implementations can scale up to more complex AI models and wider

applications. Such results underline how necessary it is to have a methodical system design and demonstrate

promising performance gains for hardware targeted optimizations made in the fast growing area of accelerated

computing through hardware.

1.3 Challenges and Lessons Learned:

A few challenges were faced in implementing a Convolutional Neural Network (CNN) on FPGA that

yielded valuable insights and affected the project’s direction. Firstly, training models became hard due to

the convolutional neural network’s complexity and high computational power that is required in training

such networks. Henceforth, Python codes at a higher level were converted into MATLAB leading to the

creation of custom logic which simulates these functions correctly so as to guarantee functional integrity

across different programming environments.

Various filters were designed for optimal processing within different layers of the CNN, which

represented another major obstacle faced towards enabling efficient processing on FPGA. Therefore,

when implementing them on FPGA there was need to consider each layer’s balance between performance

and resources. This exercise emphasized the importance of having a solid grasp of both hardware

architecture and digital signal processing.

From these challenges we learned some of the most valuable lessons about interdisciplinary knowledge

as well as flexible and responsive hardware-software integration. Accordingly, this also led to success in

our project at hand thereby also exposing us to various suggestions on what areas can be recommended

for future research and improvement like simplification of software based machine learning models’

transformation into hardware platforms. In that regard, this event has opened doors for more studies on

high-performance neural network implementations in FPGAs that can unlock many doors and change

many things in this dynamic field Recommendations for Improvement:

Based on the outcomes and challenges encountered during the implementation of the FPGA-based

Convolutional Neural Network (CNN) for digit recognition, the following recommendations are

proposed to further enhance its performance, efficiency, and scalability:

1. Advance Data Acquisition Techniques:

Although it does not apply directly to this project, which uses pre-determined datasets, can be enhanced

so as to collect real time data for dynamic digit recognition applications using high resolution sensors

and sophisticated algorithms for signal processing thereby improving the quality of information.

34

2. Enhanced Preprocessing Techniques:

Advanced preprocessing methods must be explored and adopted to refine the input data further. This

could entail employing more complex filters or feature extraction techniques that would lessen noise and

increase the effect of data fed into CNNs.

3. Optimize Communication Protocol:

For any other future implementation where there has to be a remote processing or it is in real-time

evaluate and optimize the communication protocols used within the system. It may, therefore, necessitate

embracing faster secure protocols with efficient and secure ways of transmitting data between FPGA

points and acquisition points.

4. Deep Learning Model Optimization:

Involving larger and more diverse datasets is part of these models being refined. This includes trying

different model architectures as well as fine-tuning model parameters so that their accuracy and

performance improve for AI algorithms on FPGA.

5. User Interface Design and Accessibility:

To increase the interface’s usability, it should self-explanatory to all users regardless of their

technical expertise levels. Things like having a graphical representation of recognition process or

simplified control panels may be considered when designing features that would make system

monitoring and interaction easier.

6. Integration with External Systems:

Think about possibilities of interfacing FPGA-based systems with other platforms or applications.

For example, this involves linking up with IoT devices to make them more useful in smart

environments or connecting with existing digital systems to facilitate automated data processing

tasks.

7. Scalability and Resource Management:

Firstly, therefore, the scalability of the system must begin focusing on expanding its capabilities for

complex recognition tasks and large data processing. In such manner, it may involve better resource

allocation within FPGA for increased data flow and parallel processing capacities along certain lines too.

These recommendations will make FPGA-based CNN system perform better due to increased

robustness, improved user involvement, and better security. They will enhance its effectiveness and fit in

different real-life situations thus making it a flexible and powerful image recognition tool.

35

Chapter 7:

Conclusion and Future Work

7.1 Summary of Findings:

What we found out from successful implementation of this project are:

CNN Performance:

The Convolutional Neural Network (CNN) adapted for FPGA showed high accuracy in digit recognition.

This affirms the effectiveness of CNNs in image-processing tasks, which are optimized for given hardware

constraints.

Verilog Code Functionality:

This particular Verilog code which was created specifically for this project and on the FPGA it performed

right, providing pictures that displayed numbers with the help of given data. It is an instance that exposes to

us how much we can depend on our hardware programming as well as how seamless it interfaces with

software through FPGA.

Efficient Resource Utilization:

The use of FPGA resources was done correctly implying that the project can optimize deep learning tasks

within limited hardware resources. It should be appreciated that such efficient resource usage has greatly

contributed to the performance of the entire system.

Enhanced Speed:

Enhanced speeds were experienced in image processing with this implementation. This is because the parallel

processing capabilities of FPGAs allow for faster processing times as compared to conventional computing

methods.

CNN Optimization Discussion:

The FPGA operating parameters have been changed and optimized many times throughout the research made

on CNN architecture. Additionally, there were changes involving quantization as well as fixed-point

arithmetic so that while thinking about FPGA processing abilities, neural network learning ability is not

compromised.

The existence of these outcomes demonstrates the achievement of this project in realizing its objectives and

also giving direction for future hardware-based implementations of neural networks.

36

7.2 Future Directions and Recommendations:

The recent use of a resourceful field-programmable gate array (FPGA) in an improved Convolutional Neural

Network (CNN), aimed at recognizing images, has promised to totally change hardware based visual data

processing. This chapter will recommend additional steps that must be taken for the effective implementation

and improvement of the system.

1. Enhancing the CNN Model:

Future work should improve upon the CNN model used by the system. More ultimate structures and diverse

set of images for training purposes, as well as methods such as transfer learning are among other aspects that

could be explored in refining this architecture. Better accuracy and efficiency of this model would make it more

useful for real-time applications.

2. Optimization for FPGA Implementation:

Priorities in FPGA Implementation Optimization: The algorithm need to be further optimized for FPGA. This

includes adjusting the model so that it can balance performance with resource constraints like limited memory

and processing power found on FPGAs. Additional techniques to investigate include pruning, quantization, and

efficient convolutional operations for models.

3. Integration of Additional Functionalities:

As a result, the system could be expanded to include image preprocessing in order to handle varying lighting

conditions, orientations and scales. Moreover, directly incorporating FPGA based algorithms for enhancing

images could greatly enhance the robustness and accuracy of the system.

4. Exploration of New Applications:

In addition, there is need for further research on face detection algorithms, object detectors as well as other

non-visual data processing applications that may be integrated into FPGA-based systems, if it is desired to

broaden its impact on the community. Thus every application might require specific modifications or

optimizations of the current model.

5. Industry and Academia Collaboration:

Also, having such liaisons with technology companies and academic institutions can go a long way in terms of

facilitating more advanced study as well as testing in real life situations. Besides these collaborations will help

to ensure that this project remains up-to-date with respect to recent developments in FPGA technology and

deep learning.

6. Long – Term Impact Studies:

Conducting long-term studies on the performance of this system in practice Situations may provide insight into

its operational efficiency and durability. These studies can help to pinpoint Possible problems in continual use,

and they can be used for increasing the stamina of such a system In summary, these are some future directions

that will lead to improving FPGA-based CNN System for image recognition. Consequently, it could serve as

37

an effective solution for real-time image

Processing and analysis if it becomes more flexible and reliable by developing deeper learning models

Continuously, upgrading their functionalities, experimenting with new applications & partners. Also, building

This system will aid in addressing challenges and exploiting opportunities. Therefore, this research has the

ability of exploring FPGA-based computing solutions’ capabilities hence opening new frontiers in embedded

systems with AI .

38

REFERENCES

[1]. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong, J. (2015). Optimizing FPGA-based

accelerator design for deep convolutional neural networks. Proceedings of the 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays.

[2]. Suda, N., Chandra, V., Dasika, G., Mohanty, A., Ma, Y., Vrudhula, S., Seo, J. S., & Cao, Y. (2016).

Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural

networks. Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays.

[3]. Nurvitadhi, E., Venkatesh, G. M., Sim, J., Marr, D., Huang, R., Ong, Gee. A., & Liew, H. (2017).

Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks? Proceedings of

the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays.

[4]. Qin, Y., Yu, Q., Li, L., & Zhang, W. (2018). An FPGA-Based Parallelized Architecture for

Deep Convolutional Neural Networks. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 26(12), 2781-2790. DOI: [10.1109/TVLSI.2018.2861807]

[5]. Motamedi, M., Fowers, J., Liu, G., & Weisz, G. (2016). Design space exploration of FPGA-

based deep convolutional neural networks. Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 62-71. DOI: [10.1145/2847263.2847264]

[6]. Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre, M., & Vissers, K. (2017).

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. Proceedings of the

2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 65-74. DOI:

[10.1145/3020078.3021744]

[7]. Aydonat, U., Ovtcharov, K., Fowers, J., Massengill, T., & Chou, P. A. (2017). An OpenCL™

Deep Learning Accelerator on Arria 10. Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 55-64. DOI: [10.1145/3020078.3021741]

39

[8]. Venieris, S. I., & Bouganis, C. S. (2016). fpgaConvNet: A Toolflow for Mapping Diverse

Convolutional Neural Networks on FPGAs. Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 217-226. DOI: [10.1145/2847263.2847279]

[9]. Guan, Y., & Zhang, C. (2018). A Survey of FPGA-Based Accelerators for Convolutional

Neural Networks. Journal of Computer Science and Technology, 33(5), 768-792. DOI:

[10.1007/s11390-018-1864-8]

[10]. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278-2324. DOI: [10.1109/5.726791]

[11]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep

convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097-

1105. DOI: [10.1145/3065386]

[12]. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai,

J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition,

77, 354-377. DOI: [10.1016/j.patcog.2017.10.013]

40

APPENDEX A

SUSTAINABLE DEVELOPMENT GOALS FOR FYP

 FYP Title :

FPGA Implementation of Optimized Deep Learning Algorithm

FYP Supervisor: Dr. Usman Ali_

Group Members:

Sr.No Registration Number Name

1 246935 Abdullah Benyamin

2 332352 Muhammad Kashif

3 346173 Nauman Saeed

4 348656 Zoraiz Ahmad

SDG’s:

Sr.No SDG No. Justification After Consulting

1 4 Quality Education: Facilitating Access to learning opportunities

2 9 Industry Innovation: Developing Technology using FPGA contributes

to industrial innovation.

3

4

5

FYP Advisor Signature: ______________________

41

APPENDEX B

Final Year Project as Complex Engineering Problem:

Knowledge Profiles:

Work Process:

42

43

APPENDEX C

Plagiarism Report

44

45

46

47

48
