
D
E

-4
2
 (E

E
) K

A
R

IM
 H

U
S

S
A

IN
, F

A
R

Z
A

M
 T

A
IY

A
L

 Z
U

L
F

IQ
A

R
, M

U
H

A
M

M
A

D
 H

A
R

O
O

N
, M

E
E

R
 M

U
Z

A
M

M
E

L
 K

H
A

N

REAL TIME HAND GESTURE CONTROLLED

HOLOGRAPHIC DISPLAY

COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING NATIONAL

UNIVERSITY OF SCIENCES AND TECHNOLOGY RAWALPINDI

2024

C
O

L
LEGE

OF ELECTRICAL AND MECHANICAL ENGINEER
IN

G

DE-42 EE

PROJECT REPORT

REAL TIME HAND GESTURE CONTROLLED

HOLOGRAPHIC DISPLAY

Submitted to the Department of Electrical Engineering

in partial fulfilment of the requirements

for the degree of

Bachelor of Engineering

in

Electrical

2024

 Project Supervisor: Submitted By:

 Dr. QASIM UMAR KHAN KARIM HUSSAIN

FARZAM TAIYAL ZULFIQAR

 MEER MUZAMMEL KHAN

 MUHAMMAD HAROON

i

ACKNOWLEDGEMENTS

We are thankful to Allah Almighty, the Most Merciful, for the courage, and the guidance He

has given us, which have made it possible for us to complete this project.

We would like to express our gratitude to our project supervisor “Dr. Qasim Umar Khan” and

all the faculty for their guidance and support throughout this journey. We are grateful for their

expertise, constructive feedback and encouragement that has guided us to refine our approaches

and ideas throughout the course of the project. We are also grateful to our fellow colleagues

for their consistent encouragement has been a potential motivation to accomplish this task.

Lastly, we would also like to thank our families for their support and belief that made this

journey an enjoyable experience.

ii

ABSTRACT

This project aims to develop an advanced human-computer-interacting system designed to

seamlessly control holographic 3D visuals using real-time dynamic hand gestures. The primary

goal is to enhance the learning experience in the educational sector by effectively displaying

and controlling complex 3D concepts such as models of human anatomy and various

engineering problems. This innovative approach leads to improved academic performances and

enhances the engagement and participation of students. The core of the system's functionality

lies in detecting hand gestures and translating them into real-time computer cursor control,

thereby enabling interactive control of holographic displays.

To achieve accurate hand gesture detection, two distinct approaches are employed: a vision-

based approach and a sensor-based approach. In the vision-based approach, a camera

continuously captures hand movements. This visual data is then used to detect and locate

different gestures of the hand by employing a learning-based gesture-detecting algorithm.

Conversely, the sensor-based approach involves the design of hardware (a sensor-based motion

tracking glove) to detect the position of fingers. An ANN model, capable of detecting the same

hand gestures as vision-based approach using sensor’s data, is developed. The primary purpose

of utilising these two different approaches is to enhance gesture recognition accuracy.

Therefore, the outputs from both methods are fused together using stacked ensemble learning,

with an additional ANN serving as a meta-model to further improve accuracy. These detected

gestures are then translated into mouse commands. Furthermore, to facilitate user interaction,

a desktop application is designed to initialise and manage the gesture-controlled mouse system.

Additionally, another Windows application is developed to upload and control various 3D

models displayed on a holographic interface.

iii

SUSTAINABLE DEVELOPMENT GOALS

This project targets two Sustainable Development Goals (SGDs).

SDG 4:

This project supports the achievement of Sustainable Development Goal (SDG) No. 4, which

focuses on ensuring access to quality education. This project aims to create a Human-Computer

Interaction (HCI) system that uses hand gestures instead of typical input devices such as

keyboards and mice. Furthermore, this project uses a holographic device to display 3D models

that are interactable with hand gestures, creating an accessible and user-friendly interface that

can be very beneficial, especially in the education sector. Teachers and students can use their

hands to interact with the educational content displayed in 3D space, making teaching, and

learning more engaging and immersive. This project also accommodates individuals suffering

from disabilities who may find it difficult to use input devices, ensuring lifelong learning

opportunities for all.

SDG 9:

This initiative is in complete accordance with Sustainable Development Goal (SDG) No. 9,

which focuses on industry, innovation, and infrastructure. A hand gesture-based Human-

Computer Interaction (HCI) system is a cutting-edge technology that can be applied in diverse

areas such as healthcare, commercial advertising, automotive, and consumer electronics to

enhance industrial infrastructure. This advanced system reduces the dependency on traditional

input devices for HCI, making interaction with digital devices more seamless and immersive

than ever before. This fosters a culture of innovation, as most modern industries, especially the

consumer electronics industry, will be eager to use such innovative approaches in their products

and services. Furthermore, by promoting the use of modern technology, this project supports

industrial sustainability and opens the door for the development of technologically advanced

systems that can meet the needs of an evolving society.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. i

ABSTRACT ... ii

SUSTAINABLE DEVELOPMENT GOALS .. iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vi

LIST OF SYMBOLS .. vii

Chapter 1 – INTRODUCTION ... 1

Chapter 2 – LITERATURE REVIEW .. 4

2.1. Related Work .. 4

2.1.1. Hand Gesture Recognition Using Vision-Based Technique 4

2.1.2. Hand Gesture Recognition Using Sensor-Based Technique 10

2.1.3. Fusion in Machine Learning .. 12

2.2. Limitations in Prior Work .. 15

2.3. Proposed Approach ... 16

Chapter 3 – METHODOLOGY .. 18

3.1. Vision-Based Approach Methodology ... 18

3.1.1. Model Architecture ... 18

3.1.2. Model Training ... 22

3.1.2.1. Hyperparameters .. 23

3.2. Sensor-Based Approach Methodology .. 25

3.2.1. Selection of Hardware Components ... 25

3.2.1.1. Glove .. 26

3.2.1.2. Flex Sensor ... 27

3.2.1.3. Microcontroller ... 27

3.2.1.4. Battery ... 28

3.2.1.5. T-blocks, Resistors, and Wires ... 29

3.2.2. Glove Design ... 29

3.2.3. Software Implementation .. 32

3.2.3.1. Working of ESP-32 ... 32

3.2.3.2. Bluetooth Connection .. 33

3.2.3.3. Data Collection .. 33

3.2.3.4. Features Selection ... 34

3.2.3.5. Model Selection... 35

3.2.3.6. Hyperparameters .. 37

v

3.3. Fusion of Vision and Sensor Based Approaches .. 38

3.3.1. Model Architecture ... 38

3.3.2. Model Training and Hyperparameters ... 40

3.4. Algorithm for Executing Mouse Commands ... 41

3.4.1. Translating Gestures into Mouse Functionalities .. 44

3.4.1.1. Executing Cursor Movement ... 44

3.4.1.2. Executing Left Click ... 44

3.4.1.3. Executing Right Click ... 44

3.4.1.4. Executing Double Click ... 45

3.4.1.5. Executing Scroll Up .. 45

3.4.1.6. Executing Scroll Down .. 45

Chapter 4 – RESULTS ... 47

4.1. Evaluation Criteria of Vision-Based Approach Model ... 47

4.1.1. Training Results .. 47

4.1.1.1. Results of Object Detection ... 47

4.1.1.2. Results of Pose Estimation ... 55

4.2. Evaluation Criteria of Sensor-Based Approach Model .. 61

4.2.1. Training Results .. 62

4.2.2. Real Time Testing .. 62

4.3. Evaluation Criteria of Fusion Model .. 63

4.3.1. Training Results .. 63

4.3.2. Real Time Testing .. 66

4.4. Results Conclusion ... 66

4.5. Development of Windows-Based Applications .. 67

4.5.1. Development of Desktop Application for User .. 67

4.5.2. Development of 3D Models Application .. 68

Chapter 5 – CONCLUSIONS AND FUTURE WORK ... 71

5.1. Conclusion .. 71

5.2. Future Work ... 72

REFERENCES .. 73

APPENDICES ... 78

Appendix A: Complex Engineering Problem ... 78

Appendix B: Sustainable Development Goals .. 79

Appendix C: Plagiarism Report .. 80

vi

LIST OF FIGURES

Figure 1. System flow diagram of proposed approach .. 17
Figure 2. Architecture of YOLOv8... 18
Figure 3. Gestures used for training ... 23
Figure 4. Hand key landmarks given by MediaPipe ... 23
Figure 5. System flow diagram of sensor-based approach ... 25
Figure 6. Glove used for Hardware design .. 26
Figure 7. Sensors used for sensing the finger movements ... 27
Figure 8. Selected Microcontroller (ESP-32) ... 27
Figure 9. Battery used to power the components .. 28
Figure 10. Connections for Flex sensor .. 29
Figure 11. Final design of sensing-glove ... 30
Figure 12. Diagram showing the circuitry of sensor-based glove ... 32
Figure 13. Illustration of data collected for single gesture using sensor glove 34
Figure 14. Illustration of data used for training the model used for sensor-based approach 35
Figure 15. Architecture of the model used in sensor-based approach .. 35
Figure 16. Mathematical operation of each neuron in the hidden layer ... 36
Figure 17. Association of the outputs of the last layer of sensor model with gestures 37
Figure 18. Architecture of model used for fusion ... 39
Figure 19. Illustration of data collected for training of fusion model .. 41
Figure 20. Flowchart of algorithm developed for gesture translation into mouse functionalities 43
Figure 21. Precision-Confidence curve of YOLOv8 object detection .. 47
Figure 22. Recall-Confidence curve of YOLOv8 object detection .. 48
Figure 23. Precision-Recall curve of YOLOv8 object detection ... 49
Figure 24. F1-Confidence Curve of YOLOv8 object detection .. 50
Figure 25. mAP50 curve of YOLOv8 object detection ... 52
Figure 26. mAP50-95 curve of YOLOv8 object detection ... 53
Figure 27. Confusion matrix of YOLOv8 object detection .. 54
Figure 28. Precision-Confidence curve of YOLOv8 pose estimation ... 55
Figure 29. Recall-Confidence curve of YOLOv8 pose estimation ... 56
Figure 30. Precision-Recall curve of YOLOv8 pose estimation .. 57
Figure 31. F1-Confidence curve of YOLOv8 pose estimation ... 58
Figure 32. mAP50 curve of YOLOv8 pose estimation .. 59
Figure 33. mAP50-95 curve of YOLOv8 pose estimation .. 60
Figure 34. Performance of sensor model on validation data... 62
Figure 35. Validation and training losses of fusion model ... 63
Figure 36. Validation and training accuracy of fusion model ... 64
Figure 37. Confusion matrix of fusion model on test data ... 65
Figure 38. User interface for camera-based gesture recognition ... 68
Figure 39. User interface for fusion-based gesture recognition .. 68
Figure 40. Cube model ... 69
Figure 41. Heart model ... 70
Figure 42. Skeleton model .. 70

vii

LIST OF SYMBOLS

Greek Letters

Ω resistance

Acronyms

HCI Human Computer Interaction

GUI Graphical User Interface

MEMS Micro Electronic Mechanical Systems

HOG Histogram of Gradients

SIFT Scale Invariant Feature Transform

HWT Haar Wavelet Transform

LBP Local Binary Pattern

PCA Principal Component Analysis

SVM Support Vector Machine

CNN Convolutional Neural Network

ANN Artificial Neural Network

RNN Recurrent Neural Network

k-NN k-Nearest Neighbours

IMU Inertial Measurement Unit

YOLO You Only Look Once

FLOPs Floating Point Operations

IDE Integrated Development Environment

CSV Comma-Separated Values

mAP50 Mean Average Precision 50

mAP50-95 Mean Average Precision 50-95

UI User Interface

1

Chapter 1 – INTRODUCTION

Human-Computer Interaction (HCI) is the way we communicate with computers. In our

modernised world, we are using digital gadgets like smartphones, laptops, TVs, tablets, gaming

consoles, and Virtual Reality (VR) headsets, and without these, our lives are incomplete.

Human-Computer Interaction (HCI) serves as a crucial connection between users and

electronic devices, playing a significant part in our daily interactions with computers and other

digital devices. Moreover, with further advancements in computer technologies, HCI is

becoming more and more important, and researchers are putting in more effort to enhance HCI,

creating immaculate interfaces that enhance user experiences and productivity.

The evolution of HCI goes back to the 1940s and 1950s. In those years, computers were big,

complex machines mainly used only for performing complex calculations by scientists and

engineers, and interaction was through punch cards, switches, and dials. In the 1960s and

1970s, command-line interfaces were introduced. This interface allowed the user to use

command lines to interact with the computer. Although this did improve HCI to some extent,

it is still very complex for laymen's users. In the 1980s, the first Graphical User Interface (GUI)

was introduced, which revolutionised HCI forever. The GUI provided the users with icons and

folders to interact with. A pointer device like the mouse was introduced, which allowed the

user to control a pointer on the GUI and interact in a very user-friendly environment. In the

2000s, touchscreen interfaces were introduced in mobile devices and laptops, thus eliminating

the need for input devices like the keyboard and mouse. These touch screens use touch gestures

like tapping, swiping, pinching, etc., making HCI simpler than ever. Currently, there is a

significant focus on utilizing voice commands and hand gestures to interface with computers

and other digital devices.

This project focuses on the use of hand gestures for HCI. Different hand gestures are used to

control the display screen of the computer. HCI through hand gestures offers a lot of advantages

when compared to traditional HCI using input devices like a keyboard and mouse. For example,

this kind of HCI provides enhanced teaching and learning experiences in the education sector.

Teachers and students can use hand gestures to interact with educational content, making

2

learning a very engaging and fun experience. Similarly, in the medical sector, surgeons can

maintain sterility during surgery by manipulating medical images just by using their hand

gestures and not touching anything. Hand gesture-controlled HCI is also useful for people who

suffer from mobility disabilities and find it difficult to use input devices.

Over the past several years, research into HCI through hand gestures has seen significant

advantages. [1] proposed a virtual mouse that can be moved in the air by using a 5-DOF IMU

(Inertial Measurement Unit) and a Kalman filter to fuse the gyroscope and accelerometer data.

[2] surveyed mouse implementation through hand gestures and discussed techniques like the

Hidden Markov machine learning model (HMM), the convex hull algorithm based on hand

contour detection, and MEMS accelerometer-based gesture recognition. [3] implemented a

hand gesture-based mouse system using camera and image processing techniques like Otsu’s

adaptive thresholding and morphological operations. More recently, [4] developed a virtual

mouse system based on fingertip detection using coloured caps on fingertips and hand gesture

recognition. The system uses image processing techniques and a convex hull algorithm for

gesture recognition. Various combinations of coloured caps and hand gestures are then

translated to perform various mouse functions. [5] used the camera and MediaPipe libraries for

hand pose estimation and the Pyautogui Python library to implement cursor control.

This project implements dynamic hand gesture recognition using two approaches. The first

approach employs a vision-based strategy that utilizes a deep learning algorithm to identify

several hand categories and key points. The second method employs hand flex sensors

positioned on the glove and an Artificial Neural Network (ANN) to identify identical hand

gestures. An approach of ensemble machine learning is used to combine the decisions made by

the two algorithms, with the goal of improving the accuracy of dynamic gesture identification.

The recognised gestures are then translated to perform different mouse functions like cursor

movement, scrolling, right-click, double-click, and left-click. A Windows-based application is

developed that is used to initialize and startup the system. Lastly, another Windows-based

application is developed that is used to display different 3D models on a holographic display.

The hand gesture-controlled mouse is then used to interact with these 3D models.

3

This project will contribute to the research work on hand gesture-based HCI as it provides a

natural, immersive, and practical way of communicating with a computer that will enhance the

user experience and productivity.

4

Chapter 2 – LITERATURE REVIEW

2.1. Related Work

Hand gesture recognition has been a significant subject of research in the field of

human-computer interaction during the last few decades. In the literature, there have

been two main ways of recognising hand gestures, vision-based technique, and sensor

glove-based technique. The related work has been arranged in the following order:

2.1.1. Hand Gesture Recognition Using Vision-Based Technique

Hand gestures can be further classified into two categories: static and dynamic. Image

processing is being used for pre-processing in countless research papers before applying

machine learning models such as HMM, SVM to detect gestures. [6] implemented two

image processing techniques namely, (HOG) and (SIFT) algorithms in MATLAB to

generate feature vectors of images. The features extracted were passed to (SVM) to

classify gestures. [7] introduced a novel technique for accurately detecting hand

gestures. Their procedure includes the image segmentation through canny edge detector

and employing Oriented Fast and Rotated Brief (ORB) for feature extraction,

generating vocabulary codewords using k-means clustering Bag of Words model, and

finally passing the feature vector of codewords to various classifiers. [8] introduced a

technique for feature fusion to recognize the gestures robustly by fusing features from

HWT and LBP and by doing some modifications to the original AlexNet architecture

by adding new layers that can learn new patterns and fused features. [9] designed

dynamic hand gestures trajectory and remodelling model based on Hidden Markov

Model (HMM) algorithm by first detecting hand using Adaboost algorithm and then

tracking the hand using a contour-based hand tracker. Invariant curve moments

represent global feature whereas local features are represented by orientation to

calculate the trajectory of hand gesture.

[10] introduced a system for recognising hand gestures in a continuous manner. The

initial step involves tracking and extracting the movement of the hand from the image.

Subsequently, the Fourier descriptor (FD) algorithm is utilised to extract spatial

characteristics, while motion analysis is employed to identify temporal characteristics.

The spatial and temporal characteristics are integrated and utilised as a feature vector

for real-time dynamic hand gesture identification in Hidden Markov Models (HMMs).

file:///C:/Users/Hp/Downloads/literature_camera.docx%23one
file:///C:/Users/Hp/Downloads/literature_camera.docx%23four

5

[11] developed a Multi Class Support Vector Machine and utilised the Biorthogonal

Wavelet Transform approach to build the input feature vector for classifying hand

movements. [12] created a live American Sign Language Recognition system by

employing (PCA) and SVM. The hand motion is separated from the image by extracting

the ROI using the HSV color space. The ROI is then processed using PCA to extract 8

features, which are subsequently used for real-time gesture detection by the SVM

algorithm. [13] developed a novel feature extraction approach by integrating the K

curvature and convex hull algorithms. The newly developed "K convex hull" extractor

demonstrates high precision in detecting fingertips. The gestures were categorised by

inputting the features into an Artificial Neural Network (ANN).

Numerous researches are underway develop the modern hand gesture recognition

system employing deep learning techniques since the rise of deep learning models after

AlexNet [14] won the 2012 ImageNet Large Scale Visual Recognition Challenge.

ImageNet [15] is a large-scale image database. Hand gesture classification systems

based on preprocessing and feature extraction suffer with poor accuracy and poor

robustness particularly in complex backgrounds and varying lighting conditions [16].

Additionally, some useful information in the image may get discarded when performing

feature extraction [17]. Use of (CNN) to detect visual hand gestures was explored by

[18]. The CNN architecture was trained on images of ten static hand gestures with

complex background and different hand sizes. Without data augmentation and skin

segmentation, the CNN model achieved 82.5% accuracy on NUS II dataset. The 90.5%

accuracy was achieved by introducing the dropout in the model and skin segmentation

further improved it to 93.5%. The accuracy of gesture recognition further elevated to

96.5% after using data augmentation techniques.

The authors of [19] suggested a convolutional neural network (CNN) consisting of four

convolutional layers, each followed by a max pooling layer. The network also includes

a fully connected layer and a softmax function at the end. A novel dataset of Irish Sign

Language (ISL) was created by gathering footage of individuals demonstrating ISL

hand gestures. The frames were retrieved from the videos and converted to grayscale.

The background was then eliminated from each frame using a pixel value threshold.

file:///C:/Users/Hp/Downloads/literature_camera.docx%23nine
file:///C:/Users/Hp/Downloads/literature_camera.docx%23ten
file:///C:/Users/Hp/Downloads/literature_camera.docx%23eleven
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twelve
file:///C:/Users/Hp/Downloads/literature_camera.docx%23thirteen

6

Afterwards, two gesture recognition techniques were trained and tested on the dataset.

One approach utilized (PCA) for the extraction of features and k-nearest neighbour for

classification purpose while second approach implemented a CNN model for gesture

recognition. The k-NN and PCA approach recorded 95% accuracy while CNN-based

approach recorded 99% accuracy on the ISL dataset. [20] designed a robotic arm,

controlled by gestures of hand to collect different objects. . To recognise hand gestures,

they proposed a CNN architecture (DAG-CNN). For training, a dataset containing 10

different hand gestures was constructed and the model recorded an accuracy of 84.5%.

The authors of [21] introduced the hand gesture recognition approach by using the fully

connected layers, FC6 and FC7, of pretrained AlexNet to extract deep features. The

deep features were reduced by using (PCA) based dimension reduction technique.

(SVM) was used as classifier to classify different static hand gestures. An American

Sign Language (ASL) dataset was crafted using five subjects on 36 different hand

gestures. The dataset contained variations in background and illumination conditions.

The proposed system achieved 87.83% accuracy on 36 hand gestures.

A simple CNN architecture was used to detect Indian Sign Language gestures by the

authors of [22]. The dataset contained upto 35000 images of about 100 distinct types

of Indian Sign Language gestures. The proposed CNN model recorded 98.80%

validation accuracy on the dataset while using Adam as optimizer and 98.56%

validation accuracy while using Stochastic Gradient Descent (SGD) as optimizer. A 2D-

CNN and feature fusion based dynamic hand gesture classification system has been

proposed by authors of [23]. The authors proposed a new clustering algorithm for

frames extraction and improved the existing HS optical flow algorithm by incorporating

fractional order method. The original frames were passed to Spatial Feature Extractor

Network to extract spatial features. Similarly, the optical flow frames were passed

through a Temporal Feature Extractor Network for temporal feature extraction. The

spatial and optical features were fused and passed to a pooling layer followed by two

fully connected layers to recognise the dynamic hand gesture. To verify their approach,

the authors trained and tested their system on the Hand Gesture Datasets of

Northwestern University and Cambridge. The model reached 97.6% and 98.6%

accuracy on the Hand Gesture datasets of Northwestern University and Cambridge

respectively.

file:///C:/Users/Hp/Downloads/literature_camera.docx%23fifteen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23sixteen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23seventeen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23eighteen

7

Dynamic hand gestures are recorded in a sequence of frames instead of a single frame.

Dynamic hand gesture recognition is difficult and inefficient using traditional two-

dimensional convolutional neural networks unless the 2D-CNN is provided with both

spatial features and temporal features. A new kind of deep learning model which can

learn both spatial and temporal features was presented by authors of [24]. The new

proposed model, C3D, is a 3-dimensional convolutional neural network (3D

ConvNets). The authors found out the optimum temporal kernel depth for 3D-CNNs

and concluded that C3D has the capability to learn spatial as well as temporal features

concurrently. C3D outperformed other modern methods on ASLAN dataset by

achieving 78.3% accuracy. In [25], a three-dimensional convolutional neural network

has been proposed by combining a High Resolution Network and Low Resolution

Network for driver hand gestures recognition. The final prediction is given by element-

wise multiplication of class probabilities given by the two networks. To reduce the

chances of overfitting and effectively train the model, spatiotemporal data

augmentation was done on the dataset. The authors claimed that their proposed system

achieved 77.5% accuracy on VIVA dataset.

In [26], authors presented a 3DCNN-LSTM-based dynamic hand gesture classification

system that recognises hand gestures by using a sequence of frames from two-

dimensional RGB videos. The model acquired spatiotemporal characteristics by

integrating a 3D-CNN and a Long-Short term Memory (LSTM). The initial architecture

underwent training on a comprehensive dataset and subsequently underwent fine-

tuning on a specialised smaller dataset using the transfer learning technique. This

smaller dataset was specifically created to evaluate the model's capability. The authors

documented a heightened level of precision, reaching 93.95%, when evaluating the

bespoke dynamic hand motion dataset. The authors of [27] have presented a method for

dynamic gesture identification that combines depth and RGB modalities as input to a

deep learning model. They also incorporate a finite state machine controller to enable

context-aware decision-making. The proposed model utilises a combination of a 3D-

CNN and LSTM to acquire spatiotemporal information through two concurrent input

streams. One stream processes RGB data, while the other stream processes depth input.

file:///C:/Users/Hp/Downloads/literature_camera.docx%23nineteen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty

8

Ultimately, the features acquired from both streams are merged and transmitted to a

fully connected layer to generate the final prediction. In order to enhance the precision

of real-time predictions, the authors integrated a finite state machine controller into the

system. This controller effectively creates a context-aware model by manipulating the

softmax decision probability through the adjustment of weights in the final layer. The

suggested technique attained a precision of 97.8% on eight distinct gestures derived

from a specialised video collection. The authors asserted that the employment of FSM

resulted in an enhancement of the real-time recognition rate from 89% to 91%.

Simultaneous dynamic hand gestures detection and classification in real-word systems

is a difficult job due to the large variation in the way people perform features and a

considerable delay between gesture performing and classification. Ideally, the system

should be able to classify the hand gesture before the gesture has ended to provided

instantaneous response to the user. To deal with this, authors of [28] came up with an

online Recurrent 3D-CNN model, capable of detecting and classifying dynamic

gestures of hand at the same time on a multi-modal input. To predict hand gestures from

in progress hand gestures, the authors trained the model using connectionist temporal

classification. To evaluate their model, a new video dataset is introduced by the authors

which was captured with the help of colour, depth, and stereo-IR sensors. The Recurrent

3D-CNN architecture clocked an accuracy of 83.8% on the custom dataset. The authors

of [29] proposed a CNN-RNN based architecture to classify dynamic gestures of hand.

A new Indian Sign Language dataset containing 33 gestures corresponding to the

months, days, and weeks of the year. 12 months of the year has been generated. The

images in the dataset were pre-processed by converting them from RGB to HSV colour

space and to make the images noise free, operations of dilation and erosion were

performed on images segmented. The suggested architecture was trained on a smaller

version of the original dataset comprising of 12 hand gesture classes representing 12

months of year. The authors concluded that CNN-LSTM model achieved 99.14%.

The authors of [30] utilized the hand keypoints and bounding box information of the

hand to classify static hand gestures. A top-down approach based human pose

estimation is used as a feature extractor to give hand pose keypoints and hand bounding

file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_three
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_four
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_five

9

box information. These features are normalized and processed before passed to a

classifier. For classification, the authors introduced a new Two-pipeline model. One

pipeline implemented a CNN, mobileNetv2, while the other pipeline used dense layers

for classification of gestures of hand. The outputs of both pipelines were concatenated

and passed to layer with softmax for classification of gestures of hand. The authors

reported their approach achieved 91% accuracy on HANDS dataset, 95% accuracy on

SHAPE dataset and 94% correct prediction rate on OUHANDS dataset. Another

technique using 3D hand pose estimation to recognise dynamic hand gestures has been

presented by [31]. Firstly, Faster R-CNN with BA’s is used for the detection and

extraction of the hand from the input RGB and depth image. Then, 2D Hand Pose of

the hand is estimated using OpenPose. The hand pose coordinated of RGB image were

mapped on depth image to generate 3D Hand pose of the hand. Finally, the authors

presented a new framework by combining 3D-CNN and ConvLSTM. The authors

introduced a data fusion technique based on weighted sum of inputs to generate the

input feature vector for the deep learning model. Data fusion was done by pixel-level

fusion of RGB, depth, and 3D hand pose images by multiplying pixels with a weight

and adding the pixel values. The proposed architecture was trained on a custom

dynamic hand gesture dataset constructed for this model. The authors reported 92.4%

accuracy for the outlined approach.

Nearly all the dynamic gestures of hand are recognized by the systems that are based

on deep learning models with high parameters count. Deploying such systems in

practical world for real-time recognition of gestures is not feasible. To overcome this,

authors of [32] came up with a simple deep learning model that combined CNN and

Transformer for accurate detection of dynamic hand gestures. The proposed

architecture fused Convolutional Neural Network with a Transformer model using

spatio-temporal attention mechanism. The authors evaluated the model on two publicly

accessible datasets, one is Jester [33] and other one is NVGesture [28] datasets, and one

custom built dataset. The MetaFormer model achieved 96.72% accuracy on Jester

dataset, 92.16% accuracy on NVGesture dataset, and a 90.71% accurate predictions

rate on custom generated dataset. In [34], a transformer based dynamic hand gesture

recognition multi-modal architecture has been introduced. The model utilized ResNet-

18 [35] as a feature extractor followed by a transformer encoder based on self-attention

file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_six
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_seven
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_nine
file:///C:/Users/Hp/Downloads/literature_camera.docx%23thirty

10

mechanism for temporal features analysis for dynamic hand gestures classification. The

researchers demonstrated that employing solely depth maps and the derived surface

normals as input can yield impressive outcomes. The suggested model was trained and

tested on two datasets, namely Briareo and NVGesture datasets. The model recorded

82.4% accuracy on NVGesture dataset on single input. The accuracy jumped to 87.6%

when several modalities were employed as input. On Briareo dataset, the proposed

architecture achieved 87.3% when using depth and normal as input while a very slight

improvement, 87.6% accuracy, was depicted when colour, depth, IR, and normal were

used as input.

2.1.2. Hand Gesture Recognition Using Sensor-Based Technique

Similar to the vision-based approach to gesture recognition, the other most common

technique for recognizing hand gestures is using various physical sensors. Researchers

have used different sensors for this purpose, such as flex sensors, accelerometers,

gyroscopes, electromyography, photoplethysmography, etc. Some of them use these

sensors alone, while others use a combination of sensors for better results. As time

progresses, we've witnessed significant advancements in wearable sensor-based hand

gesture recognition systems. This is due to a growing interest in human-computer

interaction, which has heightened the need for these systems in critical applications

such as sign language interpretation, virtual reality (VR) and AR, gaming and

entertainment, education, and training, among others. Initially, researchers used these

sensors to create models that could only identify static objects. Nevertheless, progress

in this domain has resulted in the creation of models that can accurately recognize a

wide range of dynamic hand movements.

Researchers started leveraging machine learning for gesture detection as a result of its

advancement. However, prior to this evolution, this task was performed by comparing

real-time data from sensors with previously stored data, then predicting the gesture that

most closely matched the stored data for the relevant gesture [36]. Most gesture-

sensing systems use flex sensors, motion sensors, and electromyogram (EMG) sensors.

However, [37] suggests a new way to recognize different hand gestures by decoding

11

the information from photoplethysmography (PPG) sensors. This is based on the idea

that tendons and muscle movements change the shape of the arteries, and then a

learning-based algorithm learns these changes to recognize the gestures. Similarly, [38]

uses the concept of capacitive sensing for gesture recognition. The capacitive sensors

on the board capture the types of gestures, and then a machine learning algorithm

recognizes the specific static gesture.

Flex sensors serve as potential sensors used to distinguish various hand gestures. These

sensors are variable resistors, which change their resistance values if we bend them.

Therefore, we place these flexible sensors over the fingers, allowing them to detect

bending by altering their resistance values. Most of the papers used these sensors alone

or in combination with other sensors for gesture recognition. [39] designed a flex

sensor-based wireless operating glove to extract information about position and

velocity of fingers. They recognized the six common hand gestures using a combination

of SVM and a neural network. A similar concept is used in [40]. They only used

artificial neural networks for their case, achieving an accuracy of 88.32%. Similarly,

[41] developed a system for dynamic gesture recognition using a similar glove

construction. The system picks up on different hand movements by using a gated

recurrent neural network (GRU) and maximum posteriori (MAP) estimation to watch

the change between two different gestures. [42] has developed a sensor-based glove

that measures the angles of the finger joints. With this information, they developed a

learning-based approach to detecting different dynamic systems of the hand. Their

algorithm tracks the gesture's start-to-end data for classification. Moreover, [43] claims

that they introduced a novel glove with flex sensors for finger motions and motion

sensors over the arm to detect the motion of the arm as well. Using a combination of

these two sensors, they developed a mechanism for the recognition of American sign

language (ASL) and Chinese sign language (CSL).

Moreover, electromyography (EMG) serves as another potential sensor for gesture

recognition. Skeletal muscles produce electrical activity, which electromyography

(EMG) sensors measure. They sense the electrical signals produced by muscle

12

contractions, which can be processed to detect specific movements or gestures. The

position of the electrodes is crucial in this case; even a small deviation can impact the

results. Nevertheless, past research has attempted to use these sensors alone or in

combination with other motion sensors. [44] put different EMG sensors on the arm and

collected data based on how the arm and fingers moved. They then used the extreme

gradient boosting (XGBOOST) algorithm to recognize the signs for American Sign

Language (ASL). Artificial intelligence provides you with a very diverse path for every

problem. Using the same setup [45], you can detect hand gestures using a fully

connected artificial neural network. [46], [47] achieved this task by combining data

from IMU and EMG sensors, but these methods are not considered user-friendly as they

necessitate the placement of numerous sensors on the user's naked arms for proper

operation.

If we investigate motion sensors, the most commonly used devices are the gyroscope

and accelerometer. These are 3-dimensional motion sensors. Gyroscope sensors

provide information on angular velocity on each of the three axes (X-axis, Y-axis, and

Z-axis), whereas accelerometers try to provide information regarding linear motion in

the form of acceleration in each direction. As a result, these sensors could be placed on

the hand or arm in combination for gesture recognition. [48] used the data from both

sensors and fed it into their developed gesture spotting algorithm. This algorithm

detects the start and end points of the gestures, and then recognizes them by comparing

them with their gesture database. With the advancement of recurrent neural networks,

continuous gesture spotting has improved significantly. So, leveraging these concepts,

[49] presented a general continuous hand gesture algorithm based on long-short-term

memory (LSTM). It requires data from a gyroscope and an accelerometer for training.

Similarly, [50] developed an algorithm for sensory data called PairNet.

2.1.3. Fusion in Machine Learning

The majority of modern machine learning-based systems employ more than one

machine learning model to achieve a certain task. A single classifier is inefficient when

a wide variety of data is present, the types of features are dissimilar, and generalization

13

is required. To improve the prediction accuracy of the system in such a situation,

multiple classifiers are preferred over a single classifier [51]. In the literature, there are

multiple techniques for fusing multiple machine learning models to achieve better

accuracy. Fusion is a technique whereby more relevant data is generated by combining

data or information from multiple sources [52]. Fusion techniques are broadly divided

into three categories: early fusion (data fusion), joint fusion (feature fusion), and late

fusion (decision fusion). Out of these three, joint and late fusion involve multiple

machine learning models, while in early fusion, there is only one classifier, but the input

is combined from several sources.

Early fusion, or data fusion, refers to combining data coming from heterogenous

sources. Both decision fusion and feature fusion can be classified as further types of

data fusion. Input coming from multiple sources is referred to as multi-modal input, and

the fusion of multiple modalities of data has been extensively used in deep learning

models. The paper [53] discusses different types of modalities available, like text,

video, image, and other signals for multi-modal architectures. The classical technique

to fuse data in the past was based on probabilistic fusions such as Bayesian fusion,

rough-set based fusion, etc. [54]. To combine data coming from various sources, the

most widely adopted procedure is to extract features using machine learning technique

and use them as input for the actual classifier. The most popular machine learning

techniques present in the literature to perform data fusion are k-NN, Principal

Component Analysis, Bayesian Classifier, and clustering. [55] provides a

comprehensive review of the use of machine learning techniques in data fusion. The

authors of [56] fused data coming from sensors, in numerical form, and data from

medical records, in the form of text, using the information gain method to improve the

accuracy of healthcare monitoring systems. A new data fusion technique, Attributed

Heterogenous Network Fusion, to combine multi-related data from different sources by

learning inter-relations and minimizing loss by avoiding insufficient relations, has been

proposed in [57].

14

In any classification problem, features play the most crucial role as they provide useful

information. One of the reasons for feature fusion is that in the practical world, rich

features as well as noisy and irrelevant features are present. For accurate prediction,

noisy and irrelevant features should be filtered as they confuse classifiers. To remove

noisy features, feature fusion is done to reduce the size of features so that only relevant

features are passed on. The most common type of feature fusion is early fusion, which

is similar to data fusion. In early feature fusion, features are fused from a set of features

extracted from data obtained from several sources. The methods used for early fusion

included averaging, concatenation, and weighted linear combination. [58] developed a

multi-modal depression recognition system by employing feature-level fusion on data

collected from various sensors. Non-linear and linear feature extraction from the data

collected from every source is followed by feature fusion utilising linear combination

method.

The authors of [59] increased the classification accuracy of the system by employing

multiple models and fusing features extracted by multiple classifiers in the network.

[60] improved the housing property value assessment system by fusing features

extracted by two deep neural networks, each model working on two different data

sources. The ability of the model to automatically learn relevant features based on the

enhancement deep feature fusion technique has been proposed in [61]. The authors built

an auto-encoder for automatic feature learning and used locality preserving projection

(LPP) method for the fusion of deep features. Attention-based architectures like

Transformer also perform feature fusion due to their capability of focusing on useful

features and suppressing irrelevant features. Graph-based feature fusion has been

utilised by Graph Attention Networks (GATs) and Graph Convolutional Networks

(GCNs) by collecting features from surrounding nodes in a graph [62].

Decision fusion is a very popular technique used in many machine learning systems to

raise the accuracy whereby combining predictions of multiple models. In the literature,

multiple techniques for decision fusion can be found, like averaging, weighted

averaging, majority voting, stacking, etc. [63] enhanced the accuracy of the tree species

15

recognition system by employing multiple SVMs, each operating on a separate feature

set, and fusing their decisions based on Murphy’s average method. [64] increased the

prediction accuracy of structural damage detection systems by utilising several 1-D

Convolutional Neural Networks and fusing their results based on majority voting. The

fuzzy-based decision fusion technique has been utilised by [65] to increase the accuracy

of heart disease classification. Their system included two Support Vector Machines

(SVMs), each receiving a different set of features from multiple sources, and the final

prediction was given by a fuzzy-based system. Decision fusion using stacking ensemble

learning is widely used in multiple machine learning and deep learning-based systems.

[66] utilised the concept of ensemble learning to elevate the accuracy of Maize

Chlorophyll Content estimation system by using three classifiers to make predictions.

The predictions given by the classifiers were stacked and given to a meta-model to give

the final prediction. In their system, they used a Multiple Linear Regression model as a

meta-model. Other techniques used in ensemble learning include bagging and boosting.

2.2. Limitations in Prior Work

The different types of architectures based on deep learning and machine learning

models discussed in the related work section of the vision-based approach are

vulnerable to certain limitations. Hand gesture detection traditionally relies exclusively

on image processing techniques. These techniques exhibit subpar performance in

complex backgrounds, diverse lighting conditions, various distances between the hand

and the camera, and occasionally owing to differences in skin color and clothing worn.

The adoption of a machine learning classifier for hand gesture detection effectively

resolved many of the challenges encountered by image processing techniques. Machine

learning classifiers do not perform well on large datasets with a wide variety of data

and high interdependencies of features because these algorithms do not possess the

ability to learn complex relations between features. Therefore, this approach also fails

in situations where generalization is required.

Deep learning models offer a solution to the problem of generalization. Deep learning

architectures like CNNs extract features from input data and learn the interconnections

between features and variations in the data due to their backpropagation technique to

16

update filter weights. This makes them suitable for situations where machine learning

algorithms fail, but the added cost comes in the form of an increase in computational

complexity. Although there are quite a few CNNs available that provide a good speed

and accuracy trade-off, Similarly, 3D-CNN and CNN-RNN architectures suffer from

high computational complexity and require large amounts of data for training, making

them largely unsuitable for real-world applications. Moreover, attention-based

architectures like Transformer were recently introduced in computer vision tasks, so

not much information is available about their training details, dataset requirements,

different models, limitations, etc.

Given the extensive research in the area of sensors-based gesture recognition, most

suggested methods rely on physical sensors, which can be challenging to integrate in

practical settings. Placing EMG sensors all over the arm is not a user-friendly approach.

Additionally, many of the approaches use a combination of multiple learning-based

algorithms, which requires a lot of computation power.

2.3. Proposed Approach

This project involves detecting a mixture of static and dynamic hand gestures to control

the computer cursor. For computer cursor control, classification of gestures as well as

localization of the hand are required. The suggested deep learning model for the vision-

based approach is called YOLO (You Only Look Once), and it can complete both tasks

in real-time. The cutting-edge object detector YOLO offers an excellent compromise

between speed and accuracy. It was first introduced in [67]. Since then, YOLO has

continued to evolve, with different versions coming after the initial release of YOLOv1.

After YOLOv1, several versions of YOLO came in the form of YOLO9000 [68] or

commonly known as YOLOv2, YOLOv3 [69], YOLOv4 [70], YOLOv5 [71], Scaled

YOLOv4 [72], YOLOR [73], YOLOX [74], YOLOv6 [75], YOLOv7 [76], DAMO-

YOLO [77], and YOLOv8 [78]. In this project, YOLOv8 is utilised for real-time gesture

detection and localization as well as pose estimation of hand keypoints.

17

The aim was to fuse sensor-based gesture recognition with a vision-based approach.

The traditional approaches discussed in related work section of sensor, restricts us to

use such an approach which had larger execution time. We had to choose an approach

to little inference time. Overall, we had to choose the path to implement the system that

should meet these three objectives:

• More user-friendly.

• Less computations.

• More Robust.

We decided to design gloves based on flex sensors to detect our fingers' movements

and use a fully connected artificial neural network for algorithm development after

reviewing all the literature and comparing it to our objectives. This was because flex

sensors are extremely flexible, light, and easy to place over the glove. Furthermore,

they are capable of identifying even the smallest finger movements. To further improve

the system’s accuracy, the predictions given by both models, vision-based approach

model, and sensor-based approach model are fused using another ANN model. After

fusing the results of YOLOv8 and the sensor model, an algorithm is developed that can

predict dynamic hand gestures and execute mouse commands corresponding to the

gesture detected. The complete flow diagram of the proposed approach is given in Fig.

1.

Figure 1. System flow diagram of proposed approach

18

Chapter 3 – METHODOLOGY

3.1. Vision-Based Approach Methodology

3.1.1. Model Architecture

YOLOv8 comes in different sizes, each having more depth than the previous ones.

Additionally, YOLOv8 can perform other tasks besides object detection, such as

classification, pose estimation, segmentation, and tracking. For vision-based approach, the

model chosen is YOLOv8s with pose estimation. YOLOv8’s architecture is shown in Fig.

2. Additional information related to YOLOv8s is given below:

• Model Parameters = 11.6 million

• Number of FLOPs = 30.2 billion

Figure 2. Architecture of YOLOv8

19

The architecture is split into three main parts: the backbone, neck, and head.

Backbone:

The backbone’s roll in YOLOv8 is to extract features from input. It progressively

reduces the spatial dimensions of the input visual data while capturing increasingly

abstract and robust features.

• Convolutional Layers (Conv):

o Role: Perform the primary operation of extracting features through

convolution, a mathematical operation which combines an input image

with filter to produce feature maps.

o Details: In the Fig. 2, Conv layers are represented with their kernel size

(k), number of output channels (c), padding (p), and stride (s). For

instance, a Conv layer with k=3, p=1, and s=2 indicates a 3x3 filter with

stride 2 and padding 1, which reduces the spatial dimension by half.

• C2f (Cross-Stage Partial Networks):

o Role: Enhances feature reuse and propagation with fewer parameters.

o Details: This module, denoted with shortcut=True, implements skip

connections that allow direct pathways for gradients during

backpropagation. It’s particularly useful in preventing vanishing

gradients and enabling deep networks to train effectively.

• SPPF (Spatial Pyramid Pooling - Fast):

o Role: Aggregates features at multiple scales in a fast and efficient

manner.

o Details: The SPPF layer aggregates features at multiple levels and

combines them, enabling the network to handle objects of varying sizes

effectively. This multi-scale pooling operation is efficient and aids in

capturing global context without increasing computation significantly.

• Downsampling Operations:

o Role: Reduce the spatial dimensions to distil abstract features.

o Details: Strided convolutions with stride=2 are utilised to downscale the

feature maps, while retaining essential features. This hierarchical

reduction is crucial for handling large input images efficiently.

20

• Multi-Scale Feature Maps (P1 to P5):

o Role: Provide feature maps at different resolutions.

o Details: P1 to P5 represent different scales of feature maps extracted

from the backbone. P1 is the finest scale (highest resolution), and P5 is

the coarsest (lowest resolution). This approach enables YOLOv8 to

locate objects of varying sizes effectively.

Neck:

The purpose of the neck in YOLOv8 is to enhance and combine characteristics from

various scales generated by the backbone. It bridges the gap between feature extraction

and final detection.

• Upsample Layers:

o Role: Increase the spatial resolution of feature maps.

o Details: Upsampling is typically done using nearest-neighbour

interpolation or transposed convolutions. This process allows the

network to regain spatial information that may have been lost during

downsampling, crucial for precise localization tasks.

• Concat Operations:

o Role: Merge features from different stages or scales.

o Details: By concatenating feature maps from different scales, the

network combines both low-level and high-level information, enriching

the feature representation and making it robust for detecting objects at

various scales and complexities.

• C2f Layers:

o Role: Enhance the feature representation and propagation.

o Details: Similar to their use in the backbone, C2f layers in the neck

continue to leverage residual connections and efficient feature fusion,

ensuring that the refined feature maps retain rich contextual information.

21

Head:

The head of YOLOv8 is where the final detection predictions are made. It processes the

refined multi-scale features from the neck and outputs the bounding boxes, object class

scores, and other relevant information.

• Detection Layers:

o Role: Generate predictions at multiple scales.

o Details: YOLOv8 uses detection layers at different feature map

scales (P3, P4, P5) to handle small, medium, and large objects. This

multi-scale approach is integral to the model's capability to localise

objects of different sizes.

• Convolutional and C2f Layers:

o Role: Further process the feature maps before making predictions.

o Details: These layers refine the features through additional

convolutions and feature fusion, ensuring that the features are well-

suited for precise and accurate predictions.

• Output Layers:

o Bounding Box (BBox): Predicts the coordinates of the bounding

box around detected objects.

o Classification (Cls): Predicts the class label for the detected objects.

o IoU (Intersection over Union): Calculates the intersection of actual

and anticipated boxes, which serve as an indicator of the reliability

of the predictions.

• Loss Function:

o Role: Guides the training process by quantifying the difference

between predictions and ground truth.

o Details: YOLOv8 typically uses a combination of losses, such as

Binary Cross-Entropy (BCE) for classification, CIoU (Complete

IoU) for bounding box regression, and other components to ensure

robust and precise model training.

22

The architecture utilizes the SiLU (Sigmoid Linear Unit) activation function. In general,

YOLO (You Only Look Once) models typically use multiple loss components,

including:

• Objectness Loss: This component specifically examines if the bounding box

prediction includes an object or not. This is computed using binary cross-

entropy loss function. The function is given as:

Where pi shows the probability of the detected class, and (1-pi) shows the

probability of class undetected.

• Localization Loss: This component quantifies the precision of the anticipated

bounding box coordinates. This calculation is performed using the Mean

Squared Error Loss function. The mathematical expression of this function is

given below:

yi shows the actual output value and ŷi shows the predicted output value.

• Class Confidence Loss: This component evaluates the confidence scores for

the predicted class labels. It is computed using the binary cross-entropy loss

function.

• Keypoints Loss: This loss component calculates the key point loss and key

point object loss for a given batch. Mean squared error loss function is used to

calculate the keypoints loss.

3.1.2. Model Training

The model is trained using HaGRID (Hand Gesture Recognition Image Dataset) [79] .

The hand gestures chosen to train the model are depicted in Fig. 3.

23

The labels assigned to every class during training are given below:

palm: 0

fist: 1

one: 2

two up: 3

three: 4

The training dataset contained 21615 images, while the validation dataset contained

1749 images. Following the completion of training, the model underwent testing using

a separate validation dataset. For keypoint annotation, the images were annotated based

on the hand landmarks given by MediaPipe hand Pose. The hand keypoints given by

MediaPipe are illustrated in Fig. 4.

Figure 4. Hand key landmarks given by MediaPipe

3.1.2.1. Hyperparameters

Hyperparameters are configurations for training a neural network. They are not part of

the network itself, but they control how the network is trained. The user specifies the

Figure 3. Gestures used for training

24

values, and any alterations to these variables have a direct impact on the results of the

network. Several crucial hyperparameters include:

• Optimizer:

An optimizer is an essential element of a neural network’s training process. It

continuously changes the biases and weights of the model in order to minimize the

loss function. Among optimizers, the stochastic gradient descent function makes the

weights converge quickly due to its ability to process large data sets. It estimates

the gradient using a random sample of data points, which is why it is highly

computationally efficient. Its formula is given as:

Where, ∇J is given as:

∇L represents gradient of the loss function discussed in the section 3.1.1.

Other Training Hyperparameters includes:

• Batch Size = 16

• Number of Epochs = 100

• Initial Learning Rate = 0.001

25

3.2. Sensor-Based Approach Methodology

In the order to detect the mentioned gestures using sensor-based approach, firstly a

sensor-based glove was designed from the scratched in the order to sense the required

gestures of the hand and then by using the data from that designed glove, a learning-

based approach is developed in the order to recognize different gestures and tested in

the real-time.

Fig. 5 illustrates the implementation of sensor-based approach. The microcontroller

reads data from the flex sensors via an analogue-to-digital converter, then sends the

collective data via Bluetooth to the connected PC. In real time, a learning-based

algorithm reads the data and classifies the performed gesture.

3.2.1. Selection of Hardware Components

Below is a list of the components utilized in the design of the glove for detecting finger

flexion:

• 5” flex sensors, 04

• 2.2” flex sensor, 01

• 3.7-volt rechargeable Li-ion battery, 01

• Cell Holder, 01

• Schottky diode: 01

• Right-handed gardening glove, 01

• T-blocks: 03

Data transfer
via Bluetooth

Data Received
By PC

Learning
based

Algorithm to
classify the

gesture

D
at

a
fr

om
 fl

ex
 s

en
so

rs

M
ic

ro
co

nt
ro

lle
r

Figure 5. System flow diagram of sensor-based approach

26

• Wires

• Resistors 100kΩ: 05

The sensing-glove includes the placement of the above-mentioned components on the

glove for its proper functioning. The reasoning behind each component's selection and

its working is given below.

3.2.1.1. Glove

The glove we used is a gardening glove. We use only the right-hand side of the

gardening glove. On the glove, we had to place different components, including

sensors, a battery, a microcontroller, etc. We chose this glove due to its material, which

allows for easy component placement, and its colour, which is crucial as the camera

will be the main component of this system. This colour is very helpful for the proper

functioning of the vision-based approach.

Figure 6. Glove used for Hardware design

27

3.2.1.2. Flex Sensor

In order to detect the movements of the fingers, a set of five distinct flex sensors were

employed, with each sensor dedicated to a specific finger. Typically, these flex sensors

are offered in two distinct sizes. The initial dimension of the flex sensor is 4.5 inches,

while the subsequent dimension is 2.2 inches. A total of five flex sensors were used,

consisting of four 4.5-inch sensors and one 2.2-inch sensor. The smaller 2.2-inch flex

sensor placed over the little finger to observe it movements whereas for all other fingers,

4.5-inch flex sensor were used for glove design.

These flex sensors are nothing but a variable resistor. Their resistance values change

with the degree of bending. When we let these sensors stand, they offer less resistance.

However, as the flex sensors bend, their resistance increases. The flex sensor's idea is

that when we bend our fingers, it (placed over the gloves) will also bend, increasing

resistance. We will use this information to detect different hand gestures.

3.2.1.3. Microcontroller

Figure 7. Sensors used for sensing the finger movements

Figure 8. Selected Microcontroller (ESP-32)

28

A microcontroller was selected to receive the signals from the sensors and send them

collectively to the computer via Bluetooth. The microcontroller used for this purpose

was an Espressif module (ESP-32) with 38 pins. The ESP's preference was that it comes

with a built-in advanced Bluetooth module; this feature reduced the need for a separate

Bluetooth module. Furthermore, it was economical and required less power to operate

(3.3 volts to 3.7 volts) than any other microcontroller.

3.2.1.4. Battery

To receive data from the five sensors and to power the ESP, a 3.7-volt lithium-ion

Camelion battery and its holder were used to establish the connections.

These rechargeable batteries do not come with a fixed 3.7 volts. Upon full charge, the

voltage of these rechargeable batteries consistently exceeded the nominal voltage,

reaching 3.9 to 3.8 volts. However, this ESP 32 operates within a voltage range of 3.3

to 3.6 volts. The ESP could easily burn if powered directly from the battery.

To mitigate this issue, a Schottky diode was used to drop the voltage before reaching

the ESP. This diode has a forward voltage drop of up to 4.5 mV. The voltage from the

battery passed through a Schottky diode. This diode dropped the incoming voltage to

less than 3.6 volts. Therefore, this diode was connected in series with the ESP.

Figure 9. Battery used to power the components

29

Moreover, the same battery was used to power up each flex sensor, connecting them all

in parallel.

Note that the Schottky diode was only required for the connection with the ESP; it was

not required for the connection with sensors.

Caution:

Avoid using local product because they offer lower current and ultimately it will end

with a drop in voltage in no time.

3.2.1.5. T-blocks, Resistors, and Wires

Five flex sensors and a microcontroller required a connection from one battery. There

was a need for a T-block for reliable connections. One of the T-blocks received the

power wire from the battery holder. Different wires from this T-block were used to

provide connections to sensors and the controller. Similarly, for common ground, two

other T blocks were used for the connection of the ground wires of the whole system.

In addition, wires were used to establish different connections. Additionally, 100 kΩ

resistors were used in series with each flex sensor to drop the voltage across the sensors.

3.2.2. Glove Design

100 k

Figure 10. Connections for Flex sensor

30

Fig. 10 explains the connection necessary for the working of the flex sensors used in

the glove design. Initially, a 3.8–3.9-volt battery was wired to the 100k resistor and then

connected in series with the flex sensor. The aim was to read the voltage across the flex

sensor, which appears in the above figure. The left-pointing arrow shows the connection

to the analogue input of the ESP, which digitally reads the voltage across the sensor.

Note that the ESP-32 features a 12-bit ADC (analogue-to-digital converter) with a

nominal voltage of 3.3 volts. In other words, if we tried to input a voltage greater than

3.3 volts to the analogue pin of the microcontroller, it read the value as 4095 (the

maximum). Therefore, a resistor (100 kΩ) was required for the connection. It dropped

the majority of voltage in the resistor and passed 1–1.5V to sensors, which could be

readable by the microcontroller. When this sensor is bent, the resistance increases,

which increases the voltage across the sensor, and the microcontroller's ADC reads the

changing voltage.

The above theory is applicable to all flex sensors. Different analogue pins on the

microcontroller were used to read the voltage across each sensor.

 Figure 11. Final design of sensing-glove

31

Fig. 11 is the final designed product, showing all the components embedded in it with

proper connections. The installation of the components on the glove starts with the

placement of the ESP-32 (on the glove, it is upside down) by stitching it with the glove

using thread. A battery holder was placed directly over the ESP and sewn to the glove;

this enabled these components to be properly fitted to the glove. This battery holder

acted as a connection between the battery and other components. Additionally, three T-

blocks were placed on the glove using glue. The left T-block served as a power source

(it was connected with the power wire from the battery). Both right-sided blocks were

used for ground purposes.

Using the glue, flex sensors were attached precisely to each finger of the glove. These

flex sensors have two pins, and one of the pins from each was connected to a common

ground. The other pin of the flex sensor was connected to a resistor (100 kΩ), which in

turn was connected to a battery. The microcontroller's analogue pin received the voltage

across each of the sensors via a wire connection. Through this pin, the ESP reads the

voltage across each sensor.

Additionally, the wires used for the connections were also attached to the glove using

glue. Furthermore, Fig. 12 shows the complete circuit diagram and demonstrates the

above written theory clearly and shows how all the components were placed in the

glove and their connections with each other.

32

Figure 12. Diagram showing the circuitry of sensor-based glove

3.2.3. Software Implementation

3.2.3.1. Working of ESP-32

The microcontroller reads the data across each flex sensor, according to the Fig. 12.

The algorithm is written in Arduino IDE software in the C language to run on the

microcontroller. The algorithm is such that it runs in real time in a loop. In the loop, it

reads the voltage across each of the sensors and converts it into a digital number in the

range of 0–4096. After reading the data from each sensor, it groups together all five

100 K

Battery
 Positive

 Ground

Schottky

33

sensors' data in a string, separating each data point using a comma. After the while loop

ends, the string data looks like this:

For Example,

The above is a single example. The first data point on the left side represents

information about the forefinger bending, followed by a comma, and then the next data

point is for the middle finger, ring finger, and little finger. The final data point

represents the thumb's bending information. With the degree of the bend of each finger,

the value associated with each finger increases. Therefore, by activating the Bluetooth

option of the ESP-32, the entire data will be sent. After every 10 milliseconds, the loop

runs and sends the values via Bluetooth in the same format.

3.2.3.2. Bluetooth Connection

After uploading the above algorithm and powering up the ESP and glove sensors, it

started working. The next step involves the Bluetooth connection between the device

and the associated laptop. After activating the PC's Bluetooth, we paired it with the

device named "ESP32." In the code, we have written this name. Once we paired with

the ESP, we needed to ascertain its connected port. To do so, we went to the option

"More Devices and Printer Settings." The connected device's name can be found here.

A double-click on it allowed us to see the connected port of this connection.

3.2.3.3. Data Collection

After enabling to read the data wirelessly on PC, the next step was data collection for

each of the gestures necessary to develop the neural network. Python language was used

in Visual Studio Code to write the algorithm that reads the data in real-time and stores

it. In real time, all the necessary connections were established, wore the sensor-based

glove, and performed a single gesture. The microcontroller read the values of that

specific gesture and sent them via Bluetooth to the computer. The computer received

the data, separated the values of each finger, and converted them into an integer value.

34

We began storing the data for each finger in a CSV file. During the process of data

generation for each gesture, we made the data diverse by moving the fingers while

making that gesture. As a result, we stored 1500 data sets for each gesture. Fig. 13

shows how the data stored in CSV file looked like.

3.2.3.4. Features Selection

To go for the selection of the features for the neural network, we combined the data

stored for each gesture into a single CSV file. First five features were five values from

each finger. To include non-linearity and enhance the variety of gestures, we

incorporated the square of each finger value as a feature. In this way, we ended up with

a data with ten features.

To label the data, each integer number is associated to each gesture:

Figure 13. Illustration of data collected for single gesture using sensor glove

35

The header of the data in CSV file is shown in Fig.14.

3.2.3.5. Model Selection

To train the data to recognize the particular gestures, Artificial Neural Network (ANN)

is chosen. The architecture is shown in Fig. 15.

The model includes an input layer with 10 inputs as each represent the one of the

feature. One Hidden layer is followed by the Input layer with 20 activation units. In

the end, output layer includes 5 neurons.

10

10

05

01

ReLU

Figure 14. Illustration of data used for training the model used for sensor-based approach

Figure 15. Architecture of the model used in sensor-based approach

36

One hidden layer is included in the model with 20 neurons. Each neuron in the hidden

layer receives the data with 10 features, scales each input with a respective weight, and

adds all the resulting products and a bias term. An activation function named ReLu

receives this operation's result and allows it if it exceeds zero; otherwise, its output

remains zero. Fig. 16 shows the operation of each neuron. This applies to all the 20

neurons of hidden layer.

Figure 16. Mathematical operation of each neuron in the hidden layer

The final output layer consists of 5 neurons, with each neuron receiving the output

values from each activation unit in the hidden layer. The Softmax activation function

has been implemented in this layer. The goal of utilizing this activation function in the

last layer is to get values that represent probabilities. In this layer, each neuron's output

represents the probability of each gesture. This implies that every neuron's output is

associated with a specific gesture. The neuron with the highest probabilistic output

indicates that a specific gesture was executed. This relation is shown in Fig. 17.

n = 20

ReLu

37

3.2.3.6. Hyperparameters

We had to select numerous hyperparameters based on which we had to train the model

to get the accurate values of weights and biases.

• Loss Function:

We chose a sparse cross-entropy function to calculate the loss function during

training. The metric quantifies the discrepancy, or discrepancy, between the real

probability distribution and the anticipated probability distribution of the output

category. This sparse cross-entropy assumes that the output label is an integer value

that directly represents the class indices. This loss function operates by first

converting the true labels into one-hot encoded vectors, then applying the

conventional cross-entropy loss function. Loss function is given as:

Here,

m indicates total number of examples

yi is the true label vector.

ŷi indicates the predicted label vector.

Output layer.

Probability of
Occurrence of palm

Probability of

Occurrence of one

Probability of
Occurrence of two

Probability of

Occurrence of three

Probability of

Occurrence of fist

Figure 17. Association of the outputs of the last layer of sensor model with gestures

38

• Optimizer:

Optimizer helps neural networks learn. It helps to find the best weights and biases for

good results by adjusting model parameters and reducing the error. Parameters are

adjusted according to the data and the loss function.

For the training of our data, we used Adam Optimizer. This optimizer is a combination

of other optimizers called momentum-based gradient descent and root mean square

propagation. It updates the parameters using the following formula:

where, VdW, VdB, SdW, and SdB is given as:

3.3. Fusion of Vision and Sensor Based Approaches

The vision-based approach includes the YOLOv8s model, and the sensor-based

approach includes an artificial neural network. Fusion of both approaches is

implemented based on decision-level fusion of both models by employing a meta-

model. The meta-model, the fusion model, is an artificial neural network.

3.3.1. Model Architecture

To develop an ANN model, it is necessary to have some crucial points to consider.

These important points include high accuracy and minimum inference time. When

designing an ANN, the important part is to set the right depth of the model. The number

of hidden layers sets the depth of an ANN model. Similarly, the computational

complexity also depends on these hidden layers. For this project, the ANN model was

designed in such a way that the number of hidden units decreased as the depth increased.

In this way, computational complexity can be minimised as the input progresses

39

through ANN layers. The architecture of the Fusion model based on artificial neural

network is depicted in Fig. 18.

The architecture of the fusion model is explained below.

Input layer: 10 neurons in the input layer corresponding to 10 features in the dataset.

Hidden Layers:

• First Hidden Layer: 20 neurons

• Second Hidden Layer: 15 neurons

• Third Hidden Layer: 10 neurons

Output Layer: 5 neurons (there are 5 classes for gestures)

In order to introduce non-linearity into the model, the hidden layers utilize an activation

function known as ReLU (Rectified Linear Unit), whereas the output layer does not

employ any activation function. All the layers in the model apply linear transformations

Figure 18. Architecture of model used for fusion

40

to the incoming data. The mathematical expression of a linear transformation is given

below:

y=xAT+b

x = input feature vector

y = output feature set

A = weights of every layer

b = bias

Total parameters = 750

3.3.2. Model Training and Hyperparameters

To train this fusion model, a custom dataset was prepared. The dataset contained the

output probabilities of YOLOv8s, vision-based approach model, and the output

probabilities of ANN, sensor-based approach model. To generate the probabilities

given by the camera, the same HaGRID dataset was used. In this case, the images of

the classes used to generate the dataset for the fusion model were not used to train the

vision-based approach model.

Similarly, the data containing the probabilities given by the sensor model was

generated. For this, a sensor glove was worn, and all five hand gestures were performed

separately for a set period of time. The data sent by ESP-32 was passed to the sensor-

based approach model, and the output probabilities were stored in a CSV file. This

process was repeated for all five gestures, and the sensor output probabilities were

stored in separate csv files for all five gestures.

The final step was to merge all the data stored in the CSV files into one CSV file. One

important thing to ensure is that the first five columns should contain the probabilities

given by the vision-based approach model, and the next five columns should contain

the probabilities given by the sensor model for a specific label or hand gesture class.

41

The labels assigned to all five classes in the dataset are shown below:

palm: 0

one: 1

two up: 2

three: 3

fist: 4

The fusion model is trained using the cross-entropy loss function.

Other Training Hyperparameters Settings:

• Number of Epochs = 150

• Batch Size = 1028

• Initial Learning Rate = 0.001

• Optimizer = Adam

3.4. Algorithm for Executing Mouse Commands

After training the camera model, YOLOv8s, sensor model, and fusion model, the next

step is to make an algorithm that can predict dynamic hand gestures and execute mouse

Figure 19. Illustration of data collected for training of fusion model

42

commands corresponding to the gesture detected. A total of six mouse commands needs

to be executed using a mixture of dynamic and static hand gestures. The mouse

commands to be executed are listed below:

1. Double Click

2. Left Click

3. Cursor Movement

4. Right Click

5. Scroll Down

6. Scroll Up

The types of hand gestures associated with every mouse command are shown below:

Cursor Movement: static hand gesture; hand gesture class one.

Left Click: Dynamic Hand Gesture; Gesture starts with Hand Gesture class one and

ends with Hand Gesture class fist.

Right Click: Dynamic Hand Gesture; Gesture starts with Hand Gesture Class two up

and ends with Hand Gesture Class fist.

Double Click: No specific hand gesture is associated. Perform left-click gestures twice

in a short period of time.

Scroll Up: Static Hand Gesture; Hand Gesture class fist.

Scroll Down: Static Hand Gesture; Hand Gesture class fist.

43

The above algorithm is illustrated in the flowchart shown in Fig. 20.

Figure 20. Flowchart of algorithm developed for gesture translation into mouse functionalities

The algorithm starts by reading a frame from the camera input video stream. The frame

read is passed to the camera model for prediction. If the camera model predicts a hand

gesture class in the image, then the algorithm moves to the sensor model. It reads the

44

data from the communication port, processes it, performs normalisation, and passes it

to the sensor model for the sensor model’s prediction. After receiving sensor model

probabilities, the algorithm combines both camera and sensor models probabilities for

a final prediction using the fusion model. After obtaining the fusion model prediction,

it monitors the classes predicted by the fusion model for the purpose of recognizing

dynamic hand gestures and executing mouse commands. Now, how this algorithm

executes mouse commands is shown separately for every mouse command.

3.4.1. Translating Gestures into Mouse Functionalities

3.4.1.1. Executing Cursor Movement

Cursor movement depends on static hand gesture class one. When class one is initially

detected by the fusion model, read the pose key points of the hand given by the

YOLOv8s model and store them in the initial coordinates variable. Now, move to the

next frame, and if class one is detected again, store the pose key points of the hand in

the final coordinates variable. Now, determine the relative movement of the reference

key point and adjust the cursor according to the relative motion of the hand key point.

The hand key point set as reference is the WRIST key point given by Mediapipe hand

landmarks. The threshold for minimum relative motion detected is set to 5.

3.4.1.2. Executing Left Click

Left click depends on a dynamic hand gesture. The dynamic hand gesture starts with

class one and ends with class fist. This dynamic hand gesture is detected by first

detecting class one and then detecting class fist in the very next frame. The hand's

motion should have a high velocity relative to the overall execution duration of the

algorithm. Finally, one last check is that when the gesture ends, that is, on class fist, the

index fingertip key point should be close to the thumb_IP key point. Left click is

performed if the threshold set for accurate detection is crossed by the Euclidean distance

calculated. The threshold is set to 20.

3.4.1.3. Executing Right Click

Right click depends on a dynamic hand gesture. The dynamic hand gesture starts with

class two up and ends with class fist. This dynamic hand gesture is detected by first

45

detecting class two up and then class fist in the very next frame. The hand's motion

should be rapid in comparison to the overall execution time of the algorithm. Finally,

one last check is that when the gesture ends, that is, on class fist, the middle fingerdip

key point should be close to the thumb tip key point. The right click is triggered when

the Euclidean distance is below a certain threshold for precise detection. The threshold

is set to 20.

3.4.1.4. Executing Double Click

There is no specific hand gesture associated with the double-click command. The cause

for the execution of a double click is the rapid execution of two left clicks in close

succession. To conduct a double click, simply repeat the actions associated with the left

click twice in rapid succession.

3.4.1.5. Executing Scroll Up

Scroll Up depends on static hand gesture class fist . When initially class fist is detected

by the fusion model, read the pose key points of the hand given by the YOLOv8s model

and store them in the initial coordinates variable. Proceed to the subsequent frame. If

the hand is once again recognized as being in a fist position, save the positional key

points of the hand in the final coordinates variable. Now, determine the relative

movement between the reference key point and scroll upwards if vertical hand

movement is identified in the image based on the relative motion of the hand key

point.The hand key point set as reference is the WRIST key point given by Mediapipe

hand landmarks. The threshold for minimum relative motion detected is set to 5.

3.4.1.6. Executing Scroll Down

Scroll down depends on static hand gesture class fist. When the fist class is initially

detected by the fusion model, read the pose key points of the hand given by the

YOLOv8s model and store them in the initial coordinates variable. Proceed to the

subsequent frame. If the hand is once again recognized as being in a fist position, save

the positional key points of the hand in the final coordinates variable. Now, determine

the relative movement between the reference key point and scroll upwards if the hand's

motion is identified as moving vertically downwards in the image, based on the relative

46

motion of the hand key point. The hand key point set as reference is the WRIST key

point given by Mediapipe hand landmarks. The threshold for minimum relative motion

detected is set to 5.

47

Chapter 4 – RESULTS

4.1. Evaluation Criteria of Vision-Based Approach Model

The YOLOv8s model, which is a vision-based technique, functions as an object

detector. Its capability is assessed by different metrics such as F-1 score, mAP50,

mAP50-95, precision, and recall. The measurements are displayed relative to the

confidence threshold. Precision gives a measure of true positives that were actually

correct. Recall quantifies the ratio of true positive predictions by the model on the entire

collection of positive instances in the data. Combining both, or taking the harmonic

mean, results in an F-1 score. The F-1 score gives the complete assessment of the model.

The mean average precision 50 describes the performance of the model at a threshold

of 0.5. This is also known as the model’s capability to detect easy detections. While the

mean average precision 50-95 measures the model’s performance at multiple difficulty

levels of detection. Moreover, several training and validation losses are also monitored.

4.1.1. Training Results

Results are shown separately for pose estimation and object detection.

4.1.1.1. Results of Object Detection

The Precision-Confidence curve of YOLOv8s for bounding box is shown in Fig. 21.

Figure 21. Precision-Confidence curve of YOLOv8 object detection

48

The Precision-Confidence Curve is crucial for optimizing the performance of YOLOv8

object detection model. By plotting precision against varying confidence thresholds for

different classes, this curve allows the selection of an optimal confidence threshold that

maximizes precision while minimizing false positives. Determining the ideal

confidence threshold enables you to achieve a harmonious equilibrium between precise

detections (with a high level of accuracy) and catching a maximum number of pertinent

items (with a high level of recall).

Analysis:

Each coloured line in the Fig. 21 represents a specific class (Palm, Fist, One, Two_up,

Three), showing how precision changes with varying confidence thresholds. The

precision for each class fluctuates as the confidence threshold changes, indicating how

certain the model is in its predictions for different classes. The blue line represents the

combined precision performance for all classes, giving a summary of the model's

overall accuracy. The mean precision for all categories is 1.00 when the confidence

threshold is set at 0.843, which is the high level of confidence in its classification

predictions. This is especially crucial in this context, as incorrect good results can lead

to substantial repercussions.

The Recall-Confidence curve of the model for bounding box is shown in Fig. 22.

Figure 22. Recall-Confidence curve of YOLOv8 object detection

The curve shows the relationship between confidence levels and recall for different

classes. It indirectly shows the trade-off with precision because as the threshold

49

decreases (allowing lower confidence predictions), recall typically increases, but

precision may decrease due to more false positives. A model that maintains high recall

across a wide range of confidence thresholds is generally more robust. The curve can

help identify an optimal confidence threshold where the model achieves a desirable

balance of high recall and acceptable precision. This is particularly useful for tuning

the model for specific applications.

Analysis:

The curve in the Fig. 22 indicates that the model achieves high recall at lower

confidence thresholds, meaning it can identify most of the actual positives when the

confidence threshold is low. When confidence threshold rises, recall drops significantly.

This indicates that the model becomes increasingly cautious in its outputs, resulting in

a reduction in false positives. However, it may also result in the possibility of missing

some true positives. The average recall for all classes is 1.00 at a confidence threshold

of 0.00. This is not surprising as recall is maximum when threshold is set to zero,

because recall quantifies the number of positives the model detects, no matter if they

are correct. Although, recall is maximum at 0.0 threshold, it should not be considered

as the optimal value as it will lead to fatal consequences where almost every prediction

made by the model will be incorrect. To find a proper threshold, select the value just

before sharp roll-off starts. From the figure, it can be seen that the recall remains at 1.00

until approximately 0.8 confidence threshold.

 The Precision-Recall curve is shown in Fig. 23.

Figure 23. Precision-Recall curve of YOLOv8 object detection

50

The Precision-Recall curve helps evaluate and improve machine learning models,

particularly in situations when there is an imbalance between the classes. This

demonstrates the compromise between accuracy and completeness. For instance,

increasing recall may lower precision, and vice versa. This curve helps in understanding

how changes in one metric affect the other. Through the examination of this curve,

individuals can choose the ideal limit for the model's outputs in order to get the desired

equilibrium between precision and recall.

Analysis:

The Fig. 23 shows that each class maintains a precision of 0.995, reflecting the model's

ability to accurately detect hand gesture classes with minimal false positives. The

curves indicate that the model performs consistently well across different classes,

maintaining high precision even as recall increases. The model's high mAP@50 score

of 0.995 at an IoU threshold of 0.5 depicts that it is well-optimized for object detection

tasks. This demonstrates that the model effectively balances accuracy and recall.

F1-Confidence curve of the object detector is shown in Fig. 24.

Figure 24. F1-Confidence Curve of YOLOv8 object detection

51

The F1-Confidence Curve in object detection, particularly in models like YOLOv8,

serves as a valuable metric for understanding the trade-off between detection accuracy

and confidence thresholding. The F1 score is a quantitative measure that integrates

recall and precision and is defined as the harmonic average of recall (R) and precision

(P). By examining the curve, one can determine the optimal confidence threshold that

maximizes both precision and recall or strikes a balance based on specific application

requirements. Lowering the confidence threshold increases the number of detections

(higher recall) but may decrease precision. Conversely, raising the threshold reduces

false positives (higher precision) but may miss some detections (lower recall). This

guides adjustments in model parameters or training strategies to improve both precision

and recall across different confidence levels.

Analysis:

The curve in Fig. 24 shows that when the model has a high confidence threshold (close

to 1.0), it achieves a near-perfect F1 score of 1.00. This indicates that the model's

detections are highly accurate when it is very confident about its predictions. Different

hand gestures (classes) are represented by separate curves on the plot. For example, the

"Fist" class curve shows a slightly lower F1 score compared to other classes at higher

confidence levels. This suggests that detecting the "Fist" gesture may be more

challenging for the model. As the confidence threshold increases, F1 score drops

significantly. This illustrates that the model gets progressively cautious in its forecasts,

resulting in a reduction of false positives. However, there is also a possibility of missing

some true positives. The curve shows that the optimal confidence threshold for

achieving the highest F1 score across all classes is around 0.726, where the F1 score is

1.00. The average F1 score curve shows that the model maintains a relatively stable

performance across different confidence levels. This suggests that the model is

consistent in its predictions across various thresholds, albeit with a decrease in accuracy

at higher confidence levels.

Mean Average Precision 50 curve for bounding box is depicted in Fig. 25.

52

Figure 25. mAP50 curve of YOLOv8 object detection

In object detection, evaluating the effectiveness of a model like YOLOv8 involves

several metrics, with Mean Average Precision at 50% Intersection over Union

(mAP@50) being a key standard. This metric offers a lucid and perceptive assessment

of the model's capacity to precisely identify and pinpoint items in images. mAP@50

measures the average precision of the model's object detections at IoU threshold of

50%. IoU, or Intersection over Union, is a quantitative measure utilized to assess the

amount of intersection between the ground truth bounding box and the predicted truth

bounding box. mAP is the mean of the APs across all object classes. For mAP@50, it

averages the AP values at the IoU threshold of 50%. AP is computed as the area under

the precision-recall curve for each object class at the 50% IoU threshold. mAP@50

serves as a feedback metric for tuning hyperparameters (like learning rates, batch sizes)

and adjusting model configurations (like network depth, anchor sizes). Improvements

in mAP@50 suggest better object detection capabilities.

Analysis:

The graph in Figure 25 illustrates a sharp rise in mAP50 during the early stages,

suggesting that the model rapidly acquires the ability to reliably detect and locate hand

classes. After the initial increase, the curve plateaus, indicating that the model's

performance stabilizes, and further training epochs result in marginal improvements.

The curve approaches a value close to 1.0, suggesting that the model achieves near-

perfect precision and recall at the IoU threshold of 0.50.

Mean Average Precision 50-95 curve for bounding box is shown in Fig. 26.

53

Figure 26. mAP50-95 curve of YOLOv8 object detection

Each mAP score at different IoU thresholds provides insight into how well the model

can detect objects with varying levels of overlap with ground truth annotations.

Monitoring mAP@50-95 during training helps in assessing the model's progress and

guides optimization efforts such as adjusting learning rates, augmenting data, or

modifying the model architecture to improve performance at specific IoU thresholds.

The utilization of several IoU criteria in mAP50-95 offers a better resilient evaluation

of the model's capability in contrast to the utilization of a single IoU threshold. It

ensures that the model is not only good at detecting objects but also at accurately

localizing them.

Analysis:

The graph in Fig. 26 demonstrates a sharp rise in mAP50-95 during the early stages,

suggesting that the model rapidly acquires the ability to reliably detect and locate hand

motions. After the initial increase, the curve plateaus, indicating that the model's

performance stabilizes, and further training epochs result in marginal improvements.

The curve approaches a value close to 0.9, suggesting that the model achieves high

recall and precision across a range of IoU thresholds.

The Confusion Matrix of YOLOv8s model is shown in Fig. 27.

54

Figure 27. Confusion matrix of YOLOv8 object detection

The confusion matrix is a vital tool in evaluating the capability of object detection

models. It offers a comprehensive breakdown of predictions vs ground truth for many

classes, enabling a detailed assessment of the model's working. The primary purpose of

the confusion matrix is to evaluate how well an object detection model performs in

terms of predicting different classes of objects within images. Understanding where the

model frequently misclassifies or misses detections (false positives and false negatives)

guides improvements in model training, data augmentation, or model architecture.

Analysis:

Overall, the confusion matrix, shown in the Fig. 27, indicates that the model performs

relatively well, with a high number of correct classifications along the diagonal. There

are some instances of misclassifications, but they are relatively small compared to the

number of correct predictions.

Test Accuracy =
363+355+339+351+355

363+355+339+351+355+1+2+2+2+3+1

Test Accuracy = 99.49%

The confusion matrix shows that the trained model has a high rate of accurately

identifying negative and positive instances, with a negligible number of incorrect

positive and negative detections.

55

4.1.1.2. Results of Pose Estimation

The Precision-Confidence curve for pose estimation is shown in Fig. 28.

Figure 28. Precision-Confidence curve of YOLOv8 pose estimation

The Precision-Confidence curve serves as an essential tool to understand how the

model's precision varies with different confidence thresholds. Pose estimation involves

predicting key points (like joints in human body poses) with confidence scores. The

precision-confidence curve helps in understanding how precision varies as the threshold

for confidence scores is adjusted. High-confidence thresholds typically result in fewer,

but more accurate key point predictions. Lowering the threshold may increase the

number of detected key points but could include more incorrect predictions. The curve

illustrates how well the model maintains precision as the confidence level changes.

Analysis:

The Fig. 28 shows that the model demonstrates high precision across all classes, with

precision values close to 1.0 for most confidence levels. This indicates that the model

is highly accurate in its predictions, with a low rate of false positives. There is a

noticeable sharp increase in precision as the confidence level approaches 1.0. This

suggests that at higher confidence thresholds, the model becomes more conservative,

making fewer but more accurate predictions. The curve shows that the optimal

56

confidence threshold for achieving the highest precision across all classes is around

0.939, where the precision is 1.00. The precision for individual classes (Palm, Fist, One,

Two_up, Three) follows a similar trend, with high precision values across different

confidence levels. This consistency across classes indicates that the model performs

well in detecting and classifying each pose based on the 21 key points.

The Recall-Confidence curve for pose estimation is shown in Fig. 29.

Figure 29. Recall-Confidence curve of YOLOv8 pose estimation

The Recall-Confidence curve is an important tool for evaluating the model's

performance to detect and identify key points (such as joints in human body poses) at

varying levels of confidence. High recall means that the model can detect a large

proportion of actual key points. The curve helps determine the confidence level at which

the model maintains a high recall, ensuring that the model captures as many true key

points as possible. This is crucial for applications that require comprehensive detection

of key points. Although the recall-confidence curve focuses on recall, it helps

understand the implicit trade-off with precision. Lowering the confidence threshold

generally increases recall but may decrease precision due to more false positives. This

insight is crucial for balancing the detection accuracy and the number of detected key

points.

57

Analysis:

The curve in the Fig. 29 shows that the model demonstrates high recall across all

classes, with recall values close to 1.0 for most confidence levels. This suggests that

the model is highly accurate in detecting real positive cases, while also having a low

rate of incorrectly classifying cases as false negatives. There is a noticeable sharp drop-

off in recall as the confidence level approaches 1.0. This suggests that at higher

confidence thresholds, the model becomes more conservative, making fewer

predictions and potentially missing some true positives. The curve shows that the

optimal confidence threshold for achieving the highest recall across all classes is around

0.91, where the recall is 1.00. The recall for individual classes (Palm, Fist, One,

Two_up, Three) follows a similar trend, with high recall values across different

confidence levels. This consistency across classes indicates that the model performs

well in detecting each pose based on the 21 key points.

 Fig. 30 illustrates the Precision-Recall curve for pose estimation.

Figure 30. Precision-Recall curve of YOLOv8 pose estimation

The Precision-Recall (PR) curve is a fundamental tool for assessing the performance of

pose estimation models like YOLOv8. In pose estimation, precision and recall are often

inversely related. In pose estimation, certain key points (e.g., joints obscured by

clothing) might be less frequently detected than others. The PR curve is particularly

informative in such cases because it emphasizes true positive rate (recall) and the

58

precision of detections, providing a clearer picture of model performance even when

there’s a class imbalance.

Analysis:

From Fig. 30, it can be inferred that the model demonstrates high precision and recall

across all classes, with values close to 1.0 for most of the curve. This indicates that the

model is both accurate (high precision) and comprehensive (high recall) in its

predictions. There is a noticeable sharp drop-off in precision as recall approaches 1.0.

This suggests that as the model tries to capture all true positives (high recall), it starts

to include more false positives, reducing precision. Palm attains the best performance

with the accuracy of 0.916. Fist follows closely with a precision of 0.908. One has a

precision of 0.898. Two_up shows a precision of 0.886. Three has the lowest precision

among the classes at 0.873. The consistency across classes indicates that the model has

high performance in detecting each pose based on the 21 key points. The mAP, which

is calculated at the hreshold of 0.5 for all classes, is 0.896. This aggregated metric

indicates that the model has high performance overall, balancing both recall and

precision across all classes.

Fig. 31 depicts the F1-Confidence curve for pose estimation.

Figure 31. F1-Confidence curve of YOLOv8 pose estimation

In the context of pose estimation with YOLOv8, the F1-Confidence curve is an

insightful evaluation tool that helps in understanding the overall model’s performance

59

by combining both recall and precision into a single metric, the F1 score. The graph

illustrates the model's responsiveness to the confidence threshold employed for key

point predictions, aiding in the comprehension of the confidence levels at which the

model attains optimal trade-off between recall and precision. The highest point of the

curve of F1-confidence corresponds to the confidence threshold at which the model

achieves the best trade-off between precision and recall. The shape of the curve

provides insights into how well the model balances precision and recall. A sharp decline

on either side of the peak can indicate that the model heavily favours one metric over

the other as the threshold changes.

Analysis:

The graph in Fig. 31 demonstrates that the model attains elevated F1 scores when the

confidence thresholds are set to lower values. This implies that the model exhibits

strong performance in terms of both precision and recall when the confidence threshold

is low. As the confidence threshold increases, the F1 score experiences a significant

decrease, indicating that the model becomes more cautious in its predictions. This

results in a reduction in false positives but also a potential increase in missed real

positives. The curve shows that the optimal confidence threshold for achieving the

highest F1 score across all classes is around 0.738, where the F1 score is 0.91. Although,

the confidence threshold is low compared to when the model measures recall and

precision with respect to confidence threshold, it still is more than satisfactory value.

Mean Average Precision (mAP50) for pose estimation is shown Fig. 32.

Figure 32. mAP50 curve of YOLOv8 pose estimation

60

In pose estimation, evaluating the accuracy and robustness of a model like YOLOv8

involves various metrics, with the Mean Average Precision at 50% Intersection over

Union (mAP@50) being a prominent one. This metric provides a comprehensive

measure of how well the model detects and localizes key points (such as body joints)

across the dataset, particularly during the training process. mAP@50 measures the

precision of the model's key point predictions when the overlap between the ground

truth and predicted key points exceeds 50%. Key points can be evaluated using

Intersection over Union (IoU), which measures the proximity of predicted key points

to the ground truth key points within a specified area, typically a bounding box. mAP

is a metric that calculates the average of the Average Precision values for all important

points and classes in a dataset.

Analysis:

The curve in Fig. 32 depicts a steep increase in mAP50 during the initial epochs

(approximately the first 10 epochs). This indicates that the model quickly learns to

detect and localize poses accurately in the early stages of training. After the initial rapid

increase, the curve plateaus, indicating that the model's performance stabilizes. This

plateau phase starts around the 10th epoch and continues through the remaining epochs

up to 100. The mAP50 value stabilizes at around 0.9, suggesting that the model achieves

high precision and recall at the IoU threshold of 0.50. A high mAP50 value (close to

0.9) indicates that the model performs well in detecting and localizing key points,

making it suitable for hand pose estimation.

Mean Average Precision (mAP50-95) for pose estimation model is shown in Fig. 33.

Figure 33. mAP50-95 curve of YOLOv8 pose estimation

61

The Mean Average Precision (mAP) at IoU thresholds ranging from 50% to 95% is a

comprehensive metric that evaluates the model's performance across varying levels of

detection stringency. This metric, often referred to as mAP@50-95, is particularly

useful in assessing the robustness and precision of key point detection and localization

in a nuanced manner. The mAP@50-95 metric calculates the average precision across

multiple IoU thresholds from 50% to 95%, typically in steps of 5% (i.e., 50%, 55%,

60%, ..., 95%). This curve shows the model’s performance on various difficult hand

pose estimation, and it shows that it is detecting all key points of all the classes with a

satisfactory 0.75 mAP50-95. This helps in understanding how well the model

generalizes to different levels of detection precision.

Analysis:

The curve in Fig. 33 highlights a steep increase in mAP50-95 during the initial epochs

(approximately the first 20 epochs). This indicates that the model quickly learns to

detect and localize poses accurately in the early stages of training. After the initial rapid

increase, the curve continues to rise but at a slower rate, indicating that the model's

performance is still improving but at a diminishing rate. This phase continues until

around the 80th epoch. The curve begins to plateau after the 80th epoch, suggesting that

the model's performance stabilizes, and further training epochs result in marginal

improvements. The mAP50-95 value reaches a plateau of approximately 0.75,

suggesting that the model attains a favourable equilibrium between precision and recall

across various IoU thresholds.

4.2. Evaluation Criteria of Sensor-Based Approach Model

The data was divided into three segments to train the model. 60% of the whole dataset

is used for training. During the training process, 20% of the data was set aside as

validation data to evaluate the model's performance. Additionally, another 20% of the

data was utilized as test data to assess how well the model performs on unknown data.

The model underwent 50 epochs of training utilizing the aforementioned architecture

and hyperparameters.

62

4.2.1. Training Results

Both of the above figures explain the model's training results based on the provided

data. The right figure shows a reduction in losses with each epoch. At the end of the 50

epochs, both validation and training losses dropped below 0.1. On the other hand, the

figure on the right side demonstrates an increase in validation and training accuracy to

98% after 50 epochs.

Finally, the model was tested with unknown data, and once again, its accuracy was close

to 98%. These results show the precision of the sensor model.

4.2.2. Real Time Testing

The trained model mentioned earlier was saved in a singular file. The model was

imported for real-time testing. Once all the necessary conditions for real-time testing

were met, such as wearing the glove and establishing a Bluetooth connection with the

PC, the testing was conducted using real-time data. The model produced the expected

results. When the gesture changes in real time, the model predicts the corresponding

change.

Figure 34. Performance of sensor model on validation data

63

4.3. Evaluation Criteria of Fusion Model

The fusion model is assessed using three assessment criteria: training and validation

loss, training and validation accuracy, and test outcomes presented as a confusion

matrix.

4.3.1. Training Results

The validation and training losses of the fusion model are shown in Fig. 35.

Figure 35. Validation and training losses of fusion model

Monitoring training and validation losses, often visualized as curves during the training

of a model, serves several important purposes in machine learning and deep learning

tasks. Loss curves track how well the model is learning during training. The objective

is to monitor if the loss consistently reduces or levels out, indicating whether the model

is approaching an ideal solution. A diminishing training loss shows that the model is

acquiring knowledge from the data. The validation loss, computed on a distinct

validation set, aids in assessing the model's performance to generalize to unseen and

new data. An increasing disparity between the validation and training loss may suggest

overfitting, which refers to a case where the model fails to classify unseen data and

performs well on the training dataset. Loss curves are useful for finding the optimal

stopping point during training in order to prevent overfitting. Loss curves provide

insights into the impact of hyperparameters (e.g., learning rate, batch size) on model

performance.

64

Analysis:

The graph in Fig. 35 shows a typical pattern observed in deep learning model training.

The model learns to reduce the loss on the training data with each epoch. The blue line

represents the training loss. It starts at a relatively high value (around 1.6) and decreases

steadily as the number of epochs increases. The orange line represents the validation

loss. It also starts at a high value and decreases as the number of epochs increase. It

follows a similar trend to the training loss but remains slightly higher. Both the training

and validation losses converge to a low value around 0.1, indicating that the model has

learned a good representation of the data and is not overfitting.

The validation and training accuracy of the fusion model are shown in Fig. 36.

Figure 36. Validation and training accuracy of fusion model

Monitoring validation and training accuracy curves during the training of a model

serves several essential purposes in evaluating and optimizing model performance.

Accuracy curves track how well the model performs on both the training data and

unseen validation data as training progresses. They provide a direct measure of the

model's ability to correctly classify or detect objects, reflecting its overall performance.

Accuracy curves shows whether the model is improving and learning with time.

Improving training accuracy shows that the model is successfully adapting to the

training data. Whereas, validation accuracy is a measure of how effectively the model

can apply what it has learned to unseen and new data. Monitoring these curves helps

ensure that the model is converging to an optimal solution without overfitting (high

65

training accuracy but low validation accuracy). Accuracy curves provide insights into

the impact of hyperparameters (e.g., learning rate, batch size) on model performance.

Analysis:

The Fig. 36 shows that the model has been trained effectively and has high accuracy on

both the training and validation datasets, indicating its capacity to comprehend the

patterns existing in the data and apply them to fresh data. Training Accuracy is shown

with blue line. It starts at a low accuracy, then increases rapidly, and eventually plateaus

around 1.0. Validation Accuracy is indicated with an orange line. It follows a similar

trend to the training accuracy but generally remains slightly lower.

The Confusion Matrix of the model on test data is shown in Fig. 37.

Figure 37. Confusion matrix of fusion model on test data

The confusion matrix is an essential tool for evaluating the performance of machine

learning models. It offers a comprehensive analysis of the model's forecasts in relation

to the actual ground truth across various groups or categories. The confusion matrix is

a tool used to evaluate the effectiveness of a classification or detection model. It

provides a summary of predictions in a matrix style.

66

Analysis:

The confusion matrix in Fig.37 shows that the model performs well on the test dataset.

The cells along the diagonal, which indicate appropriate classifications, have the

highest frequencies, suggesting that the model successfully predicted the correct class

for the majority of the data points. The off-diagonal cells indicate misclassifications,

but their counts are relatively low compared to the correct classifications. The model

correctly classified 100 data points as class 0, 92 as class 1, 105 as class 2, 114 as class

3, and 86 as class 4. The only noticeable misclassification is one data point from class

3 being incorrectly predicted as class 1.

Here, label 0 refers to the palm gesture, label 1 refers to the one gesture, label 2 refers

to the two_up gesture, label 3 refers to the three gesture, and label 4 refers to the fist

gesture.

Test Accuracy of Fusion Model =
100+92+105+114+86

100+92+105+114+86+1

Test Accuracy of Fusion Model = 99.8%

The graphic indicates that the model performs with a high degree of accuracy on the

test set, with very few misclassifications. This indicates that the model has effectively

adapted to unfamiliar data.

4.3.2. Real Time Testing

After training fusion model, its weights were saved. The model was imported for real-

time testing. Once all the necessary conditions for real-time testing were met, such as

connection of the sensing-glove, loading camera model, the testing was conducted

using real-time data of the probabilities of two models. The fusion model produced the

expected results.

4.4. Results Conclusion

Based on the comprehensive evaluation of all the algorithms developed in this section,

the system proved its high accuracy and low latency to be used in real time. In the vision

approach, results show robust performance across metrics such as F1 score, mean

average precision (mAP), and confusion matrices. Furthermore, figure 34 illustrates the

exceptional accuracy and little loss achieved by the model in identifying gestures using

67

the sensor-based technique. Additionally, the fusion model combining camera and

sensor data enhances accuracy further, leading to 99.8% test accuracy. Real-time testing

confirms the low latency and reliability of the system for gesture detection and

controlling the computer cursor using detected gestures. These results are a testament

to the systems' effectiveness in practical applications that require precise and responsive

gesture recognition.

4.5. Development of Windows-Based Applications

For this project, two windows-based applications have been developed. The first one is

a desktop application to run this project and the second one is a desktop application to

display and interact with 3D models.

4.5.1. Development of Desktop Application for User

A desktop application based on Windows has been designed for this project. This

application provides a seamless interface for the user to utilise this project in the form

of computer cursor control using hand gestures. The user can place the folder that

contains the application and its associated files on their computer. Then follow the steps

defined in the documentation of the application to run it properly.

This application is developed on the .NET 8.0 platform using the C# language in

Microsoft Visual Studio. Both the frontend and backend of the application are

developed on the same platform. The application allows the user to select either a

camera or a fusion of sensor and camera for hand gesture detection.

 The user interface of the application designed for standalone camera is shown in Fig.38.

68

Figure 38. User interface for camera-based gesture recognition

Fig. 39 displays the user interface of the application specifically developed for the

integration of camera and sensor.

Figure 39. User interface for fusion-based gesture recognition

4.5.2. Development of 3D Models Application

3D-Viewer is a Windows-based application that provides an interface for interactable

3D models. Different 3D models are displayed, and the user can completely rotate the

3D models in all three dimensions and zoom in and zoom out of the 3D models. The

tools used include Unity-3D software, 3D models in different formats available online,

and VS Code.

69

This application is developed in the Unity 3D engine. 3D models of the Human

Skeleton, the Human Heart, and a Simple Cube are used. The cube model is available

in the Unity environment by default, while the skeleton and heart models are available

online and are imported into the Unity environment. The 3D models are then scaled and

positioned accordingly so that these models appear appropriately in the game view. A

user interface is designed with text, buttons, and a drop-down menu. Four UI buttons

are designed for the rotation of 3D models. There are three buttons designated for

rotation along the z-axis, x-axis and y-axis, respectively. Additionally, there is one

button specifically meant to halt the rotation. Two buttons are designed for zooming

functionality. One button to zoom into the 3D model, and the other one is to zoom out

of the 3D model. Another four buttons are designed to perform pan functionalities to

move the 3D models up, down, left, and right. A drop-down menu is added, which is

used to select the 3D model. C# script files are attached with 3D models, UI buttons,

and the drop-down menu, which are responsible for performing actions like rotation,

pan, zooming, and model selection. The following figures represent the final version of

the application with various 3D models.

Figure 40. Cube model

70

Figure 41. Heart model

Figure 42. Skeleton model

71

Chapter 5 – CONCLUSIONS AND FUTURE WORK

5.1. Conclusion

The aim of developing a system to interact with 3D visuals is successfully

accomplished. Keeping the view of its high potential in multiple sectors, system is

developed with high degree of accuracy using combination of multiple learning-based

approaches. The 3D display is interacted with using dynamic hand movements in real

time, resulting in a more natural user experience. Therefore, the whole development

process involved the detection of hand gestures, translating them into mouse

commands, system application development and an application for displaying and

controlling 3D models on the holographic display.

Hand gesture detection is accomplished through a combination of two approaches: a

vision-based approach and a sensor-based approach. The vision-based approach utilizes

either an external camera or a webcam to continuously monitor hand movements. A

learning-based gesture detection algorithm is employed to train the model for

recognizing specific hand gestures. Based on real-time data input from the camera, the

algorithm accurately identifies the performed gestures. Additionally, gestures are

annotated in real time to obtain hand pose information in the form of coordinate points,

which are essential for controlling the computer cursor. Conversely, the same hand

gestures are also detected using a sensor-based approach. The development of this

approach began with the design of the hardware. While on the software side, real-time

data from the flex sensors is collected for each gesture. Subsequently, the collected data

is utilized to construct and instruct an artificial neural network (ANN) model with the

ability to identify gestures using the recorded data. The flex sensors, located on the

fingers, gather data regarding the flexion of the fingers. This information is transmitted

in real-time via Bluetooth from the ESP32 microcontroller to a connected computer.

The transmitted data is processed by a fully connected ANN, which computes the

probability of each possible gesture occurring. The gesture with the highest likelihood

is recognized as the prevailing gesture.

To improve the precision of gesture prediction, the probability vectors from both the

vision-based and sensor-based models were merged and utilized as input to an extra

ANN model. This model was created and trained utilizing the output data from both

72

gesture detection methods. Consequently, the output of this model provides the most

accurate gesture prediction. This is followed by another algorithm that detects the

transition between two consecutive gestures. When a particular set of transitions is

detected, it generates a signal to perform an operation, such as a right click, a left click,

a double click, etc. In order to move the cursor, the key landmark of the forefinger is

used to compute the difference between the previous and present landmark values. The

difference was then scaled, and the mouse tracking function was called to move the

cursor in accordance with the hand.

Finally, the entire system is integrated into a single window-based application that

offers a variety of options for system execution. This Windows-based application

allows users to operate the system using either the vision-based approach alone or in

combination with the sensor-based approach for enhanced accuracy through data

fusion. Lastly, another Windows application is created to show 3D models on the

holographic display. This completes the development of all necessary requirements for

translating mouse functionalities into dynamic hand gestures. Connecting a hologram

to this system enables the user to control the 3-dimensional visuals with hand motions,

which would be useful in a variety of fields, particularly education and medical. At this

point, the hand gesture-controlled holographic display is complete.

5.2. Future Work

There is a lot of potential for this project in the future. Two main concepts could be

incorporated into this project. First, instead of tracking the mouse using a vision-based

approach, this could be done using a combination of motion sensors such as a gyroscope

and an accelerometer. A well-executed algorithm that uses the information from these

sensors could provide more robust tracking of the cursor using hand motions.

Additionally, this allows the user to control the cursor even if he is not in the camera's

zone. Furthermore, a potential future endeavor would involve transferring the system

onto distinct, self-contained hardware. This would grant the user the ability to execute

the system on any computer.

73

REFERENCES

[1] D. I. B. Tarazona, D. A. D. Gómez and S. A. González, "Design and implementation of a computer mouse using a 5-DOF inertial

measurement unit and a sensor fusion algorithm," in 2012 Workshop on Engineering Applications, Bogota, 2012.

[2] R. Suriya and V. Vijayachamundeeswari, "A survey on hand gesture recognition for simple mouse control," in International Conference

on Information Communication and Embedded Systems (ICICES2014), Chennai, 2014.

[3] S. Song, D. Yan and Y. Xie, "Design of control system based on hand gesture," in 2018 IEEE 15th International Conference on

Networking, Sensing and Control (ICNSC), Zhuhai, 2018.

[4] V. V. Reddy, T. Dhyanchand, G. V. Krishna and S. Maheshwaram, "Virtual Mouse Control Using Colored Finger Tips and Hand Gesture

Recognition," in 2020, Hyderabad, 2020 IEEE-HYDCON.

[5] P. Kalaivaani, R. Kumaresan, A. J. M. Ranjith and S. N. Kumar, "Hand Gestures for Mouse Movements with Hand and Computer

Interaction model," in 2023 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, 2023.

[6] A. Jadhav, R. Asnani, R. Crasto, O. Nilange and A. Ponkshe, "Gesture Recognition using Support Vector Machine," International

Journal of Electrical, Electronics and Data Communication, vol. 3, no. 5, pp. 36-41, 2015.

[7] A. Sharma, A. Mittal, S. Singh and V. Awatramani, "Hand Gesture Recognition using Image Processing and Feature Extraction

Techniques," Procedia Computer Science, vol. 173, pp. 181-190, 2020.

[8] B. A. &. N. A. Sunanda, "A novel feature fusion technique for robust hand gesture recognition," Multimedia Tools and Applications,

vol. 83, 2024.

[9] X. Wang, M. Xia, H. Cai, Y. Gao and C. Cattani, "Hidden-Markov-Models-Based Dynamic Hand Gesture Recognition," Mathematical

Problems in Engineering, pp. 1-11, 2012.

[10] M. HafizurRahman and J. Afrin, "Hand Gesture Recognition using Multiclass Support Vector Machine," International Journal of

Computer Applications, vol. 74, no. 1, pp. 39-43, 2013.

[11] X. Jiang and W. Ahmad, "Hand Gesture Detection Based Real-Time American Sign Language Letters Recognition using Support Vector

Machine," in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and

Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress

(DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, 2019.

[12] D.-Y. Huang, W.-C. Hu and S.-H. Chang, "Vision-Based Hand Gesture Recognition Using PCA+Gabor Filters and SVM," in 2009 Fifth

International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, 2009.

[13] M. M. Islam, S. Siddiqua and J. Afnan, "Real time Hand Gesture Recognition using different algorithms based on American Sign

Language," in 2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Dhaka, 2017.

[14] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," In Advances in

neural information processing systems, vol. 1, pp. 1097-1105, 2012.

[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, "ImageNet: A large-scale hierarchical image database," in 2009 IEEE

Conference on Computer Vision and Pattern Recognition, Miami, 2009.

74

[16] G. Li, H. Tang, Y. Sun, J. Kong, G. Jiang, D. Jiang, B. Tao, S. Xu and H. Liu, "Hand gesture recognition based on convolution neural

network," Cluster Computing, vol. 22, pp. 2719-2729, 2017.

[17] K. Xing, Z. Ding, S. Jiang, X. Ma, K. Yang, C. Yang, X. Li and F. Jiang, "Hand Gesture Recognition Based on Deep Learning Method,"

in 2018 IEEE Third International Conference on Data Science in Cyberspace, Guangzhou, 2018.

[18] A. Eid and F. Schwenker, "Visual Static Hand Gesture Recognition Using Convolutional Neural Network," Algorithms, vol. 16, no. 8,

2023.

[19] J. O. Pinzón-Arenas, R. J. Moreno and R. D. H. Beleño, "Convolutional neural network with a DAG architecture for control of a robotic

arm by means of hand gestures," Contemporary Engineering Sciences, vol. 11, pp. 547-557, 2018.

[20] J. O. Pinzón Arenas, R. Jiménez Moreno and R. Darío Hernández Beleño, "Convolutional Neural Network with a DAG Architecture

for Control of a Robotic Arm by Means of Hand Gestures," Contemporary Engineering Sciences, vol. 11, no. 12, pp. 547-557, 2018.

[21] J. Prakash Sahoo, S. Ari and S. Kumar Patra, "Hand Gesture Recognition Using PCA Based Deep CNN Reduced Features and SVM

Classifier," in 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, 2019.

[22] A. Wadhawan and P. Kumar, "Deep learning-based sign language recognition system for static signs," Neural Computing and

Applications, vol. 32, pp. 7957-7968, 2020.

[23] J. Yu, M. Qin and S. Zhou, "Dynamic gesture recognition based on 2D convolutional neural network and feature fusion," scientific

reports, vol. 12, 2022.

[24] D. Tran , L. Bourdev , R. Fergus, L. Torresani and M. Paluri, "Learning Spatiotemporal Features with 3D Convolutional Networks," in

2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015.

[25] P. Molchanov, S. Gupta, K. Kim and J. Kautz, "Hand gesture recognition with 3D convolutional neural networks," in 2015 IEEE

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Boston, 2015.

[26] N. L. Hakim, T. K. Shih, S. P. K. Arachchi, W. Aditya, Y.-C. Chen and C.-Y. Lin, "Dynamic Hand Gesture Recognition Using 3DCNN

and LSTM with FSM Context-Aware Model," sesnors, vol. 19, no. 24, 2019.

[27] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree and J. Kautz, "Online Detection and Classification of Dynamic Hand Gestures with

Recurrent 3D Convolutional Neural Networks," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las

Vegas, 2016.

[28] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree and J. Kautz, "Online Detection and Classification of Dynamic Hand Gestures with

Recurrent 3D Convolutional Neural Networks," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las

Vegas, 2016.

[29] V. Sharma, M. Jaiswal, A. Sharma, S. Saini and R. Tomar, "Dynamic Two Hand Gesture Recognition using CNN-LSTM based

networks," in 2021 IEEE International Symposium on Smart Electronic Systems (iSES), Jaipur, 2021.

[30] T. L. Dang, S. D. Tran, T. H. Nguyen, S. Kim and N. Monet, "An improved hand gesture recognition system using keypoints and hand

bounding boxes," Array, vol. 16, 2022.

[31] Q. Gao, Y. Chen, Z. Ju and Y. Liang, "Dynamic Hand Gesture Recognition Based on 3D Hand Pose Estimation for Human–Robot

Interaction," IEEE Sensors Journal, vol. 22, no. 18, pp. 17421-17430, 2021.

[32] Y. Zhang and F. Wang, "HandFormer: A Dynamic Hand Gesture Recognition Method Based on Attention Mechanism," applied sciences,

vol. 13, no. 7, 2023.

75

[33] J. Materzynska, G. Berger, I. Bax and R. Memisevic, "The Jester Dataset: A Large-Scale Video Dataset of Human Gestures," in 2019

IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, 2019.

[34] A. D’Eusanio, A. Simoni, S. Pini, G. Borghi, R. Vezzani and R. Cucchiara, "A Transformer-Based Network for Dynamic Hand Gesture

Recognition," in 2020 International Conference on 3D Vision (3DV), Fukuoka, 2020.

[35] K. He, X. Zhang, S. Ren and J. Sun, "Deep residual learning for image recognition," in 2016 IEEE Conference on Computer Vision and

Pattern Recognition, Las Vegas, 2016.

[36] V. Pathak, S. Mongia and G. Chitranshi, "A framework for hand gesture recognition based on fusion of Flex, Contact and accelerometer

sensor," in Third International Conference on Image Information Processing (ICIIP), Waknaghat, 2015.

[37] T. Zhao, J. Liu, Y. Wang, H. Liu and Y. Chen, "PPG-based Finger-level Gesture Recognition Leveraging Wearables," in IEEE

INFOCOM 2018 - IEEE Conference on Computer Communications, Honolulu, 2018.

[38] F. Noble, M. Xu and M. Xu, "Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning," Sensors, vol. 3419,

no. https://doi.org/10.3390/s23073419, p. 23, 2023.

[39] Y. Ge, B. Li, W. Yan and Y. Zhao, "A real-time gesture prediction system using neural networks and multimodal fusion based on data

glove," in Tenth International Conference on Advanced Computational Intelligence (ICACI), Xiamen, 2018.

[40] A. K. Panda, R. Chakravarty and S. Moulik, "Hand Gesture Recognition using Flex Sensor and Machine Learning Algorithms," in

IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, 2020.

[41] W.-C. Chuang, W.-J. Hwang, T.-M. Tai, D.-R. Huang and Y.-J. Jhang, "Continuous Finger Gesture Recognition Based on Flex Sensors,"

Sensors 2019,19(18), 3986. https://doi.org/10.3390/s19183986.

[42] M. Lee and J. Bae, "Deep Learning Based Real-Time Recognition of Dynamic Finger Gestures Using a Data Glove," IEEE Access, vol.

8, pp. 219923 - 219933, 2020.

[43] G. Yuan, X. Liu, Q. Yan, S. Qiao, Z. Wang and L. Yuan, "Hand Gesture Recognition Using Deep Feature Fusion Network Based on

Wearable Sensors," IEEE Sensors, vol. 21, no. 1, pp. 539 - 547, 2021.

[44] H. Chen, T. Qin, Y. Zhang and B. Guan, "Recognition of American Sign Language Gestures Based On Electromyogram (EMG) Signal

With XGBoost Machine Learning," in 3rd International Conference on Machine Learning, Big Data and Business Intelligence

(MLBDBI), Taiyuan, 2021.

[45] M. Ariyanto, W. Caesarendra, K. A. Mustaqim, M. Irfan, J. A. Pakpahan, J. D. Setiawan and A. R. Winoto, "Finger movement pattern

recognition method using artificial neural network based on electromyography (EMG) sensor," in International Conference on

Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Bandung, 2015.

[46] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang and J. Yang, "A Framework for Hand Gesture Recognition Based on Accelerometer and

EMG Sensors," IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 6, pp. 1064 - 1076,

2011.

[47] M. Georgi and T. S. Christoph Amma, "Recognizing Hand and Finger Gestures with IMU based Motion and EMG based Muscle

Activity Sensing," BIOSTEC 2015: Proceedings of the International Joint Conference on Biomedical Engineering Systems and

Technologies, Volume 4, January 2015, Pages 99–108, https://doi.org/10.5220/0005276900990108.

[48] H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta and K. Sharma, "A Continuous Hand Gestures Recognition Technique for Human-

Machine Interaction Using Accelerometer and Gyroscope Sensors," IEEE Sensors, vol. 16, no. 16, pp. 6425 - 6432, 2016.

76

[49] T.-M. Tai, Y.-J. Jhang, Z.-W. Liao, K.-C. Teng and W.-J. Hwang, "Sensor-Based Continuous Hand Gesture Recognition by Long Short-

Term Memory," IEEE Sensors, vol. 2, no. 3, 2018.

[50] Y.-J. Jhang, Y.-C. Chu, T.-M. Tai, W.-J. Hwang, P.-W. Cheng and C.-K. Lee, "Sensor Based Dynamic Hand Gesture Recognition by

PairNet," in International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, 2019.

[51] U. G. Mangai, S. Samanta, S. Das and P. R. Chowdhury, "A Survey of Decision Fusion and Feature Fusion Strategies," IETE Technical

Review, vol. 27, no. 4, pp. 293-307, 2010.

[52] E. Kanjo, E. M. Younis and N. Sherkat, "Towards unravelling the relationship between on-body, environmental and emotion data using

sensor information fusion approach," Information Fusion, vol. 40, pp. 18-31, 2018.

[53] J. Summaira, X. Li, A. M. Shoib, S. Li and J. Abdul, "Recent Advances and Trends in Multimodal Deep Learning: A Review," arXiv

preprint arXiv:2015, 2021.

[54] G. Divya and T. I. Manish, "Machine Learning Techniques and Frameworks for Heterogeneous Data Fusion in Big Data Analytics," in

2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, 2020.

[55] T. Meng, X. Jing, Z. Yan and W. Pedrycz, "A survey on machine learning for data fusion," Information Fusion, vol. 57, pp. 115-129,

2020.

[56] F. Ali, S. El-Sappagh, S. R. Islam, D. Kwak, A. Ali, M. Imran and K.-S. Kwak, "A smart healthcare monitoring system for heart disease

prediction based on ensemble deep learning and feature fusion," Information Fusion, vol. 63, pp. 208-220, 2020.

[57] G. Yu, Y. Wang, J. Wang, C. Domeniconi, M. Guo and X. Zhang, "Attributed heterogeneous network fusion via collaborative matrix

tri-factorization," Information Fusion, vol. 63, pp. 153-165, 2020.

[58] H. Cai , Z. Qu, Z. Li , Y. Zhang, X. Hu and B. Hu, "Feature-level fusion approaches based on multimodal EEG data for depression

recognition," Information Fusion, vol. 59, pp. 127-138, 2020.

[59] Y. Pan, L. Zhang, X. Wu and M. J. Skibniewski, "Multi-classifier information fusion in risk analysis," Information Fusion, vol. 60, pp.

121-136, 2020.

[60] J. Bin, B. Gardiner, E. Li and Z. Liu, "Multi-source urban data fusion for property value assessment: A case study in Philadelphia,"

Neurocomputing, vol. 404, pp. 70-83, 2020.

[61] H. Shao, H. Jiang, F. Wang and H. Zhao, "An enhancement deep feature fusion method for rotating machinery fault diagnosis,"

Knowledge-Based Systems, vol. 119, pp. 200-220, 2017.

[62] N. Mungoli, "Adaptive Feature Fusion: Enhancing Generalization in Deep Learning Models," arXiv preprint arXiv:2304.03290, 2023.

[63] B. Hu, Q. Li and G. B. Hall, "A decision-level fusion approach to tree species classification from multi-source remotely sensed data,"

ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 1, 2021.

[64] S. Teng, G. Chen, Z. Liu, L. Cheng and X. Sun, "Multi-Sensor and Decision-Level Fusion-Based Structural Damage Detection Using

a One-Dimensional Convolutional Neural Network," Sensors, vol. 21, no. 12, 2021.

[65] M. W. Nadeem, H. G. Goh, M. A. Khan, M. Hussain, M. F. Mushtaq and V. Ponnusamy, "Fusion-Based Machine Learning Architecture

for Heart Disease Prediction," Computers, Materials & Continua, vol. 67, no. 2, pp. 2481-2496, 2021.

[66] W. Zhai, C. Li, Q. Cheng, F. Ding and Z. Chen, "Exploring Multisource Feature Fusion and Stacking Ensemble Learning for Accurate

Estimation of Maize Chlorophyll Content Using Unmanned Aerial Vehicle Remote Sensing," remote sensing, vol. 15, no. 13, 2023.

77

[67] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016.

[68] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," in 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, 2017.

[69] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," arXiv preprint arXiv:1804.02767, 2018.

[70] A. Bochkovskiy, C.-Y. Wang and H.-Y. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv preprint

arXiv:2004.10934, 2020.

[71] G. Jocher, "YOLOv5 by Ultralytics," https://github.com/ultralytics/yolov5, 2020.

[72] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, "Scaled-YOLOv4: Scaling Cross Stage Partial Network," in 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 2021.

[73] C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, "You Only Learn One Representation: Unified Network for Multiple Tasks," arXiv preprint

arXiv:2105.04206, 2021.

[74] Z. Ge, S. Liu, F. Wang, Z. Li and J. Sun, "YOLOX: Exceeding YOLO Series in 2021," arXiv preprint arXiv:2107.08430, 2021.

[75] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X.

Wei and X. Wei, "YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications," arXiv preprint arXiv:2209.02976,

2022.

[76] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors," arXiv preprint arXiv:2207.02696, 2022.

[77] X. Xu, Y. Jiang, W. Chen, Y. Huang, Y. Zhang and X. Sun, "DAMO-YOLO : A Report on Real-Time Object Detection Design," arXiv

preprint arXiv:2211.15444, 2022.

[78] G. Jocher, A. Chaurasia and J. Qiu, "Ultralytics YOLOv8," https://github.com/ultralytics/ultralytics, 2023.

[79] K. Alexander, K. Karina, N. Alexander, K. Roman and M. Andrei, "HaGRID - HAnd Gesture Recognition Image Dataset," in 2024

Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, 2024.

78

APPENDICES

Appendix A: Complex Engineering Problem

Depth of Knowledge Required (WP1 >>>WK3 WK4 WK5 WK6):

Project requires fundamental understanding of communication protocols, signal

processing, and AI algorithms (WK3). Further it require engineering specialist

knowledge of deep learning algorithm to recognize hand gesture (WK4). In addition,

knowledge related to engineering design of project involving vision and sensor based

approach is required (WK5). Project also require modern software tools for

implementation of signal processing and AI algorithms (WK6).

Depth of Analysis Required (WP3): To complete the project strong mathematical

analysis is required for finding out objective function and their optimization to

recognize hand gesture for controlling holographic display.

Familiarity of Issues (WP4): Involve infrequently encountered issues in fusion of

algorithm for hand gesture recognition using vision and sensor based approach.

WP1

WP

2

WP

3

WP

4

WP

5

WP

6

WP

7

WK

3

WK

4

WK

5

WK

6

WK

7

WK

8

PLO1

(WA1) X

PLO2

(WA2) X X

PLO3

(WA3) X

PLO4

(WA4) X

PLO5

(WA5) X X

PLO6

(WA6)

PLO7

(WA7)

PLO8

(WA8)

79

Appendix B: Sustainable Development Goals

SUSTAINABLE DEVELOPMENT GOALS FOR FYP

FYP TITLE:

Real Time Hand Gesture Controlled Holographic Display

FYP SUPERVISOR: Dr. Qasim Umar Khan

GROUP MEMBERS:

 REGISTERATION NUMBER NAME

1 348038 MEER MUZAMMEL KHAN

2 344968 FARZAM TAIYAL ZULFIQAR

3 353048 MUHAMMAD HAROON

4 337587 KARIM HUSSAIN

SDGs:

 SDG No. Justification after consulting

1 4 The project is in accordance with target 4.8, which is to provide an effective learning
environment.

2 9 The project is in accordance with the following targets: 9.1, 9.2, and 9.5 to promote
innovations, infrastructure and industries.

FYP Advisor Signature: ___

UN website: https://focus2030.org/Understanding-the-Sustainable-Development-

Goals#:~:text=The%20Sustainable%20Development%20Goals%20(SDGs,life%20for%20all%2C%20by

%20 2030.

80

Appendix C: Plagiarism Report

REAL TIME HAND GESTURE

CONTROLLED HOLOGRAPHIC

DISPLAY

9%
SIMILARITY INDEX

6%
INTERNET SOURCES

6%
PUBLICATIONS

2%
STUDENT PAPERS

1 <1%

2 <1%

3 <1%

4 <1%

5 <1%

6 <1%

7 <1%

KHUSSAIN
ORIGINALITY REPORT

PRIMARY SOURCES

www.mdpi.com
Internet Source

www.hindawi.com
Internet Source

"Data Science and Applications", Springer
Science and Business Media LLC, 2024
Publication

Submitted to Liverpool John Moores
University
Student Paper

Submitted to South Bank University
Student Paper

Mingdeng Tang. "A real-time traffic sign
detection in intelligent transportation system
using YOLOv8-based deep learning
approach", Signal, Image and Video
Processing, 2024
Publication

dokumen.pub
Internet Source

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

yorkspace.library.yorku.ca
Internet Source

Qing Gao, Yongquan Chen, Zhaojie Ju, Yi
Liang. "Dynamic Hand Gesture Recognition
Based on 3D Hand Pose Estimation for
Human-Robot Interaction", IEEE Sensors
Journal, 2021
Publication

Submitted to University Politehnica of
Bucharest
Student Paper

Md Hasan-Ur Rahman, Bichar Dip Shrestha
Gurung, Bharat K. Jasthi, Etienne Z.
Gnimpieba, Venkataramana Gadhamshetty.
"Automated Crack Detection in 2D Hexagonal
Boron Nitride Coatings Using Machine
Learning", Coatings, 2024
Publication

www.researchgate.net
Internet Source

Lecture Notes in Computer Science, 2013.
Publication

Submitted to Higher Education Commission
Pakistan
Student Paper

www.ijimai.org
Internet Source

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

Yi Li, Jun Cheng, Xiaopeng Ji, Wei Feng,
Dapeng Tao. "Real-time action recognition by
feature-level fusion of depth and inertial
sensor", 2017 IEEE International Conference
on Real-time Computing and Robotics (RCAR),
2017
Publication

Sahar Hassani, Ulrike Dackermann, Mohsen
Mousavi, Jianchun Li. "A systematic review of
data fusion techniques for optimized
structural health monitoring", Information
Fusion, 2023
Publication

Tang, Zhicheng. "New Deep Learning
Methods for Small to Medium Object
Detection in Images", University of Missouri -
Columbia, 2024
Publication

Submitted to University of Northumbria at
Newcastle
Student Paper

www.arxiv-vanity.com
Internet Source

www.bag.admin.ch
Internet Source

repository.mines.edu
Internet Source

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

30 <1%

31 <1%

32

www.nature.com
Internet Source

ebin.pub
Internet Source

Chinta, Uma. "Pioneering Facial Expression
Recognition: Unveiling Multi-Modal
Strategies, Confronting Data Imbalance, and
Decoding Emotions", University of Colorado
Colorado Springs, 2024
Publication

Submitted to Sheffield Hallam University
Student Paper

scholarworks.iupui.edu
Internet Source

www.projectpro.io
Internet Source

www.techscience.com
Internet Source

"Intelligent Systems Design and Applications",
Springer Science and Business Media LLC,
2020
Publication

dspace.alquds.edu
Internet Source

escholarship.org
Internet Source

<1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

38 <1%

39 <1%

40 <1%

hdl.handle.net
Internet Source

www.diva-portal.org
Internet Source

"Machine Learning for Cyber Security",
Springer Science and Business Media LLC,
2020
Publication

Dingsheng Luo, Yang Ma, Xiangqi Zhang,
Xihong Wu. "Multi-Sensor Fusion Based Robot
Self-Activity Recognition", 2018 IEEE-RAS 18th
International Conference on Humanoid
Robots (Humanoids), 2018
Publication

github.com
Internet Source

www.ir.juit.ac.in:8080
Internet Source

www.trademarkelite.com
Internet Source

Submitted to British University in Egypt
Student Paper

41 <1%

42 <1%

43 <1%

44 <1%

45 <1%

46 <1%

47 <1%

Ishak Pacal, Dervis Karaboga. "A Robust Real-
Time Deep Learning Based Automatic Polyp
Detection System", Computers in Biology and
Medicine, 2021
Publication

M. Mufti, A. Khanum. "Design and
implementation of a secure mobile IP
protocol", International Conference on
Networking and Communication, 2004. INCC
204., 2004
Publication

Submitted to Lindenwood University
Student Paper

S.V. Jansi Rani, Iacovos Ioannou, R. Swetha,
R.M. Dhivya Lakshmi, Vasos Vassiliou. "A
novel automated approach for fish biomass
estimation in turbid environments through
deep learning, object detection, and
regression", Ecological Informatics, 2024
Publication

scholar.sun.ac.za
Internet Source

Submitted to Australian National University
Student Paper

Submitted to University of Lagos
Student Paper

48 <1%

49 <1%

50 <1%

51 <1%

52 <1%

53 <1%

54 <1%

55 <1%

56 <1%

57 <1%

cds.iisc.ac.in
Internet Source

journals.lww.com
Internet Source

Wan Sieng Yeo, Woei Jye Lau. "Predicting the
whiteness index of cotton fabric with a least
squares model", Cellulose, 2021
Publication

injctr.com
Internet Source

login.easychair.org
Internet Source

scholarworks.unist.ac.kr
Internet Source

techscience.com
Internet Source

www.coursehero.com
Internet Source

www.ije.ir
Internet Source

"Proceedings of the Eighth International
Conference on Soft Computing and Pattern
Recognition (SoCPaR 2016)", Springer Science
and Business Media LLC, 2018
Publication

58 <1%

59 <1%

60 <1%

61 <1%

62 <1%

63 <1%

64 <1%

65

Chun Keat Tan, Kian Ming Lim, Roy Kwang
Yang Chang, Chin Poo Lee, Ali Alqahtani.
"HGR-ViT: Hand Gesture Recognition with
Vision Transformer", Sensors, 2023
Publication

Lan Luo, Limao Zhang, Qinghua He. "Linking
project complexity to project success: a
hybrid SEM–FCM method", Engineering,
Construction and Architectural Management,
2020
Publication

Yongfeng Dong, Jielong Liu, Wenjie Yan.
"Dynamic Hand Gesture Recognition Based
on Signals from Specialized Data Glove and
Deep Learning Algorithms", IEEE Transactions
on Instrumentation and Measurement, 2021
Publication

ddd.uab.cat
Internet Source

digibuo.uniovi.es
Internet Source

dspace.bracu.ac.bd
Internet Source

journals.iium.edu.my
Internet Source

www.doria.fi
Internet Source

<1%

66 <1%

67 <1%

68 <1%

69 <1%

70 <1%

71 <1%

"Machine Vision and Augmented Intelligence
—Theory and Applications", Springer Science
and Business Media LLC, 2021
Publication

Freitas, Nuno Renato Azevedo. "Automatic
Detection of Urinary Tract Abnormalities
(ADUTA)", Universidade do Minho (Portugal),
2023
Publication

Santos, Tomás Moreira. "Real-Time Weapon
Detection in Surveillance Footage",
Universidade do Porto (Portugal), 2023
Publication

V. Vijeya Kaveri, V. Meenakshi, R. Meena Devi,
A. Kousalya, M. Sujaritha. "Object Tracking
Glove", Materials Today: Proceedings, 2022
Publication

Xinyue Hao, Shaojuan Luo, Meiyun Chen,
Chunhua He, Tao Wang, Heng Wu. "Infrared
small target detection with super-resolution
and YOLO", Optics & Laser Technology, 2024
Publication

Zhang, Chenxi. "Deep Learning for Automatic
Endoscope Assist System, From Disease

72 <1%

73 <1%

74 <1%

75 <1%

76 <1%

77 <1%

78 <1%

79 <1%

80 <1%

Detection to Quality Control", University of
Massachusetts Lowell, 2024
Publication

elibrary.tucl.edu.np
Internet Source

ijres.iaescore.com
Internet Source

link.springer.com
Internet Source

sensorsportal.com
Internet Source

user.ceng.metu.edu.tr
Internet Source

www.ijitee.org
Internet Source

"Computer Vision – ECCV 2016", Springer
Science and Business Media LLC, 2016
Publication

"Emerging Trends in Electrical,
Communications, and Information
Technologies", Springer Science and Business
Media LLC, 2020
Publication

0-www-mdpi-com.brum.beds.ac.uk
Internet Source

81 <1%

82 <1%

83 <1%

84 <1%

85 <1%

Dewi Putrie Lestari, Rifki Kosasih.
"Comparison of two deep learning methods
for detecting fire hotspots", International
Journal of Electrical and Computer
Engineering (IJECE), 2022
Publication

Fernandes, Diogo Samuel Gonçalves.
"Exploring Metadata in Neural Networks for
UAV Maritime Surveillance", Universidade do
Porto (Portugal), 2024
Publication

Ferrão, José Miguel Lopes. "A Multimodal
Vision-Based Sensor Fusion Approach for
Precise Landing of an UAV", Universidade do
Porto (Portugal), 2024
Publication

Hairong Jiang, , Bradley S. Duerstock, and
Juan P. Wachs. "A Machine Vision-Based
Gestural Interface for People With Upper
Extremity Physical Impairments", IEEE
Transactions on Systems Man and
Cybernetics Systems, 2014.
Publication

Hongkun Chen, Junyang Chen, Yingjie Xie,
Hangfei He, Boyi Zhang, Jingjie Guo, Li Wan,
Xiaoyan Chen. "OIDS-45: A large-scale
benchmark insect dataset for orchard pest

86 <1%

87 <1%

88 <1%

89 <1%

90 <1%

monitoring", Research Square Platform LLC,
2024
Publication

Hussein, Hagar Mohamed Wahid. "Stress
Detection Using New Time-Frequency
Decomposition: Progressive Fourier
Transform", Hamad Bin Khalifa University
(Qatar), 2023
Publication

Jogi John, Shrinivas Deshpande. "Intelligent
hybrid hand gesture recognition system using
deep recurrent neural network with chaos
game optimisation", Journal of Experimental
& Theoretical Artificial Intelligence, 2023
Publication

Kunc, Vladimír. "Inference genové exprese
pomocí umělých neuronových sítí", Czech
Technical University, 2024
Publication

Lijuan Zhang, Gongcheng Ding, Chaoran Li,
Dongming Li. "DCF-Yolov8: An Improved
Algorithm for Aggregating Low-Level
Features to Detect Agricultural Pests and
Diseases", Agronomy, 2023
Publication

Nilakshee Rajule, Sheetal Pawar, Savita
Jadhav, Utkarsh Jambhulkar, Dnyaneshwar
Kapse, Onkar Kanthale. "Real-Time Hand

91 <1%

92 <1%

93 <1%

94 <1%

95 <1%

Gesture Recognition with Voice Conversion
for Deaf and Dumb", 2023 7th International
Conference On Computing, Communication,
Control And Automation (ICCUBEA), 2023
Publication

Pramod Kumar Vishwakarma, Nitin Jain.
"Design and Augmentation of a Deep
Learning Based Vehicle Detection Model for
Low Light Intensity Conditions", SN Computer
Science, 2024
Publication

Renda, Henrique Eduardo Espadinha.
"Implementation of Deep Learning Models for
Information Extraction on Identification
Documents", Universidade NOVA de Lisboa
(Portugal), 2024
Publication

Shuai Teng, Xuedi Chen, Gongfa Chen, Li
Cheng. "Structural damage detection based
on transfer learning strategy using digital
twins of bridges", Mechanical Systems and
Signal Processing, 2023
Publication

Submitted to University of Sydney
Student Paper

Yunan Li, Qiguang Miao, Kuan Tian, Yingying
Fan, Xin Xu, Rui Li, Jianfeng Song. "Large-scale
Gesture Recognition with a Fusion of RGB-D

96 <1%

97 <1%

98 <1%

99 <1%

100 <1%

101 <1%

102 <1%

103 <1%

104 <1%

105 <1%

Data Based on Saliency Theory and C3D
model", IEEE Transactions on Circuits and
Systems for Video Technology, 2017
Publication

academic.oup.com
Internet Source

arxiv.org
Internet Source

dias.library.tuc.gr
Internet Source

export.arxiv.org
Internet Source

ijritcc.org
Internet Source

informatica.si
Internet Source

journals.scholarpublishing.org
Internet Source

khazna.ku.ac.ae
Internet Source

macdorman.com
Internet Source

prod-ruor.uottawa.ca
Internet Source

106 <1%

107 <1%

108 <1%

109 <1%

110 <1%

111 <1%

112 <1%

113 <1%

114 <1%

115 <1%

116 <1%

qmro.qmul.ac.uk
Internet Source

scholarworks.rit.edu
Internet Source

technodocbox.com
Internet Source

uu.diva-portal.org
Internet Source

uwspace.uwaterloo.ca
Internet Source

www.frontiersin.org
Internet Source

www.iaarc.org
Internet Source

www.ijraset.com
Internet Source

www.npmjs.com
Internet Source

www.tnsroindia.org.in
Internet Source

Amir R.Ali, Jessica Magdy, Aya ElNahas,
Marina Samir, N. M. Samantha Kamel, Mariam
A. Fathy. "Design and Evaluation of a
Wearable Glove for Sign Language

117 <1%

118 <1%

119 <1%

120 <1%

Translation Using Cross-Correlation and Flex
Sensors", 2023 International
Telecommunications Conference (ITC-Egypt),
2023
Publication

Daniel S. Breland, Simen B. Skriubakken,
Aveen Dayal, Ajit Jha, Phaneendra K.
Yalavarthy, Linga Reddy Cenkeramaddi.
"Deep Learning-Based Sign Language Digits
Recognition From Thermal Images With Edge
Computing System", IEEE Sensors Journal,
2021
Publication

Donghyeon Noh, Hojin Yoon, Donghun Lee.
"A Decade of Progress in Human Motion
Recognition: A Comprehensive Survey from
2010 to 2020", IEEE Access, 2024
Publication

Snehal Abhijeet Gaikwad, Dhananjay Upasani,
Virendra Shete. "Review and Trends on Hand
Gesture Recognition of Sign Language based
on Deep Learning Approaches", 2023 2nd
International Conference on Applied Artificial
Intelligence and Computing (ICAAIC), 2023
Publication

Wang, Xizhe. "Deep Learning for Dental
Caries Detection With Model Enhancement

121 <1%

122 <1%

123 <1%

124 <1%

125 <1%

and Dental Dataset Expansion", University of
Massachusetts Lowell, 2024
Publication

Yufei Zhang, Bin Liu, Zhiqiang Liu.
"Recognizing Hand Gestures With Pressure-
Sensor-Based Motion Sensing", IEEE
Transactions on Biomedical Circuits and
Systems, 2019
Publication

Ahmed Eid, Friedhelm Schwenker. "Visual
Static Hand Gesture Recognition Using
Convolutional Neural Network", Algorithms,
2023
Publication

Amina Ben Haj Amor, Oussama El Ghoul,
Mohamed Jemni. "Sign Language Recognition
Using the Electromyographic Signal: A
Systematic Literature Review", Sensors, 2023
Publication

Chun Keat Tan, Kian Ming Lim, Chin Poo Lee,
Roy Kwang Yang Chang, Ali Alqahtani. "SDViT:
Stacking of Distilled Vision Transformers for
Hand Gesture Recognition", Applied Sciences,
2023
Publication

Dirisala J Nagendra Kumar, Vidhya K, S. Sagar
Imambi, P. V. Pramila, Ashok Kumar,
Vijayabhaskar V. "DL-based Rheumatoid

126 <1%

127 <1%

128 <1%

129 <1%

130 <1%

Arthritis Prediction using Thermal Images",
2022 Sixth International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and
Cloud) (I-SMAC), 2022
Publication

E. Foroughi Asl, S. Ebadollahi, R. Vahidnia, AA.
Jalali. "Statistical Database of Human Motion
Recognition using Wearable IoT - A Review",
IEEE Sensors Journal, 2023
Publication

Matthew Turk, Alex Pentland. "Eigenfaces for
Recognition", Journal of Cognitive
Neuroscience, 1991
Publication

Sepp Hochreiter, Jürgen Schmidhuber. "Long
Short-Term Memory", Neural Computation,
1997
Publication

Tan Kok Liang, Toshiyuki Tanaka, Hidetoshi
Nakamura, Akitoshi Ishizaka. "A neural
network based computer-aided diagnosis of
emphysema using CT lung images", SICE
Annual Conference 2007, 2007
Publication

Tong Meng, Xuyang Jing, Zheng Yan, Witold
Pedrycz. "A survey on machine learning for
data fusion", Information Fusion, 2020
Publication

