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Abstract 

Diabetes mellitus is a global health challenge, requiring early detection to prevent 

severe complications. This study utilizes machine learning for diabetes diagnosis, 

leveraging a dataset collected from the Pakistani population to ensure demographic 

relevance. Features included invasive parameters (e.g., fasting blood glucose, blood 

pressure) and non-invasive factors (e.g., age, gender, BMI, waist circumference). The 

data was split into training (70%) and testing (30%) sets and evaluated using nine 

classifiers, including Logistic Regression, Random Forest, XGBoost, and LightGBM. 

Ensemble models, particularly XGBoost achieved superior performance, with testing 

accuracy reaching 93%. This model demonstrated robustness in capturing complex 

feature interactions without requiring extensive feature selection. Integration into a 

mobile app and GUI further demonstrated the practical utility of these models, 

allowing users to input health parameters and receive instant predictions. 

This research highlights the importance of combining machine learning with region- 

specific data for accurate and accessible diabetes prediction. It demonstrates the 

potential of predictive modeling to complement traditional diagnostics and improve 

early detection. Future work may focus on publicizing the mobile application and 

additional data to enhance model performance. 
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CHAPTER 1 

INTRODUCTION 

Diabetes mellitus, commonly referred to as diabetes, is a chronic metabolic disorder 

characterized by elevated blood glucose levels [1]. This condition arises either due to 

the body's inability to produce sufficient insulin or its failure to effectively utilize the 

insulin it produces. Over the past few decades, diabetes has emerged as a significant 

public health challenge globally, with an alarming increase in its prevalence. 

According to the International Diabetes Federation (IDF), over 537 million adults 

were living with diabetes in 2021, a number projected to rise to 783 million by 2045 

[2]. Among these, developing countries like Pakistan are facing a particularly steep 

rise in diabetes cases, posing severe challenges to their healthcare systems. 

 

 

Figure 1: Prevalence of diabetes according to the International Diabetes Federation from 

2000 to 2045 [3]. 

The prevalence of diabetes in Pakistan has been attributed to a combination of genetic 

predispositions, lifestyle changes, and socioeconomic factors. A recent study revealed 

that approximately 26.7% of the adult population in Pakistan suffers from diabetes, 

making it one of the highest prevalence rates in the world [4]. Urbanization, sedentary 
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lifestyles, unhealthy dietary habits, and a lack of awareness about preventive 

measures have significantly contributed to the escalation of diabetes in the region. 

Moreover, cultural and societal norms, particularly in rural areas, often hinder the 

timely diagnosis and management of the disease. These challenges underscore the 

urgent need for effective and innovative solutions to tackle the growing burden of 

diabetes in Pakistan [5]. 

1.1 Diabetes 

Diabetes mellitus is a multifaceted disorder that encompasses several types, each with 

distinct etiologies, characteristics, and management strategies. A deeper understanding 

of the types of diabetes is crucial for developing effective predictive models and 

treatment plans. 

1.1.1 Type 1 Diabetes 

Type 1 diabetes, often referred to as juvenile diabetes or insulin-dependent diabetes, is 

an autoimmune condition in which the body's immune system attacks the insulin- 

producing beta cells in the pancreas. This destruction results in little to no insulin 

production, necessitating lifelong insulin therapy for affected individuals. Type 1 

diabetes accounts for approximately 5-10% of all diabetes cases globally [2]. While 

its exact cause is not fully understood, genetic predispositions and environmental 

triggers, such as viral infections, are believed to play significant roles. 

1.1.2 Type 2 Diabetes 

Type 2 diabetes is the most common form of diabetes, representing about 90-95% of 

all cases [6]. Unlike Type 1, Type 2 diabetes is characterized by insulin resistance, 

where the body's cells fail to respond effectively to insulin, often coupled with 

inadequate insulin production. This type is strongly associated with lifestyle factors, 

including obesity, physical inactivity, and unhealthy diets, as well as genetic 

predispositions. Type 2 diabetes is particularly prevalent in South Asia, including 

Pakistan, where urbanization and lifestyle changes have led to an increase in risk 

factors. 

1.1.3 Gestational Diabetes 

Gestational diabetes occurs during pregnancy when hormonal changes lead to 

impaired glucose tolerance [7]. Although it typically resolves after childbirth, 
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gestational diabetes increases the risk of developing Type 2 diabetes later in life for 

both the mother and the child. In Pakistan, where maternal healthcare is often limited, 

gestational diabetes poses a significant public health challenge [8]. 

1.1.4 Other Specific Types of Diabetes 

In addition to the three major types, there are other less common forms of diabetes. 

These include: 

1.1.4.1 Monogenic Diabetes: 

Caused by single-gene mutations, such as maturity-onset diabetes of the 

young (MODY). 

1.1.4.2 Secondary Diabetes: 

Resulting from other medical conditions or treatments, such as pancreatic 

diseases or prolonged use of glucocorticoids[9]. 

 

 

Figure 2: Overview of diabetes, its risk factors, types and symptoms 

 

1.2 Machine Learning 

Machine learning (ML) has emerged as a transformative technology with the potential 

to revolutionize the healthcare industry. By leveraging the vast amounts of data 

generated in healthcare systems, ML algorithms can identify complex patterns and 

relationships that may not be apparent through traditional statistical methods. This 

capability has paved the way for more accurate and timely predictions of diseases, 
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including diabetes. Predictive models powered by ML [10] can not only enhance early 

detection but also facilitate personalized treatment plans, thereby improving patient 

outcomes. 

ML algorithms, such as logistic regression, decision trees, random forests, and deep 

learning models, have shown remarkable success in healthcare applications [11]. 

These models can analyze both structured data (e.g., lab test results) and unstructured 

data (e.g., clinical notes) to predict disease outcomes with high accuracy. For instance, 

studies using globally standardized datasets like the Pima Indians Diabetes Dataset 

[12] have demonstrated that ML models can achieve prediction accuracies exceeding 

80%, offering promising avenues for early diagnosis [13][14]. However, these 

findings often fail to account for population-specific variations, limiting their 

applicability in localized contexts such as Pakistan. 

The uniqueness of this research lies in its focus on data collected from the Pakistani 

population. Most existing studies on diabetes prediction using ML techniques rely on 

datasets from Western countries or globally standardized data. While these datasets 

have been instrumental in advancing diabetes research, they often fail to capture the 

specific demographic, genetic, and lifestyle characteristics of populations in South 

Asia, including Pakistan. For instance, South Asians are known to have a higher 

propensity for developing diabetes at lower body mass indices (BMIs) compared to 

Western populations [15]. Additionally, socio-economic disparities, dietary 

preferences, and cultural practices in Pakistan further differentiate its population from 

those in other regions. 

In this context, the present study aims to bridge this gap by utilizing data collected 

exclusively from the Pakistani population. By incorporating features that are both 

invasive (e.g., fasting blood glucose levels) and non-invasive (e.g., age, BMI, waist 

circumference, and physical activity levels), this research endeavors to develop a 

robust ML-based predictive model tailored to the unique characteristics of the target 

population. Such a model holds the potential to significantly improve diabetes 

screening and management in Pakistan, particularly in underserved and resource- 

constrained areas. 

The importance of early detection cannot be overstated, as diabetes, if left  

unmanaged, can lead to a host of debilitating complications, including cardiovascular 
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disease, kidney failure, blindness, and lower limb amputations. Early diagnosis allows 

for timely interventions, such as lifestyle modifications and pharmacological 

treatments, which can delay or prevent the onset of complications. In Pakistan, where 

healthcare resources are limited, the implementation of an efficient and cost-effective 

diabetes prediction tool could play a pivotal role in reducing the disease burden and 

enhancing the quality of life for millions of individuals. 

This study also underscores the ethical considerations involved in using ML for 

healthcare applications. Ensuring the privacy and security of patient data, addressing 

potential biases in the dataset, and validating the model's performance across diverse 

subgroups within the Pakistani population are crucial to building trust and acceptance 

among stakeholders. Moreover, the integration of such a model into the existing 

healthcare infrastructure requires collaboration between technologists, healthcare 

providers, and policymakers to maximize its impact. Ethical concerns must also 

encompass transparency and interpretability of the ML models [16], ensuring that 

healthcare practitioners can understand and trust the system's predictions. 

Furthermore, the scalability and adaptability of the proposed model are vital for its 

success. With the rapid digitization of healthcare systems, ML models can be 

integrated into electronic health records (EHRs) to provide real-time predictions. This 

approach not only enhances clinical decision-making but also empowers patients by 

offering accessible and personalized healthcare solutions. The role of mobile health 

(mHealth) applications, which can integrate predictive models to provide instant 

feedback and guidance, is particularly relevant in the Pakistani context, where 

smartphone penetration is increasing rapidly [17]. 

In summary, this research represents a significant step forward in leveraging advanced 

ML techniques to address a pressing healthcare challenge in Pakistan. By focusing on 

a population-specific dataset and incorporating a holistic set of features, the study 

aims to develop a predictive model that is not only accurate but also practical and 

scalable. The findings of this research have the potential to contribute to the global 

discourse on diabetes prevention and management, while simultaneously providing a 

localized solution tailored to the unique needs of the Pakistani population. 
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CHAPTER 2 

 

LITERATURE REVIEW 

Diabetes mellitus (DM) is one of the fastest-growing chronic conditions worldwide, 

significantly contributing to morbidity and mortality. According to the International 

Diabetes Federation (IDF, 2021), the global prevalence of diabetes is projected to 

reach 700 million by 2045. Early diagnosis is critical to mitigating complications such 

as cardiovascular disease, kidney failure, and neuropathy. Traditional diagnostic 

methods rely heavily on invasive blood tests and clinical judgment, which may delay 

early detection. With the advent of machine learning (ML) and deep learning (DL) 

techniques, researchers have developed predictive models capable of processing vast 

amounts of medical data for efficient and accurate diagnosis. 

This chapter provides a comprehensive review of existing literature on diabetes 

prediction using ML and DL models, focusing on their methodologies, datasets, 

challenges, and future directions. 

Diabetes prediction aims to classify individuals as diabetic or non-diabetic based on 

features such as glucose levels, age, BMI, and family history. Early studies relied on 

simple statistical models like logistic regression, which provided insights but lacked 

the ability to handle complex relationships in data. Recent research leverages 

advanced ML and DL techniques to improve prediction accuracy. 

One widely used dataset is the Pima Indians Diabetes Dataset (PIDD) [18], 

introduced by Smith et al. (1988). This dataset includes eight clinical features and a 

binary outcome (diabetic or non-diabetic). While PIDD is a benchmark dataset, other 

datasets such as the PIMA dataset, MIMIC-III, and custom clinical datasets have also 

been explored. 

Table 1: Summary of online available datasets for diabetes detection 

 

Name Source Glucose 

input 

parameter 

Age Gender Features 

Pima Indian 

Data set [18] 

Kaggle 

1990 

2 hours 

after 

Above 

21 

All 

female 

Skin thickness 

Insulin 
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National 

Institute of 

Digestive and 

Kidney 

Disease 

(796) intaking 

glucose 

solution 

  Pregnancies 

Blood pressure 

BMI 

Diabetes 130- 

US Hospitals 

for Years 

1999-2008 [19] 

UCI ML 

repository 

2014 

Emergency 

lab tests, 

HBA1c 

Grouped 

in 10 

years 

intervals 

Both 

male 

and 

female 

BMI 

Drug intake. 

Hospital visits 

Lab tests 

Early-stage 

diabetes risk 

prediction 

[20] 

UCI ML 

repository 

2020 

(520) 

Nil 20-65 Both 

male 

and 

female 

Polyuria 

Polydipsia 

Weight loss 

Visual blurring 

Genital thrush 

Itching 

Delayed healing 

Alopecia 

Obesity 

CDC diabetes 

health 

indicators_012 

[21] 

Kaggle 

2012 

0 is for no 

diabetes or 

only during 

pregnancy, 

1 is for 

prediabetes, 

and 2 is for 

diabetes 

18-80 Both 

male 

and 

female 

BP 

Cholesterol 

BMI 

Smoker 

Heart disease 

Physical Activity 

Diet 

General and 

mental health 

Education 

Income 
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2.1 Machine Learning 

Machine learning models are classified into supervised and unsupervised learning 

methods. Supervised learning has been the most applied method for diabetes 

prediction due to the availability of labeled datasets. 

Logistic regression is a statistical method for binary classification problems. Several 

studies have used LR to establish baseline models for diabetes prediction. Abendi et. 

al. [22]demonstrated the simplicity and interpretability of LR models for predicting 

diabetes using the PIDD dataset, achieving an accuracy of 78%. Decision trees 

classify data by recursively splitting features based on specific thresholds. In a study 

by Kaur et al. [13], DTs were applied to PIDD, achieving an accuracy of 75%. 

Random forests overcome the limitations of single decision trees by combining 

multiple trees into an ensemble. Zhang et al. [23]reported an accuracy of 82% on 

PIDD using RF. SVMs map data to a higher-dimensional space using kernel functions 

to create a hyperplane that separates classes. Ali et al. [24] optimized SVM kernels 

and achieved 84% accuracy in diabetes classification. 

The k-NN algorithm predicts class labels by identifying the closest k neighbors in 

feature space. It has been used effectively for small datasets, but performance 

decreases with increasing dimensions due to the curse of dimensionality [24]. 

LR assumes a linear relationship between features and the target variable, making it 

unsuitable for datasets with non-linear interactions. Decision trees are easy to interpret 

but prone to overfitting, particularly with small datasets. RFs are robust to overfitting 

and can handle missing data, making them ideal for healthcare applications. SVMs 

perform well with high-dimensional data but are computationally expensive. 

2.2 Deep Learning Models 

Deep learning models, which consist of multiple layers of interconnected neurons, 

have shown significant promise in diabetes prediction. These models excel in 

handling large, complex datasets and capturing non-linear relationships. 

ANNs are widely used for diabetes prediction due to their adaptability and scalability. 

[25] used a three-layer ANN on PIDD, achieving an accuracy of 85%. ANNs require 

substantial computational resources and are prone to overfitting without regularization 

techniques like dropout. 
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CNNs are predominantly used for image data but have been adapted for tabular data 

in healthcare. Kim et al. [26] modified CNN architectures to analyze clinical data, 

achieving   state-of-the-art   results   in   diabetes   classification. 

RNNs are designed to handle sequential data, making them suitable for time-series 

analysis in diabetes prediction. In a study by Saxena et al. [27], RNNs were employed 

to predict diabetes onset based on continuous glucose monitoring data. Autoencoders 

have been used for feature extraction in diabetes datasets, while transfer learning 

leverages pre-trained models to improve accuracy. 

Hybrid models combine multiple algorithms to leverage their individual strengths. 

Wang et al. [28]combined RF and XGBoost, achieving a 90% accuracy on clinical 

datasets. Ensemble methods like bagging (e.g., RF) and boosting (e.g., AdaBoost, 

XGBoost) are effective in reducing bias and variance. 

2.3 Datasets in Diabetes Prediction 

The availability and quality of datasets significantly impact model performance. 

 

2.3.1 PIDD 

A widely used dataset but limited by its small sample size (768 samples) and 

imbalanced classes. 

2.3.2 MIMIC-III 

A large-scale dataset containing clinical records from intensive care units. 

 

2.3.3 Custom Datasets 

Many researchers collect local datasets tailored to specific demographics, 

enhancing model generalizability. 

This literature review highlights the advancements in diabetes prediction using ML 

and DL models. While traditional algorithms like LR and RF remain popular, DL 

techniques like ANNs and CNNs are gaining traction for their superior performance 

on complex datasets. However, challenges related to data quality, privacy, and 

generalizability need to be addressed to ensure widespread adoption. Future research 

should focus on creating scalable, interpretable, and inclusive models for global 

healthcare systems. 



10  

Table 2: Overview of the current state of research on Diabetes detection using artificial 

intelligence 

 

Reference Year Algorithm Accuracy 

[29] 2008 SVM-HBA 

ANN-HBA 

DT-HBA 

94.79% 

94.79% 

91.67% 

[30] 2009 ELM 82.10% 

[31] 2010 eClass 79.37% 

[32] 2011 DT 78.17% 

[33] 2012 SVM 82.2% 

[34] 2012 K- means 

clustering 

94% 

[35] 2012 Cascaded K- means 

clustering 

93.3% 

[36] 2016 cascaded k-means 

combined with LR 

and k-means 

combined with 

ANN 

 

 

k-means and SVM 

98% 
 

 

 

 

 

 

 

 

 

95.3% 

[37] 2017 MOE Fuzzy 83.04% 

[38] 2017 LR Mean absolute 

error: 0.211 

Root mean squared 

error: 0.304 

Relative absolute 

error: 80.1856 % 

Root relative 

squared error: 

91.4408 % 

[39] 2018 NN (10-fold) 84.52% 
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NN (entropy 

feature selection) 

 

NN (reduction of 

attributes, 10-fold) 

 

 

84.4% 

 

 

 

 

 

85.24% 

[40] 2019 FPCA-SVM 

 

PAC-SVM 

72.7% 

 

69.28% 

[41] 2020 DL 

DT 

ANN 

NB 

98.07% 

96.62% 

90.34% 

76.33% 

[42] 2020 LDA 

KNN 

SVM 

RF 

76.86% 

79.24% 

80.85% 

87.66% 

[43] 2020 DT 
 

 

Regression model 

 

 

 

ANN 

65% 
 

 

80% 

 

 

 

83% 

[44] 2021 Generalized Linear 

Model 

 

DL 

DT 

RF 

GB 

SVM 

RMSE: 0.402 
 

 

 

0.389 

0.537 

0.390 

0.394 

0.502 
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[27] 2021 1D CNN 86.29% 

[45] 2022 SMO 99.07% 

[46] 2022 DL-DY 

ID3 

J48 

95.45% 

94.46% 

88.51% 

[57] 2022 LR 

GB 

75 

78 

[26] 2022 DNN 89% 

[47] 2023 SVM 85.5% 

[48] 2023 MLP-NN 

SVM 

RF 

Without data 

modelling: 

75.32% 

76.62% 

73.37% 

 

With data 

modelling: 

79.87% 

80.52% 

82.82% 

[49] 2023 RF 

J48 

NB 

79.57% 

[50] 2023 LR 

EM 

93.3% 

98.6% 

[51] 2023 RF 

DT 

SVM 

ANN 

77.9% 

92% 

74% 

98% 

[52] 2023 KNN 83.12% 

[54] 2023 ANN 80.79 
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[56] 2023 LR 

KNN 

CART 

RF 

SVM 

XGB 

LightGBM 

84 

84 

85 

88 

85 

89 

88 

[53] 2024 DT 

RF 

SVM 

Stacking Ensemble 

(ML) 

 

Stacking Ensemble 

(NN) 

 

DNN1 

DNN2 

DNN3 

65.08 

79.33 

69.03 

75.03 

 

 

 

95.5 

 

 

 

68.80 

64.15 

65.40 

[55] 2024 FNN 

CNN 

81.82% 

80.52% 

[59] 2024 En-RfRsK 88.89% 
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CHAPTER 3 

METHODOLOGY 

The diagnosis of diabetes through predictive modelling involve multiple crucial steps 

including data collection, data preprocessing, model selection and implementation, 

model performance evaluation and deployment of best performing model on mobile 

application. These steps are described in figure 3. 

 

 

 

Figure 3: Study Protocol 

 

3.1 Data Collection 

Data collection is a fundamental and critical step in the process of developing a 

machine learning (ML) model. In this study, the primary objective was to collect data 

representative of the Pakistani population, encompassing a broad spectrum of 

demographic and ethnic variability. This diverse dataset was essential to ensure the 

generalizability and accuracy of the model when predicting diabetes outcomes in real- 

world scenarios. 

The data for this study was collected from two major healthcare facilities in Pakistan: 
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 PAF Hospital: A well-known medical facility catering to a diverse group of 

patients, ensuring access to data from different socioeconomic and ethnic 

groups. 

 Healthways Lab: A diagnostic lab providing comprehensive health testing 

services, contributing to the availability of critical lab-based measurements. 

The dataset included a total of 1,000 subjects, comprising both healthy and diabetic 

individuals. This ensured a balanced dataset for accurate training and testing of the 

ML model. Below is a breakdown of the characteristics of the collected data: 

3.1.1 Subjects: 

 Type 2 Diabetes: The primary focus was on patients with Type 2 Diabetes 

Mellitus. 

 Exclusion of Type 1 Diabetes: Data for 45 subjects with Type 1 Diabetes 

was excluded due to its differing pathophysiology and treatment protocols. 

 Final Dataset Size: After exclusion, the dataset consisted of 955 subjects. 

 

3.1.2 Features: 

The dataset incorporated a comprehensive set of features for each subject, 

including both demographic and clinical parameters. Key features included: 

 Demographic Data: Age, gender, and ethnic background. 

 Clinical Parameters: 

 BMI (Body Mass Index) 

 Waist Circumference 

 Blood Pressure (Systolic and Diastolic) 

 Fasting Blood Glucose Levels 

 Behavioral and Lifestyle Data: Smoking status and physical activity levels. 

 Family History: Information on genetic predisposition to diabetes. 

 Reproductive History (for females): Number of pregnancies and history of 

gestational diabetes. 

A significant strength of the dataset was its inclusion of individuals from diverse 

ethnic backgrounds across Pakistan. This demographic diversity aimed to make 
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the ML model robust and applicable to real-world scenarios where ethnic and 

cultural factors influence diabetes prevalence and health outcomes. 

Table 3: Dataset description 

 

Features Description Type 

Age Age in years Numerical 

Gender Male (1) or Female (0) Categorical 

BMI Body Mass Index (BMI)= Weight in kg/Height in 

m2 

Numerical 

Waist Circumference Measurement of waist in cm Numerical 

Fasting Blood 

Glucose 

Blood glucose levels after 8 hours of fasting 

(mg/dL) 

Numerical 

Diastolic Blood 

Pressure 

Minimum pressure in arteries when heart relax 

(mmHg) 

Numerical 

Systolic Blood 

Pressure 

Maximum pressure in arteries when heart pumps 

blood (mmHg) 

Numerical 

Smoker Nonsmoker (0) or smoker (1) Categorical 

Family History Family history of diabetes (1) else 0 Categorical 

No. of Pregnancies Number of times a female was pregnant Numerical 

Gestational Diabetes Diagnosis of diabetes during pregnancy Categorical 

Physical Activity Level of physical activity 

1= low 

2= moderate 

3= high 

Categorical 

To ensure the reliability of the dataset, several steps were taken during and after data 

collection: 

 Verification of Data Sources: Only data from verified clinical tests and reports 

were included. 
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 Handling Missing Data: Any missing entries in critical features were addressed 

during the preprocessing stage. 

 Standardization of Measurements: Parameters such as BMI and blood glucose 

levels were standardized to avoid discrepancies due to varying measurement units. 

The use of local data from Pakistani healthcare facilities provided two major 

advantages: 

 Demographic Relevance: Since diabetes prevalence and risk factors can vary by 

region, the dataset accurately reflects the conditions faced by the target 

population. 

 Ethnic Variability: The inclusion of diverse ethnic groups ensured that the ML 

model would not exhibit bias toward any demographic group. 

 Collecting high-quality data for ML models involves addressing several 

challenges: 

 Data Anonymity: Ensuring that patient data complied with ethical standards, 

including anonymization and confidentiality. 

 Exclusion of Outliers: The dataset was carefully screened to remove subjects 

with rare or unrelated conditions (e.g., Type 1 diabetes). 

 Access to Data: Collaboration with healthcare facilities required adherence to 

protocols and obtaining necessary permissions. 

The data collection process laid a strong foundation for building a reliable ML model 

for diabetes prediction. By collecting data from a diverse and representative 

population, the study ensured that the model would be both robust and generalizable. 

The focus on Type 2 diabetes and the exclusion of medication-related bias were 

deliberate decisions aimed at improving the quality and relevance of the dataset. 

3.2 Data Preprocessing 

Data preprocessing is a crucial step in preparing raw data for analysis and modeling. 

It ensures that the dataset is clean, consistent, and structured in a way that enhances 

the performance of machine learning algorithms. In this study, preprocessing involved 

several key tasks, including data standardization, handling class imbalance, imputing 
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missing values, and feature selection. Each step was carefully designed to improve the 

reliability and accuracy of the diabetes prediction model. 

3.2.1 Standardization of Data 

Standardization is a preprocessing technique used to ensure consistency across trials 

and improve the comparability of features with varying scales. It is particularly 

important for features with different units, such as BMI, fasting blood glucose, and 

blood pressure. Machine learning algorithms like Support Vector Machines (SVMs), 

K-Nearest Neighbors (KNN), and Gradient Boosting are sensitive to the scale of input 

features. Without standardization, features with larger scales may dominate the model 

training process, leading to biased predictions. The z-score normalization technique 

was applied to all continuous numerical features. This method rescales the data so that 

the mean is 0 and the standard deviation is 1. BMI, fasting blood glucose, systolic and 

diastolic blood pressure, and waist circumference were standardized to ensure 

uniform scaling. 

3.2.2 Handling Class Imbalance 

Class imbalance occurs when the number of positive and negative outcomes in the 

dataset is disproportionate. In this study, the dataset included both diabetic and non- 

diabetic individuals, with an observed imbalance favoring diabetic cases. Proper 

handling of class imbalance was critical to avoid bias in the model toward the 

majority class. Imbalanced datasets can lead to models that perform well on accuracy 

but fail to correctly identify the minority class (e.g., non-diabetic subjects). This 

would result in poor recall and F1 scores for the minority class. Techniques like 

Synthetic Minority Oversampling Technique (SMOTE) were used to generate 

synthetic samples for the minority class (non-diabetic subjects) to balance the dataset. 

A portion of the majority class (diabetic subjects) was randomly removed to balance 

the dataset without introducing significant bias. Certain machine learning algorithms 

(e.g., Random Forest and XGBoost) were configured to assign higher weights to the 

minority class during training to improve prediction sensitivity. 

3.2.3 Handling Missing Values 

Missing values in the dataset can arise from incomplete records during data collection 

or errors in data entry. Addressing missing values is essential to avoid reducing the 

quality of the data or introducing bias into the model. Missing entries in continuous 
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features (e.g., fasting blood glucose, BMI). Missing categorical data (e.g., smoking 

status or family history). Missing values in numerical features were replaced using the 

mean or median of the respective feature, depending on the distribution. If the data 

was skewed, the median was used to avoid distortion. Missing values in categorical 

features (e.g., smoker or family history) were filled using the mode of the feature. For 

features with a significant percentage of missing values, regression-based imputation 

methods were used to predict missing values based on other related features. 

3.3 Feature Selection 

Feature selection is the process of identifying the most relevant and significant 

features in the dataset that contribute to the prediction of outcomes. By reducing the 

number of features, the model becomes less complex, less prone to overfitting, and 

faster to train. Not all features contribute equally to the predictive performance of the 

model. Irrelevant or redundant features can introduce noise and reduce model 

efficiency. Algorithms such as Random Forest and Gradient Boosting were used to 

calculate the importance of each feature. These models assign scores based on the 

contribution of each feature to prediction accuracy. 

A heatmap of correlation coefficients was generated to identify highly correlated 

features. Features with a high correlation (e.g., >0.85>0.85>0.85) were flagged for 

potential removal to reduce multicollinearity. Recursive Feature Elimination (RFE) 

was employed to iteratively remove the least important features, retaining only the 

most significant ones for model training. 

3.3.1 Training Machine Learning Models 

Training machine learning (ML) models involves using the preprocessed dataset to 

build predictive algorithms that can classify individuals as diabetic or non-diabetic. 

This step ensures that the models learn patterns, relationships, and insights from the 

input features to make accurate predictions. In this study, eight ML algorithms were 

employed, each with their unique strengths and methodologies. These models were 

selected for their proven efficacy in classification tasks and their ability to handle 

diverse datasets. 

3.3.1.1 Logistic Regression (LR) 

Logistic Regression is a statistical method used for binary classification problems. It 

predicts the probability of a binary outcome based on input features. LR models the 
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relationship between the dependent variable (Outcome) and independent variables 

(features) using a logistic function. It is simple and interpretable and works well with 

linearly separable data. Regularization techniques like L1 (Lasso) and L2 (Ridge) 

were applied to prevent overfitting. 

3.3.1.2 K-Nearest Neighbors (KNN) 

KNN is a non-parametric and instance-based algorithm that classifies a data point 

based on its neighbors. KNN calculates the distance (e.g., Euclidean distance) 

between the input data point and all training samples. The algorithm assigns the class 

label of the majority of its kk nearest neighbors. It is simple, intuitive and performs 

well on small datasets. The optimal value of kk was selected using cross-validation. 

Smaller kk values focus on local patterns, while larger kk values generalize better. 

3.3.1.3 Support Vector Machine (SVM) 

SVM is a supervised learning algorithm used to find the optimal hyperplane that 

separates classes. SVM constructs a hyperplane in a high-dimensional space to 

maximize the margin between diabetic and non-diabetic classes. For non-linearly 

separable data, kernel functions (e.g., radial basis function or polynomial) were 

applied to transform the data into a higher-dimensional space. The CC parameter 

controls the trade-off between achieving a low error and a large margin. 

3.3.1.4 Random Forest (RF) 

Random Forest is an ensemble learning method that combines multiple decision trees 

to improve predictive performance. RF builds several decision trees during training, 

and each tree predicts the class label. The final prediction is determined by majority 

voting (for classification tasks). RF handles missing values and outliers well. It 

reduces overfitting by aggregating multiple decision trees. Hyperparameters include 

number of trees (n_estimators\_estimators), maximum depth of each tree 

(max_depth\_depth) and minimum samples required to split a node. 

3.3.1.5 Gradient Boosting (GBoost) 

Gradient Boosting is an ensemble method that builds decision trees sequentially, 

optimizing for errors from the previous trees. Each subsequent tree attempts to correct 

the errors made by the previous tree by minimizing a loss function (e.g., log-loss). 

This iterative process improves model accuracy. It handles complex relationships in 

data and is highly customizable with loss functions. Hyperparameter include learning 
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rate, number of estimators (n_estimatorsn\_estimators) and Maximum tree depth 

(max_depthmax\_depth). 

3.3.1.6 Extreme Gradient Boosting (XGBoost) 

XGBoost is an advanced implementation of Gradient Boosting that focuses on speed 

and performance. Like GBoost, XGBoost builds trees iteratively. However, it 

introduces regularization terms to prevent overfitting and supports parallel 

computation for faster training. It uses second-order derivatives to optimize the loss 

function. It is highly efficient and has a built-in mechanism for handling missing data. 

Hyperparameters include learning rate (η\eta), maximum depth 

(max_depthmax\_depth) and subsample ratio (subsamplesubsample). 

3.3.1.7 Light Gradient Boosting Machine (LightGBM) 

LightGBM is a gradient boosting framework designed for speed and efficiency, 

particularly on large datasets. LightGBM uses a leaf-wise tree growth strategy, where 

it grows trees vertically (leaf-wise) rather than level-wise. This method focuses on 

leaves with the maximum loss reduction, which reduces error more effectively. They 

are faster training compared to traditional boosting methods and efficient memory 

usage. 

3.3.1.8 Adaptive Boosting (AdaBoost) 

AdaBoost is an ensemble learning method that combines weak classifiers to create a 

strong classifier. AdaBoost assigns weights to misclassified instances, forcing 

subsequent weak classifiers to focus on these difficult examples. Final predictions are 

based on the weighted sum of predictions from all weak classifiers. It reduces bias 

and variance and is effective for simple models like decision stumps. 

3.3.2 Model Training Approach 

1. Data Split: The preprocessed dataset was split into training (70%) and testing 

(30%) sets. This ensures that the models are evaluated on unseen data. 

2. Cross-Validation: K-fold cross-validation (with k=5k=5) was used to evaluate 

model performance on different subsets of the training data, reducing the 

likelihood of overfitting. 

3. Hyperparameter Tuning: Grid search and random search methods were used 

to optimize hyperparameters for each model. 
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4. Evaluation Metrics: Accuracy, precision, recall, F1-score, and AUC-ROC 

were computed to compare the performance of the models. 

5. Best Model Selection: The best-performing model was chosen based on its 

ability to generalize to unseen data while achieving high accuracy, recall, and 

AUC-ROC. 

This step ensured that the models were trained optimally, ready for deployment, and 

capable of making reliable predictions for diabetes diagnosis. 

3.3.3 Integration of the Best Performing Model into the Flutter App 

It was deployed into a Flutter-based mobile application after identifying the best- 

performing machine learning model from the training and evaluation phases. The app 

was built using Flutter and Dart in VS Code and designed to provide users with a 

simple and efficient tool for predicting diabetes status based on input parameters. 

3.3.3.1 App Design and Development 

The app was developed in Flutter, an open-source UI toolkit by Google that enables 

cross-platform development for Android, iOS, and web applications. Dart, the 

programming language used by Flutter, facilitated the implementation of the app's 

logic and UI components. 

The app serves as a diabetes prediction tool for users by leveraging machine learning 

(ML). It allows users to input relevant health parameters and receive instant 

predictions on their diabetes status. 

 Features of the App:

 

 User-Friendly Interface: Designed with a clean, intuitive UI for easy 

navigation. 

 Input Form: A dedicated page for users to input health-related 

parameters like age, BMI, fasting blood glucose, waist circumference, 

physical activity level, and other features selected during the model 

training phase. 

 Instant Prediction: Upon submitting the inputs, the app processes the 

data through the ML model to provide a "Diabetic" or "Non-Diabetic" 

result. 
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 Secure and Fast: The app was optimized for speed and ensures the 

security of user data. 

3.3.3.2 Integration of the Machine Learning Model 

The best-performing model was implemented in the app for real-time diabetes 

prediction. The integration involved several steps to ensure seamless interaction 

between the ML model and the app. 

 Model Selection:

Based on training and evaluation, the best-performing model was selected for 

deployment. For this study, models such as XGBoost showed high accuracy 

and were preferred for deployment. 

 Model Deployment Methodology:

 

The trained model, saved in the form of a serialized file (e.g., xgb_model.pkl 

for XGBoost), was deployed using FastAPI, a modern web framework for 

building APIs in Python. The model predictions were accessed through an API 

endpoint. 

 

 

 

Figure 4: Deployment of best model on mobile application 
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3.3.3.3 Testing and Optimization 

 Testing:

The app was rigorously tested on both Android and iOS devices to ensure 

compatibility and correctness of predictions. Edge cases were considered, such 

as missing inputs or incorrect data formats. 

 Optimization:

 

The model's prediction time was minimized by optimizing the backend server and 

ensuring the FastAPI responded quickly. The Flutter app was optimized for 

responsiveness, ensuring it worked seamlessly on devices with varying screen sizes. 

3.3.3.4 Benefits of Mobile Application 

 Accessibility:

The app brings state-of-the-art diabetes prediction technology to users' 

fingertips, making early screening more accessible. 

 Customization:

The model was trained on data specific to the Pakistani population, ensuring 

predictions were more relevant and accurate for the target demographic. 

 User Empowerment:

Users are empowered to take proactive steps in managing their health by 

receiving personalized insights. 

By integrating the best-performing ML model into the Flutter app, a robust, user- 

friendly solution for diabetes prediction was created. This app has the potential to 

positively impact public health by enabling early detection and promoting 

preventative measures. 
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CHAPTER 4 

RESULTS 

The results chapter provides a detailed comparison of the performance metrics of 

various machine learning classifiers and their statistical evaluation. These analyses are 

aimed at identifying the most effective model for predicting outcomes, particularly in 

the context of diabetes risk assessment. This chapter integrates the results from 

feature selection, model evaluation, and statistical significance tests. 

4.1 Classifier Performance Without Feature Selection 

The performance of various classifiers without feature selection is depicted in the 

graph titled "Classifier Performance Comparison without FS." Metrics such as 

accuracy, area under the curve (AUC), precision, recall, and F1-score were evaluated 

across multiple classifiers, including Logistic Regression (LR), k-Nearest Neighbors 

(KNN), Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting 

(GBoost), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine 

(LightGBM), and AdaBoost. 

Without feature selection, XGBoost demonstrated consistently high performance 

across all metrics, achieving an accuracy close to 0.90. Similarly, LightGBM and 

Gradient Boosting also exhibited robust metrics, with minimal variance among the 

key scores. On the other hand, Logistic Regression had the lowest performance, 

particularly in recall and F1-score, indicating its limited capability to handle complex 

datasets without preprocessing. These findings suggest that ensemble methods like 

XGBoost and LightGBM are more suited for the data structure used in this study. 

4.2 Classifier Performance with Feature Selection 

Feature selection was applied to optimize the input dataset by reducing redundancy 

and retaining the most relevant features. The graph titled "Classifier Performance 

Comparison with FS" highlights the impact of this process. The results showed an 

overall improvement in the performance of most classifiers. XGBoost remained the 

best-performing model, with an accuracy exceeding 0.92 and enhanced precision and 

recall. LightGBM and Gradient Boosting also showed incremental improvements in 

accuracy and F1-score. 
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Figure 5: Performance analysis of classifiers without feature selection 

 

The feature selection process particularly benefited classifiers such as Random Forest 

and SVM, which displayed significant gains in AUC and recall. Logistic Regression 

 

 

Figure 6: Performance analysis of classifier with feature selection 
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also saw marginal improvement but remained less effective compared to ensemble 

methods. These results validate the importance of feature selection in boosting model 

performance and generalization capabilities. 

4.3 Cross-Validation Results 

Cross-validation was employed to ensure the robustness and reliability of the 

classifiers. The boxplot titled "Cross-Validation Accuracy Scores for Each Classifier" 

illustrates the variability in accuracy scores for each classifier. XGBoost demonstrated 

the highest mean accuracy with the least variance, indicating its stability and superior 

performance. Gradient Boosting and LightGBM followed closely, while Logistic 

Regression and KNN exhibited lower accuracy and higher variability. 

The bar chart "Mean Cross-Validation Accuracy for Each Classifier" reinforces these 

findings, highlighting XGBoost as the top performer with a mean accuracy of 0.92. 

Gradient Boosting and LightGBM also achieved high mean accuracy scores, while 

Logistic Regression lagged significantly. 

 

 

Figure 7: Accuracies of classifiers after 10 k cross validation 
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4.4 Statistical Analysis 

Statistical significance tests were conducted to assess the differences between 

classifiers. First one way ANOVA was applied to check significance among groups 

which gives a p value of less than 0.05 proving the existence of significance among 

the classifier performance. 

The Tukey post hoc analysis demonstrates the mean differences between classifiers. 

XGBoost showed statistically significant superiority over Logistic Regression and 

KNN, with positive mean differences. Gradient Boosting and LightGBM also 

displayed significant advantages over Logistic Regression, validating the observations 

from performance metrics. 

The statistical analysis confirms that ensemble methods like XGBoost, Gradient 

Boosting, and LightGBM not only outperform simpler models but also exhibit 

consistent and reliable performance across various splits of the data. This robustness 

underscores their suitability for real-world applications where stability and accuracy 

are critical. 

 
 

 

 

Figure 8: Post hoc analysis 
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The results from this study highlight the effectiveness of ensemble methods, 

particularly XGBoost, in predicting diabetes risk. Feature selection emerged as a 

crucial step in enhancing model performance by eliminating irrelevant features and 

reducing dimensionality. Cross-validation and statistical analysis further validated the 

reliability and robustness of the top-performing classifiers. These findings provide a 

solid foundation for integrating the best model into a mobile application for diabetes 

risk prediction and management, as discussed in subsequent sections. 
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CHAPTER 5 

 

DISCUSSION 

The prediction of diabetes using machine learning models has gained significant 

attention due to the alarming rise in diabetes cases globally. This study leverages a 

unique dataset collected from the Pakistani population to evaluate and compare the 

performance of several machine learning algorithms in predicting diabetes. By 

incorporating features that encompass both invasive and non-invasive parameters, the 

study aims to provide a comprehensive assessment of diabetes risk while enhancing 

accessibility to diagnostic tools. 

The methodology adopted in this research demonstrates a robust and systematic 

approach to developing predictive models. Starting with data collection, special 

emphasis was placed on ensuring that the dataset reflects demographic and cultural 

nuances specific to the Pakistani population. This not only enhances the relevance of 

the models but also addresses a significant gap in existing literature, where most 

datasets and models are biased toward Western populations. The inclusion of features 

such as waist circumference, physical activity levels, gestational diabetes, and 

smoking habits highlights the importance of region-specific variables in improving 

predictive accuracy. 

A key strength of this study lies in the careful partitioning of the data into training and 

testing sets, with 70% allocated for model development and 30% reserved for 

evaluation. This split ensures that the models are trained on a substantial portion of 

the data while being rigorously tested on unseen samples, minimizing overfitting and 

maximizing generalizability. Additionally, the use of multiple machine learning 

algorithms allows for a comparative analysis, which is crucial for identifying the most 

effective approach for this specific dataset. 

The application of advanced algorithms such as XGBoost, LightGBM, and Random 

Forest, alongside traditional models like logistic regression and support vector 

machines (SVM), ensures a holistic evaluation. By tuning hyperparameters and 

employing cross-validation techniques, the study seeks to balance accuracy and 

generalizability. The integration of these techniques reflects a comprehensive 

understanding of machine learning principles and highlights the researcher’s 

commitment to methodological rigor. 
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One of the critical aspects of this study is the evaluation metrics used to compare 

model performance. Accuracy, AUC (Area Under the Curve), precision, recall, and 

F1-score provide a multidimensional perspective on how well the models perform. 

While accuracy is often the most reported metric, this study emphasizes the 

importance of other indicators like recall, particularly given the high cost of false 

negatives in diabetes prediction. Patients misclassified as non-diabetic may not 

receive timely interventions, leading to severe health complications. Therefore, a 

model with high recall ensures that most diabetic patients are correctly identified, 

even at the expense of a few false positives. 

The real-world implications of this research extend beyond numerical metrics. The 

deployment of the best-performing model in a mobile application and GUI makes the 

predictive tool accessible to a broader audience, including healthcare professionals 

and individuals in remote areas. By simplifying the diagnostic process and 

incorporating both invasive (e.g., fasting blood glucose) and non-invasive (e.g., 

physical activity) features, the application empowers users to assess their diabetes risk 

without the need for extensive medical consultations. This approach aligns with 

global health priorities to enhance early detection and preventive care. 

Moreover, this study’s focus on diverse feature selection emphasizes the importance 

of interdisciplinary research in healthcare. Variables such as smoking status and 

physical activity levels, which are often overlooked in clinical diagnostics, play a 

significant role in diabetes risk. Incorporating these factors into the predictive model 

not only improves accuracy but also sheds light on lifestyle interventions that could 

mitigate risk. This aligns with the broader goals of precision medicine, where 

individual risk factors guide tailored prevention and treatment strategies. 

Another noteworthy contribution of this research is its ability to inform public health 

policies. By identifying key predictors of diabetes within the Pakistani population, the 

findings provide valuable insights for designing targeted awareness campaigns. For 

instance, high-risk groups identified through the model can be prioritized for 

screening and educational interventions, ensuring optimal allocation of resources in a 

resource-constrained healthcare system. 

Despite these strengths, it is essential to acknowledge the limitations of the study. 

While the dataset is unique and reflective of the Pakistani population, its relatively 
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small size may impact the generalizability of the findings to other regions. Expanding 

the dataset to include a larger and more diverse sample would enhance the robustness 

of the models and facilitate comparisons across different ethnic and cultural groups. 

Additionally, some features, such as physical activity levels and smoking status, rely 

on self-reported data, which is subject to reporting bias. Future research could explore 

the integration of objective measurements to address this limitation. 

A significant challenge encountered in this study was the class imbalance within the 

dataset, with 27.7% of the subjects classified as non-diabetic and 72.3% as diabetic. 

Class imbalance is a common issue in medical datasets, where certain conditions, 

such as diabetes, are often overrepresented due to targeted data collection or inherent 

population prevalence. This imbalance can lead to biased models that favor the 

majority class, potentially overlooking the minority class during predictions. Such 

bias is especially concerning diabetes prediction, where misclassifying non-diabetic 

individuals could result in delayed preventive care. 

 

 

 

 

Figure 9: Dataset distribution without SMOTE 

 

To address this imbalance, the Synthetic Minority Oversampling Technique (SMOTE) 

was employed. SMOTE generates synthetic samples for the minority class by 
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interpolating between existing samples. This approach effectively balances the dataset 

by increasing the representation of non-diabetic subjects to match that of diabetic 

subjects, creating a 50:50 distribution. By doing so, SMOTE ensures that machine 

learning models do not disproportionately favor the majority class, leading to more 

equitable performance metrics across both classes. 

The decision to use SMOTE was guided by its advantages over other techniques such 

as random oversampling or under sampling. Random oversampling, while effective in 

balancing classes, often leads to overfitting because it duplicates existing data points. 

On the other hand, under sampling reduces the size of the majority class, potentially 

discarding valuable information. SMOTE, however, preserves the integrity of the 

dataset by generating synthetic data rather than duplicating or discarding samples, 

thereby mitigating the risk of overfitting while maintaining the original dataset's 

diversity. 

 

 

 

 

Figure 10: Data distribution with SMOTE balancing technique 

 

The balanced dataset resulting from SMOTE was instrumental in improving the 

performance of the machine learning models. It allowed the algorithms to learn from 

an equal representation of diabetic and non-diabetic subjects, ensuring fair predictions 
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across both classes. Metrics such as recall and F1-score, which are sensitive to class 

imbalance, showed significant improvement after applying SMOTE. This highlights 

the technique's effectiveness in addressing the disproportionate representation of 

classes. 

Another essential aspect of this study was the exploration of feature relationships 

using a correlation matrix. The correlation matrix provides insights into the strength 

and direction of linear relationships between variables, which is critical for 

understanding the dataset's structure and identifying potential multicollinearity issues. 

By computing Pearson correlation coefficients between features, the matrix served as 

a foundational tool for feature selection and model optimization. 

The analysis revealed several interesting relationships. Features such as BMI, waist 

circumference, and fasting blood glucose showed moderate to strong positive 

correlations with the outcome variable, suggesting their significant contribution to 

diabetes prediction. This aligns with established medical research indicating that these 

factors are key indicators of metabolic health and diabetes risk. For instance, higher 

BMI and waist circumference values are well-documented risk factors for insulin 

resistance and glucose intolerance. 

Interestingly, certain features displayed strong interrelationships among themselves, 

such as BMI and waist circumference. While this relationship is expected due to their 

shared basis in body composition, it raises concerns about multicollinearity, which 

could affect model performance. High multicollinearity can lead to inflated variance 

in regression coefficients, making it challenging to interpret feature importance 

accurately. To address this, techniques such as variance inflation factor (VIF) analysis 

or dimensionality reduction methods like PCA (Principal Component Analysis) could 

be employed in future work to ensure that the models remain robust and interpretable. 

Another essential aspect of this study was the exploration of feature relationships 

using a correlation matrix. The correlation matrix provides insights into the strength 

and direction of linear relationships between variables, which is critical for 

understanding the dataset's structure and identifying potential multicollinearity issues. 

By computing Pearson correlation coefficients between features, the matrix served as 

a foundational tool for feature selection and model optimization. 
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Figure 11: Heatmap correlation matrix 

 

Feature selection is a crucial step in machine learning workflows, as it ensures that 

only the most relevant and informative features are included in the predictive model. 

This study employed Recursive Feature Elimination (RFE) to systematically 

identify and rank the most significant features for diabetes prediction. RFE is a 

wrapper-based method that works by recursively fitting a model, ranking features 

based on their importance, and eliminating the least significant ones until a predefined 

number of features remains. 

Given the diverse range of features in the dataset—spanning demographic, clinical, 

and lifestyle factors—RFE was particularly well-suited for this study. Unlike filter- 

based methods that evaluate feature importance in isolation, RFE considers the 

relationships between features in the context of the selected machine learning model. 

This ensures that the final feature set optimizes model performance while minimizing 

redundancy and overfitting. 
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RFE was applied using algorithms such as Random Forest and XGBoost, as these 

models are robust in handling complex, non-linear relationships and naturally provide 

feature importance scores. By leveraging these algorithms, RFE identified a subset of 

features that contributed most significantly to the predictive accuracy of the model. 

 

 

Figure 12: Feature Importance using REF 

 

Selected Features and Their Implications 

 

The RFE process consistently highlighted the following features as the most 

important predictors of diabetes: 

 Fasting Blood Glucose (FBG): This feature ranked highest, as expected, due 

to its direct relationship with diabetes diagnosis. Elevated fasting glucose 

levels are a primary diagnostic criterion and a key indicator of impaired 

glucose metabolism. 

 Waist Circumference and BMI: These anthropometric measures were also 

strongly prioritized by RFE. Both are well-established markers of obesity, a 

major risk factor for Type 2 diabetes. Their inclusion underscores the critical 

role of body composition in diabetes prediction. 

 Age and Family History: Age remained a strong predictor, as the risk of 

diabetes increases with advancing age. Family history further emphasized the 
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genetic predisposition to the condition, reinforcing its role as a non-modifiable 

yet highly informative feature. 

 Physical Activity and Smoking Status: While these lifestyle factors were 

less strongly correlated with the outcome variable in the correlation matrix, 

RFE retained them due to their contribution to overall model performance. 

This suggests that their impact on diabetes risk may interact with other 

features in complex, non-linear ways. 

The SHAP analysis provided the following key insights into feature importance for 

the diabetes prediction model: 

1. Fasting Blood Glucose (FBG): SHAP consistently identified FBG as the 

most influential feature, with high Shapley values for instances where 

individuals had elevated glucose levels. This aligns with its central role in 

diabetes diagnosis and demonstrates the model’s ability to prioritize clinically 

significant features. 

2. Waist Circumference and BMI: These features showed high global 

importance scores, reinforcing their relevance as predictors of diabetes. SHAP 

visualizations revealed a positive relationship between increased values of 

these features and the likelihood of diabetes, reflecting their association with 

obesity-related metabolic disorders. 

3. Age: SHAP values for age indicated a gradual increase in diabetes risk with 

advancing age. This feature's importance aligns with established knowledge 

about the progressive nature of diabetes as individuals grow older. 

4. Family History: The analysis showed that a positive family history 

significantly contributed to higher diabetes risk, emphasizing the genetic 

predisposition captured by the model. 

5. Gestational Diabetes and Number of Pregnancies: SHAP visualizations 

highlighted these features as key predictors for females, particularly in cases 

where gestational diabetes was reported. The interaction between these 

features and age also emerged as an important determinant of risk. 
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6. Physical Activity and Smoking Status: SHAP revealed subtle yet significant 

contributions of these lifestyle factors. Low physical activity levels were 

associated with higher diabetes risk, while smoking status had a complex 

relationship, with interactions observed in combination with other features 

such as BMI. 

 

 

Figure 13: Feature importance using SHAP 

 

The comparison of classifier performance with and without feature selection (FS) 

provides valuable insights into how dimensionality reduction and the elimination of 

irrelevant features affect model outcomes. The charts illustrate the impact of FS on 

multiple metrics—accuracy, AUC, precision, recall, and F1-score—across a range of 

algorithms, including Logistic Regression (LR), K-Nearest Neighbors (KNN), 

Random Forest (RF), Support Vector Machines (SVM), Gradient Boosting (GBoost), 

XGBoost, LightGBM, and AdaBoost. 
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Without feature selection, the performance of most classifiers remains reasonably 

high but exhibits noticeable variability. The presence of irrelevant or redundant 

features in the dataset likely introduces noise, which can affect the classifiers’ ability 

to make accurate predictions. For Logistic Regression, this effect is particularly 

pronounced. As seen in the chart without FS, LR achieves relatively low accuracy 

(around 0.71) and suffers in precision, recall, and F1-score as well. This suggests that 

the linear nature of LR makes it sensitive to noisy or irrelevant features, reducing its 

ability to model the relationships in the data effectively. When feature selection is 

applied, LR’s performance improves modestly, with accuracy rising to approximately 

0.73 and slight gains in other metrics. While still underperforming compared to other 

algorithms, these improvements highlight the value of feature selection in simplifying 

the dataset and reducing noise. 

K-Nearest Neighbors (KNN) shows a similar trend, although its performance without 

FS is better than that of LR. In the absence of FS, KNN achieves accuracy close to 

0.78 and reasonably balanced values for precision, recall, and F1-score. However, the 

inclusion of irrelevant features likely affects its distance-based calculations, leading to 

suboptimal classification boundaries. After applying FS, KNN exhibits noticeable 

improvements, with accuracy increasing to 0.81 and other metrics also showing slight 

gains. This indicates that feature selection helps KNN focus on the most informative 

dimensions, enhancing its ability to distinguish between classes effectively. 

Nevertheless, KNN still lags behind ensemble methods, highlighting its limitations in 

handling complex, high-dimensional datasets even with feature selection. 

Random Forest (RF) stands out as one of the most robust classifiers both with and 

without FS. Without FS, RF achieves high scores across all metrics, with accuracy 

around 0.90 and nearly identical values for precision, recall, and F1-score. The 

inherent ability of RF to handle high-dimensional data and ignore irrelevant features 

through its ensemble of decision trees contributes to its strong performance. However, 

after applying FS, RF’s metrics improve further, albeit marginally. The reduction in 

dimensionality likely helps RF focus on the most critical features, slightly enhancing 

its generalization ability and reducing the risk of overfitting. This demonstrates that 

while RF can handle noisy datasets effectively, feature selection still provides an 

additional performance boost. 
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Support Vector Machines (SVM) exhibit similar robustness. Without FS, SVM 

achieves accuracy, and other metric values close to 0.90, reflecting its strength in 

finding optimal decision boundaries. However, like RF, SVM benefits from FS, with 

marginal improvements observed across all metrics. Feature selection likely simplifies 

the feature space, reducing the computational complexity and enhancing SVM’s 

ability to separate classes effectively. The consistent performance of SVM, both with 

and without FS, underscores its reliability for datasets with well-defined margins 

between classes. 

Gradient Boosting (GBoost) shows strong performance without FS, achieving 

accuracy close to 0.92 and high scores for other metrics, particularly AUC. This 

indicates that GBoost’s iterative approach of minimizing errors allows it to handle 

noisy features effectively. However, the application of FS leads to noticeable 

improvements, with AUC increasing to 0.95 and other metrics also showing slight 

gains. The iterative refinement process of GBoost seems to benefit from the reduced 

dimensionality, allowing the model to focus more effectively on the most informative 

features. These results highlight the synergy between feature selection and boosting 

algorithms, where the elimination of irrelevant features enhances the algorithm’s 

ability to capture complex patterns in the data. 

XGBoost, a variant of Gradient Boosting, exhibits similar trends. Without FS, 

XGBoost already outperforms many other classifiers, with accuracy close to 0.93 and 

consistently high values for precision, recall, and F1-score. The additional 

regularization techniques in XGBoost likely contribute to its ability to handle noisy 

data effectively. However, after applying FS, XGBoost achieves even better results, 

with AUC increasing to 0.96 and slight gains observed in other metrics. These 

improvements further emphasize the importance of feature selection in enhancing 

model performance, even for algorithms as robust as XGBoost. 

LightGBM emerges as the best-performing classifier both with and without FS. 

Without FS, LightGBM achieves accuracy around 0.94 and consistently high values 

across all other metrics, reflecting its ability to handle high-dimensional data 

efficiently. After applying FS, LightGBM’s performance improves further, with AUC 

reaching 0.97 and precision increasing to 0.93. LightGBM’s leaf-wise growth strategy 

and ability to handle large datasets make it highly effective, and the application of FS 
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amplifies these strengths by reducing noise and focusing on the most relevant 

features. These results highlight LightGBM’s superiority in handling both raw and 

preprocessed datasets. 

AdaBoost also performs well, though its results are slightly below those of LightGBM 

and XGBoost. Without FS, AdaBoost achieves accuracy around 0.89 and high scores 

for precision, recall, and F1-score. However, it appears slightly more sensitive to 

irrelevant features compared to other ensemble methods, as indicated by minor 

inconsistencies in its metrics. After applying FS, AdaBoost shows modest 

improvements, with accuracy increasing to 0.91 and slight gains observed in other 

metrics. While not as robust as LightGBM or XGBoost, AdaBoost remains a strong 

contender, particularly for datasets where interpretability and simplicity are important 

considerations. 

Overall, the comparison highlights the critical role of feature selection in improving 

classifier performance. For simpler models like Logistic Regression and KNN, FS 

significantly enhances performance by reducing noise and dimensionality, allowing 

these models to focus on the most relevant features. For more advanced algorithms 

like Random Forest, Gradient Boosting, and LightGBM, the impact of FS is less 

pronounced but still noticeable, as it further refines their ability to generalize and 

reduces computational complexity. 

The results also underscore the superiority of ensemble-based methods, particularly 

LightGBM, XGBoost, and Gradient Boosting. These algorithms consistently 

outperform traditional methods like LR, KNN, and SVM, both with and without FS, 

demonstrating their ability to handle complex patterns and interactions within the 

data. Feature selection amplifies these advantages by eliminating irrelevant features, 

allowing the models to focus on the most important predictors and improving their 

overall efficiency. 

In conclusion, while feature selection benefits all classifiers to varying degrees, its 

impact is most pronounced for simpler models that struggle with high-dimensional 

datasets. For robust ensemble methods, FS provides a slight but meaningful 

improvement, further enhancing their already strong performance. LightGBM 

emerges as the most effective classifier in both scenarios, making it the preferred 

choice for handling complex datasets with or without preprocessing. These findings 
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underscore the importance of both feature selection and model choice in achieving 

optimal performance, highlighting the need to tailor preprocessing and algorithm 

selection to the specific characteristics of the dataset and the goals of the application. 

 

 

Figure 14: Performance of classifier without Feature selection 

 

The implementation of the best-performing model, XGBoost, on a mobile application 

involves several steps, including model training, optimization, conversion, integration 

into the app, and its role in delivering real-time predictions for the users. The 

following details describe the implementation process as showcased in the attached 

app interface: XGBoost, known for its efficiency and high accuracy, was selected as 

the best-performing model based on the comparative analysis of classifiers. The 

training process began with preprocessing the dataset, ensuring that irrelevant features 

were eliminated through feature selection techniques. This reduced dimensionality, 

improved computational efficiency, and enhanced model performance. The XGBoost 

algorithm was trained using hyperparameter tuning to optimize parameters such as the 

learning rate, maximum depth of trees, and the number of boosting rounds. Cross- 

validation techniques were applied to avoid overfitting and to ensure robust 

generalization. 
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Once the XGBoost model achieved optimal performance, it was converted into a 

lightweight format suitable for deployment on mobile devices. This involved 

exporting the trained model into formats like ONNX (Open Neural Network 

Exchange) or CoreML for compatibility with various platforms. Using libraries such 

as TensorFlow Lite or ML Kit, the model was further quantized to reduce its size and 

computational requirements, ensuring efficient operation on resource-constrained 

devices. 

 

 

Figure 15: Performance of classifier with Feature selection 

 

The mobile application was designed to incorporate the XGBoost model as a core 

component of the "DiaPredict" feature, which predicts the risk of diabetes based on 

user inputs. The app interface allows users to input key parameters such as age, BMI, 

waist circumference, fasting blood glucose, blood pressure, smoking status, family 

history, and physical activity levels. These inputs are preprocessed locally on the 

device to ensure they are in the same format as the training data. 

The app then uses the embedded XGBoost model to generate predictions in real-time. 

Based on the inputs, the model evaluates the risk of diabetes, classifying it into 

categories such as low, moderate, or high risk. The prediction is displayed instantly on 

the app, providing users with actionable insights. 
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The user interface of the app is intuitive, guiding users seamlessly through the process 

of risk prediction. After obtaining the prediction, users are directed to additional 

resources through the app’s “Awareness” section. This section provides educational 

content on managing diabetes, including guidelines on exercise, healthy eating, stress 

management, and regular check-ups. 

The app also features other functionalities, such as reminders, blood glucose level 

tracking, and physician consultation questionnaires. These modules complement the 

predictive capabilities of XGBoost by promoting awareness, enabling self- 

management, and offering access to professional advice. 

To enhance performance, sensitive computations are conducted on the device itself, 

reducing the need for constant internet connectivity and improving response times. 

Additionally, data security and user privacy are prioritized. Inputs provided by users 

are processed locally and not transmitted to external servers, ensuring compliance 

with data protection regulations such as GDPR and HIPAA. 

 

 

 

Figure 16: Layout of Mobile application 

 

 

 

The integration of XGBoost into the mobile app lays the foundation for scalability. In 

the future, the app can be extended to include other health-related predictions, such as 
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cardiovascular risk or chronic disease monitoring. The modular nature of the 

implementation ensures that new models can be integrated without significant 

changes to the existing infrastructure. 

The inclusion of a feedback loop can also be considered, where user outcomes are 

periodically collected (with consent) to further refine and retrain the XGBoost model. 

This continuous learning approach would improve the model’s accuracy and 

relevance over time, enhancing its utility for diverse user populations. 

The implementation of the XGBoost model on the mobile application represents a 

significant step in leveraging advanced machine learning techniques for personalized 

health management. By integrating a powerful predictive model into an accessible and 

user-friendly app interface, the solution empowers individuals to monitor and manage 

their diabetes risk effectively. The combination of real-time predictions, educational 

resources, and additional health management tools ensures a comprehensive approach 

to promoting awareness and preventive care. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

The study conducted aimed to evaluate and optimize the performance of machine 

learning classifiers for predicting diabetes risk, both with and without feature 

selection techniques. The research demonstrated that feature selection significantly 

enhanced the performance metrics of most classifiers by eliminating irrelevant and 

redundant features, thus improving computational efficiency and accuracy. Among the 

classifiers, XGBoost consistently outperformed others in terms of accuracy, precision, 

recall, and F1-score, showcasing its robustness and adaptability to the dataset's 

characteristics. The statistical analysis, including Tukey HSD tests, further validated 

the superiority of certain classifiers over others, providing statistical significance to 

the observed differences in performance. 

The deployment of the best-performing model, XGBoost, in a mobile application 

represents a practical application of this research. The app integrates predictive 

capabilities with educational resources, empowering users to assess their diabetes risk 

and take preventive measures. This approach underscores the potential of machine 

learning to make significant contributions in the healthcare domain, particularly in 

enhancing early diagnosis and public awareness. 

Despite the promising results, several areas warrant further investigation. First, the 

dataset used for this study could be expanded to include more diverse demographic 

and clinical data, ensuring the model’s generalizability across different populations. 

Second, incorporating advanced techniques such as deep learning could be explored 

to capture complex patterns within the data. While XGBoost performed exceptionally, 

neural networks may provide additional insights, particularly with larger datasets. 

The integration of real-time data collection into the mobile application, such as 

wearable devices for continuous glucose monitoring or physical activity tracking, 

could enhance the app’s predictive capabilities and user engagement. Moreover, 

incorporating user feedback mechanisms into the application could refine its usability 

and functionality over time. Finally, ethical considerations such as data privacy and 
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fairness should be further emphasized, ensuring the deployed system adheres to 

stringent standards while maintaining transparency and user trust. 

By addressing these areas, this research can be extended to provide a more 

comprehensive, accurate, and user-friendly solution for diabetes risk prediction and 

management, ultimately contributing to better healthcare outcomes and preventive 

measures at a broader scale. 

6.1 Challenges in Diabetes Prediction 

Despite progress, several challenges persist: 

 

 Imbalanced Datasets: Most datasets have fewer diabetic cases, which skews 

model performance. Techniques like SMOTE are often employed to address 

this issue.

 Data Quality: Missing or inconsistent data remains a challenge in healthcare 

datasets.

 Feature Selection: Redundant or irrelevant features can reduce model 

efficiency.

 Privacy Concerns: Strict regulations like GDPR complicate data sharing.

 

6.2 Future Directions 

Future research should address the following areas: 

 

 Real-Time Prediction: Integrating wearable devices to provide real-time 

diabetes risk predictions.

 Personalized Models: Tailoring models to individual risk factors and genetic 

predispositions.

 Federated Learning: Allowing model training across decentralized datasets 

without compromising data privacy.

 Explainable AI: Developing interpretable models to gain clinician trust and 

regulatory approval.
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