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SUSTAINABLE DEVELOPMENT GOALS 

 
SDG 4: Quality Education: 

 

FPGA technology is used by our project to employ convolutional neural network which changes images 

from into words, harnessing deep learning in order to improve education accessibility. Converting visual 

information to written texts facilitates learning communities’ inclusiveness which may allow for obtaining 

of information in multiple formats. In line with the Sustainable Development Goal 4, this method supports 

inclusive and equitable quality education and promotion of lifelong learning opportunities. Our aim is to 

enhance learning experiences through incorporation of high level technological aspects in educational 

setups as well as ensuring equal availability of information thereby achieving the broader objectives of 

SDG 4. 

 
 

SDG 9: Industry Innovation and Infrastructure: 

 

Our project uses FPGA tech to revolutionize educational technology, and finally convert visual data into text 

through the use of a convolutional neural network. It is in line with Sustainable Development Goal 9, which 

encourages infrastructure development and fostering sustainable industrialization. Technological 

infrastructure can be improved by making sure that FPGA is integrated into instructional equipment used in 

educational institutions thus supporting an innovative ecosystem for sustainable industrial growth. This 

allows developing more dynamic industries responsive to future learning needs. 
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Chapter 1: 

 

Introduction 

 
Problem Statement 

 

The problem with using a Field Programmable Gate Array (FPGA) to execute Convolutional Neural 

Networks (CNNs) for digital image recognition is that they have complicated hardware constraints. On 

the other hand, even if CNNs are effective in tasks like handwriting recognition, there are still issues to 

deal with when it comes to FPGAs such as limited resources regarding processing and memory. These 

limits can greatly affect the power of computation and accuracy of a CNN system thereby making it 

difficult to meet real-time requirements including automatic data entry or assistive technologies. The goal 

of this final year project is to design and optimize an FPGA-based CNN that would recognize static images 

containing digits from 0-9.. The main difficulty will involve adjusting the CNN architecture so as to 

achieve maximum computational and power efficiencies on the FPGA without sacrificing its accuracy. It 

involves engineering solutions which can precisely balance between the computational requirements of a 

CNN and what an FPGA’s hardware can actually handle. Consequently, this project intends to prove that 

FPGAs may perform many complicated deep learning operations effectively, therefore their use in real-

time processing situations may become possible, thereby improving their adaptability. 
 

Objectives: 

To optimize the architecture of a CNN for efficient operation within FPGA resources is the primary goal. 

The following are part of this; minimizing power consumption, maximizing processing speed as well as 

maintaining high accuracy that is suited to the specific capabilities of FPGA technology. An effective and 

reliable solution for processing digit images directly on an FPGA with quick response times must be 

developed and integrated as it would be essential in realizing goals of this project. 

 

Besides this, the system will be thoroughly tested to examine its performance in terms of accuracy, 

processing speed and power consumption. This test will compare FPGA based approach to conventional 

techniques for performing computations so that we can highlight where it is better and how it can be 

improved further. Advanced quantization techniques coupled with optimization methods will be 

investigated into and exploited to minimize computational complexity in CNN while maintaining its 

efficiency without noticeable loss of precision. 

The project aims at showcasing FPGA’s capability in handling complex deep learning tasks. These will 

be displayed through an optimized image recognizer on the system, stressing the merits of FPGAs over 

typical hardware platforms such as CPUs and GPUs in terms of fast processing speed and energy used 

up. Lastly, extensive documentation of how it was developed will be prepared together with user 

guidelines for future researchers or developers who would want to duplicate or modify the system for 

other uses. This document is therefore a useful material for extending the application of FPGA in deep 

learning beyond this project. 
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Significance of the Study: 
 

The importance of this study is its ability to aid in the adoption of deep learning on FPGAs 

specifically for optimizing and deploying Convolutional Neural Networks (CNNs) in digit 

recognition. The uniqueness of these devices lies in their parallelism and programmability 

and this project has been able to show how they can assist to develop better and faster image 

recognition systems. When implemented successfully on an FPGA, CNN shows that FPGAs 

can be used for complex computational tasks, which have implications not only on the 

practicality of using FPGAs for complex computational tasks but also its relevance towards 

hardware accelerated learning, in real world applications. Industries such as automation data 

entry, security and aids need rapid accurate image processing. In addition, it provides a 

pointing out for further studies in the area that may result into more energy-efficient and cost-

effective solutions within AI and ML domains. In going beyond what has been already 

achieved with FPGA-based architecture under deep learning, this study takes a valuable place 

among other works also concerned with technology optimization towards better performance 

or sustainability. 

 

This digit recognition is only one example however the scope of this project is far beyond 

this example and it can be used for many other applications. It can be trained to classify 10 

different images they can be of any object or different faces. 

Further this project can be extended for any type of image recognition just by changing the 

values of weights in Surveillance Drone images and CCTV camera and Video feed from 

Electric Vehicles. 
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Chapter 2: 

BACKGROUND AND LITERATURE REVIEW 
 

 

Introduction: 
 

A crucial leap in computational technology has been made with the integration of deep learning 

algorithms into hardware platforms specifically Field Programmable Gate Arrays (FPGAs). For instance, 

they are reconfigurable, function at very high speeds and consume less energy as compared to other 

options. This makes FPGAs ideal for edge computing workloads that need low latency and power 

consumption. Recent studies have focused on optimizing Convolutional Neural Networks (CNNs) which 

are used extensively in image and video processing applications for better utilization of FPGA 

characteristics. Among such improvements is quantization and simplification of convolutional 

operations to suit the limited computational resources available on FPGAs while still maintaining 

accuracy. According to a literature review despite the achievements made so far in deploying deep 

learning models on FPGAs, there is still a range of obstacles that leave this field open for more research 

including: resource control, real-time performance boosting and retaining accuracy with recent models. 

As such, this paper seeks to develop an optimized CNN implemented specifically on an FPGA platform 

for real time digit recognition. 

Convolutional Neural Networks (CNNs) are commonly employed in video and image processing tasks 

making them good fit for FPGAs. The adaptability inherent in FPGA can be used to change CNN 

architectures so as to better match the characteristics of the underlying hardware, thus helping enhance 

computational efficiency and operational speed. Recent advancements have been geared towards model 

compression, advanced quantization techniques and simplification of convolution operations. The above 

optimizations aim at addressing limitations associated with less available computational resources in 

FPGAs compared to traditional CPUs or GPUs, while trying to keep or even surpass model accuracy. 

 

Deep Learning on FPGA: 

 

Integrating deep learning algorithms and Field Programmable Gate Arrays (FPGAs) is a major step in 

the area of edge computing and real-time processing technologies. This is as FPGAs are uniquely 

positioned to do so because they have high flexibility, configurability and efficient parallel processing. 

These features enable these chips to perform high-speed computations that are required by deep learning 

applications, but with less power than traditional CPUs or GPUs. Complex matrix operations and 

numerous layers of neurons make deep learning models such as Convolutional Neural Networks (CNNs) 

or to be computationally intensive. Still it is possible to let FPGAs easily accomplish this task thereby 

providing a better adaptation for hardware specificities of particular neural networks. Thus there are 

systems-on-chip that can simultaneously run several processes allowing fast calculations. 

The use of FPGAs has gained traction in the management of computationally demanding models 

deployed in deep learning, examples being Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks. Their design is characterized by a good number of layers that work together for the 

intended goal. Nonetheless, traditional processors may find it quite difficult to handle such models 
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because they have many complex matrix operations. Nonetheless, FPGAs can be designed so as to 

facilitate these forms of computation. If an FPGA executes various operations at once, then it was 

programmed to perform convolution as well as many other tasks using parallelism. 

Conversely, its programmability and ability to be programmed based on different algorithms or tasks 

suggest that FPGAs are increasingly being recognized for their potentiality in deep learning. Thus one 

FPGA could run numerous processing steps and inference stages according to what changes are 

occurring in algorithms or priorities assigned to where different works must be done. For instance, real-

time video processing, mobile computing, autonomous driving and any other application that requires 

dynamic computing. 

 

Benefits of Implementing Deep Learning on FPGA: 

 

One advantage of using FPGAs for deep learning is that they are programmable, meaning developers 

can upgrade hardware algorithms without any physical changes. This adaptability is crucial when 

deploying systems out in the field where new data may call for an update of the algorithms or merely 

refining their performance while at the same time tweaking them. If say deep learning models are 

constantly changing, they may need different computational resources or be better improved through 

newer algorithms that consume less power or enhance processing speed. For this reason, 

implementation on FPGA allows for adaptation to these hardware and thus extends the lifetime of a 

device which in turn reduces costs associated with hardware refresh cycles. 

In addition, reprogramming FPGAs can greatly reduce the development cycle of deep learning 

applications. A prototype can be developed by programmers using FPGA, and then test it under actual 

conditions before its update based on performance numbers and user feedback instead of modification 

through hardware iterations. In this way, not just does this approach save money but it also speeds up 

the introduction of new attributes. Some types of deployment, such as self-driving cars, adaptive signal 

processing and real-time surveillance systems, involve changing conditions or data characteristics over 

time and are priceless when their processing algorithms can be remotely updated on FPGAs. 

 

Challenges in Implementing Deep Learning on FPGA: 

 

In view of these advantages, there are a number of challenges associated with deploying deep learning 

on FPGAs. They include the FPGA development and programming complexities that usually require 

the knowledge of hardware description languages like VHDL or Verilog. In addition to this, FPGAs 

might have an inadequate amount of on-chip memory which may act as a bottleneck in cases where 

there is need to process larger neural networks at once requiring much more data. 

The complexity involved in programming Field Programmable Gate Arrays (FPGAs) is another 

deterrent that one faces. While other programming environments tend to focus straightly on CPUs or 

GPUs, developers working with FPGA must have some background understanding about hardware 

description languages like VHDL or Verilog which normally have steep learning curve and differ 

greatly from software programming paradigms. 

Moreover, for FPGAs to be optimized such that they can run deep learning models, it entails converting 

high-level abstractions/operations into low-level hardware instructions. 

Hence, deep learning is very rapidly rendering FPGA implementations obsolete. For instance, the 
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introduction of new neural network architectures and training techniques may not be compatible with 

existing FPGAs. 

 

Hardware Acceleration: 

 

To avoid these complications, hardware acceleration methods are commonly employed. This involves 

making certain areas inside the FPGA specialized to increase specific functions’ efficiency over those 

achievable by general-purpose processors. For example, in such a case, customized IP cores can be 

made to multiply or do convolution faster by designing them explicitly for those parts of computations 

in a neural network. 

 

Therefore, FPGAs are able to accommodate such algorithms comprehensively considering issues of 

flexibility, performance as well as power efficiency. They are best suited for real-time applications 

including autonomous vehicles, medical imaging systems and intelligent surveillance systems among 

others. Subsequently, several new approaches have emerged on optimizing deep learning 

implementations on FPGA’s. 

 

There is an importance of hardware acceleration techniques in enhancing deep learning on FPGAs for 

better performance on some operations such as multiplication and convolution which are key in neural 

network computations. 

 

This is further possible with FPGA-specific libraries and tools that simplify the design process so that 

software programmers without extensive hardware design experience can be able to do it easily. The 

case in point is the fact that using high-level synthesis (HLS) tools, developers can write algorithms 

using widely popular programming languages like C or C++ and which are then automatically 

translated into hardware description languages thus reducing the gap between software and hardware 

design. 

 

In addition, recent develop in reconfigurable field programmable gate arrays have provided them with 

flexibility in terms of variation. They are now able to shift their hardware configurations so that only 

parts of the circuitry are involved in specific tasks while the other parts continue working. This 

implies that on-the-fly changes of hardware configurations due to real-time requirements of the neural 

network as it processes data result into more effective utilization of resources. Energy consumption 

can be minimized as well as performance enhanced by a dynamic reconfiguration through which 

FPGA can optimize itself for any given task. 
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Chapter 3: 

METHODOLOGY 

Introduction: 

This chapter highlights the methods used in implementing and optimizing a convolutional neural network 

(CNN) for digit recognition on an FPGA. These include: Creating an initial data set, writing appropriate 

software using high level programming languages which is then converted into hardware description 

language (HDL) for the purpose of FPGA implementation. 

 

Figure 1: Block Diagram of Complete Project 
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Data Preparation: 
 

The dataset of MNIST used in project, is a large collection of handwritten numbers and it also has been a 

standard benchmark in image recognition. Composed with roughly 25,000 to 30,000 samples of numbers 

from zero through nine on various handwriting, this latest version of the MNIST data set is preferred because 

it offers comprehensive coverage. The dataset was chosen because it’s extensive and can be used by machine 

learning algorithms to identify different kinds of handwriting. This new version has about 25,000 – 30,000 

instances of written numerals fairly distributed among all the ten groups. The images are rescaled to be small 

(28 × 28 pixels) this makes further automated recognition easier since preprocessing steps that must be done 

before training are reduced. Every picture in the MNIST database is actually an ordinary black-and-white 

bitmap where a grey scale level between white (0) and black (255) is assigned to each pixel. Such diversity 

allows deep models for recognizing smaller variations in handwriting styles. 

In other words, the MNIST dataset’s pervasiveness within the machine learning community has established it 

as a conventional barometer when it comes to judging how well different image recognition algorithms 

perform. Through frequent application in diverse research and developmental undertakings, it is possible to 

evaluate relative performance of models and architectures, which can be seen as a stepping stone towards 

progressive developments in digital number identification technology. This previous background makes the 

MNIST dataset very useful for training and testing our CNN model optimization on FPGA in order to achieve 

high accuracy numbers recognition. 

 

Algorithm Development in Python: 

 

The CNN architecture is equipped with various important features that are specific to optimizing the task of 

digit recognition, built on the original MNIST dataset. These layers within CNN have been tailored to extract 

and understand input digit images in a better way. 

 

 

 
 

 

Figure 2: Visual Representation of CNN Model 
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Figure 3: CNN Model Training and Validation 

 

 

 

 

 

 

 

 

 

 



10 
 

Translation to MATLAB: 

 

The transition from Python to MATLAB played a pivotal role in refining the convolutional neural network 

(CNN) for FPGA implementation. This translation was instrumental for multiple reasons: 

 

 
 

Figure 4: Translation to MATLAB 

 

 

Code Simplification and Optimization: 

 

MATLAB is especially tailored for matrix operations as well as algorithms that are common in image 

processing, and neural network applications are no exception. Through converting the Python code into 

MATLAB, the team managed to make the CNN structure more concise while also making it better suited for 

hardware optimizations. This was an important move towards modifying the neural network so that it could 

work in a much more restriction and performance conscious environment such as FPGA. 

 

Removal of Dependencies on Built-in Commands: 

 

Python, despite being convenient and supported by many libraries, often employs high-level functions that 

abscond with much of the computational intricacy, thus serving as a barrier when preparing code for hardware 

implementation. This is in significant contrast to MATLAB that allows one to have direct control of such 

operations which is important in customizing the algorithm so that it can efficiently exploit both unique 

capabilities and limitations of FPGA hardware. 
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Enhanced Debugging and Visualization in MATLAB: 

 

The MATLAB Integrated Development Environment (IDE) has superior debugging tools and offers better 

visualization features for algorithm development and testing. Through this approach, the group was able to 

inspect visually intermediate outputs of the CNN, examine activation maps after each layer, as well as refine 

parameters under controlled insights. It was particularly useful if one wanted to point out inefficiencies and 

bottlenecks in network architectures. 

 

Facilitation of Algorithm Testing: 

 

The MATLAB simulation environment enabled the team to first test and verify that CNN functions before the 

hardware implementation. The FPGA can be simulated in this environment, such as fixed-point arithmetic and 

parallel processing capabilities, which gives a better approximation of its final deployment scenario. 
 

Iterative Refinement: 

 

Therefore, with MATLAB, developers could quickly make iterative adjustments and test them thereby speeding 

up development cycle and allowing rapid prototyping. The reason for this is because changing neural network 

architecture and tuning hyper parameters have great influences on performance and accuracy in research and 

development scenarios. 

 

This project employed all the powerful features of MATLAB to make CNN more efficient and adaptable for 

FPGA implementation while guaranteeing uninterrupted transition from Python high-level abstraction code 

base to Verilog hardware specific code. This greatly aided in optimization process during deep learning model 

deployment in FPGA platform which contributed largely to the success of the project as a whole. 

This way, it ensured smooth transition from a high-level’ abstracted code base in Python to a precise hardware-

oriented code in Verilog that would effectively improve upon efficiency and compatibility of CNN prior to its 

FPGA implementation. Therefore, this strategy played a great part into successful realization of strong deep 

training model on the basis of FPGAs platform that can also be optimized. 

 

Fixed Point Conversion: 

 

The conversion of floating-point computations to fixed-point format is a crucial step in preparing a neural 

network model for FPGA implementation. This post-optimization process involves several detailed steps and 

considerations that ensure the neural network remains efficient and effective when deployed on hardware with 

limited computational resources. 

 

We have written a C++ code to convert the given number into fixed point format. The conversion into fixed 
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point is based on the value of highest and lowest number received. The Value of “m” and “n” are given to the 

program as per the requirement of the layer’s input.  

 

 

 
 

Figure 5: Floating Point Weights in C++ Program for Fixed Point Conversion 

 

 
 

Figure 6: Floating Point Weights converted to Fixed Point Weights 
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Choice of Fixed Point Precision: 

 

The importance of this choice is emphasized by the selection of ‘m’ and ‘n’ which stands for the number of 

bits for fractional and integer parts respectively. It is a determination that directly affects the range and precision 

that can be represented in a model. Herein, we are faced with a problem in terms of selecting an equilibrium 

where precision remains high enough to keep up with the accuracy level of a given model, being at the same 

time low enough to economize resources allocated for FPGA as well as reduce power consumption. Typically, 

this involves empirical testing to find the minimal bit-widths that do not significantly degrade performance. 

 

Pseudocode Development: 

 

When compiling the code for specific hardware, a pseudocode was written. It acted as a bridge between high 

level mathematics of CNN and low level FPGA programming requirements. The pseudo-code served as an 

algorithmic prototype showing all the steps in the computation and data flow without the complexity of 

hardware programming syntax. 

 

Data Path Design: 

 

After preparing the pseudocode, a conceptual data path was created to describe its operations on FPGA . This 

is a physical representation of how pseudocode manifests within FPGA architecture. It shows data movement 

through system, processing it and interaction with various hardware components. 

 

ASM Chart Development: 

 

ASM Charts for different layers are designed to control the data paths of each layer. So that each data path is 

controlled in proper manner. 

 

Convolution Layers and ReLU Activation Function: 

 

The convolution layers form the basis of CNNs which are responsible for feature extraction. Each and every 

convolution layer applies several learnable filters on the input. These filters, small matrices slide over the input 

image dimensions so as to produce feature maps that point out significant details such as edges and corners. 

Usually, there are many convolution layers piled up to hold extra multifaceted features in deeper layers. 

There are convolutions being performed each one involving two numbers of 9 bits each being multiplied. The 

multiplication results in 18 bits answer and then all multiplications answers are added together. At the end there 

is a 2x1 MUX that controls the output. If the value is negative then 0 is produced at the output while if the 

value of sum is greater than zero the output is same as the sum. 
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Figure 7: Data Path for Convolution and ReLU 

 

After each convolution layer Rectified Linear Unit (ReLU) activation function is used. ReLU gives non-

linearity to the model which enables it learning more complicated patterns. What the function does is that it 

makes all the negative pixel values in the feature map to become zero, thereby reducing the network’s 

complexity without losing its essential qualities. In training deep learning models, ReLU is preferred than other 

activation functions because it solves a problem of computation cost and mitigates vanishing gradient problem 

which is common for deep neural networks. 

 

Max Pooling Layer: 

 

In certain cases, max pooling is applied for the first of the convolution layers to squeeze down the dimensions 

of the input volume in case they are very large. It operates by moving a window through each feature map and 

computing the maximum activation in each window area. This reduces the complexity of computations, thus 

making it easier for our model to train as well as decreasing overfitting. 
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Figure 8: Data Path Max Pool 

 

 

 

 

Fully Connected Layer: 

 

ReLU Layer: 

 

After each convolution layer Rectified Linear Unit (ReLU) activation function is  

used. ReLU gives non-linearity to the model which enables it learning more complicated patterns. What the 

function does is that it makes all the negative pixel values in the feature map to become zero, thereby reducing 

the network’s complexity without losing its essential qualities. In training deep learning models, ReLU  

is preferred than other activation functions because it solves a problem of computation cost and mitigates 

vanishing gradient problem which is common for deep neural networks. 
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Pseudo Code For ReLU: 

 

B = bias  

while A<64  do 

 M= input x weight; 

 B= B + M; 

end while; 

 

if(B[MSB]==1) then   

   output = B; 

end if; 

else  

   output = 0; 

end if; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: ASM Chart ReLU 
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Figure 10: Data Path ReLU 

 

 

 

Softmax Output Layer: 

 

CNN’s last layer is Softmax, which performs classification. The Softmax outputs transform from classes into 

probability distributions over classes that may be used in this instance to characterize them as one out of ten 

digits (0-9). The range of output values should be 0–1 representing how confident we are about an individual 

class with all probabilities summing up being 1. 

 

This combination of convolutions for feature transformation, ReLU for non-linearity, max pooling and Softmax 

for classification yields a good and effective architecture that performs the task of recognizing and classifying 

handwritten digits from MNIST dataset. These are essential because they make it easier to identify correct 

numbers while ensuring that digit recognition is done with reasonable timing on an FPGA platform without 

affecting system accuracy. 
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Pseudo Code for Softmax: 

 

B1 = bias  

while A1<10  do 

 M1 = input x weight; 

 B1 = B1 + M; 

end while; 

 

B =B1  

//  B1 is for neuron 1  

// similarly B[i] for ith neuron 

while i<10 do 

 if (B > Bi) then 

   B = B[i]; 

  end if 

  else   

   B=B;   

end while; 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                Figure 11: ASM Chart Softmax 
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Figure 12: Data Path Softmax 

 

 

Verilog Implementation: 

 

The transition to Verilog implementation is a critical phase in deploying the optimized CNN on an FPGA, 

involving detailed steps to ensure that the algorithm not only performs accurately but also efficiently on the 

hardware platform. 

 

Translation of High level Language to Verilog: 

 

The Verilog implementation is based on the data path drawn in the earlier stages. It involves translating 

high-level model, usually represented by pseudocode or MATLAB into Verilog modules. Each component 

of CNN such as convolution layers, activation functions, pooling layers and fully connected layers has some 

specific Verilog code that defines how these operations are implemented in hardware. 

 

Modular Design Approach: 

 

A modular design approach is employed in developing each part of the CNN for this particular C++ project. 

This simplifies the coding process and improves system maintainability and scalability. For instance, 

reusable modules can be instantiated multiple times with a network depending on its configuration thus 

convolutional layers can be implemented as. 
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Optimization for Hardware Efficiency: 

 

In writing Verilog codes, optimization for speed and resource usage is highly emphasized. To enhance 

calculation acceleration loop unrolling, pipelining and parallel processing approaches are used among 

others. In addition to efficient use of memory and computational units on the FPGA, fixed-point arithmetic 

previously established incorporated also minimizes resource consumption regarding them. 

 

Simulation and Synthesis: 

 

The code is extensively simulated to ensure that it functions correctly. This simulation checks for errors in 

logic and the timing of the Verilog modules. After a successful simulation, synthesis is done; this convert’s 

high level description of Verilog into a design that can be physically built using FPGA chips with timing 

analysis included to satisfy operational speed requirements. 

 

FPGA Prototyping: 

 

After synthesizing the Verilog code, we need to prototype on an FPGA. This means putting the synthesized 

design onto the FPGA and running it with real input data so its performance can be observed in real world 

scenario. It is very important because there could exist some unforeseen issues not noticeable during 

simulation such as dealing with real-time data and compatibility of interfaces. 

 

Testing and Debugging: 

 

Throughout and following FPGA prototyping, you will have rigorous testing and debugging processes 

taking place. These involve running test cases which cover all possible scenarios along with edge cases just 

to make sure that CNN works correctly under all conditions. For debugging purposes, specific tools on 

FPGA development are available for network interfacing and performance tuning. 

 

 
 

Figure 13: Timing Diagram for Testing and Debagging 
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Performance Evaluation: 

 

Eventually, the put in place model is evaluated against specified processor speed, accuracy, power 

consumption targets. This estimation helps to ascertain whether the FPGA implementation meets its 

specification and is good at its operational application. In order that the project can transit smoothly from a 

software based model through an efficient hardware solution to edge computing environment characterized 

by real time performance, this report goes through these steps for Verilog implementation of CNN. 
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Chapter 4: 

Implementation 

 
4.1 Introduction: 

 

Now, the project is shifting to implementation stage. A model of Convolutional Neural Network (CNN) was 

trained on the entire groups of digital photo data taken from MNIST dataset. This data set is considered as one 

of the most popular ones in image recognition. At first breath training was performed with python and other 

libraries such as tensor flow were used since they come with a collection of prebuilt functions for accelerating 

deep learning model development, testing and iteration. These exercises were critical in developing baseline 

performance measures and for understanding CNN behavior under varied conditions. 
 

That said, however, there was need to move from Python to MATLAB so as to make the model ready for 

FPGA deployment. This step had to be taken because Python high-level functionality did not match the low 

level requirements needed by FPGA programming languages. MATLAB has a powerful environment that 

allows for more detailed controlling over computational operations and is useful in simulating neural network 

behaviors using a language closer to hardware-focused one. The software made it possible to fine tune 

characteristics of our model’s architecture and it came equipped with tools used to analyze and optimize 

weight parameters without some abstractions common in python codes. 

 

The optimized weight values were obtained after achieving a reasonable level of optimization in MATLAB. 

Optimized neural network parameters were then translated to Verilog code. The choice for using Verilog is 

that it can describe hardware directly, which is necessary for implementing precise and efficient operations on 

an FPGA. In order to write the code in Verilog, the structure of the software was designed in such a way that 

would exploit parallel processing capabilities of an FPGA as well as ensuring that digit recognition tasks could 

be processed with sufficient efficiency and speed. This step-by-step process provided groundwork for further 

FPGA programming steps including simulation, testing and final deployment all aimed at achieving high 

accuracy on digit recognizing problem on constrained hardware platforms. By doing so this project smoothly 

moved from high-level model training to low-level hardware implementation; thereby incorporating modern 

software developmental practices into conventional hardware engineering methods. 

 

4.2 Software Development and Optimization: 
 

We initiated the process of programming our FPGA-based digital recognition system by writing the software 

in Python because, it has reliable machine learning libraries and frameworks. At Google’s laboratory, we 

trained this application by using its powerful GPU for computational intensified functionalities, such as training 

a Convolutional Neural Network (CNN) on MNIST dataset. This provided an ideal platform for iterative 

testing, and it helped to establish a good solid reference point for performance as well as functionality. 

Thereafter, we transitioned into MATLAB, due to its better ability in handling matrix operations and fixed-

point arithmetic that are important in FPGA implementation. MATLAB enhanced our understanding of the 

model’s behavior while allowing us to have complete control over the quantization process. Therefore, 

quantization became one of the optimization techniques whereby floating-point representations were changed 

into fixed-point so that it would be applicable for limited precision abilities of an FPGA based system. Thus, 
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this step was necessary to ensure that the complexity of the model is compatible with the hardware constraints 

while maintaining an acceptable level of accuracy. 

 

Afterwards, the final model parameters were converted into Verilog code using Xilinx ISE for FPGA 

programming. During this step, careful coding was necessary to match the software’s model with hardware 

architecture which centered on maximizing the parallel processing capability of the FPGA. This movement 

from high-level software development in Python and MATLAB to low-level hardware programming in Verilog 

was done with an objective to sustain the neural network’s integrity as well as performance while making sure 

that such a digit recognition system was not only accurate but also efficient when deployed in an actual field 

programmable gate array (FPGA). 

 

4.1 Fixed Point Arithmetic Implementation: 

 

The choice to use a fixed-point arithmetic, especially in n.m format, was vital for the improvement of 

computational efficiency and power utilization of an FPGA. The FPGA has limited hardware resources thus 

fewer are required if we deploy fixed-point instead of floating point arithmetic. Fixed point arithmetic 

allows for a balanced range vs. precision tradeoff for numerical values processed within an FPGA using “n” 

bits for integer part and “m” bits for fraction part. 

 

This change to fixed point arithmetic was important for achieving highest accuracy in digit recognition 

without compromising on optimal energy consumption. Due to this fact, fixed point format inherently uses 

few logic devices on an FPGA leading to lower power dissipation as well as minimal heat generation. This 

is highly beneficial in embedded systems or portable devices where they have low power efficiency 

requirements in order to prolong their battery life. Moreover, though it might appear that fixed-point 

arithmetic could affect accuracy of deep learning models; careful optimization and sufficient bit allocation 

per section ensured that our CNN performances remained strong with almost similar results achieved 

through floating point computations too. Fixed point arithmetic allows a balanced approach between the 

range and precision of numerical values processed within an FPGA by using (n) bits for the integer part and 

(m) bits for the fractional part. 

 

This change to fixed point arithmetic was important for achieving highest accuracy in digit recognition 

without compromising on optimal energy consumption. Due to this fact, fixed point format inherently uses 

few logic devices on an FPGA leading to lower power dissipation as well as minimal heat generation. This 

is highly beneficial in embedded systems or portable devices where they have low power efficiency 

requirements in order to prolong their battery life. Moreover, though it might appear that fixed-point 

arithmetic could affect accuracy of deep learning models; careful optimization and sufficient bit allocation 

per section ensured that our CNN performances remained strong with almost similar results achieved 

through floating point computations too. 
 

In addition, this was a reasonable choice because fixed-point arithmetic corresponded to the physical 

constraints of our Spartan 6 FPGA and worked well for high-accuracy and efficient computation of complex 

neural network operations. Another way to look at this is that we employed hardware-specific optimizations 

for addressing tough problems associated with deploying sophisticated machine learning algorithms onto 

resource-limited settings. 
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Hardware Configuration and Integration: 

The Spartan 6 FPGA was chosen as the implementation platform for our digit recognition system because of 

its strong performance features and available resources. The choice was important in facilitating an efficient 

and effective deployment of our Convolutional Neural Network (CNN). 

 

Storing and manipulating image data involved the Spartan 6 FPGA in large part. The data flow in FPGA is 

regulated by block RAM (BRAM) which is essential for efficient performance. Notably, BRAM enables 

storage of image data in form of pixel values which can be retrieved faster as well used immediately for real 

time applications. 

 

In digit recognition process, these pixel values are obtained back and multiplied by set weights- a very 

important stage during convolutional layer of the CNN. Thereafter, this multiplication yields results that are 

aggregated through various types of filters thus performing an essential role in feature extraction as well as 

recognition functions. Each layer within the CNN was carefully arranged on top of FPGA to ensure efficient 

handling of spatial and temporal computations. 

To get good results of recognition CNN required to manage its convolutions, activation functions and pooling 

layer with a Spartan6’s built in FPGA. Successful integration of the hardware with the CNN was only 

possible through careful considerations for data path planning and optimization as well as establishing correct 

configuration for networking. This was an entire process of configuring the hardware that made it possible to 

effectively harness the potentiality of FPGA on more progressive image processing jobs. 

 

 
 

Figure 14: Spartan 6 - LX45 FPGA 
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FPGA Resources: 

 

Device Spartan 6 XC6SLX45 

Company  AMD 

Origin United States of America 

Logic Cells 43,661 

Configurable 

Logic Blocks 

(CLBs) 

Slices 6,822 

Flip-Flops 54,576 

Max Distributed RAMs 401 

DSP 48 Slices 58 

Block RAM 

Blocks 

Block Ram 18Kb 116 

Block Ram Max Kb 2,088 

Total I/O Banks 04 

Max User I/O 358 

 

Figure 15: Spartan 6XC6SLX45 Total Resources 
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Chapter 5: 

RESULTS 
 

Introduction: 

The present chapter presents the findings from Convolutional Neural Network (CNN) implemented 

in Field Programmable Gate Array (FPGA) for digit recognition. The main goal was to assess the 

system’s processing speed, resource utilization, power consumption and accuracy. This analysis 

helps us to understand the benefits and limitations of using FPGA in deep learning applications. 

Results are divided into sections that explore different aspects of system performance. We compare 

an FPGA-based implementation with traditional CPU and GPU implementations so as to show the 

benefits of using FPGA in edge computing scenarios. The results from this chapter will help answer 

whether implementing FPGA-based CNNs for real-time digit recognition tasks is feasible, which 

might have implications for future research and development in this area as well. Furthermore, we 

analyze model behavior on individual digits by a confusion matrix to give a complete view of 

system’s accuracy across them all. 

 

Results of Model Training in Python: 

 

Digit recognition using Convolutional Neural Network (CNN) was done in Python with TensorFlow 

the popular deep learning frameworks. To strike a balance between computational efficiency and 

memory limits of the computer, a batch size of 86 was used for training.  

The model was trained over 30 epochs, during which it gradually refined its weights and biases to 

enhance accuracy. Optimization of the model involved the use of categorical cross-entropy loss 

function. This kind of loss measure is suitable for multi-class classification problems like digit 

recognition because it compares predicted class probabilities against true class labels as an 

evaluation measure. The learning rate here was assigned 0.1, a quite high value that speeded up 

convergence throughout training. 

 

Throughout the training phase, there were continuous monitoring regarding how well the model 

trained with metrics such accuracy and loss documented per epoch. As each iteration went on over 

every new epoch, accuracy increased gradually. Initially, there was moderate performance of the 

model but in subsequent epochs; parameters of the network were adjusted by learning algorithms 

so that they could learn from input data more effectively and reduce error rate accordingly. 

Given below is the confusion matrix obtained during training the model in python. The confusion 

matrix contains both the predicted label and true labels.  
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Figure 16: Confusion Matrix 

 

 

 

       

 

 

Figure 17: Python Model Results 
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Verilog Results: 

After successfully training Convolutional Neural Network (CNN) in Python, we first converted the 

model to MATLAB for processing, before implementing it in Verilog for deployment on the Field 

Programmable Gate Array (FPGA). This intermediate step in MATLAB was very important 

because it helped convert the model’s architecture and parameters accurately to a format that is 

suitable for hardware. 

 

Using MATLAB, fixed-point representation was applied to CNN. This is required due to FPGA 

implementations not being well supported by floating point arithmetic. The quantization process 

consisted of converting weights and activations of the model into fixed-point representations while 

maintaining its performance characteristics.  

 

After being prepared in MATLAB, the model was converted into Verilog code. By doing this, the 

Verilog implementation of this CNN duplicated its architecture so that behavior of Verilog code 

mimicked that of the trained model. To ensure consistency, FPGA implementation used similar 

datasets as python model. A considerable accuracy of 94% was reached during FPGA-based CNN 

whereas its value during Python trainings has been 95%. These small disparities in precision may 

be attributed to quantization process and limitations imposed by FPGA hardware. 

 

Design was careful to optimize resource utilization on the FPGA. The last design used a substantial 

but bearable portion of Look-Up Tables (LUTs), Flip-Flops (FFs), and Digital Signal Processing 

(DSP) blocks on the FPGA. In this manner, resources were properly utilized to facilitate 

computations by the FPGA within its available hardware constraints. 

 

 

 

Figure 17: Timing Diagram for Detection of Zero (0). 
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Figure 18: Timing Diagram for Detection of One (1). 

 

 

 

Figure 19: Timing Diagram for Detection of Two (2). 
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Figure 20: Timing Diagram for Detection of Three (3). 

 

 

 
 

Figure 21: Timing Diagram for Detection of Six (6). 
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Figure 22: Timing Diagram for Detection of Seven (7). 

 

Resources Utilized on FPGA: 

Given below is table which shows the resources utilized during the implementation of deep 

learning algorithm. 

 

 
 

 
Figure 23: FPGA Resources Utilized 
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Chapter 6: 

Discussion and Future Enhancements 

 
1.1 Introduction: 

In this chapter, we will talk about the results, some challenges faced as well as future improvements in 

developing a Convolutional Neural Network (CNN) FPGA implementation for digit recognition. We were 

able to make deep learning techniques work with the limited resources and strict performance demands of 

FPGA platforms in an excellent way. The goal was not just to prove that such an implementation was 

possible but also to increase its efficiency and accuracy. 

 

We look at what has been achieved during the project and some of the technological and methodological 

challenges that we overcame during this time. Besides, this paper will consider how the findings from this 

study can be used in future research to enable more advanced instantiations of machine learning algorithms 

on hardware platforms. The last part of this chapter will present a fore-looking perspective for improving and 

expanding AI capabilities realized by hardware-accelerated approaches. Essentially, the purpose of this 

discussion is not only to give an overall picture on how our project has affected deep learning applications 

using FPGA but also offer recommendations for the future. 

 

1.2 Evaluation of Outcomes: 
 

As such, the primary aim of this project was to successfully implement a deep learning algorithm specifically 

a Convolutional Neural Network (CNN) on a Field Programmable Gate Array (FPGA). The purpose of this 

implementation is to exploit the particular features of FPGAs to make deep learning task more efficient and 

accurate. Interestingly, however, the project not only achieved its goals but surpassed expectations in several 

key performance metrics. 

 

The CNN accuracy increased remarkably to 92% post deployment on FPGA from an initial 72% at the early 

stages of development. This considerable rise was as result of model iteration and optimization strategies that 

were designed for FPGA environment in particular. Improvements were made in terms of advanced 

quantization methods and tuning network parameters, hardware-aware quantization algorithms as well as 

modification involving hardware customization. This shows how important it is to continuously improve 

oneself for better performance in deep learning applications. 
 

Comparing processing times also brought out the efficiency of FPGA implementation. The model took about 

7 seconds to process an image through Python whereas FPGA only spent 28 nanoseconds. With such a drastic 

reduction in processing time, computations on FPGA can proceed at breakneck speed making it a suitable place 

for real-time data analysis and fast decision making. 
 

The FPGA has proved that the project has been successful and that there is an immense future potential for 

deep learning. In this case, a hardware design platform that speeds up computation while maintaining low 

power dissipation is illustrated. It opens new doors for applying FPGA technology in autonomous driving, real-
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time medical imaging and dynamic decision systems with high accuracy and quick processing as matters of 

priority such as these require complex neural networks. 

 

If the outcomes of the project are anything to go by, then it can be said that with proper architectural planning, 

algorithm adaptation should be precise and a full understanding of hardware capabilities in place, FPGAs can 

form an essential tool to expand artificial intelligence. The insights from this project provide a blueprint for 

future research, especially on how FPGA implementations can scale up to more complex AI models and wider 

applications. Such results underline how necessary it is to have a methodical system design and demonstrate 

promising performance gains for hardware targeted optimizations made in the fast growing area of accelerated 

computing through hardware. 

 

1.3 Challenges and Lessons Learned: 
 

A few challenges were faced in implementing a Convolutional Neural Network (CNN) on FPGA that 

yielded valuable insights and affected the project’s direction. Firstly, training models became hard due to 

the convolutional neural network’s complexity and high computational power that is required in training 

such networks. Henceforth, Python codes at a higher level were converted into MATLAB leading to the 

creation of custom logic which simulates these functions correctly so as to guarantee functional integrity 

across different programming environments. 

 

Various filters were designed for optimal processing within different layers of the CNN, which 

represented another major obstacle faced towards enabling efficient processing on FPGA. Therefore, 

when implementing them on FPGA there was need to consider each layer’s balance between performance 

and resources. This exercise emphasized the importance of having a solid grasp of both hardware 

architecture and digital signal processing. 

 

From these challenges we learned some of the most valuable lessons about interdisciplinary knowledge 

as well as flexible and responsive hardware-software integration. Accordingly, this also led to success in 

our project at hand thereby also exposing us to various suggestions on what areas can be recommended 

for future research and improvement like simplification of software based machine learning models’ 

transformation into hardware platforms. In that regard, this event has opened doors for more studies on 

high-performance neural network implementations in FPGAs that can unlock many doors and change 

many things in this dynamic field Recommendations for Improvement: 

Based on the outcomes and challenges encountered during the implementation of the FPGA-based             

Convolutional Neural Network (CNN) for digit recognition, the following recommendations are 

proposed to further enhance its performance, efficiency, and scalability: 

1. Advance Data Acquisition Techniques: 

Although it does not apply directly to this project, which uses pre-determined datasets, can be enhanced 

so as to collect real time data for dynamic digit recognition applications using high resolution sensors 

and sophisticated algorithms for signal processing thereby improving the quality of information. 
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2. Enhanced Preprocessing Techniques: 

Advanced preprocessing methods must be explored and adopted to refine the input data further. This 

could entail employing more complex filters or feature extraction techniques that would lessen noise and 

increase the effect of data fed into CNNs. 

3. Optimize Communication Protocol: 

For any other future implementation where there has to be a remote processing or it is in real-time 

evaluate and optimize the communication protocols used within the system. It may, therefore, necessitate 

embracing faster secure protocols with efficient and secure ways of transmitting data between FPGA 

points and acquisition points. 

4. Deep Learning Model Optimization: 

Involving larger and more diverse datasets is part of these models being refined. This includes trying 

different model architectures as well as fine-tuning model parameters so that their accuracy and 

performance improve for AI algorithms on FPGA. 

5. User Interface Design and Accessibility: 

To increase the interface’s usability, it should self-explanatory to all users regardless of their 

technical expertise levels. Things like having a graphical representation of recognition process or 

simplified control panels may be considered when designing features that would make system 

monitoring and interaction easier. 

6. Integration with External Systems: 

Think about possibilities of interfacing FPGA-based systems with other platforms or applications. 

For example, this involves linking up with IoT devices to make them more useful in smart 

environments or connecting with existing digital systems to facilitate automated data processing 

tasks. 

7. Scalability and Resource Management: 

Firstly, therefore, the scalability of the system must begin focusing on expanding its capabilities for 

complex recognition tasks and large data processing. In such manner, it may involve better resource 

allocation within FPGA for increased data flow and parallel processing capacities along certain lines too. 

These recommendations will make FPGA-based CNN system perform better due to increased 

robustness, improved user involvement, and better security. They will enhance its effectiveness and fit in 

different real-life situations thus making it a flexible and powerful image recognition tool.
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Chapter 7: 

Conclusion and Future Work 

 

 
7.1 Summary of Findings: 

What we found out from successful implementation of this project are:  

CNN Performance:  

The Convolutional Neural Network (CNN) adapted for FPGA showed high accuracy in digit recognition. 

This affirms the effectiveness of CNNs in image-processing tasks, which are optimized for given hardware 

constraints. 

 

Verilog Code Functionality:  

This particular Verilog code which was created specifically for this project and on the FPGA it performed 

right, providing pictures that displayed numbers with the help of given data. It is an instance that exposes to 

us how much we can depend on our hardware programming as well as how seamless it interfaces with 

software through FPGA. 

 

Efficient Resource Utilization:  

The use of FPGA resources was done correctly implying that the project can optimize deep learning tasks 

within limited hardware resources. It should be appreciated that such efficient resource usage has greatly 

contributed to the performance of the entire system. 

Enhanced Speed:  

Enhanced speeds were experienced in image processing with this implementation. This is because the parallel 

processing capabilities of FPGAs allow for faster processing times as compared to conventional computing 

methods. 

CNN Optimization Discussion:  

The FPGA operating parameters have been changed and optimized many times throughout the research made 

on CNN architecture. Additionally, there were changes involving quantization as well as fixed-point 

arithmetic so that while thinking about FPGA processing abilities, neural network learning ability is not 

compromised. 

The existence of these outcomes demonstrates the achievement of this project in realizing its objectives and 

also giving direction for future hardware-based implementations of neural networks.
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7.2 Future Directions and Recommendations: 

 

The recent use of a resourceful field-programmable gate array (FPGA) in an improved Convolutional Neural 

Network (CNN), aimed at recognizing images, has promised to totally change hardware based visual data 

processing. This chapter will recommend additional steps that must be taken for the effective implementation 

and improvement of the system. 

 

1. Enhancing the CNN Model:  
 

Future work should improve upon the CNN model used by the system. More ultimate structures and diverse 

set of images for training purposes, as well as methods such as transfer learning are among other aspects that 

could be explored in refining this architecture. Better accuracy and efficiency of this model would make it more 

useful for real-time applications. 
 

2. Optimization for FPGA Implementation:  
 
Priorities in FPGA Implementation Optimization: The algorithm need to be further optimized for FPGA. This 

includes adjusting the model so that it can balance performance with resource constraints like limited memory 

and processing power found on FPGAs. Additional techniques to investigate include pruning, quantization, and 

efficient convolutional operations for models. 

 

3. Integration of Additional Functionalities:  
 

As a result, the system could be expanded to include image preprocessing in order to handle varying lighting 

conditions, orientations and scales. Moreover, directly incorporating FPGA based algorithms for enhancing 

images could greatly enhance the robustness and accuracy of the system. 
 

4. Exploration of New Applications:  
 

In addition, there is need for further research on face detection algorithms, object detectors as well as other 

non-visual data processing applications that may be integrated into FPGA-based systems, if it is desired to 

broaden its impact on the community. Thus every application might require specific modifications or 

optimizations of the current model. 
 

5. Industry and Academia Collaboration:  

 

Also, having such liaisons with technology companies and academic institutions can go a long way in terms of 

facilitating more advanced study as well as testing in real life situations. Besides these collaborations will help 

to ensure that this project remains up-to-date with respect to recent developments in FPGA technology and 

deep learning. 

 

6.   Long – Term Impact Studies:   
 

Conducting long-term studies on the performance of this system in practice Situations may provide insight into 

its operational efficiency and durability. These studies can help to pinpoint Possible problems in continual use, 

and they can be used for increasing the stamina of such a system In summary, these are some future directions 

that will lead to improving FPGA-based CNN System for image recognition. Consequently, it could serve as 
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an effective solution for real-time image  

 

Processing and analysis if it becomes more flexible and reliable by developing deeper learning models  

Continuously, upgrading their functionalities, experimenting with new applications & partners. Also, building  

This system will aid in addressing challenges and exploiting opportunities. Therefore, this research has the 

ability of exploring FPGA-based computing solutions’ capabilities hence opening new frontiers in embedded 

systems with AI .
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APPENDEX A 

 

SUSTAINABLE DEVELOPMENT GOALS FOR FYP 
   

  

 

 FYP Title : 

 

FPGA Implementation of Optimized Deep Learning Algorithm 

 

 

FYP Supervisor:  Dr. Usman Ali_ 

 

 

Group Members: 

 

Sr.No Registration Number  Name 

1 246935 Abdullah Benyamin 

2 332352 Muhammad Kashif 

3 346173 Nauman Saeed 

4 348656 Zoraiz Ahmad 

 

SDG’s: 

 

Sr.No SDG No. Justification After Consulting 

1 4 Quality Education: Facilitating Access to learning opportunities 

2 9 Industry Innovation: Developing Technology using FPGA contributes 

to industrial innovation. 

3   

4   

5   
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