

D
E

-4
2

 (E
E

) A
li, U

sa
m

a
, N

o
o
r
,

Specific Emitter Identification

COLLEGE OF

ELECTRICAL AND MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

RAWALPINDI

2024

ii

C
O

L
L

E
G

E
O

F
E

L
ECTRICAL AND MECHANICA

L
E
N

G
IN

E
E

R
IN

G

DE-42 EE

PROJECT REPORT

Specific Emitter Identification

Submitted to the Department of Electrical Engineering

in partial fulfillment of the requirements

for the degree of

Bachelor of Engineering

in

Electrical

2024

Submitted by:

Muhammad Ali Bin Mushtaq

Muhammad Usama Mustafa

Noor-ul-Ain

i

CERTIFICATE OF APPROVAL

It is to certify that the project “Specific Emitter Identification” was done by NS

Muhammad Usama Mustafa, NS Muhammad Ali Bin Mushtaq, NS Noor-ul-Ain under

the supervision of Dr. Qasim Umar Khan.

Submission: This project was submitted to the College of Electrical and Mechanical

Engineering, National University of Sciences and Technology, Pakistan, as part of

the requirement for the degree of Bachelor of Electrical Engineering.

Students:

1. Muhammad Usama Mustafa
NUST ID: 333186 Signature:

2. Muhammad Ali Bin Mushtaq

NUST ID: 335701 Signature:

3. Noor-ul-Ain

NUST ID: 342465 Signature:

Approved By:

Project Supervisor: Dr. Qasim Umar Khan

Signature:

Date:

ii

DECLARATION

We declare that no part of this project thesis has been submitted in support of an application

for another degree or qualification. We have not submitted this thesis to any other university

or educational institution. We are totally liable for any disciplinary action taken against us

based on the nature of the proved offence, including the revocation of our degree.

Students:

1. Muhammad Usama Mustafa

NUST ID: 333186

2. Muhammad Ali Bin Mushtaq

NUST ID: 335701

3. Noor-ul-Ain

NUST ID: 342465

Signature:

Signature:

Signature:

COPYRIGHT STATEMENT

• The student author assumes all intellectual property rights regarding the content of this thesis.

Copies (by any means) whether fully or partially, may only be produced per specifications

provided by the original author and submitted in the Library of NUST College of E&ME.

Consult Librarian for more information. In case any such copies are made, this page must be a

part of all the reproduced versions. Further replication (by any means) of the previously

mentioned copies made in adherence with such instructions may not be made without having the

written permission from the author.

• The ownership of any intellectual property rights which may be described in this thesis is vested

in NUST College of E&ME, subject to any prior agreement to the contrary, and may not be

made available for use by third parties without the written permission of the College of E&ME,

which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation may take place

is available from the Library of NUST College of E&ME, Rawalpindi.

Students:

1. Muhammad Usama Mustafa

NUST ID: 333186

2. Muhammad Ali Bin Mushtaq

NUST ID: 335701

3. Noor-ul-Ain

NUST ID: 342465

Signature:

Signature:

Signature:

ACKNOWLEDGMENTS

First, we would like to thank Allah Almighty for giving us this amazing opportunity to work at this final

year project and giving us strength to complete it. Secondly, we want to thank our supervisor Dr. Qasim
Umar Khan for their unwavering support, guidance and help that enabled us to achieve major milestones

throughout the project. Without his insightful inputs and humble corrections we would not have been

able to complete this project.

2

ABSTRACT

Specific Emitter Identification (SEI) refers to the identification of transmitters based on their unique

characteristics, known as RF fingerprints. SEI can be performed using two main methods: manual

feature-based and deep learning-based approaches. In this project, we are developing a novel SEI

algorithm that uniquely combines both approaches.

First, the signal is acquired using a software-defined radio. The received signal is then passed through

the SEI algorithm, which extracts RF fingerprints from it. The signal is decomposed into five modes
using Variational Mode Decomposition (VMD). From each mode, two types of features are extracted:

RF-DNA and time-frequency spectrograms. We refer to this combination of RF-DNA with VMD as

modified RF-DNA, and it serves as the input to the XGBoost classifier, which classifies the signal
among known classes.

If an unknown transmitter is detected, it is sent to the Siamese Neural Network (SNN). The SNN uses

both modified RF-DNA and time-frequency spectrograms to convert the inputs into a shared
representation space using a 2-channel Convolutional Neural Network (CNN) with bimodal feature

fusion. The similarity scores are then calculated by comparing the input with other signals. If a match

is found, the transmitter is labeled accordingly; otherwise, it is assigned a new label as an unknown
transmitter.

3

SUSTAINABLE DEVELOPMENT GOALS

Goal 9 – INDUSTRY, INNOVATION, AND INFRASTRUCTURE:

Our project, operating on a portable system, serves to detect potential threats in advance,

enabling timely responses to safeguard national security. By offering early indications of

emerging risks, it empowers the implementation of effective countermeasures, contributing to

the resilience of critical infrastructure and fostering innovation in security protocols.

Figure 1. SGD Goal 9

4

TABLE OF CONTENTS

ACKNOWLEDGMENTS... iii

ABSTRACT... 2

SUSTAINABLE DEVELOPMENT

GOALS…………………………………………….………………………………….. 3

TABLE OF

CONTENTS..4

LIST OF

FIGURES.. 8

LIST OF

TABLES.. 9

LIST OF

SYMBOLS...10

Chapter 1 –

INTRODUCTION..……………………….. 11

1.1. Specific Emitter

Identification:……..……………………………………………………… 11

1.1. Scope of the

project……………………………………………………………….……. 11

1.2. Report

structure….……………………………………………………………….. 12

Chapter 2 – BACKGROUND AND LITERATURE

REVIEW…... 13

2.1.Background…...…………………………………………….... 13

2.1.1. Manual Feature-based

SEI……………………………………………………….. 13

2.1.1.1. RF Fingerprint based on

Entropy………………………………………………...… 13

2.1.1.2. RF Fingerprint based on spectral and statistical

features……………… 13

2.1.1.3. RF-DNA based

features………………………………………………….. 13

2.1.2. Deep learning-based

SEI……………………………………………………..... 14

2.1.2.1. Single domain

prediction…………………………………………….... 14

2.1.2.2. Time-frequency based

features………………………………………………... 14

2.1.2.3. Empirical Mode Decomposition based

approach…………………………………………….… 14

5

2.2. Literature

Review…………………………………………………………………………... 14

2.2.1. Variational Mode Decomposition

(VMD)………………………………………. 14

2.2.1.1. What is a

mode?.. 14

2.2.1.2. How does VMD

work?... 15

2.2.1.3. Key features of Variational Mode

Decomposition……………………. 15

2.2.2. Unintentional Modulation and RF

Fingerprint…………………………………... 15

2.2.2.1. Unintentional Modulation…………... 16

2.2.2.2. Effect of IM on probability distribution………17

2.2.3. RF-DNA and XGBoost for specific emitter

identification……………………… 17

2.2.3.1. RF-DNA feature………………….… 17

2.2.3.2. XGBoost Classifier…….…………... 18

2.2.4. Bimodal feature fusion for specific emitter

identification……………………..… 18

Chapter 3 – HARDWARE AND DATA COLLECTION.................. 19

3.1. Project Hardware………………………………………. 19

3.2. Data Collection………………………………………...... 19

3.2.1 Design for the LabView Reception

file………………………………………….. 19

3.2.2. Dataset……………………………………….. 20

3.2.2. DATA VARIATION………………………... 22

Chapter 4 – SIGNAL PREPROCESSING AND FEATURE

EXTRACTION……...…………………. 23

4.1. Requirements of RFF extraction

algorithm……………………………………………….. 23

4.2. Manual feature-based RFF extraction (Modified RF-

DNA)……………………………… 23

4.3. Features for deep learning-based

SEI……………………………………………………... 25

Chapter 5 – MACHINE LEARNING CLASSIFICATION AND KNOWN EMITTER

DETECTION……………………………………………………………… 27

5.1. Requirements for ML

classifier…………………………………………………………… 27

5.2. XGBoost classifier for SEI ML

classification……………………………………………. 27

5.2.1. Performance evaluation of XGBoost

Classifier………………………………… 27

6

5.3. Performance comparison with other

models……………………………………………… 28

5.3.1. Random Forest

Classifier………………………………………………………. 28

5.3.2. Decision Tree

Classifier………………………………………………………... 30

5.3.3. K-Nearest Neighbor

(KNN)……………………………………………………. 31

5.3.4. Gaussian naïve bayes

classifier…………………………………………………. 32

5.3.5. Performance comparison of all classification

models………………………….. 33

5.4. XGBoost model performance testing and

results……………………………………… 33

5.4.1. Varying message signal…………………………… 33

5.4.1. Varying IQ rate……………………………………. 33

Chapter 6 – DEEP LEARNING AND SINGLE SHOT IDENTIFICATION OF

UNKNOWN TRANSMITTERS………………...……………………….. 35

6.1. Deep learning and artificial neural

network………………………………………………. 35

6.1.1. Convolutional neural

networks…………………………………………………. 35

6.2. Identification, classification, and labelling of unknown transmitters in real-

time………… 36

6.2.1. Siamese network for specific emitter

identification……………………………. 37

6.2.1.1. Loss function for Siamese

networks…………………………………………. 38

6.2.1.2. Convolutional neural network layer with bimodal feature

fusion……………. 42

6.2.1.3. Siamese neural network (SNN) training and

results………………………….. 42

6.3. The Fusion of the DL Model with the Chosen ML Model……42

 6.3.1. Workflow Description………………………………42

 6.3.2. Advantages And Applications………………………43

Chapter 7 – SPECIFIC EMITTER IDENTIFICATION SOFTWARE AND HARWARE

SETUP…... 44

7.1.1. Receiver for SEI

application……………………………………………………………. 44

7.1.1.1. NI-USRP2901…………………..…………………... 44

7.1.1.2. RTLSDR……………..……………………………… 45

7.1.2. Processing unit and display for SEI application………………...45

7.2. Specific emitter identification application:……………………….46

 7.2.1. Complete specific emitter identification algorithm…….46

7.2.1.1. Feature Extraction……………………………46

7.2.1.2. XGBoost classification and unknown emitter

detection…..46

7

7.2.1.3. Siamese network classification and unknown emitter

labelling………..46

7.2.2. Graphical user interface……….47

7.2.3. Noise floor………………….....48

Chapter 8 – CONCLUSIONS AND FUTURE WORK.…………………….. 49

8.1. Conclusion…………….………………………………………... 49

8.2. Future work……………………………………………………....49

ANNEXURE…………………………………………………………………..50

• SEI AS A COMPLEX ENGINEERING

PROBLEM…………….…………………………………….. 50

REFERENCES ..51

8

LIST OF FIGURES

Figure 1. SGD Goal 9..3

Figure 2. Variational Mode Decomposition of message signal received from

dataset….........................16.

Figure 3. The probability distribution of a single tone before and after AM and

FM..….........................17.

Figure 4. The Reception And Storage File At Receiver…………………… 20.

Figure 5. Single Tone Tx File…………………… 21.

Figure 6. AM Modulated Sine Wave Tx File…………………… 21.

Figure 7. Simple Audio Wave Tx File…………………… 22.

Figure 8. AM Modulated Audio Wave Tx File…………………… 22.

Figure 9. Flow chart of process of extracting modified RF-DNA from input

signal…………………..24.

Figure 10. The time frequency spectrogram of a signal

received………………………………………..25.

Figure 11 Complete flow chart of bimodal feature extraction from received

signal…………………....26.

Figure 12. Confusion matrix of XGBoost classifier……………………

………………………………..28.

Figure 13. Confusion matrix of random forest

classifier…………………………………………………29.

Figure 14. Confusion matrix of decision tree

classifier………………………………………………….30.

Figure 15. Confusion matrix of KNN

classifier………………………………………………………..31.

Figure 16. Confusion matrix if gaussian naïve bayes

classifier…………….………………………….32.

Figure 17. Basic working of CNN based

classifier……………………………………………………..35.

Figure 18. Flow diagram of specific emitter identification with Siamese

networks……………………36.

Figure 19. Working of a triplet

loss…………………………………………………………………….37.

Figure 20. 2-channel CNN with bimodal feature

fusion………………………………………………..38.

Figure 21. The structure of attention

modules………………………………………………………….38.

Figure 22. Signal acquisition LabVIEW

code………………………………………………………….44.

Figure 23. Block diagram of hardware

configuration…………………………………………………..45.

Figure 24. New transmitter detection GUI

display……………………………………………………..46.

Figure 25. Specific emitter identification algorithm flow

diagram……………………………………..47.

Figure 26. GUI of SEI application when receiver is

RTLSDR…………………………………………48.

Figure 27. GUI of SEI application when receiver is

USRP2901……………………………………….48.

9

LIST OF TABLES

Table 1. Classification report of XGBoost

classifier...28.

Table 2. Classification report of random forest

classifier……………..……………………………….29.

Table 3. Classification report of decision tree

classifier………………………………………………..30.

Table 4. Classification report of KNN

classifier………………………………………………………..31.

Table 5. Classification report of Naïve bayes

classifier………………………………………………...32.

Table 6. Accuracy comparison of all

classifiers………………………………………………………..33.

Table 7. Change in accuracy w.r.t change in message

signal…………………………………………..33.

Table 8. Change in accuracy w.r.t change in IQ

rate……………………………………………………34.

Table 9. Summary and training parameters of Siamese neural

network………………………………..42.

10

LIST OF SYMBOLS

Letter like symbols

𝓗 Hilbert transform
s skewness
k kurtosis

Greek Letters

α penalty factor in VMD and bias in triplet loss
𝜔 Frequency (rad/s)
𝜆 Lagrangian operator
𝜎 Standard deviation

Acronyms

SEI Specific Emitter Identification

RFF Radio Frequency Fingerprint

USRP Universal Software Radio Peripheral

NI National Instruments

SVM Support vector machine

IMF Intrinsic mode functions

HHT Hilbert Huang transform

EMD Empirical mode decomposition

CEEMDAN Complementary ensemble empirical mode decomposition with adaptive

noise

VMD Variational mode decomposition

UWB Ultra-wideband

CNN Convolutional neural network

STFT Short time Fourier transform

AM-FM Amplitude-modulated-frequency-modulated

RF-DNA Radio frequency distinct native attribute

GBDT Gradient boosting decision tree

XGBoost Extreme gradient boost

SNR Signal to noise ratio

11

Chapter 1 – INTRODUCTION

In the modern world, wireless systems have become an indispensable enabler of modern military
operations and civilian activities, and serve as the backbone of communication, surveillance, navigation,

and numerous other critical functions. And with the introduction of 5G and upcoming 6G networks, and

the increasing number of devices for Internet-of-things (IOT), there is an overwhelming increase in the
device density. Because of the massive device density and diversity with respect to the applications and

types of devices, security and privacy have become a very important issue that needs to be addressed.

Moreover, in the modern warfare and defense, the ability to accurately identify the source of

electromagnetic emissions have become a very important task that needs to be done and these objectives
cannot be achieved with current wireless security methods, so there is a need for an extraordinary

algorithm that can not only provide security for wireless devices but also help monitor the

electromagnetic spectrum for a possible attack and Specific Emitter Identification or SEI is the very
algorithm that solves the device identification and authorization problem and provides an opportunity

for spectrum supervision for military applications.

1.1. Specific Emitter Identification:

Specific Emitter Identification (SEI) involves identifying transmitters based on unique characteristics

known as RF Fingerprints. These fingerprints are inherent to the hardware of transmitting devices,
making them unique even among transmitters of the same model. RF Fingerprints are consistent and

cannot be altered, controlled, or replicated, and they are independent of location and signal type, relying

solely on the hardware characteristics. This means that regardless of the transmitted signal, detecting the
RF Fingerprint allows for the identification of the transmitting device.

SEI methods fall into two main categories: manual feature-based methods and deep learning-based

methods. Manual feature-based methods involve extracting predefined features from the signal and
training models to classify transmitters based on these features. In contrast, deep learning-based methods

use the signal's IQ data or time-frequency features as input to deep learning models, which learn hidden

features for classification.

Traditionally, SEI involves collecting large amounts of data and training numerous machine learning

and deep learning models to classify transmitters. However, with the increasing number of devices and
scenarios such as fast-paced and highly mobile military operations, there is a need to identify transmitters

using minimal data in the shortest possible time. This necessitates a one-shot prediction algorithm

capable of identifying transmitters from just a single signal snapshot.

1.1. Scope of the project:

The project Specific Emitter Identification focuses on the following areas:

• The development of a novel RF fingerprint extraction approach using advanced signal
processing algorithms.

• Training of a classification algorithm for classification of known transmitters and development

of trained model on a real-time system for real-time prediction.

• Development of a one-shot deep learning algorithm for the prediction and labelling of new

transmitters as unknown transmitters in real-time.

• Development of novel algorithm that uniquely combines both manual feature-based and deep
learning-based algorithms and provides the best results.

• Design and development of an interactive graphical user interface with user-friendly design and

interactive display for predictions.

12

1.2. Report structure:

The rest of the report is structured as follows. Chapter 2 focuses on the background of specific emitter

identification shows some of the papers that we have reviewed for this project. Chapter 3 discusses the

data collection procedure we adopted to train our models with different signals and the structure of our
test devices. Chapter 4 goes into detail regarding our feature extraction algorithm and discusses many

signal processing concepts and our novel approach. Chapter 5 and Chapter 6 will focus on the machine

learning and deep learning algorithms and their training results where Chapter 7 will show the Graphical
user interface and the hardware and software for real-time SEI application with two different receivers

and in Chapter 8 we will share the results of our experimentations by testing our models with several

parameters including message signal change, carrier frequency change, and SNR.

13

Chapter 2 – BACKGROUND AND LITERATURE REVIEW

Now we will dive deeper into the previous algorithms and discuss the problems with each specific
emitter identification method leading to our novel approach and reason for selection of this approach.

2.1. Background:

Although SEI can be done on both steady state signals and transient signals, there are some difficulties

in the transient signals because of their short amount of time and difficultly to control in unknown state

[1] [2]. On the other hand, steady state signal detection is relatively easier, and these signals contain

more information about RFF. So, it is now very important to identify how we can extract RFF from

steady state signals.

2.1.1. Manual Feature-based SEI:

There have been many papers that discuss manual-feature based or traditional way of identifying

transmitters. Some of the papers that discuss manual features that can be used for SEI are discussed as

follows:

2.1.1.1. RF Fingerprint based on Entropy:

This paper [3] discusses an RF Fingerprint extraction method based on CEEMDAN

(Complementary ensemble empirical mode decomposition with adaptive noise) and

multidomain joint entropy. First, they decomposed the received signal into multiple Intrinsic

Mode Functions (IMF), then represented the modes in multiple spaces by multidimensional

phase space reconstruction technique. This way they did the non-linear analysis of original

signal in multiple spaces: multidimensional differential approximate entropy space, singular

spectral entropy space, and power spectral entropy space. The used Support Vector Machine

(SVM) as classification model and achieved a 98.5% accuracy on 5-class USRP dataset and a

94.7% accuracy on 16-class public dataset. They achieved a 85% recognition rate in SNR above

5dB.

2.1.1.2. RF Fingerprint based on spectral and statistical features:

The paper [4] employs Variational Mode Decomposition (VMD) to break down the signal into

different Intrinsic Mode Functions (IMFs). It then extracts entropy, statistical, and spectral

features from these IMFs, comparing the training results based on the probability of correct

classification across various scenarios and modulations. Additionally, the study compares VMD

with spectral features against Empirical Mode Decomposition (EMD) with spectral features,

concluding that VMD-SF outperforms other feature sets in all scenarios. The paper also

demonstrates that VMD is more effective at signal decomposition than EMD for Specific

Emitter Identification (SEI).

2.1.1.3. RF-DNA based features:

In [5], the authors introduced a new method for extracting RF Fingerprints (RFF), termed RF Distinct

Native Attribute (RF-DNA), for ultra-wideband (UWB) noise radar identification. They calculated

various fingerprint features, including variance, skewness, and kurtosis of the signals, and classified

them using a Maximum Likelihood classifier. This approach achieved an accuracy of 99.7% for a three-

class dataset and 81% for a seven-class dataset. Ultimately, by combining time and frequency domain

features, they achieved an accuracy of 97.65%.

14

2.1.2. Deep learning-based SEI:

Now that we have looked at some of the papers that discussed the manual feature-based approach, we

will look at some of the deep learning-based approaches.

 2.1.2.1. Single domain prediction:

In the earlier stages of SEI, many papers worked on using only single domain features to predict

the transmitters. The paper [6] utilized the symmetrical characteristics of bi-spectrum structure

to extract features then used a multi-channel one-dimensional convolutional neural network

(CNN) for classification. Although this method performed feature extraction in depth and

reduced the loss of RFF, it had high computation complexity because of complex features.

Moreover, as the research about SEI progressed, researchers found that single-domain features

could not properly explain RF Fingerprint.

2.1.2.2. Time-frequency based features:

As researchers began focusing on time-frequency features for Specific Emitter Identification

(SEI) [7] – [10], they employed various time-frequency conversion algorithms such as the

Hilbert-Huang Transform, wavelet transform, and Fast Fourier Transform. In [9], a Short-time

Fourier Transform (STFT) based SEI algorithm was proposed for signal detection, achieving

high performance. However, due to STFT's linear nature and its inability to perform nonlinear

analysis, it proved to be a suboptimal approach. Conversely, [10] introduced a method using a

wavelet algorithm to extract dynamic wavelet fingerprints, achieving 99% accuracy in

recognizing unique RFID tags. The drawback of this approach is the need to select an

appropriate basis wavelet function. Among these algorithms, the Hilbert-Huang Transform

stands out as an effective method for analyzing nonlinear and non-stationary signals.

2.1.2.3. Empirical Mode Decomposition based approach:

In [7] a Hilbert-Huang transform combined with Empirical Mode Decomposition (EMD)

algorithm is proposed. It first decomposes the signal into different modes and then take HHT to

obtain time-frequency features. However, a major issue with EMD is the existence of mode

mixing and complex calculations [11].

2.2. Literature Review:

For the literature review, we utilized several research papers and learned several algorithms and

techniques utilized by researchers for SEI. Some of the core concepts that we have studied are discussed

below:

2.2.1. Variational Mode Decomposition (VMD):

Variational Mode Decomposition, proposed in 2014 [11] is a fully intrinsic and adaptive signal

processing algorithm used to decompose signals into their principal modes called Intrinsic Mode

Functions (IMFs).

2.2.1.1. What is a mode?

A mode, or Intrinsic Mode Function (IMF) is an amplitude-modulated-frequency-modulated

(AM-FM) signal, that has an envelope A(t) and an instantaneous phase ∅(𝑡). Mathematically,

a mode can be written as:

𝑢𝑘(𝑡) = 𝐴𝑘(𝑡) cos(∅𝑘(𝑡))

Where k is the mode number.

15

2.2.1.2. How does VMD work?

VMD is an iterative method that decomposes a signal based on specific center frequencies 𝜔𝑘

using Euler-Lagrange equations and wiener filtering. It uses Wiener filtering to update the

current mode 𝑢𝑘
𝑛(𝜔) in frequency domain with respect to current center frequency 𝜔𝑘

𝑛 using the

following equation:

𝑢𝑘
𝑛+1(𝜔) =

𝑥(𝜔) −
∑ 𝑢𝑘

𝑛(𝜔) + 𝜆𝑛(𝜔)𝑗 ≠𝑘

2
1 + 2𝛼(𝜔 − 𝜔𝑘

𝑛)2

Where n represents the number of iterations. And 𝜆 is the Lagrangian operator and 𝛼 is the
penalty factor.

After updating the mode, it updates the center frequency and Lagrangian operator as well until

the error is less than the specified threshold.

2.2.1.3. Key features of Variational Mode Decomposition:

1. Reconstruction of original signal: When we decompose a signal using Variational Mode
Decomposition, we can not only properly decompose the signal but also reconstruct it by

simple adding all the modes. Let x(t) be the signal input to VMD and 𝑢𝑘(𝑡) be the signals

decomposed by it. We can easily reconstruct x(t) using:

𝑥(𝑡) 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = ∑ 𝑢𝑘(𝑡)

𝐾

𝑘=0

, 𝑤ℎ𝑒𝑟𝑒 𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑒𝑠.

2. Customizable number of modes: With VMD, we can customize the number of modes we
need. This helps us fixing the number of features for our Machine Learning models and

control our data.

3. Specific bandwidth and center frequency: The bandwidth of the modes decomposed by
VMD have a specific bandwidth and a specific center frequency, hence better

decomposition, and better feature extraction for signal processing applications.

16

Following is a plot that visualizes how VMD works:

Figure 2. Variational Mode Decomposition of message signal received from dataset.

Figure 2 shows the decomposition of a signal collected from an SDR into 5 different modes. We

can see that each mode has a specific center frequency and a specific envelope. Additionally,
when we add all the modes and the residual signal, we can easily reconstruct the signal. This

helps us to remove noise from the signal.

2.2.2. Unintentional Modulation and RF Fingerprint:

As mentioned earlier, RFF are unique features that are added into the signal transmitted by the
transmitting device. When a signal is transmitted from a transmitting device, two types of modulation

occur, one is the Intentional Modulation (IM), and the other is the Unintentional Modulation (UIM). In

this section, we will discuss what UIM is and how it is related to the RFF as explained by [12].

2.2.2.1. Unintentional Modulation:

When a signal is transmitted, because of the hardware structure differences, the amplitude,
frequency, and phase of the signal is disrupted by a process called Unintentional Modulation.

Although, the signal is affected by all the hardware components including, filters, amplifiers,

oscillators, etc. A typical transmitter usually affects the signal in following two ways:

• Change in phase/frequency of transmitter signal because of the phase noise of high
frequency oscillators.

• Change in the envelope of the transmitted signal because of the non-linearities of the

power amplifier.

So, UIM affects the envelope, phase, and frequency of the transmitted signal which are the RF
Fingerprints and now we will look at how we can extract this RFF.

17

2.2.2.2. Effect of IM on probability distribution:

When the envelope of a signal is affected, the distribution of the signal is also changed. As

shown in the following figure:

Figure 3. The probability distribution of a single tone before and after amplitude modulation and frequency

modulation.

We can see that as the envelope of the signal changes, its distribution and kurtosis changes

completely and when the frequency of the signal is affected, it changes the distribution but does

not affect the kurtosis.

So, if UIM changes the envelope, phase and frequency of the signal, by focusing on the
probability distribution, we can extract RFF from the signal.

2.2.3. RF-DNA and XGBoost for specific emitter identification:

The paper [13] utilizes the RF-DNA feature proposed by Michael Temple and combines it with XGBoost

classifier for specific emitter identification and achieves 96.40% accuracy. In this section, we will
discuss the RF-DNA feature and XGBoost classifier.

2.2.3.1. RF-DNA feature:

RF-DNA feature is a combination of statistical features of the amplitude, phase, and frequency

of the signal showing the irregularities and non-linearities of each aspect of the signal, hence

giving an in-depth description of RFF in the signal.
1. For RF-DNA, the signal received is converted to an analytical signal using Hilbert

18

Transform, using the following equation:

𝑥ℎ(𝑡) = 𝑥(𝑡) + ℋ(𝑥(𝑡)) ∗ 1𝑗

Where x(t) is the received signal. Analytical signal is very helpful as it provides the

information about the signal in two domains, we can get the time-frequency information of
the signal using this technique.

2. Once the signal is converted into analytical signal, the amplitude, phase, and frequency of

each sample is calculated using the absolute, angle, and differential of angle, respectively,
of each sample which is a complex number.

3. In this step, the variance, skewness, and kurtosis of the amplitude, phase, and frequency
vectors of the analytical signal is calculated.

Mathematically, we can write it as:

𝑅𝐹 − 𝐷𝑁𝐴 = [𝐹𝐴, 𝐹∅, 𝐹𝑓],

𝑤ℎ𝑒𝑟𝑒, 𝐹 = [𝜎2, 𝑠, 𝑘] and s is the skewness, and k is the kurtosis.

So, by combining the variance, skewness, and kurtosis, we get the complete information about

the changes in the probability distribution of the signal affect by UIM (section 2.1.2) and this

method helps us extract RFF completely.

2.2.3.2. XGBoost Classifier:

Extreme Gradient Boost (XGBoost) Classifier is an ensemble learning method which is based

on the idea of gradient boosting. Although, it works on the similar method, it is completely

different from gradient boosting decision tree (GBDT). The term boosting means that by
combining different weak models, we can enhance a single weak model and GBDT works on

iteratively training an ensemble of decision trees and tries to use the previous model’s error

residual to train the next decision tree model. But because of its sequential approach, it takes a

lot of time to train and has a high tendency to move towards overfitting, but these issues are
resolved in XGBoost, which converts its sequential approach to parallel approach and follows a

level-wise strategy scanning across gradient values and uses these partial sums to check the

quality of splits at every split.
XGBoost has many advantages and is considered the best classification algorithm because of its

performance, speed because of regularization, adaptive processing of missing values, pruning

and parallel processing.

2.2.4. Bimodal feature fusion for specific emitter identification:

The paper [14] proposes a novel idea of using VMD for specific emitter identification and a unique way
to combining both manual features and deep learning to train a CNN classifier. As mentioned in the

introduction, there are two main ways to perform specific emitter identification, one is manual feature-

based approach and the other is deep learning-based approach but in this paper, the researchers
developed a two channel convolutional neural network that took both features as input and later on

combined both features and achieved more than 90% for SNR as low as -10dB showcasing the noise

resistance of this algorithm.
We will discuss their neural network later in the deep learning chapter as it is the base model for our

deep learning model.

19

CHAPTER 3 – HARDWARE AND DATA COLLECTION

This chapter emphasizes on the project hardware, creation of a personalized dataset, and the

incorporation of different parametric nuances (changes in gain, signal’s frequency, and devices’ location,

etc.) to allow for our developed algorithm’s increased robustness.

3.1. Project Hardware:

1. USRP-2901: It is a Software-defined radio (Manufactured by National Instruments (NI)) that allows
for transmission and reception over a wide range of radio frequencies. The device also includes a

high-speed interface (typically Gigabit Ethernet) for data transfer to and from a host computer. For

data acquisition, we used these SDR devices that can be configured inside LabView (a graphical
programming environment, provided by NI Instruments) and synthesized a broad range of signals,

differing in their message contents, as well as, modulation techniques. Finally, all this data was

saved onto a computer and taken further for processing.

2. High Performance Laptop: Initially, the signal processing of the RF signals acquired from our USRP

devices required a highly efficient processor capable of performing the signal decomposition

algorithm discussed in Chapter 3 (i.e., VMD). Furthermore, extracting features from the modes
provided by VMD also demanded substantial computational resources. Finally, applying Machine

Learning and Deep Learning algorithms required a powerful system to optimize models for

improved classification. The spec of which are as follows:

• CPU: Intel(R) Core (TM) i5-10500H CPU @ 2.50GHz 2.50 GHz

• GPU: NVIDIA GTX 1650Ti (4 GB).

• RAM: 16GB

• Operating system: Windows 11

3.2. Data Collection:

In this section, we will first discuss how we utilized LabVIEW to configure our devices for transmitting

and receiving data. Additionally, we will briefly cover the number of classes defined in our dataset.
Finally, we will explore the various types of signals we generated to enhance data diversity to optimize

models’ performance across different modalities.

3.2.1 Design for the LabView Reception file:

We set up a USRP Device as a receiver by using LabView’s built-in file named as, “Rx

Continuous Async”, and configured it as follows:
1. Carrier Frequency: 2.45GHz

2. IQ rate: 100K

3. No of samples: 10,000
4. Gain: 100

5. Time of data collection: 50s

20

Figure 4. The Reception And Storage File At Receiver

3.2.2. Dataset:

For our project, we defined a total of seven different classes (i.e., 4 known Transmitters, 2
Unknown Transmitter devices, and noise class). Furthermore, they were labeled as:

(i) Known Transmitter 1 => Labeled as (1)
(ii) Known Transmitter 2 => Labeled as (2)

(iii) Known Transmitter 3 => Labeled as (3)

(iv) Known Transmitter 4 => Labeled as (4)
(v) Unknown Transmitter 1 => Labeled as (-1)

(vi) Unknown Transmitter 1 => Labeled as (-2)

(vii) Noise Class => Labeled as (0)

21

For data collection we will be using the following files that we created using LabView:

1. Single Tone Frequency as done in Transmission and Reception of Single Tone signal

using Rx & Tx Continuous Async.

Figure 5. Single Tone Tx File

2. AM Modulated Sine Wave

Figure 6. AM Modulated Sine Wave Tx File

3. Simple Audio File Synthesized in MATLAB

22

Figure 7. Simple Audio Wave Tx File

4. AM Modulated Audio Signal.

Figure 8. AM Modulated Audio Wave Tx File

3.2.3. DATA VARIATION:

To get variations in the data, we varied the gain of each signal (files, mentioned above) from the

lowest possible gain to 100. This will allow us to have data that shows the behavior of features

at different gains, hence allowing us to make better identification.
Dealing with noise is an important factor in emitter identification. So, to get more variations of

data that has noise, we will use an attenuator at the transmitter side and increase the distance

between USRP devices, hence ensuring that most of the data being received is noisy.

23

CHAPTER 4 – SIGNAL PREPROCESSING AND FEATURE

EXTRACTION

As discussed in the literature, our signal preprocessing and feature extraction algorithm must be focused

on how we can extract RF fingerprints from received signal with high tolerance to noise. In this chapter,

we will discuss our novel specific emitter identification feature extraction and preprocessing algorithms
and its key features. As we will be using both manual feature-based approach and deep learning-based

approach, there are two features that we will be extracting from received signal. Before we dive deep

into the feature extraction, we need to specify our requirements for an amazing SEI application.

4.1. Requirements of RFF extraction algorithm:

As the classification needs to be done solely based on RF fingerprints, we need to eliminate any
possibilities including prediction based on carrier signal, message signal, or location of transmitter etc.

So, our algorithm must be able to fulfil the following requirements:

• Message and carrier signal independence: Our specific emitter identification must be

independent of the message signal and the carrier frequency of transmitted signal. It is
extremely important to keep the RFF as the only feature for classification which is why it is

essential to make sure our feature extraction algorithm is message and carrier signal

independent.

• Bandwidth independence: Like message and carrier signal, it is important to make sure that

the bandwidth of the transmitted signal does not affect the prediction of our model. This is
essential because the bandwidth of the transmitter may vary especially in the case of unknown

transmitters and in the case of multiple transmitters.

• Location independence: It is very important to make sure that our algorithm does not predict

based on the location of the transmitter.

• In-depth and low-cost RFF extraction: Another important factor for our algorithm is for it to
be able to extract RF fingerprint with in-depth details without compromising the

computational cost, hence faster feature extraction and faster predictions.

Following the above-mentioned requirements, we have developed two main features for our algorithm.

4.2. Manual feature-based RFF extraction (Modified RF-DNA):

Our novel approach for manual feature-based RFF extraction works on combining the extraordinary
signal decomposition technique of VMD and the complete RFF extraction ability of RF-DNA. Here is

a step-by-step process of extracting this modified RF-DNA.

The received signal is first decomposed into 5 different modes using VMD. As discussed earlier, this
allows for better and more in-depth feature extraction. Additionally, by dividing the signal into modes,

we can remove the message signal from the signal and only focus on RFF. Amongst these 5 modes, the

first two modes are eliminated as the message and carrier signals are mostly dominant in the first two

modes and the remaining 3 modes are considered the modes containing the most information about RFF.
Once we have the three modes from VMD, we will apply RF-DNA method on each mode and obtain

the variance, skewness, and kurtosis of the amplitude, phase, and frequency of the analytical signal of

each mode. In addition to these features, we will add the center frequencies of each mode, obtained from
the VMD, into the features.

So, the combination of RF-DNA of each mode of the signal obtained by VMD, and the center frequency

of each mode is the modified RF-DNA feature extraction method we have used for our Manual feature-
based RFF extraction.

24

Figure 9 shows the complete flow chart of the process of extracting modified RF-DNA from input signal.

This modified RF-DNA feature will be used to train a machine learning classifier which is discussed in
the next chapter. For now we will move onto the features for deep learning-based SEI.

25

4.3. Features for deep learning-based SEI:

Like [14] the deep learning model used for this project also utilizes bimodal feature fusion, so for this

purpose the features for deep learning-based SEI will be of two types, time frequency spectrogram as

spatial features and modified RF-DNA as temporal features.
The temporal features for the bimodal feature fusion will be the modified RF-DNA as discussed in the

previous section but for this, our modified RF-DNA will use all the modes from the VMD instead of the

final three as the deep learning model will focus on extracting RFF from all the modes.
For the time-frequency spectrogram, we will first take the VMD of the signal, convert each mode to

analytical signal, calculate amplitude and frequency of each mode and then we will calculate the

spectrogram using the SciPy’s spectrogram function which is then plotted using matplotlib’s

pcolormesh.

Figure 10. It shows the time frequency spectrogram of a signal received.

So, the modified RF-DNA with all modes and the time frequency spectrogram of all modes are the two

features for the bimodal feature fusion algorithm.

26

Figure 11. It shows the complete flow chart of bimodal feature extraction from received signal.

27

CHAPTER 5: MACHINE LEARNING CLASSIFICATION AND

KNOWN EMITTER DETECTION.

During chapter 4, we discussed feature extraction and briefly described the models used in this project.

In this chapter, we will investigate details regarding the classification requirement of our SEI problem

and train a classifier for our SEI problem. Additionally, we will discuss why the selected model is the
best option for our project.

5.1. Requirements for ML classifier:

Before we start discussing the model, we will investigate the requirements the classifier must fulfil for

better specific emitter identification.

• The ML classifier must be able to classify known transmitters into the respective classes, i.e.

transmitter 1, 2, 3, and 4, high accuracy.

• The ML classifier must be able to differentiate between known and unknown transmitters and
classify all transmitters other than transmitter 1, 2, 3, and 4, as unknown transmitters or 0.

• The ML classifier should not take a lot of time to train and must be more resistant to overfitting.

• The classification time should be as small as possible.

5.2. XGBoost classifier for SEI ML classification:

Based on the requirements for the ML classifier for our SEI application, XGBoost is the classifier that

checks all the boxes. As discussed in the section 2.1.3.2, the XGBoost classifier is considered as the best

classifier. The combination of L1 and L2 regularization helps to prevent overfitting and its parallel
approach gives better and speedier classification time.

5.2.1. Performance evaluation of XGBoost Classifier:

For this project, we trained the XGBoost classifier for classification into 5 classes, that are 0, 1, 2, 3, and

4. Where 0 represents the unknown transmitter, and 1, 2, 3, and 4; represent the respective transmitters.
All the transmitted signals, as discussed in chapter 3 were processed and their modified RF-DNA

features were extracted and used for training and testing.

Following are some of the performance parameters of XGBoost classifier for our dataset.

Accuracy: 99.018%

28

Confusion Matrix:

Figure 12. Confusion matrix of XGBoost Classifier

Classification report:

Table 1. Classification report of XGBoost
 Precision Recall F1-score Support

0 1.00 0.99 0.99 1111

1 1.00 1.00 1.00 1335

2 0.99 0.97 0.98 1225

3 1.00 1.00 1.00 1297

4 0.97 0.99 9.98 1244

Accuracy 0.99 6212

Macro avg 0.99 0.99 0.99 6212

Weighted avg 0.99 0.99 0.99 6212

As we can see from these performance parameters, the results are great, and the accuracy is more than
99%.

5.3. Performance comparison with other models:

Now we will look at the accuracies of some other popular classification models and compare the results

with XGBoost classifier.

5.3.1. Random Forest Classifier:

As another classifier that works on ensemble approach, RF classifier shows great prediction results and
can be considered as the best option after XGBoost classifier.

The performance parameters of RF classifier are:

Accuracy: 98.82%

29

Figure 13. Confusion matrix of Random Forest Classifier

Classification report:
Table 2. Classification report of Random Forest Classifier

 precision recall f1-score support

0 0.997305 0.9991 0.998201 1111

1 1 1 1 1335

2 0.984861 0.955918 0.970174 1225

3 0.99923 1 0.999615 1297

4 0.960063 0.985531 0.97263 1244

accuracy 0.988249 6212

macro avg 0.988292 0.98811 0.988124 6212

weighted avg 0.988374 0.988249 0.988235 6212

We can see that the results of random forest classifier are great, but the accuracy is a bit lower than the
XGBoost classifier. Additionally, during real-time testing we noticed that XGBoost gave relatively

better real-time prediction accuracies.

30

5.3.2. Decision Tree Classifier:

Now we will look at the performance of the decision tree classifier.

Accuracy: 97.21%

Confusion Matrix:

Figure 14. Confusion matrix of decision tree classifier

Classification report:
Table 3. Classification report of decision tree classifier.

precision recall f1-score support

0 0.973118 0.977498 0.975303 1111

1 0.997758 1 0.998878 1335

2 0.950253 0.92 0.934882 1225

3 0.995388 0.998458 0.996921 1297

4 0.940991 0.961415 0.951093 1244

accuracy 0.972151 6212

macro avg 0.971502 0.971474 0.971415 6212

weighted avg 0.972121 0.972151 0.972064 6212

31

5.3.3. K-Nearest Neighbor (KNN):

K-Nearest Neighbors (KNN) is a straightforward algorithm that predicts the output based on the majority

vote of its nearest neighbors. While it is simple to implement, KNN can be computationally intensive

during real-time prediction, as it requires calculating the distance to all training samples. Additionally,
the algorithm's performance is sensitive to the choice of the number of neighbors and the distance metric

used, which can significantly impact its accuracy and effectiveness.

We trained it on the same dataset and achieved the following results:

Accuracy: 88.313%

Confusion Matrix:

Figure 15. Confusion matrix of KNN classifier

Classification report
Table 4. Classification report of KNN classifier.

precision recall f1-score support

0 0.864545455 0.855985599 0.860244233 1111

1 0.999251497 1 0.999625608 1335

2 0.808186196 0.822040816 0.815054634 1225

3 0.906156156 0.930609098 0.918219855 1297

4 0.823038397 0.792604502 0.807534808 1244

accuracy 0.883129427 6212

macro avg 0.88023554 0.880248003 0.880135828 6212

weighted avg 0.882756462 0.883129427 0.882836109 6212

32

5.3.4. Gaussian naïve bayes classifier:

Naïve Bayes is a probability-based classifier that is known for its speed and effectiveness with high-

dimensional data. However, it operates under the assumption that all features are independent of one

another, which is rarely the case in real-world scenarios. This assumption often leads to lower accuracy,
as it fails to account for the dependencies and interactions between features that are typically present in

actual datasets.

We trained it on the same dataset and achieved the following results:
Accuracy: 41.47%

Confusion Matrix:

Figure 16. Confusion matrix of Naïve Bayes classifier

Classification report:
Table 5. Classification report of Naïve Bayes classifier.

precision recall f1-score support

0 0.345070423 0.308730873 0.325890736 1111

1 0.895660203 0.72659176 0.802315964 1335

2 0.398832685 0.167346939 0.235767683 1225

3 0.347826087 0.166538165 0.225234619 1297

4 0.280666667 0.676848875 0.396795476 1244

accuracy 0.414681262 6212

macro avg 0.453611213 0.409211322 0.397200896 6212

weighted avg 0.461675695 0.414681262 0.40368878 6212

33

5.3.5. Performance comparison of all classification models:

The following table provides the accuracies of all the classification models, and we can compare all of

them to see which one provides the best output.
Table 6. Accuracy comparison of all classifiers.

Classifier Name Naïve Bayes KNN Decision Tree Random Forest XGBoost

Accuracy 41.47% 88.313% 97.21% 98.82% 99.018%

So, from the table we can see that the best accuracy is achieved by XGBoost classifier. This is one of

the reasons why we selected XGBoost classifier for our application. Additionally, the ability of XGBoost
classifier to prevent overfitting and fast prediction is the major reasons it works best for SEI.

5.3.5.1 XGBoost model performance testing and results:

After model training, we tested the model in different scenarios and checked how the real-time accuracy

of the model changes.

5.3.5.1.1 Varying message signal:

For the first test, we changed the frequencies of the message signal to check whether the model was

message signal independent or not.

The message signal for this experiment is a single tone frequency, which is AM modulated by another

sinusoidal signal with frequencies 10x the frequency of single tone. Then this signal is digitally
modulated by USRP kits at the carrier frequency of 2.45Ghz. And for the IQ rate of 100k samples per

second, i.e. bandwidth of 80kHz, we received the following results:

Table 7. Change in accuracy w.r.t change in message signal

Message

signal

frequency

AM

carrier

signal

Reading1 Reading2 Reading3 Reading4 Reading5 Average% Detected

label

Actual

label

100 1000 99.3645 95.1726 97.3311 98.8127 98.9 97.91618 1 1

1000 10000 99.2487 96.2307 96.6031 99.4197 98.0649 97.91342 1 1

2000 20000 99.479 57.5632 99.0248 99.6995 50.5697 81.26724 1 1

3000 30000 98.8513 99.5613 98.9454 99.3997 99.1633 99.1842 1 1

4000 40000 97.4218 99.7602 99.0055 97.0613 99.4006 98.52988 1 1

5000 50000 75.3121 97.825 99.653 99.253 98.151 94.03882 1 1

6000 60000 53.4073 68.1458 99.4825 70.251 57.2123 69.69978 1 1

7000 70000 74.1561 97.7465 76.2553 77.2986 68.6164 78.81458 1 1

8000 80000 99.8976 99.8165 73.6377 53.5638 99.589 85.30092 1 1

9000 90000 56.7462 99.6529 96.588 99.3214 97.5352 89.96874 1 1

10000 100000 99.6101 99.8687 81.1752 81.3119 50.5848 82.51014 1 1

20000 200000 62.2334 64.5919 59.3598 70.4355 99.4816 71.22044 1 1

30000 300000 71.8504 99.6477 99.7082 98.6364 99.7457 93.91768 1 1

40000 400000 99.5799 98.646 98.1905 98.7895 55.6806 90.1773 1 1

50000 500000 99.8454 99.7679 73.6047 76.3348 68.3284 83.57624 1 1

60000 600000 59.7033 54.4735 70.3663 99.67 98.1856 76.47974 1 1

70000 700000 76.6172 64.281 52.1021 99.5501 99.5852 78.42712 1 1

80000 800000 79.7743 64.7061 55.1155 61.4006 53.0905 62.8174 1 1

5.4.1. Varying IQ rate:

Now we will try to change the IQ rate of the transmitting device and keep the message signal constant

to see how the accuracy changes according to the change in IQ rate.

34

Table 8. Change in accuracy w.r.t change in IQ rate
IQrate Reading1 Reading2 Reading3 Reading4 Reading5 Average% Detected

label

Actual

label

100k 99.9788 99.9801 99.9785 99.9817 99.9698 99.97778 1 1

50k 99.9367 99.9794 99 .9485 99.4028 99.9397 99.81436 1 1

25k 99.9266 99.9643 99.9444 99.9655 99.9751 99.95518 1 1

75k 73.3475 53.3132 76.6858 81.0719 83.0082 72.60813 1 1

We can see that by changing the message signal and the IQ rate, the accuracies do get affected but are
still more than 70% and the label is not a false result. So, we can say that our algorithm works very well.

35

CHAPTER 6 – DEEP LEARNING AND SINGLE SHOT

IDENTIFCATION OF UNKNOWN TRANSMITTERS

In chapter 4, we discussed the feature extraction from a signal and focused on the combination of manual

feature-based and deep learning-based algorithms. We’ve utilized the manual features in chapter 5 and
discussed several machine learning algorithms and selected XGBoost as our classifier. In this chapter,

we will focus on the deep learning-based specific emitter identification and the specific algorithm we

have selected. But first let’s discuss why we need deep learning when our machine learning model is

working perfectly.

6.1. Deep learning and artificial neural network:

Deep learning is a subset of machine learning that uses artificial neural networks and deep neural

networks to model and solve complex problems. By mimicking the structure of human brain, neural

networks are multiple layers of neurons (perceptron) that can extract hidden features and detect complex
structures and patterns.

6.1.1. Convolutional neural networks:

Artificial neural networks are of many types, one of the widely used neural networks is convolutional

neural networks (CNN). CNN is a specialized neural network that is used to extract hidden features from

spatial information like images.

CNNs have three basic layers, a convolutional layer that performs convolution on the input image using

a kernel filter of a specific size. The number of times the kernel filter is applied is the depth of the output
feature map. After the convolutional layer, there is a pooling and a batch normalization layer with a

specific activation function, usually ReLU.

Figure 17. Basic working of a CNN based classifier.

CNNs are used to extract hidden features from spatial data while preserving the spatial information of
the network. After the convolutional layers, there are some fully connected neural networks that can be

utilized for many purposes. Figure 11 shows how CNN is used for classification.

36

6.2. Identification, classification, and labelling of unknown transmitters in real-time:

In specific emitter identification, many algorithms work on identifying transmitters using classifiers that

are trained on huge amount of data but in real time scenarios it can be extremely difficult to collect that

much data of hundreds and thousands of transmitters and it becomes almost impossible to collect data
of transmitters that are completely unknown to us and are not in our control.

For example, in military scenarios, the data of transmitters from other countries is not available and it is

extremely important to detect, label and remember the transmitters on minimum amount of data. For
such type of predictions, one-shot or few-shot algorithms are needed that can not only detect the

transmitter as an unknown but also check whether this specific unknown was ever detected earlier or

not.
In this project, we proposed and developed a novel way to identifying transmitters by comparing the

received signal with the signal of previously identified transmitters using a single shot algorithm called

Siamese networks.

6.2.1. Siamese network for specific emitter identification:

Siamese network is a type of neural network that contains two or more identical networks that convert
two inputs into a space representation space which is them compared to predict if both inputs are from

the same class or not. Usually, Euclidean distance is used to calculate the similarity between two inputs,

but cosine similarity and other similar functions can be used.
For specific emitter identification, we trained a Siamese network that utilized the bimodal feature fusion,

as proposed in [14], to take modified RF-DNA with all modes, and time frequency spectrogram as spatial

features and are passed through a convolutional neural network that combines the features extracted
from both inputs, and some fully connected layers to give an output of size 1x32. This output is the

shared representation space and to measure the similarity between two inputs, both are converted to their

shared representation space and then the Euclidean distance between them is calculated.

Figure 18. Flow diagram of specific emitter identification with Siamese networks.

37

In figure 12, we can the visual representation of how two signals can be compared with each other to

calculate their similarity score. This Euclidean distance is then compared with a constant and if it is
lower than that constant we say that the inputs are from same transmitter otherwise they are from

different transmitters.

6.2.1.1. Loss function for Siamese networks:

To train the Siamese network for our project, we utilized triplet loss. Triplet loss teaches
algorithms to recognize the similarity and difference between items and uses the group of three

items, called triplets, containing an anchor, an item from the same class (positive) and an item

from the different class (negative). The major goal of triplet loss is to make the model learn that

the anchor is closer to the positive and different from the negative.
Mathematically, triplet loss can be written as:

∑[||𝑓(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑝)||2
2 − ||𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑛)||2

2 + 𝛼]

𝑁

𝑖

Where, f(x) is the share representation space of anchor, positive and negative and i represents

the ith input and 𝛼 is the bias. The goal is to minimize the whole term by minimizing the first

term and maximizing the second term and bias acts as threshold.

Figure 19. Working of a triplet loss

The python implementation of the triplet loss is as follow:

class TripletLoss(nn.Module):
 def __init__(self, margin=2.0):

 super(TripletLoss, self).__init__()

 self.margin = margin

 def forward(self, anchor, positive, negative):

 distance_positive = F.pairwise_distance(anchor, positive)
 distance_negative = F.pairwise_distance(anchor, negative)

 loss = torch.mean(torch.clamp(distance_positive - distance_negative + self.margin,

min=0.0))

 return loss

38

6.2.1.2. Convolutional neural network layer with bimodal feature fusion:

As shown in figure 12, we are using a 2 channel CNN layer for bimodal feature extraction and

fusion. Now we will look at the neural network architecture.

Figure 20. 2-channel CNN with bimodal feature fusion

Where the convolutional block attention module (CBAM), spatial attention module (SAM), and
channel attention module (CAM) are used to enhance the distinguishability between fingerprint

features and to improve weight of important parts of subsequent feature. The structures of these

attention modules can be seen as follows:

Figure 21. The structures of attention modules.

Where the python implementation of this neural network is as follows:

class SiameseNetwork(nn.Module):

 def __init__(self, num_classes, batch_size):

 super(CNN, self).__init__()

 self.conv1 = nn.Sequential(
 nn.Conv1d(in_channels=1, out_channels=32, kernel_size=3, padding=1,

stride=1),

 nn.ReLU(),
 nn.MaxPool1d(kernel_size=3, stride=2, padding=1),

 nn.BatchNorm1d(32),

 nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3, padding=1,
stride=1),

 nn.ReLU(),

39

 nn.MaxPool1d(kernel_size=3, stride=2, padding=1),

 nn.BatchNorm1d(64)
)

 self.conv2 = nn.Sequential(

 nn.Conv1d(in_channels=64, out_channels=128, kernel_size=3, padding=1,
stride = 1),

 nn.ReLU(),

 nn.MaxPool1d(kernel_size=3, stride=2, padding=1),

 nn.BatchNorm1d(128),
 nn.Conv1d(in_channels=128, out_channels=256, kernel_size=3, padding=1,

stride = 1),

 nn.ReLU(),
 nn.MaxPool1d(kernel_size=3, stride=2, padding=1),

 nn.BatchNorm1d(256)

)

 self.conv3 = nn.Sequential(
 nn.Conv1d(in_channels=256, out_channels=512, kernel_size=2, padding=1,

stride=1),

 nn.ReLU(),
 nn.MaxPool1d(kernel_size=3, stride=1, padding=1),

 nn.BatchNorm1d(512)

)
 self.convs = nn.Sequential(

 nn.Conv2d(in_channels = 3, out_channels = 64, kernel_size=(7,1), stride=1,

padding=1),

 nn.ReLU(),
 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),

 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(1,7),
stride=1, padding=0),

 nn.ReLU(),

 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),
 nn.BatchNorm2d(64)

)

 self.convs2 = nn.Sequential(

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,1),
stride=1, padding=1),

 nn.ReLU(),

 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),
 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(1,3),

stride=1, padding=1),

 nn.ReLU(),
 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),

 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,3),
stride=1, padding=1),

 nn.ReLU(),

 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),
 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,3),

stride=1, padding=1),

 nn.ReLU(),
 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),

40

 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,3),
stride=1, padding=1),

 nn.ReLU(),

 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),
 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,3),

stride=1, padding=1),

 nn.ReLU(),
 nn.AvgPool2d(kernel_size=(3,3), stride=2, padding=1),

 nn.BatchNorm2d(64),

 nn.AdaptiveAvgPool2d(output_size=(1,1)),
 nn.Flatten()

)

 self.avg2d = nn.AvgPool2d(kernel_size=(3,3), stride=1, padding=1)

 self.max2d = nn.MaxPool2d(kernel_size=(3,3), stride=1, padding=1)
 self.conv_cam = nn.Sequential(

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,3),

stride=1, padding=1),
 nn.ReLU(),

 nn.BatchNorm2d(64),

 nn.Conv2d(in_channels = 64, out_channels = 64, kernel_size=(3,3),
stride=1, padding=1),

 nn.ReLU(),

 nn.BatchNorm2d(64)

)
 self.avg = nn.AvgPool1d(kernel_size=1,padding=0, stride=1)

 self.max = nn.MaxPool1d(kernel_size=1, stride=1, padding=0)

 self.avg2 = nn.AvgPool2d(kernel_size=(3,3),padding=1, stride=1)
 self.max2 = nn.MaxPool2d(kernel_size=(3,3), stride=1, padding=1)

 self.spm = nn.Sequential(nn.Conv1d(in_channels=128, out_channels=64,

kernel_size=1, padding=0, stride=1),
 nn.ReLU(),

)

 self.spm2 = nn.Sequential(nn.Conv2d(in_channels=128, out_channels=64,

kernel_size=(3,3), padding=1, stride=1),
 nn.ReLU())

 self.soft = nn.Softmax(dim=1)

 self.fc1 = nn.Flatten()
 self.linear = nn.Sequential(

 nn.Linear(in_features=1600, out_features=512),

 nn.BatchNorm1d(512),

 nn.ReLU(),
 nn.Linear(in_features=512, out_features=256),

 nn.BatchNorm1d(256),

 nn.ReLU(),
 nn.Linear(in_features=256, out_features=128),

 nn.BatchNorm1d(128),

 nn.ReLU(),
 nn.Linear(in_features=128, out_features=64),

 nn.BatchNorm1d(64),

 nn.ReLU(),

 nn.Linear(in_features=64, out_features=32),
 nn.BatchNorm1d(32),

41

 nn.ReLU(),

)
 # self.fc2 = nn.Linear(512, num_classes)

 def cam(self, x):
 x1 = self.avg2d(x)

 x1 = self.conv_cam(x1)

 x2 = self.max2d(x)

 x2 = self.conv_cam(x2)
 x = x1+x2

 x = self.soft(x)

 return x

 def cbam(self,x):

 x2 = self.cam(x)

 x = x2*x
 x2 = self.sam2(x)

 x = x2*x

 return x

 def vmd_s(self,x):

 x = self.convs(x)
 x2 = self.cbam(x)

 x = x*x2

 x = self.convs2(x)

 return x

 def sam(self,x):

 x3 = self.avg(x)
 x4 = self.max(x)

 x2 = torch.cat([x3, x4], dim=1)

 x2 = self.spm(x2)
 x2 = self.soft(x2)

 return x2

 def sam2(self,x):
 x3 = self.avg2(x)

 x4 = self.max2(x)

 x2 = torch.cat([x3, x4], dim=1)
 x2 = self.spm2(x2)

 x2 = self.soft(x2)

 return x2

 def vmd_t(self,x):

 x = x.unsqueeze(1)

 x = self.conv1(x)
 x2 = self.sam(x)

 x2 = x2.expand_as(x)

 x = x2*x
 x = x.squeeze(2)

 x = self.conv2(x)

 x = self.conv3(x)

 x = self.fc1(x)
 return x

42

 def forwarda(self, x):
 temporal = x['temporal'] #temporal features VMDT

 tf = x['tf'] #Time frequency features VMD_S

 temporal = self.vmd_t(temporal)
 tf = self.vmd_s(tf)

 x = torch.cat([temporal, tf], dim=1)

 x = self.linear(x)

 return x

6.2.1.3. Siamese neural network (SNN) training and results:

To train the SNN, we took the data of 6 USRP devices, extracted features and trained using

triplet loss. The training parameters are as follows:

Table 9. Summary and training parameters for Siamese Neural Network

Parameter name Parameter value

Train size 80% of dataset

Test size 20% of dataset

Time-frequency spectrogram image size 620x480

Device Cuda

Batch size 8

Learning rate 0.001 for first 5 epochs and 0.0001 for later.

No of epochs 15

Loss function Triplet loss

Optimizer Adam with momentum 0.9

Programming language Python

Library Pytorch

Distance setpoint 1.8

Achieved accuracy 90%

So, from the table we can see that when the distance setpoint is set to 1.8, the achieved accuracy

is 90%.

6.3 The Fusion of the DL Model with the Chosen ML Model

The novelty of this project lies in the combined usage of both Machine Learning (ML) and

Deep Learning (DL) models. The ML model is responsible for the classification of known

transmitters and the identification of any unknown signals or potential noise. On the other

hand, the DL model works in conjunction with the ML model and takes additional inputs such

as time-spectrogram features. These features are passed through a detailed architecture that

includes attention blocks, which prioritize decisive parameters crucial for classifying signals

emitted by unknown devices.

6.3.1 Workflow Description:

1. ML Model:
o Classification of Known Transmitters: The ML model classifies signals

from known transmitters.

43

o Detection of Unknown Signals: It also identifies the presence of

unknown signals or potential noise.

2. DL Model:
o Enhanced Feature Extraction: The DL model takes in time-spectrogram

features along with other inputs (Modified RF-DNA).

o Attention Mechanism: It uses attention blocks to focus on critical

parameters that are key to classifying signals from unknown devices.

3. Combined Model Operation:
o Shared Representation: The DL model transforms these features into a

shared representation.
o Signal Classification: The combined model checks if it has previously

encountered the signal from a particular transmitter.

o Decision Making: If the signal is recognized, it is classified accordingly.

If it is unrecognized, the signal is stored in the database and assigned a

new class.

6.3.2 Advantages and Application:

• Improved Accuracy: The combined approach leverages the strengths of both ML and DL
models to achieve higher accuracy in signal classification.

• Real-time Signal Identification: The models work in real-time to identify and classify

signals, making them suitable for dynamic and changing environments.

• Adaptive Learning: The system learns continuously, updating the database with new signals

and improving classification accuracy over time.

44

CHAPTER 7 – SPECIFIC EMITTER IDENTIFICATION

SOFTWARE AND HARWARE SETUP

The process of specific emitter identification is done is three steps, data acquisition, feature extraction

and model prediction. In chapter 3 we discussed how we collected data, chapter 4 focused on feature

extraction, and in chapters 5 and 6 we discussed the machine learning and deep learning methods for
our application. In this chapter, we will focus on the specific emitter identification software and its

hardware setup for real-time specific emitter identification.

7.1. Hardware Setup and data acquisition:

The hardware setup for the specific emitter identification real-time application consists of a receiver, a

processor, and a display. The signal acquired from the receiver is sent to the SEI application which is
being run in the processor and is responsible for the feature extraction, machine learning prediction, and

Siamese network unknown emitter identification. We will discuss the SEI application in detail in the

next section and in this section, we will focus on the hardware.

7.1.1. Receiver for SEI application:

There are two main receivers that are being used for the SEI application. One is a USRP2901 device,
and the other is RTLSDR receiver.

7.1.1.1. NI-USRP2901:

As discussed in chapter 3, NI-USRP2901 is a software defined radio developed by national

instruments and can be configured using LabVIEW’s communication toolbox. USRP devices
are a great option for specific emitter identification application as they provide a huge range of

center frequencies, IQ rates, number of samples per snapshot, and high-quality signal

transmission and reception. The only downside about it is the lack of compatibility with python

and the need for LabVIEW for signal acquisition.
While reception, the SEI models work best with the following configuration:

• Carrier Frequency: 2.45GHz

• IQ rate: 100k samples per second

• Gain: 0 dB

• No of samples per snapshot: 10000

And the LabVIEW code is as shown below:

Figure 22: Signal acquisition LabVIEW code

45

7.1.1.2. RTLSDR:

RTLSDR is a cheap software defined radio that can be configured using different ways, one of

which is using python’s pyrtlsdr library. RTLSDR works in a 24MHz to 1.7GHz center

frequency range and has a bandwidth of 2.4Mhz, i.e. an IQ rate of 3Mhz. RTLSDR’s utility is
its availability in python making it a good and cheap receiver for a complete specific emitter

identification software.

SEI application with RTLSDR receiver works best with the following configuration:

• Carrier frequency: 1GHz

• IQ rate: 3Mhz

• Samples per snapshot: 10000

• Gain: Auto

7.1.2. Processing unit and display for SEI application:

The major processing unit for the specific emitter identification application is the MSI gf63mini laptop

with its built-in display. The high computational complexity of the SEI application demands a high-

performance laptop, and this is the major reason for the use of this hardware for SEI application. The
specifications of this processing unit are as follows:

• CPU: Intel(R) Core(TM) i5-10500H CPU @ 2.50GHz 2.50 GHz

• GPU: NVIDIA GTX 1650Ti.

• RAM: 16GB

• Operating system: Windows 11

Figure 23. Block diagram of hardware configuration.

7.2. Specific emitter identification application:

The specific emitter identification application is a software developed in python using Kivy framework

for GUI. This software has two main versions, one suitable when USRP kit is being used as receiver and

the other when RTLSDR is being used. Although the basic algorithm is the same there are minimal
differences in data acquisition and transmitter configuration i.e. GUI. But before we discuss the

differences, let’s discuss the complete specific emitter identification algorithm containing the feature

extraction and prediction with both XGBoost classifier and Siamese Network.

7.2.1. Complete specific emitter identification algorithm:

For the specific emitter identification project, SEI is done in three steps after data acquisition: feature
extraction, known emitter classification or unknown emitter detection, and then unknown emitter

classification and real-time labelling.

46

7.2.1.1. Feature Extraction:

When the data is received from the receiving device, it is sent to the feature extraction function

that extracts the modified RF-DNA features and the time-frequency spectrogram from the

signal. The details of these algorithms are discussed in chapter 4. In addition to the feature
extraction, other information from the received signal is also extracted, including the signal

power, its kurtosis, and its power spectral density (PSD) which is displayed on the GUI which

will be discussed later. Additionally, the extracted features are sent to the prediction function
responsible for both ML and SNN predictions.

7.2.1.2. XGBoost classification and unknown emitter detection:

At this stage, extreme gradient boost pretrained classifier is loaded using python’s joblib library

and is used to predict the transmitter of the received signal. At this stage the classifier either

outputs the specific transmitter, i.e. 1, 2, 3, and 4, or detects the unknown transmitter by giving
an output of 0. If the unknown transmitter is detected, the program proceeds to the Siamese

neural network’s function, otherwise the application displays the results and the prediction

parameters including the prediction accuracy and the predicted transmitter.

7.2.1.3. Siamese network classification and unknown emitter labelling:

If the unknown is detected by the XGBoost classifier, the signal is sent to the Siamese Network’s
function that converts the signal to its shared representation space using the 2-channel bimodal

feature fusion network and then calculates the Euclidean distance between the shared

representation space of previously stored and labelled signals. If the lowest of all the distances
is less than 1.8, we label the received signal as the same label as the matched transmitter but if

no match is found, meaning if the lowest Euclidean distance is greater than 1.8, then the signal

is said to be from a completely unknown transmitter, and it is assigned a new label and stored
in the database.

For example, if we have previously detected three unknowns and labelled them in real-time as

-1, -2, and -3, and if the received signal doesn’t match with any of these, then the signal will be

saved with the label of -4 and our application will saw that a new unknown was discovered.

Figure 24. New transmitter detection GUI display

47

So, the complete flow diagram of our specific emitter identification algorithm can be displayed as:

Figure 25. Specific emitter identification algorithm flow diagram.

7.2.2. Graphical user interface:

Now we will discuss the graphical user interface of SEI application. The SEI application’s GUI was

designed in Figma and developed using python’s kivy framework. The GUI consists of input fields for
RTLSDR configuration and to control the center frequency, number of samples, and the gain of

RTLSDR, along with start and stop buttons. The GUI developed for USRP as a receiver does not have

these input fields and only contains a start and stop button.
In addition to this, there is a section to display the previous predictions and their properties including

predicted transmitter, accuracy/distance, kurtosis, and power. One the right, there are two graphs, one

displays the signal in time domain and the other displays the power spectral density (PSD) of the signal.

Additionally, there is a block that displays the current prediction.

48

Figure 26. GUI of SEI application when receiver is RTLSDR.

Figure 27. GUI of SEI application when receiver is USRP2901.

7.2.3. Noise floor:

To make sure the algorithm does not classify noise as a transmitter, a noise floor of -120dB is set. This

value was selected based on experimentation and if the power of received signal is lower than -120dB,

it is labelled as 0.

49

CHAPTER 8 – CONCLUSION AND FUTURE WORK

In this final chapter, we will conclude our report and discuss some ideas that can be implemented on this

project in future.

8.1. Conclusion:

Specific Emitter Identification (SEI) involves identifying transmitters based on their unique RF

fingerprints unintentionally modulated into their signals. This project introduces a novel approach by
combining manual feature-based methods and deep learning-based methods to enhance SEI. The

received signal is processed to extract Modified RF-DNA using Variational Mode Decomposition

(VMD) and RF-DNA, achieving a 99% accuracy in transmitter prediction with an XGBoost classifier.
The classifier also identifies unknown transmitters not among the known four. If an unknown transmitter

is detected, the signal is forwarded to a Siamese network, which uses a 2-channel Convolutional Neural

Network (CNN) with bimodal feature fusion to extract RF fingerprints from the time-frequency
spectrogram and Modified RF-DNA. This model compares the unknown signal with known transmitter

signals and achieves 90% accuracy in determining whether they are from the same transmitter. A

complete SEI application has been developed for this process, capable of running on a laptop using either

a USRP2901 or RTLSDR as the receiver platform.

8.2. Future work:

Although this project completes its requirements, there are many things that can be added to this project.

Some of them are:

• This project can be implemented on a high-performance minicomputer to make it robust and

available for a small device.

• The complete algorithm can be improved by improving the RFF extraction from the signal and
making the prediction better with less tendency towards overfitting.

• The models presented in this project can be trained on huge amounts of data consisting of hundreds

and thousands of transmitters for better and more accurate predictions and making the models ready

for unseen scenarios.

• The computational complexity of the algorithm can be decreased.

• The models can be trained to detect multiple transmitters at once by utilizing the time division

multiplexing (TDM) and frequency division multiplexing (FDM).

50

ANNEXURE

SEI AS A COMPLEX ENGINEERING PROBLEM.

Specific emitter identification is a complex engineering problem that has the following characteristics:

WP1 – Depth of knowledge required.

Advanced engineering knowledge at the level of WK3, WK4, WK5, WK6, and WK8 is required for

specific emitter identification as this level of understanding is necessary to apply basics of signal

processing, electromagnetic theory, machine learning, deep learning, and statistics. It is very important
for us as engineers to understand the characteristics of electromagnetic waves, non-linearities of devices,

and the theory behind radio frequency fingerprints.

WP2: Range of conflicting requirements.

SEI has a wide range of technical, engineering, and other issues that we faced and had to overcome.

• SEI requires high precision calculations and identification versus the processing power available

in real-time scenarios.

• SEI also needs highly accurate data in the minimum amount of time, hence requires high speed.

• There are many environmental constraints that need to be addressed for specific emitter
identification including the channel noise.

WP3: Depth of analysis required.

Because of no specific definition of what an RF fingerprint is, the problem has no obvious solution and

requires abstract thinking and an original approach. We developed novel algorithms and techniques for
signal feature extraction and classification.

WP6: Extent of stakeholder involvement and level of conflicting requirements:

SEI involves many groups of stakeholders with varying needs. Some of them are:

• Military and defense industries require high precision and secure identification systems to

ensure national security.

• Many commercial entities require specific emitter identification for managing and identifying
signals in crowded spectra.

• Many regulatory bodies can use this technology for spectrum management and legal constraints.

WP1 WP2 WP3 WP4 WP5 WP6 WP7

WK3 WK4 WK5 WK6 WK7 WK8

PLO1 (WA1) X

PLO2 (WA2) X X X

PLO3 (WA3) X

PLO4 (WA4) X X

PLO5 (WA5) X

PLO6 (WA6)

PLO7 (WA7)

PLO8 (WA8)

51

REFERENCES

[1] I. S. Mohamed, Y. Dalveren and A. Kara, “Performance Assessment of Transient Signal

Detection Methods and Superiority of Energy Criterion (EC) Method,” in IEEE Access, vol.

8, pp. 115613-115620, 2020.Z.

[2] U. Satija, N. Trivedi, G. Biswal and B. Ramkumar, “Specific Emitter Identification

Based on Variational Mode Decomposition and Spectral Features in Single Hop and

Relaying Scenarios,” in IEEE Transactions on Information Forensics and Security, vol. 14,

no. 3, pp. 581-591, March 2019

[3] WEI J Y, YU L, ZHU L, et al. RF fingerprint extraction method based on CEEMDAN

and multidomain joint Entropy. Wireless Communications and Mobile Computing, 2022,

2022: 5326892

[4] SATIJA U, TRIVEDI N, BISWAL G, et al. Specific emitter identification based on

variational mode decomposition and spectral features in single hop and relaying scenarios.

IEEE Trans. on Information Forensics and Security, 2018, 14(3): 581–591

[5] M. Lukacs, P. Collins, and M. Temple, “Classification performance using ’rf-dna’

fingerprinting of ultra-wideband noise waveforms,” Electronics Letters, vol. 51, no. 10, pp.

787–789, 2015.

[6] L. Yang, P. Zhen, J. Wang, J. Zhang and D. Guo, “Radar Emitter Recognition Method

Based on Bispectrum and Improved Multichannel Convolutional Neural Network,” 2021

6th International Conference on Communication, Image and Signal Processing (CCISP),

2021, pp. 321-328.

[7] Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on

Hilbert–Huang transform-based time–frequency–energy distribution features,” IET

Commun., vol. 8, no. 13, pp. 2404–2412, Sep. 2014.

[8] R. Kabiri and S. V. Shojaeddini, “specific emitter identification novel method based on

time-frequency features,” 2015.

[9] X. Wang, G. Huang, Z. Zhou and J. Gao, “Radar emitter recognition based on the short

time fourier transform and convolutional neural networks,” 2017 10th International

Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-

BMEI), 2017, pp. 1-5.

[10] C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet fingerprinting of radio-

frequency identification (RFID) tags,” IEEE Trans. Ind. Electron, vol. 59, no. 12, pp. 4843–

4850, Dec. 2012.

[11] K. Dragomiretskiy and D. Zosso, “Variational Mode Decomposition,” in IEEE

Transactions on Signal Processing, vol. 62, no. 3, pp. 531- 544, Feb.1, 2014

[12] Zhao Yurui, Wang Xiang, Sun Liting, and Huang Zhitao, “Specific emitter

identification based on frequency and amplitude of the signal kurtosis” Journal of Systems

Engineering and Electronics, Vol. PP, No. 99, April 2023, pp. 1 – 11.

[13] Yipeng Zhou, Rui Zhou, Hailong Wang, Chunyu Wang, Xiaofeng Wang, and Yan Yu,

“A Specific Emitter Identification Method Based on RF-DNA and XGBoost” 2022 7th

International Conference on Intelligent Computing and Signal Processing (ICSP).

52

[14] Jinling Su, Heng Liu, Lui Yang, “Specific Emitter Identification Based on Variational

Mode Decomposition and Bimodal Feature Fusion” 2023 IEEE 3rd International Conference

on power, Electronics and Computer Applications (ICPECA).

