

Deep Fake Lab

 By:
GC Muhammad Fahad Asif

GC Ahmed Abdullah

GC Ibad ur Rehman

GC Ali Hassan Awan

Supervised by:

 Col (R) Dr. Imran Touqir (PhD)

Submitted to the faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad,

in partial fulfillment for the requirements of B.E Degree in Electrical Engineering.

June 2024

i | P a g e

In the name of ALLAH, the Most benevolent, the Most Courteous

ii | P a g e

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report for the Final Year Project

“Deep Fake Lab” is carried out by Muhammad Fahad Asif, Ahmed Abdullah, Ibad ur Rehman, Ali

Hassan Awan under my supervision and that in my judgement, it is fully ample, in scope and

excellence, for the degree of Bachelor of Electrical Engineering in Military College of Signals,

National University of Sciences and Technology (NUST), Islamabad.

“Deep Fake Lab”

 is carried out by

GC Muhammad Fahad Asif

GC Ibad ur Rehman

GC Ali Hassan Awan

GC Ahmed Abdullah

Approved by Supervisor

 Signature:

 Name of Supervisor: Col (R) Dr. Imran Touqir

 Dated:

iii | P a g e

DECLARATION OF ORIGINALITY

We hereby declare that no portion of work presented in this thesis has been

submitted in support of another award or qualification in either this institute

or anywhere else.

iv | P a g e

Dedication
This thesis is dedicated to our Families, Teachers, Friends, and to our supervisor for their love,

endless support, and encouragement.

v | P a g e

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Tala is the sole guidance in all domains.

Our parents, colleagues, and most of all our supervisors, Col (R) Dr. Imran Touqir

Without your guidance this wouldn’t be possible and all the group members, who

through all adversities worked steadfastly.

vi | P a g e

Plagiarism Certificate (Turnitin Report)

This thesis has 4 similarity index. Turnitin report endorsed by Supervisor is attached.

Name & Signature of

Supervisor:

 Col (R) Dr. Imran Touqir

Name & Signatures of

Students:

 GC Muhammad Fahad Asif

00000359294

GC Ahmed Abdullah

00000359317

vii | P a g e

GC Ibad ur Rehman

00000359301

GC Ali Hassan Awan

00000359290

viii | P a g e

ABSTRACT

The widespread use of deepfake technology has created serious obstacles for multimedia content

integrity, necessitating the urgent necessity for reliable detection methods. This study examines

how well-advanced techniques like watermark embedding, metadata verification, and hashing

work when combined with a Deep Fake Lab to improve the detection of manipulated media. The

solution under consideration makes use of cryptographic hashing techniques to generate unique

IDs for authentic multimedia content. Advantages of referring to hashes; The algorithm may also

detect hashes indicating possible deepfake manipulations by computing hashes of questionable

media and comparing them to reference hashes of high-quality sources. Moreover, metadata is

studied to detect abnormalities in the metadata of media files that are inherent to the image such

as timestamps, camera settings, and timestamps which are comparable to deepfake manipulation.

Moreover, during the development process, the various ways you can integrate watermarks

(which are small, indistinguishable electronic footprints) are also explored. Despite its potential

for distortion of its image, these watermarks work as reliable determinants of accuracy and can

be helpful for establishing whether any changes or manipulations have been made illegally. The

above techniques provide a broad range of measures for estimating and eliminating the spread of

deepfakes on different media platforms through the use of a centralized Deep Fake Lab. The

effectiveness of the proposed framework with regard to identifying various forms of altered or

harmful media is then examined in light of detection accuracy, resistance to adversarial attacks,

and computational complexity through extensive testing utilizing diverse datasets of legitimate

or altered media. Some of the key findings of the research provide an opportunity for greater

support in ensuring that audiovisual information remains intact in a world that is increasingly in

a digital age as well as giving rise to improved technologies for the development of deepfake

detection.

ix | P a g e

Table of Contents

Chapter 1 .. 1

Introduction ... 1
1.1 Overview ... 2
1.2 Problem Statement ... 3
1.3 Proposed Solution ... 3
1.4 Working Principle .. 4

1.4.1 Hashing Module: ... 5
1.4.2 Frame-by-Frame Hashing and Verification Module: ... 6
1.4.3 Metadata Verification Module: ... 6
1.4.4 Watermark Embedding and Detection Module: .. 7
1.4.5 Metadata Extraction: ... 8
1.4.6 Audio Hashing and Verification Module: ... 10
1.4.7 User Interface Module: .. 10
1.4.8 PDF Generation Module: .. 11

1.5 Objectives .. 12
1.5.1 General Objectives: ... 12
1.5.2 Academic Objectives: .. 12

1.6 Scope .. 13
1.7 Deliverables... 13

1.7.1 Software Requirement Specification: .. 14
1.7.2 Software Architecture Document: .. 14
1.7.3 Software Design Document: ... 14
1.7.4 Implementation Code Document: .. 14
1.7.5 Evaluation Reports: ... 14
1.7.6 Software Testing Document: ... 15
1.7.7 Final Project Report... 15

1.8 Relevant Sustainable Development Goals ... 15
1.9 Structure of Thesis .. 16

Chapter 2 .. 17

Literature Review .. 17
2.1 Industrial background .. 17
2.2 Current approaches and their limitations. ... 19

2.2.1 Deepware Scan: .. 19
2.2.2 Microsoft Video Authenticator: .. 19
2.2.3 Deepfake Detection Challenge: .. 19
2.2.4 Third-party Verification Services: .. 20
2.2.5 Open-source Frameworks: .. 20

2.3 Research Papers .. 20
2.3.1 Fake-image detection with Robust Hashing: .. 20
2.3.2 Proactive Deepfake Defence via Identity Watermarking ... 21
2.3.3 Video Tampering Detection Using Difference-Hashing Algorithm 22
2.3.4 Detecting GAN-Generated Fake Images via Metadata Analysis 23

x | P a g e

2.3.5 A System for Mitigating the Problem of Deepfake News Videos Using Watermarking ... 24
2.3.6 Learning to Detect Fake Face Images in the Wild .. 25
2.3.7 Deepfake Video Detection using Image Processing and Hashing Tools 26
2.3.8 A Survey of Deepfake Detection Techniques: A Comprehensive Review 26
2.3.9 Detection of Deepfake Video using Hybrid Cryptographic Techniques........................... 27

Chapter 3 .. 29

Design and Development ... 29
3.1 System Overview .. 29
3.2 Architecture Design ... 30

3.2.1 Components and Interactions ... 31
3.2.1.1 File Upload Module: .. 31
3.2.1.2 Metadata Extraction Module: .. 31
3.2.1.3 Hash Generation Module: ... 31
3.2.1.4 Watermark Embedding Module: .. 31
3.2.1.5 Real-time Processing Module: .. 32
3.2.1.6 Integrity Check Module: .. 32
3.2.1.7 User Interface Module: .. 32
3.2.1.8 PDF Report Generation Module: ... 33

3.3 Process Decomposition .. 34
3.4 Design Rationale ... 37

Chapter 4 .. 39

System Implementation .. 39
4.1 Development Environment .. 39

4.1.1 Hardware Requirements: .. 39
4.1.2 Software Requirements: .. 39

4.2 Libraries and Dependencies ... 39
4.2.1 Python Libraries: ... 39

4.3 Integration and Testing .. 40
4.3.1 Integration: .. 40
4.3.2 Testing: .. 40

4.4 Graphical User Interface (GUI) ... 40
4.4.1 Key Components of GUI: .. 41

4.4.1.1 Main Window: .. 41
4.4.1.2 Background Video Playback: .. 41
4.4.1.3 Heading Label: .. 41
4.4.1.4 Upload Button: ... 41
4.4.1.5 Output Label: ... 41
4.4.1.6 Mini Terminal Box: ... 41

4.4.2 Functionality: ... 42
4.4.2.1 File Upload and Media Type Detection: .. 42
4.4.2.2 Process Selection:... 42
4.4.2.3 Start Processing: ... 42
4.4.2.4 PDF Report Generation: ... 42
4.4.2.5 Real-time Feedback: ... 42

Chapter 5 .. 45
xi | P a g e

Conclusion ... 45

Chapter 6 .. 47

Future Work ... 47
6.1 Access to real life logistics marketplace: .. 47
6.2 Future Improvements: ... 47

6.2.1 Expanding to Real-time Streaming Media: ... 47
6.2.2 Improving User Interface and Experience: .. 47
6.2.3 Integration with Social Media Platforms: ... 48
6.2.4 Developing Mobile Applications: ... 48
6.2.5 Addition of User Feedback: ... 48
6.2.6 Extending to Other Media Types: .. 48

References and Work Cited ... 49

Appendix-A (Code) .. 50

xii | P a g e

List of Figures

Figure 1: Overview of Deep Fake Lab .. 2
Figure 2: System Overview .. 29
Figure 3: Class Diagram ... 33
Figure 4: Use Case Diagram ... 34
Figure 5: Prevention Flow Diagram for Video ... 35
Figure 6: Prevention Flow Diagram For Image/Audio ... 35
Figure 7: Detection Flow Diagram ... 36
Figure 8: Main Window .. 43
Figure 9: Hashing and Embedding.. 43
Figure 10: PDF Generation ... 44
Figure 11: Integrity Check .. 44
Figure 12: PDF Report .. 44

xiii | P a g e

Chapter 1
Introduction

With time deepfake technology will become advanced and one will not be able to

differentiate between real media and the alternative one manipulated. This project is able

to solve the said problem by introducing frame by frame hashing technique, triple check

of image using metadata along with image embedding using watermark detection

technique that could work on all the three mediums i.e in picture form, video form and

audio form. The core of the project is an algorithm for the intelligent hashing of visuals,

which is specifically designed for popular picture, video, and audio formats. This

program is very detailed on how it goes through audio or video clip in comparison to the

source for some minor anomaly on its side. With this metric the system of possible

deepfakes can be detected. Metadata verification checks the information contained in the

media files such as its alteration history, the time and date shot a picture or video was

taken and the type of camera used. The authenticity of media is measured in part through

the deviations detected through the metadata inspection. Furthermore, it is possible to add

watermarking for the video in order to achieve greater confidence. Digital watermarks

can be defined as a label that is inserted into a material during the manufacturing process

in a way that is not visible to human sight. These water marks are very useful for

authenticity as it highlights areas where changes/alterations can easily be detected if they

are made illegally.

1 | P a g e

1.1 Overview

This project aims to add a new dimension to the existing protection solutions for images,

videos, and audio through combining some commonly-used anti-deepfake algorithms,

such as hashing, metadata verification, and watermarking algorithms, and proposing a

new solution that can be applied to data in different formats through a unified algorithm

design and flow. The frame-by-frame hashing method is one of the most laborious and

exact ways of comparing every frame of media with the original in search of differences

that may point toward the existence of deepfakes. The use of watermarking has the added

aspect of authentication and verification may be performed to evaluate the consistency of

the information that has been embedded. When they are combined, these methods offer

extensive detection efficiency, real-time decision-making, and straightforward integration

into the current production chain systems to ensure that the falsified information that is

effectively contained in deepfakes does not spread to various social media platforms or

media formats.

Figure 1: Overview of Deep Fake Lab

2 | P a g e

1.2 Problem Statement

Deepfakes have become one of the biggest challenges in our modern society with the

advanced deepfake engineering making it possible to create the materials that can spread

the misinformation, as well as cause a great amount of harm to the society, to the

individuals, as well as the organization around the world. The risk of deceptive content

has no been higher before because with Deepfakes, it is possible to create realistic

content using these advancements in artificial intelligence and machine learning

algorithms. The problem is that the use of deepfakes may mislead viewers or other

consumers of the image and the information presented and influence their point of view

as well as spread fake news and tarnish the reputation of another person by changing the

timbre of his voice or simply through the use of a face on fake content. Moreover, it is

also because such content can easily spread to a wider range in a very short time through

social media and other media platforms. Preventive measures are thus urgently required

to detect and mitigate deepfake images and ensure that people do not fall prey to the

manipulation of information on digital media. This phenomenon is particularly difficult

to combat and it is our project’s goal to develop software for deepfake detection based on

targeted approaches, like watermark embedding and metadata verification, to ensure that

progress is made in a way that can effectively stop the spread of deepfakes across

different media formats.

1.3 Proposed Solution

The Deep Fake Lab application has been designed to ensure that algorithms and

technologies used to work with hashing, integrity verification, and watermarking can be

used to identify or prevent deepfakes. I have outlined an idea that is based on an overall

solution that must provide software to combat deepfake content across many forms of

media. Some of the core components of this framework are to hash the media content

using a cryptographic digest to identify unique identifiers and for comparison and

detection of changes that may indicate tampering. A metadata verification layer can look

for inconsistencies in metadata such as a block of edits or timestamp dates. Moreover, the

3 | P a g e

application works with metadata, enabling its consumers to use digital signatures to insert

watermarks into media assets during their creation and, thus, guarantee the authenticity of

the information. Real-time analysis is possible in this case since deepfake tracking

modalities can be used to identify potential violations and address them as soon as they

occur. A clear functional design allows for easy uploading and validation of media

content and analyze them for deepfakes; ensuring and ability to integrate other services

and flexibility for the developer to grow and shift focus if necessary. It works to improve

the chances of recognizing deepfake manipulation to stop allegations of altered content

being distributed across the net and protecting the integrity of digital media.

1.4 Working Principle

The Deep Fake Lab application employs hashing algorithms, metadata verification, and

watermarking to avoid content containing deepfakes. The hashing algorithms generate

signatures for media files that are then used to ensure that when there is any change in the

file there is disruption in the signature. The metadata verification component works with

the examination of editing histories and time stamps of the metadata embedded in the

images in order to detect inconsistencies that would point to possible manipulation.

Further, metadata is employed to generate watermarks, during the creation process of a

media asset the application stores digital signatures in them. This approach reduces the

effort needed in ensuring authentic media quality and also sustaining the quality of digital

media.The list of modules is as under:

• Hashing Module

• Frame-by-Frame Hashing and Verification Module

• Metadata Verification Module

• Watermark Embedding and Detection Module

• Metadata Extraction

• Audio Hashing and Verification Module

4 | P a g e

• User Interface Module

• PDF Generation Module

1.4.1 Hashing Module:
• Produces the digits of fingerprints for multimedia content by applying

cryptographic hash functions such as SHA-256. These are hashes or unique digital

signifiers that correspond to content details and data for multimedia files.

• Does hashing for each segment of multimedia files including image frames. But

the longitudinal diction is segmentation provides for identification of alterations

and tampering at the finest level.

• Facilitates quick determination of whether files that are carried out are suitable by

comparing the computed hashes with the reference hashes of original sources that

are used for the production of original media files. Differences in the computed

and reference hash values can be an indication of changes or an attempt at

modifications to the media.

• Supports an effective and consistent proof-of-origin capability through the

provision of identifiers for the recorded multimedia. The computed hashes are

used to act as digital signatures to enable a user to authenticate the veracity of an

original content and identify any alterations. This verification protocol adds to the

increase in the level of trust, and assurance in relation to the authenticity of

multimedia content in the area of countering deep fakes.

5 | P a g e

1.4.2 Frame-by-Frame Hashing and Verification Module:
• It computes and saves SHA-256 sums of the frames in a video. The hashes are an

attempt at a cryptographic signature for the video frames that are contained in a

separate text file related to the video file. This ensures that each frame is tamper

proof and can be traced and self checked.

• This function takes the already stored hash values and compares it with the hash

values obtained from the frames of the video and gives result in case of alteration

or tampering. If any inconsistency reared its head then the system identifies the

time of the changes based on the frame rate information and can thus identify the

precise changed frames of video.

• This function checks if the stored hashes derived from the frames match the

hashes of the frames from the given video or not to find any changes in the frame

or not. The problem helps detect the exact time of post-processing by recording

the frame rate, thus identify frames of manipulation.

• This function hashes the one-time stored hash values and compares the newly

computed hash values with the video frames to ensure any alteration or tampering

with the video file. If any error is detected it identifies the exact instant of the

frame-rate based on the frame-rate information, which helps to find out the frames

that is/are tampered.

• It defines two additional functions which compare the hashes stored in a file with

the newly calculated hashes for the video frames in order to check for any

alterations or manipulation. It provides accurate identification as it is possible to

locate the tampered frame exactly if a difference is present and it can pinpoint the

exact time of the change based on frame rate-related information.

1.4.3 Metadata Verification Module:
• This module analyses systemically the hidden tags that are contained in

multimedia files. Metadata also contains supremely important information such as

time stamps camera models and editing histories which are often necessarily

always associated with the authenticity of content. To determine whether there has

been any manipulation of such information, the module scans the metadata of the

6 | P a g e

information and scans for any conspicuous modifications that might indicate

manipulation.

• On close inspection one can deduce that the module is driven by algorithms

designed to identify gaps or anomalies in the metadata. An example of such

anomalies may be discrepancies between date and time stamps, non-homogeneity

of the camera or non-standard edit histories. Any shifts from the expected

behaviors also indicate such variations in the multimedia contents that they are

applied to.

• That is why the metadata that is used to authenticate the multimedia turns out to

be an integral part of this module. The measures also serve the purpose of

falsification through validation by verifying that the metadata meets the

delineations of fake content from real content. It raises concerns and encourages

the usage of the content integrity inquiry towards differences and exceptions.

• Through detailed analysis of embedded metadata, the module is involved in the

enhancement of reliability of processes for proving the product origin of multi-

media content. The module ensures the overall integrity of the system by

providing a process to authenticate the metadata, i.e, ensuring that only those

sources of information which are considered to be authentic can be deemed as

trustworthy.

1.4.4 Watermark Embedding and Detection Module:
• This module adds the methods for watermarked embedding in multimedia data. It

uses hashed metadata for creating each watermark, so that it correlates with the

content. In addition to these watermarks, unique identifiers or authentication

codes are occasionally stamped on the content in order to validate its origins. The

module installs and implements appropriate software to crest watermarks directly

into the multimedia files for it to carry markers of its authenticity.

• One of such algorithms is used to put watermarks in the multimedia content and

the other one will be used to reveal the hidden markers that were embedded in the

content. These detection algorithms scan the content to determine whether there

are markers and if what is being embedded is legit. If the content is tampered

7 | P a g e

with, it will leave a pattern or signature that is unique to the particular watermark

and the module will be able to detect it.

• This module enables the detection and embedding of images for the authentication

of multimedia content at a higher level. It adds invisible, but strong indicators of

content authenticity to determine whether it has been changed by third parties

when used by users. This would be in the form of the incorporation of these

digital watermarks which would be used to ensure that the users do not get

manipulated multimedia contents by other users and this would supplement the

whole process.

• Watermarks as an additional feature allow identifying and securing multi-media

information from unauthorized alteration. Watermarks serve as unique identifying

labels that remain unaltered by efforts to manipulate the content through

distortion. Hence, the module helps in curbing deceptive manipulation since

multimedia content may have been manipulated as deepfake.

1.4.5 Metadata Extraction:
• This module is chiefly involved in obtaining more details about multimedia

metadata from videos and other associated multimodal files like images and

audios. The extracted metadata contains fields like codec information, resolution,

frame rate, bit rate, sample rate and creation date of the media which adequately

depicts the content of the media files.

• The module guarantees the proper and accurate retrieval of the metadata using the

tools and libraries like ExifTool, FFmpeg, and for photos and audio, PIL for

Python libraries and pydub. This avoids one from having to undertake any

intensive processing operation to capture the pertinent metadata.

• Hash Generator module is activated following the extracted metadata. It also also

used by the Watermark Embedding module to generate watermarks on the base of

the hashed metadata thus working within the framework of Deep Fake Lab.
• The Metadata Extractor lacks just basic attributes; it also work to retrieve some

other more complex attributes such as history of editing and the programs used to

create the image. This analysis gives a more thorough examination of the the

8 | P a g e

media file and also provides more information about the file as it relates to

authenti

9 | P a g e

1.4.6 Audio Hashing and Verification Module:
• This module is tasked with creating a hash value using alpha numeric

characters from SHA-256 and inserting it into the metadata of an audio file. To

accomplish this, hash is generated from the metadata of the audio file making

each file to have a unique digital versions. The module employs the Mutagen

library to extract metadata tags from the audio file and to create the hash value

and save it as a custom ID3 tag to allow for change of the audio file by the user

without the hash changing.
• The module located the metadata in both the original and the hashed audio file,

created a SHA-256 hash from the metadata of the original file, and checked

this hash against the hash that was provided for the original file. But with the

help of Mutagen library, the module can perform deep analysis of the audio file

metadata like mime type, sample rate, bitrate, channels, duration and much

more.

1.4.7 User Interface Module:
• This module has been built with very friendly and interactive interface that

makes it easy to use. Guarantees that it is simple but at the same time it does

not have complicated technical instructions for the ones who have much

knowledge to the ones who have on information at all.

• Input interface which is used for uploading the material for analysis and

supports several formats from images to video or audio files. The system can

be accessed by the customer through their devices and can upload information.

• It has controls to help it initiate hashing and integrity operations.The user can

choose the desired features to run particular operations – for example,

generating hashes or checking the integrity – and then launch the process with

a single click. The status and results of these operations are printed in a section

by section output for the user’s reference.
• The interface offers an in-depth view of the analysis in a relatively defined

manner. It is also possible to see a summary of the results in the reports that

10 | P a g e

include information about metadata extraction, hash comparisons, and results

showing whether watermarks were detected or not.

1.4.8 PDF Generation Module:

• This module provides intelligent statistical reports of the results derived from

analysis of multimedia content. It can take results produced by various modules,

such as metadata checking or watermarks presence, and generate a report for

evaluation and reference.

• The generated reports contain comprehensive information on structural and

behavioral authentication of multimedia content. These include information on

metadata abnormalities, discovered watermarks and other relevant information in

order to ease referring and analysis of the information by the users.

• The module saves a lot of time that is usually used to create and save the PDF

report. Once the analysis is done to the various media sources the users are asked

to create the report. After that, the data is compiled for the module and the PDF

created in the designated directory. Users are notified when the report has been

generated and then given the path to where it can be found.

• The module provides an option for generating PDF document files for distribution

and sharing of reports. The ability to share reports with coworkers, clients, or

third-party agencies for review, both for its performance, as well as archiving

makes communication and decision-making regarding multimedia content

analysis much easier.

11 | P a g e

1.5 Objectives

1.5.1 General Objectives:
To create an application that will eliminate and/or reduce any potential deepfake

movies populating the web and other platforms. Another purpose is to supply a

credible and useful deepfake-exploitation system that aims to prevent false

information from being disseminated, especially in critical areas such as politics,

health, and national security. Our project aims to reduce the generation and use of

deepfakes and to contribute to a culture where online video content is used

responsibly.

1.5.2 Academic Objectives:
• To help promote the field of computer science and artificial intelligence by

devising a new algorithm that will be employed to deepfake content on various

websites by the site’s administrators / moderators.

• In order to understand and to try and assess the efficacy of frame-by-frame

hashing as a primary means of detecting deepfakes as well as how it compares to

other existing methods of counter-deepfake technologies.

• To present and share the findings and results of the study in a form of a research

paper or academic journal that may be helpful for other researchers or like-minded

academics who are studying the issue of deepfakes.

• The project is aimed at producing hashes based on metadata and media files to

create ’fingerprints’ of the files that can help identify whether changes are made to

them. hashing algorithm is the most effective way of maintaining the integrity of

an exchanged information in a confidential and efficient manner. Using these

hashes and comparing them while embedding them in deepfake artefacts

automatically shows differences that pinpoint manipulation in the images. This

objective will improve the security and integrity of media content thereby making

it much harder for people to manipulate content seamlessly.

• Employ strong testing and validation processes to determine the software

solution’s proficiency. Confirming the accuracy of what the system has picked up
12 | P a g e

and comparing it to the actual annotations for a system’s reliability and

trustworthiness.

• As we are already gaining expertise in the using of machine learning to solve real-

world problems they will provide practicing for students or researchers to

demonstrate their competence in using this tool and put them in a position where

they can apply such knowledge in their future careers or academic work.

1.6 Scope

One of the central projects includes the development programming that would allow for

the accurate detection of deepfakes and accurate specification of manipulated movies

on various Internet resources. This involves the use of advanced techniques such as

metadata examination, and also the embedding of watermarks and generating of hashes.

The software will therefore have to function on many operating systems and web

platforms to enhance the focusing on the analysis of the various multimedia content that

is in form of pictures, videos and even audio files. The proposed method will focus on

achieving high detection accurateness, resistance to intentional attacks, and real-time

execution. Although potential ethical concerns related to the use of the technology will

be addressed at various stages of the project up through the actual implementation and

adoption of the technology, this process will be facilitated further by ensuring that any

documentation provided with the initiative and a strong user support system.

1.7 Deliverables

13 | P a g e

1.7.1 Software Requirement Specification:
This article aims to present a general and detailed description of deep fakes. It

will outline the system's features and functionality, its interfaces, what it will do,

how it will do it, what has to be done to meet the requirements, and how the

system will react to external stimuli. This material is intended for both official

users and regular users.

1.7.2 Software Architecture Document:
The general architecture of the system is covered in this article, along with the

introduction of different parts and subsystems. It is primarily supported by a

system architecture diagram, which summarizes the high-level software

components that perform the essential functions required to keep the system

operating and gives an insider's view of the system.

1.7.3 Software Design Document:
The design document summarizes all of our functional needs and conceptually

illustrates how they relate to one another. The low-level design also demonstrates

how we have been going about putting all these needs into practice.

1.7.4 Implementation Code Document:
Details regarding the application's and project's prototype's pseudo code are

provided in the implementation code document.

1.7.5 Evaluation Reports:
Comprehensive reports that provide a detailed summary of the functionality,

precision, and efficiency of the software solution after it has undergone rigorous

testing and assessment. These papers contain in-depth analyses of the system's

capabilities, including evaluations of its advantages, disadvantages, and possible

improvement areas.

14 | P a g e

1.7.6 Software Testing Document:
This document includes testing modules with specific test cases that illustrate the

project's accuracy and correctness.

1.7.7 Final Project Report
This thesis report is a compilation of all earlier and ongoing project effort. Thesis

reports include a comprehensive explanation of the project as well as information

on every phase of it, from its introduction to the literature study, requirements,

design discussions, testing, and, finally, future work and conclusion.

1.8 Relevant Sustainable Development Goals
SDG 16 is committed to reducing violence and achieving peace and justice through

strong institutions. This is a particularly pertinent project under SDG 16 as it addresses

the growing threat of deepfake videos that could be used to create conflict within society

and cause political instability. The invention of a piece of software that is meant to be

used to authenticating and to provide a barrier against deepfakes in a way endorses the

main goal of strengthening of institutions and access to justice for all.

 Deepfake videos are a cause for concern because they can be used to mislead an

individual, organizations, and whole communities about the news and trust in the

process. This project which seeks to develop an algorithmic software that will help in

the identification of deepfakes does have a role in promoting and upholding peace and

justice by reducing the posting of harmful contents and ensuring that information is not

compromised.

 This project also actively contributes to SDG 16 by ensuring that institutions are

accountable and that information disseminated over the Internet is accurate and

inclusive. This project contributes significantly to the creation of a trusted environment

for online discussions since it introduces mechanisms to authenticate the videos

uploaded to the platform. In general, this project’s pledge to stop such deepfake

manipulation demonstrates its contribution towards SDG 16 that seeks to promote peace,

justice, and strong institutions.

15 | P a g e

1.9 Structure of Thesis

Chapter 2 includes the literature review and background and analysis on

which this thesis is based on.

Chapter 3 contains the design and development of the

project.

Chapter 4 provides in-depth evaluation and analysis of the code.

Chapter 5 has conclusion of the project.

Chapter 6 highlights the future work needed to be done for the commercialization

of this project.

16 | P a g e

Chapter 2
Literature Review

A new product is introduced by changing and enhancing the attributes of similar earlier

released products. A literature review is an important step to convert an idea into a new

product. Similarly, an extensive examination of all related projects is necessary for the

development of a product and its replacement in the logistics system. We divided our

research into the following themes:

• Industrial Background

• Existing Solutions and their drawbacks

• Research Papers

2.1 Industrial background
The digitization of the content creation process and the easy access to advanced AI

software have changed the media industry. This section gives a brief introduction to the

industrial background of the deepfakes technology and its impact on several sectors.

Deep fake detection using hashing meta data authentication and watermarking has

been highlighted as one of the key areas of research and development in recent years as

the technology to generate realistic fake videos has become widely available and usable.

Deep fake technology poses a serious threat in numerous ways ranging from sharing false

information to influencing public opinion or even engaging in fraudulent activities. The

use of hashing algorithms for deep fake detection is ideal because it enables one to

compare large quantities of data and even identify minor changes in pictures and videos

easily and quickly. This can be used to recognize and stop deep fake content.

Industry’s deep fake detection is one of the key areas that many companies are

paying attention to at the moment due to the vast application of the technology in the

media and entertainment industry or when it deals with security and surveillance. For

example, social media platforms like Facebook and Twitter are making huge investments

in the rise of deep fake detection to eliminate fake and insidious information that

misleads their users. Likewise, DFD is being employed by security agencies and law

enforcement bodies to detect suspicious activity and used against fraudsters.
17 | P a g e

 Deepfake technology is an advanced technology that also leaves a lot of room for

creating truly awesome advertising campaigns and personalized communications as it

allows to make almost completely realistic photos and videos to promote the brand and

communicate directly with the client. Marketers are seeing the opportunities that

deepfakes present for creating product advertisements with the imitation of the exact

people that consumers prefer in real life, this way leveraging the trust consumers place

in such personalities for their brand authenticity and engagement. However, issues

concerning ethics have arisen – specifically, issues relating to the disclosure and

information authenticity of advertisements, so that contesters have seen the necessity of

setting rules for the use of deep fakes in advertising.

 Although the technology has various positive impacts, the issue of deepfake

technology is a threat to journalism and news media because it eliminates objectivity

and truth and allows information or images to be altered to deceive people. This means

that journalists and the media organizations are now caught with a challenge when it

comes to ethical standards, fact check mechanisms and the integrity of information they

pass on to the public. There are plans to establish ways and means through which news

journalists and other media personnel in news channels could effectively identify and

demystify news deepfakes in news channels in order to protect the soul of news channels

and media houses.

 Cybersecurity and digital forensics issues that exist because of deepfake

technology. These attacks can be used by criminals to identity theft or fraud and of

surveillance or other process related to espionage and data security. Security specialists

and the forensics community are already seeking ways to authenticate and verify content

in ways that would best counter deepfake threats, including the involvement of

government bodies and the need for action from all members of the industry.

18 | P a g e

2.2 Current approaches and their limitations.
Some of the existing deep fake detection methods can be categorized as image

processing methods, machine learning methods and blockchain methods. Nevertheless,

each of these perspectives has its own shortcomings.

2.2.1 Deepware Scan:
Deepware Scan is a deepfake detection tool that uses machine learning

algorithms to identify features that are common in deepfake content. It aims to

automatically detect inconsistencies in the content, e. g. , fake facial expressions

or light/shading effects, to identify the potential deepfakes. But its efficiency is

limited only to simple manipulations and relatively primitive detection methods.

2.2.2 Microsoft Video Authenticator:
Microsoft’s Video Authenticator is a tool that works by detecting deepfakes

based on different indicators and signals in videos. It uses sophisticated machine-

learning techniques to analyze the video and determine whether content is

genuine on the basis of elements like facial movements, voice tone, and the

presence of image glitches. It provides automatic detection features but has been

questioned about its effectiveness and privacy, even involving the use of facial

recognition.

2.2.3 Deepfake Detection Challenge:
The DFDC-community is a collaborative effort which aims to encourage

advances in the area of deepfake detection. It is a challenge run by some of the

industry giants, and academic institutions that gives a dataset that comprises of

authentic as well as manipulated content to the researchers and developers for

them to develop the detection algorithms and then evaluate them. Each

participant develops an A. I. in order to produce a solution that would be able to

precisely identify deepfakes and to help innovate the process of recognizing

deepfake technology.

19 | P a g e

2.2.4 Third-party Verification Services:
Deepfake detection is among the many services provided by third-party

verification services for media authentication and integrity verification. These

services use intelligent algorithms and human professionals to scan images and

videos to detect any sign of deepfake creation. They may also serve as an extra

piece of evidence when checking authenticity of media content, but their

efficiency may depend on the quality of the algorithms used as well as the

amount of human control involved.

2.2.5 Open-source Frameworks:
DeepFaceLab and Faceswap are two examples of open-source frameworks that

allow for the creation and detection of deepfake content. These frameworks

feature various capabilities such as facial landmark detection, image

manipulation, and deepfake detection. While they are effective in allowing users

to learn how to create deepfakes, their efficiency as effective countermeasures

against deepfakes may also depend on factors such as user expertise and the

sophistication of deepfake creation techniques. Image watermarking and digital

signature verification also are ineffective due to the availability of advanced tools

for creation of deep fake videos. Convolutional neural networks and generative

adversarial networks have already been used in deep fake detection. But these

methods need the training of large datasets of both real and fake images, which

may be costly and time-consuming.

2.3 Research Papers
2.3.1 Fake-image detection with Robust Hashing:

A good analysis on the identification of manipulated photographs with robust

hashing algorithm can be obtained from the paper entitled ‘Fake-image detection

with Robust Hashing’ by Miki Tanaka and Hitoshi Kiya[1]. This research

examines the issues occurring due to the extensive use of fake images, specially

20 | P a g e

those produced by deepfake technologies, and proposes the hashing method as a

possible solution for amendments and the assurance of picture authenticity.

 Because different algorithms have different abilities to locate bogus or

manipulated pictures to back up your project’s objectives, the writers provide

comprehensive analysis of several strong hashing algorithms. The articles in the

study focus on the importance of reliable detection methods that promote a l stop

the spread of misinformation or fraudulent messages, which is a key topic for you.

 The authors present the results of both experiments and tests which

demonstrate that different types of resilient hashing algorithms are able to

establish fraud in photos submitted for registration under various manipulations

and transformation, from pixel scanning to compression artifacts. Presenting

robust hashing as an empirical proof that it is indeed adequate and efficient to

serve deepfake detection opens the possibility to enhance the reliability and

accuracy of your specific detection methods.

 It has also covered the limitations as well as the future scopes of the

techniques that can be followed for fake image detection and then using the same

to help you with the procedure of your project and in turn provide a vision of the

new directions you can pursue for the culturing of the existing techniques.

Overall, the data presented in this study can be considered useful in contributions

to the field of deepfake detection and how to continue developing your research in

this area.

2.3.2 Proactive Deepfake Defence via Identity Watermarking
The authors of the presented study recommend to resort to identity watermarking

as a way to prevent deepfake technology from misrepresentation. This method is

to embed digital signatures into multimedia media such that they function as

labels for the origin of the media and make it easy to trace back to original and

trusted sources [2]. The idea of the authors’ work of inserting identity watermark

21 | P a g e

into multimedia files is to serve as a preemptive action against the dissemination

of deepfakes.

This essay critically focuses on investigating the efficacy and benefits of

identifying the potential value of the identity watermarking approach where if

implemented, it will help reduce the risks of the deepfake manipulation,

particularly its dissemination as lies and threats to one’s reputation. According,

the authors show in the empirical review and experimentation section their

method in identifying and detecting deepfake material in various media types

including photos and videos.

The conclusions made in the paper are directly in line with the vision of

the project results, especially in the domain of detecting deep fakes. Instead you

can help your project identify manipulated multimedia information more

effectively and legitimately by proactively utilizing identity watermarking as a

defense mechanism. On the other hand, students who take part in this study could

contribute to developing new ways and methods to put a stop to deepfakes’

dissemination through mass media.

2.3.3 Video Tampering Detection Using Difference-Hashing
Algorithm
The authors of the presented study recommend to resort to identity watermarking

as a way to prevent deepfake technology from misrepresentation. This method is

to embed digital signatures into multimedia media such that they function as

labels for the origin of the media and make it easy to trace back to original and

trusted sources [3]. The idea of the authors’ work of inserting identity watermark

into multimedia files is to serve as a preemptive action against the dissemination

of deepfakes.

This essay critically focuses on investigating the efficacy and benefits of

identifying the potential value of the identity watermarking approach where if

implemented, it will help reduce the risks of the deepfake manipulation,
22 | P a g e

particularly its dissemination as lies and threats to one’s reputation. According,

the authors show in the empirical review and experimentation section their

method in identifying and detecting deepfake material in various media types

including photos and videos.

The conclusions made in the paper are directly in line with the vision of

the project results, especially in the domain of detecting deep fakes. Instead you

can help your project identify manipulated multimedia information more

effectively and legitimately by proactively utilizing identity watermarking as a

defense mechanism. On the other hand, students who take part in this study

could contribute to developing new ways and methods to put a stop to deepfakes’

dissemination through mass media.

2.3.4 Detecting GAN-Generated Fake Images via Metadata
Analysis

This paper presents a new method to detect counter-GANs photography that is a

growing problem in counterfeit works using Generative Adversarial

Networks[4].

The recommended action is to take the photographs and deconstruct their

metadata fields like the camera model, creation date, GPS coordinates, etc. The

method is aimed at searching for signs of fraud such as anomalies or

inconsistencies that are characteristic for GAN generated images in metadata

features that are considered a reliable means of verification of authenticity.

 The authors demonstrate the effectiveness of their proposed approach for

detecting and filtering GAN-originated fake images through a comprehensive

experimental evaluation of the proposed algorithm performance. The results

demonstrate that metadata analysis can be a strategic and timely addition to the

toolkit for identifying deepfakes in order to proactively stop the distribution of

manipulated media.

23 | P a g e

The information obtained from this research paper is very relevant to

your deepfake detection project and might offer a better insight in which

direction to incorporate metadata verification techniques into your detection

pipeline. With the assistance of metadata analysis together with other possible

methods of detection, your project will find a deeper degree of accuracy and

reliability in identifying and eliminating problems corresponding to deepfakes

produced by GANs..

2.3.5 A System for Mitigating the Problem of Deepfake
News Videos Using Watermarking
These authors offer a process that prevents the propagation of fake news videos

that have been edited using the deepfake technology with the help of

watermarking methods. It overviews how watermarking is a process of

embedding certain digital signatures or indicators that can be used to

acknowledge whether media files are legitimate and consistent or not[5].

 The proposed strategy aims at increasing the chance of tracking media

content and its origin in an effort to reduce the rate of deepfake news videos.

Content makers could generate a provable endorsement between the authenticity

of a video and its source by embedding unique identifiers that are put into a

video at the source.

 The suppression of deepfakes envisaged by the authors’ watermarking-

based strategy does indeed work as the authors demonstrate through the

empirical analysis and experimentation for deepfake news video.It clearly shows

that watermarking is a viable tool as a potential safeguard against the

propagation of misinformation.

 The observations shed great insights in the form of recommendations for

the your deepfake detection project – especially when it comes to using

watermarking to mitigate negative effects of using manipulated media content.

One of the ways that you may enhance the legitimacy and reliability of

multimedia content is through the integration of watermarking techniques as part

24 | P a g e

of your detection systems. This will enable you to find a solution to the issues

raised by such deepfake videos in the internet.

2.3.6 Learning to Detect Fake Face Images in the Wild
As the use of changed images gains popularity, especially deepfake images, it

becomes necessary to find a solution to the problem and the research will try to

solve the issue by providing the practical method of doing so using the machine

learning approach[6].

 The authors discuss in great depth the process of creating a machine

learning model to differentiate these two types of photos based on their facial

manipulation. Expectably, the suggested method demonstrates remarkable

performance in the task of detecting fake face images for a wide range of

scenarios and conditions, following extensive testing and evaluation.

 Furthermore, the report helps in ascertaining the baseline of subtle details

regarding malicious actor use of facial picture editing techniques. The study also

explains the challenges that are associated with pinpointing these modifications

while drawing the reader’s attention to the fact that having strong detection

mechanisms is crucial based on the details that have been noted and artifacts in

the fake face images.

 The conclusion drawn from this work shows that the research results are

critical and useful for the science of deepfake detection and present one of the

means for the future limitation of manipulated videos sharing. Scientists and

professionals working on AI systems may strive to design better and more

effective detection systems to prevent the harmful effects of deepfake pictures of

people in cyberspace with the help of the concepts and methods used in this

work.

25 | P a g e

2.3.7 Deepfake Video Detection using Image Processing and
Hashing Tools
The current study aims to describe the use of the image processing and hashing

techniques to evaluate the content of the image and the video for manipulation.

The authors of the work talks about different algorithms and methodologies that

can identify deepfake by using various sign of creation such as visual artifacts

and inconsistencies synthesised during the process [7].

The authors of the article managed to develop an effective method to

combat manipulated content by applying image processing and hashing

algorithms. DeepFake detectors use visual forensic to identify the visual

distortions caused by manipulations such as swaps in an image. Hashing tools

create digital fingerprints for media files so that their integrity could easily be

determined by comparing and matching their content’s unique code. The

inclusion of two detection methods helps improve the accuracy, offering an

effective framework for the deepfake detection.

The study is extremely relevant as it focuses on the issue of

misinformation through fake or manipulated digital content and aims to provide

methods for reliable and accurate identification of the altered content that is

published digitally. The outlined integrative model makes a wide-ranging

contribution to the research on digital media integrity and provides ways how to

address the problem of deepfake technology.

2.3.8 A Survey of Deepfake Detection Techniques: A
Comprehensive Review

The authors of the current survey article provide a comprehensive overview of

the recent research in the area of deepfake detection addressing all the possible

techniques and approaches to the issue [8]. They organize and discuss the

26 | P a g e

various methods in a systematic way which includes the image method, video

method, audio method, and various detection technologies as well.

 The aim of this comprehensive piece of work is to elucidate the benefits

and the disadvantages of each detection approach as well as the current status of

the DeepFake technology detection research. I must add that the writers have

defined keen perspectives on their expected future developments in the discipline

as they discuss facts and possible future courses.

 The survey paper is relevant to the present study according to the given

requirements since its conclusions offer a general picture of the types of

detection techniques and their habitat while focusing on deepfake detection in

particular. With the aid of the information and skills described in this paper, you

will be able to develop strong detection mechanisms that will be helpful in

halting the spread of deep fakes to different platforms for dissemination.

2.3.9 Detection of Deepfake Video using Hybrid
Cryptographic Techniques
This project provides a research into the use of hybrid cryptography techniques

for deep fake video detection. The authors’ aim is to propose a more viable

solution for the detection of maliciously-altered video content by utilizing

various cryptography algorithms in building the detection system[10]. The

investigation also discusses the constantly escalating impact of deepfakes and the

significance of advanced tools for addressing this issue.

 The approach used in the paper encompasses the use of cryptographic

hash and encryption to enhance the fault detection systems across electronics.

They make use of hash and then encrypt the resultant data through the

cryptographic algorithms so as to ensure them the integrity of the data. It has

many benefits as it makes any of change or modification made to the video

content easily identified. The paper also includes some information about the

27 | P a g e

implementation details and time complexity of the proposed method, and

provides evidence why it will be feasible for real-time applications.

 Pandey, Gupta, and Jain did an experiment to examine the efficacy of the

proposed hybrid cryptosystem with the help of datasets of videos with both the

original and manipulated video clips. This implies that the early detection rate

compared to the classical approaches was improved. Hybrid approach was able

to distinguish deepfake videos also when the video is manipulated to the

advanced level of modification. The authors conclude that their method presents

a secure and effective method for countering deepfake and that by tackling this

issue they are thus able to suggest a promising direction in the way towards the

future of media tampering prevention. The current problem shows the need for

more advanced cryptography to address the problem brought by deep fake

technologies.

28 | P a g e

Chapter 3
Design and Development

3.1 System Overview
The suggested deepfake detection identification system is a global system which has

ways to detect deepfake content for photos, videos, and sounds. It consists of several

interconnected elements which provide the basic level of security and ensure the

authenticity of digital content. It has a few modules intended to deal with various aspects

regarding the detection and verification of deepfake media.

Figure 2: System Overview

29 | P a g e

3.2 Architecture Design
The systems architecture design for the Deep Fake Lab is focused on ensuring that

reliable and effective solutions for the detection and mitigation of deepfake content in

multimedia files should be possible. The design of this architecture has several modules

that perform specific functions and contribute to efficient flow of data and the ability to

perform such real-time processing and analysis tasks.

System
Overview

File Upload

Metadata
Extraction

Hash
Generation

Watermark
Embedding

Frame by
frame

hashing
Database

Integrity
Check

User
Interface

PDF Report
Generation

30 | P a g e

3.2.1 Components and Interactions

3.2.1.1 File Upload Module:

• Function: Allows upload of photos and video and audio recording for

content analysis.

• Implementation: It has been developed using Tkinter for having the

GUI interface.

• Interactions: Accepts data from the user and forwards it to the

Metadata Extraction Module

3.2.1.2 Metadata Extraction Module:

• Function: Extracts detailed metadata from the uploaded

multimedia files.

• Implementation: Utilizes libraries such as PIL for images,

FFmpeg for videos, and pydub for audio.

• Interactions: Extracts metadata and sends it to the Hash

Generation Module.

3.2.1.3 Hash Generation Module:

• Function: creates stand-alone crypto hashes (e. g. the same

exhaustive set of hashes (e. g. using SHA-256), which are

utilized as digital fingerprints for verification.
• Implementation: Uses hashlib for construct secure hashes.

• Interactions: Receives metadata from the Metadata Extraction

Module and sends hashes to the Watermark Embedding Module.

3.2.1.4 Watermark Embedding Module:

• Function: Adds digital fingerprints to the media files as a part of

the generated hashes to verify the content’s integrity.

• Implementation: Provides features for encoding without altering

the genuineness of media.
31 | P a g e

• Interactions: Shapes the unique hashes from the Hash Generation

Module and stamps the media files and sends it to the Real-time

Processing Module.

3.2.1.5 Real-time Processing Module:

• Function: It never stops scanning the media files for any evidence

of tampering and automatically detecting deepfakes as soon

as they appear.

• Implementation: Implements real-time processing algorithms to

analyze media integrity.

• Interactions: Monitors watermarked files and sends data to the

Integrity Check Module for verification.

3.2.1.6 Integrity Check Module:

• Function: Validates the integrity of the media files by comparing

their hashes with the previous stored ones.

• Implementation: Uses hashing and comparison algorithms to

detect discrepancies.

• Interactions: Receives data from the Real-time Processing

Module and updates the User Interface Module with integrity

check results.

3.2.1.7 User Interface Module:

• Function: Is an easy to use software for uploading, analyzing, and

validating multimedia files with instant feedback and comprehensive

analysis reports.

• Implementation: Developed using Tkinter for the graphical user

interface.

32 | P a g e

• Interactions: Shows feedback and detailed analysis results to the user

and interacts with other modules in real-time.

3.2.1.8 PDF Report Generation Module:

• Function: Produces the final PDF reports of the analysis with

metadata, hash hashes, and integrity check report.

• Implementation: Uses FPDF or ReportLab for generating PDF

reports.

• Interactions: Receives data from the User Interface Module and

generates comprehensive reports for the user.

Figure 3: Class Diagram

33 | P a g e

3.3 Process Decomposition
Sequence as well as use case diagrams that break down the system into separate and

united processes are used to explain the process decomposition. The use cases explain

the series of activities a user performs in when working with Deep Fake Lab.

Upload

Extract
Metadata

Integrity
Check

Results

Selects Media

Database

Compare

Checks
Database

Embed
Metadata/
Watermark

Figure 4: Use Case Diagram

34 | P a g e

35 | P a g e

Figure 5: Prevention Flow Diagram for Video

Figure 6: Prevention Flow Diagram For Image/Audio

36 | P a g e

Figure 7: Detection Flow Diagram

3.4 Design Rationale
The focus when designing my project is to ensure that a hashing technique-based deep

fake detection tool is built, with a separate originality check tool added as an option as

well. The structure of the project is comprised of an application-oriented architecture

with a front-end interface and several backend modules for deep fake verification and

originality.

A decision of making use of application based architecture was made to make

sure the users could have an easy access to the application on their local machines. This

method ensures they can engage with the system without any internet or web servers.

Using just an application that does not require any browser makes it easy to deliver the

desired uniformity of experience no matter where the user is.

Python was chosen to be the primary programming language because of its

powerful library support and its outlier user friendliness. Options like Tkinter for user

interface, OpenCV for picture and video modeling, hashlib for developing hashes ensure

that Python can transform to one of the very best languages for creating scalable and

maintainable program. This helps one in the creation of a fast and effective, application

that will also be user friendly.

Among the reasons why Python was the primary language used was its ability to

use large library resources. The user interface library Tkinter, image/video processing

library OpenCV, and hash-generation library hashlib make Python an excellent choice

for constructing the application logics that are scalable and maintainable. It can be

attained through use of a framework that supports rapid application delivery while

adding value to the user experience.

It was a necessary addition to offer users an option to authenticate any picture or

video as original. With the hash values we can quickly tell if any uploaded images or

videos that an original can be compared to our database of known originals. This feature

37 | P a g e

goes a long way into boosting the security of analysis work because users know that

they are dealing with authentic content.

The decisions on design were made with great emphasis on the scalability and

extensibility of the solution. The above structure lends to the systems flexibility as it is

expandable without affecting the existing operations of the system. The use of Python

and hash algorithms guarantees that the system can work as more user base and data

grows and also its reliability over time.

Based on the recommendations for design rationale for my project the design

rationale for my project is to create a product which is easy to use and provide an

alternative solution for deep fake detection as well as incorporation an originality check

feature via the use of hashing techniques. The selection was based upon the simple and

time effective application of chosen technologies or methodologies permitting to achieve

well scalable and efficient solution.

38 | P a g e

Chapter 4
System Implementation

The system implementation stage outlines the development and deployment of Deep

Fake Lab as an application. The following section provides the description of the

development environment the technologies and libraries used implementation details of

each module.

4.1 Development Environment
4.1.1 Hardware Requirements:

• Development Machine: Intel Core i7, 16GB RAM, 512GB SSD.

• Minimum Requirements: Dual-core processor, 4GB RAM,

100GB storage.

• Recommended Requirements: Quad-core processor, 8GB RAM,

256GB storage.

4.1.2 Software Requirements:
• Operating System: Windows 10, macOS, or Linux.

• Development Tools: Visual Studio Code, Python 3.x.

• Version Control: Git.

4.2 Libraries and Dependencies
4.2.1 Python Libraries:

• Tkinter: For the graphical user interface.

• OpenCV: For video and image processing.

• hashlib: For generating hashes.

• Mutagen: For audio file metadata extraction.

39 | P a g e

• FPDF: For generating PDF reports.

4.3 Integration and Testing
4.3.1 Integration:

• There was an attempt to make the different modules work together

where data was exchanged between the modules. For example, the

information retrieved in the Metadata Extraction Module is sent to the

Hash Generation Module to calculate the hash based on the

information.

• Challenges faced during integration included ensuring compatibility

between different libraries and managing dependencies. These were

resolved by thorough testing and version control.

4.3.2 Testing:
• Unit testing was conducted for each module to ensure individual

functionalities worked as expected.

• Integration testing ensured that the modules worked together without

issues.

• User acceptance testing involved real users testing the application to

ensure it met their needs.

• Example test cases and results were conducted to track the testing

process and identify any bugs.

4.4 Graphical User Interface (GUI)
It was at least an attempt to integrate the various modules and collaborate in transferring

data between the modules. For instance, information obtained in the Metadata Extraction

module is passed to the Hash Generation Module for the generation of hash based on

this information.

40 | P a g e

4.4.1 Key Components of GUI:
4.4.1.1 Main Window:
• There is a Main Window in the Application with which users of the

system can interact.

• Title: "File Uploader"

4.4.1.2 Background Video Playback:
• A video plays in the background to provide a dynamic and engaging

user experience.

• The video playback is handled by the imageio library.

4.4.1.3 Heading Label:
• An image serves as the heading label, positioned at the top center of

the window.

• The image is loaded using the PIL library.

4.4.1.4 Upload Button:
• A button with a play icon allows users to upload files.
• Clicking this button opens a file dialog for selecting the file to be

analyzed.
• The button is styled with a background color and an image icon.

4.4.1.5 Output Label:
• Displays the path of the selected file.

• Positioned below the upload button.

4.4.1.6 Mini Terminal Box:
• A text widget serves as a mini terminal to display real-time feedback

and status messages.
• Provides information about the ongoing processes and results.
• Positioned centrally with a label indicating "Output."

41 | P a g e

4.4.2 Functionality:
4.4.2.1 File Upload and Media Type Detection:
• When a user clicks the upload button, a file dialog opens to allow

file selection.

• The selected file's path is displayed in the output label.

• The system determines the media type based on the file extension

and displays it in the media type label.

4.4.2.2 Process Selection:
• Users can select either the integrity check or hashing function by

checking the respective checkboxes.

• The selected process type is used to determine the appropriate

processing steps.

4.4.2.3 Start Processing:
• When the start button is clicked, the application processes the

uploaded file according to the selected function (hashing or
integrity check).

• There is a mini box with a terminal where we can observe the
data processing in real-time, namely hash calculation,
watermark embedding, and integrity verification.

4.4.2.4 PDF Report Generation:
• Users after processing are asked to make a PDF summary.
• If the user chooses to generate the report, the system collates

all the analysis and generates a professional and
comprehensive report in the PDF format, which it then saves
to a chosen location.

4.4.2.5 Real-time Feedback:
• The mini terminal box shows the progress stage of the

contributions submission, processing, as well as the results of
the contributions.

• The users should be informed about each step and any
possible problem that may occur throughout the processing.

42 | P a g e

43 | P a g e

Figure 8: Main Window

Figure 9: Hashing and Embedding

44 | P a g e

Figure 10: PDF Generation

Figure 11: Integrity Check

Figure 12: PDF Report

Chapter 5
Conclusion

The paper outlines the Deep Fake Lab project in detail, explaining how it gives a multi-

faceted framework to address deepfake content in different media formats. The use of

metadata extraction mechanisms, cryptographic hashing algorithms, and the embedding

of watermarks into digital media are used to enforce its integrity and authenticity. And

the real-time processing capabilities allow effective prevention and timely identification

of deepfake content as well as a tree reliable instrument in the areas of digital content

integrity.

Upload and verification program makes the system user friendly and their media

documents of different sort could be easily analyzed and verified by users with different

levels of technical background. The PDF reports with the detailed description of the

analysis are received by the user to make sure that no strange manipulations have been

made and the result could be trusted.

With the use of these advanced techniques and at the same time designing the

framework to be the scalable Deep Fake Lab model has been able to overcome some of

the challenges hat traditional deepfake detection methods pose. Its module structure

facilitates constant change and makes it possible for the system to always be one step

ahead of the latest deep-fake trends.

Deep Fake Lab therefore helps immensely in the fight against the digital media

integrity by offering a simple but efficient tool for dealing with deepfake content. This

comprehensive approach effective in preventing false information from spreading as

well as ensures that the concept of authenticity as in digital media among users are

reinforced so that future digital environment is protected from false information.

45 | P a g e

Overall, the Deep Fake Lab project is an important initiative and would be

valuable contribution to the study of digital media integrity as it provides an effective

method to tell if the content being consumed is a fake or not in a short and cost –

effective way. This strategy not only ensures that false details cannot be disseminated

but also reinforces the need for the information to be genuine within the digital sphere in

order to promote a safer and more dependable digital society.

46 | P a g e

Chapter 6
Future Work

The Deep Fake Lab project represents a promising approach for countering deepfake

content and the risks it poses, but some improvements and further efforts are necessary

to make it more effective and expand its functionality. Other milestones that this project

have to be achieved in order to be commercialized are the following:

6.1 Access to real life logistics marketplace:

The primary objective of this project is to develop such a product that is also capable of

making the process easier for everyone to use who is involved in this business. It is

strategically important to have direct access to some logistical market.

6.2 Future Improvements:
6.2.1 Expanding to Real-time Streaming Media:
Extending capabilities to address real-time detection in the streaming media is

critical to the approach for effectively dealing with threats as soon as they

appear. This would mean improving the real-time processing module to

effectively handle live streaming of videos and audio and is trained to address

deepfakes as they enter the stream.

6.2.2 Improving User Interface and Experience:
While the current interface is designed to be user-friendly, there is always room

for improvement. Future enhancements could include more intuitive navigation,

better visualization of analysis results, and additional user guidance features.

These would make the system more user friendly and even accessible to those

who are less professionally or technically inclined.

47 | P a g e

6.2.3 Integration with Social Media Platforms:
Integrating the deepfake detection framework with popular social media

platforms could significantly enhance its impact. This would allow for automatic

detection and flagging of deepfake content on platforms where such content is

most likely to spread rapidly. Collaborations with social media companies could

facilitate the seamless integration of the detection system into their existing

infrastructures.

6.2.4 Developing Mobile Applications:
Creating mobile applications for both Android and iOS platforms would increase

the accessibility of the deepfake detection framework. Mobile apps would allow

users to verify the authenticity of media content on the go, making it easier to

combat the spread of deepfakes in real-time.

6.2.5 Addition of User Feedback:
The addition of the users’ feedback can strengthen the deep fake detection

module. For instance, users can report fake videos which failed to be identified

as such and that data can be fed back to the algorithms to improve their accuracy.

6.2.6 Extending to Other Media Types:
While the current framework focuses on images, videos, and audio, future work

could explore extending detection capabilities to other media types such as text

and synthetic voices. This would provide a more comprehensive solution to the

deepfake problem.

48 | P a g e

References and Work Cited

[1] Miki Tanaka and Hitoshi Kiya, “Fake-image detection with Robust Hashing”
Tokyo Metropoliltan University, Feb 2021.
[2] Yuan Zhao, Bo Liu, Ming Ding, Baoping Liu, Tianqing Zhu, Xin Yu,
“Proactive Deepfake Defence via Identity Watermarking” University of
Technology Sydney, Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), 2023, (pp. 4602-4611)
[3] G. Sujatha, Dr. D. Hemavathi, K. Sornalakshmi, S. Sindhu, “Video Tampering
Detection Using Difference-Hashing Algorithm” SRM Institute of Science and
Technology, Chennai, Tamil Nadu, India, Journal of Physics: Conference Series,
2021
[4] Zhang, S. Zheng, Y. Yuan, and Q. Zhao, “Detecting GAN-Generated Fake
Images via Metadata Analysis”, in the IEEE Transactions on Information Forensics
and Security, vol. 15, (pp. 666-678), 2020
[5] Adnan Alattar, Ravi Sharma, and John Scriven, “A System for Mitigating the
Problem of Deepfake News Videos Using Watermarking”, Digimarc Corporation,
9405 SW Gemini Drive, Beaverton, OR, USA 97008-7192.
[6] Feng, J., Wu, Y., Ross, A., & Zhang, X. (2019). Learning to detect fake face
images in the wild. In Proceedings of the IEEE International Conference on
Computer Vision (pp. 3396-3405).
[7] R. Sharma, A. Jain, P. Kumar, S. Agrawal, and V. Srivastava, “Deepfake Video
Detection using Image Processing and Hashing Tools,” Academia.edu, 2023.
[8] Patel, D. S., Patel, S. S., & Patel, A. B. (2021). A survey of deepfake detection
techniques: A comprehensive review. arXiv preprint arXiv:2106.10070.
[9] Pandey, P., Gupta, P., & Jain, A. (2021). Detec�on of Deepfake Video using Hybrid
Cryptographic Techniques. In Proceedings of the 4th Interna�onal Conference on
Compu�ng Methodologies and Communica�on (pp. 1-8).

49 | P a g e

Appendix-A (Code)

PYTHON CODE USED IN PROJECT

Audio Analysis:

from mutagen import File
from mutagen.mp3 import MP3
from mutagen.id3 import ID3, TXXX
import hashlib
import shutil
def embed_hash(audio_file_path):
 hashed_audio_file_path = audio_file_path+"_hashed.mp3"
 shutil.copy(audio_file_path, hashed_audio_file_path)
 metadata=""
 # Load the audio file using Mutagen
 audio_metadata = File(hashed_audio_file_path)

 audio_file = MP3(hashed_audio_file_path, ID3=ID3)

 # Print audio metadata from Mutagen (e.g., tags)
 if audio_metadata:
 metadata=str(audio_metadata.mime) + str(audio_metadata.info.length) +
str(audio_metadata.info.bitrate) + str(audio_metadata.info.channels) +
str(audio_metadata.info.sample_rate)

 # Tags may include title, artist, album, etc.
 for tag in audio_metadata:
 print(f" {tag}-{audio_metadata[tag]}")
 metadata+=str(tag)
 metadata+=str(audio_metadata[tag])
 else:
 print("No metadata found using Mutagen")

 print(metadata)
 hash= hashlib.sha256(metadata.encode('utf-8')).hexdigest()

50 | P a g e

 print(hash)
 tag_id = 'hash' # Custom tag ID
 tag_value = hash # Custom tag value

 if audio_file.tags is None:
 # If no tag exists, create a new ID3 tag

 audio_file.tags = ID3()
 # Create a TXXX frame with the custom tag ID and value
 custom_tag = TXXX(encoding=3, desc=tag_id, text=tag_value)
 audio_file.tags.add(custom_tag)

 # Save the modified metadata
 audio_file.save()
 return hashed_audio_file_path,hash
def extract_compare_metadata(audio_file_path,hashed_audio_file_path):

 metadata=""
 # Load the audio file using Mutagen
 audio_metadata = File(hashed_audio_file_path)

 stored_hash=""
 # Print audio metadata from Mutagen (e.g., tags)
 if audio_metadata:
 print("Metadata from Mutagen:")
 print(f"File type: {audio_metadata.mime}")
 print(f"Sample rate: {audio_metadata.info.sample_rate} Hz")
 print(f"Bit rate: {audio_metadata.info.bitrate} bps")
 print(f"Channels: {audio_metadata.info.channels}")
 print(f"Duration: {audio_metadata.info.length} seconds")

 # Tags may include title, artist, album, etc.
 for tag in audio_metadata:
 print(f" {tag}-{audio_metadata[tag]}")
 metadata+=str(tag)
 metadata+=str(audio_metadata[tag])
 if "hash" in tag:
 stored_hash=audio_metadata[tag]
 print (stored_hash)
 else:
 print("No metadata found using Mutagen")

51 | P a g e

 audio_metadata = File(audio_file_path)
 if audio_metadata:
 metadata=str(audio_metadata.mime) + str(audio_metadata.info.length) +
str(audio_metadata.info.bitrate) + str(audio_metadata.info.channels) +
str(audio_metadata.info.sample_rate)
 for tag in audio_metadata:
 print(f" {tag}-{audio_metadata[tag]}")
 metadata+=str(tag)
 metadata+=str(audio_metadata[tag])

 print(metadata)
 hash= hashlib.sha256(metadata.encode('utf-8')).hexdigest()
 print(hash)
 flag = True
 if hash == stored_hash:
 print("integrity of audio file preserved. no modification detected.")
 else:
 flag = False
 print("modification detected. audio has been changed.")
 return flag

Embed Check:

import piexif

import hashlib
from PIL import Image
from datetime import datetime

def embed_hash_in_image(image_path):
 img=Image.open(image_path)
 exif_dict = piexif.load(image_path)
 metadata=""

 # Print out the EXIF data in an organized mannner
 for ifd_name in exif_dict:
 for tag in exif_dict[ifd_name]:
 try:
 tag_name = piexif.TAGS[ifd_name][tag]["name"]

52 | P a g e

 tag_value = exif_dict[ifd_name][tag]
 # Decode tag values if necessary
 if isinstance(tag_value, bytes):
 try:
 tag_value = tag_value.decode('utf-8')
 except UnicodeDecodeError:
 pass

 metadata=metadata+f"{tag}: {tag_name} - {tag_value} "

 except KeyError:
 # Handle missing tag names
 print(f"{tag}:")

 hash = hashlib.sha256(metadata.encode('utf-8')).hexdigest()
 hash_tag_id = 37510 # tag ID for User Note. this tag has been selected for storing hash of image
metadata

 # Encode the value as UTF-8 bytes
 encoded_hash = hash.encode('utf-8')
 if "Exif" not in exif_dict:
 exif_dict["Exif"] = {}

 # adding hash to metadata
 exif_dict["Exif"][hash_tag_id] = encoded_hash
 exif_bytes = piexif.dump(exif_dict)
 time=datetime.now()
 timestamp=time.timestamp()
 file_path= image_path+"upd"+str(timestamp)+".jpg"
 img.save(file_path, exif=exif_bytes)
 print("hash embedded with tag ID 37510 as User comment in image at location:\n",file_path)
 return file_path,hash # returns file path of image with embedded hash along with the hash

def hash_comparator(image_path,hashed_file_path):
 exif_dict = piexif.load(image_path)
 metadata = ""
 flag = True
 # traverse through the original metadata of raw file
 for ifd_name in exif_dict:
 for tag in exif_dict[ifd_name]:
 try:

53 | P a g e

 tag_name = piexif.TAGS[ifd_name][tag]["name"]
 tag_value = exif_dict[ifd_name][tag]
 # Decode tag values if necessary (e.g. user comments)
 if isinstance(tag_value, bytes):
 try:
 tag_value = tag_value.decode('utf-8')
 except UnicodeDecodeError:
 pass

 metadata = metadata + f"{tag}: {tag_name} - {tag_value} "

 except KeyError:
 # Handle missing tag names
 print(f"{tag}:")

 hash = hashlib.sha256(metadata.encode('utf-8')).hexdigest()
 hash_tag_id = 37510 # tag ID for User Note. this tag has been selected for storing hash of image
metadata

 if "Exif" not in exif_dict:
 exif_dict["Exif"] = {}

 exif_dict = piexif.load(hashed_file_path)

 if "Exif" not in exif_dict:
 exif_dict["Exif"] = {}

 # extracting stored hash from the updated image corresponding to the raw image
 stored_hash=exif_dict["Exif"][hash_tag_id]

 if stored_hash==hash.encode("utf-8"):
 flag=True
 else:
 flag=False

 return flag

54 | P a g e

Upload:

import tkinter as tk
from tkinter import filedialog, messagebox
from PIL import Image, ImageTk
import os
import imageio
import video_hash_check
import audio_analysis
import image_embed_check
import excel_sheet_handling

file_record = r"C:\deepfake_lab_fiaa\file_record.xlsx"
filepath = ""
media_type = ""
global done

pdf_generated = False # Flag to track whether PDF has been generated

def process(file_path, media_type, type):
 global pdf_generated
 if type == 'hash':
 if media_type == "Image":
 display("hash being calculated and embedded...\n")
 hashed_img_path,img_hash=image_embed_check.embed_hash_in_image(file_path)
 display("watermark embedded. entry being made to file record\n")
 excel_sheet_handling.entry(file_record, file_path, hashed_img_path)
 display("file record updated\n")
 elif media_type == "Video":
 display("hash being calculated and embedded...\n")
 hashed_vid_path = video_hash_check.embed_vid_hash_fbf(file_path)
 display("watermark embedded. entry being made to file record\n")
 excel_sheet_handling.entry(file_record, file_path, hashed_vid_path)
 display("file record updated\n")
 elif media_type == "Audio":
 display("hash being calculated and embedded...\n")
 hashed_aud_path , aud_hash= audio_analysis.embed_hash(file_path)
 display("watermark embedded. entry being made to file record\n")
 excel_sheet_handling.entry(file_record, file_path, hashed_aud_path)
 display("file record updated\n")
 else:
 display("filetype unknown\n")

55 | P a g e

 elif type == 'integrity':
 display("file being searched...\n")
 if media_type == "Image":
 found,flag,hashed_file,coords=excel_sheet_handling.search_file(file_path,file_record)
 if flag:
 display("file found. integrity being checked...\n")
 integrity=image_embed_check.hash_comparator(file_path,hashed_file)
 if integrity:
 display("integrity preserved\n")
 else:
 display("deepfake detected\n")
 excel_sheet_handling.integrity_update(file_record,file_path,integrity)
 display("file record updated\n")
 else:
 display("file not found in record\n")
 elif media_type == "Video":
 found, flag, hashed_file, coords = excel_sheet_handling.search_file(file_path, file_record)
 if flag:
 integrity,time = video_hash_check.verify_frame_hashes(file_path,hashed_file)
 display("file found. integrity being checked...\n")
 if integrity:
 display("integrity preserved\n")
 else:
 display("deepfake detected at time"+str(time)+"\n")
 excel_sheet_handling.integrity_update(file_record,file_path,integrity)
 display("file record updated\n")
 else:
 display("file not found in record\n")
 elif media_type == "Audio":
 found, flag, hashed_file, coords = excel_sheet_handling.search_file(file_path, file_record)
 if flag:
 display("file found. integrity being checked...\n")
 integrity = audio_analysis.extract_compare_metadata(file_path,hashed_file)
 if integrity:
 display("integrity preserved\n")
 else:
 display("deepfake detected\n")
 excel_sheet_handling.integrity_update(file_record, file_path, integrity)
 display("file record updated\n")
 else:
 display("file not found in record\n")
 else:

56 | P a g e

 display("unknown media type\n")

def open_file_dialog():
 global filepath, media_type
 filepath = filedialog.askopenfilename(title="Select a file")
 if filepath:
 output_label.config(text="File selected: " + filepath)
 # Determine the type of media
 media_type = determine_media_type(filepath)
 media_type_label.config(text="Media Type: " + media_type)
 response = "File uploaded with path: {}\n".format(filepath)
 terminal_text.insert(tk.END, response)

def determine_media_type(filepath):
 _, file_extension = os.path.splitext(filepath)
 file_extension = file_extension.lower()

 if file_extension in ('.jpg', '.jpeg', '.png', '.gif', '.bmp'):
 return "Image"
 elif file_extension in ('.mp4', '.avi', '.mkv', '.mov', '.wmv'):
 return "Video"
 elif file_extension in ('.mp3', '.wav', '.flac', '.aac'):
 return "Audio"
 else:
 return "Unknown"

def play_video():
 global filepath
 video_path = r"C:\deepfake_lab_fiaa\gui_elements\Changed Voice over.mp4" # Update with
correct file path
 reader = imageio.get_reader(video_path)

 def update_frame():
 try:
 frame = reader.get_next_data()
 frame = Image.fromarray(frame)
 photo = ImageTk.PhotoImage(frame)
 background_label.config(image=photo)
 background_label.image = photo
 root.after(10, update_frame) # Update every 10 milliseconds (increase frame rate)

57 | P a g e

 except StopIteration:
 reader.close()

 update_frame()

def integrity_check(filepath, media_type):
 # Implement Integrity Check function here
 response = "Integrity Check performed for file: {}\n".format(filepath)
 terminal_text.insert(tk.END, response)
 integrity_flag = True # Example flag for integrity check
 return integrity_flag

def hashing(filepath, media_type):
 # Implement Hashing function here
 response = "Hashing performed for file: {}\n".format(filepath)
 terminal_text.insert(tk.END, response)
 hashing_flag = False # Example flag for hashing
 return hashing_flag

def generate_pdf():
 global pdf_generated

 # Logic to generate PDF
 report=excel_sheet_handling.generate_report(file_record)
 messagebox.showinfo("PDF Generation", "PDF generated successfully at location"+report)
 pdf_generated = True

def start_processing():
 global filepath, media_type, done
 type=''
 if filepath and media_type:
 if integrity_check_var.get() == 1:
 response = "Integrity Check function selected.\n"
 terminal_text.insert(tk.END, response+"\n")
 type='integrity'
 if hashing_var.get() == 1:
 response = "Hashing function selected.\n"
 terminal_text.insert(tk.END, response)
 type='hash'
 process(filepath, media_type, type)

58 | P a g e

 # Check if PDF generation is required
 generate_pdf_prompt()

def generate_pdf_prompt():
 response = messagebox.askyesno("Application Prompt", "Do you want to generate PDF?")
 if response == True:
 generate_pdf()
 else:
 continue_without_pdf()

def continue_without_pdf():
 # Logic to continue without generating PDF
 response = "Moving to next transaction.\n"
 terminal_text.insert(tk.END, response)

def display(response):
 terminal_text.insert(tk.END, response)

root = tk.Tk()
root.title("File Uploader")

Play video in the background
background_label = tk.Label(root)
background_label.place(relx=0.5, rely=0.5, anchor="center")

Load the image for the heading
heading_img = Image.open(r"C:\deepfake_lab_fiaa\gui_elements\output-onlinepngtools.png")
heading_photo = ImageTk.PhotoImage(heading_img)

Heading label
heading_label = tk.Label(root, image=heading_photo, bg="black")
heading_label.photo = heading_photo # Keep a reference
heading_label.place(relx=0.5, rely=0.05, anchor="center")

Load the image for the upload button
upload_img = Image.open(r"C:\deepfake_lab_fiaa\gui_elements\—Pngtree—vector play button
icon_4258876.png") # Update with correct file path
upload_img = upload_img.resize((100, 100)) # Resize the image
upload_photo = ImageTk.PhotoImage(upload_img)

59 | P a g e

Upload button
upload_button = tk.Button(root, image=upload_photo, command=open_file_dialog, bd=0)
upload_button.configure(bg='black') # Set background to white
upload_button.place(relx=0.5, rely=0.38, anchor="center")

other GUI elements
output_label = tk.Label(root, text="", fg="white", bg="black")
output_label.place(relx=0.5, rely=0.87, anchor="center")

media_type_label = tk.Label(root, text="", fg="white", bg="black")
media_type_label.place(relx=0.5, rely=0.85, anchor="center")

Checkboxes for Integrity Check
integrity_check_var = tk.IntVar()
integrity_check_checkbox = tk.Checkbutton(root, text="Integrity Check",
variable=integrity_check_var, onvalue=1, offvalue=0)
integrity_check_checkbox.place(relx=0.5, rely=0.5, anchor="center")

Checkboxes for Hashing
hashing_var = tk.IntVar()
hashing_checkbox = tk.Checkbutton(root, text="Hashing", variable=hashing_var, onvalue=1,
offvalue=0)
hashing_checkbox.place(relx=0.5, rely=0.46, anchor="center")

Start button
start_button = tk.Button(root, text="Start", command=start_processing)
start_button.place(relx=0.5, rely=0.55, anchor="center")

Mini terminal box
terminal_frame = tk.Frame(root)
terminal_frame.place(relx=0.5, rely=0.7, anchor="center")
terminal_label = tk.Label(terminal_frame, text="Output:")
terminal_label.grid(row=0, column=0, sticky="w")
terminal_text = tk.Text(terminal_frame, height=10, width=50, bg="black", fg="green")
terminal_text.grid(row=1, column=0, sticky="ew")

Make the heading label draggable
root.photo_label = heading_label

root.after(10, play_video) # Start video playback after 10 milliseconds
root.mainloop()

60 | P a g e

Video Hash Check:

import cv2
import hashlib

def embed_vid_hash_fbf(video_path):
 hash_file_path = video_path + "hashes.txt"

 cap = cv2.VideoCapture(video_path) # Open the video file

 if not cap.isOpened(): # Check if the video file was opened successfully
 print("Could not open video file")
 else:

 with open(hash_file_path, "a") as hash_file: # Open a file to write frame hashes to a txt
document
 frame_number = 0
 while True:

 ret, frame = cap.read() # Read the next frame
 if not ret:
 break

 frame_hash = hashlib.sha256(frame.tobytes()).hexdigest() # Calculate the hash of the
frame data
 hash_file.write(f"{frame_number},{frame_hash}\n") # Save the hash and frame number
to the file
 frame_number += 1 # Increment the frame counter
 cap.release() # Release the video capture object when done
 hash_file.close()

 return hash_file_path

def verify_frame_hashes(video_path, hash_file_path):

 flag=True # set flag to identify integrity of video

61 | P a g e

 cap = cv2.VideoCapture(video_path)
 fps= cap.get(cv2.CAP_PROP_FPS) # get the fps for pinpointing time of alteration

 stored_hashes = {}
 with open(hash_file_path, "r") as hash_file: # Read stored frame hashes
 for line in hash_file:
 frame_number, frame_hash = line.strip().split(",")
 stored_hashes[int(frame_number)] = frame_hash
 time = 957810
 # Check each frame hash against the stored hashes
 frame_number = 0
 while True:
 # Read the next frame from the video
 ret, frame = cap.read()

 # If the frame was not read successfully, break the loop
 if not ret:
 break

 # Calculate the hash of the frame data
 current_frame_hash = hashlib.sha256(frame.tobytes()).hexdigest()

 # Check the hash against the stored hash
 if frame_number in stored_hashes and current_frame_hash != stored_hashes[frame_number]:
 print(f"Frame {frame_number} has been altered. \n")
 time=int((frame_number+1)/fps)
 print(f"Alteration occured at time={time}s\n")
 flag=False
 # Increment the frame counter
 frame_number += 1

 cap.release()

 if flag==True:
 print("The video has not been modified")
 else:
 print(f"The video is altered at time={time}s")
 return flag,time

Excel Sheet Handling:
62 | P a g e

#from openpyxl import Workbook
from openpyxl import load_workbook
import win32com.client
import datetime

def entry(file_record,file_path,hashed_file_path):
 wb = load_workbook(file_record)
 # Select the worksheet
 ws = wb.active
 # Find the last row with data
 last_row = ws.max_row
 sr_no=str(last_row)

 data=[]
 data.append(sr_no)
 data.append(file_path)
 data.append(hashed_file_path)
 data.append("none")
 data.append("not checked")
 # Append data to the next available row
 ws.append(data)
 # Save the workbook
 wb.save(file_record)

def search_file(file_name,file_record):
 wb = load_workbook(file_record)
 ws = wb.active
 flag=False
 hashed_file=''
 found = []
 coords=[]
 # Iterate over all cells and search for the keyword
 for row in ws.iter_rows():
 for cell in row:
 if cell.value == file_name:
 flag=True
 #print("found")
 for cel in row:
 found.append(cel.value)

63 | P a g e

 coords.append(cel)
 if flag==True:
 hashed_file=found[2]
 return found,flag,hashed_file,coords

def integrity_update(file_record,file_path,flag):
 #check the file path in excel sheet

 found,f_flag,hashed_file,coords=search_file(file_path,file_record)
 print (coords)
 wb = load_workbook(file_record)
 ws = wb.active

 if f_flag == True:
 ws[coords[3].coordinate]=datetime.datetime.now() # datetime.datetime.now() will give
timestamp
 if flag == True: # the integrity flag taken from comparison procs beforehand will determine
integrity status
 ws[coords[4].coordinate]="Preserved"
 else:
 ws[coords[4].coordinate]="Fake detected"

 wb.save(file_record) # all info written to SPECIFIC CELLS

def generate_report(file_record):
 report = file_record + "_report.pdf"
 excel = win32com.client.Dispatch("Excel.Application")
 # Open the Excel file
 workbook = excel.Workbooks.Open(file_record)
 # Access the first sheet (you can modify this according to your sheet selection)
 sheet = workbook.Sheets(1)
 sheet.PageSetup.Orientation = 2
 sheet.PageSetup.LeftMargin = 20 # Left margin: 0.5 inch
 sheet.PageSetup.RightMargin = 20 # Right margin: 0.5 inch
 sheet.PageSetup.TopMargin = 90 # Top margin: 0.5 inch
 sheet.PageSetup.BottomMargin = 20 # Bottom margin: 0.5 inch
 sheet.UsedRange.Borders.Weight = 1.5 # Weight 2 represents thick borders
 sheet.PageSetup.CenterHeader = "&\"Arial,Bold\"&44DEEPFAKE REPORT" # Add a centered
header with the title "Title"
 # Export the sheet as PDF

64 | P a g e

 sheet.ExportAsFixedFormat(0, report)
 # Close Excel
 workbook.Close(False)
 excel.Quit()
 return report

65 | P a g e

	Chapter 1
	Introduction
	1.1 Overview
	1.2 Problem Statement
	1.3 Proposed Solution
	1.4 Working Principle
	1.4.1 Hashing Module:
	1.4.2 Frame-by-Frame Hashing and Verification Module:
	1.4.3 Metadata Verification Module:
	1.4.4 Watermark Embedding and Detection Module:
	1.4.5 Metadata Extraction:
	1.4.6 Audio Hashing and Verification Module:
	1.4.7 User Interface Module:
	1.4.8 PDF Generation Module:

	1.5 Objectives
	1.5.1 General Objectives:
	1.5.2 Academic Objectives:

	1.6 Scope
	1.7 Deliverables
	1.7.1 Software Requirement Specification:
	1.7.2 Software Architecture Document:
	1.7.3 Software Design Document:
	1.7.4 Implementation Code Document:
	1.7.5 Evaluation Reports:
	1.7.6 Software Testing Document:
	1.7.7 Final Project Report

	1.8 Relevant Sustainable Development Goals
	1.9 Structure of Thesis

	Chapter 2
	Literature Review
	2.1 Industrial background
	2.2 Current approaches and their limitations.
	2.2.1 Deepware Scan:
	2.2.2 Microsoft Video Authenticator:
	2.2.3 Deepfake Detection Challenge:
	2.2.4 Third-party Verification Services:
	2.2.5 Open-source Frameworks:

	2.3 Research Papers
	2.3.1 Fake-image detection with Robust Hashing:
	2.3.2 Proactive Deepfake Defence via Identity Watermarking
	2.3.3 Video Tampering Detection Using Difference-Hashing Algorithm
	2.3.4 Detecting GAN-Generated Fake Images via Metadata Analysis
	2.3.5 A System for Mitigating the Problem of Deepfake News Videos Using Watermarking
	2.3.6 Learning to Detect Fake Face Images in the Wild
	2.3.7 Deepfake Video Detection using Image Processing and Hashing Tools
	2.3.8 A Survey of Deepfake Detection Techniques: A Comprehensive Review
	2.3.9 Detection of Deepfake Video using Hybrid Cryptographic Techniques

	Chapter 3
	Design and Development
	3.1 System Overview
	3.2 Architecture Design
	3.2.1 Components and Interactions
	3.2.1.1 File Upload Module:
	3.2.1.2 Metadata Extraction Module:
	3.2.1.3 Hash Generation Module:
	3.2.1.4 Watermark Embedding Module:
	3.2.1.5 Real-time Processing Module:
	3.2.1.6 Integrity Check Module:
	3.2.1.7 User Interface Module:
	3.2.1.8 PDF Report Generation Module:

	3.3 Process Decomposition
	3.4 Design Rationale

	Chapter 4
	System Implementation
	4.1 Development Environment
	4.1.1 Hardware Requirements:
	4.1.2 Software Requirements:

	4.2 Libraries and Dependencies
	4.2.1 Python Libraries:

	4.3 Integration and Testing
	4.3.1 Integration:
	4.3.2 Testing:

	4.4 Graphical User Interface (GUI)
	4.4.1 Key Components of GUI:
	4.4.1.1 Main Window:
	4.4.1.2 Background Video Playback:
	4.4.1.3 Heading Label:
	4.4.1.4 Upload Button:
	4.4.1.5 Output Label:
	4.4.1.6 Mini Terminal Box:

	4.4.2 Functionality:
	4.4.2.1 File Upload and Media Type Detection:
	4.4.2.2 Process Selection:
	4.4.2.3 Start Processing:
	4.4.2.4 PDF Report Generation:
	4.4.2.5 Real-time Feedback:

	Chapter 5
	Conclusion
	Chapter 6
	Future Work
	6.1 Access to real life logistics marketplace:
	6.2 Future Improvements:
	6.2.1 Expanding to Real-time Streaming Media:
	6.2.2 Improving User Interface and Experience:
	6.2.3 Integration with Social Media Platforms:
	6.2.4 Developing Mobile Applications:
	6.2.5 Addition of User Feedback:
	6.2.6 Extending to Other Media Types:

	References and Work Cited
	Appendix-A (Code)

