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ABSTRACT 

 

This project aims to develop an advanced human-computer-interacting system designed to 

seamlessly control holographic 3D visuals using real-time dynamic hand gestures. The primary 

goal is to enhance the learning experience in the educational sector by effectively displaying 

and controlling complex 3D concepts such as models of human anatomy and various 

engineering problems. This innovative approach leads to improved academic performances and 

enhances the engagement and participation of students. The core of the system's functionality 

lies in detecting hand gestures and translating them into real-time computer cursor control, 

thereby enabling interactive control of holographic displays.  

 

To achieve accurate hand gesture detection, two distinct approaches are employed: a vision-

based approach and a sensor-based approach. In the vision-based approach, a camera 

continuously captures hand movements. This visual data is then used to detect and locate 

different gestures of the hand by employing a learning-based gesture-detecting algorithm. 

Conversely, the sensor-based approach involves the design of hardware (a sensor-based motion 

tracking glove) to detect the position of fingers. An ANN model, capable of detecting the same 

hand gestures as vision-based approach using sensor’s data, is developed. The primary purpose 

of utilising these two different approaches is to enhance gesture recognition accuracy. 

Therefore, the outputs from both methods are fused together using stacked ensemble learning, 

with an additional ANN serving as a meta-model to further improve accuracy. These detected 

gestures are then translated into mouse commands. Furthermore, to facilitate user interaction, 

a desktop application is designed to initialise and manage the gesture-controlled mouse system. 

Additionally, another Windows application is developed to upload and control various 3D 

models displayed on a holographic interface. 
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SUSTAINABLE DEVELOPMENT GOALS 

 

This project targets two Sustainable Development Goals (SGDs). 

 

 

 

 

 

SDG 4: 

This project supports the achievement of Sustainable Development Goal (SDG) No. 4, which 

focuses on ensuring access to quality education. This project aims to create a Human-Computer 

Interaction (HCI) system that uses hand gestures instead of typical input devices such as 

keyboards and mice. Furthermore, this project uses a holographic device to display 3D models 

that are interactable with hand gestures, creating an accessible and user-friendly interface that 

can be very beneficial, especially in the education sector. Teachers and students can use their 

hands to interact with the educational content displayed in 3D space, making teaching, and 

learning more engaging and immersive. This project also accommodates individuals suffering 

from disabilities who may find it difficult to use input devices, ensuring lifelong learning 

opportunities for all. 

                                                                                              

SDG 9: 

This initiative is in complete accordance with Sustainable Development Goal (SDG) No. 9, 

which focuses on industry, innovation, and infrastructure. A hand gesture-based Human-

Computer Interaction (HCI) system is a cutting-edge technology that can be applied in diverse 

areas such as healthcare, commercial advertising, automotive, and consumer electronics to 

enhance industrial infrastructure. This advanced system reduces the dependency on traditional 

input devices for HCI, making interaction with digital devices more seamless and immersive 

than ever before. This fosters a culture of innovation, as most modern industries, especially the 

consumer electronics industry, will be eager to use such innovative approaches in their products 

and services. Furthermore, by promoting the use of modern technology, this project supports 

industrial sustainability and opens the door for the development of technologically advanced 

systems that can meet the needs of an evolving society. 
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Chapter 1 – INTRODUCTION 

 

Human-Computer Interaction (HCI) is the way we communicate with computers. In our 

modernised world, we are using digital gadgets like smartphones, laptops, TVs, tablets, gaming 

consoles, and Virtual Reality (VR) headsets, and without these, our lives are incomplete. 

Human-Computer Interaction (HCI) serves as a crucial connection between users and 

electronic devices, playing a significant part in our daily interactions with computers and other 

digital devices. Moreover, with further advancements in computer technologies, HCI is 

becoming more and more important, and researchers are putting in more effort to enhance HCI, 

creating immaculate interfaces that enhance user experiences and productivity. 

 

The evolution of HCI goes back to the 1940s and 1950s. In those years, computers were big, 

complex machines mainly used only for performing complex calculations by scientists and 

engineers, and interaction was through punch cards, switches, and dials. In the 1960s and 

1970s, command-line interfaces were introduced. This interface allowed the user to use 

command lines to interact with the computer. Although this did improve HCI to some extent, 

it is still very complex for laymen's users. In the 1980s, the first Graphical User Interface (GUI) 

was introduced, which revolutionised HCI forever. The GUI provided the users with icons and 

folders to interact with. A pointer device like the mouse was introduced, which allowed the 

user to control a pointer on the GUI and interact in a very user-friendly environment. In the 

2000s, touchscreen interfaces were introduced in mobile devices and laptops, thus eliminating 

the need for input devices like the keyboard and mouse. These touch screens use touch gestures 

like tapping, swiping, pinching, etc., making HCI simpler than ever. Currently, there is a 

significant focus on utilizing voice commands and hand gestures to interface with computers 

and other digital devices. 

 

This project focuses on the use of hand gestures for HCI. Different hand gestures are used to 

control the display screen of the computer. HCI through hand gestures offers a lot of advantages 

when compared to traditional HCI using input devices like a keyboard and mouse. For example, 

this kind of HCI provides enhanced teaching and learning experiences in the education sector. 

Teachers and students can use hand gestures to interact with educational content, making 
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learning a very engaging and fun experience. Similarly, in the medical sector, surgeons can 

maintain sterility during surgery by manipulating medical images just by using their hand 

gestures and not touching anything. Hand gesture-controlled HCI is also useful for people who 

suffer from mobility disabilities and find it difficult to use input devices. 

 

Over the past several years, research into HCI through hand gestures has seen significant 

advantages. [1] proposed a virtual mouse that can be moved in the air by using a 5-DOF IMU 

(Inertial Measurement Unit) and a Kalman filter to fuse the gyroscope and accelerometer data. 

[2] surveyed mouse implementation through hand gestures and discussed techniques like the 

Hidden Markov machine learning model (HMM), the convex hull algorithm based on hand 

contour detection, and MEMS accelerometer-based gesture recognition. [3] implemented a 

hand gesture-based mouse system using camera and image processing techniques like Otsu’s 

adaptive thresholding and morphological operations. More recently, [4] developed a virtual 

mouse system based on fingertip detection using coloured caps on fingertips and hand gesture 

recognition. The system uses image processing techniques and a convex hull algorithm for 

gesture recognition. Various combinations of coloured caps and hand gestures are then 

translated to perform various mouse functions. [5] used the camera and MediaPipe libraries for 

hand pose estimation and the Pyautogui Python library to implement cursor control.  

 

This project implements dynamic hand gesture recognition using two approaches. The first 

approach employs a vision-based strategy that utilizes a deep learning algorithm to identify 

several hand categories and key points. The second method employs hand flex sensors 

positioned on the glove and an Artificial Neural Network (ANN) to identify identical hand 

gestures. An approach of ensemble machine learning is used to combine the decisions made by 

the two algorithms, with the goal of improving the accuracy of dynamic gesture identification. 

The recognised gestures are then translated to perform different mouse functions like cursor 

movement, scrolling, right-click, double-click, and left-click. A Windows-based application is 

developed that is used to initialize and startup the system. Lastly, another Windows-based 

application is developed that is used to display different 3D models on a holographic display. 

The hand gesture-controlled mouse is then used to interact with these 3D models. 
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This project will contribute to the research work on hand gesture-based HCI as it provides a 

natural, immersive, and practical way of communicating with a computer that will enhance the 

user experience and productivity. 
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Chapter 2 – LITERATURE REVIEW 

2.1.  Related Work 

Hand gesture recognition has been a significant subject of research in the field of 

human-computer interaction during the last few decades. In the literature, there have 

been two main ways of recognising hand gestures, vision-based technique, and sensor 

glove-based technique. The related work has been arranged in the following order: 

2.1.1.  Hand Gesture Recognition Using Vision-Based Technique 

Hand gestures can be further classified into two categories: static and dynamic. Image 

processing is being used for pre-processing in countless research papers before applying 

machine learning models such as HMM, SVM to detect gestures.  [6] implemented two 

image processing techniques namely, (HOG) and (SIFT) algorithms in MATLAB to 

generate feature vectors of images. The features extracted were passed to (SVM) to 

classify gestures. [7] introduced a novel technique for accurately detecting hand 

gestures. Their procedure includes the image segmentation through canny edge detector 

and employing Oriented Fast and Rotated Brief (ORB) for feature extraction, 

generating vocabulary codewords using k-means clustering Bag of Words model, and 

finally passing the feature vector of codewords to various classifiers. [8] introduced a 

technique for feature fusion to recognize the gestures robustly by fusing features from 

HWT and LBP and by doing some modifications to the original AlexNet architecture 

by adding new layers that can learn new patterns and fused features.  [9] designed 

dynamic hand gestures trajectory and remodelling model based on Hidden Markov 

Model (HMM) algorithm by first detecting hand using Adaboost algorithm and then 

tracking the hand using a contour-based hand tracker. Invariant curve moments 

represent global feature whereas local features are represented by orientation to 

calculate the trajectory of hand gesture. 

 

[10] introduced a system for recognising hand gestures in a continuous manner. The 

initial step involves tracking and extracting the movement of the hand from the image. 

Subsequently, the Fourier descriptor (FD) algorithm is utilised to extract spatial 

characteristics, while motion analysis is employed to identify temporal characteristics. 

The spatial and temporal characteristics are integrated and utilised as a feature vector 

for real-time dynamic hand gesture identification in Hidden Markov Models (HMMs). 

file:///C:/Users/Hp/Downloads/literature_camera.docx%23one
file:///C:/Users/Hp/Downloads/literature_camera.docx%23four
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[11] developed a Multi Class Support Vector Machine and utilised the Biorthogonal 

Wavelet Transform approach to build the input feature vector for classifying hand 

movements. [12] created a live American Sign Language Recognition system by 

employing (PCA) and SVM. The hand motion is separated from the image by extracting 

the ROI using the HSV color space. The ROI is then processed using PCA to extract 8 

features, which are subsequently used for real-time gesture detection by the SVM 

algorithm. [13] developed a novel feature extraction approach by integrating the K 

curvature and convex hull algorithms. The newly developed "K convex hull" extractor 

demonstrates high precision in detecting fingertips. The gestures were categorised by 

inputting the features into an Artificial Neural Network (ANN). 

 

Numerous researches are underway  develop the modern hand gesture recognition 

system employing deep learning techniques since the rise of deep learning models after 

AlexNet  [14]  won the 2012 ImageNet Large Scale Visual Recognition Challenge. 

ImageNet  [15] is a large-scale image database. Hand gesture classification systems 

based on preprocessing and feature extraction suffer with poor accuracy and poor 

robustness particularly in complex backgrounds and varying lighting conditions  [16]. 

Additionally, some useful information in the image may get discarded when performing 

feature extraction  [17]. Use of (CNN) to detect visual hand gestures was explored by  

[18].  The CNN architecture was trained on images of ten static hand gestures with 

complex background and different hand sizes. Without data augmentation and skin 

segmentation, the CNN model achieved 82.5% accuracy on NUS II dataset. The 90.5% 

accuracy was achieved by introducing the dropout in the model and skin segmentation 

further improved it to 93.5%. The accuracy of gesture recognition further elevated to 

96.5% after using data augmentation techniques. 

 

The authors of [19] suggested a convolutional neural network (CNN) consisting of four 

convolutional layers, each followed by a max pooling layer. The network also includes 

a fully connected layer and a softmax function at the end. A novel dataset of Irish Sign 

Language (ISL) was created by gathering footage of individuals demonstrating ISL 

hand gestures. The frames were retrieved from the videos and converted to grayscale. 

The background was then eliminated from each frame using a pixel value threshold. 

file:///C:/Users/Hp/Downloads/literature_camera.docx%23nine
file:///C:/Users/Hp/Downloads/literature_camera.docx%23ten
file:///C:/Users/Hp/Downloads/literature_camera.docx%23eleven
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twelve
file:///C:/Users/Hp/Downloads/literature_camera.docx%23thirteen
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Afterwards, two gesture recognition techniques were trained and tested on the dataset. 

One approach utilized (PCA) for the extraction of features and k-nearest neighbour for 

classification purpose while second approach implemented a CNN model for gesture 

recognition. The k-NN and PCA approach recorded 95% accuracy while CNN-based 

approach recorded 99% accuracy on the ISL dataset.  [20] designed a robotic arm, 

controlled by gestures of hand to collect different objects. . To recognise hand gestures, 

they proposed a CNN architecture (DAG-CNN). For training, a dataset containing 10 

different hand gestures was constructed and the model recorded an accuracy of 84.5%. 

The authors of  [21] introduced the hand gesture recognition approach by using the fully 

connected layers, FC6 and FC7, of pretrained AlexNet to extract deep features. The 

deep features were reduced by using (PCA) based dimension reduction technique. 

(SVM) was used as classifier to classify different static hand gestures. An American 

Sign Language (ASL) dataset was crafted using five subjects on 36 different hand 

gestures. The dataset contained variations in background and illumination conditions. 

The proposed system achieved 87.83% accuracy on 36 hand gestures. 

 

A simple CNN architecture was used to detect Indian Sign Language gestures by the 

authors of  [22]. The dataset contained  upto 35000 images of about 100 distinct types 

of Indian Sign Language gestures. The proposed CNN model recorded 98.80% 

validation accuracy on the dataset while using Adam as optimizer and 98.56% 

validation accuracy while using Stochastic Gradient Descent (SGD) as optimizer. A 2D-

CNN and feature fusion based dynamic hand gesture classification system has been 

proposed by authors of  [23]. The authors proposed a new clustering algorithm for 

frames extraction and improved the existing HS optical flow algorithm by incorporating 

fractional order method. The original frames were passed to Spatial Feature Extractor 

Network to extract spatial features. Similarly, the optical flow frames were passed 

through a Temporal Feature Extractor Network for temporal feature extraction. The 

spatial and optical features were fused and passed to a pooling layer followed by two 

fully connected layers to recognise the dynamic hand gesture. To verify their approach, 

the authors trained and tested their system on the Hand Gesture Datasets of 

Northwestern University and Cambridge. The model reached 97.6% and 98.6% 

accuracy on the Hand Gesture datasets of Northwestern University and Cambridge 

respectively. 

file:///C:/Users/Hp/Downloads/literature_camera.docx%23fifteen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23sixteen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23seventeen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23eighteen
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Dynamic hand gestures are recorded in a sequence of frames instead of a single frame. 

Dynamic hand gesture recognition is difficult and inefficient using traditional two-

dimensional convolutional neural networks unless the 2D-CNN is provided with both 

spatial features and temporal features. A new kind of deep learning model which can 

learn both spatial and temporal features was presented by authors of  [24]. The new 

proposed model, C3D, is a 3-dimensional convolutional neural network (3D 

ConvNets). The authors found out the optimum temporal kernel depth for 3D-CNNs 

and concluded that C3D has the capability to learn spatial as well as temporal features 

concurrently. C3D outperformed other modern methods on ASLAN dataset by 

achieving 78.3% accuracy. In  [25], a three-dimensional convolutional neural network 

has been proposed by combining a High Resolution Network and Low Resolution 

Network for driver hand gestures recognition. The final prediction is given by element-

wise multiplication of class probabilities given by the two networks. To reduce the 

chances of overfitting and effectively train the model, spatiotemporal data 

augmentation was done on the dataset. The authors claimed that their proposed system 

achieved 77.5% accuracy on VIVA dataset. 

 

In [26], authors presented a 3DCNN-LSTM-based dynamic hand gesture classification 

system that recognises hand gestures by using a sequence of frames from two-

dimensional RGB videos. The model acquired spatiotemporal characteristics by 

integrating a 3D-CNN and a Long-Short term Memory (LSTM). The initial architecture 

underwent training on a comprehensive dataset and subsequently underwent fine-

tuning on a specialised smaller dataset using the transfer learning technique. This 

smaller dataset was specifically created to evaluate the model's capability. The authors 

documented a heightened level of precision, reaching 93.95%, when evaluating the 

bespoke dynamic hand motion dataset. The authors of [27] have presented a method for 

dynamic gesture identification that combines depth and RGB modalities as input to a 

deep learning model. They also incorporate a finite state machine controller to enable 

context-aware decision-making. The proposed model utilises a combination of a 3D-

CNN and LSTM to acquire spatiotemporal information through two concurrent input 

streams. One stream processes RGB data, while the other stream processes depth input. 

file:///C:/Users/Hp/Downloads/literature_camera.docx%23nineteen
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty
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Ultimately, the features acquired from both streams are merged and transmitted to a 

fully connected layer to generate the final prediction. In order to enhance the precision 

of real-time predictions, the authors integrated a finite state machine controller into the 

system. This controller effectively creates a context-aware model by manipulating the 

softmax decision probability through the adjustment of weights in the final layer. The 

suggested technique attained a precision of 97.8% on eight distinct gestures derived 

from a specialised video collection. The authors asserted that the employment of FSM 

resulted in an enhancement of the real-time recognition rate from 89% to 91%. 

 

Simultaneous dynamic hand gestures detection and classification in real-word systems 

is a difficult job due to the large variation in the way people perform features and a 

considerable delay between gesture performing and classification. Ideally, the system 

should be able to classify the hand gesture before the gesture has ended to provided 

instantaneous response to the user. To deal with this, authors of  [28] came up with an 

online Recurrent 3D-CNN model, capable of detecting and classifying dynamic 

gestures of hand at the same time on a multi-modal input. To predict hand gestures from 

in progress hand gestures, the authors trained the model using connectionist temporal 

classification. To evaluate their model, a new video dataset is introduced by the authors 

which was captured with the help of colour, depth, and stereo-IR sensors. The Recurrent 

3D-CNN architecture clocked an accuracy of 83.8% on the custom dataset. The authors 

of  [29] proposed a CNN-RNN based architecture to classify dynamic gestures of hand. 

A new Indian Sign Language dataset containing 33 gestures corresponding to the 

months, days, and weeks of the year. 12 months of the year has been generated. The 

images in the dataset were pre-processed by converting them from RGB to HSV colour 

space and to make the images noise free, operations of dilation and erosion were 

performed on images segmented. The suggested architecture was trained on a smaller 

version of the original dataset comprising of 12 hand gesture classes representing 12 

months of year. The authors concluded that CNN-LSTM model achieved 99.14%. 

 

The authors of  [30] utilized the hand keypoints and bounding box information of the 

hand to classify static hand gestures. A top-down approach based human pose 

estimation is used as a feature extractor to give hand pose keypoints and hand bounding 

file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_three
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_four
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_five
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box information. These features are normalized and processed before passed to a 

classifier. For classification, the authors introduced a new Two-pipeline model. One 

pipeline implemented a CNN, mobileNetv2, while the other pipeline used dense layers 

for classification of gestures of hand. The outputs of both pipelines were concatenated 

and passed to layer with softmax for classification of gestures of hand. The authors 

reported their approach achieved 91% accuracy on HANDS dataset, 95% accuracy on 

SHAPE dataset and 94% correct prediction rate on OUHANDS dataset. Another 

technique using 3D hand pose estimation to recognise dynamic hand gestures has been 

presented by  [31]. Firstly, Faster R-CNN with BA’s is used for the detection and 

extraction of the hand from the input RGB and depth image. Then, 2D Hand Pose of 

the hand is estimated using OpenPose. The hand pose coordinated of RGB image were 

mapped on depth image to generate 3D Hand pose of the hand. Finally, the authors 

presented a new framework by combining 3D-CNN and ConvLSTM. The authors 

introduced a data fusion technique based on weighted sum of inputs to generate the 

input feature vector for the deep learning model. Data fusion was done by pixel-level 

fusion of RGB, depth, and 3D hand pose images by multiplying pixels with a weight 

and adding the pixel values. The proposed architecture was trained on a custom 

dynamic hand gesture dataset constructed for this model. The authors reported 92.4% 

accuracy for the outlined approach. 

 

Nearly all the dynamic gestures of hand are recognized by the systems that are based 

on deep learning models with high parameters count. Deploying such systems in 

practical world for real-time recognition of gestures is not feasible. To overcome this, 

authors of  [32] came up with a simple deep learning model that combined CNN and 

Transformer for accurate detection of dynamic hand gestures. The proposed 

architecture fused Convolutional Neural Network with a Transformer model using 

spatio-temporal attention mechanism. The authors evaluated the model on two publicly 

accessible datasets, one is Jester [33] and other one is NVGesture [28] datasets, and one 

custom built dataset. The MetaFormer model achieved 96.72% accuracy on Jester 

dataset, 92.16% accuracy on NVGesture dataset, and a 90.71% accurate predictions 

rate on custom generated dataset. In  [34], a transformer based dynamic hand gesture 

recognition multi-modal architecture has been introduced. The model utilized ResNet-

18  [35] as a feature extractor followed by a transformer encoder based on self-attention 

file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_six
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_seven
file:///C:/Users/Hp/Downloads/literature_camera.docx%23twenty_nine
file:///C:/Users/Hp/Downloads/literature_camera.docx%23thirty
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mechanism for temporal features analysis for dynamic hand gestures classification. The 

researchers demonstrated that employing solely depth maps and the derived surface 

normals as input can yield impressive outcomes. The suggested model was trained and 

tested on two datasets, namely Briareo and NVGesture datasets. The model recorded 

82.4% accuracy on NVGesture dataset on single input. The accuracy jumped to 87.6% 

when several modalities were employed as input. On Briareo dataset, the proposed 

architecture achieved 87.3% when using depth and normal as input while a very slight 

improvement, 87.6% accuracy, was depicted when colour, depth, IR, and normal were 

used as input. 

 

2.1.2.  Hand Gesture Recognition Using Sensor-Based Technique 

Similar to the vision-based approach to gesture recognition, the other most common 

technique for recognizing hand gestures is using various physical sensors. Researchers 

have used different sensors for this purpose, such as flex sensors, accelerometers, 

gyroscopes, electromyography, photoplethysmography, etc. Some of them use these 

sensors alone, while others use a combination of sensors for better results. As time 

progresses, we've witnessed significant advancements in wearable sensor-based hand 

gesture recognition systems. This is due to a growing interest in human-computer 

interaction, which has heightened the need for these systems in critical applications 

such as sign language interpretation, virtual reality (VR) and AR, gaming and 

entertainment, education, and training, among others. Initially, researchers used these 

sensors to create models that could only identify static objects. Nevertheless, progress 

in this domain has resulted in the creation of models that can accurately recognize a 

wide range of dynamic hand movements. 

 

 

Researchers started leveraging machine learning for gesture detection as a result of its 

advancement. However, prior to this evolution, this task was performed by comparing 

real-time data from sensors with previously stored data, then predicting the gesture that 

most closely matched the stored data for the relevant gesture [36].  Most gesture-

sensing systems use flex sensors, motion sensors, and electromyogram (EMG) sensors. 

However, [37] suggests a new way to recognize different hand gestures by decoding 
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the information from photoplethysmography (PPG) sensors. This is based on the idea 

that tendons and muscle movements change the shape of the arteries, and then a 

learning-based algorithm learns these changes to recognize the gestures. Similarly, [38] 

uses the concept of capacitive sensing for gesture recognition. The capacitive sensors 

on the board capture the types of gestures, and then a machine learning algorithm 

recognizes the specific static gesture.  

 

Flex sensors serve as potential sensors used to distinguish various hand gestures. These 

sensors are variable resistors, which change their resistance values if we bend them. 

Therefore, we place these flexible sensors over the fingers, allowing them to detect 

bending by altering their resistance values. Most of the papers used these sensors alone 

or in combination with other sensors for gesture recognition. [39] designed a flex 

sensor-based wireless operating glove to extract information about position and 

velocity of fingers. They recognized the six common hand gestures using a combination 

of SVM and a neural network. A similar concept is used in [40]. They only used 

artificial neural networks for their case, achieving an accuracy of 88.32%. Similarly, 

[41] developed a system for dynamic gesture recognition using a similar glove 

construction. The system picks up on different hand movements by using a gated 

recurrent neural network (GRU) and maximum posteriori (MAP) estimation to watch 

the change between two different gestures. [42] has developed a sensor-based glove 

that measures the angles of the finger joints. With this information, they developed a 

learning-based approach to detecting different dynamic systems of the hand. Their 

algorithm tracks the gesture's start-to-end data for classification. Moreover, [43] claims 

that they introduced a novel glove with flex sensors for finger motions and motion 

sensors over the arm to detect the motion of the arm as well. Using a combination of 

these two sensors, they developed a mechanism for the recognition of American sign 

language (ASL) and Chinese sign language (CSL). 

 

Moreover, electromyography (EMG) serves as another potential sensor for gesture 

recognition. Skeletal muscles produce electrical activity, which electromyography 

(EMG) sensors measure. They sense the electrical signals produced by muscle 
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contractions, which can be processed to detect specific movements or gestures. The 

position of the electrodes is crucial in this case; even a small deviation can impact the 

results. Nevertheless, past research has attempted to use these sensors alone or in 

combination with other motion sensors. [44] put different EMG sensors on the arm and 

collected data based on how the arm and fingers moved. They then used the extreme 

gradient boosting (XGBOOST) algorithm to recognize the signs for American Sign 

Language (ASL). Artificial intelligence provides you with a very diverse path for every 

problem. Using the same setup [45], you can detect hand gestures using a fully 

connected artificial neural network. [46], [47] achieved this task by combining data 

from IMU and EMG sensors, but these methods are not considered user-friendly as they 

necessitate the placement of numerous sensors on the user's naked arms for proper 

operation. 

 

If we investigate motion sensors, the most commonly used devices are the gyroscope 

and accelerometer. These are 3-dimensional motion sensors. Gyroscope sensors 

provide information on angular velocity on each of the three axes (X-axis, Y-axis, and 

Z-axis), whereas accelerometers try to provide information regarding linear motion in 

the form of acceleration in each direction. As a result, these sensors could be placed on 

the hand or arm in combination for gesture recognition. [48] used the data from both 

sensors and fed it into their developed gesture spotting algorithm. This algorithm 

detects the start and end points of the gestures, and then recognizes them by comparing 

them with their gesture database. With the advancement of recurrent neural networks, 

continuous gesture spotting has improved significantly. So, leveraging these concepts, 

[49] presented a general continuous hand gesture algorithm based on long-short-term 

memory (LSTM). It requires data from a gyroscope and an accelerometer for training. 

Similarly,  [50] developed an algorithm for sensory data called PairNet. 

 

2.1.3.  Fusion in Machine Learning 

The majority of modern machine learning-based systems employ more than one 

machine learning model to achieve a certain task. A single classifier is inefficient when 

a wide variety of data is present, the types of features are dissimilar, and generalization 
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is required. To improve the prediction accuracy of the system in such a situation, 

multiple classifiers are preferred over a single classifier [51]. In the literature, there are 

multiple techniques for fusing multiple machine learning models to achieve better 

accuracy. Fusion is a technique whereby more relevant data is generated by combining 

data or information from multiple sources [52]. Fusion techniques are broadly divided 

into three categories: early fusion (data fusion), joint fusion (feature fusion), and late 

fusion (decision fusion). Out of these three, joint and late fusion involve multiple 

machine learning models, while in early fusion, there is only one classifier, but the input 

is combined from several sources. 

 

Early fusion, or data fusion, refers to combining data coming from heterogenous 

sources. Both decision fusion and feature fusion can be classified as further types of 

data fusion. Input coming from multiple sources is referred to as multi-modal input, and 

the fusion of multiple modalities of data has been extensively used in deep learning 

models. The paper [53] discusses different types of modalities available, like text, 

video, image, and other signals for multi-modal architectures. The classical technique 

to fuse data in the past was based on probabilistic fusions such as Bayesian fusion, 

rough-set based fusion, etc. [54]. To combine data coming from various sources, the 

most widely adopted procedure is to extract features using machine learning technique 

and use them as input for the actual classifier. The most popular machine learning 

techniques present in the literature to perform data fusion are k-NN, Principal 

Component Analysis, Bayesian Classifier, and clustering. [55] provides a 

comprehensive review of the use of machine learning techniques in data fusion. The 

authors of [56] fused data coming from sensors, in numerical form, and data from 

medical records, in the form of text, using the information gain method to improve the 

accuracy of healthcare monitoring systems. A new data fusion technique, Attributed 

Heterogenous Network Fusion, to combine multi-related data from different sources by 

learning inter-relations and minimizing loss by avoiding insufficient relations, has been 

proposed in [57]. 
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In any classification problem, features play the most crucial role as they provide useful 

information. One of the reasons for feature fusion is that in the practical world, rich 

features as well as noisy and irrelevant features are present. For accurate prediction, 

noisy and irrelevant features should be filtered as they confuse classifiers. To remove 

noisy features, feature fusion is done to reduce the size of features so that only relevant 

features are passed on. The most common type of feature fusion is early fusion, which 

is similar to data fusion. In early feature fusion, features are fused from a set of features 

extracted from data obtained from several sources. The methods used for early fusion 

included averaging, concatenation, and weighted linear combination. [58] developed a 

multi-modal depression recognition system by employing feature-level fusion on data 

collected from various sensors. Non-linear and linear feature extraction from the data 

collected from every source is followed by feature fusion utilising linear combination 

method. 

 

The authors of [59] increased the classification accuracy of the system by employing 

multiple models and fusing features extracted by multiple classifiers in the network. 

[60] improved the housing property value assessment system by fusing features 

extracted by two deep neural networks, each model working on two different data 

sources. The ability of the model to automatically learn relevant features based on the 

enhancement deep feature fusion technique has been proposed in [61]. The authors built 

an auto-encoder for automatic feature learning and used locality preserving projection 

(LPP) method for the fusion of deep features. Attention-based architectures like 

Transformer also perform feature fusion due to their capability of focusing on useful 

features and suppressing irrelevant features. Graph-based feature fusion has been 

utilised by Graph Attention Networks (GATs) and Graph Convolutional Networks 

(GCNs) by collecting features from surrounding nodes in a graph [62]. 

 

Decision fusion is a very popular technique used in many machine learning systems to 

raise the accuracy whereby combining predictions of multiple models. In the literature, 

multiple techniques for decision fusion can be found, like averaging, weighted 

averaging, majority voting, stacking, etc. [63] enhanced the accuracy of the tree species 
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recognition system by employing multiple SVMs, each operating on a separate feature 

set, and fusing their decisions based on Murphy’s average method. [64] increased the 

prediction accuracy of structural damage detection systems by utilising several 1-D 

Convolutional Neural Networks and fusing their results based on majority voting. The 

fuzzy-based decision fusion technique has been utilised by [65] to increase the accuracy 

of heart disease classification. Their system included two Support Vector Machines 

(SVMs), each receiving a different set of features from multiple sources, and the final 

prediction was given by a fuzzy-based system. Decision fusion using stacking ensemble 

learning is widely used in multiple machine learning and deep learning-based systems. 

[66] utilised the concept of ensemble learning to elevate the accuracy of Maize 

Chlorophyll Content estimation system by using three classifiers to make predictions. 

The predictions given by the classifiers were stacked and given to a meta-model to give 

the final prediction. In their system, they used a Multiple Linear Regression model as a 

meta-model. Other techniques used in ensemble learning include bagging and boosting. 

 

2.2. Limitations in Prior Work 

The different types of architectures based on deep learning and machine learning 

models discussed in the related work section of the vision-based approach are 

vulnerable to certain limitations. Hand gesture detection traditionally relies exclusively 

on image processing techniques. These techniques exhibit subpar performance in 

complex backgrounds, diverse lighting conditions, various distances between the hand 

and the camera, and occasionally owing to differences in skin color and clothing worn. 

The adoption of a machine learning classifier for hand gesture detection effectively 

resolved many of the challenges encountered by image processing techniques. Machine 

learning classifiers do not perform well on large datasets with a wide variety of data 

and high interdependencies of features because these algorithms do not possess the 

ability to learn complex relations between features. Therefore, this approach also fails 

in situations where generalization is required. 

 

Deep learning models offer a solution to the problem of generalization. Deep learning 

architectures like CNNs extract features from input data and learn the interconnections 

between features and variations in the data due to their backpropagation technique to 
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update filter weights. This makes them suitable for situations where machine learning 

algorithms fail, but the added cost comes in the form of an increase in computational 

complexity. Although there are quite a few CNNs available that provide a good speed 

and accuracy trade-off, Similarly, 3D-CNN and CNN-RNN architectures suffer from 

high computational complexity and require large amounts of data for training, making 

them largely unsuitable for real-world applications. Moreover, attention-based 

architectures like Transformer were recently introduced in computer vision tasks, so 

not much information is available about their training details, dataset requirements, 

different models, limitations, etc. 

 

Given the extensive research in the area of sensors-based gesture recognition, most 

suggested methods rely on physical sensors, which can be challenging to integrate in 

practical settings. Placing EMG sensors all over the arm is not a user-friendly approach. 

Additionally, many of the approaches use a combination of multiple learning-based 

algorithms, which requires a lot of computation power. 

 

2.3.  Proposed Approach 

This project involves detecting a mixture of static and dynamic hand gestures to control 

the computer cursor. For computer cursor control, classification of gestures as well as 

localization of the hand are required. The suggested deep learning model for the vision-

based approach is called YOLO (You Only Look Once), and it can complete both tasks 

in real-time. The cutting-edge object detector YOLO offers an excellent compromise 

between speed and accuracy. It was first introduced in [67]. Since then, YOLO has 

continued to evolve, with different versions coming after the initial release of YOLOv1. 

After YOLOv1, several versions of YOLO came in the form of YOLO9000 [68] or 

commonly known as YOLOv2, YOLOv3 [69], YOLOv4 [70], YOLOv5 [71], Scaled 

YOLOv4 [72], YOLOR [73], YOLOX [74], YOLOv6 [75], YOLOv7 [76], DAMO-

YOLO [77], and YOLOv8 [78]. In this project, YOLOv8 is utilised for real-time gesture 

detection and localization as well as pose estimation of hand keypoints.  
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The aim was to fuse sensor-based gesture recognition with a vision-based approach. 

The traditional approaches discussed in related work section of sensor, restricts us to 

use such an approach which had larger execution time. We had to choose an approach 

to little inference time. Overall, we had to choose the path to implement the system that 

should meet these three objectives: 

• More user-friendly. 

• Less computations. 

• More Robust. 

We decided to design gloves based on flex sensors to detect our fingers' movements 

and use a fully connected artificial neural network for algorithm development after 

reviewing all the literature and comparing it to our objectives. This was because flex 

sensors are extremely flexible, light, and easy to place over the glove. Furthermore, 

they are capable of identifying even the smallest finger movements. To further improve 

the system’s accuracy, the predictions given by both models, vision-based approach 

model, and sensor-based approach model are fused using another ANN model. After 

fusing the results of YOLOv8 and the sensor model, an algorithm is developed that can 

predict dynamic hand gestures and execute mouse commands corresponding to the 

gesture detected. The complete flow diagram of the proposed approach is given in Fig. 

1. 

 

 
Figure 1. System flow diagram of proposed approach 
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Chapter 3 – METHODOLOGY 

3.1.  Vision-Based Approach Methodology 

3.1.1.  Model Architecture 

YOLOv8 comes in different sizes, each having more depth than the previous ones. 

Additionally, YOLOv8 can perform other tasks besides object detection, such as 

classification, pose estimation, segmentation, and tracking. For vision-based approach, the 

model chosen is YOLOv8s with pose estimation. YOLOv8’s architecture is shown in Fig. 

2. Additional information related to YOLOv8s is given below: 

• Model Parameters   =  11.6 million 

• Number of FLOPs   =  30.2 billion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of YOLOv8 
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The architecture is split into three main parts: the backbone, neck, and head. 

Backbone: 

The backbone’s roll in YOLOv8 is to extract features from input. It progressively 

reduces the spatial dimensions of the input visual data while capturing increasingly 

abstract and robust features. 

• Convolutional Layers (Conv): 

o Role: Perform the primary operation of extracting features through 

convolution, a mathematical operation which combines an input image 

with filter to produce feature maps. 

o Details: In the Fig. 2, Conv layers are represented with their kernel size 

(k), number of output channels (c), padding (p), and stride (s). For 

instance, a Conv layer with k=3, p=1, and s=2 indicates a 3x3 filter with 

stride 2 and padding 1, which reduces the spatial dimension by half. 

• C2f (Cross-Stage Partial Networks): 

o Role: Enhances feature reuse and propagation with fewer parameters. 

o Details: This module, denoted with shortcut=True, implements skip 

connections that allow direct pathways for gradients during 

backpropagation. It’s particularly useful in preventing vanishing 

gradients and enabling deep networks to train effectively. 

• SPPF (Spatial Pyramid Pooling - Fast):  

o Role: Aggregates features at multiple scales in a fast and efficient 

manner. 

o Details: The SPPF layer aggregates features at multiple levels and 

combines them, enabling the network to handle objects of varying sizes 

effectively. This multi-scale pooling operation is efficient and aids in 

capturing global context without increasing computation significantly. 

• Downsampling Operations: 

o Role: Reduce the spatial dimensions to distil abstract features. 

o Details: Strided convolutions with stride=2 are utilised to downscale the 

feature maps, while retaining essential features. This hierarchical 

reduction is crucial for handling large input images efficiently. 
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• Multi-Scale Feature Maps (P1 to P5): 

o Role: Provide feature maps at different resolutions. 

o Details: P1 to P5 represent different scales of feature maps extracted 

from the backbone. P1 is the finest scale (highest resolution), and P5 is 

the coarsest (lowest resolution). This approach enables YOLOv8 to 

locate objects of varying sizes effectively. 

Neck: 

The purpose of the neck in YOLOv8 is to enhance and combine characteristics from 

various scales generated by the backbone. It bridges the gap between feature extraction 

and final detection. 

• Upsample Layers: 

o Role: Increase the spatial resolution of feature maps. 

o Details: Upsampling is typically done using nearest-neighbour 

interpolation or transposed convolutions. This process allows the 

network to regain spatial information that may have been lost during 

downsampling, crucial for precise localization tasks. 

• Concat Operations: 

o Role: Merge features from different stages or scales. 

o Details: By concatenating feature maps from different scales, the 

network combines both low-level and high-level information, enriching 

the feature representation and making it robust for detecting objects at 

various scales and complexities. 

• C2f Layers: 

o Role: Enhance the feature representation and propagation. 

o Details: Similar to their use in the backbone, C2f layers in the neck 

continue to leverage residual connections and efficient feature fusion, 

ensuring that the refined feature maps retain rich contextual information. 
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Head: 

The head of YOLOv8 is where the final detection predictions are made. It processes the 

refined multi-scale features from the neck and outputs the bounding boxes, object class 

scores, and other relevant information. 

• Detection Layers: 

o Role: Generate predictions at multiple scales. 

o Details: YOLOv8 uses detection layers at different feature map 

scales (P3, P4, P5) to handle small, medium, and large objects. This 

multi-scale approach is integral to the model's capability to localise 

objects of different sizes. 

• Convolutional and C2f Layers: 

o Role: Further process the feature maps before making predictions. 

o Details: These layers refine the features through additional 

convolutions and feature fusion, ensuring that the features are well-

suited for precise and accurate predictions. 

• Output Layers: 

o Bounding Box (BBox): Predicts the coordinates of the bounding 

box around detected objects. 

o Classification (Cls): Predicts the class label for the detected objects. 

o IoU (Intersection over Union): Calculates the intersection of actual 

and anticipated  boxes, which serve as an indicator of the reliability 

of the predictions. 

• Loss Function: 

o Role: Guides the training process by quantifying the difference 

between predictions and ground truth. 

o Details: YOLOv8 typically uses a combination of losses, such as 

Binary Cross-Entropy (BCE) for classification, CIoU (Complete 

IoU) for bounding box regression, and other components to ensure 

robust and precise model training. 
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The architecture utilizes the SiLU (Sigmoid Linear Unit) activation function. In general, 

YOLO (You Only Look Once) models typically use multiple loss components, 

including: 

• Objectness Loss: This component specifically examines if the bounding box 

prediction includes an object or not. This is computed using binary cross-

entropy loss function. The function is given as: 

 

Where pi shows the probability of the detected class, and (1-pi) shows the 

probability of class undetected. 

• Localization Loss: This component quantifies the precision of the anticipated 

bounding box coordinates. This calculation is performed using the Mean 

Squared Error Loss function. The mathematical expression of this function is 

given below: 

 

yi shows the actual output value and ŷi shows the predicted output value. 

• Class Confidence Loss: This component evaluates the confidence scores for 

the predicted class labels. It is computed using the binary cross-entropy loss 

function. 

• Keypoints Loss: This loss component calculates the key point loss and key 

point object loss for a given batch. Mean squared error loss function is used to 

calculate the keypoints loss. 

3.1.2.  Model Training 

The model is trained using HaGRID (Hand Gesture Recognition Image Dataset) [79] . 

The hand gestures chosen to train the model are depicted in Fig. 3. 
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The labels assigned to every class during training are given below: 

palm:  0 

fist: 1 

one: 2 

two up: 3 

three: 4 

The training dataset contained 21615 images, while the validation dataset contained 

1749 images. Following the completion of training, the model underwent testing using 

a separate validation dataset. For keypoint annotation, the images were annotated based 

on the hand landmarks given by MediaPipe hand Pose. The hand keypoints given by 

MediaPipe are illustrated in Fig. 4. 

 
Figure 4. Hand key landmarks given by MediaPipe 

 

3.1.2.1.  Hyperparameters 

Hyperparameters are configurations for training a neural network. They are not part of 

the network itself, but they control how the network is trained. The user specifies the 

Figure 3. Gestures used for training 
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values, and any alterations to these variables have a direct impact on the results of the 

network. Several crucial hyperparameters include: 

• Optimizer: 

An optimizer is an essential element of a neural network’s training process. It 

continuously changes the biases and weights of the model in order to minimize the 

loss function. Among optimizers, the stochastic gradient descent function makes the 

weights converge quickly due to its ability to process large data sets. It estimates 

the gradient using a random sample of data points, which is why it is highly 

computationally efficient. Its formula is given as:  

 

 

Where, ∇J is given as:  

 

∇L represents gradient of the loss function discussed in the section 3.1.1. 

 

Other Training Hyperparameters includes:  

• Batch Size = 16 

• Number of Epochs = 100 

• Initial Learning Rate = 0.001 
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3.2.  Sensor-Based Approach Methodology 

In the order to detect the mentioned gestures using sensor-based approach, firstly a 

sensor-based glove was designed from the scratched in the order to sense the required 

gestures of the hand and then by using the data from that designed glove, a learning-

based approach is developed in the order to recognize different gestures and tested in 

the real-time. 

 

 

 

 

 

 

 

Fig. 5 illustrates the implementation of sensor-based approach. The microcontroller 

reads data from the flex sensors via an analogue-to-digital converter, then sends the 

collective data via Bluetooth to the connected PC. In real time, a learning-based 

algorithm reads the data and classifies the performed gesture. 

3.2.1.  Selection of Hardware Components 

Below is a list of the components utilized in the design of the glove for detecting finger 

flexion: 

• 5” flex sensors, 04   

• 2.2” flex sensor, 01   

• 3.7-volt rechargeable Li-ion battery, 01   

• Cell Holder, 01   

• Schottky diode: 01   

• Right-handed gardening glove, 01  

• T-blocks: 03   
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Figure 5. System flow diagram of sensor-based approach 
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• Wires   

• Resistors 100kΩ: 05 

 

The sensing-glove includes the placement of the above-mentioned components on the 

glove for its proper functioning. The reasoning behind each component's selection and 

its working is given below. 

 

3.2.1.1.  Glove 

 

 

 

 

 

 

 

 

 

 

 

 

The glove we used is a gardening glove. We use only the right-hand side of the 

gardening glove. On the glove, we had to place different components, including 

sensors, a battery, a microcontroller, etc. We chose this glove due to its material, which 

allows for easy component placement, and its colour, which is crucial as the camera 

will be the main component of this system. This colour is very helpful for the proper 

functioning of the vision-based approach.  

Figure 6. Glove used for Hardware design 
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3.2.1.2.  Flex Sensor 

 

 

 

 

 

 

In order to detect the movements of the fingers, a set of five distinct flex sensors were 

employed, with each sensor dedicated to a specific finger. Typically, these flex sensors 

are offered in two distinct sizes. The initial dimension of the flex sensor is 4.5 inches, 

while the subsequent dimension is 2.2 inches. A total of five flex sensors were used, 

consisting of four 4.5-inch sensors and one 2.2-inch sensor. The smaller 2.2-inch flex 

sensor placed over the little finger to observe it movements whereas for all other fingers, 

4.5-inch flex sensor were used for glove design.   

 

These flex sensors are nothing but a variable resistor. Their resistance values change 

with the degree of bending. When we let these sensors stand, they offer less resistance. 

However, as the flex sensors bend, their resistance increases. The flex sensor's idea is 

that when we bend our fingers, it (placed over the gloves) will also bend, increasing 

resistance. We will use this information to detect different hand gestures.   

3.2.1.3.  Microcontroller 

 

 

 

 

 

Figure 7. Sensors used for sensing the finger movements 

Figure 8. Selected Microcontroller (ESP-32) 
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A microcontroller was selected to receive the signals from the sensors and send them 

collectively to the computer via Bluetooth. The microcontroller used for this purpose 

was an Espressif module (ESP-32) with 38 pins. The ESP's preference was that it comes 

with a built-in advanced Bluetooth module; this feature reduced the need for a separate 

Bluetooth module. Furthermore, it was economical and required less power to operate 

(3.3 volts to 3.7 volts) than any other microcontroller. 

 

3.2.1.4.  Battery 

 

 

 

 

 

To receive data from the five sensors and to power the ESP, a 3.7-volt lithium-ion 

Camelion battery and its holder were used to establish the connections.  

 

These rechargeable batteries do not come with a fixed 3.7 volts. Upon full charge, the 

voltage of these rechargeable batteries consistently exceeded the nominal voltage, 

reaching 3.9 to 3.8 volts. However, this ESP 32 operates within a voltage range of 3.3 

to 3.6 volts. The ESP could easily burn if powered directly from the battery. 

 

To mitigate this issue, a Schottky diode was used to drop the voltage before reaching 

the ESP. This diode has a forward voltage drop of up to 4.5 mV. The voltage from the 

battery passed through a Schottky diode. This diode dropped the incoming voltage to 

less than 3.6 volts. Therefore, this diode was connected in series with the ESP. 

Figure 9. Battery used to power the components 
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Moreover, the same battery was used to power up each flex sensor, connecting them all 

in parallel. 

 

Note that the Schottky diode was only required for the connection with the ESP; it was 

not required for the connection with sensors. 

Caution:   

Avoid using local product because they offer lower current and ultimately it will end 

with a drop in voltage in no time.   

3.2.1.5.  T-blocks, Resistors, and Wires 

Five flex sensors and a microcontroller required a connection from one battery. There 

was a need for a T-block for reliable connections. One of the T-blocks received the 

power wire from the battery holder. Different wires from this T-block were used to 

provide connections to sensors and the controller. Similarly, for common ground, two 

other T blocks were used for the connection of the ground wires of the whole system.  

 

In addition, wires were used to establish different connections. Additionally, 100 kΩ 

resistors were used in series with each flex sensor to drop the voltage across the sensors. 

3.2.2.  Glove Design 

  

  

100 k 

Figure 10. Connections for Flex sensor 
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Fig. 10 explains the connection necessary for the working of the flex sensors used in 

the glove design. Initially, a 3.8–3.9-volt battery was wired to the 100k resistor and then 

connected in series with the flex sensor. The aim was to read the voltage across the flex 

sensor, which appears in the above figure. The left-pointing arrow shows the connection 

to the analogue input of the ESP, which digitally reads the voltage across the sensor. 

Note that the ESP-32 features a 12-bit ADC (analogue-to-digital converter) with a 

nominal voltage of 3.3 volts. In other words, if we tried to input a voltage greater than 

3.3 volts to the analogue pin of the microcontroller, it read the value as 4095 (the 

maximum). Therefore, a resistor (100 kΩ) was required for the connection. It dropped 

the majority of voltage in the resistor and passed 1–1.5V to sensors, which could be 

readable by the microcontroller. When this sensor is bent, the resistance increases, 

which increases the voltage across the sensor, and the microcontroller's ADC reads the 

changing voltage. 

 

The above theory is applicable to all flex sensors. Different analogue pins on the 

microcontroller were used to read the voltage across each sensor.  

           

 

 

 

 

 

 

 

 

 

 

 

 Figure 11. Final design of sensing-glove 
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Fig. 11 is the final designed product, showing all the components embedded in it with 

proper connections. The installation of the components on the glove starts with the 

placement of the ESP-32 (on the glove, it is upside down) by stitching it with the glove 

using thread. A battery holder was placed directly over the ESP and sewn to the glove; 

this enabled these components to be properly fitted to the glove. This battery holder 

acted as a connection between the battery and other components. Additionally, three T-

blocks were placed on the glove using glue. The left T-block served as a power source 

(it was connected with the power wire from the battery). Both right-sided blocks were 

used for ground purposes.  

 

Using the glue, flex sensors were attached precisely to each finger of the glove. These 

flex sensors have two pins, and one of the pins from each was connected to a common 

ground. The other pin of the flex sensor was connected to a resistor (100 kΩ), which in 

turn was connected to a battery. The microcontroller's analogue pin received the voltage 

across each of the sensors via a wire connection. Through this pin, the ESP reads the 

voltage across each sensor. 

 

Additionally, the wires used for the connections were also attached to the glove using 

glue.  Furthermore, Fig. 12 shows the complete circuit diagram and demonstrates the 

above written theory clearly and shows how all the components were placed in the 

glove and their connections with each other. 
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Figure 12. Diagram showing the circuitry of sensor-based glove 

 

3.2.3.  Software Implementation 

3.2.3.1.  Working of ESP-32 

The microcontroller reads the data across each flex sensor, according to the Fig. 12. 

The algorithm is written in Arduino IDE software in the C language to run on the 

microcontroller. The algorithm is such that it runs in real time in a loop. In the loop, it 

reads the voltage across each of the sensors and converts it into a digital number in the 

range of 0–4096. After reading the data from each sensor, it groups together all five 
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Battery 
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sensors' data in a string, separating each data point using a comma. After the while loop 

ends, the string data looks like this:  

For Example,  

                                               

The above is a single example. The first data point on the left side represents 

information about the forefinger bending, followed by a comma, and then the next data 

point is for the middle finger, ring finger, and little finger. The final data point 

represents the thumb's bending information. With the degree of the bend of each finger, 

the value associated with each finger increases. Therefore, by activating the Bluetooth 

option of the ESP-32, the entire data will be sent. After every 10 milliseconds, the loop 

runs and sends the values via Bluetooth in the same format.  

 

3.2.3.2.  Bluetooth Connection 

After uploading the above algorithm and powering up the ESP and glove sensors, it 

started working. The next step involves the Bluetooth connection between the device 

and the associated laptop. After activating the PC's Bluetooth, we paired it with the 

device named "ESP32." In the code, we have written this name. Once we paired with 

the ESP, we needed to ascertain its connected port. To do so, we went to the option 

"More Devices and Printer Settings." The connected device's name can be found here. 

A double-click on it allowed us to see the connected port of this connection. 

   

3.2.3.3. Data Collection 

After enabling to read the data wirelessly on PC, the next step was data collection for 

each of the gestures necessary to develop the neural network. Python language was used 

in Visual Studio Code to write the algorithm that reads the data in real-time and stores 

it. In real time, all the necessary connections were established, wore the sensor-based 

glove, and performed a single gesture. The microcontroller read the values of that 

specific gesture and sent them via Bluetooth to the computer. The computer received 

the data, separated the values of each finger, and converted them into an integer value. 
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We began storing the data for each finger in a CSV file. During the process of data 

generation for each gesture, we made the data diverse by moving the fingers while 

making that gesture. As a result, we stored 1500 data sets for each gesture. Fig. 13 

shows how the data stored in CSV file looked like. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3.4.  Features Selection 

To go for the selection of the features for the neural network, we combined the data 

stored for each gesture into a single CSV file. First five features were five values from 

each finger. To include non-linearity and enhance the variety of gestures, we 

incorporated the square of each finger value as a feature. In this way, we ended up with 

a data with ten features.  

To label the data, each integer number is associated to each gesture:

Figure 13. Illustration of data collected for single gesture using sensor glove 



 

35 
 

The header of the data in CSV file is shown in Fig.14.  

  

 

3.2.3.5.  Model Selection 

To train the data to recognize the particular gestures, Artificial Neural Network (ANN) 

is chosen. The architecture is shown in Fig. 15. 

 

The model includes an input layer with 10 inputs as each represent the one of the 

feature. One Hidden layer is followed by the Input layer with 20 activation units. In 

the end, output layer includes 5 neurons. 
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Figure 14. Illustration of data used for training the model used for sensor-based approach 

Figure 15. Architecture of the model used in sensor-based approach 
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One hidden layer is included in the model with 20 neurons. Each neuron in the hidden 

layer receives the data with 10 features, scales each input with a respective weight, and 

adds all the resulting products and a bias term. An activation function named ReLu 

receives this operation's result and allows it if it exceeds zero; otherwise, its output 

remains zero. Fig. 16 shows the operation of each neuron. This applies to all the 20 

neurons of hidden layer. 

 

Figure 16. Mathematical operation of each neuron in the hidden layer 

 

The final output layer consists of 5 neurons, with each neuron receiving the output 

values from each activation unit in the hidden layer. The Softmax activation function 

has been implemented in this layer. The goal of utilizing this activation function in the 

last layer is to get values that represent probabilities. In this layer, each neuron's output 

represents the probability of each gesture. This implies that every neuron's output is 

associated with a specific gesture. The neuron with the highest probabilistic output 

indicates that a specific gesture was executed. This relation is shown in Fig. 17. 

 

 

 

 

 

n = 20 

ReLu 
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3.2.3.6.  Hyperparameters 

We had to select numerous hyperparameters based on which we had to train the model 

to get the accurate values of weights and biases. 

• Loss Function: 

We chose a sparse cross-entropy function to calculate the loss function during 

training. The metric quantifies the discrepancy, or discrepancy, between the real 

probability distribution and the anticipated probability distribution of the output 

category. This sparse cross-entropy assumes that the output label is an integer value 

that directly represents the class indices. This loss function operates by first 

converting the true labels into one-hot encoded vectors, then applying the 

conventional cross-entropy loss function. Loss function is given as: 

 

 

 

 

Here,  

m indicates total number of examples 

yi is the true label vector. 

ŷi indicates the predicted label vector. 

 

Output layer. 

Probability of 
Occurrence of palm 

 
Probability of 

Occurrence of one 

 

Probability of 
Occurrence of two 

 
Probability of 

Occurrence of three 

 
Probability of 

Occurrence of fist 

 

Figure 17. Association of the outputs of the last layer of sensor model with gestures 
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• Optimizer: 

Optimizer helps neural networks learn. It helps to find the best weights and biases for 

good results by adjusting model parameters and reducing the error. Parameters are 

adjusted according to the data and the loss function. 

For the training of our data, we used Adam Optimizer. This optimizer is a combination 

of other optimizers called momentum-based gradient descent and root mean square 

propagation. It updates the parameters using the following formula: 

 

 

 

 

 

where, VdW, VdB, SdW, and SdB is given as: 

 

 

 

 

 

3.3.  Fusion of Vision and Sensor Based Approaches 

The vision-based approach includes the YOLOv8s model, and the sensor-based 

approach includes an artificial neural network. Fusion of both approaches is 

implemented based on decision-level fusion of both models by employing a meta-

model. The meta-model, the fusion model, is an artificial neural network. 

3.3.1.  Model Architecture 

To develop an ANN model, it is necessary to have some crucial points to consider. 

These important points include high accuracy and minimum inference time. When 

designing an ANN, the important part is to set the right depth of the model. The number 

of hidden layers sets the depth of an ANN model. Similarly, the computational 

complexity also depends on these hidden layers. For this project, the ANN model was 

designed in such a way that the number of hidden units decreased as the depth increased. 

In this way, computational complexity can be minimised as the input progresses 
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through ANN layers. The architecture of the Fusion model based on artificial neural 

network is depicted in Fig. 18. 

 

 

 

The architecture of the fusion model is explained below. 

Input layer: 10 neurons in the input layer corresponding to 10 features in the dataset. 

Hidden Layers: 

• First Hidden Layer: 20 neurons 

• Second Hidden Layer: 15 neurons 

• Third Hidden Layer: 10 neurons 

Output Layer: 5 neurons (there are 5 classes for gestures) 

In order to introduce non-linearity into the model, the hidden layers utilize an activation 

function known as ReLU (Rectified Linear Unit), whereas the output layer does not 

employ any activation function. All the layers in the model apply linear transformations 

Figure 18. Architecture of model used for fusion 
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to the incoming data. The mathematical expression of a linear transformation is given 

below: 

y=xAT+b 

x = input feature vector 

y = output feature set 

A = weights of every layer 

b = bias 

Total parameters = 750 

 

3.3.2.  Model Training and Hyperparameters 

To train this fusion model, a custom dataset was prepared. The dataset contained the 

output probabilities of YOLOv8s, vision-based approach model, and the output 

probabilities of ANN, sensor-based approach model. To generate the probabilities 

given by the camera, the same HaGRID dataset was used. In this case, the images of 

the classes used to generate the dataset for the fusion model were not used to train the 

vision-based approach model. 

  

Similarly, the data containing the probabilities given by the sensor model was 

generated. For this, a sensor glove was worn, and all five hand gestures were performed 

separately for a set period of time. The data sent by ESP-32 was passed to the sensor-

based approach model, and the output probabilities were stored in a CSV file. This 

process was repeated for all five gestures, and the sensor output probabilities were 

stored in separate csv files for all five gestures. 

 

The final step was to merge all the data stored in the CSV files into one CSV file. One 

important thing to ensure is that the first five columns should contain the probabilities 

given by the vision-based approach model, and the next five columns should contain 

the probabilities given by the sensor model for a specific label or hand gesture class. 
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The labels assigned to all five classes in the dataset are shown below: 

palm: 0 

one: 1 

two up: 2 

three: 3 

fist: 4 

 

 

The fusion model is trained using the cross-entropy loss function. 

 

Other Training Hyperparameters Settings: 

• Number of Epochs = 150 

• Batch Size = 1028 

• Initial Learning Rate = 0.001 

• Optimizer = Adam 

 

 

 

3.4.  Algorithm for Executing Mouse Commands 

After training the camera model, YOLOv8s, sensor model, and fusion model, the next 

step is to make an algorithm that can predict dynamic hand gestures and execute mouse 

Figure 19. Illustration of data collected for training of fusion model 
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commands corresponding to the gesture detected. A total of six mouse commands needs 

to be executed using a mixture of dynamic and static hand gestures. The mouse 

commands to be executed are listed below: 

1. Double Click 

2. Left Click 

3. Cursor Movement 

4. Right Click 

5. Scroll Down 

6. Scroll Up 

The types of hand gestures associated with every mouse command are shown below: 

Cursor Movement: static hand gesture; hand gesture class one. 

Left Click: Dynamic Hand Gesture; Gesture starts with Hand Gesture class one and 

ends with Hand Gesture class fist. 

Right Click: Dynamic Hand Gesture; Gesture starts with Hand Gesture Class two up 

and ends with Hand Gesture Class fist. 

Double Click: No specific hand gesture is associated. Perform left-click gestures twice 

in a short period of time. 

Scroll Up: Static Hand Gesture; Hand Gesture class fist. 

Scroll Down: Static Hand Gesture; Hand Gesture class fist. 
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The above algorithm is illustrated in the flowchart shown in Fig. 20. 

 

 

Figure 20. Flowchart of algorithm developed for gesture translation into mouse functionalities 

 

The algorithm starts by reading a frame from the camera input video stream. The frame 

read is passed to the camera model for prediction. If the camera model predicts a hand 

gesture class in the image, then the algorithm moves to the sensor model. It reads the 
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data from the communication port, processes it, performs normalisation, and passes it 

to the sensor model for the sensor model’s prediction. After receiving sensor model 

probabilities, the algorithm combines both camera and sensor models probabilities for 

a final prediction using the fusion model. After obtaining the fusion model prediction, 

it monitors the classes predicted by the fusion model for the purpose of recognizing 

dynamic hand gestures and executing mouse commands. Now, how this algorithm 

executes mouse commands is shown separately for every mouse command. 

 

3.4.1.  Translating Gestures into Mouse Functionalities 

3.4.1.1.  Executing Cursor Movement 

Cursor movement depends on static hand gesture class one. When class one is initially 

detected by the fusion model, read the pose key points of the hand given by the 

YOLOv8s model and store them in the initial coordinates variable. Now, move to the 

next frame, and if class one is detected again, store the pose key points of the hand in 

the final coordinates variable. Now, determine the relative movement of the reference 

key point and adjust the cursor according to the relative motion of the hand key point. 

The hand key point set as reference is the WRIST key point given by Mediapipe hand 

landmarks. The threshold for minimum relative motion detected is set to 5. 

 

3.4.1.2.  Executing Left Click 

Left click depends on a dynamic hand gesture. The dynamic hand gesture starts with 

class one and ends with class fist. This dynamic hand gesture is detected by first 

detecting class one and then detecting class fist in the very next frame. The hand's 

motion should have a high velocity relative to the overall execution duration of the 

algorithm. Finally, one last check is that when the gesture ends, that is, on class fist, the 

index fingertip key point should be close to the thumb_IP key point. Left click is 

performed if the threshold set for accurate detection is crossed by the Euclidean distance 

calculated. The threshold is set to 20. 

 

3.4.1.3.  Executing Right Click 

Right click depends on a dynamic hand gesture. The dynamic hand gesture starts with 

class two up and ends with class fist. This dynamic hand gesture is detected by first 
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detecting class two up and then class fist in the very next frame. The hand's motion 

should be rapid in comparison to the overall execution time of the algorithm. Finally, 

one last check is that when the gesture ends, that is, on class fist, the middle fingerdip 

key point should be close to the thumb tip key point. The right click is triggered when 

the Euclidean distance is below a certain threshold for precise detection. The threshold 

is set to 20. 

 

3.4.1.4.  Executing Double Click 

There is no specific hand gesture associated with the double-click command. The cause 

for the execution of a double click is the rapid execution of two left clicks in close 

succession. To conduct a double click, simply repeat the actions associated with the left 

click twice in rapid succession. 

 

3.4.1.5.  Executing Scroll Up 

Scroll Up depends on static hand gesture class fist . When initially class fist is detected 

by the fusion model, read the pose key points of the hand given by the YOLOv8s model 

and store them in the initial coordinates variable. Proceed to the subsequent frame. If 

the hand is once again recognized as being in a fist position, save the positional key 

points of the hand in the final coordinates variable. Now, determine the relative 

movement between the reference key point and scroll upwards if vertical hand 

movement is identified in the image based on the relative motion of the hand key 

point.The hand key point set as reference is the WRIST key point given by Mediapipe 

hand landmarks. The threshold for minimum relative motion detected is set to 5. 

 

3.4.1.6.  Executing Scroll Down 

Scroll down depends on static hand gesture class fist. When the fist class is initially 

detected by the fusion model, read the pose key points of the hand given by the 

YOLOv8s model and store them in the initial coordinates variable. Proceed to the 

subsequent frame. If the hand is once again recognized as being in a fist position, save 

the positional key points of the hand in the final coordinates variable. Now, determine 

the relative movement between the reference key point and scroll upwards if the hand's 

motion is identified as moving vertically downwards in the image, based on the relative 



 

46 
 

motion of the hand key point. The hand key point set as reference is the WRIST key 

point given by Mediapipe hand landmarks. The threshold for minimum relative motion 

detected is set to 5. 
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Chapter 4 – RESULTS 

 

4.1.  Evaluation Criteria of Vision-Based Approach Model 

The YOLOv8s model, which is a vision-based technique, functions as an object 

detector. Its capability is assessed by different metrics such as F-1 score, mAP50, 

mAP50-95, precision, and recall. The measurements are displayed relative to the 

confidence threshold. Precision gives a measure of true positives that were actually 

correct. Recall quantifies the ratio of true positive predictions by the model on the entire 

collection of positive instances in the data. Combining both, or taking the harmonic 

mean, results in an F-1 score. The F-1 score gives the complete assessment of the model. 

The mean average precision 50 describes the performance of the model at a threshold 

of 0.5. This is also known as the model’s capability to detect easy detections. While the 

mean average precision 50-95 measures the model’s performance  at multiple difficulty 

levels of detection. Moreover, several training and validation losses are also monitored.  

4.1.1.  Training Results 

Results are shown separately for pose estimation and object detection. 

4.1.1.1.  Results of Object Detection 

The Precision-Confidence curve of YOLOv8s for bounding box is shown in Fig. 21. 

 
Figure 21. Precision-Confidence curve of YOLOv8 object detection 
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The Precision-Confidence Curve is crucial for optimizing the performance of YOLOv8 

object detection model. By plotting precision against varying confidence thresholds for 

different classes, this curve allows the selection of an optimal confidence threshold that 

maximizes precision while minimizing false positives. Determining the ideal 

confidence threshold enables you to achieve a harmonious equilibrium between precise 

detections (with a high level of accuracy) and catching a maximum number of pertinent 

items (with a high level of recall). 

Analysis: 

Each coloured line in the Fig. 21 represents a specific class (Palm, Fist, One, Two_up, 

Three), showing how precision changes with varying confidence thresholds. The 

precision for each class fluctuates as the confidence threshold changes, indicating how 

certain the model is in its predictions for different classes. The blue line represents the 

combined precision performance for all classes, giving a summary of the model's 

overall accuracy. The mean precision for all categories is 1.00 when the confidence 

threshold is set at 0.843, which is the high level of confidence in its classification 

predictions. This is especially crucial in this context, as incorrect good results can lead 

to substantial repercussions. 

The Recall-Confidence curve of the model for bounding box is shown in Fig. 22. 

 

Figure 22. Recall-Confidence curve of YOLOv8 object detection 

The curve shows the relationship between confidence levels and recall for different 

classes. It indirectly shows the trade-off with precision because as the threshold 
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decreases (allowing lower confidence predictions), recall typically increases, but 

precision may decrease due to more false positives. A model that maintains high recall 

across a wide range of confidence thresholds is generally more robust. The curve can 

help identify an optimal confidence threshold where the model achieves a desirable 

balance of high recall and acceptable precision. This is particularly useful for tuning 

the model for specific applications. 

Analysis: 

The curve in the Fig. 22 indicates that the model achieves high recall at lower 

confidence thresholds, meaning it can identify most of the actual positives when the 

confidence threshold is low. When confidence threshold rises, recall drops significantly. 

This indicates that the model becomes increasingly cautious in its outputs, resulting in 

a reduction in false positives. However, it may also result in the possibility of missing 

some true positives. The average recall for all classes is 1.00 at a confidence threshold 

of 0.00. This is not surprising as recall is maximum when threshold is set to zero, 

because recall quantifies the number of positives the model detects, no matter if they 

are correct. Although, recall is maximum at 0.0 threshold, it should not be considered 

as the optimal value as it will lead to fatal consequences where almost every prediction 

made by the model will be incorrect. To find a proper threshold, select the value just 

before sharp roll-off starts. From the figure, it can be seen that the recall remains at 1.00 

until approximately 0.8 confidence threshold. 

           The Precision-Recall curve is shown in Fig. 23. 

 
Figure 23. Precision-Recall curve of YOLOv8 object detection 
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The Precision-Recall curve helps evaluate and improve machine learning models, 

particularly in situations when there is an imbalance between the classes. This 

demonstrates the compromise between accuracy and completeness. For instance, 

increasing recall may lower precision, and vice versa. This curve helps in understanding 

how changes in one metric affect the other. Through the examination of this curve, 

individuals can choose the ideal limit for the model's outputs in order to get the desired 

equilibrium between precision and recall. 

 

Analysis: 

The Fig. 23 shows that each class maintains a precision of 0.995, reflecting the model's 

ability to accurately detect hand gesture classes with minimal false positives. The 

curves indicate that the model performs consistently well across different classes, 

maintaining high precision even as recall increases. The model's high mAP@50 score 

of 0.995 at an IoU threshold of 0.5 depicts that it is well-optimized for object detection 

tasks. This demonstrates that the model effectively balances accuracy and recall. 

F1-Confidence curve of the object detector is shown in Fig. 24. 

 
Figure 24. F1-Confidence Curve of YOLOv8 object detection 
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The F1-Confidence Curve in object detection, particularly in models like YOLOv8, 

serves as a valuable metric for understanding the trade-off between detection accuracy 

and confidence thresholding. The F1 score is a quantitative measure that integrates 

recall and precision and is defined as the harmonic average of recall (R) and precision 

(P). By examining the curve, one can determine the optimal confidence threshold that 

maximizes both precision and recall or strikes a balance based on specific application 

requirements. Lowering the confidence threshold increases the number of detections 

(higher recall) but may decrease precision. Conversely, raising the threshold reduces 

false positives (higher precision) but may miss some detections (lower recall). This 

guides adjustments in model parameters or training strategies to improve both precision 

and recall across different confidence levels. 

 

Analysis: 

The curve in Fig. 24 shows that when the model has a high confidence threshold (close 

to 1.0), it achieves a near-perfect F1 score of 1.00. This indicates that the model's 

detections are highly accurate when it is very confident about its predictions. Different 

hand gestures (classes) are represented by separate curves on the plot. For example, the 

"Fist" class curve shows a slightly lower F1 score compared to other classes at higher 

confidence levels. This suggests that detecting the "Fist" gesture may be more 

challenging for the model. As the confidence threshold increases, F1 score drops 

significantly. This illustrates that the model gets progressively cautious in its forecasts, 

resulting in a reduction of false positives. However, there is also a possibility of missing 

some true positives. The curve shows that the optimal confidence threshold for 

achieving the highest F1 score across all classes is around 0.726, where the F1 score is 

1.00. The average F1 score curve shows that the model maintains a relatively stable 

performance across different confidence levels. This suggests that the model is 

consistent in its predictions across various thresholds, albeit with a decrease in accuracy 

at higher confidence levels. 

Mean Average Precision 50 curve for bounding box is depicted in Fig. 25. 
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Figure 25. mAP50 curve of YOLOv8 object detection 

In object detection, evaluating the effectiveness of a model like YOLOv8 involves 

several metrics, with Mean Average Precision at 50% Intersection over Union 

(mAP@50) being a key standard. This metric offers a lucid and perceptive assessment 

of the model's capacity to precisely identify and pinpoint items in images. mAP@50 

measures the average precision of the model's object detections at IoU threshold of 

50%. IoU, or Intersection over Union, is a quantitative measure utilized to assess the 

amount of intersection between the ground truth bounding box and the predicted truth 

bounding box. mAP is the mean of the APs across all object classes. For mAP@50, it 

averages the AP values at the IoU threshold of 50%. AP is computed as the area under 

the precision-recall curve for each object class at the 50% IoU threshold. mAP@50 

serves as a feedback metric for tuning hyperparameters (like learning rates, batch sizes) 

and adjusting model configurations (like network depth, anchor sizes). Improvements 

in mAP@50 suggest better object detection capabilities. 

Analysis: 

The graph in Figure 25 illustrates a sharp rise in mAP50 during the early stages, 

suggesting that the model rapidly acquires the ability to reliably detect and locate hand 

classes. After the initial increase, the curve plateaus, indicating that the model's 

performance stabilizes, and further training epochs result in marginal improvements. 

The curve approaches a value close to 1.0, suggesting that the model achieves near-

perfect precision and recall at the IoU threshold of 0.50. 

Mean Average Precision 50-95 curve for bounding box is shown in Fig. 26. 
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Figure 26. mAP50-95 curve of YOLOv8 object detection 

Each mAP score at different IoU thresholds provides insight into how well the model 

can detect objects with varying levels of overlap with ground truth annotations. 

Monitoring mAP@50-95 during training helps in assessing the model's progress and 

guides optimization efforts such as adjusting learning rates, augmenting data, or 

modifying the model architecture to improve performance at specific IoU thresholds. 

The utilization of several IoU criteria in mAP50-95 offers a better resilient evaluation 

of the model's capability in contrast to the utilization of a single IoU threshold. It 

ensures that the model is not only good at detecting objects but also at accurately 

localizing them. 

 

Analysis: 

The graph in Fig. 26 demonstrates a sharp rise in mAP50-95 during the early stages, 

suggesting that the model rapidly acquires the ability to reliably detect and locate hand 

motions. After the initial increase, the curve plateaus, indicating that the model's 

performance stabilizes, and further training epochs result in marginal improvements. 

The curve approaches a value close to 0.9, suggesting that the model achieves high 

recall and precision across a range of IoU thresholds. 

The Confusion Matrix of YOLOv8s model is shown in Fig. 27. 
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Figure 27. Confusion matrix of YOLOv8 object detection 

The confusion matrix is a vital tool in evaluating the capability of object detection 

models. It offers a comprehensive breakdown of predictions vs ground truth for many 

classes, enabling a detailed assessment of the model's working. The primary purpose of 

the confusion matrix is to evaluate how well an object detection model performs in 

terms of predicting different classes of objects within images. Understanding where the 

model frequently misclassifies or misses detections (false positives and false negatives) 

guides improvements in model training, data augmentation, or model architecture.  

Analysis: 

Overall, the confusion matrix, shown in the Fig. 27, indicates that the model performs 

relatively well, with a high number of correct classifications along the diagonal. There 

are some instances of misclassifications, but they are relatively small compared to the 

number of correct predictions. 

Test Accuracy = 
363+355+339+351+355

363+355+339+351+355+1+2+2+2+3+1
 

Test Accuracy = 99.49% 

The confusion matrix shows that the trained model has a high rate of accurately 

identifying negative and positive instances, with a negligible number of incorrect 

positive and negative detections. 
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4.1.1.2.  Results of Pose Estimation 

The Precision-Confidence curve for pose estimation is shown in Fig. 28. 

 
Figure 28.  Precision-Confidence curve of YOLOv8 pose estimation 

The Precision-Confidence curve serves as an essential tool to understand how the 

model's precision varies with different confidence thresholds. Pose estimation involves 

predicting key points (like joints in human body poses) with confidence scores. The 

precision-confidence curve helps in understanding how precision varies as the threshold 

for confidence scores is adjusted. High-confidence thresholds typically result in fewer, 

but more accurate key point predictions. Lowering the threshold may increase the 

number of detected key points but could include more incorrect predictions. The curve 

illustrates how well the model maintains precision as the confidence level changes. 

Analysis: 

The Fig. 28 shows that the model demonstrates high precision across all classes, with 

precision values close to 1.0 for most confidence levels. This indicates that the model 

is highly accurate in its predictions, with a low rate of false positives. There is a 

noticeable sharp increase in precision as the confidence level approaches 1.0. This 

suggests that at higher confidence thresholds, the model becomes more conservative, 

making fewer but more accurate predictions. The curve shows that the optimal 
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confidence threshold for achieving the highest precision across all classes is around 

0.939, where the precision is 1.00. The precision for individual classes (Palm, Fist, One, 

Two_up, Three) follows a similar trend, with high precision values across different 

confidence levels. This consistency across classes indicates that the model performs 

well in detecting and classifying each pose based on the 21 key points. 

 

The Recall-Confidence curve for pose estimation is shown in Fig. 29. 

 
Figure 29.  Recall-Confidence curve of YOLOv8 pose estimation 

 

The Recall-Confidence curve is an important tool for evaluating the model's 

performance to detect and identify key points (such as joints in human body poses) at 

varying levels of confidence. High recall means that the model can detect a large 

proportion of actual key points. The curve helps determine the confidence level at which 

the model maintains a high recall, ensuring that the model captures as many true key 

points as possible. This is crucial for applications that require comprehensive detection 

of key points. Although the recall-confidence curve focuses on recall, it helps 

understand the implicit trade-off with precision. Lowering the confidence threshold 

generally increases recall but may decrease precision due to more false positives. This 

insight is crucial for balancing the detection accuracy and the number of detected key 

points. 
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Analysis: 

The curve in the Fig. 29 shows that the model demonstrates high recall across all 

classes, with recall values close to 1.0 for most confidence levels. This suggests that 

the model is highly accurate in detecting real positive cases, while also having a low 

rate of incorrectly classifying cases as false negatives. There is a noticeable sharp drop-

off in recall as the confidence level approaches 1.0. This suggests that at higher 

confidence thresholds, the model becomes more conservative, making fewer 

predictions and potentially missing some true positives. The curve shows that the 

optimal confidence threshold for achieving the highest recall across all classes is around 

0.91, where the recall is 1.00. The recall for individual classes (Palm, Fist, One, 

Two_up, Three) follows a similar trend, with high recall values across different 

confidence levels. This consistency across classes indicates that the model performs 

well in detecting each pose based on the 21 key points.  

            Fig. 30 illustrates the Precision-Recall curve for pose estimation. 

 
Figure 30.  Precision-Recall curve of YOLOv8 pose estimation 

The Precision-Recall (PR) curve is a fundamental tool for assessing the performance of 

pose estimation models like YOLOv8. In pose estimation, precision and recall are often 

inversely related. In pose estimation, certain key points (e.g., joints obscured by 

clothing) might be less frequently detected than others. The PR curve is particularly 

informative in such cases because it emphasizes true positive rate (recall) and the 
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precision of detections, providing a clearer picture of model performance even when 

there’s a class imbalance. 

Analysis: 

From Fig. 30, it can be inferred that the model demonstrates high precision and recall 

across all classes, with values close to 1.0 for most of the curve. This indicates that the 

model is both accurate (high precision) and comprehensive (high recall) in its 

predictions. There is a noticeable sharp drop-off in precision as recall approaches 1.0. 

This suggests that as the model tries to capture all true positives (high recall), it starts 

to include more false positives, reducing precision. Palm attains the best performance 

with the accuracy of 0.916. Fist follows closely with a precision of 0.908. One has a 

precision of 0.898. Two_up shows a precision of 0.886. Three has the lowest precision 

among the classes at 0.873. The consistency across classes indicates that the model has 

high performance in detecting each pose based on the 21 key points. The mAP, which 

is calculated at the hreshold of 0.5 for all classes, is 0.896. This aggregated metric 

indicates that the model has high performance overall, balancing both recall and 

precision across all classes. 

Fig. 31 depicts the F1-Confidence curve for pose estimation. 

 
Figure 31. F1-Confidence curve of YOLOv8 pose estimation 

In the context of pose estimation with YOLOv8, the F1-Confidence curve is an 

insightful evaluation tool that helps in understanding the overall model’s performance 
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by combining both recall and precision into a single metric, the F1 score. The graph 

illustrates the model's responsiveness to the confidence threshold employed for key 

point predictions, aiding in the comprehension of the confidence levels at which the 

model attains optimal trade-off between recall and precision. The highest point of the 

curve of F1-confidence corresponds to the confidence threshold at which the model 

achieves the best trade-off between precision and recall. The shape of the curve 

provides insights into how well the model balances precision and recall. A sharp decline 

on either side of the peak can indicate that the model heavily favours one metric over 

the other as the threshold changes. 

Analysis: 

The graph in Fig. 31 demonstrates that the model attains elevated F1 scores when the 

confidence thresholds are set to lower values. This implies that the model exhibits 

strong performance in terms of both precision and recall when the confidence threshold 

is low. As the confidence threshold increases, the F1 score experiences a significant 

decrease, indicating that the model becomes more cautious in its predictions. This 

results in a reduction in false positives but also a potential increase in missed real 

positives. The curve shows that the optimal confidence threshold for achieving the 

highest F1 score across all classes is around 0.738, where the F1 score is 0.91. Although, 

the confidence threshold is low compared to when the model measures recall and 

precision with respect to confidence threshold, it still is more than satisfactory value. 

Mean Average Precision (mAP50) for pose estimation is shown Fig. 32. 

 
Figure 32. mAP50 curve of YOLOv8 pose estimation 
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In pose estimation, evaluating the accuracy and robustness of a model like YOLOv8 

involves various metrics, with the Mean Average Precision at 50% Intersection over 

Union (mAP@50) being a prominent one. This metric provides a comprehensive 

measure of how well the model detects and localizes key points (such as body joints) 

across the dataset, particularly during the training process. mAP@50 measures the 

precision of the model's key point predictions when the overlap between the ground 

truth and predicted key points exceeds 50%. Key points can be evaluated using 

Intersection over Union (IoU), which measures the proximity of predicted key points 

to the ground truth key points within a specified area, typically a bounding box. mAP 

is a metric that calculates the average of the Average Precision values for all important 

points and classes in a dataset.  

Analysis: 

The curve in Fig. 32 depicts a steep increase in mAP50 during the initial epochs 

(approximately the first 10 epochs). This indicates that the model quickly learns to 

detect and localize poses accurately in the early stages of training. After the initial rapid 

increase, the curve plateaus, indicating that the model's performance stabilizes. This 

plateau phase starts around the 10th epoch and continues through the remaining epochs 

up to 100. The mAP50 value stabilizes at around 0.9, suggesting that the model achieves 

high precision and recall at the IoU threshold of 0.50. A high mAP50 value (close to 

0.9) indicates that the model performs well in detecting and localizing key points, 

making it suitable for hand pose estimation. 

Mean Average Precision (mAP50-95) for pose estimation model is shown in Fig. 33. 

 
Figure 33.  mAP50-95 curve of YOLOv8 pose estimation 
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The Mean Average Precision (mAP) at IoU thresholds ranging from 50% to 95% is a 

comprehensive metric that evaluates the model's performance across varying levels of 

detection stringency. This metric, often referred to as mAP@50-95, is particularly 

useful in assessing the robustness and precision of key point detection and localization 

in a nuanced manner. The mAP@50-95 metric calculates the average precision across 

multiple IoU thresholds from 50% to 95%, typically in steps of 5% (i.e., 50%, 55%, 

60%, ..., 95%). This curve shows the model’s performance on various difficult hand 

pose estimation, and it shows that it is detecting all key points of all the classes with a 

satisfactory 0.75 mAP50-95. This helps in understanding how well the model 

generalizes to different levels of detection precision. 

Analysis: 

The curve in Fig. 33 highlights a steep increase in mAP50-95 during the initial epochs 

(approximately the first 20 epochs). This indicates that the model quickly learns to 

detect and localize poses accurately in the early stages of training. After the initial rapid 

increase, the curve continues to rise but at a slower rate, indicating that the model's 

performance is still improving but at a diminishing rate. This phase continues until 

around the 80th epoch. The curve begins to plateau after the 80th epoch, suggesting that 

the model's performance stabilizes, and further training epochs result in marginal 

improvements. The mAP50-95 value reaches a plateau of approximately 0.75, 

suggesting that the model attains a favourable equilibrium between precision and recall 

across various IoU thresholds. 

 

4.2.  Evaluation Criteria of Sensor-Based Approach Model 

The data was divided into three segments to train the model. 60% of the whole dataset 

is used for training. During the training process, 20% of the data was set aside as 

validation data to evaluate the model's performance. Additionally, another 20% of the 

data was utilized as test data to assess how well the model performs on unknown data.  

The model underwent 50 epochs of training utilizing the aforementioned architecture 

and hyperparameters. 
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4.2.1.  Training Results 

 

 

 

Both of the above figures explain the model's training results based on the provided 

data. The right figure shows a reduction in losses with each epoch. At the end of the 50 

epochs, both validation and training losses dropped below 0.1. On the other hand, the 

figure on the right side demonstrates an increase in validation and training accuracy to 

98% after 50 epochs. 

 

Finally, the model was tested with unknown data, and once again, its accuracy was close 

to 98%. These results show the precision of the sensor model. 

 

4.2.2.  Real Time Testing 

The trained model mentioned earlier was saved in a singular file.  The model was 

imported for real-time testing.  Once all the necessary conditions for real-time testing 

were met, such as wearing the glove and establishing a Bluetooth connection with the 

PC, the testing was conducted using real-time data. The model produced the expected 

results. When the gesture changes in real time, the model predicts the corresponding 

change.  

 

Figure 34. Performance of sensor model on validation data 
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4.3.  Evaluation Criteria of Fusion Model 

The fusion model is assessed using three assessment criteria: training and validation 

loss, training and validation accuracy, and test outcomes presented as a confusion 

matrix. 

 

4.3.1.  Training Results 

The validation and training losses of the fusion model are shown in Fig. 35. 

 
Figure 35. Validation and training losses of fusion model 

Monitoring training and validation losses, often visualized as curves during the training 

of a model, serves several important purposes in machine learning and deep learning 

tasks. Loss curves track how well the model is learning during training. The objective 

is to monitor if the loss consistently reduces or levels out, indicating whether the model 

is approaching an ideal solution. A diminishing training loss shows that the model is 

acquiring knowledge from the data. The validation loss, computed on a distinct 

validation set, aids in assessing the model's performance to generalize to unseen and 

new data. An increasing disparity between the validation and training loss may suggest 

overfitting, which refers to a case where the model fails to classify unseen data and 

performs well on the training dataset. Loss curves are useful for finding the optimal 

stopping point during training in order to prevent overfitting. Loss curves provide 

insights into the impact of hyperparameters (e.g., learning rate, batch size) on model 

performance. 
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Analysis: 

The graph in Fig. 35 shows a typical pattern observed in deep learning model training. 

The model learns to reduce the loss on the training data with each epoch. The blue line 

represents the training loss. It starts at a relatively high value (around 1.6) and decreases 

steadily as the number of epochs increases. The orange line represents the validation 

loss. It also starts at a high value and decreases as the number of epochs increase. It 

follows a similar trend to the training loss but remains slightly higher. Both the training 

and validation losses converge to a low value around 0.1, indicating that the model has 

learned a good representation of the data and is not overfitting. 

The validation and training accuracy of the fusion model are shown in Fig. 36. 

 
Figure 36. Validation and training accuracy of fusion model 

Monitoring validation and training accuracy curves during the training of a model 

serves several essential purposes in evaluating and optimizing model performance. 

Accuracy curves track how well the model performs on both the training data and 

unseen validation data as training progresses. They provide a direct measure of the 

model's ability to correctly classify or detect objects, reflecting its overall performance. 

Accuracy curves shows whether the model is improving and learning with time. 

Improving training accuracy shows that the model is successfully adapting to the 

training data. Whereas, validation accuracy is a measure of how effectively the model 

can apply what it has learned to unseen and new data. Monitoring these curves helps 

ensure that the model is converging to an optimal solution without overfitting (high 
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training accuracy but low validation accuracy). Accuracy curves provide insights into 

the impact of hyperparameters (e.g., learning rate, batch size) on model performance. 

 

Analysis: 

The Fig. 36 shows that the model has been trained effectively and has high accuracy on 

both the training and validation datasets, indicating its capacity to comprehend the 

patterns existing in the data and apply them to fresh data. Training Accuracy is shown 

with blue line. It starts at a low accuracy, then increases rapidly, and eventually plateaus 

around 1.0. Validation Accuracy is indicated with an orange line. It follows a similar 

trend to the training accuracy but generally remains slightly lower. 

The Confusion Matrix of the model on test data is shown in Fig. 37. 

 
Figure 37. Confusion matrix of fusion model on test data 

The confusion matrix is an essential tool for evaluating the performance of machine 

learning models. It offers a comprehensive analysis of the model's forecasts in relation 

to the actual ground truth across various groups or categories. The confusion matrix is 

a tool used to evaluate the effectiveness of a classification or detection model. It 

provides a summary of predictions in a matrix style. 
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Analysis: 

The confusion matrix in Fig.37 shows that the model performs well on the test dataset. 

The cells along the diagonal, which indicate appropriate classifications, have the 

highest frequencies, suggesting that the model successfully predicted the correct class 

for the majority of the data points. The off-diagonal cells indicate misclassifications, 

but their counts are relatively low compared to the correct classifications. The model 

correctly classified 100 data points as class 0, 92 as class 1, 105 as class 2, 114 as class 

3, and 86 as class 4. The only noticeable misclassification is one data point from class 

3 being incorrectly predicted as class 1. 

Here, label 0 refers to the palm gesture, label 1 refers to the one gesture, label 2 refers 

to the two_up gesture, label 3 refers to the three gesture, and label 4 refers to the fist 

gesture. 

Test Accuracy of Fusion Model =  
100+92+105+114+86

100+92+105+114+86+1
 

Test Accuracy of Fusion Model = 99.8% 

The graphic indicates that the model performs with a high degree of accuracy on the 

test set, with very few misclassifications. This indicates that the model has effectively 

adapted to unfamiliar data. 

 

4.3.2.  Real Time Testing 

After training fusion model, its weights were saved.  The model was imported for real-

time testing.  Once all the necessary conditions for real-time testing were met, such as 

connection of the sensing-glove, loading camera model, the testing was conducted 

using real-time data of the probabilities of two models. The fusion model produced the 

expected results.  

 

4.4. Results Conclusion 

Based on the comprehensive evaluation of all the algorithms developed in this section, 

the system proved its high accuracy and low latency to be used in real time. In the vision 

approach, results show robust performance across metrics such as F1 score, mean 

average precision (mAP), and confusion matrices. Furthermore, figure 34 illustrates the 

exceptional accuracy and little loss achieved by the model in identifying gestures using 
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the sensor-based technique. Additionally, the fusion model combining camera and 

sensor data enhances accuracy further, leading to 99.8% test accuracy. Real-time testing 

confirms the low latency and reliability of the system for gesture detection and 

controlling the computer cursor using detected gestures. These results are a testament 

to the systems' effectiveness in practical applications that require precise and responsive 

gesture recognition. 

 

4.5.  Development of Windows-Based Applications 

For this project, two windows-based applications have been developed. The first one is 

a desktop application to run this project and the second one is a desktop application to 

display and interact with 3D models. 

 

4.5.1.  Development of Desktop Application for User 

A desktop application based on Windows has been designed for this project. This 

application provides a seamless interface for the user to utilise this project in the form 

of computer cursor control using hand gestures. The user can place the folder that 

contains the application and its associated files on their computer. Then follow the steps 

defined in the documentation of the application to run it properly. 

 

This application is developed on the .NET 8.0 platform using the C# language in 

Microsoft Visual Studio. Both the frontend and backend of the application are 

developed on the same platform. The application allows the user to select either a 

camera or a fusion of sensor and camera for hand gesture detection.  

 

           The user interface of the application designed for standalone camera is shown in Fig.38. 
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Figure 38. User interface for camera-based gesture recognition 

Fig. 39 displays the user interface of the application specifically developed for the 

integration of camera and sensor. 

 
Figure 39. User interface for fusion-based gesture recognition 

 

4.5.2.  Development of 3D Models Application 

3D-Viewer is a Windows-based application that provides an interface for interactable 

3D models. Different 3D models are displayed, and the user can completely rotate the 

3D models in all three dimensions and zoom in and zoom out of the 3D models. The 

tools used include Unity-3D software, 3D models in different formats available online, 

and VS Code. 
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This application is developed in the Unity 3D engine. 3D models of the Human 

Skeleton, the Human Heart, and a Simple Cube are used. The cube model is available 

in the Unity environment by default, while the skeleton and heart models are available 

online and are imported into the Unity environment. The 3D models are then scaled and 

positioned accordingly so that these models appear appropriately in the game view. A 

user interface is designed with text, buttons, and a drop-down menu. Four UI buttons 

are designed for the rotation of 3D models. There are three buttons designated for 

rotation along the z-axis, x-axis and y-axis, respectively. Additionally, there is one 

button specifically meant to halt the rotation. Two buttons are designed for zooming 

functionality. One button to zoom into the 3D model, and the other one is to zoom out 

of the 3D model. Another four buttons are designed to perform pan functionalities to 

move the 3D models up, down, left, and right. A drop-down menu is added, which is 

used to select the 3D model. C# script files are attached with 3D models, UI buttons, 

and the drop-down menu, which are responsible for performing actions like rotation, 

pan, zooming, and model selection. The following figures represent the final version of 

the application with various 3D models. 

 

 

Figure 40. Cube model 
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Figure 41. Heart model 

 

 

 

Figure 42. Skeleton model 
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Chapter 5 – CONCLUSIONS AND FUTURE WORK 

5.1.  Conclusion 

The aim of developing a system to interact with 3D visuals is successfully 

accomplished. Keeping the view of its high potential in multiple sectors, system is 

developed with high degree of accuracy using combination of multiple learning-based 

approaches. The 3D display is interacted with using dynamic hand movements in real 

time, resulting in a more natural user experience. Therefore, the whole development 

process involved the detection of hand gestures, translating them into mouse 

commands, system application development and an application for displaying and 

controlling 3D models on the holographic display.  

 

Hand gesture detection is accomplished through a combination of two approaches: a 

vision-based approach and a sensor-based approach. The vision-based approach utilizes 

either an external camera or a webcam to continuously monitor hand movements. A 

learning-based gesture detection algorithm is employed to train the model for 

recognizing specific hand gestures. Based on real-time data input from the camera, the 

algorithm accurately identifies the performed gestures. Additionally, gestures are 

annotated in real time to obtain hand pose information in the form of coordinate points, 

which are essential for controlling the computer cursor. Conversely, the same hand 

gestures are also detected using a sensor-based approach. The development of this 

approach began with the design of the hardware. While on the software side, real-time 

data from the flex sensors is collected for each gesture. Subsequently, the collected data 

is utilized to construct and instruct an artificial neural network (ANN) model with the 

ability to identify gestures using the recorded data. The flex sensors, located on the 

fingers, gather data regarding the flexion of the fingers. This information is transmitted 

in real-time via Bluetooth from the ESP32 microcontroller to a connected computer. 

The transmitted data is processed by a fully connected ANN, which computes the 

probability of each possible gesture occurring. The gesture with the highest likelihood 

is recognized as the prevailing gesture. 

To improve the precision of gesture prediction, the probability vectors from both the 

vision-based and sensor-based models were merged and utilized as input to an extra 

ANN model. This model was created and trained utilizing the output data from both 
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gesture detection methods. Consequently, the output of this model provides the most 

accurate gesture prediction. This is followed by another algorithm that detects the 

transition between two consecutive gestures. When a particular set of transitions is 

detected, it generates a signal to perform an operation, such as a right click, a left click, 

a double click, etc. In order to move the cursor, the key landmark of the forefinger is 

used to compute the difference between the previous and present landmark values. The 

difference was then scaled, and the mouse tracking function was called to move the 

cursor in accordance with the hand. 

 

Finally, the entire system is integrated into a single window-based application that 

offers a variety of options for system execution. This Windows-based application 

allows users to operate the system using either the vision-based approach alone or in 

combination with the sensor-based approach for enhanced accuracy through data 

fusion. Lastly, another Windows application is created to show 3D models on the 

holographic display. This completes the development of all necessary requirements for 

translating mouse functionalities into dynamic hand gestures. Connecting a hologram 

to this system enables the user to control the 3-dimensional visuals with hand motions, 

which would be useful in a variety of fields, particularly education and medical. At this 

point, the hand gesture-controlled holographic display is complete. 

 

5.2.  Future Work 

There is a lot of potential for this project in the future. Two main concepts could be 

incorporated into this project. First, instead of tracking the mouse using a vision-based 

approach, this could be done using a combination of motion sensors such as a gyroscope 

and an accelerometer. A well-executed algorithm that uses the information from these 

sensors could provide more robust tracking of the cursor using hand motions. 

Additionally, this allows the user to control the cursor even if he is not in the camera's 

zone. Furthermore, a potential future endeavor would involve transferring the system 

onto distinct, self-contained hardware. This would grant the user the ability to execute 

the system on any computer. 
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APPENDICES 

 

Appendix A: Complex Engineering Problem 

 

Depth of Knowledge Required (WP1 >>>WK3 WK4 WK5 WK6):  

Project requires fundamental understanding of communication protocols, signal 

processing, and AI algorithms (WK3). Further it require engineering specialist 

knowledge of deep learning algorithm to recognize hand gesture (WK4). In addition, 

knowledge related to engineering design of project involving vision and sensor based 

approach is required (WK5). Project also require modern software tools for 

implementation of signal processing and AI algorithms (WK6). 

Depth of Analysis Required (WP3): To complete the project strong mathematical 

analysis is required for finding out objective function and their optimization to 

recognize hand gesture for controlling holographic display.  

Familiarity of Issues (WP4): Involve infrequently encountered issues in fusion of 

algorithm for hand gesture recognition using vision and sensor based approach.  
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Appendix B: Sustainable Development Goals 

 

 

SUSTAINABLE DEVELOPMENT GOALS FOR FYP    

FYP TITLE:    

Real Time Hand Gesture Controlled Holographic Display  
  
FYP SUPERVISOR:  Dr. Qasim Umar Khan  
  
GROUP MEMBERS:   

   REGISTERATION NUMBER   NAME   

1   348038  MEER MUZAMMEL KHAN  

2   344968  FARZAM TAIYAL ZULFIQAR  

3   353048  MUHAMMAD HAROON  

4   337587  KARIM HUSSAIN  

   

SDGs:   

   SDG No.   Justification after consulting    

1   4  The project is in accordance with target 4.8, which is to provide an effective learning 
environment.  

2   9   The project is in accordance with the following targets: 9.1, 9.2, and 9.5 to promote 
innovations, infrastructure and industries.  

   

 

FYP Advisor Signature: ___________________________________________   

  

   

UN website: https://focus2030.org/Understanding-the-Sustainable-Development-  

Goals#:~:text=The%20Sustainable%20Development%20Goals%20(SDGs,life%20for%20all%2C%20by

%20 2030.   
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