

MODELING & SIMULATION OF BIOLOGICAL

NEURAL NETWORKS USING KOCH MODEL

By

Arsalan Gohar

(2010-NUST-MS-CS&E-17)

A thesis submitted in partial fulfillment of the requirements of the degree of Master

of Science Computational Science and Engineering

Research Centre for Modeling and Simulation,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

2012

DEDICATION

To My Family for their Prayers without which I would not

have been able to carry out my studies

ACKNOWLEDGEMENTS

I would like to express my thanks and sincere gratitude to my advisor Dr. Jamil

Ahmed, Assistant Professor, RCMS, NUST, for his continuous support, helpful

advice and valuable guidance throughout this project work. His emphasis for

excellence kept me well-directed and focused. He has made me able to follow the

roadmap of thesis plan very smoothly through his well-defined execution and co-

operation day in and day out. His cheerful and enthusiastic encouragement was a

source of strength for me to complete this project.

I am immensely grateful to Dr. Umer Khan Niazi, Assistant Professor, (RCMS),

NUST, for giving me valuable inputs. His vast experience of the field has assisted

me in an unmatchable fashion right to the completion.

I am thankful to Mr. Tariq Saeed, Assistant Professor (RCMS) NUST for his

unconditional help in programming of the code and guidance thought the thesis.

My sincere gratitude is to Air Cdre Sikandar Hayat Mirza, Director, (RCMS),

NUST, whose emphasis for excellence kept me focused on to my project and

helped me complete it on time. I thank him for providing the necessary resources

and facilities to carry out this project in time.

My sincere appreciation goes to Dr. Meraj Mustafa Hashami, Assistant

Professor, (RCMS) NUST for his support in mathematical problems.

I would also acknowledge the active support; I got from all other Departmental

Seniors, MS students and staff for providing the necessary resources and facilities

to carry out this project in time.

 Finally, I am extremely gratified and indebted to my family members for their

enormous support, persistent encouragement and earnest prayers throughout this

project.

vi

Table of Contents

List of Figures .. vii

List of Tables .. ix

Nomenclature ... x

ABSTRACT .. xi

CHAPTER 1: INTRODUCTION ... 16

1.1 Neuron .. 17

1.1.1 Neuron Structure ... 18

1.1.2 Synapse ... 19

1.2 Action Potential ... 21

1.3 Hodgkin Huxley .. 23

1.4 Memory .. 26

1.5 Neural Signaling .. 28

1.6 Conduction Velocity .. 29

1.7 Literature Review ... 31

1.8 Contribution .. 32

CHAPTER 2: METHODOLOGY .. 34

2.1 Hodgkin-Huxley Model .. 35

2.2 KOCH Neural Model .. 37

2.3 Hebbian Learning ... 42

2.4 Spike-Timing Dependent Plasticity: .. 42

CHAPTER 3: RESULTS .. 47

3.1 Action Potential ... 47

3.2 Conduction Velocity.. 52

3.3 Spiking Time Dependent Plasticity ... 58

3.3.1 Uniform Spiking Frequency... 58

3.3.2 Different Spiking Frequency .. 60

CHAPTER 4: CONCLUSION ... 63

REFERENCES ... 65

APENDIX A ... 68

vii

List of Figures

Figure 1-1 Action Potential with detail of channels ….…………………….. 20

Figure 1-2: Working of a synapse of a neuron ...…………………………….. 22

Figure 1-3 Action Potential with detail different regions ……...……………. 23

Figure 2-1 Working of ion channels during an action potential………………37

Figure 2-2 Parameters of Koch model………………………………………...38

Figure 2-3 Learning Window for the spiking time dependent plasticity where

t0 is the time of firing of post synaptic neuron and t1 is the time of

firing of the presynaptic neuron ………………….……………... 45

Figure 2-4(a) Basic Structure of neuron representing pre & post neuron …….. 46

Figure 2-4(b) Strengthening and weakening of plasticity with respective to the

 arrival of timing of the pre and post neuron……………………. 46

Figure 3-1 External stimulus of 4 nA…………………………………………47

Figure 3-2 Action Potential with an input of 4 nA……………………………48

Figure 3-3 External Stimulus of 8 nA…………………………………………49

Figure 3-4 Action Potential with 8nA Stimulus …………………………….. 49

Figure 3-5 External Stimulus of 2 nA………………………………………....50

Figure 3-6 Action Potential with 2nA Stimulus………………………………50

Figure 3-7 External stimulus of 3 nA…………………………………………51

viii

Figure 3-8 Action Potential with 3nA Stimulus……………………………... 51

Figure 3-9 Network of Neurons for constant radius….……………………… 53

Figure 3-10 Graph of the delay due to the length of the neuron……………… 54

Figure 3-11 Network of neurons to see the effect of varying radius……….… 55

Figure 3-12 Graph of the delay vs. the radius of the neuron..…………………56

Figure 3-13 Summary of the results…...…..………………………………….. 57

Figure 3-14 Network of Neurons for constant radius………………………… 58

Figure 3-15 Synaptic weights before action potential………………………… 59

Figure 3-16 Synaptic weights after action potential……………………………60

Figure 3-17 Neural Network for constant radius………………………….…... 61

Figure 3-18 Synaptic weights after action potential…………………….…….. 61

Figure 3-19 Synaptic weights after action potential…………………….…….. 62

Figure 3-20 Synaptic weights after action potential…………………….…….. 62

ix

List of Tables

Table 1 Result for Neural Network with Constant Radius…………….…. 50

Table 2 Result of Network with varying Radius………………………….. 52

x

Nomenclature

Vm Membrane Voltage

ENa Potential Energy of Sodium (Na) ion

EK Potential Energy of Potassium (K) ion

ECa Potential Energy of Calcium (Ca) ion

IM Current due to M ion (M is the name of the ion carrier)

Iext External Stimulus (current) given to the neuron

Cm Capacitance of the Neuron Membrane

 is the activation potential equation for the X current channel

 is the inactivation potential equation for the X current channel

 are different constants us in solving the differential equations

for simplification proposes

 is the conductance of the X ion

xi

ABSTRACT

Neurons are of essential importance in biology and its applications.

Neurons are the simplest unit of data (information) processing in the nervous

system of humans and other animals. Besides their importance for biology and

medicine, networks of neurons (the human brain) are the most complex and

advanced computational devices known, and the study of neurons individually and

working in concert is seen as a step toward understanding consciousness and

cognition.

A.L. Hodgkin and A.F. Huxley in 1950’s developed a system of nonlinear

ordinary differential equations to explain the behavior of a neuron found of a giant

squid. These nonlinear equations have since been used to model the behavior of a

host of neurons and other excitable cells like heart muscles. Hodgkin-Huxley

category models take a set of parameters as input and produce data relating the

electrical behavior of the neuron as a function of time.

 The cornerstone of modern neurobiology is the analysis by Hodgkin and

Huxley of the initiation and propagation of the action potential in the squid giant

axon. Their description accounted for two ionic currents: the fast sodium current

INa and a delayed potassium current, IK. However, while the Hodgkin-Huxley

formula has been singularly important to biophysics, their equations do not

describe a number of important phenomena such as adaptation to long-lasting

stimuli or the dependency of some conductance on various ionic concentrations

The Koch model is the extension of the famous Hodgkin-Huxley model

which is based on the fast sodium and delayed potassium currents, while the Koch

xii

model incorporates numerous ionic membrane currents and also takes into account

the calcium dynamics of a neuron.

Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric

form of Hebbian learning encouraged by constricted temporal correlations between

the spikes of pre- and postsynaptic neurons. As with additional forms of synaptic

plasticity, it is broadly believed that it inspires learning and information storage in

the brain, as well as the progress and improvement of neuronal circuits during brain

development. In STDP, frequent presynaptic spike arrival a few milliseconds

before postsynaptic action potentials points in many synapse types to long-term

potentiation (LTP) of the synapses, whereas recurring spike arrival after

postsynaptic spikes points to long-term depression (LTD) of the same synapse.

We for the first time have combined KOCH neuron model and Spike

Timing Dependent Plasticity (STDP). In the model we have also incorporated

delays due to the length and diameter of a neuron. This study helps in

understanding the working of neural networks and learning behaviors. The

approach is not only adaptable, but it is also scalable to very large network (billions

of neurons). Different neural diseases affect the conductance of nerves such as

peripheral neuropathy and mononeuritis multiplex.

http://www.scholarpedia.org/article/Donald_Olding_Hebb
http://www.scholarpedia.org/article/Learning
http://www.scholarpedia.org/article/Neuron
http://www.scholarpedia.org/article/Synaptic_plasticity
http://www.scholarpedia.org/article/Synaptic_plasticity
http://www.scholarpedia.org/article/Brain
http://www.scholarpedia.org/article/Long-term_potentiation
http://www.scholarpedia.org/article/Long-term_potentiation
http://www.scholarpedia.org/article/Long-term_depression

16

CHAPTER 1: INTRODUCTION

Neuroscience is of fundamental importance in biology, as it plays a major

role in the spread of information in living organisms. Neurons are the essential unit

of information processing in the nervous system of humans and animals alike. In

addition to their importance for biology, networks of neurons (like the human

brain) are the most advanced computational devices known, and its study is seen as

a stride toward better understanding consciousness and cognition.

Neuron functions by preserving a voltage difference across its cell

membrane. Quick variations in voltage difference can be introduced in response to

external stimuli, including chemical or electrical signals. Some neurons also

display unprompted activity, firing steady patterns of electrical impulses even in

the nonexistence of external stimulus. Spikes spread down the length of the neuron

at a speed of roughly 20 meters per second, permitting quick broadcast of

information over macroscopic distances inside an organism.

In spite of having been studied by many scientists, the comprehensive

processes by which even a single neuron functions are still the subject of strong

research. In recent developments in computational resources and mathematical

modeling methods have allowed neuroscientists to initiate studying neurons using

computer models and simulation while continuing using ever more sophisticated

biological, physical, and chemical tools.

The brain is remarkably adept at acquiring, coordinating, and disseminating

information about the body and its environment. Such information must be

17

processed within milliseconds, yet it also can be stored away as memories that

endured for years. Neurons within the central and peripheral nervous systems

perform these functions by generating sophisticated electrical and chemical signals.

1.1 Neuron

A neuron is a cell that is the basic building block of the nervous system.

Neurons have many similarities to other cells in the human body, but there is one

important difference between neurons and other cells. That difference is that

neurons are dedicated to transmit information throughout the body.

Nerve produce electrical signals that convey information. Even though

neurons are not fundamentally good conductors of electricity, they have evolved

intricate mechanisms for producing these signals centered on flow of ions across

their membranes. Ordinarily, neurons produce a negative potential, called the

“resting potential”, that can be measured by recording the voltage between the

inside and the outside of nerve cells.

These exceedingly dedicated nerve cells are in charge for communicating

information in chemical and electrical forms. There are also numerous varied types

of neurons in control for different tasks in the human body.

Neurons that are in the sensory part convey information from the sensory

receptor cells all over the body to the brain. Information from the brain to the

muscles of the body are transferred by Motor neurons transfer. Interneurons are

responsible for communicating information between different neurons in the body.

18

Human brains are linked to thousands of other neurons and contain tens of

billions of neurons. There are trillions of specialized neuron connections in the

brain known as synapses. Neurons have many dimensions, which regulate their

roles.

1.1 Neuron Structure

A classic neuron has identical parts to that any cell would have, and a few

dedicated structures that differentiate it from the rest. Soma is the main portion of

the cell. It comprises of a nucleus that contains chromosomes.

Dendrites are large extensions of a neuron. They resemble branches or

spikes spreading out from the cell body. Principally it is the exteriors of the

dendrites that get chemical messages from other neurons. It is tough to

differentiate axon from the dendrites, in others it is straightforwardly distinguished

by its length. The basic structure of a neuron is shown in Figure 1-1, which

highlights different parts of a neuron

Figure 1-1: Basic Structure of a neuron, showing different parts of the structure of

a neuron

Nucleus

Cell Body

Dendrite

Axon

Dendrites

Terminal

19

Sandwiched between the axon ending and the dendrite of the next neuron is

a very tiny gap called the synapse (or synaptic gap, or synaptic cleft), which we

will discuss in a little bit. For every neuron, there are between 1000 and 10,000

synapses.

1.1.1 Synapse

 The nervous system consists of a large number of neurons that are linked

together to form functional conducting pathways. Where two neurons come into

close proximity and functional inter-neuronal communication occurs, the site of

such communication is referred as Synapse. Most neurons may make synaptic

connections to a 1000 or more other neurons and may receive up to 10,000

connections from other neurons.

(http://neuroscience.uth.tmc.edu/s1/introduction.html)

Synapses are the special surface contact sites where impulses are

transmitted from a presynaptic cell (a neuron) to a postsynaptic cell (which may be

a neuron or an effector cell, e.g. a muscle cell or gland cell). The synapse permits

neurons to contact with each other or with the effector cells

Communications at synapse, under physiologic conditions, takes place in

one direction only. Synapses occur in a number of forms. Synapses between the

neurons are commonly classified into the following three types:

1) Axosomatic synapse, i.e., synapse between an axon and cell body

(soma) of a neuron

2) Axodentritic synapse, i.e., synapse occurring between the axon of a

neuron and the dendrite of another neuron

20

3) Axoaxonic synapse, i.e., synapse between an axon and another axon

Impulse transmission at synapses can occur electrically or chemically and,

therefore synapses are classified as electrical synapses and chemical synapses.

Figure 1-2: Synapse contains gap between two neurons, neurotransmitters

transmitting the signal from one neuron to the other.

The Electrical Synapses contain gap junctions that permit free movements

of ions from one neuron to another as shown in Figure 1-2. Movement of ions

causes a flow of electrical current from one neuron to the other. Impulse

transmission is much faster across the electrical synapses than across the chemical

synapses. Electrical synapses have been found to be present in the retina, brainstem

and cerebral cortex.

In Chemical Synapses conduction of impulses occurs by the release of

chemical substances that are called neurotransmitters. Chemical synapses constitute

the most common variety of synapses in the nervous system.

21

1.2 Action Potential

When the nerve cell is excited (stimulated) by electrical, mechanical, or

chemical means, a rapid change in membrane permeability to Na+ ions takes place,

and Na+ ions diffuse through the plasma membrane into the cell cytoplasm the

tissue fluid. This results in the membrane becoming progressively depolarized,

summarized in Figure 1-3. The sudden influx of Na+ ions followed by the altered

polarity produces the so-called action potential, which is approximately +40mV.

This is very brief, lasting about 5 msec. The increased membrane permeability for

Na+ ions quickly ceases and the membrane permeability for K+ ions increases.

Therefore K+ ions start to flow from the cell cytoplasm and return the localized

area of the cell to the resting state. Figure 1-4 summarizes ion transfers at different

regions of the action potential.

Figure 1-3: Action Potential with detail different regions

22

Once generated, the action potential spreads over the plasma membrane,

away from the site of initiation, and is conducted along neuritis as the nerve

impulse. This impulse is self-propagated and its size and frequency do not alter.

Once the nerve impulse has spread over a given region of plasma membrane,

another action potential cannot be elicited immediately. The duration of this non-

excitable state is referred to as the refractory period, and it controls the maximum

frequency that the action potentials can be conducted along the plasma membrane.

Figure 1-4: The working of ion channels during an action potential

 Because electrical signals are the basis of information transfer in the

nervous systems, it is essential to understand how these signals arise. Remarkably

all of the neuronal electric signals are produced by similar mechanism that reply

upon the movement of ions across the neuronal membrane.

23

 Nerve cells produce electrical signals to send information over extensive

distances and also transmit the information to other cells through synaptic

connections. These signals eventually rest on variations in the resting electrical

potential across the membrane. A resting potential arises as nerve cell membranes

are permeable to one or more ion species subject to an electrochemical gradient.

1.3 Hodgkin Huxley

 After 1950, when A.L. Hodgkin and A.F. Huxley established a system of

equations unfolding the electrical activity of the squid giant axon [7], [8],

neuroscientists have been equipped with a leading theoretical framework for

studying neuronal function and behavior. The equations are not only largely valid

to many classes of neurons, but the internal dynamics of the Hodgkin-Huxley

model in many ways emulate the physiology of the neuron. The difficulty of

working with living neurons, computational neuroscience has become an

increasingly important tool for the study of neuronal physiology and behavior.

 Through series of experiments on the axon of the squid, Hodgkin and

Huxley reached a basic insight that the neuronal cell membrane has independent

permeability mechanisms for different types of ions. And along with this this the

results helped us understand the membrane's conductance for each type of ion

which is a function of time and the trans-membrane voltage. Using nonlinear

ordinary differential equations (given data specifying the internal state of the

neuron and its initial conditions [7]), Hodgkin and Huxley with help of quantitative

model reproduced the experimental data (as obtained from experiments above [7]),

and to simulate the electrical activity of the neuron, it can be solved numerically.

This model was the first complete description of the excitability of a single cell.

24

The ODE equations of Hodgkin and Huxley are the basis for almost all ionic

current-based neuronal models for example sodium, potassium, calcium and after

extending these equations, they have been used successfully in the study of neurons

playing various physiological roles across a comprehensive spectrum of species.

 The neuron, though active transport mechanisms that expend energy to

transport ions across the cell membrane, There is maintenance of a voltage

difference, which is also called the membrane potential, across the cell membrane

separating the cytoplasm inside the cell from the extracellular fluid. An enzyme

that is found in the cell membrane, the sodium-potassium pump, is one of the

active transport mechanism in our body. With each pumping cycle, it causes the

movement of three Na+ ions out of the cell and two K+ ions into the cell. Under

the action of the sodium-potassium pump, it results in net outflow of positive

charge setting up a steady state membrane voltage difference, which is called the

resting potential. This causes the charge inside of the cell to be electronegative

compared to the cell's surroundings. Ionic concentration imbalances across the cell

membrane can also occurs due to active transport of ions across the cell membrane.

For example, in the intracellular fluid, the concentration of Na+ ions lean towards

lower side and the concentration of K+ ions lean towards higher than in the

extracellular fluid. This is due to the continuous action of the sodium-potassium

pump. The main driving force that decides whether an action potential is allowed

or not when a stimulus arrives is the imbalance between the membrane resting

potential and the ionic concentration imbalances. This is what allows the neuron to

respond rapidly to stimuli causing the membrane to become permeable to the flow

of ions resulting in an action potential.

25

 There are specific types of ions in the cell membrane which consists

many different ionic current pathways (ion channels) which allows the flow of

these ions. In the response to voltage difference through the cell membrane these

ionic channels open and close, neutralizing the voltage difference an then coming

back to the resting state. The reason several reason for the ions flow through these

channels. One being the electrostatic pressure which is developed because of the

membrane potential, and other being the pressure that results from

intracellular/extracellular concentration imbalances which is a caused by active

transport. There is a state for each ion in this membrane where the two pressures

are well-balanced where no net trans flow occurs. There are several different types

of voltage-gated ion channels in a classic neuron and either impulsively or in

response to external stimuli, the interaction between these channels allows an

individual neuron to reveal a range of behaviors. Through the opening and closing

of voltage-gated ion channels causes the conductance of the cell membrane to ions

of the similar type and other types. This is because ions carry charge, and their flow

across the cell membrane effects the membrane potential. This enables a

sophisticated system of feedback loops that triggers the neuron's electrical activity.

 As explained in the Hodgkin-Huxley model, this is a general explanation

of the processes underlying an action potential. There is a substantial inconsistency

in the ionic current pathways present in biological neurons. Currently developed

ionic current-based models tend to be more complex than the primary Hodgkin-

Huxley model, but the form of the original equations and the processes which they

define generally follow the model developed by Hodgkin and Huxley relatively

close.

26

1.4 Memory

 The ability to store information on basis of experience they have and to

retrieve much of it at one’s own will is one of the most fascinating brain’s

complex functions. This gives our brain many of the cognitive functions for

example learning, memory. The process by which new information is attained by

the nervous system and is evident through changes in behavior is called learning.

The encoding, storage and retrieval of learned information is referred as learning.

Similarly intriguing is the normal aptitude to forget information. In daily life, there

are various diseases and disorders due to memory loss which has helped us in

understanding of pathological forgetfulness and amnesia which is one of the

foremost challenges of modern neuroscience, a challenge that has only initiated to

be encountered.

 The critical first step to create a new memory is called encoding. It allows

the observed item of concern to be altered into a construct that can be stored within

the brain, and then when needed recalled later from either short-term or long-term

memory depending other factors.

 With perception through the senses, gives rise to a biological event which

is encoding. The process of setting down a memory begins with attention, in which

neurons fires more frequently to create a memorable event, making the experience

more powerful and growing the probability that the event is set as a memory.

 Encoding occurs on different levels however the exact mechanism is not

fully understood. In first step, the formation of short-term memory from the ultra-

short term sensory memory occurs, followed by the transformation to a long-term

memory by a process of memory consolidation.

27

 Basically human memory is associative, meaning that a new piece of

information is remembered well better if it can be related with previously acquired

knowledge that is already firmly anchored in memory. The more personally

meaningful the association is, the more operative the encoding and consolidation.

 After the primary acquisition the process of stabilizing memory process is

called consolidation. It may possibly be thought as a part of the process of

encoding or storage or it may be deliberated as a memory process in its own way. It

is typically considered to be comprised of two specific processes; one being the

synaptic consolidation (which happens within the first few hours after learning) and

the other being the system consolidation.

 The process of consolidation exploits a phenomenon called long-term

potentiation, neurologically, which permits a synapse to rise in strength as rising

numbers of signals are transmitted between the two neurons. The process by which

synchronous firing of neurons makes those neurons more persuaded to fire together

in the future is called Potentiation. On the other hand, long-term potentiation

occurs when the same group of neurons fire together so often that they become

permanently sensitized to each other [7]. As new experiences increases, the brain

produces more and more connections and pathways, and it may “re-wire” itself by

re-routing connections and re-arranging its association.

 The storage is the more or less submissive process of recalling information

in the brain, whether in the sensory memory, the short-term memory or the more

permanent long-term memory [25]. Each of these different stages of human

memory functions as a sort of filter that aids to guard us from the overflow of

information that provoke us on a daily basis and also avoiding surplus of

28

information and aiding to keep us healthy. The more the information is frequent,

the chances it has to be retained in long-term memory.

 Recall or recovery of memory refers to the successive re-accessing of

events or information from the past, which have been formerly encoded and stored

in the brain. In common dialect, it is known as remembering. During recall, the

brain "replays" a pattern of neural activity that was initially produced in reply to a

certain event, echoing the brain's perception of the actual event. These repetitions

are not reasonably identical to the former otherwise we would not identify the

difference between the genuine experience and the memory - but are mixed with

consciousness of the present situation.

1.5 Neural Signaling

 Neurons employ several different signals to encode and transfer information

[19]. The resting membranes potential in neurons usually generates a negative

potential that can be calculated by recording the voltage between the inside and

outside of the nerve cells. Transiently, the action potential eliminates the negative

resting potential and creates the trans member potential positive. The action

potentials are transmitted along the length of axons and are the central signal that

transmits information from one place to another in the nervous system. Still other

types of electrical signals are created by the activation of synaptic contacts between

neurons or by the actions of the activation of synaptic contacts between neurons or

by the actions of external forms of energy on sensory neurons. All these electrical

signals ascend from ion fluxes taken about by nerve cell membranes being

29

selectively permeable to different ions, and from the non-uniform distribution of

these ions through the membrane.

 The electrical signals produced by neurons are caused by responses to

stimuli, which then change the resting membrane potential. Receptor potentials are

due to the activation of sensory neurons by external stimuli, such as light, sound, or

heat.

 Another type of electrical signal is associated with communication between

neurons at synaptic contacts. Activation of these synapses generate synaptic

potentials, which allow transmission of information from one neuron to another [2].

 A fundamental problem for neurons is that their axons, which can be quite

long are not good conductors. Although neurons and wires are both capable of

passively conducting electricity, the electrical properties of neurons compare

poorly to an ordinary wire. To compensate for this deficiency, neurons have

evolved a booster system that allows them to conduct electrical signals over great

distances despite their intrinsically poor electrical characteristics [22]. The

electrical signals produced by this booster system are called action potentials.

1.6 Conduction Velocity

 The process of nerve conduction has been extensively studied in the past,

both experimentally and theoretically. Mathematical theories of nerve conduction

based on the modern cable concept were developed a long time ago by Hursh [26],

and eventually by Hodgkin and Huxley [7] [8].

30

Conduction velocity [10] is the speed at which the action potential moves

from one neuron to the other. Conduction velocity plays a very important role in

the learning functions. Because it is the conduction velocity which defines the

delay in the transmission and reception of the impulse along with the couple of

other variables such as the neurotransmitters, temperature and ionic concentrations

[11]. We have varied the different dimensions of a neuron to see their effect on the

conduction velocity of a neuron.

The electrical properties of the axon (as used in Hodgkin & Huxley and

KOCH Model) are used to find the conduction velocity. In the resting state, the

potential inside the axon at position x along the axon at time t, V(x,t) satisfies

Where Cm is the membrane capacitance, rm the membrane resistance, Er

the emf of the membrane and ri is the longitudinal resistance of the axon in the

resting state. The equation states that the membrane current, consisting of the

capacitive and ohmic components, is directly related to the second derivative of the

potential, , by way of conduction of the axon interior, 1/ri.

31

1.7 Literature Review

Hodgkin Huxley model was the first neuron model that accurately

described the initiation and propagation of an action potential. It was for their work

that they were jointly awarded the NOBEL Prize in 1963. The Hodgkin-Huxley

Model is a set of non-linear ordinary differential equations that approximate the

electrical characteristics of excitable cells such as neurons.

Previously a lot of work has been done in this area but every one used

Hodgkin Huxley model for simulating an action potential. Lyle N. Long has

worked extensively in this area and has a couple of papers in this area; “A Review

of Biologically Plausible Neuron Models for Spiking Neural Networks”, "Spike

time dependent plasticity of neural circuits," and An Adaptive Spiking Neural

Network with Hebbian Learning.

Koch model which is similar to Hodgkin and Huxley can be used for

simulation and analysis of a single and network of neurons. The difference between

the two is that Koch model has more number of parameters, giving it more

flexibility and hence more realistic to the actual neuron. This is the reason we opted

for Koch model [19]. Koch model is being used for detail analysis in most of the

neural network [27] and [28]. We have implemented the model in Matlab

(Appendix A) by model using predictor corrector method.

In brain, there are two types of axons; one being the myelinated while the

other non-myelinated. Myelinated axons are used for long distances. Conduction

speed of action potentials depends whether its myelinated axon or not. If

myelinated, action potential travels at rapidly because the membrane capacitance is

much smaller in those regions. Due to this phenomena, it’s particularly

advantageous when signals must transmit information over long distances.

32

However, the range of traveling is limited to a few millimeters before the signal

decays [29]. Nerve conduction abnormalities occur in many diseases [30], therefore

its analysis and on-time detection is very necessary for cures of many diseases.

Spike time dependent plasticity is one of the essential parameter for

analysis of memory. Many experiments have been carried out on this in 1983 and

examined at millisecond level the effect of relative timing of pre and postsynaptic

action potentials on plasticity. The experiments revealed that time frame relating

pre- and post-synaptic activity and synaptic change. There are several reasons

suggested for timing-dependent plasticity For example, STDP might provide a

substrate for Hebbian learning during development [31] [32].

1.8 Contribution

This thesis elaborates a biological neural networks, based on different

models and for the first time incorporated KOCH model for simulating a neural

network. This would enable us in simulating neural networks that would have all

the properties and complexities of a biological neural network.

KOCH model itself has so many different parameters that enable us to

simulate different conditions that could affect the working of the neural network.

Incorporating neural conduction model and spike time dependent model we have

presented a unique model that has such properties. The neural model that we

presented is very scalable and can be scaled to thousands of neurons and could also

incorporate further neural models that could unable the neural network to have

behavior as that of an actual biological neural network.

33

A paper was published titled “Nerve Conduction Using KOCH Model” in

Symposium on Frontiers of Computational Sciences (ISFCS2012) Islamabad,

Pakistan 2012.

34

CHAPTER 2: METHODOLOGY

The neural network is designed from multiple models combined, such as

the KOCH neural model, conduction model and spiking time dependent plasticity.

Each model is individually solved and incorporated in the network.

The differential equations of the KOCH model are solved using predictor-

corrector scheme. Each of the differential equation is solve using the scheme.

Range Kutte method could also be applied to solve the differential equations but

the number of differential equations involved increases the complexity

exponentially. So we used the predictor-corrector scheme.

 The conduction model was also solved using the predictor-corrector

method. The conduction model uses the values of voltage produced by KOCH

model and updates them according to the conduction model.

 The spiking time dependent plasticity uses the updated voltage value and

computes the synaptic weights. So the synaptic weights incorporate the effects of

the KOCH model and the effects of conduction model.

 When the whole model is simulated it, the overall behavior of the action

potential generated incorporated the effects of conduction velocity due to different

sizes and also incorporate synaptic plasticity, which mimics the learning in

neurons.

35

2.1 Hodgkin-Huxley Model

 The Hodgkin-Huxley model is created on the idea that the electrical

properties of a sector of nerve membrane can be molded by a circuit of the form

shown in Fig. 1.8. The current flow across the membrane in the circuit, has two

foremost modules, one linked with charging the membrane capacitance and one

linked with the effort of specific types of ions across the membrane. The ionic

current is further subdivided into three distinct components, a sodium current INa, a

potassium current IK , and a small leakage current IL that is primarily carried by

chloride ions.

 The extracellular which separates medium from the cytoplasm of the cell,

acts as a capacitor with capacitance C in HH. The current due to ion channels

provides parallel ways through which charge can conductance (pass) through the

cell membrane. HH model uses three currents based on ions in their description of

the squid giant axon; potassium current IK, sodium current INa, and a leakage

current IL. The variable resistances of potassium and sodium currents that

represent the voltage gated conductance related with the membrane ion channels.

Overall current I is the sum of the capacitive current which represents the rate of

accumulation of charge on opposite sides of the cell membrane and ionic currents.

In electrical circuit theory for calculation of capacitive current, is Cdv/dt , where v

is the membrane potential.

36

Figure 2-1: Hodgkin Huxley Electrical Circuit

 The behavior of an electrical circuit of the type shown in Fig. 2-1 can be

described by a differential equation of the form:

where Cm is the membrane capacitance, Vm is the intracellular potential

(membrane potential), Iion is the net ionic current that flows across the membrane

and Iext is an externally stimulus applied.

The HH model consist of the following differential equations

37

INa = ḡNa m
3 h(V- ENa)

IK = ḡK n
4(V- ENa)

With initial conditions

 m(0) = (V0,0) , n(0) = (V0,0)

 h(0) = h (V0,0) , V(0) = V0

2.2 KOCH Neural Model

The Koch model [9] is the extension of the famous Hodgkin-Huxley model

which is based on the fast sodium and delayed potassium currents, while the Koch

model incorporates numerous ionic membrane currents and also takes into account

the calcium dynamics of a neuron.

In recent years, numerous ionic membrane currents have been described,

which differ in principal carrier, voltage and time dependence, and dependence on

38

internal calcium. Our understanding of these currents and to a lesser extent, the role

they play in impulse formation, has been accelerated by various technical

innovations such as single-cell isolation and patch clamping.

KOCH model is a very comprehensive model that incorporates many different

parameters that the Hodgkin Huxley model did not incorporate. Thus KOCH model

represents a much closer to reality action potential and taking into consideration the

different parameters. Figure 2-2 shows different ionic currents that KOCH model

comprises of.

Figure 2-2: Parameters of Koch model

39

Principal Equation

CN IInput + INa + ICa + IK + IM + IA + IC + IAPH + Ileak =0

All variables have the following units:

Voltage mV

Current nA

Time ms

Concentration millimols per liter (mM)

Conductance µS

Resistance MΩ

Capacitance nF

Fast Sodium Current

INa = ḡNa m
2h(V- ENa) m = m∞ =

αm = m =

 h= h∞ = αh h =

Fast Calcium Current

ICa = ḡCa mh(V- ECa) m =

m∞ = h = where K = 0.01mM

40

Transient, Outward Potassium Current

IA = ḡA mh(V- EK) m = 1.38

m∞ = h∞ =

 h = 50 if V < -80mV; else 150

Noninactivating Muscarinic Potassium Current

IM = ḡM m(V- EK) m

= m∞ =

Delayed, Rectifying Potassium Current

IK = ḡK m
2h(V- EK) m =

m∞ = αm(V)=

βm(V)= = h = 6,000 if V < -25mV: else 50

h∞ =

Noninactivating Calcium-Dependent Potassium Current

IC = ḡC m(V- EK) m =

m∞ = f(V,Ca) = 250[Ca+2]i b(V) = 0.1

41

Voltage-Independent Calcium-Dependent Potassium Current

IAHP = ḡAHP m
2(V- EK) m =

m∞ = f(Ca) = 1.25*108[Ca+2]2
n and b=2.5

Passive Components where m is the activation variable and

Ileak = ḡleak m
2(V- Eleak) h is the inactivation variable

42

2.3 Hebbian Learning

Learning is a learning rule which is the oldest and most famous of all

learning rules.

“ When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic changes take

place in one or both cells such as A’s efficiency as one of the cells firing B, is

increased”

Hebb [9] proposed this change as a basis of associative learning. We may

expand this as a two-part rule:

 “If two neurons on either side of a synapse (connection) are

activated simultaneously then the strength of that synapse is selectively

increased.”

 “If two neurons on either side of a synapse are activated

asynchronously, then that synapse is selectively weakened or eliminated.”

Such a synapse is called a Hebbian synapse. More precisely, we define a Hebbian

synapse as a synapse that uses a time-dependent, highly local, and strongly

interactive mechanism to increase synaptic efficiency as a function of the

correlation between the pre-synaptic and post-synaptic activities.

2.4 Spike-Timing Dependent Plasticity:

Spike Timing Dependent Plasticity (STDP) [10] is temporally asymmetric

form of Hebbian learning induced by tight temporal correlations between the spikes

43

of the pre and postsynaptic neurons. Synaptic plasticity is widely believed that it

lies behind learning and information storage and also in refinement of neuronal

circuits, during brain development.

Spike Timing Dependent Plasticity, repeated with the arrival of presynaptic

spike a few milliseconds before postsynaptic action potentials leads in many

synapse types to long-term potentiation (LPT) of the synapses that is when

repeated spike arrives after postsynaptic spikes proceeds to long-term depression

(LTD) of the same synapse. The change of the synapse plotted as a function of the

relative timing of pre- and postsynaptic action potentials is called the Spike Timing

Dependent Plasticity (STDP) function or learning window is shown in Figure 2-3.

Figure 2-3 shows the effect of different timing of the post synaptic neuron t0 and

pre synaptic neuron t1 on the synaptic weights,

44

Figure 2-3: Learning Window for the spiking time dependent plasticity where t0 is

the time of firing of post synaptic neuron and t1 is the time of firing of the

presynaptic neuron

Following we explain the spiking time dependent plasticity with the help of

the graphs. In the following graphs we represent the three possibilities of an

impulse, first if the presynaptic impulse arrives before the post synaptic impulse

but within the required time, for this case as the presynaptic impulse caused the

firing of the impulse this causes an increase in the synaptic weights, the second

show that the presynaptic impulse arrives very early and thus does not trigger the

postsynaptic impulse thus weakening the synaptic weights. The third possibility is

that the presynaptic impulse arrives after the post synaptic impulse and so the

presynaptic impulse does not trigger the postsynaptic impulse hence the synaptic

weights decrease.

45

We use the same neural network used previously, so that we have a

common network that we could refer to. We used the same dimensions as length

and diameter so that along with the constant neural network, we could have a good

references. For using spiking time dependent plasticity model we used two

different conditions: uniform frequency and different frequency. Figure 2-4 (a)

shows basic Structure of neuron representing pre & post neuron and Figure 2-4 (b)

summarizes the strengthening and weakening of plasticity with respective to time

(a)

(b)

Figure 2-4: Spiking Time Dependent Plasticity working principle (a) Basic Structure of

neuron representing pre & post neuron (b) Strengthening and weakening of plasticity with

respective to time

Presynaptic

Synapse

Postsynaptic

46

Algorithm for Spiking Time Dependent Plasticity

For each synapse, synapse plasticity is calculated he with respect to pre-neuron and

post-neuron. If the time taken by pre-neuron is less than post neuron and within a

specific time frame it causes strengthening of the synapse and else if pre-neuron is

less again but not with in specific time frame, it causes weakening of the synaptic

plasticity. There exists a special case in which the post-neuron signal reaches the

before pre-neuron, then instead of increasing, it decrease the learning that is

synaptic plasticity.

For each synapse

if timeold(PostNeuron) < timenew(PreNeuron)< imenew(PostNeuron)

 weight = weight + dwPlus

else

 weight = weight + dwMinus

 dwPlus = dwMinus = α

 dt = timenew(PreNeuron) - timenew(PostNeuron

47

CHAPTER 3: RESULTS

3.1 Action Potential

 Action Potential being the most unique part of neurons, it is action

potential that helps in the transfer of information. The way action potential is

modeled is very important as it represents in a way the whole neural network, the

more it is close to the actual action potential the better and much closer result to the

actual environment.

 We gave our system an input impulse of 4 nA at time 80 mSec

shown in Figure 3-1 and the following is the result of the action potential produced.

The action potential shows two action potential when we provided a single input,

the reason is that the first impulse is initial action potential that the system required

so that the system settles down. The resultant action potential very accurately

behaviors like the actual potential as shown in Fig 3-2.

Figure 3-1: External stimulus of 4 nA

48

Figure 3-2: Action Potential with an input of 4 nA stimulus

 Then we gave our system an input impulse of 8 nA at the 80 mSec

shown in Fig 3-3 and the following is the result of the action potential produced

shown in Fig 3-4. The reason that we provided such a high input current to see its

behavior. Increasing the amplitude does not affect the action potential and similar

is the result of our simulations. The action potential shows only very slightly

increase in amplitude, even though we doubled the input stimulus and the resulting

increase in amplitude is negligible.

49

Figure 3-3: External Stimulus of 8 nA

Figure 3-4: Action Potential with an input of 8 nA stimulus

Then we gave our system an input impulse of 2 nA at 80 mSec shown in

Fig 3-5 and the following is the result of the action potential produced shown in Fig

3-6. The reason that we provided such a low input current as an input was to

analyze its behavior. The current stimulus should be above the threshold, if it’s not

50

then the action potential should not fire. Our simulations represent the similar

results, as the threshold is not crossed the action potential is not fired.

Figure 3-5: External Stimulus of 2 nA

Figure 3-6: Action Potential with an input of 2 nA stimulus

51

Then we gave our system an input impulse of 3 nA at 80 mSec shown in Fig 3-7

and the following is the result of the action potential produced shown in Fig 3-8.

The reason being we wanted to show how sensitive our model is to the input

current. Our results prove that our model is sensitive enough that with even just 1

nA below the previous firing. After continuing this process we found out that the

threshold for our system is 3.84nA

Figure 3-7: External stimulus of 3 nA

52

Figure 3-8: Action Potential with an input of 3 nA stimulus

3.2 Conduction Velocity

Conduction velocity [10] is the speed at which the action potential moves

from one neuron to the other. Conduction velocity plays a very important role in

the learning functions. Because it is the conduction velocity which defines the

delay in the transmission and reception of the impulse along with the couple of

other variables such as the neurotransmitters, temperature and ionic concentrations

[11]. We have varied the different dimensions of a neuron to see their effect on the

conduction velocity of a neuron.

We simulated two models, in one model we kept the radius of the neurons

constant and varied the lengths of the neuron. In the second model we kept the

length of the neurons constant and varied the radius of the neurons. Through this

process we could see the effect of length and radius on the conduction velocity of

the neuron. We used the same network of neurons so that we could better judge the

effect of length and radius on the conduction velocity

53

Constant Radius with varying lengths of neurons

We used the following network to calculate the conduction velocity of the

neurons. The radius and length of the neuron are provided in the Fig 3-9. The result

is summarized in table 1 and shown in Fig 4:10.

Figure 3-9: Network of Neurons for constant radius

 Neuron Delay Velocity

1 N2 43.38 µsec 22.82 m/s

2 N3 131.45 µsec 22.82 m/s

3 N4 262.90 µsec 22.82 m/s

Table 1: Result for Neural Network with Constant Radius

Radius m

Radius m

Radius m

Length mm

Length mm

Length mm

54

Figure 3-10: Graph of the delay due to the length of the neuron

55

Constant Radius with varying lengths of neurons

We use the following network to model the effect of radius on the conduction

velocity. In this network shown in Fig 3-11 the lengths of the neurons have been

kept constant as in the previous model. The reason of doing this was that we could

see the effect of radius on the conduction velocity and would compare it with the

previous result. The results are summarized in Table 2 and shown in Fig 3-12

Figure 3-11: Network of neurons to see the effect of varying radius

 Neuron Delay Velocity

1 N2 43.81 µsec 22.82 m/s

2 N3 75.89 µsec 39.52 m/s

3 N4 131.45 µsec 45.64 m/s

Table 2-2: Result of the Network

Radius m

Radius m

Radius m

Length mm

Length mm

Length mm

56

Figure 3-12: Graph of delay vs. the radius of the neuron

In Fig 3-13we summarize the results. The graph clearly shows the effect of

radius and length on the delay in reception of the action potential. The results

clearly show as we increase the length of the neuron the delay increases and as the

radius of the neuron increases the delay decreases. The conduction velocity is the

gradient of the curves and we can see that as the radius of the neurons increase the

conduction velocity increases. The length of the neuron does not affect the

conduction velocity.

57

Figure 3-13: Summary of the results

58

3.3 Spiking Time Dependent Plasticity

3.3.1 Uniform Spiking Frequency

 For uniform spiking frequency we use uniform spiking frequency

for each of the neurons. The following figure shows the network shown in Figure

3-14 used and the dimensions of the neurons. The Figure 3-15 shows the synaptic

weights before the firings and Figure 3-16 shows the synaptic weights after firing.

As the firing rate is constant the only factor effecting the weights are the

dimensions. As the lengths of the neurons differ in which case the speed of the

action potential differs and hence the time the presynaptic action potential arrives

differs because of the lengths, as the radius is constant.

Figure 3-14: Network of Neurons for constant radius

Radius

Radius

Radius

Radius

Radius

Length m

Length

Length

Length

Length

59

Figure 3-15: Synaptic weights before action potential

Figure 3-16: Synaptic weights after action potential

60

3.3.2 Different Spiking Frequency

 For different spiking frequency we use uniform spiking

frequency for each of the neurons. The following figure shows the network shown

in Figure 3-17 used and the dimensions of the neurons and Figure 3-18 shows the

spiking frequency used.. The Figure 3-19 shows the synaptic weights before the

firings and figure 3-20 shows the synaptic weights after firing

As the firing rate are different and the same dimensions are used as

previously the only factor effecting the weights is frequency. As we can see from

the results below the weights after the action potential follow the same pattern as

that of the frequency distribution. Hence showing that the synaptic weights are

dependent on the frequency of the action potentials which is also known as the

firing rate of the action potentials of each neurons.

Figure 3-17: Neural Network for constant radius

Radius

Radius

Radius

Radius

Radius

Length m

Length

Length

Length

Length

61

Spiking Frequency of Neurons

Figure 3-18: Synaptic weights after action potential

Figure 3-19: Synaptic weights after action potential

62

Figure 3-20: Synaptic weights after action potential

63

CHAPTER 4: CONCLUSION

This was of the first time that any model was made using the KOCH model

for modeling a neural network that involved learning function and conduction

velocity functions in the model. Previously work [13] has been done in simulating

the neural network with learning functions but the neurons in those networks used

Hodgkin Huxley model for neural simulation. KOCH model is a comprehensive

model of a neuron compared to Hodgkin Huxley Model and hence the results are

also more comprehensive. The results of our model are consistent with the previous

works [13] and shows that KOCH model does provide and alternative more

comprehensive neural model that could be used for modeling neurons.

Our Results showed that the speed of propagation of the action potential is

related to the diameter of the neuron, which is consist ant with the previous

findings [11]. The delays involved in the propagation of action potential are

directly related to the features of a neuron. The delay decreases as the radius of the

neuron increases and the delay increases when the length of the neuron increases.

We used the model with learning function using Spike Time Dependent

Plasticity which showed the effect of different dimensions of a neuron on learning.

The effects of delay on learning can be seen from the results. Even a time

difference of 1-2 mSec have a profound effect on learning. Along with the effect of

delays we also showed the effect of the frequency of the action potential affecting

learning, as the frequency of action potential increased so did the learning weights.

For future the model could incorporate other functions such as neural

degeneration [14], effects of temperature on propagation [15]. Incorporating such

function would help in better understanding of many neural diseases that involve

64

such functions. Functions such as Synaptogenesis: forming of new connections

between neuron and Neurogenesis: creation of neurons as the requirement arises.

The additions of these functions would further bring the model closer to the actual

working of the brain.

In future the code should be parallelized so that as we increase the number

of neurons to millions and to even billions of neurons as the estimated number of

neurons in average human brain is approximately 100 billion neurons. Parallelizing

the code is extremely essential to mimic the working of the brain.

65

REFERENCES

[1] L.F. Abbott, Lapicques. “Introduction of the integrate-and-fire model

neuron” (1907). Brain Res. Bull., 50(5-6):303–304, 1999.

[2] Y. Amitai, J.R. Gibson, M. Beierlein, P.L. Patrick, A.M. Ho, B.W.

Connors, and D. Golomb. “The spatial dimensions of electrically coupled

networks of interneurons in the neocortex” J. Neurosci., 22(10):4142–

4152, 2004.

[3] R. Azouz and C. M. Gray. “Cellular mechanisms contributing to response

variability of cortical neurons in vivo” J. Neurosci., 19:2209–2223, 1999.

[4] M. Beierlein, J.R. Gibson, and B.W. Connors “ A network of electronically

coupled interneurons drives synchronized activity in neocortex” Nature

Neuroscience, 3:904–910, 2000.

[5] P.C. Bressloff and S. Coombes “Synchrony in an array of integrate-and-fire

neurons with dendritic structure” Physical Review Letters, 78:4665–4668,

1997.

[6] E. Brown, J. Moehlis, and P. Holmes “On the phase reduction and response

dynamics of neural oscillator populations” Neural Comp., 16:673–715,

2004.

[7] A. L. Hodgkin and A. F. Huxley “A quantitative description of membrane

current and its applications to conduction and excitation in nerve"

J.Physiol. (London.), 116 (1952), pp. 500–544.

[8] A.L. Hodgkin “The local electric changes associated with repetitive action

in a non-medulated axon” J. Physiol., 107:165–181, 1948.

66

[9] Chirst of Koch & Idan Segev, “Multiple Channels and Calcium Dynamics”

in book “Methods in neuronal modeling” MIT Press Cambridge 1989.

Pages 97-133

[10] Guo-qiang Bi and Mu-ming Poo “Synaptic modification by correlated

activity: Hebb’s Postulate Revisited” Annu. Rev. Neurosci. 2001. 24:139–

66

[11] Yang Dan and Mu-ming Poo “Spiking Timing-Dependent Plasticity of

 Neural Circuits” Neuron, Vol. 44, 23–30, September 30, 2004

[12] Ichiji Tasaki, Gen Matsumoto “On the Cable Theory of Nerve Conduction”

 Bulletin of Mathematical Biology Volume 64, Issue 6, November 2002,

 Pages 1069–1082

[13] Aydn, Gülümser MDı; Keleş, Işk MDı; “Sensitivity of Median Sensory

 Nerve Conduction Tests in Digital Branches for the Diagnosis of Carpal

 Tunnel Syndrome” American Journal of Physical Medicine &

 Rehabilitation: January 2004 - Volume 83 - Issue 1 - pp 17-21

[14] Lyle N. Long “An Adaptive Spiking Neural Network with Hebbian

 Learning “ IEEE Symposium Series on Computational Intelligence, Paris,

 France, 2011

[15] Z J Koles, M Rasminsky, “A computer simulation of conduction in

demyelinated nerve fibres” The Journal of Physiology (1972) Volume: 227,

Issue: 2, Pages: 351-364

[16] K Todnem, G Knudsen, T Riise, H Nyland, J A Aarli, “The non-linear

relationship between nerve conduction velocity and skin temperature” J

Neurol Neurosurg Psychiatry 1989;52:497-501 doi:10.1136/jnnp.52.4.497

67

[17] B. Doiron, C. Laing, and A. Longtin. Ghostbursting “A novel neuronal

burst mechanism” J. Comp. Neurosci., 12:5–25, 2002

[18] J. Duijnhouwer, M.W.H. Remme, A. van Ooyen, and J. van Pelt “Influence

of dendritic topology on firing patterns in model neurons”

Neurocomputing, 38–40:183–189, 2001.

[19] C. Koch and I. Segev “The role of single neurons in information

processing” Nature, 3:1171–1177, 2000.

[20] M.A. Long, C.E. Landisman, and B.W. Connors “Small clusters of

electrically coupled neurons generate synchronous rhythms in the thalamic

reticular nucleus” J. Neurosci., 24(2):341–349, 2004.

[21] L. Rela and L. Szczupak. Gap junctions “Their importance for the dynamics

of neural circuits” Molecul. Neurobio., 30(3):341–357, 2004.

[22] J. Rinzel and G.B. Ermentrout. “Analysis of Neural Excitability and

Oscillations In: Koch C, Segev I (eds) Methods in Neuronal Modelling:

from Synapses to Networks” MIT Press, Cambridge, Mass. pp 135-171,

1989.

[23] X.J. Wang. “Fast firing and short-term synaptic plasticity: A model of

neocortical chattering neurons” Neuroscience, 89(2):347–362, 1999.

[24] W. Rall. “Theory of physiological properties of dendrites” Ann. N.Y. Acad.

Sci., 96:1071–1092, 1962.

[25] M.J. Chacron, K. Pakdaman, and A. Longtin “Interspike interval

correlations, memory, adaptation, and refractoriness in a leaky integrate-

and-fire model with threshold fatigue” Neural Comp., 15:253–278, 2003.

[26] Hursh, J. B. (1939). “Conduction velocity and diameter of nerve fibers”

Am. J. Physiol. 127,131–153.

68

APENDIX A

Algorithm for Spiking Time Dependent Plasticity

The algorithm used for simulating the spiking time dependent plasticity is

shown below. This algorithm is used for simulating STDP in each neuron. This is

very simple and accommodates all the properties of STDP, without putting any

burden on the simulations.

For each synapse

if timeold(PostNeuron) < timenew(PreNeuron)< imenew(PostNeuron)

 weight = weight + dwPlus

else

 weight = weight + dwMinus

 dwPlus = dwMinus = α

 dt = timenew(PreNeuron) - timenew(PostNeuron

69

Matlab Code

The following is the MATlab code used to program the model. The code is

divided into different functions which enable it to be edited for debugging and

adding different parameters for the network. The names of the functions are shown

in bold and are in the center. The detail of each function would be found in the

functions, additional information about the formulas and the equations used are

given the standard MATlab comments, which makes it easy to understand the code.

The following function tau_mNa, tau_mK3, tau_mK2, tau_mK1, tau_mCa,

tau_mC, tau_mC, tau_mAHP, tau_hNa, tau_hK2 are used to calculate function

mNA, hNA. mCa, hCa, mC, hC, mAPH, hAPH, mK1, mK2, hK2, Mk3.

 tau_mNa

function y = tau_mNa(v)

y = 2 ./ (alpha_mNa(v) + beta_mNa(v));

end

tau_mK3

function y = tau_mK3(v)

sum = v+35;

y = (1000.0) ./ (3.3 .* ((exp(sum./40) + exp(-sum./20))));

end

tau_mK2

function y = tau_mK2(v)

y = 1 ./ (alpha_mK2(v) + beta_mK2(v));

end

70

tau_mK1

function y = tau_mK1(v)

y = 1.38;

end

tau_mCa

function y = tau_mCa(V)

sum = (V+6)/16;

y = 7.8/(exp(sum) + exp(-sum));

end

tau_mC

function y = tau_mC(V,Ca)

sum = V/24;

b = 0.1*exp(-sum);

f = 250*Ca*exp(sum);

y = 1 / (f + b);

end\

tau_mAHP

function y = tau_mAHP(Ca)

 f = 1.25e8 *(Ca)*(Ca);

b = 2.5;

y = 1000/(f+b);

71

end

tau_hNa

function y = tau_hNa(v)

y = 2 ./ (alpha_hNa(v) + beta_hNa(v));

end

tau_hK2

function y = tau_hK2(v)

if v < -25

y = 6000;

else

y = 50;

end

end

tau_hK1

function y = tau_hK1(v)

if v<-80

y = 50;

else

y = 150;

end

end

72

STDP

This is the implementation of the SPTD algorithm.

function w_cur= STDP(s,w_cur)

lam_pot = 0.1;

lam_dep = 0.1;

mui = 1;

MAX = 1.0;

MIN = 0.2;

% w_curr(1) = 1;

i = 2;

if (s<=0) % Potentiation (pre-post)

tem = lam_pot*(MAX-w_cur)^mui;

delta_w = tem*(exp(s/1));

y = exp(s/1);

w_cur = w_cur+delta_w;

else

tem = lam_dep*w_cur^mui;

delta_w = tem*(-exp(-s/1));

y = -exp(-s/1);

w_cur = w_cur+delta_w;

if(w_cur<MIN)

w_cur = MIN;

73

end

end

i = i+1;

end

set_Pump

This code sets up the portion of the discretization matrix A due to the

Calcium Pump. The method of calculations is shown as comments in the code.

Please look at the comments to understand the method of solving the problem

function [A4,DV4] = set_Pump(X,A4,DV4,N,V,Parameter)

format long

%{

...

===

Parameter (1) = rsize;

Parameter (2) = rcore;

Parameter (3) = delta_t;

Parameter (4) = forward_binding_rate;

Parameter (5) = backward_binding rate;

Parameter (6) = Diffusion Constant

Parameter (7) = B_iT;

Binding Concentration below

level n

Parameter (8) = B_nT;

Binding Concentration at

level n

74

Parameter (9) = C_i;

Ca Concentration below

level n

Parameter (10) = C_n;

Ca Concentration at

level n

==

...

...

%}

rsize = Parameter (1);

rcore = Parameter (2);

delta_t = Parameter (3);

forward_binding_rate = Parameter (4);

backward_binding_rate = Parameter (5);

Diffusion_Constant = Parameter (6);

B_iT = Parameter (7);

B_nT = Parameter (8);

C_i = Parameter (9);

C_n = Parameter (10);

C = zeros(1,N+1);

C = X(1:N+1);

B = zeros(1,N+1);

75

B = X(N+2:(2*N)+2);

BT = zeros(N+1,B_iT);

BT(N) = B_nT;

%===

% Add calcium pump term

% C_N, t+delta_t (1+ delta_t /(2*tau_pump)) =

% C_N, t (1 ? delta_t /(2*tau_pump)

% + delta_t /tau_pump*Caˆeq

%===

calcium_equil = 5.0e-5;

tau_pump = 17.7*exp(V/35.0);

tau2 = delta_t/tau_pump;

A4(N+1,N+1) = 1.0 + 0.5*tau2;

DV4(N+1) = (1.0 - 0.5*tau2)*C(N+1) + (calcium_equil*tau2);

end

set_Ica

This code sets up the portion of the discretization matrix A due to the Calcium

current ICA.

function [A3,DV3] = set_ICA(X,A3,DV3,N,m_CA1,V,Parameter)

format long

rsize = Parameter (1);

rcore = Parameter (2);

delta_t = Parameter (3);

forward_binding_rate = Parameter (4);

backward_binding_rate = Parameter (5);

Diffusion_Constant = Parameter (6);

76

B_iT = Parameter (7);

B_nT = Parameter (8);

C_i = Parameter (9);

C_n = Parameter (10);

C = zeros(1,N+1);

C = X(1:N+1);

B = zeros(1,N+1);

B = X(N+2:(2*N)+2);

BT = zeros(N+1,B_iT);

BT(N) = B_nT;

Now add dynamics due to I CA1

([Ca+2]_N,t+delta_t ? [Ca+2]_N,t)/ delta_t = ?I_CA1 /(2F V_n)

 or

C(N) at t+delta_t =

C(N) ?I_CA1*delta_t /(2 F V_N)

This means we set

A3 (N,N) = 1.0

DV3(N) = C(N) ?I_CA1*delta_t /(2 F V_N)

where these parameters are defined as follows:

Calcium Concentration in last shell update

note .1 micro m = 10ˆ?7 m = 10ˆ?5 cm

d Ca/ dt = mM/(liter ms)

I_CA1 = nAmps/ sec

 = 10ˆ?9 coulombs / sec

 = 10ˆ?9 coulombs / sec * 1 sec /10ˆ3 ms

 = 10ˆ?12 couombs / ms

cell is 20 micro m in radius = 20.0 x 10ˆ?4 cm

rcore is 19 micro meter in radius = 19.0 x 10ˆ?4 cm

each shell is .1 micro meter thick = 1.0 x 10ˆ?5 cm

77

shell N is rcore + N x rsize in radius

 = 19 x 10ˆ?4 cm + 10_*(1.0 x 10ˆ?5) cm

 = (19+1) x 10ˆ?4 cm

so shell is 10ˆ?5 cm thick

diff = (20.0 x 10ˆ?4 cm)ˆ3 ?(19.9 x10ˆ?4cm)ˆ3

diff = (8,000 ?78805.990) x 10ˆ?12 cc

diff = 1.194010 x 10ˆ2 x10ˆ?12 cc

diff = 1.194010 x 10ˆ?10 cc

diff = 1.194010 x 10ˆ?13 liters

volume of shell N is 4/3*pi*diff

 = 5.0015 x 10ˆ?13 liters

So

V_n = volume of shell N:

 = 5.0015 x 10ˆ?13 liters

Faraday’s Constant is FC = 9.649 x 10ˆ13 coulomb/mM

So 1/(2.0_FC x V n) = mM/(coulomb liters)

And since 2.0 x FC x V_N = 96.5189 x 10ˆ13 x 10ˆ?13 (coulomb liter)/mM

 = 96.5189 (coulomb l i t e r)/mM

 = 9.65189 x 1 0 ˆ 1 (coulomb l i t e r)/mM

 1 / (2.0 x FC x V_n) = 0.1036 x 10ˆ?1 mM/(

coulomb liter)

 = 1.036 x 10ˆ?2 mM/(coulomb liter)

 I CA1 / (2.0 x FC x V_n)

 = 10ˆ?12 x 1.036 x 10ˆ?2 coulombs mM

 ????????*???????????????

 ms (coulomb liter)

 = 1.036 x 10ˆ{?14} mM/(l i t e r ms)

h_CA1_0 = 0.01;

78

h_CA1 = h_CA1_0 /(h_CA1_0+C(N+1));

g_CA1_bar = 0.116;

CA_O = 4.0;

Ryd = 8.31; % Rydberg’s Constant

T = 276.0 + 22.0; % Kelvin Temperature

F = 9.649e+4; % Faraday’s constant

r31 = rcore + ((N*rsize)^3.0);

r32 = rcore + (((N-1)*rsize)^3.0);

V_N = (4.0/3.0)*(r32-r31);

RTF = Ryd*(T/F)*1e+3; % express in mV

E_CA = 0.5*RTF*log10(CA_O/(C(N+1)));

I_CA1 = g_CA1_bar*m_CA1*h_CA1*(V-E_CA);

Ca_Term = (1.0e-9)/(2.0*V_N*F);

A3(N+1,N+1) = 1.0;

DV3(N+1) = X(N+1) - (I_CA1*Ca_Term*delta_t);

end

set_diffusion

This code sets up the portion of the discretization matrix A due to the Calcium

diffusion.

function [A2, DV2] = set_diffusion (X,A2,DV2,N,Parameter)

format long

 Parameter (1) = rsize;

 Parameter (2) = rcore;

 Parameter (3) = delta_t;

 Parameter (4) = forward_binding_rate;

 Parameter (5) = backward_bindingrate;

 Parameter (6) = Diffusion_Constant;

 Parameter (7 = B_iT;

 Binding Concent ration below

 leveln

 Parameter (8) = B_nT;

 Binding Concentration at

79

 level n

 Parameter (9) = C_i;

 Ca Concentration below

 level n

 Parameter (10) = C_n;

 Ca Concentration at

 level n

rsize = Parameter (1);

rcore = Parameter (2);

delta_t = Parameter (3);

forward_binding_rate = Parameter (4);

backward_binding_rate = Parameter (5);

Diffusion_Constant = Parameter (6);

B_iT = Parameter (7);

B_nT = Parameter (8);

C_i = Parameter (9);

C_n = Parameter (10);

C = zeros(1,N+1);

C = X(1:N+1);

B = zeros(1,N+1);

B = X(N+2:(2*N)+2);

BT = ones(N+1);

BT = BT.*B_iT;

BT(N+1) = B_nT;

DF1 is set once ; does not depend on delta_t

units:

 R is cm

 DF1 is cmˆ2/ms 1/(cmˆ2) cm

 cm/ms

 DF1b is cm

80

 DF2 is cm/ms

 These terms in A times C or B give

 (DF1?DF2)(C or B) is

 cm/ms mM/(liter ms)

 (cm mM)/(liter msˆ2)

DF1 = zeros(N+1,N+1);

DF2 = zeros(N+1,N+1);

DF3 = zeros(N+1,N+1);

DF4 = zeros(N+1,N+1);

R = zeros(1,N+1);

mu = (Diffusion_Constant) / (2.0*rsize*rsize);

for i=1:N+1

 R(i) = rcore + (i-1)*rsize ;

end

DF1(1,1) = -3.0*rsize*rsize / rcore;

DF1(1,2) = 3.0*R(2)*rsize*rsize /(rcore*rcore);

for i=2:N

 DF1(i,i-1) = R(i-1);

 DF1(i,i) = -2.0*R(i);

 DF1(i,i+1) = R(i+1);

end

DF1(N+1,N) = R(N);

DF1(N+1,N+1) = -R(N);

DF4 = (delta_t*mu).*DF1;

RDiag = zeros(N+1,N+1);

Temp = zeros(1,N+1);

for i=1:N+1

 RDiag(i,i) = R(i);

end

DF2 = RDiag-DF4;

DF3 = RDiag+DF4;

81

for i=1:N+1

 for j=1:N+1

 A2(i,j) = DF2(i,j);

 end

end

Temp = DF3*C' ;

for i=1:N+1

 DV2(i) = Temp(i);

end

end

set_buffers

This code sets up the portion of the discretization matrix A due to the Calcium

buffers.

function [A1,DV1] = set_buffers(X,A1,DV1,N,Parameter)

format long

===

Parameter (1) = rsize ;

Parameter (2) = rcore ;

Parameter (3) = delta_t ;

Parameter (4) = forward_binding_rate ;

Parameter (5) = backward_binding_rate ;

Parameter (6) = Diffusion Constant

Parameter (7) = B_iT ;

Binding Concentration below

level n

Parameter(8) = B_nT;

Binding Concentrationat

level n

82

Parameter(9) = C_i;

Ca Concentration below

level n

Parameter(10) = C_n;

Ca Concentration at

level n

===

rsize = Parameter(1);

rcore = Parameter(2);

delta_t = Parameter(3);

forward_binding_rate = Parameter(4);

backward_binding_rate = Parameter(5);

Diffusion_Constant = Parameter(6);

B_iT = Parameter(7);

B_nT = Parameter(8);

C_i = Parameter(9);

C_n = Parameter(10);

===

 X is size 2*no_shells + 2

 Ca+2 Concentration : size no_shells + 1

 C = X.slice (0,no_shells)

 C(1) = concentration at shell 0

 C(2) = concentration at shell 1

 .

 .

 C(no_shells+1) = concentration at shell no_shells

 Buffer Concentration : size no_shells + 1

 B = X.slice(no_shells + 1, 2*no_shells +1)

 B(1) = concentration at shell 0

 B(2) = concentration at shell 1

 .

 .

83

 B(no_shells) = concentration at shell no_shells

 u n i t s :

 Now the rate of change of Ca and B wrt t is in

 mM/(liter ms)

 B is in mM/(liter ms)

 U1 is

 1 + (forward_binding_rate*delta_t)*B

 1+ (ms liter)/(mM ms) ms mM/(liter ms)

U1 C is (mM)

(l i t e r ms)

 U2 is backward_binding_rate*delta_t +(forward_binding_rate*delta_t)C

 (1/ms) ms + 1

 U2 B is (1 + 1) (mM/(liter ms)

 mM/(l i t e r ms)

Same for U3 and U4

==

C = zeros(1,N+1);

C = X(1:N+1);

B = zeros(1,N+1);

B = X(N+2:(2*N)+2);

BT = ones(N+1);

BT = BT.*B_iT;

BT(N+1) = B_nT;

U1 = ones(1,N+1);

U1 = U1 + ((0.5*forward_binding_rate*delta_t).*B);

84

temp = backward_binding_rate*delta_t*0.5;

U2 = ones(1,N+1);

U2 = U2.*temp;

temp = 0.5*(forward_binding_rate*delta_t);

U2 = U2 + (temp.*C);

U3 = zeros(1,N+1);

temp = 0.5*(forward_binding_rate*delta_t);

U3 = U3 + (temp.*B);

temp = 1.0 + backward_binding_rate*delta_t*0.5;

U4 = ones(1,N+1);

U4 = U4 .*temp;

temp = 0.5*(forward_binding_rate*delta_t);

U4 = U4 + (temp.*C);

===

% So A should be

% U1 U2

% U3 U4

===

% set U1

for i =1:N+1

 A1(i,i) = U1(i);

end

% set U2

for i=1:N+1

 A1(i,i+N+1) = U2(i);

end

% set U3

for i=1:N+1

 A1(i+N+1,i) = U3(i);

end

% set U4

for i=1:N+1

85

 A1(i+N+1,i+N+1) = U4(i);

end

===

% Data Vector is DV1 of size 2*no_shells+1

%

% C ?(backward_binding_rate*delta_t*0.5)*B

% + backward_binding_rate*delta_t*BT

% DV1= --

% B ?(backward_binding_rate*delta_t*0.5)*B

% + backward_binding_rate*delta_t*BT

%

===

DV1 = zeros(1,2*(N+1));

for i=1:N+1

 DV1(i) = C(i) - (backward_binding_rate*delta_t*0.5)*B(i) +

backward_binding_rate*delta_t*BT(i);

end

for i=1:N+1

 DV1(i+N+1) = B(i) - (backward_binding_rate*delta_t*0.5)*B(i)+

backward_binding_rate*delta_t*BT(i);

end

end

rest

function q = rest (E_M,p,q)

g_NA_bar = p(1);

g_K1_bar = p(2);

g_K2_bar = p(3) ;

g_K3_bar = p(4) ;

g_CA1_bar = p(5) ;

g_CA2_bar = p(6);

86

g_CA3_bar = p(7);

g_leak_bar = p(8);

E_NA = p(9);

E_L = p(10);

C = p(11);

K_I = p(12);

K_O = p(13);

E_K = p(14);

CA_I = p(15);

CA_O = p(16);

E_CA = p(17);

sum = E_M + 33.0;

if (sum>0)

 alpha_mNA = 0.36*sum/(1.0 - exp(-sum/3.0));

else

 alpha_mNA = 0.36*exp(sum/3.0)*sum/(exp(sum/3.0)- 1.0) ;

end

sum = E_M + 42.0;

if (sum>0)

 beta_mNA = (-0.4*exp(-sum/20.0)*sum)./(exp(-sum/20.0)-1.0) ;

else

 beta_mNA = (-0.4*sum) / (1.0 - exp(sum/20.0)) ;

end

m_NA_infinity = alpha_mNA /(alpha_mNA + beta_mNA) ;

% inactivation parameter for I_NA

sum = E_M+55.0;

if (sum<0)

 alpha_hNA = (-0.1*sum)/(1.0 - exp(sum/6.0));

else

 alpha_hNA = (-0.1*exp(-sum/ 6.0)*sum)/(exp(-sum/ 6.0) - 1.0);

end

87

if (E_M>0)

 beta_hNA = 4.5/(1.0+exp(-E_M/10.0)) ;

else

 beta_hNA = (4.5*exp(E_M/10.0)) / (exp(E_M/10.0) + 1.0);

end

h_NA_infinity = alpha_hNA/(alpha_hNA+beta_hNA);

I_NA = g_NA_bar*(E_M-E_NA)*m_NA_infinity*m_NA_infinity*h_NA_infinity

;

===

Transient , Outward Potassium Current

===

activation parameter for I_K

sum = E_M+42.0;

if (sum<0)

 m_K1_infinity = exp(sum/13.0)/(exp(sum/13.0)+1.0);

else

 m_K1_infinity = 1.0/(1.0+exp(-sum/13.0)) ;

end

% inactivation parameter for I_K

sum = E_M+110.0;

if (sum<0)

 h_K1_infinity = 1.0/(1.0+exp(sum/18.0)) ;

else

 h_K1_infinity = exp(-sum/18.0)/(exp(-sum/18.0)+1.0);

end

I_K1 = g_K1_bar*(E_M-E_K)*m_K1_infinity*h_K1_infinity ;

===

 Delayed, Rectifying Potassium Current

===

activation parameter for I_K

sum = E_M+12.0;

88

if (sum<0)

 alpha_mK2 = (-0.0047*exp(sum/12.0)*sum)/(1.0 - exp(sum/12.0)) ;

else

 alpha_mK2 = -0.0047*sum/(exp(-sum/12.0)-1.0) ;

end

sum = E_M+147.0;

if (sum>0)

 beta_mK2 = exp(-sum/30.0) ;

else

 beta_mK2 = exp(-sum/30.0) ;

end

t_m_K2 = 1.0/(alpha_mK2+beta_mK2);

sum = (E_M-20.0)+12.0;

if (sum<0)

 alpha_mK2 = (-0.0047*exp(sum/12.0)*sum)/(1.0-exp(sum/12.0)) ;

else

 alpha_mK2 = (-0.0047*sum)/(exp(-sum/12.0) - 1.0);

end

sum = (E_M-20.0)+147.0;

if (sum>0)

 beta_mK2 = exp(-sum/30.0);

else

 beta_mK2 = exp(-sum/30.0) ;

end

m_K2_infinity = alpha_mK2 /(alpha_mK2+beta_mK2) ;

% inactivation parameter for I_K

sum = E_M+25.0;

if (sum<0)

 h_K2_infinity = 1.0/(1.0+exp(sum/4.0)) ;

else

 h_K2_infinity = exp(-sum/4.0) / (exp(-sum/4.0)+1.0) ;

end

89

if (E_M<-25.0)

 t_h_K2 = 6000.0 ;

else

 t_h_K2 = 50.0 ;

end

I_K2 = g_K2_bar*(E_M-E_K)*m_K2_infinity*m_K2_infinity*h_K2_infinity ;

==

 Non?inactivating Muscarinic Potassium Current

===

 activation parameter for I_K

sum = (E_M+35.0) / 40.0 ;

t_m_K3 = 1000.0/(exp(sum) + exp(-2.0*sum));

sum = (E_M+35.0) / 10.0;

if (sum>0)

 m_K3_infinity = exp(sum)/(exp(sum) + 1.0);

else

 m_K3_infinity = 1.0 / (1.0 + exp(-sum)) ;

end

I_K3 = g_K3_bar*(E_M-E_K)*m_K3_infinity ;

===

Fast Calcium Current

sum = (E_M+6.0) / 16.0 ;

if (sum>0)

 t_m_CA1 = (7.8*exp(-sum))/(1+exp(-2.0*sum)) ;

else

 t_m_CA1 = (7.8*exp(sum))/(1+exp(2.0*sum)) ;

end

if (E_M < -32.0)

 m_CA1_infinity = 0.0;

else

 sum = (E_M-3.0) / 8.0;

90

 if (sum>0)

 m_CA1_infinity = 1.0/(1.0+exp(-sum)) ;

 else

 m_CA1_infinity = exp(sum) / (exp(sum)+1);

 end

end

h_CA1_0 = 0.01;

h_CA1 = h_CA1_0 /(h_CA1_0+CA_I) ;

I_CA1 = g_CA1_bar*m_CA1_infinity*h_CA1*(E_M-E_CA);

===

 Non?Inactivating Calcium Dependent Potassium Current

===

sum = E_M/24.0 ;

s1 = 250.0*CA_I*exp(sum);

s2 = 0.1*exp(-sum);

t_m_CA2 = 1/(s1+s2) ;

m_CA2_infinity = s1 /(s1+s2) ;

sum = E_M/ 24.0 ;

t_m_CA2 = 1/(250.0*CA_I*exp(sum)+(0.1*exp(-sum))) ;

if (sum>0)

 m_CA2_infinity = (250.0*CA_I)/(250.0*CA_I+0.1*exp(-2.0*sum));

else

 m_CA2_infinity = (250.0*CA_I*exp(

2.0*sum))/(250.0*CA_I*exp(2.0*sum)+0.1);

end

I_CA2 = g_CA2_bar*m_CA2_infinity*(E_M-E_K);

===============v===

 Voltage Independent Calcium Dependent Potassium Current

===

s1 = (1.25e+8)*CA_I*CA_I;

t_m_CA3 = 1000.0/(s1 + 2.5);

m_CA3_infinity = s1 /(s1 +2.5) ;

91

I_CA3 = g_CA3_bar*m_CA3_infinity*m_CA3_infinity*(E_M - E_K) ;

sum = I_NA + I_K1 + I_K2 +I_K3 + I_CA1 + I_CA2 + I_CA3;

===

 Find Initial Conditions

===

g_NA_inf = g_NA_bar*m_NA_infinity*m_NA_infinity*h_NA_infinity;

g_K1_inf = g_K1_bar*m_K1_infinity*h_K1_infinity;

g_K2_inf = g_K2_bar*m_K2_infinity-h_K2_infinity ;

g_K3_inf = g_K3_bar*m_K3_infinity;

g_CA1_inf = g_CA1_bar*m_CA1_infinity*h_CA1;

g_CA2_inf = g_CA2_bar*m_CA2_infinity;

g_CA3_inf = g_CA3_bar*m_CA3_infinity*m_CA3_infinity;

g_total = g_NA_inf + g_K1_inf + g_K2_inf + g_K3_inf + g_CA1_inf +

g_CA2_inf + g_CA3_inf + g_leak_bar;

fprintf('Initial activation and inactivations are:\n')

fprintf('m_Na(0) = %f\n', m_NA_infinity)

fprintf('h_Na(0) = %f\n',h_NA_infinity);

fprintf('m_K1(0) = %f\n',m_K1_infinity);

fprintf('h_K1(0) = %f\n',h_K1_infinity);

fprintf('m_K2(0) = %f\n',m_K2_infinity);

fprintf('h_K2(0) = %f\n',h_K2_infinity);

fprintf('m_K3(0) = %f\n',m_K3_infinity);

fprintf('m_Ca1(0) = %f\n',m_CA1_infinity);

fprintf('m_Ca2(0) = %f\n',m_CA2_infinity);

fprintf('m_Ca3(0) = %f\n',m_CA3_infinity);

q(1) = m_NA_infinity ;

q(2) = h_NA_infinity ;

q(3) = m_K1_infinity ;

q(4) = h_K1_infinity ;

q(5) = m_K2_infinity ;

q(6) = h_K2_infinity ;

q(7) = m_K3_infinity ;

q(8) = m_CA1_infinity ;

q(9) = m_CA2_infinity ;

q(10) = m_CA3_infinity ;

q(11) = K_O;

92

q(12) = CA_I ;

end

nerst

function y = nerst(t,ion_in, ion_out,ii)

R = 8.3144621;

z = 1/ii;

T = t+273;

F = 96485.3365;

ratio = (ion_out./ion_in);

c = (R.*T./F);

y = z*58*log10(ratio);

end

m_inf_Na

function y = m_inf_Na(v)

 y = alpha_mNa(v) ./ (alpha_mNa(v) + beta_mNa(v));

end

m_inf_K3

function y = m_inf_K3(v)

93

sum = v+35;

y = 1 ./ (1.0 + exp(-sum/10));

end

m_inf_K2

function y = m_inf_K2(v)

y = alpha_mK2(v) ./ (alpha_mK2(v) + beta_mK2(v));

end

m_inf_K1

function y = m_inf_K1(v)

sum = v+42.0;

y = (1) ./ (1.0 + exp(-sum./13.0));

end

m_inf_Ca

function y = m_inf_Ca(V)

sum = (V-3);

y = 1/(1 + exp(-sum/8));

end

m_inf_C

function y = m_inf_C(V,Ca)

sum = V/24;

94

 b = 0.1*exp(-sum);

 f = 250*Ca*exp(sum);

 y = f / (f + b);

end

m_inf_AHP

function y = m_inf_AHP(Ca)

 f = 1.25e8*(Ca)*(Ca);

 b = 2.5;

 y = f /(f+b);

end

KOCH Model

This is the main KOCH model that calculates the action potential, this function

uses all the function that are defined before.

function V = koch(dt,b)

format('long')

%dt = 1e-3; % Number of Steps

a = 0; % Staring Point Of The Time

% b = 30; % Ending Point Of The Time

n = ((b-a)./ (dt)) +1; % Number Of Loops

tol = 7.0e-1; % Convergence Criteria

no_shells = 10; % Number Of Shells

tem = 22.0;

V0 = -70;

V = zeros(n,1);

I_Na = zeros(n,1);

I_A = zeros(n,1);

I_K = zeros(n,1);

I_M = zeros(n,1);

I_Ca = zeros(n,1);

95

I_C = zeros(n,1);

I_AHP = zeros(n,1);

I_syn = zeros(n,1);

%K_in = zeros(1,n);

Ca_in = zeros(n,1);

I_L = zeros(n,1);

mNa = zeros(n,1);

hNa = zeros(n,1);

mK1 = zeros(n,1);

hK1 = zeros(n,1);

mK2 = zeros(n,1);

hK2 = zeros(n,1);

mK3 = zeros(n,1);

mCa = zeros(n,1);

hCa = zeros(n,1);

mC = zeros(n,1);

mAHP = zeros(n+0,1);

gNa = zeros(n,1);

E_K = zeros(n,1);

E_Ca = zeros(n,1);

gK1 = zeros(n,1);

time = zeros(n,1);

K_out = zeros(n,1);

EX = zeros(n,1);

I_K = zeros(n,1);

p = zeros(17,1);

q = zeros(12,1);

B = zeros(no_shells+1,1);

Ca = zeros(no_shells+1,1);

g_Na_bar = 2.0;

g_A_bar = 1.2;

g_K_bar = 1.17;

g_M_bar = 0.084;

g_Ca_bar = 0.116;

g_C_bar = 1.20;

g_AHP_bar = .054;

g_leak_bar = 0.02;

G_L = g_leak_bar;

C = 0.15; % Capacitance

K_out(1) = 5;

96

K_in = 140.0;

Ca_out = 5.0;

Ca_in(1) = 0.00005;

E_Na = nerst(tem,10,145,1);

E_K(1) = nerst(tem,K_in,K_out(1),1);

E_L = -10;

E_Ca(1) = nerst(tem,Ca_in(1),Ca_out,2);

E_m = V0;

E_syn = -10;

p(1) = g_Na_bar;

p(2) = g_A_bar;

p(3) = g_K_bar;

p(4) = g_M_bar;

p(5) = g_Ca_bar;

p(6) = g_C_bar;

p(7) = g_AHP_bar;

p(8) = g_leak_bar;

p(9) = E_Na;

p(10) = E_L ;

p(11) = tem;

p(12) = K_in;

p(13) = K_out(1);

p(14) = E_K(1);

p(15) = Ca_in(1);

p(16) = Ca_out;

p(17) = E_Ca(1);

q = rest(E_m,p,q);

V0 = E_m;

V(1) = V0;

mNa(1) = q(1);

hNa(1) = q(2);

mK1(1) = q(3);

hK1(1) = q(4);

mK2(1) = q(5);

hK2(1) = q(6);

mK3(1) = q(7);

mCa(1) = q(8);

mC (1) = q(9);

mAHP(1) = q(10);

97

K_out(1) = q(11);

Ca_in(1) = q(12);

time = a:dt:b;

I_Na(1) = (V(1) - E_Na).*(g_Na_bar.*(mNa(1)).*(mNa(1)).*(hNa(1)));

I_A(1) = (V(1) - E_K(1)).*(g_A_bar.*(mK1(1)).*(hK1(1)));

I_K(1) = (V(1) - E_K(1)).*(g_K_bar.*(mK2(1)).*(mK2(1)).*(hK2(1)));

I_M(1) = (V(1) - E_K(1)).*(g_M_bar.*(mK3(1)));

I_Ca(1) = (V(1) - E_Ca(1)).*(g_Ca_bar.*(mCa(1)).*(hCa(1)));

I_C (1) = (V(1) - E_K(1)).*(g_C_bar.*(mC (1)));

I_AHP(1) = (V(1) - E_K(1)).*(g_AHP_bar).*(mAHP(1)).*(mAHP(1));

I_L(1) = (V(1) - E_L).*g_leak_bar;

Ca(1:(no_shells+1)) = 50e-6;

B(1:no_shells,1) = 3e-3;

B((no_shells+1),1) = 30e-3;

start = 0 % Start of the

i = 1;

while time(i) < b

 i;

 Calculation Of Potentials

===

 E_L = -10;

 E_Ca(i) =nerst(tem,Ca_in(i),Ca_out,2);

===

 Calculation of the Differential Equations

===

98

 % dV(t.dt)/dt

 dmNa = ((m_inf_Na(V(i))-mNa(i))./tau_mNa(V(i))); % Activation Fast

Sodium Current

 dhNa = ((h_inf_Na(V(i))-hNa(i))./tau_hNa(V(i))); % Inactivation Fast Sodium

Current

 dmK1 = ((m_inf_K1(V(i))-mK1(i))./tau_mK1(V(i))); % Activation Transient,

Outwarad Potassium Current

 dhK1 = ((h_inf_K1(V(i))-hK1(i))./tau_hK1(V(i))); % Inactivation Transient,

Outward Potassium Current

 dmK2 = ((m_inf_K2(V(i))-mK2(i))./tau_mK2(V(i))); % Delayed, Rectifying

Potassium Current

 dhK2 = ((h_inf_K2(V(i))-hK2(i))./tau_hK2(V(i))); % Delayed, Rectifying

Potassium Current

 dmK3 = ((m_inf_K3(V(i))-mK3(i))./tau_mK3(V(i))); % Non-Inactivating

Muscarinic Potassium Current

 dmCa = ((m_inf_Ca(V(i))-mCa(i))./tau_mCa(V(i))); % Fast Calcium Current

 dmC = ((m_inf_C(V(i),Ca_in(i))-mC (i))./tau_mC (V(i),Ca_in(i))); % Non-

inactivating Calcium-Dependent Potassium Current

 dmAHP = ((m_inf_AHP(Ca_in(i))-mAHP(i))./tau_mAHP(Ca_in(i))); %

Voltage-Independent, Calcium-Dependent Potassium Current

===

 Activation Fast Sodium Current

 pre = mNa(i)+dmNa.*dt;

 dmNa_p_dt = ((m_inf_Na(V(i))-pre)./tau_mNa(V(i)));

 corr = mNa(i)+(dt/2).*(dmNa_p_dt + dmNa);

 diff = abs(corr-pre);

 while diff > tol

 dmNa = ((m_inf_Na(V(i))-corr)./tau_mNa(V(i)));

 pre = corr+dmNa.*dt;

 dmNa_p_dt = ((m_inf_Na(V(i))-pre)./tau_mNa(V(i)));

 corr = mNa(i)+(dt/2).*(dmNa_p_dt+dmNa);

 diff = abs(corr-pre);

 end

mNa(i+1) = corr;

99

===

 Inactivation Fast Sodium Current

===

 pre = hNa(i)+dhNa.*dt;

 dhNa_p_dt = ((h_inf_Na(V(i))-pre)./tau_hNa(V(i)));

 corr = hNa(i)+(dt/2).*(dhNa_p_dt+dhNa);

 diff = abs(corr-pre);

 while diff > tol

 dhNa = ((h_inf_Na(V(i))-corr)./tau_hNa(V(i)));

 pre = corr+dhNa.*dt;

 dhNa_p_dt = ((h_inf_Na(V(i))-pre)./tau_hNa(V(i)));

 corr = hNa(i)+(dt/2).*(dhNa_p_dt+dhNa);

 diff = abs(corr-pre);

 end

 hNa(i+1) = corr;

===

 Activation Transient, Outwarad Potassium Current

==

 pre = mK1(i)+dmK1.*dt;

 dmK1_p_dt = ((m_inf_K1(V(i))-pre)./tau_mK1(V(i)));

 corr = mK1(i)+(dt/2).*(dmK1_p_dt+dmK1);

 diff = abs(corr-pre);

 while diff > tol

 dmK1 = ((m_inf_K1(V(i))-corr)./tau_mK1(V(i)));

 pre = corr+dmK1.*dt;

100

 dmK1_p_dt = ((m_inf_K1(V(i))-pre)./tau_mK1(V(i)));

 corr = mK1(i)+(dt/2).*(dmK1_p_dt+dmK1);

 diff = abs(corr-pre);

 end

 mK1(i+1) = corr;

===

 Inactivation Transient, Outward Potassium Current

===

 pre = hK1(i)+dhK1.*dt;

 dhK1_p_dt = ((h_inf_K1(V(i))-pre)./tau_hK1(V(i)));

 corr = hK1(i)+((dt*2).*(dhK1_p_dt+dhK1));

 diff = abs(corr - pre);

 while diff > tol

 dmK1 = ((h_inf_K1(V(i))-corr)./tau_hK1(V(i)));

 pre = corr + dhK1.*dt;

 dhK1_p_dt = ((h_inf_K1(V(i)) - pre)./tau_hK1(V(i)));

 corr = hK1(i) + ((dt*2).*(dhK1_p_dt + dhK1));

 diff = abs(corr - pre);

 end

 hK1(i+1) = corr;

===

Delayed, Rectifying Potassium Current

==

 pre = mK2(i) + dmK2.*dt;

 dmK2_p_dt = ((m_inf_K2(V(i)) - pre) ./ tau_mK2(V(i)));

 corr = mK2(i) + (dt/2).*(dmK2_p_dt + dmK2);

101

 diff = abs(corr - pre);

 while diff > tol

 dmk2 = ((m_inf_K2(V(i)) - corr) ./ tau_mK2(V(i)));

 pre = corr + dmK2.dt;

 dmK2_p_dt = ((m_inf_K2(V(i)) - pre) ./ tau_mK2(V(i)));

 corr = mK2(i) + (dt/2).*(dmK2_p_dt + dmK2);

 diff = abs(corr - pre);

 end

 mK2(i+1) = corr;

===

 Delayed, Rectifying Potassium Current

===

 pre = hK2(i) + dhK2.*dt;

 dhK2_p_dt = ((h_inf_K2(V(i)) - pre) ./ tau_hK2(V(i)));

 corr = hK2(i) + (dt/2).*(dhK2_p_dt + dhK2);

 diff = abs(corr - pre);

 while diff > tol

 dhk2 = ((h_inf_K2(V(i)) - corr) ./ tau_hK2(V(i)));

 pre = corr + dhK2.dt;

 dhK2_p_dt = ((h_inf_K2(V(i)) - pre) ./ tau_hK2(V(i)));

 corr = hK2(i) + (dt/2).*(dhK2_p_dt + dhK2);

 diff = abs(corr - pre);

 end

 hK2(i+1) = corr;

===

Non-Inactivating Muscarinic Potassium Current

===

102

 pre = mK3(i) + dmK3 .* dt;

 dmK3_p_dt = ((m_inf_K3(V(i)) - pre) ./ tau_mK3(V(i)));

 corr = mK3(i) + (dt/2).*(dmK3_p_dt + dmK3);

 diff = abs(corr - pre);

 while diff > tol

 dmK3 = ((m_inf_K3(V(i))-corr)./tau_mK3(V(i)));

 pre = corr+dmK3.*dt;

 dhK3_p_dt = ((m_inf_K3(V(i))-pre)./tau_mK3(V(i)));

 corr = mK3(i)+(dt/2).*(dmK3_p_dt+dhK3);

 diff = abs(corr-pre);

 end

 mK3(i+1) = corr;

%===

% Fast Calcium Current

%===

 pre = mCa(i)+dmCa.*dt;

 dmCa_p_dt = ((m_inf_Ca(V(i))-pre)./tau_mCa(V(i)));

 corr = mCa(i)+(dt/2).*(dmCa_p_dt+dmCa);

 diff = abs(corr-pre);

 while diff > tol

 dmCa = ((m_inf_Ca(V(i))-corr)./tau_mCa(V(i)));

 pre = corr+dmCa.*dt;

 dmCa_p_dt = ((m_inf_Ca(V(i))-pre)./tau_mCa(V(i)));

 corr = mCa(i)+(dt/2).*(dmCa_p_dt+dmCa);

 diff = abs(corr-pre);

 end

 mCa(i+1) = corr;

===

 Fast Calcium Current

103

===

 hCa(i+1) = 0.01/(0.01+Ca_in(i));

===

 Non-inactivating Calcium-Dependent Potassium Current

===

 pre = mC(i)+dmC.*dt;

 dmC_p_dt = ((m_inf_C(V(i),Ca_in(i))-pre)./tau_mC(V(i),Ca_in(i)));

 corr = mC(i)+(dt/2).*(dmC_p_dt+dmC);

 diff = abs(corr-pre);

 while diff > tol

 dmC = ((m_inf_C(V(i),Ca_in(i))-corr)./tau_mC(V(i),Ca_in(i)));

 pre = corr+dmC.*dt;

 dmC_p_dt = ((m_inf_C(V(i),Ca_in(i))-pre)./tau_mC(V(i),Ca_in(i)));

 corr = mC(i)+(dt/2).*(dmC_p_dt+dmC);

 diff = abs(corr-pre);

 end

 mC(i+1) = corr;

 Voltage-Independent, Calcium-Dependent Potassium Current

===

 pre = mAHP(i)+dmAHP.*dt;

 dmAHP_p_dt = ((m_inf_AHP(Ca_in(i))-pre)./tau_mAHP(Ca_in(i)));

 corr = mAHP(i)+(dt/2).*(dmAHP_p_dt+dmAHP);

 diff = abs(corr-pre);

 mAHP(i+1) = pre;

===

 Potassium Accumulation

===

104

 V_peri = 11.749137;

 t_K_diff = 7.0;

 K1 = I_A(i);

 K2 = I_K(i);

 K3 = I_M(i);

 IC = I_C(i);

 IK_Total = (I_A(i)+I_K(i)+I_M(i)+I_C(i)+I_AHP(i));

 F = 9.649e4;

 K_rest = 2.5;

 lead = (IK_Total/(V_peri*F));

 other = ((K_out(i)-K_rest)./t_K_diff);

 dK_out_dt = lead - other;

 pre = K_out(i)+dK_out_dt.*dt;

 K_out(i+1) = pre;

 K_out(i+1) = 7.8;

 E_K(i) = nerst(tem,K_in,K_out(i),1);

 K = E_K(i);

 Fast, Nicotinic Synaptic Input

===

 t_peak = 2.5;

 g_sym = 2.90856e-5;

 u = (time(i)./t_peak);

 g_syn = time(i)*g_sym*exp(-u);

===

 Current Calculation

===

 I_Na(i) = (V(i)-E_Na).*(g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)));

 I_A(i) = (V(i)-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)));

 I_K(i) = (V(i)-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)));

 I_M(i) = (V(i)-E_K(i)).*(g_M_bar.*(mK3(i)));

 I_Ca(i) = (V(i)-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)));

 I_C (i) = (V(i)-E_K(i)).*(g_C_bar.*(mC (i)));

105

 I_AHP(i) = (V(i)-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));

 I_L(i) = (V(i)-E_L).*g_leak_bar;

 I_syn(i) = (V(i)-E_syn).*g_syn;

===

 Voltage Calculation

===

 dV = (1./C).*(I_ext(time(i))-(

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i)));

 pre = V(i)+dV.*dt;

 I_Na(i) = (pre-E_Na).*(g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)));

 I_A(i) = (pre-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)));

 I_K(i) = (pre-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)));

 I_M(i) = (pre-E_K(i)).*(g_M_bar.*(mK3(i)));

 I_Ca(i) = (pre-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)));

 I_C (i) = (pre-E_K(i)).*(g_C_bar.*(mC (i)));

 I_AHP(i) = (pre-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));

 I_L(i) = (V(i) - E_L).*g_leak_bar;

 I_syn(i) = (V(i)-E_syn).*g_syn;

 dV_p_dt = (1./C).*(I_ext(time(i))-(

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i)));

 corr = V(i) + (dt/2).*(dV_p_dt + dV);

 diff = abs(corr - pre);

 EX(i) = I_ext(time(i));

 I_K(i) = I_A(i) + I_K(i) + I_M(i);

 while diff > tol

 I_Na(i) = (corr-E_Na).* (g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)));

 I_A(i) = (corr-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)));

 I_K(i) = (corr-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)));

 I_M(i) = (corr-E_K(i)).*(g_M_bar.*(mK3(i)));

 I_Ca(i) = (corr-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)));

 I_C (i) = (corr-E_K(i)).*(g_C_bar.*(mC (i)));

 I_AHP(i) = (corr-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));

 I_L(i) = (corr-E_L).*g_leak_bar;

 dV = (1./C).*(I_ext(time(i))-(

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i)));

 pre = corr + dV;

 I_Na(i) = (pre-E_Na).*(g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)));

 I_A(i) = (pre-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)));

 I_K(i) = (pre-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)));

106

 I_M(i) = (pre-E_K(i)).*(g_M_bar.*(mK3(i)));

 I_Ca(i) = (pre-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)));

 I_C (i) = (pre-E_K(i)).*(g_C_bar.*(mC (i)));

 I_AHP(i) = (pre-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));

 I_L(i) = (pre-E_L).* g_leak_bar;

 dV_p_dt = (1./C).*(I_ext(time(i))-(

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i)));

 corr = V(i)+(dt/2).*(dV_p_dt + dV);

 diff = abs(corr-pre);

 I_K(i) = I_A(i)+I_K(i)+I_M(i);

 end

 V(i+1) = corr;

% [V(i+1),mNa(i+1),hNa(i+1),mK1(i+1),hK1(i+1)] =

voltage(V(i),I_ext(time(i)),dt,mNa(i),hNa(i),mK1(i),hK1(i));

===

 Calcium Update

===

tem = V(i);

 start = 0;

% Ca = Ca_update(V(i),dt,Ca,B,I_Ca(i));

% Ca_in(i+1) = Ca(11);

 if tem>=-25

 Ca = Ca_update(V(i),dt,Ca,B,I_Ca(i));

 Ca_in(i+1) = Ca(11);

 % start = 1;

 else

 Ca_in(i+1) = 0.00005;

 % K_out(i+1) = 1.8;

 end

 %Ca_in(i+1) = 0.00005;

 i = i+1;

end

%plot(time,V)

end

107

Alpha_hNa

function y = alpha_hNa(v)

 sum = v+55.0;

 y = (-0.10.*sum) ./ (1.0 - exp(sum./6.0));

end

I_ext

function y = I_ext(t)

 if t>00 && t<02

 y = 5;

 else

 y = 0;

end

end

h_inf_Na

function y = h_inf_Na(v)

y = alpha_hNa(v) ./ (alpha_hNa(v) + beta_hNa(v));

end

h_inf_K2

108

function y = h_inf_K2(v)

sum = v+25;

y = 1 ./ (exp(sum./4));

end

h_inf_K1

function y = h_inf_K1(v)

sum = v+110.0;

y = (1) ./ (1.0 + exp(sum./18.0));

end

getCA_at_N

function [X] = getCA_at_N(X,no_shells,m_CA1,V,Parameter)

format long

===

 Concentrations here are in mu M

 Parameter (1) = rsize;

 Parameter (2) = rcore;

 Parameter (3) = delta_t;

 Parameter (4) = forward binding rate;

 Parameter (5) = backward binding rate;

 Parameter (6) = Diffusion Constant;

 Parameter (7) = B_iT;

 Binding Concent ration below

 level no_shells

 Parameter (8) = B_nT;

109

 Binding Concentration at

 level no_shells

 Parameter (9) = C_i;

 Ca Concentration below

 level no_shells

 Parameter (10) = C_n;

 Ca Concentration at

 level n

===

N = no_shells;

rsize = Parameter(1);

rcore = Parameter(2);

delta_t = Parameter(3);

forward_binding_rate = Parameter(4);

backward_binding_rate = Parameter(5);

Diffusion_Constant = Parameter(6);

B_iT = Parameter(7);

B_nT = Parameter(8);

C_i = Parameter(9);

C_n = Parameter(10);

A1 = zeros((2*N) +2,(2*N)+2);

DV1 = zeros((2*N)+2,1);

A2 = zeros((2*N)+2,(2*N)+2);

DV2 = zeros((2*N)+2,1);

A3 = zeros((2*N)+2,(2*N)+2);

DV3 = zeros((2*N)+2,1);

A4 = zeros((2*N)+2,(2*N)+2);

DV4 = zeros((2*N)+2,1);

A = zeros((2*N)+2,(2*N) +2);

Acopy = zeros((2*N)+2,(2*N) +2);

DV = zeros((2*N)+2,1);

110

% construct buffer discretization matrices

[A1,DV1] = set_buffers(X,A1,DV1,N,Parameter);

A = A1;

DV = DV1';

% construct diffusion discretization matrices

[A2,DV2] = set_diffusion (X,A2,DV2,N,Parameter);

A = A + A2;

DV = DV + DV2;

% construct ICA current matrices

[A3,DV3] = set_ICA (X,A3,DV3,N,m_CA1,V,Parameter);

A = A + A3;

DV = DV + DV3;

% construct Ca pump matrices

[A4, DV4] = set_Pump (X,A4,DV4,N,V,Parameter);

A = A + A4;

DV = DV + DV4;

X = (A\DV)';

end

Alpha_mK2

function y = alpha_mK2(v)

 sum = v+12;

 y = (-0.0047.*sum) ./ (-1 + exp(-sum./12.0));

end

111

Ca_update

This function calculates the Calcium concentrations in the neuron after the action

potential has fired.

function x = Ca_update(V,dt,Ca,B,I_Ca)

% Ca is Calcium Concentration Layer wise

% B is the buffer Concentration

A = zeros(11,11);

DV = zeros(11,1);

F = 96490;

D = 6.0e-3; %cm2sec-1

n = 10;

f = 1.0e2;

b = 1e-1;

r_core = 19; % um micrometer

r_i = zeros(11,1);

delta_r = 0.1; % um micrometer

B_it = zeros(11,1);

Ca_equil = 50e-3;

Ca_n = Ca(n+1,1);

Km = 0.02;

tau_pump = 17.7*exp(V*1e-3/35);

K_rest = 2.5;

% Setting up the radius of the Shells

for i=0:10

 r_i(i+1) = r_core + (i*delta_r);

end

r_out = power(r_i(n+1),3);

112

r_in = power(r_i(n),3);

r_diff = (r_out-r_in);

V_n = (4*pi/3)*r_diff ;

% Setting up the [B]i,total Concentrations

B_it(n+1) = 30e-0;

for i=1:n

 B_it(i)= 3.0e-0;

end

A(1,1) = (1+((3*D*dt)/(2*r_core*r_core))+(f*dt*B(1)*0.5));

A(1,1) = A(1,1)-((f*dt*dt*B(1)*(b+(f*Ca(1))))/(2*(2+(b*dt)+(f*dt*Ca(1)))));

A(1,2) = -(3*D*dt)/(2*r_core*r_core);

for i=2:n

 A(i,i-1)= ((-D*dt*(r_i(i)-delta_r))/(2*r_i(i)*delta_r*delta_r));

 A(i,i) = 1+((D*dt)/(delta_r*delta_r))+(f*dt*B(i)*0.5);

 A(i,i) = A(i,i)-((dt*dt*f*B(i)*(b+(f*Ca(i))))/(2*(2+(b*dt)+(f*dt*Ca(i)))));

 A(i,i+1)= ((-D*dt*(r_i(i)+delta_r))/(2*r_i(i)*delta_r*delta_r));

end

A(11,10) = -((D*dt*(r_i(11)-delta_r))/(2*r_i(11)*delta_r*delta_r));

A(11,11) = 1+((D*dt*(r_i(11)-delta_r)) / (2*r_i(11)*delta_r*delta_r)

)+(f*dt*B(11)*0.5)+(dt/(2*tau_pump));

A(11,11) = A(n+1,n+1)-(

(dt*dt*f*B(11)*(b+(f*Ca(11))))/(2*(2+(b*dt)+(f*dt*Ca(11)))));

DV(1,1) = (Ca(1)*(1+((3*D*dt)/(2*r_core*r_core)))) +

((3*D*dt*Ca(2))/(2*r_core*r_core));

DV(1,1) = DV(1,1)+(b*dt*B_it(1))-(b*dt*0.5);

DV(1,1) = DV(1,1)-(

(2*b*dt*dt*B_it(1)*(b+(f*Ca(1))))/(2*(2+(b*dt)+(f*dt*Ca(1)))));

DV(1,1) = DV(1,1)-((B(1)*((2*b*dt)+(dt*dt*b*b)+(dt*f*Ca(1))-

(dt*dt*f*b*Ca(1))))/(2*(2+(b*dt)+(f*dt*Ca(1)))));

113

for i=2:n

 DV(i,1) = ((D*dt*(r_i(i)+delta_r)*Ca(i+1))/(2*r_i(i)*delta_r*delta_r))+(

Ca(i)*(1+((D*dt)/(delta_r*delta_r))));

 DV(i,1) = DV(i,1)+((D*dt*Ca(i-1)*(r_i(i)-delta_r))/(2*r_i(i)*delta_r*delta_r)

)+(2*dt*B_it(i))-(0.5*b*dt*B(i));

 DV(i,1) = DV(i,1)-((dt*dt*B_it(i)*(b+(f*Ca(i))))/(2+(b*dt)+(f*dt*Ca(i))));

 DV(i,1) = DV(i,1)-((dt*B(i)*((2*b)-(b*b*dt)+(Ca(i)*((2*f)-

(f*b*dt)))))/(2*(2+(b*dt)+(f*dt*Ca(i)))));

end

DV(11,1) = ((D*dt*(r_i(11)-delta_r)*Ca(10))/(2*r_i(11)*delta_r*delta_r))-(

(D*dt*Ca(11)*(r_i(11)-delta_r))/(2*r_i(11)*delta_r*delta_r));

DV(11,1) = DV(11,1)-((dt*I_Ca)/(2*F*V_n))+(b*dt*B_it(11))-(b*dt*B(11))+(

(dt*Ca_equil)/(tau_pump))-((dt*Ca(11))/(2*tau_pump));

DV(11,1) = DV(11,1)-((dt*dt*B_it(11)*(b+(f*Ca(11))))/(2+(b*dt)+(f*dt*Ca(11)))

);

DV(11,1) = DV(11,1)-((dt*B(11)*((2*b)-(b*b*dt)+(Ca(11)*((2*f)-

(f*b*dt)))))/(2*(2+(b*dt)+(f*dt*Ca(11)))));

a = zeros(11,1);

b = zeros(11,1);

c = zeros(11,1);

d = DV;

for i=2:(n+1)

 a(i,1)= A(i,(i-1));

 c(i,1)= A((i-1),i);

end

for i=1:(n+1)

 b(i,1)= A(i,i);

end

114

a, b, c are the column vectors for the compressed tridiagonal matrix, d is the right

vector

n = length(b); % n is the number of rows

% Modify the first-row coefficients

c(1) = c(1) / b(1); % Division by zero risk.

d(1) = d(1) / b(1); % Division by zero would imply a singular matrix.

for i = 2:n-1

 temp = b(i) - a(i) * c(i-1);

 c(i) = c(i) / temp;

 d(i) = (d(i) - a(i) * d(i-1))/temp;

end

d(n) = (d(n)-(a(n)*d(n-1)))/(b(n)-a(n)*c(n-1));

% Now back substitute.

x(n) = d(n);

for i = n-1:-1:1

 x(i) = d(i) - c(i) * x(i + 1);

end

x = x';

for i=1:11

 if x(i)<0

 x(i)=0;

 end

end

end

beta_mNa

function y = beta_mNa(v)

 sum = v+42.0;

 y = (-0.40.*sum) ./ (1.0 - exp(sum./20.0));

end

115

beta_mK2

function y = beta_mK2(v)

 sum = v+147.0;

 y = exp(-sum./30.0);

end

beta_hNa

function y = beta_hNa(v)

 sum = v+0.0;

 y = (4.5) ./ (1.0 + exp(-sum./10.0));

end

alpha_mNa

function y = alpha_mNa(v)

 sum = v+33.0;

 y = (0.36.*sum) ./ (1.0 - exp(-sum./3.0));

end

