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ABSTRACT 

Neurons are of essential importance in biology and its applications. 

Neurons are the simplest unit of data (information) processing in the nervous 

system of humans and other animals. Besides their importance for biology and 

medicine, networks of neurons (the human brain) are the most complex and 

advanced computational devices known, and the study of neurons individually and 

working in concert is seen as a step toward understanding consciousness and 

cognition. 

A.L. Hodgkin and A.F. Huxley in 1950’s developed a system of nonlinear 

ordinary differential equations to explain the behavior of a neuron found of a giant 

squid. These nonlinear equations have since been used to model the behavior of a 

host of neurons and other excitable cells like heart muscles. Hodgkin-Huxley 

category models take a set of parameters as input and produce data relating the 

electrical behavior of the neuron as a function of time.  

 The cornerstone of modern neurobiology is the analysis by Hodgkin and 

Huxley of the initiation and propagation of the action potential in the squid giant 

axon. Their description accounted for two ionic currents: the fast sodium current 

INa and a delayed potassium current, IK. However, while the Hodgkin-Huxley 

formula has been singularly important to biophysics, their equations do not 

describe a number of important phenomena such as adaptation to long-lasting  

stimuli or the dependency of some conductance on various ionic concentrations  

The Koch model is the extension of the famous Hodgkin-Huxley model 

which is based on the fast sodium and delayed potassium currents, while the Koch 
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model incorporates numerous ionic membrane currents and also takes into account 

the calcium dynamics of a neuron. 

Spike Timing Dependent Plasticity (STDP) is a temporally asymmetric 

form of Hebbian learning encouraged by constricted temporal correlations between 

the spikes of pre- and postsynaptic neurons. As with additional forms of synaptic 

plasticity, it is broadly believed that it inspires learning and information storage in 

the brain, as well as the progress and improvement of neuronal circuits during brain 

development. In STDP, frequent presynaptic spike arrival a few milliseconds 

before postsynaptic action potentials points in many synapse types to long-term 

potentiation (LTP) of the synapses, whereas recurring spike arrival after 

postsynaptic spikes points to long-term depression (LTD) of the same synapse. 

We for the first time have combined KOCH neuron model and Spike 

Timing Dependent Plasticity (STDP). In the model we have also incorporated 

delays due to the length and diameter of a neuron. This study helps in 

understanding the working of neural networks and learning behaviors. The 

approach is not only adaptable, but it is also scalable to very large network (billions 

of neurons). Different neural diseases affect the conductance of nerves such as 

peripheral neuropathy and mononeuritis multiplex. 

  

http://www.scholarpedia.org/article/Donald_Olding_Hebb
http://www.scholarpedia.org/article/Learning
http://www.scholarpedia.org/article/Neuron
http://www.scholarpedia.org/article/Synaptic_plasticity
http://www.scholarpedia.org/article/Synaptic_plasticity
http://www.scholarpedia.org/article/Brain
http://www.scholarpedia.org/article/Long-term_potentiation
http://www.scholarpedia.org/article/Long-term_potentiation
http://www.scholarpedia.org/article/Long-term_depression
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CHAPTER 1: INTRODUCTION 

 

Neuroscience is of fundamental importance in biology, as it plays a major 

role in the spread of information in living organisms. Neurons are the essential unit 

of information processing in the nervous system of humans and animals alike. In 

addition to their importance for biology, networks of neurons (like the human 

brain) are the most advanced computational devices known, and its study is seen as 

a stride toward better understanding consciousness and cognition. 

Neuron functions by preserving a voltage difference across its cell 

membrane.  Quick variations in voltage difference can be introduced in response to 

external stimuli, including chemical or electrical signals. Some neurons also 

display unprompted activity, firing steady patterns of electrical impulses even in 

the nonexistence of external stimulus. Spikes spread down the length of the neuron 

at a speed of roughly 20 meters per second, permitting quick broadcast of 

information over macroscopic distances inside an organism. 

In spite of having been studied by many scientists, the comprehensive 

processes by which even a single neuron functions are still the subject of strong 

research. In recent developments in computational resources and mathematical 

modeling methods have allowed neuroscientists to initiate studying neurons using 

computer models and simulation while continuing using ever more sophisticated 

biological, physical, and chemical tools. 

The brain is remarkably adept at acquiring, coordinating, and disseminating 

information about the body and its environment. Such information must be 
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processed within milliseconds, yet it also can be stored away as memories that 

endured for years. Neurons within the central and peripheral nervous systems 

perform these functions by generating sophisticated electrical and chemical signals. 

1.1 Neuron 

 

A neuron is a cell that is the basic building block of the nervous system. 

Neurons have many similarities to other cells in the human body, but there is one 

important difference between neurons and other cells. That difference is that 

neurons are dedicated to transmit information throughout the body.  

Nerve produce electrical signals that convey information. Even though 

neurons are not fundamentally good conductors of electricity, they have evolved 

intricate mechanisms for producing these signals centered on flow of ions across 

their membranes. Ordinarily, neurons produce a negative potential, called the 

“resting potential”, that can be measured by recording the voltage between the 

inside and the outside of nerve cells.  

These exceedingly dedicated nerve cells are in charge for communicating 

information in chemical and electrical forms. There are also numerous varied types 

of neurons in control for different tasks in the human body. 

Neurons that are in the sensory part convey information from the sensory 

receptor cells all over the body to the brain. Information from the brain to the 

muscles of the body are transferred by Motor neurons transfer. Interneurons are 

responsible for communicating information between different neurons in the body. 



18 
 

Human brains are linked to thousands of other neurons and contain tens of 

billions of neurons. There are trillions of specialized neuron connections in the 

brain known as synapses. Neurons have many dimensions, which regulate their 

roles.  

1.1 Neuron Structure 

 

A classic neuron has identical parts to that any cell would have, and a few 

dedicated structures that differentiate it from the rest.  Soma is the main portion of 

the cell. It comprises of a nucleus that contains chromosomes. 

Dendrites are large extensions of a neuron.  They resemble branches or 

spikes spreading out from the cell body.  Principally it is the exteriors of the 

dendrites that get chemical messages from other neurons.  It is tough to 

differentiate axon from the dendrites, in others it is straightforwardly distinguished 

by its length. The basic structure of a neuron is shown in Figure 1-1, which 

highlights different parts of a neuron 

 

 

 

 

 

Figure 1-1: Basic Structure of a neuron, showing different parts of the structure of 

a neuron 

Nucleus 

Cell Body 

Dendrite 

Axon 

Dendrites 

Terminal 



19 
 

Sandwiched between the axon ending and the dendrite of the next neuron is 

a very tiny gap called the synapse (or synaptic gap, or synaptic cleft), which we 

will discuss in a little bit.  For every neuron, there are between 1000 and 10,000 

synapses. 

1.1.1 Synapse 

 

 The nervous system consists of a large number of neurons that are linked 

together to form functional conducting pathways. Where two neurons come into 

close proximity and functional inter-neuronal communication occurs, the site of 

such communication is referred as Synapse. Most neurons may make synaptic 

connections to a 1000 or more other neurons and may receive up to 10,000 

connections from other neurons. 

(http://neuroscience.uth.tmc.edu/s1/introduction.html) 

Synapses are the special surface contact sites where impulses are 

transmitted from a presynaptic cell (a neuron) to a postsynaptic cell (which may be 

a neuron or an effector cell, e.g. a muscle cell or gland cell). The synapse permits 

neurons to contact with each other or with the effector cells 

Communications at synapse, under physiologic conditions, takes place in 

one direction only. Synapses occur in a number of forms. Synapses between the 

neurons are commonly classified into the following three types: 

1) Axosomatic synapse, i.e., synapse between an axon and cell body 

(soma) of a neuron 

2) Axodentritic synapse, i.e., synapse occurring between the axon of a 

neuron and the dendrite of another neuron 
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3) Axoaxonic synapse, i.e., synapse between an axon and another axon 

Impulse transmission at synapses can occur electrically or chemically and, 

therefore synapses are classified as electrical synapses and chemical synapses. 

Figure 1-2: Synapse contains gap between two neurons, neurotransmitters 

transmitting the signal from one neuron to the other.   

 

The Electrical Synapses contain gap junctions that permit free movements 

of ions from one neuron to another as shown in Figure 1-2. Movement of ions 

causes a flow of electrical current from one neuron to the other. Impulse 

transmission is much faster across the electrical synapses than across the chemical 

synapses. Electrical synapses have been found to be present in the retina, brainstem 

and cerebral cortex. 

In Chemical Synapses conduction of impulses occurs by the release of 

chemical substances that are called neurotransmitters. Chemical synapses constitute 

the most common variety of synapses in the nervous system. 
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1.2 Action Potential  

When the nerve cell is excited (stimulated) by electrical, mechanical, or 

chemical means, a rapid change in membrane permeability to Na+ ions takes place, 

and  Na+ ions diffuse through the plasma membrane into the cell cytoplasm the 

tissue fluid. This results in the membrane becoming progressively depolarized, 

summarized in Figure 1-3. The sudden influx of Na+ ions followed by the altered 

polarity produces the so-called action potential, which is approximately +40mV. 

This is very brief, lasting about 5 msec. The increased membrane permeability for 

Na+ ions quickly ceases and the membrane permeability for K+ ions increases. 

Therefore K+ ions start to flow from the cell cytoplasm and return the localized 

area of the cell to the resting state. Figure 1-4 summarizes ion transfers at different 

regions of the action potential.  

 

Figure 1-3: Action Potential with detail different regions 
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Once generated, the action potential spreads over the plasma membrane, 

away from the site of initiation, and is conducted along neuritis as the nerve 

impulse. This impulse is self-propagated and its size and frequency do not alter. 

Once the nerve impulse has spread over a given region of plasma membrane, 

another action potential cannot be elicited immediately. The duration of this non-

excitable state is referred to as the refractory period, and it controls the maximum 

frequency that the action potentials can be conducted along the plasma membrane.   

Figure 1-4: The working of ion channels during an action potential 

 

 

 Because electrical signals are the basis of information transfer in the 

nervous systems, it is essential to understand how these signals arise. Remarkably 

all of the neuronal electric signals are produced by similar mechanism that reply 

upon the movement of ions across the neuronal membrane. 



23 
 

 Nerve cells produce electrical signals to send information over extensive 

distances and also transmit the information to other cells through synaptic 

connections. These signals eventually rest on variations in the resting electrical 

potential across the membrane. A resting potential arises as nerve cell membranes 

are permeable to one or more ion species subject to an electrochemical gradient. 

1.3 Hodgkin Huxley  

 After 1950, when A.L. Hodgkin and A.F. Huxley established a system of 

equations unfolding the electrical activity of the squid giant axon [7], [8], 

neuroscientists have been equipped with a leading theoretical framework for 

studying neuronal function and behavior. The equations are not only largely valid 

to many classes of neurons, but the internal dynamics of the Hodgkin-Huxley 

model in many ways emulate the physiology of the neuron. The difficulty of 

working with living neurons, computational neuroscience has become an 

increasingly important tool for the study of neuronal physiology and behavior. 

 Through series of experiments on the axon of the squid, Hodgkin and 

Huxley reached a basic insight that the neuronal cell membrane has independent 

permeability mechanisms for different types of ions. And along with this this the 

results helped us understand the membrane's conductance for each type of ion 

which is a function of time and the trans-membrane voltage. Using nonlinear 

ordinary differential equations (given data specifying the internal state of the 

neuron and its initial conditions [7]), Hodgkin and Huxley with help of quantitative 

model reproduced the experimental data (as obtained from experiments above [7]), 

and to simulate the electrical activity of the neuron, it can be solved numerically. 

This model was the first complete description of the excitability of a single cell. 
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The ODE equations of Hodgkin and Huxley are the basis for almost all ionic 

current-based neuronal models for example sodium, potassium, calcium and after 

extending these equations, they have been used successfully in the study of neurons 

playing various physiological roles across a comprehensive spectrum of species.   

 The neuron, though active transport mechanisms that expend energy to 

transport ions across the cell membrane, There is maintenance of a voltage 

difference, which is also called the membrane potential, across the cell membrane 

separating the cytoplasm inside the cell from the extracellular fluid. An enzyme 

that is found in the cell membrane, the sodium-potassium pump, is one of the 

active transport mechanism in our body. With each pumping cycle, it causes the 

movement of three Na+ ions out of the cell and two K+ ions into the cell. Under 

the action of the sodium-potassium pump, it results in net outflow of positive 

charge setting up a steady state membrane voltage difference, which is called the 

resting potential. This causes the charge inside of the cell to be electronegative 

compared to the cell's surroundings. Ionic concentration imbalances across the cell 

membrane can also occurs due to active transport of ions across the cell membrane. 

For example, in the intracellular fluid, the concentration of Na+ ions lean towards 

lower side and the concentration of K+ ions lean towards higher than in the 

extracellular fluid. This is due to the continuous action of the sodium-potassium 

pump. The main driving force that decides whether an action potential is allowed 

or not when a stimulus arrives is the imbalance between the membrane resting 

potential and the ionic concentration imbalances. This is what allows the neuron to 

respond rapidly to stimuli causing the membrane to become permeable to the flow 

of ions resulting in an action potential. 
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 There are specific types of ions in the cell membrane which consists 

many different ionic current pathways (ion channels) which allows the flow of 

these ions. In the response to voltage difference through the cell membrane these 

ionic channels open and close, neutralizing the voltage difference an then coming 

back to the resting state. The reason several reason for the ions flow through these 

channels. One being the electrostatic pressure which is developed because of the 

membrane potential, and other being the pressure that results from 

intracellular/extracellular concentration imbalances which is a caused by active 

transport. There is a state for each ion in this membrane where the two pressures 

are well-balanced where no net trans flow occurs. There are several different types 

of voltage-gated ion channels in a classic neuron and either impulsively or in 

response to external stimuli, the interaction between these channels allows an 

individual neuron to reveal a range of behaviors. Through the opening and closing 

of voltage-gated ion channels causes the conductance of the cell membrane to ions 

of the similar type and other types. This is because ions carry charge, and their flow 

across the cell membrane effects the membrane potential. This enables a 

sophisticated system of feedback loops that triggers the neuron's electrical activity. 

 As explained in the Hodgkin-Huxley model, this is a general explanation 

of the processes underlying an action potential. There is a substantial inconsistency 

in the ionic current pathways present in biological neurons. Currently developed 

ionic current-based models tend to be more complex than the primary Hodgkin-

Huxley model, but the form of the original equations and the processes which they 

define generally follow the model developed by Hodgkin and Huxley relatively 

close. 
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1.4 Memory 

 The ability to store information on basis of experience they have and to 

retrieve much of it at one’s own will is one of the most fascinating brain’s 

complex functions. This gives our brain many of the cognitive functions for 

example learning, memory. The process by which new information is attained by 

the nervous system and is evident through changes in behavior is called learning. 

The encoding, storage and retrieval of learned information is referred as learning. 

Similarly intriguing is the normal aptitude to forget information. In daily life, there 

are various diseases and disorders due to memory loss which has helped us in 

understanding of pathological forgetfulness and amnesia which is one of the 

foremost challenges of modern neuroscience, a challenge that has only initiated to 

be encountered.   

 The critical first step to create a new memory is called encoding. It allows 

the observed item of concern to be altered into a construct that can be stored within 

the brain, and then when needed recalled later from either short-term or long-term 

memory depending other factors. 

 With perception through the senses, gives rise to a biological event which 

is encoding. The process of setting down a memory begins with attention, in which 

neurons fires more frequently to create a memorable event, making the experience 

more powerful and growing the probability that the event is set as a memory. 

 Encoding occurs on different levels however the exact mechanism is not 

fully understood. In first step, the formation of short-term memory from the ultra-

short term sensory memory occurs, followed by the transformation to a long-term 

memory by a process of memory consolidation. 
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 Basically human memory is associative, meaning that a new piece of 

information is remembered well better if it can be related with previously acquired 

knowledge that is already firmly anchored in memory. The more personally 

meaningful the association is, the more operative the encoding and consolidation. 

 After the primary acquisition the process of stabilizing memory process is 

called consolidation. It may possibly be thought as a part of the process of 

encoding or storage or it may be deliberated as a memory process in its own way. It 

is typically considered to be comprised of two specific processes; one being the 

synaptic consolidation (which happens within the first few hours after learning) and 

the other being the system consolidation. 

 The process of consolidation exploits a phenomenon called long-term 

potentiation, neurologically, which permits a synapse to rise in strength as rising 

numbers of signals are transmitted between the two neurons. The process by which 

synchronous firing of neurons makes those neurons more persuaded to fire together 

in the future is called Potentiation. On the other hand, long-term potentiation 

occurs when the same group of neurons fire together so often that they become 

permanently sensitized to each other [7]. As new experiences increases, the brain 

produces more and more connections and pathways, and it may “re-wire” itself by 

re-routing connections and re-arranging its association. 

 The storage is the more or less submissive process of recalling information 

in the brain, whether in the sensory memory, the short-term memory or the more 

permanent long-term memory [25]. Each of these different stages of human 

memory functions as a sort of filter that aids to guard us from the overflow of 

information that provoke us on a daily basis and also avoiding surplus of 
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information and aiding to keep us healthy. The more the information is frequent, 

the chances it has to be retained in long-term memory.  

 Recall or recovery of memory refers to the successive re-accessing of 

events or information from the past, which have been formerly encoded and stored 

in the brain. In common dialect, it is known as remembering. During recall, the 

brain "replays" a pattern of neural activity that was initially produced in reply to a 

certain event, echoing the brain's perception of the actual event. These repetitions 

are not reasonably identical to the former otherwise we would not identify the 

difference between the genuine experience and the memory - but are mixed with 

consciousness of the present situation. 

 

1.5 Neural Signaling 

 Neurons employ several different signals to encode and transfer information 

[19]. The resting membranes potential in neurons usually generates a negative 

potential that can be calculated by recording the voltage between the inside and 

outside of the nerve cells. Transiently, the action potential eliminates the negative 

resting potential and creates the trans member potential positive. The action 

potentials are transmitted along the length of axons and are the central signal that 

transmits information from one place to another in the nervous system. Still other 

types of electrical signals are created by the activation of synaptic contacts between 

neurons or by the actions of the activation of synaptic contacts between neurons or 

by the actions of external forms of energy on sensory neurons. All these electrical 

signals ascend from ion fluxes taken about by nerve cell membranes being 
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selectively permeable to different ions, and from the non-uniform distribution of 

these ions through the membrane.  

 The electrical signals produced by neurons are caused by responses to 

stimuli, which then change the resting membrane potential. Receptor potentials are 

due to the activation of sensory neurons by external stimuli, such as light, sound, or 

heat. 

 Another type of electrical signal is associated with communication between 

neurons at synaptic contacts. Activation of these synapses generate synaptic 

potentials, which allow transmission of information from one neuron to another [2]. 

 A fundamental problem for neurons is that their axons, which can be quite 

long are not good conductors. Although neurons and wires are both capable of 

passively conducting electricity, the electrical properties of neurons compare 

poorly to an ordinary wire. To compensate for this deficiency, neurons have 

evolved a booster system that allows them to conduct electrical signals over great 

distances despite their intrinsically poor electrical characteristics [22]. The 

electrical signals produced by this booster system are called action potentials. 

 

1.6 Conduction Velocity 

 The process of nerve conduction has been extensively studied in the past, 

both experimentally and theoretically. Mathematical theories of nerve conduction 

based on the modern cable concept were developed a long time ago by Hursh [26], 

and eventually by Hodgkin and Huxley [7] [8].  
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Conduction velocity [10] is the speed at which the action potential moves 

from one neuron to the other. Conduction velocity plays a very important role in 

the learning functions. Because it is the conduction velocity which defines the 

delay in the transmission and reception of the impulse along with the couple of 

other variables such as the neurotransmitters, temperature and ionic concentrations 

[11]. We have varied the different dimensions of a neuron to see their effect on the 

conduction velocity of a neuron.  

The electrical properties of the axon (as used in Hodgkin & Huxley and 

KOCH Model) are used to find the conduction velocity. In the resting state, the 

potential inside the axon at position x along the axon at time t, V(x,t) satisfies 

 

Where Cm is the membrane capacitance, rm the membrane resistance, Er 

the emf of the membrane and ri is the longitudinal resistance of the axon in the 

resting state. The equation states that the membrane current, consisting of the 

capacitive and ohmic components, is directly related to the second derivative of the 

potential, , by way of conduction of the axon interior, 1/ri. 
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1.7 Literature Review 

Hodgkin Huxley model was the first neuron model that accurately 

described the initiation and propagation of an action potential. It was for their work 

that they were jointly awarded the NOBEL Prize in 1963. The Hodgkin-Huxley 

Model is a set of non-linear ordinary differential equations that approximate the 

electrical characteristics of excitable cells such as neurons.  

Previously a lot of work has been done in this area but every one used 

Hodgkin Huxley model for simulating an action potential. Lyle N. Long has 

worked extensively in this area and has a couple of papers in this area; “A Review 

of Biologically Plausible Neuron Models for Spiking Neural Networks”, "Spike 

time dependent plasticity of neural circuits," and An Adaptive Spiking Neural 

Network with Hebbian Learning. 

Koch model which is similar to Hodgkin and Huxley can be used for 

simulation and analysis of a single and network of neurons. The difference between 

the two is that Koch model has more number of parameters, giving it more 

flexibility and hence more realistic to the actual neuron. This is the reason we opted 

for Koch model [19]. Koch model is being used for detail analysis in most of the 

neural network [27] and [28]. We have implemented the model in Matlab 

(Appendix A) by model using predictor corrector method.  

In brain, there are two types of axons; one being the myelinated while the 

other non-myelinated. Myelinated axons are used for long distances. Conduction 

speed of action potentials depends whether its myelinated axon or not. If 

myelinated, action potential travels at rapidly because the membrane capacitance is 

much smaller in those regions. Due to this phenomena, it’s particularly 

advantageous when signals must transmit information over long distances. 
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However, the range of traveling is limited to a few millimeters before the signal 

decays [29]. Nerve conduction abnormalities occur in many diseases [30], therefore 

its analysis and on-time detection is very necessary for cures of many diseases.  

Spike time dependent plasticity is one of the essential parameter for 

analysis of memory. Many experiments have been carried out on this in 1983 and 

examined at millisecond level the effect of relative timing of pre and postsynaptic 

action potentials on plasticity. The experiments revealed that time frame relating 

pre- and post-synaptic activity and synaptic change. There are several reasons 

suggested for timing-dependent plasticity For example, STDP might provide a 

substrate for Hebbian learning during development [31] [32]. 

 

1.8 Contribution  

This thesis elaborates a biological neural networks, based on different 

models and for the first time incorporated KOCH model for simulating a neural 

network. This would enable us in simulating neural networks that would have all 

the properties and complexities of a biological neural network. 

KOCH model itself has so many different parameters that enable us to 

simulate different conditions that could affect the working of the neural network. 

Incorporating neural conduction model and spike time dependent model we have 

presented a unique model that has such properties. The neural model that we 

presented is very scalable and can be scaled to thousands of neurons and could also 

incorporate further neural models that could unable the neural network to have 

behavior as that of an actual biological neural network. 
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A paper was published titled “Nerve Conduction Using KOCH Model” in 

Symposium on Frontiers of Computational Sciences (ISFCS2012) Islamabad, 

Pakistan 2012. 



34 
 

 

CHAPTER 2: METHODOLOGY  

 

The neural network is designed from multiple models combined, such as 

the KOCH neural model, conduction model and spiking time dependent plasticity. 

Each model is individually solved and incorporated in the network. 

The differential equations of the KOCH model are solved using predictor- 

corrector scheme. Each of the differential equation is solve using the scheme. 

Range Kutte method could also be applied to solve the differential equations but 

the number of differential equations involved increases the complexity 

exponentially. So we used the predictor-corrector scheme.   

 The conduction model was also solved using the predictor-corrector 

method. The conduction model uses the values of voltage produced by KOCH 

model and updates them according to the conduction model. 

 The spiking time dependent plasticity uses the updated voltage value and 

computes the synaptic weights. So the synaptic weights incorporate the effects of 

the KOCH model and the effects of conduction model. 

 When the whole model is simulated it, the overall behavior of the action 

potential generated incorporated the effects of conduction velocity due to different 

sizes and also incorporate synaptic plasticity, which mimics the learning in 

neurons.  
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2.1 Hodgkin-Huxley Model 

 The Hodgkin-Huxley model is created on the idea that the electrical 

properties of a sector of nerve membrane can be molded by a circuit of the form 

shown in Fig. 1.8. The current flow across the membrane in the circuit, has two 

foremost modules, one linked with charging the membrane capacitance and one 

linked with the effort of specific types of ions across the membrane. The ionic 

current is further subdivided into three distinct components, a sodium current INa, a 

potassium current IK , and a small leakage current IL that is primarily carried by 

chloride ions. 

 The extracellular which separates medium from the cytoplasm of the cell, 

acts as a capacitor with capacitance C in HH. The current due to ion channels 

provides parallel ways through which charge can conductance (pass) through the 

cell membrane. HH model uses three currents based on ions in their description of 

the squid giant axon; potassium current IK, sodium current INa, and a leakage 

current IL. The variable resistances of potassium and sodium currents that 

represent the voltage gated conductance related with the membrane ion channels. 

Overall current I is the sum of the capacitive current which represents the rate of 

accumulation of charge on opposite sides of the cell membrane and ionic currents. 

In electrical circuit theory for calculation of capacitive current, is Cdv/dt , where v 

is the membrane potential.  
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Figure 2-1: Hodgkin Huxley Electrical Circuit  

 

 The behavior of an electrical circuit of the type shown in Fig. 2-1 can be 

described by a differential equation of the form: 

 

where Cm is the membrane capacitance, Vm is the intracellular potential 

(membrane potential), Iion is the net ionic current that flows across the membrane 

and Iext is an externally stimulus applied. 

The HH model consist of the following differential equations 
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INa = ḡNa m
3 h(V- ENa ) 

IK = ḡK n
4( V- ENa ) 

 

 

With initial conditions 

  m(0) = (V0,0) ,   n(0) = (V0,0) 

  h(0) = h (V0,0) ,   V(0) = V0  

 

2.2 KOCH Neural Model 

 

The Koch model [9] is the extension of the famous Hodgkin-Huxley model 

which is based on the fast sodium and delayed potassium currents, while the Koch 

model incorporates numerous ionic membrane currents and also takes into account 

the calcium dynamics of a neuron. 

In recent years, numerous ionic membrane currents have been described, 

which differ in principal carrier, voltage and time dependence, and dependence on 
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internal calcium. Our understanding of these currents and to a lesser extent, the role 

they play in impulse formation, has been accelerated by various technical 

innovations such as single-cell isolation and patch clamping. 

 

KOCH model is a very comprehensive model that incorporates many different 

parameters that the Hodgkin Huxley model did not incorporate. Thus KOCH model 

represents a much closer to reality action potential and taking into consideration the 

different parameters. Figure 2-2 shows different ionic currents that KOCH model 

comprises of. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Parameters of Koch model 
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Principal Equation 

 

CN IInput + INa + ICa + IK + IM + IA + IC + IAPH + Ileak =0  

 

All variables have the following units: 

Voltage   mV     

Current  nA 

Time   ms 

Concentration  millimols per liter (mM) 

Conductance   µS 

Resistance   MΩ 

Capacitance   nF 

 

Fast Sodium Current 

 

INa = ḡNa m
2h( V- ENa )     m =  m∞ =  

αm =   m =    

 h=    h∞ =    αh   h =  

 

Fast Calcium Current 

ICa = ḡCa mh( V- ECa )      m =   

m∞ =      h =  where K = 0.01mM 
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Transient, Outward Potassium Current 

 

IA = ḡA mh( V- EK )      m = 1.38                        

m∞ =                h∞ =  

 h = 50 if V < -80mV; else 150 

 

Noninactivating Muscarinic Potassium Current 

IM = ḡM m( V- EK )                      m 

= m∞ =  

 

Delayed, Rectifying Potassium Current 

 

IK = ḡK m
2h( V- EK )   m =    

m∞ =     αm(V)=                         

βm(V)=   =  h = 6,000 if V < -25mV: else 50                         

h∞ =  

 

 

Noninactivating Calcium-Dependent Potassium Current 

IC = ḡC m( V- EK )    m =  

m∞ =     f(V,Ca) = 250[Ca+2]i   b(V) = 0.1  
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Voltage-Independent Calcium-Dependent Potassium Current 

IAHP = ḡAHP m
2( V- EK )  m =   

m∞ =  f(Ca) = 1.25*108[Ca+2]2
n and b=2.5 

Passive Components  where m is the activation variable and  

Ileak = ḡleak m
2( V- Eleak ) h is the inactivation variable 
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2.3 Hebbian Learning 

 

Learning is a learning rule which is the oldest and most famous of all 

learning rules.  

“ When an axon of cell A is near enough to excite a cell B and repeatedly or 

persistently takes part in firing it, some growth process or metabolic changes take 

place in one or both cells such as A’s efficiency as one of the cells firing B, is 

increased” 

Hebb [9] proposed this change as a basis of associative learning. We may 

expand this as a two-part rule: 

 “If two neurons on either side of a synapse (connection) are 

activated simultaneously then the strength of that synapse is selectively 

increased.” 

 “If two neurons on either side of a synapse are activated 

asynchronously, then that synapse is selectively weakened or eliminated.” 

Such a synapse is called a Hebbian synapse. More precisely, we define a Hebbian 

synapse as a synapse that uses a time-dependent, highly local, and strongly 

interactive mechanism to increase synaptic efficiency as a function of the 

correlation between the pre-synaptic and post-synaptic activities. 

  

2.4 Spike-Timing Dependent Plasticity: 

Spike Timing Dependent Plasticity (STDP) [10] is temporally asymmetric 

form of Hebbian learning induced by tight temporal correlations between the spikes 
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of the pre and postsynaptic neurons. Synaptic plasticity is widely believed that it 

lies behind learning and information storage and also in refinement of neuronal 

circuits, during brain development. 

Spike Timing Dependent Plasticity, repeated with the arrival of presynaptic 

spike a few milliseconds before postsynaptic action potentials leads in many 

synapse types to long-term potentiation (LPT) of the synapses that is when 

repeated spike arrives after postsynaptic spikes proceeds to long-term depression 

(LTD) of the same synapse. The change of the synapse plotted as a function of the 

relative timing of pre- and postsynaptic action potentials is called the Spike Timing 

Dependent Plasticity (STDP) function or learning window is shown in Figure 2-3.  

Figure 2-3 shows the effect of different timing of the post synaptic neuron t0 and 

pre synaptic neuron t1 on the synaptic weights, 
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Figure 2-3: Learning Window for the spiking time dependent plasticity where t0 is 

the time of firing of post synaptic neuron and t1 is the time of firing of the 

presynaptic neuron 

Following we explain the spiking time dependent plasticity with the help of 

the graphs. In the following graphs we represent the three possibilities of an 

impulse, first if the presynaptic impulse arrives before the post synaptic impulse 

but within the required time, for this case as the presynaptic impulse caused the 

firing of the impulse this causes an increase in the synaptic weights, the second 

show that the presynaptic impulse arrives very early and thus does not trigger the 

postsynaptic impulse thus weakening the synaptic weights. The third possibility is 

that the presynaptic impulse arrives after the post synaptic impulse and so the 

presynaptic impulse does not trigger the postsynaptic impulse hence the synaptic 

weights decrease.  
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We use the same neural network used previously, so that we have a 

common network that we could refer to. We used the same dimensions as length 

and diameter so that along with the constant neural network, we could have a good 

references. For using spiking time dependent plasticity model we used two 

different conditions: uniform frequency and different frequency. Figure 2-4 (a) 

shows basic Structure of neuron representing pre & post neuron and Figure 2-4 (b) 

summarizes the strengthening and weakening of plasticity with respective to time 

 

 

(a) 

 

(b) 

Figure 2-4: Spiking Time Dependent Plasticity working principle (a) Basic Structure of 

neuron representing pre & post neuron (b) Strengthening and weakening of plasticity with 

respective to time 

Presynaptic 

Synapse 

Postsynaptic 
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Algorithm for Spiking Time Dependent Plasticity   

For each synapse, synapse plasticity is calculated he with respect to pre-neuron and 

post-neuron. If the time taken by pre-neuron is less than post neuron and within a 

specific time frame it causes strengthening of the synapse and else if pre-neuron is 

less again but not with in specific time frame, it causes weakening of the synaptic 

plasticity. There exists a special case in which the post-neuron signal reaches the 

before pre-neuron, then instead of increasing, it decrease the learning that is 

synaptic plasticity.  

For each synapse 

if timeold(PostNeuron) < timenew(PreNeuron)< imenew(PostNeuron) 

 weight = weight + dwPlus 

else 

 weight = weight + dwMinus 

 dwPlus = dwMinus  = α  

 dt = timenew(PreNeuron) - timenew(PostNeuron 
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CHAPTER 3: RESULTS 
 

3.1 Action Potential 

 Action Potential being the most unique part of neurons, it is action 

potential that helps in the transfer of information. The way action potential is 

modeled is very important as it represents in a way the whole neural network, the 

more it is close to the actual action potential the better and much closer result to the 

actual environment. 

 We gave our system an input impulse of 4 nA at time 80 mSec 

shown in Figure 3-1 and the following is the result of the action potential produced. 

The action potential shows two action potential when we provided a single input, 

the reason is that the first impulse is initial action potential that the system required 

so that the system settles down. The resultant action potential very accurately 

behaviors like the actual potential as shown in Fig 3-2. 

Figure 3-1: External stimulus of 4 nA  
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Figure 3-2: Action Potential with an input of 4 nA stimulus 

 Then we gave our system an input impulse of 8 nA at the 80 mSec 

shown in Fig 3-3 and the following is the result of the action potential produced 

shown in Fig 3-4. The reason that we provided such a high input current to see its 

behavior. Increasing the amplitude does not affect the action potential and similar 

is the result of our simulations. The action potential shows only very slightly 

increase in amplitude, even though we doubled the input stimulus and the resulting 

increase in amplitude is negligible. 
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Figure 3-3: External Stimulus of 8 nA  

Figure 3-4: Action Potential with an input of 8 nA stimulus 

Then we gave our system an input impulse of 2 nA at 80 mSec shown in 

Fig 3-5 and the following is the result of the action potential produced shown in Fig 

3-6. The reason that we provided such a low input current as an input was to 

analyze its behavior. The current stimulus should be above the threshold, if it’s not 
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then the action potential should not fire. Our simulations represent the similar 

results, as the threshold is not crossed the action potential is not fired. 

 

Figure 3-5: External Stimulus of 2 nA  

Figure 3-6: Action Potential with an input of 2 nA stimulus 



51 
 

Then we gave our system an input impulse of 3 nA at 80 mSec shown in Fig 3-7 

and the following is the result of the action potential produced shown in Fig 3-8. 

The reason being we wanted to show how sensitive our model is to the input 

current. Our results prove that our model is sensitive enough that with even just 1 

nA below the previous firing. After continuing this process we found out that the 

threshold for our system is 3.84nA 

Figure 3-7: External stimulus of 3 nA 
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Figure 3-8: Action Potential with an input of 3 nA stimulus 

3.2 Conduction Velocity 

Conduction velocity [10] is the speed at which the action potential moves 

from one neuron to the other. Conduction velocity plays a very important role in 

the learning functions. Because it is the conduction velocity which defines the 

delay in the transmission and reception of the impulse along with the couple of 

other variables such as the neurotransmitters, temperature and ionic concentrations 

[11]. We have varied the different dimensions of a neuron to see their effect on the 

conduction velocity of a neuron.  

We simulated two models, in one model we kept the radius of the neurons 

constant and varied the lengths of the neuron. In the second model we kept the 

length of the neurons constant and varied the radius of the neurons. Through this 

process we could see the effect of length and radius on the conduction velocity of 

the neuron. We used the same network of neurons so that we could better judge the 

effect of length and radius on the conduction velocity 
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Constant Radius with varying lengths of neurons 

We used the following network to calculate the conduction velocity of the 

neurons. The radius and length of the neuron are provided in the Fig 3-9. The result 

is summarized in table 1 and shown in Fig 4:10.  

                  

                     

Figure 3-9: Network of Neurons for constant radius 

 

  Neuron Delay Velocity 

1 N2 43.38 µsec 22.82 m/s 

2 N3 131.45 µsec 22.82 m/s 

3 N4 262.90 µsec 22.82 m/s 

 

Table 1: Result for Neural Network with Constant Radius 

 

 

Radius m 

Radius m 

Radius m 

Length mm 

Length mm 

Length mm 
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Figure 3-10: Graph of the delay due to the length of the neuron 
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Constant Radius with varying lengths of neurons 

We use the following network to model the effect of radius on the conduction 

velocity. In this network shown in Fig 3-11 the lengths of the neurons have been 

kept constant as in the previous model. The reason of doing this was that we could 

see the effect of radius on the conduction velocity and would compare it with the 

previous result. The results are summarized in Table 2 and shown in Fig 3-12 

 

 

                     

Figure 3-11: Network of neurons to see the effect of varying radius 

 Neuron Delay Velocity 

1 N2 43.81 µsec 22.82 m/s 

2 N3 75.89 µsec 39.52 m/s 

3 N4 131.45 µsec 45.64 m/s 

 

Table 2-2: Result of the Network 

Radius m 

Radius m 

Radius m 

Length mm 

Length mm 

Length mm 
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Figure 3-12: Graph of delay vs. the radius of the neuron 

In Fig 3-13we summarize the results. The graph clearly shows the effect of 

radius and length on the delay in reception of the action potential. The results 

clearly show as we increase the length of the neuron the delay increases and as the 

radius of the neuron increases the delay decreases. The conduction velocity is the 

gradient of the curves and we can see that as the radius of the neurons increase the 

conduction velocity increases. The length of the neuron does not affect the 

conduction velocity. 
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Figure 3-13: Summary of the results  
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3.3 Spiking Time Dependent Plasticity 
 

3.3.1 Uniform Spiking Frequency 

 For uniform spiking frequency we use uniform spiking frequency 

for each of the neurons. The following figure shows the network shown in Figure 

3-14 used and the dimensions of the neurons. The Figure 3-15 shows the synaptic 

weights before the firings and Figure 3-16 shows the synaptic weights after firing.  

As the firing rate is constant the only factor effecting the weights are the 

dimensions. As the lengths of the neurons differ in which case the speed of the 

action potential differs and hence the time the presynaptic action potential arrives 

differs because of the lengths, as the radius is constant.  

 

 

 

 

 

 

Figure 3-14: Network of Neurons for constant radius 

Radius  

Radius  

Radius  

Radius  

Radius  

Length m 

Length  

Length  

Length  

Length  
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Figure 3-15: Synaptic weights before action potential 

 

 

Figure 3-16: Synaptic weights after action potential  
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3.3.2 Different Spiking Frequency 

                          For different spiking frequency we use uniform spiking 

frequency for each of the neurons. The following figure shows the network shown 

in Figure 3-17 used and the dimensions of the neurons and Figure 3-18 shows the 

spiking frequency used.. The Figure 3-19 shows the synaptic weights before the 

firings and figure 3-20 shows the synaptic weights after firing 

As the firing rate are different and the same dimensions are used as 

previously the only factor effecting the weights is frequency. As we can see from 

the results below the weights after the action potential follow the same pattern as 

that of the frequency distribution. Hence showing that the synaptic weights are 

dependent on the frequency of the action potentials which is also known as the 

firing rate of the action potentials of each neurons. 

 

 

 

 

 

Figure 3-17: Neural Network for constant radius 

Radius  

Radius  

Radius  

Radius  

Radius  

Length m 

Length  

Length  

Length  

Length  
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Spiking Frequency of Neurons 

 

Figure 3-18: Synaptic weights after action potential 

 

Figure 3-19: Synaptic weights after action potential  
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Figure 3-20: Synaptic weights after action potential 
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CHAPTER 4: CONCLUSION 

This was of the first time that any model was made using the KOCH model 

for modeling a neural network that involved learning function and conduction 

velocity functions in the model.  Previously work [13] has been done in simulating 

the neural network with learning functions but the neurons in those networks used 

Hodgkin Huxley model for neural simulation.  KOCH model is a comprehensive 

model of a neuron compared to Hodgkin Huxley Model and hence the results are 

also more comprehensive. The results of our model are consistent with the previous 

works [13] and shows that KOCH model does provide and alternative more 

comprehensive neural model that could be used for modeling neurons.  

Our Results showed that the speed of propagation of the action potential is 

related to the diameter of the neuron, which is consist ant with the previous 

findings [11]. The delays involved in the propagation of action potential are 

directly related to the features of a neuron. The delay decreases as the radius of the 

neuron increases and the delay increases when the length of the neuron increases. 

We used the model with learning function using Spike Time Dependent 

Plasticity which showed the effect of different dimensions of a neuron on learning. 

The effects of delay on learning can be seen from the results. Even a time 

difference of 1-2 mSec have a profound effect on learning. Along with the effect of 

delays we also showed the effect of the frequency of the action potential affecting 

learning, as the frequency of action potential increased so did the learning weights. 

For future the model could incorporate other functions such as neural 

degeneration [14], effects of temperature on propagation [15].  Incorporating such 

function would help in better understanding of many neural diseases that involve 
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such functions. Functions such as Synaptogenesis: forming of new connections 

between neuron and Neurogenesis: creation of neurons as the requirement arises. 

The additions of these functions would further bring the model closer to the actual 

working of the brain. 

In future the code should be parallelized so that as we increase the number 

of neurons to millions and to even billions of neurons as the estimated number of 

neurons in average human brain is approximately 100 billion neurons. Parallelizing 

the code is extremely essential to mimic the working of the brain.  
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APENDIX A 

 

Algorithm for Spiking Time Dependent Plasticity  

The algorithm used for simulating the spiking time dependent plasticity is 

shown below. This algorithm is used for simulating STDP in each neuron. This is 

very simple and accommodates all the properties of STDP, without putting any 

burden on the simulations. 

For each synapse 

if timeold(PostNeuron) < timenew(PreNeuron)< imenew(PostNeuron) 

 weight = weight + dwPlus 

else 

 weight = weight + dwMinus 

 dwPlus = dwMinus  = α  

 dt = timenew(PreNeuron) - timenew(PostNeuron 
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Matlab Code 

The following is the MATlab code used to program the model. The code is 

divided into different functions which enable it to be edited for debugging and 

adding different parameters for the network.  The names of the functions are shown 

in bold and are in the center.  The detail of each function would be found in the 

functions, additional information about the formulas and the equations used are 

given the standard MATlab comments, which makes it easy to understand the code. 

The following function tau_mNa, tau_mK3, tau_mK2, tau_mK1, tau_mCa, 

tau_mC, tau_mC, tau_mAHP, tau_hNa, tau_hK2 are used to calculate function 

mNA, hNA. mCa, hCa, mC, hC, mAPH, hAPH, mK1, mK2, hK2, Mk3. 

 tau_mNa 

function y = tau_mNa(v) 

y = 2 ./ ( alpha_mNa(v) + beta_mNa(v)); 

end 

tau_mK3 

function y = tau_mK3(v) 

sum = v+35; 

y = (1000.0) ./ ( 3.3 .* ( (exp(sum./40) + exp(-sum./20)) )); 

end 

tau_mK2 

function y = tau_mK2(v) 

y = 1 ./ (alpha_mK2(v) + beta_mK2(v)); 

end 
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tau_mK1 

function y = tau_mK1(v) 

y = 1.38; 

end 

 

tau_mCa 

function y = tau_mCa(V) 

sum = (V+6)/16; 

y   = 7.8/( exp(sum) + exp(-sum) ); 

end 

tau_mC 

function y = tau_mC(V,Ca) 

sum = V/24; 

b   = 0.1*exp(-sum); 

f   = 250*Ca*exp(sum); 

y   = 1 / (f + b); 

end\ 

tau_mAHP 

function y = tau_mAHP(Ca) 

 f = 1.25e8 *(Ca)*(Ca); 

b = 2.5; 

y = 1000/(f+b); 
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end 

tau_hNa 

function y = tau_hNa(v) 

y = 2 ./ ( alpha_hNa(v) + beta_hNa(v)); 

end 

tau_hK2 

function y = tau_hK2(v) 

if v < -25 

y = 6000; 

else 

y = 50; 

end 

end 

tau_hK1 

function y = tau_hK1(v) 

if v<-80 

y = 50; 

else 

y = 150; 

end 

end 
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STDP 

This is the implementation of the SPTD algorithm. 

function w_cur= STDP(s,w_cur) 

lam_pot = 0.1; 

lam_dep = 0.1; 

mui     = 1; 

MAX     = 1.0; 

MIN     = 0.2; 

% w_curr(1)   = 1; 

i = 2; 

if (s<=0)       % Potentiation (pre-post)  

tem     = lam_pot*(MAX-w_cur)^mui; 

delta_w = tem*(exp(s/1)); 

y = exp(s/1); 

w_cur = w_cur+delta_w;  

else 

tem     = lam_dep*w_cur^mui; 

delta_w = tem*(-exp(-s/1)); 

y = -exp(-s/1); 

w_cur = w_cur+delta_w; 

if(w_cur<MIN) 

w_cur = MIN; 
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end 

end 

i = i+1; 

end 

 

set_Pump 

This code sets up the portion of the discretization matrix A due to the 

Calcium Pump. The method of calculations is shown as comments in the code. 

Please look at the comments to understand the method of solving the problem 

 

function [A4,DV4] = set_Pump(X,A4,DV4,N,V,Parameter) 

format long 

%{ 

... 

=========================================================== 

  

Parameter (1) = rsize; 

Parameter (2) = rcore; 

Parameter (3) = delta_t; 

Parameter (4) = forward_binding_rate; 

Parameter (5) = backward_binding rate; 

Parameter (6) = Diffusion Constant 

Parameter (7) = B_iT; 

Binding Concentration below 

level n 

  

Parameter (8) = B_nT; 

  

Binding Concentration at 

level n 
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Parameter (9) = C_i; 

  

Ca Concentration below 

level n 

Parameter (10) = C_n; 

Ca Concentration at 

level n 

====================================================== 

... 

... 

%} 

  

rsize                   = Parameter (1); 

rcore                   = Parameter (2); 

delta_t                   = Parameter (3); 

forward_binding_rate     = Parameter (4); 

backward_binding_rate    = Parameter (5); 

Diffusion_Constant       = Parameter (6); 

B_iT  = Parameter (7); 

B_nT  = Parameter (8); 

C_i  = Parameter (9); 

C_n  = Parameter (10); 

C  = zeros(1,N+1); 

C  = X(1:N+1); 

B   = zeros(1,N+1); 
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B  = X(N+2:(2*N)+2); 

BT        = zeros(N+1,B_iT); 

BT(N)    = B_nT; 

%========================================================= 

%       Add calcium pump term 

%       C_N, t+delta_t ( 1+ delta_t /(2*tau_pump )) = 

%               C_N, t ( 1 ? delta_t /(2*tau_pump ) 

%               + delta_t /tau_pump*Caˆeq 

%========================================================= 

  

calcium_equil   = 5.0e-5; 

tau_pump        = 17.7*exp(V/35.0); 

tau2            = delta_t/tau_pump; 

A4(N+1,N+1)     = 1.0 + 0.5*tau2; 

DV4(N+1)        = (1.0 - 0.5*tau2)*C(N+1) + (calcium_equil*tau2); 

  

end 

set_Ica 

This code sets up the portion of the discretization matrix A due to the Calcium 

current ICA.  

function [A3,DV3] = set_ICA(X,A3,DV3,N,m_CA1,V,Parameter) 

format long 

rsize                   = Parameter (1); 

rcore                   = Parameter (2); 

delta_t                 = Parameter (3); 

forward_binding_rate    = Parameter (4); 

backward_binding_rate   = Parameter (5); 

Diffusion_Constant      = Parameter (6); 



76 
 

B_iT                    = Parameter (7); 

B_nT                    = Parameter (8); 

C_i                      = Parameter (9); 

C_n                     = Parameter (10); 

C             = zeros(1,N+1); 

C       = X(1:N+1); 

B       = zeros(1,N+1); 

B       = X(N+2:(2*N)+2); 

BT      = zeros(N+1,B_iT); 

BT(N)   = B_nT; 

Now add dynamics due to I CA1 

( [Ca+2]_N,t+delta_t ? [Ca+2]_N,t )/ delta_t = ?I_CA1 /(2F V_n) 

  or 

  

C(N) at t+delta_t = 

C(N) ?I_CA1*delta_t /(2 F V_N) 

     

This means we set 

A3 (N,N) = 1.0 

DV3(N) = C(N) ?I_CA1*delta_t /(2 F V_N) 

     

where these parameters are defined as follows: 

Calcium Concentration in last shell update 

     

note .1 micro m = 10ˆ?7 m = 10ˆ?5 cm 

d Ca/ dt = mM/( liter ms) 

I_CA1 = nAmps/ sec 

            = 10ˆ?9 coulombs / sec 

            = 10ˆ?9 coulombs / sec * 1 sec /10ˆ3 ms 

            = 10ˆ?12 couombs / ms 

  

cell is 20 micro m in radius = 20.0 x 10ˆ?4 cm 

rcore is 19 micro meter in radius = 19.0 x 10ˆ?4 cm 

each shell is .1 micro meter thick = 1.0 x 10ˆ?5 cm 
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shell N is rcore + N x rsize in radius 

        = 19 x 10ˆ?4 cm + 10_*(1.0 x 10ˆ?5) cm 

        = (19+1) x 10ˆ?4 cm 

so shell is 10ˆ?5 cm thick 

diff = ( 20.0 x 10ˆ?4 cm)ˆ3 ?(19.9 x10ˆ?4cm)ˆ3 

  

  

diff = (8,000 ?78805.990) x 10ˆ?12 cc 

diff = 1.194010 x 10ˆ2 x10ˆ?12 cc 

diff = 1.194010 x 10ˆ?10 cc 

diff = 1.194010 x 10ˆ?13 liters 

volume of shell N is 4/3*pi*diff 

            = 5.0015 x 10ˆ?13 liters 

So 

V_n = volume of shell N: 

        = 5.0015 x 10ˆ?13 liters 

Faraday’s Constant is FC = 9.649 x 10ˆ13 coulomb/mM 

So 1/(2.0_FC x V n) = mM/( coulomb liters ) 

And since 2.0 x FC x V_N = 96.5189 x 10ˆ13 x 10ˆ?13 ( coulomb liter )/mM 

                                  = 96.5189 ( coulomb l i t e r )/mM 

                                  = 9.65189 x 1 0 ˆ 1 ( coulomb l i t e r )/mM 

  

                        1 / ( 2.0 x FC x V_n ) = 0.1036 x 10ˆ?1 mM/(  

coulomb liter ) 

                                   = 1.036 x 10ˆ?2 mM/( coulomb liter ) 

              I CA1 / ( 2.0 x FC x V_n) 

                      = 10ˆ?12 x 1.036 x 10ˆ?2 coulombs    mM 

                                 ????????*??????????????? 

                                    ms      ( coulomb liter ) 

           = 1.036 x 10ˆ{?14} mM/( l i t e r ms) 

 

h_CA1_0     = 0.01; 
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h_CA1       = h_CA1_0 /(h_CA1_0+C(N+1) ); 

g_CA1_bar    = 0.116; 

CA_O         = 4.0; 

Ryd          = 8.31;             %   Rydberg’s Constant 

T            = 276.0 + 22.0;     %   Kelvin Temperature 

F            = 9.649e+4;         %   Faraday’s constant 

r31          = rcore + ((N*rsize)^3.0);   

r32          = rcore + (((N-1)*rsize)^3.0); 

V_N         = (4.0/3.0)*( r32-r31 ); 

  

RTF         = Ryd*(T/F)*1e+3;           %    express in mV 

  

E_CA         = 0.5*RTF*log10(CA_O/(C(N+1)) ); 

I_CA1        = g_CA1_bar*m_CA1*h_CA1*(V-E_CA); 

Ca_Term      = (1.0e-9)/(2.0*V_N*F); 

A3(N+1,N+1) = 1.0; 

DV3(N+1)     = X(N+1) - ( I_CA1*Ca_Term*delta_t ); 

  

end 

 

set_diffusion 

This code sets up the portion of the discretization matrix A due to the Calcium 

diffusion. 

function [A2, DV2] = set_diffusion (X,A2,DV2,N,Parameter) 

format long 

        Parameter (1) = rsize; 

        Parameter (2) = rcore; 

        Parameter (3) = delta_t; 

        Parameter (4) = forward_binding_rate; 

        Parameter (5) = backward_bindingrate; 

        Parameter (6) = Diffusion_Constant; 

        Parameter (7  = B_iT; 

  

        Binding Concent ration below 

        leveln 

  

        Parameter (8) = B_nT; 

        Binding Concentration at 
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        level n 

  

        Parameter (9) = C_i; 

        Ca Concentration below 

        level n 

        Parameter (10) = C_n; 

        Ca Concentration at 

        level n 

  

 

rsize                   = Parameter (1); 

rcore                   = Parameter (2); 

delta_t                 = Parameter (3); 

forward_binding_rate    = Parameter (4); 

backward_binding_rate   = Parameter (5); 

Diffusion_Constant      = Parameter (6); 

B_iT                   = Parameter (7); 

B_nT                    = Parameter (8); 

C_i                       = Parameter (9); 

C_n                       = Parameter (10); 

  

C          = zeros(1,N+1); 

C           = X(1:N+1); 

  

B       = zeros(1,N+1); 

B       = X(N+2:(2*N)+2); 

BT      = ones(N+1); 

BT      = BT.*B_iT; 

BT(N+1) = B_nT; 

  

DF1 is set once ; does not depend on delta_t 

units: 

    R is cm 

    DF1 is cmˆ2/ms 1/(cmˆ2) cm 

           cm/ms 

    DF1b is cm 
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    DF2 is cm/ms 

     

    These terms in A times C or B give 

    (DF1?DF2)(C or B) is 

            cm/ms mM/( liter ms) 

            (cm mM)/( liter msˆ2) 

 

DF1 = zeros(N+1,N+1); 

DF2 = zeros(N+1,N+1); 

DF3 = zeros(N+1,N+1); 

DF4 = zeros(N+1,N+1); 

R   = zeros(1,N+1); 

  

mu = ( Diffusion_Constant ) / ( 2.0*rsize*rsize); 

  

for i=1:N+1 

    R(i)        = rcore + (i-1)*rsize ; 

end 

  

DF1(1,1)    = -3.0*rsize*rsize / rcore; 

DF1(1,2)    = 3.0*R(2)*rsize*rsize /( rcore*rcore ); 

     

for i=2:N 

    DF1(i,i-1) = R(i-1); 

    DF1(i,i)   = -2.0*R(i); 

    DF1(i,i+1) = R(i+1); 

end 

  

DF1(N+1,N)      = R(N); 

DF1(N+1,N+1)    = -R(N); 

  

DF4         = (delta_t*mu).*DF1; 

  

RDiag = zeros(N+1,N+1); 

Temp  = zeros(1,N+1); 

  

for i=1:N+1 

     RDiag(i,i) = R(i); 

end 

  

DF2 = RDiag-DF4;  

DF3 = RDiag+DF4;  
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for i=1:N+1 

    for j=1:N+1 

        A2(i,j) = DF2(i,j); 

    end 

end 

  

Temp = DF3*C' ; 

  

for i=1:N+1 

    DV2(i) = Temp(i); 

end 

  

end 

 

set_buffers 

This code sets up the portion of the discretization matrix A due to the Calcium 

buffers. 

function [A1,DV1] = set_buffers(X,A1,DV1,N,Parameter) 

format long 

  

===========================================================        

Parameter (1) = rsize ; 

Parameter (2) = rcore ; 

Parameter (3) = delta_t ; 

Parameter (4) = forward_binding_rate ; 

Parameter (5) = backward_binding_rate ; 

Parameter (6) = Diffusion Constant 

Parameter (7) = B_iT ; 

         

Binding Concentration below 

level n 

         

Parameter(8) = B_nT; 

       

Binding Concentrationat 

level n 
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Parameter(9) = C_i; 

Ca Concentration below 

level n 

Parameter(10) = C_n; 

Ca Concentration at 

level n 

=========================================================== 

rsize                   = Parameter(1); 

rcore                   = Parameter(2); 

delta_t                 = Parameter(3); 

forward_binding_rate    = Parameter(4); 

backward_binding_rate   = Parameter(5); 

Diffusion_Constant      = Parameter(6); 

B_iT                    = Parameter(7); 

B_nT                    = Parameter(8); 

C_i                     = Parameter(9); 

C_n                     = Parameter(10); 

  

 

=========================================================== 

  

 X is size 2*no_shells + 2 

 Ca+2 Concentration : size no_shells + 1 

 C = X.slice (0,no_shells) 

 C(1) = concentration at shell 0 

 C(2) = concentration at shell 1 

        . 

        . 

 C(no_shells+1) = concentration at shell no_shells 

 Buffer Concentration : size no_shells + 1 

 B = X.slice(no_shells + 1, 2*no_shells +1) 

 B(1) = concentration at shell 0 

 B(2) = concentration at shell 1 

        . 

        . 
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 B(no_shells) = concentration at shell no_shells 

         

  

 u n i t s : 

         

 Now the rate of change of Ca and B wrt t is in 

 mM/( liter ms) 

         

  

 B is in mM/( liter ms) 

 U1 is 

  

 1 + ( forward_binding_rate*delta_t )*B 

 1+ (ms liter )/(mM ms ) ms mM/( liter ms) 

       

U1 C is (mM) 

( l i t e r ms) 

                 

 U2 is backward_binding_rate*delta_t +( forward_binding_rate*delta_t)C 

         

 (1/ms ) ms + 1 

         

 U2 B is ( 1 + 1 ) (mM/( liter ms) 

                 mM/( l i t e r ms) 

        

Same for U3 and U4 

====================================================== 

 

C       = zeros(1,N+1); 

C       = X(1:N+1); 

  

B       = zeros(1,N+1); 

B       = X(N+2:(2*N)+2); 

  

BT      = ones(N+1); 

BT      = BT.*B_iT; 

BT(N+1) = B_nT; 

  

U1      = ones(1,N+1); 

U1      = U1 + ((0.5*forward_binding_rate*delta_t).*B); 
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temp    = backward_binding_rate*delta_t*0.5; 

U2      = ones(1,N+1); 

U2      = U2.*temp; 

temp    = 0.5*( forward_binding_rate*delta_t ); 

U2      = U2 + (temp.*C); 

  

U3      = zeros(1,N+1); 

temp    = 0.5*( forward_binding_rate*delta_t ); 

U3      = U3 + (temp.*B); 

  

temp    = 1.0 + backward_binding_rate*delta_t*0.5; 

U4      = ones(1,N+1); 

U4      = U4 .*temp; 

temp    = 0.5*(forward_binding_rate*delta_t); 

U4      = U4 + (temp.*C); 

  

===========================================================  

%       So A should be 

%               U1 U2 

%               U3 U4 

  

===========================================================  

% set U1 

  

for  i =1:N+1 

    A1(i,i) = U1(i); 

end 

  

% set U2 

  

for i=1:N+1 

    A1(i,i+N+1) = U2(i); 

end 

  

% set U3 

for i=1:N+1 

    A1(i+N+1,i) = U3(i); 

end 

  

% set U4 

for i=1:N+1 
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    A1(i+N+1,i+N+1) = U4(i); 

end 

=========================================================== 

%       Data Vector is DV1 of size 2*no_shells+1 

%        

%                   C ?( backward_binding_rate*delta_t*0.5)*B 

%                   + backward_binding_rate*delta_t*BT 

%       DV1= -------------------------------------------------------------- 

%               B ?( backward_binding_rate*delta_t*0.5)*B 

%               + backward_binding_rate*delta_t*BT 

%  

========================================================= 

  

DV1 = zeros(1,2*(N+1)); 

  

for i=1:N+1 

    DV1(i) = C(i) - ( backward_binding_rate*delta_t*0.5)*B(i) + 

backward_binding_rate*delta_t*BT(i); 

end 

  

for i=1:N+1 

    DV1(i+N+1) = B(i) - ( backward_binding_rate*delta_t*0.5)*B(i)+ 

backward_binding_rate*delta_t*BT(i); 

end 

  

end 

 

rest 

function q  = rest (E_M,p,q ) 

g_NA_bar    = p(1); 

g_K1_bar    = p(2); 

g_K2_bar    = p(3) ; 

g_K3_bar    = p(4) ; 

g_CA1_bar   = p(5) ; 

g_CA2_bar   = p(6); 
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g_CA3_bar   = p(7); 

g_leak_bar  = p(8); 

E_NA        = p(9); 

E_L         = p(10); 

C           = p(11); 

K_I         = p(12); 

K_O         = p(13); 

E_K         = p(14); 

CA_I        = p(15); 

CA_O        = p(16); 

E_CA        = p(17); 

 

sum = E_M + 33.0; 

if ( sum>0) 

    alpha_mNA = 0.36*sum/(1.0 - exp(-sum/3.0) ); 

  

else 

    alpha_mNA = 0.36*exp(sum/3.0)*sum/(exp(sum/3.0)- 1.0) ; 

end 

  

sum = E_M + 42.0; 

  

if (sum>0) 

    beta_mNA = (-0.4*exp(-sum/20.0)*sum)./(exp(-sum/20.0)-1.0) ; 

else 

    beta_mNA = (-0.4*sum) / (1.0 - exp(sum/20.0)) ; 

end 

  

m_NA_infinity = alpha_mNA /(alpha_mNA + beta_mNA ) ; 

  

% inactivation parameter for I_NA 

  

sum = E_M+55.0; 

if ( sum<0) 

    alpha_hNA = (-0.1*sum)/(1.0 - exp(sum/6.0)); 

  

else 

    alpha_hNA = (-0.1*exp( -sum/ 6.0)*sum)/(exp( -sum/ 6.0) - 1.0); 

end 
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if (E_M>0) 

    beta_hNA = 4.5/(1.0+exp(-E_M/10.0)) ; 

else 

    beta_hNA = (4.5*exp(E_M/10.0)) / (exp(E_M/10.0) + 1.0); 

end 

  

h_NA_infinity = alpha_hNA/(alpha_hNA+beta_hNA); 

  

I_NA = g_NA_bar*(E_M-E_NA)*m_NA_infinity*m_NA_infinity*h_NA_infinity 

; 

  

===========================================================             

Transient , Outward Potassium Current 

===========================================================  

activation parameter for I_K 

  

sum = E_M+42.0; 

  

if ( sum<0) 

    m_K1_infinity = exp(sum/13.0)/(exp(sum/13.0)+1.0); 

else 

    m_K1_infinity = 1.0/(1.0+exp(-sum/13.0) ) ; 

end 

  

% inactivation parameter for I_K 

  

sum = E_M+110.0; 

  

if ( sum<0) 

    h_K1_infinity = 1.0/(1.0+exp(sum/18.0)) ; 

else  

    h_K1_infinity = exp(-sum/18.0)/(exp(-sum/18.0)+1.0); 

end 

  

I_K1 = g_K1_bar*(E_M-E_K)*m_K1_infinity*h_K1_infinity ; 

  

=========================================================== 

       Delayed, Rectifying Potassium Current 

===========================================================  

activation parameter for I_K 

  

sum = E_M+12.0; 
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if (sum<0) 

    alpha_mK2 = (-0.0047*exp(sum/12.0)*sum)/(1.0 - exp(sum/12.0) ) ; 

else 

    alpha_mK2 = -0.0047*sum/(exp(-sum/12.0)-1.0) ; 

end 

  

sum = E_M+147.0; 

if (sum>0) 

    beta_mK2 = exp(-sum/30.0) ; 

else 

    beta_mK2 = exp(-sum/30.0 ) ; 

end 

  

t_m_K2 = 1.0/( alpha_mK2+beta_mK2 ); 

  

sum = (E_M-20.0)+12.0; 

  

if (sum<0) 

    alpha_mK2 = (-0.0047*exp(sum/12.0)*sum)/(1.0-exp(sum/12.0)) ; 

else 

    alpha_mK2 = (-0.0047*sum)/(exp(-sum/12.0) - 1.0); 

end 

  

sum = (E_M-20.0)+147.0; 

  

if ( sum>0) 

    beta_mK2 = exp(-sum/30.0); 

else 

    beta_mK2 = exp(-sum/30.0) ; 

end 

  

m_K2_infinity = alpha_mK2 /( alpha_mK2+beta_mK2 ) ; 

  

% inactivation parameter for I_K 

  

sum = E_M+25.0; 

  

if (sum<0) 

    h_K2_infinity = 1.0/(1.0+exp(sum/4.0) ) ; 

else 

    h_K2_infinity = exp(-sum/4.0 ) / (exp(-sum/4.0)+1.0) ; 

end 
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if (E_M<-25.0) 

    t_h_K2 = 6000.0 ; 

else 

    t_h_K2 = 50.0 ; 

end 

  

I_K2 = g_K2_bar*(E_M-E_K)*m_K2_infinity*m_K2_infinity*h_K2_infinity ; 

  

========================================================== 

           Non?inactivating Muscarinic Potassium Current 

===========================================================  

       

 activation parameter for I_K 

  

sum     = (E_M+35.0) / 40.0 ; 

t_m_K3  = 1000.0/(exp(sum) + exp(-2.0*sum)); 

  

sum     = (E_M+35.0) / 10.0; 

  

if (sum>0) 

    m_K3_infinity = exp(sum)/(exp(sum) + 1.0); 

else 

    m_K3_infinity = 1.0 / (1.0 + exp(-sum) ) ; 

end 

  

I_K3 = g_K3_bar*(E_M-E_K)*m_K3_infinity ; 

  

=========================================================== 

Fast Calcium Current  

  

sum = (E_M+6.0) / 16.0 ; 

  

if (sum>0) 

    t_m_CA1 = (7.8*exp(-sum))/(1+exp(-2.0*sum) ) ; 

else 

    t_m_CA1 = (7.8*exp(sum))/(1+exp(2.0*sum) ) ; 

end 

  

if (E_M < -32.0) 

    m_CA1_infinity = 0.0; 

else 

    sum = (E_M-3.0) / 8.0; 
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    if (sum>0) 

        m_CA1_infinity = 1.0/(1.0+exp(-sum) ) ; 

    else 

        m_CA1_infinity = exp(sum) / (exp(sum)+1); 

    end 

     

end 

  

h_CA1_0 = 0.01; 

  

h_CA1 = h_CA1_0 /( h_CA1_0+CA_I ) ; 

  

I_CA1 = g_CA1_bar*m_CA1_infinity*h_CA1*(E_M-E_CA); 

  

=========================================================== 

       Non?Inactivating Calcium Dependent Potassium Current 

===========================================================  

sum = E_M/24.0 ; 

s1 = 250.0*CA_I*exp(sum); 

s2 = 0.1*exp(-sum); 

t_m_CA2 = 1/( s1+s2 ) ; 

m_CA2_infinity = s1 /( s1+s2 ) ; 

  

sum = E_M/ 24.0 ; 

t_m_CA2 = 1/(250.0*CA_I*exp(sum)+(0.1*exp(-sum)) ) ; 

  

if (sum>0) 

    m_CA2_infinity = (250.0*CA_I)/( 250.0*CA_I+0.1*exp(-2.0*sum) ); 

else 

    m_CA2_infinity = (250.0*CA_I*exp( 

2.0*sum))/(250.0*CA_I*exp(2.0*sum)+0.1); 

end 

  

I_CA2 = g_CA2_bar*m_CA2_infinity*(E_M-E_K); 

  

===============v=========================================== 

         Voltage Independent Calcium Dependent Potassium Current 

===========================================================  

s1 = ( 1.25e+8)*CA_I*CA_I; 

t_m_CA3 = 1000.0/(s1 + 2.5); 

m_CA3_infinity = s1 /(s1 +2.5) ; 
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I_CA3 = g_CA3_bar*m_CA3_infinity*m_CA3_infinity*(E_M - E_K) ; 

  

sum = I_NA + I_K1 + I_K2 +I_K3 + I_CA1 + I_CA2 + I_CA3; 

  

===========================================================        

              Find Initial Conditions 

===========================================================  

  

g_NA_inf    = g_NA_bar*m_NA_infinity*m_NA_infinity*h_NA_infinity; 

g_K1_inf    = g_K1_bar*m_K1_infinity*h_K1_infinity; 

g_K2_inf    = g_K2_bar*m_K2_infinity-h_K2_infinity ; 

g_K3_inf    = g_K3_bar*m_K3_infinity; 

g_CA1_inf   = g_CA1_bar*m_CA1_infinity*h_CA1; 

g_CA2_inf   = g_CA2_bar*m_CA2_infinity; 

g_CA3_inf   = g_CA3_bar*m_CA3_infinity*m_CA3_infinity; 

g_total     = g_NA_inf + g_K1_inf + g_K2_inf + g_K3_inf + g_CA1_inf + 

g_CA2_inf + g_CA3_inf + g_leak_bar; 

  

  

 

fprintf('Initial activation and inactivations are:\n') 

fprintf('m_Na(0)  = %f\n', m_NA_infinity) 

fprintf('h_Na(0)  = %f\n',h_NA_infinity); 

fprintf('m_K1(0)  = %f\n',m_K1_infinity); 

fprintf('h_K1(0)  = %f\n',h_K1_infinity); 

fprintf('m_K2(0)  = %f\n',m_K2_infinity); 

fprintf('h_K2(0)  = %f\n',h_K2_infinity); 

fprintf('m_K3(0)  = %f\n',m_K3_infinity); 

fprintf('m_Ca1(0) = %f\n',m_CA1_infinity); 

fprintf('m_Ca2(0) = %f\n',m_CA2_infinity); 

fprintf('m_Ca3(0) = %f\n',m_CA3_infinity); 

  

q(1)    = m_NA_infinity ; 

q(2)    = h_NA_infinity ; 

q(3)    = m_K1_infinity ; 

q(4)    = h_K1_infinity ; 

q(5)    = m_K2_infinity ; 

q(6)    = h_K2_infinity ; 

q(7)    = m_K3_infinity ; 

q(8)    = m_CA1_infinity ; 

q(9)    = m_CA2_infinity ; 

q(10)   = m_CA3_infinity ; 

q(11)   = K_O; 
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q(12)   = CA_I ; 

  

  

  

end 

 

nerst 

function y = nerst(t,ion_in, ion_out,ii) 

R     = 8.3144621; 

z     = 1/ii; 

T     = t+273; 

F     = 96485.3365; 

ratio = (ion_out./ion_in); 

c     = (R.*T./F); 

y     = z*58*log10(ratio); 

end 

 

m_inf_Na 

function y = m_inf_Na(v) 

 y = alpha_mNa(v) ./ ( alpha_mNa(v) + beta_mNa(v)); 

end 

 

m_inf_K3 

function y = m_inf_K3(v) 
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sum = v+35; 

y   = 1 ./ ( 1.0 + exp(-sum/10) ); 

  

end 

 

m_inf_K2 

function y = m_inf_K2(v) 

  

y   = alpha_mK2(v) ./ (alpha_mK2(v) + beta_mK2(v)); 

  

end 

 

m_inf_K1 

function y = m_inf_K1(v) 

  

sum = v+42.0; 

y   = ( 1 ) ./ (1.0 + exp(-sum./13.0));  

  

end 

 

m_inf_Ca 

function y = m_inf_Ca(V) 

  

sum = (V-3);  

y   = 1/(1 + exp(-sum/8)); 

     

end 

 

m_inf_C 

function y = m_inf_C(V,Ca) 

sum = V/24; 
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    b   = 0.1*exp(-sum); 

    f   = 250*Ca*exp(sum); 

    y   = f / (f + b);     

  

end 

m_inf_AHP 

function y = m_inf_AHP(Ca) 

  

    f = 1.25e8*(Ca)*(Ca); 

    b = 2.5; 

    y = f /(f+b); 

  

end 

 

KOCH Model 

This is the main KOCH model that calculates the action potential, this function 

uses all the function that are defined before. 

 

function V =  koch(dt,b) 

  

format('long') 

  

%dt        = 1e-3;               % Number of Steps 

a         = 0;                  % Staring Point Of The Time 

% b         = 30;                % Ending Point Of The Time 

n         = ((b-a)./ (dt)) +1;  % Number Of Loops 

tol       = 7.0e-1;             % Convergence Criteria 

no_shells = 10;                 % Number Of Shells 

  

 

  

tem     = 22.0; 

V0      = -70; 

V       = zeros(n,1); 

I_Na    = zeros(n,1); 

I_A     = zeros(n,1); 

I_K     = zeros(n,1); 

I_M     = zeros(n,1); 

I_Ca    = zeros(n,1); 
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I_C     = zeros(n,1); 

I_AHP   = zeros(n,1); 

I_syn   = zeros(n,1); 

%K_in   = zeros(1,n); 

Ca_in   = zeros(n,1); 

I_L     = zeros(n,1); 

mNa     = zeros(n,1); 

hNa     = zeros(n,1); 

mK1     = zeros(n,1); 

hK1     = zeros(n,1); 

mK2     = zeros(n,1); 

hK2     = zeros(n,1); 

mK3     = zeros(n,1); 

mCa     = zeros(n,1); 

hCa     = zeros(n,1); 

mC      = zeros(n,1); 

mAHP    = zeros(n+0,1); 

gNa     = zeros(n,1); 

E_K     = zeros(n,1); 

E_Ca    = zeros(n,1); 

gK1     = zeros(n,1); 

time    = zeros(n,1); 

K_out   = zeros(n,1); 

EX      = zeros(n,1); 

I_K     = zeros(n,1); 

p       = zeros(17,1); 

q       = zeros(12,1); 

B       = zeros(no_shells+1,1); 

Ca      = zeros(no_shells+1,1); 

 

g_Na_bar   = 2.0; 

g_A_bar    = 1.2; 

g_K_bar    = 1.17; 

g_M_bar    = 0.084; 

g_Ca_bar   = 0.116; 

g_C_bar    = 1.20; 

g_AHP_bar  = .054; 

g_leak_bar = 0.02; 

  

G_L         = g_leak_bar; 

C           = 0.15; % Capacitance 

  

K_out(1)    = 5; 
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K_in        = 140.0; 

Ca_out      = 5.0; 

Ca_in(1)    = 0.00005; 

  

E_Na    = nerst(tem,10,145,1); 

E_K(1)  = nerst(tem,K_in,K_out(1),1); 

E_L     = -10; 

E_Ca(1) = nerst(tem,Ca_in(1),Ca_out,2); 

E_m     = V0; 

E_syn   = -10; 

  

p(1)    =       g_Na_bar; 

p(2)    =       g_A_bar; 

p(3)    =       g_K_bar; 

p(4)    =       g_M_bar; 

p(5)    =       g_Ca_bar; 

p(6)    =       g_C_bar; 

p(7)    =       g_AHP_bar; 

p(8)    =       g_leak_bar; 

p(9)    =       E_Na; 

p(10)   =       E_L ; 

p(11)   =       tem; 

p(12)   =       K_in; 

p(13)   =       K_out(1); 

p(14)   =       E_K(1); 

p(15)   =       Ca_in(1); 

p(16)   =       Ca_out; 

p(17)   =       E_Ca(1); 

  

q = rest( E_m,p,q); 

  

V0 = E_m; 

V(1)        = V0; 

mNa(1)      = q(1); 

hNa(1)      = q(2); 

mK1(1)      = q(3); 

hK1(1)      = q(4); 

mK2(1)      = q(5); 

hK2(1)      = q(6); 

mK3(1)      = q(7); 

mCa(1)      = q(8); 

mC (1)      = q(9); 

mAHP(1)     = q(10); 
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K_out(1)    = q(11); 

Ca_in(1)    = q(12); 

  

time    = a:dt:b; 

  

  

I_Na(1)  = (V(1) - E_Na).*(g_Na_bar.*(mNa(1)).*(mNa(1)).*(hNa(1)) ); 

I_A(1)  = (V(1) - E_K(1)).*(g_A_bar.*(mK1(1)).*(hK1(1)) ); 

I_K(1)  = (V(1) - E_K(1)).*(g_K_bar.*(mK2(1)).*(mK2(1)).*(hK2(1)) ); 

I_M(1)  = (V(1) - E_K(1)).*(g_M_bar.*(mK3(1))); 

I_Ca(1)  = (V(1) - E_Ca(1)).*(g_Ca_bar.*(mCa(1)).*(hCa(1)) ); 

I_C (1)  = (V(1) - E_K(1)).*(g_C_bar.*(mC (1))); 

I_AHP(1) = (V(1) - E_K(1)).*(g_AHP_bar).*(mAHP(1)).*(mAHP(1));  

I_L(1)   = (V(1) - E_L).*g_leak_bar;  

  

     

Ca(1:(no_shells+1)) = 50e-6;   

B(1:no_shells,1)    = 3e-3; 

B((no_shells+1),1)  = 30e-3; 

  

start = 0 % Start of the  

i = 1; 

  

  

while time(i) < b 

     

    i; 

     

  

     

                        Calculation Of Potentials 

=========================================================== 

  

    E_L     = -10; 

    E_Ca(i) =nerst(tem,Ca_in(i),Ca_out,2); 

  

     

========================================================= 

                Calculation of the Differential Equations 

========================================================= 
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    % dV(t.dt)/dt 

    dmNa  = ((m_inf_Na(V(i))-mNa(i))./tau_mNa(V(i)));  % Activation Fast 

Sodium Current  

    dhNa  = ((h_inf_Na(V(i))-hNa(i))./tau_hNa(V(i)));  % Inactivation Fast Sodium 

Current 

    dmK1  = ((m_inf_K1(V(i))-mK1(i))./tau_mK1(V(i)));  % Activation Transient, 

Outwarad Potassium Current  

    dhK1  = ((h_inf_K1(V(i))-hK1(i))./tau_hK1(V(i)));  % Inactivation Transient, 

Outward Potassium Current 

    dmK2  = ((m_inf_K2(V(i))-mK2(i))./tau_mK2(V(i)));  % Delayed, Rectifying 

Potassium Current 

    dhK2  = ((h_inf_K2(V(i))-hK2(i))./tau_hK2(V(i)));  % Delayed, Rectifying 

Potassium Current 

    dmK3  = ((m_inf_K3(V(i))-mK3(i))./tau_mK3(V(i)));  % Non-Inactivating 

Muscarinic Potassium Current  

    dmCa  = ((m_inf_Ca(V(i))-mCa(i))./tau_mCa(V(i)));  % Fast Calcium Current 

    dmC   = ((m_inf_C(V(i),Ca_in(i))-mC (i))./tau_mC (V(i),Ca_in(i)) );  % Non-

inactivating Calcium-Dependent Potassium Current  

    dmAHP = ((m_inf_AHP(Ca_in(i))-mAHP(i))./tau_mAHP(Ca_in(i)) ); % 

Voltage-Independent, Calcium-Dependent Potassium Current  

 

=========================================================== 

                   Activation Fast Sodium Current 

 

    pre       = mNa(i)+dmNa.*dt; 

    dmNa_p_dt = ( (m_inf_Na(V(i))-pre)./tau_mNa(V(i)) ); 

    corr      = mNa(i)+(dt/2).*(dmNa_p_dt + dmNa); 

    diff      = abs( corr-pre ); 

     

    while diff > tol  

         

        dmNa      = ( (m_inf_Na(V(i))-corr)./tau_mNa(V(i)) ); 

        pre       =  corr+dmNa.*dt; 

        dmNa_p_dt = ( (m_inf_Na(V(i))-pre)./tau_mNa(V(i)) ); 

        corr      = mNa(i)+(dt/2).*(dmNa_p_dt+dmNa); 

        diff      = abs(corr-pre ); 

         

         

    end 

  

mNa(i+1)  = corr; 
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========================================================= 

                    Inactivation Fast Sodium Current 

========================================================= 

     

    pre       = hNa(i)+dhNa.*dt; 

    dhNa_p_dt = ( (h_inf_Na(V(i))-pre)./tau_hNa(V(i)) ); 

    corr      = hNa(i)+(dt/2).*(dhNa_p_dt+dhNa); 

    diff      = abs(corr-pre); 

     

    while diff > tol 

         

        dhNa      = ( (h_inf_Na(V(i))-corr)./tau_hNa(V(i)) ); 

        pre       =  corr+dhNa.*dt; 

        dhNa_p_dt = ( (h_inf_Na(V(i))-pre)./tau_hNa(V(i)) ); 

        corr      = hNa(i)+(dt/2).*(dhNa_p_dt+dhNa); 

        diff      = abs( corr-pre ); 

         

    end  

     

    hNa(i+1)  = corr; 

     

========================================================= 

               Activation Transient, Outwarad Potassium Current 

====================================================  

    

    pre       = mK1(i)+dmK1.*dt; 

    dmK1_p_dt = ( (m_inf_K1(V(i))-pre)./tau_mK1(V(i)) ); 

    corr      = mK1(i)+(dt/2).*(dmK1_p_dt+dmK1); 

    diff      = abs( corr-pre ); 

     

    while diff > tol 

        

        dmK1        = ( (m_inf_K1(V(i))-corr)./tau_mK1(V(i)) ); 

        pre         = corr+dmK1.*dt; 
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        dmK1_p_dt   = ( (m_inf_K1(V(i))-pre)./tau_mK1(V(i)) ); 

        corr        = mK1(i)+(dt/2).*(dmK1_p_dt+dmK1); 

        diff        = abs( corr-pre ); 

         

    end 

     

    mK1(i+1) =  corr; 

     

 

========================================================= 

               Inactivation Transient, Outward Potassium Current 

=========================================================  

     

    pre       = hK1(i)+dhK1.*dt; 

    dhK1_p_dt = ( (h_inf_K1(V(i))-pre)./tau_hK1(V(i)) ); 

    corr      = hK1(i)+((dt*2).*(dhK1_p_dt+dhK1)); 

    diff      = abs( corr - pre ); 

     

    while diff > tol 

         

        dmK1        = ( (h_inf_K1(V(i))-corr)./tau_hK1(V(i)) ); 

        pre         = corr + dhK1.*dt; 

        dhK1_p_dt   = ( (h_inf_K1(V(i)) - pre)./tau_hK1(V(i)) ); 

        corr        = hK1(i) + ((dt*2).*(dhK1_p_dt + dhK1)); 

        diff        = abs( corr - pre ); 

    end 

     

    hK1(i+1)  = corr; 

     

     

=========================================================               

Delayed, Rectifying Potassium Current 

========================================================== 

     

    pre         = mK2(i) + dmK2.*dt; 

    dmK2_p_dt   = ( (m_inf_K2(V(i)) - pre) ./ tau_mK2(V(i)) ); 

    corr        = mK2(i) + (dt/2).*(dmK2_p_dt + dmK2); 
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    diff        = abs( corr - pre ); 

     

    while diff > tol 

         

        dmk2        = ( (m_inf_K2(V(i)) - corr) ./ tau_mK2(V(i)) ); 

        pre         = corr + dmK2.dt; 

        dmK2_p_dt   = ( (m_inf_K2(V(i)) - pre) ./ tau_mK2(V(i)) ); 

        corr        = mK2(i) + (dt/2).*(dmK2_p_dt + dmK2); 

        diff        = abs( corr - pre ); 

    end 

  

    mK2(i+1) = corr; 

     

========================================================= 

               Delayed, Rectifying Potassium Current 

=========================================================     

    pre         = hK2(i) + dhK2.*dt; 

    dhK2_p_dt   = ( (h_inf_K2(V(i)) - pre) ./ tau_hK2(V(i)) ); 

    corr        = hK2(i) + (dt/2).*(dhK2_p_dt + dhK2); 

    diff        = abs( corr - pre ); 

     

    while diff > tol 

         

        dhk2        = ( (h_inf_K2(V(i)) - corr) ./ tau_hK2(V(i)) ); 

        pre         = corr + dhK2.dt; 

        dhK2_p_dt   = ( (h_inf_K2(V(i)) - pre) ./ tau_hK2(V(i)) ); 

        corr        = hK2(i) + (dt/2).*(dhK2_p_dt + dhK2); 

        diff        = abs( corr - pre ); 

    end 

  

    hK2(i+1) = corr; 

     

     

=========================================================                

Non-Inactivating Muscarinic Potassium Current 

=========================================================     
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    pre         = mK3(i) + dmK3 .* dt; 

    dmK3_p_dt   = ( (m_inf_K3(V(i)) - pre) ./ tau_mK3(V(i)) ); 

    corr        = mK3(i) + (dt/2).*(dmK3_p_dt + dmK3); 

    diff        = abs( corr - pre); 

     

    while diff > tol 

         

        dmK3        = ((m_inf_K3(V(i))-corr)./tau_mK3(V(i))); 

        pre         = corr+dmK3.*dt; 

        dhK3_p_dt   = ((m_inf_K3(V(i))-pre)./tau_mK3(V(i))); 

        corr        = mK3(i)+(dt/2).*(dmK3_p_dt+dhK3); 

        diff        = abs(corr-pre); 

    end 

  

    mK3(i+1) = corr; 

  

%========================================================= 

%                           Fast Calcium Current  

%=========================================================  

    pre         = mCa(i)+dmCa.*dt; 

    dmCa_p_dt   = ( (m_inf_Ca(V(i))-pre)./tau_mCa(V(i))); 

    corr        = mCa(i)+(dt/2).*(dmCa_p_dt+dmCa); 

    diff        = abs( corr-pre); 

     

    while diff > tol 

         

        dmCa        = ((m_inf_Ca(V(i))-corr)./tau_mCa(V(i))); 

        pre         = corr+dmCa.*dt; 

        dmCa_p_dt   = ((m_inf_Ca(V(i))-pre)./tau_mCa(V(i))); 

        corr        = mCa(i)+(dt/2).*(dmCa_p_dt+dmCa); 

        diff        = abs( corr-pre ); 

  

    end 

     

    mCa(i+1) = corr; 

     

========================================================= 

                         Fast Calcium Current  
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========================================================= 

  

    hCa(i+1) = 0.01/(0.01+Ca_in(i)); 

  

========================================================= 

           Non-inactivating Calcium-Dependent Potassium Current  

=========================================================  

    pre         = mC(i)+dmC.*dt; 

    dmC_p_dt    = ( (m_inf_C(V(i),Ca_in(i))-pre)./tau_mC(V(i),Ca_in(i)) ); 

    corr        = mC(i)+(dt/2).*(dmC_p_dt+dmC); 

    diff        = abs(corr-pre); 

     

    while diff > tol 

         

        dmC         = ( (m_inf_C(V(i),Ca_in(i))-corr)./tau_mC(V(i),Ca_in(i)) ); 

        pre         = corr+dmC.*dt; 

        dmC_p_dt    = ( (m_inf_C(V(i),Ca_in(i))-pre)./tau_mC(V(i),Ca_in(i)) ); 

        corr        = mC(i)+(dt/2).*(dmC_p_dt+dmC); 

        diff        = abs( corr-pre ); 

         

    end 

     

    mC(i+1) = corr; 

  

 

 Voltage-Independent, Calcium-Dependent Potassium Current  

=========================================================== 

     

    pre         = mAHP(i)+dmAHP.*dt; 

    dmAHP_p_dt  = ( (m_inf_AHP(Ca_in(i))-pre)./tau_mAHP(Ca_in(i)) ); 

    corr        = mAHP(i)+(dt/2).*(dmAHP_p_dt+dmAHP); 

    diff        = abs( corr-pre); 

     

    mAHP(i+1) = pre; 

 

========================================================= 

                           Potassium Accumulation 

========================================================= 
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    V_peri    = 11.749137; 

    t_K_diff  = 7.0; 

    K1 = I_A(i); 

    K2 = I_K(i); 

    K3 = I_M(i); 

    IC = I_C(i); 

    IK_Total  = (I_A(i)+I_K(i)+I_M(i)+I_C(i)+I_AHP(i));  

    F         = 9.649e4; 

    K_rest    = 2.5; 

    lead      = (IK_Total/(V_peri*F)); 

    other     = ((K_out(i)-K_rest)./t_K_diff); 

    dK_out_dt = lead - other; 

     

    pre        = K_out(i)+dK_out_dt.*dt; 

    K_out(i+1) = pre;  

        

       K_out(i+1) = 7.8;  

     

    E_K(i)  = nerst(tem,K_in,K_out(i),1); 

    K = E_K(i); 

     

     

 

 Fast, Nicotinic Synaptic Input 

 

========================================================= 

     

    t_peak = 2.5; 

    g_sym  = 2.90856e-5; 

    u      = (time(i)./t_peak); 

    g_syn  = time(i)*g_sym*exp(-u);  

     

     

========================================================= 

                           Current Calculation  

=========================================================     

     

    I_Na(i)  = (V(i)-E_Na).*(g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)) ); 

    I_A(i)   = (V(i)-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)) ); 

    I_K(i)   = (V(i)-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)) ); 

    I_M(i)   = (V(i)-E_K(i)).*(g_M_bar.*(mK3(i))); 

    I_Ca(i)  = (V(i)-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)) ); 

    I_C (i)  = (V(i)-E_K(i)).*(g_C_bar.*(mC (i))); 
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    I_AHP(i) = (V(i)-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));  

    I_L(i)   = (V(i)-E_L).*g_leak_bar; 

    I_syn(i) = (V(i)-E_syn).*g_syn; 

  

========================================================= 

                           Voltage Calculation  

========================================================= 

     

    dV            = (1./C).*( I_ext(time(i))-( 

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i) ) ); 

    pre           = V(i)+dV.*dt; 

    I_Na(i)  = (pre-E_Na).*(g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)) ); 

    I_A(i)   = (pre-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)) ); 

    I_K(i)   = (pre-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)) ); 

    I_M(i)   = (pre-E_K(i)).*(g_M_bar.*(mK3(i))); 

    I_Ca(i)  = (pre-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)) ); 

    I_C (i)  = (pre-E_K(i)).*(g_C_bar.*(mC (i))); 

    I_AHP(i) = (pre-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));  

    I_L(i)   = (V(i) - E_L).*g_leak_bar; 

    I_syn(i) = (V(i)-E_syn).*g_syn; 

    dV_p_dt    = (1./C).*( I_ext(time(i))-( 

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i) ) ); 

    corr       = V(i) + (dt/2).*(dV_p_dt + dV); 

    diff       = abs( corr - pre ); 

    EX(i)      = I_ext(time(i)); 

    I_K(i)   = I_A(i) + I_K(i) + I_M(i);  

     

    while diff > tol 

         

        I_Na(i)  = (corr-E_Na).* (g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)) ); 

        I_A(i)   = (corr-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)) ); 

        I_K(i)   = (corr-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)) ); 

        I_M(i)   = (corr-E_K(i)).*(g_M_bar.*(mK3(i))); 

        I_Ca(i)  = (corr-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)) ); 

        I_C (i)  = (corr-E_K(i)).*(g_C_bar.*(mC (i))); 

        I_AHP(i) = (corr-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));  

        I_L(i)   = (corr-E_L).*g_leak_bar;   

        dV       = (1./C).*( I_ext(time(i))-( 

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i) ) ); 

        pre      = corr + dV; 

        I_Na(i)  = (pre-E_Na).*(g_Na_bar.*(mNa(i)).*(mNa(i)).*(hNa(i)) ); 

        I_A(i)   = (pre-E_K(i)).*(g_A_bar.*(mK1(i)).*(hK1(i)) ); 

        I_K(i)   = (pre-E_K(i)).*(g_K_bar.*(mK2(i)).*(mK2(i)).*(hK2(i)) ); 



106 
 

        I_M(i)   = (pre-E_K(i)).*(g_M_bar.*(mK3(i))); 

        I_Ca(i)  = (pre-E_Ca(i)).*(g_Ca_bar.*(mCa(i)).*(hCa(i)) ); 

        I_C (i)  = (pre-E_K(i)).*(g_C_bar.*(mC (i))); 

        I_AHP(i) = (pre-E_K(i)).*(g_AHP_bar).*(mAHP(i)).*(mAHP(i));  

        I_L(i)   = (pre-E_L).* g_leak_bar;   

        dV_p_dt  = (1./C).*( I_ext(time(i))-( 

I_Na(i)+I_A(i)+I_K(i)+I_M(i)+I_Ca(i)+I_C(i)+I_AHP(i)+I_L(i)+I_syn(i) ) ); 

        corr     = V(i)+(dt/2).*(dV_p_dt + dV); 

        diff     = abs( corr-pre ); 

        I_K(i)   = I_A(i)+I_K(i)+I_M(i);  

     

    end 

     

    V(i+1)    = corr; 

%    [V(i+1),mNa(i+1),hNa(i+1),mK1(i+1),hK1(i+1)] = 

voltage(V(i),I_ext(time(i)),dt,mNa(i),hNa(i),mK1(i),hK1(i)); 

     

========================================================= 

                           Calcium Update  

========================================================= 

tem = V(i); 

 start = 0; 

  

%  Ca =  Ca_update(V(i),dt,Ca,B,I_Ca(i));         

%  Ca_in(i+1) =  Ca(11); 

  

 if tem>=-25 

    Ca =  Ca_update(V(i),dt,Ca,B,I_Ca(i));         

    Ca_in(i+1) =  Ca(11); 

 %   start = 1; 

 else 

   Ca_in(i+1) = 0.00005; 

   % K_out(i+1) = 1.8;  

 end 

    

   %Ca_in(i+1) =  0.00005; 

   i = i+1; 

  

end 

  

%plot(time,V) 

end 
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Alpha_hNa 

function y = alpha_hNa(v) 

  

    sum = v+55.0; 

    y   = ( -0.10.*sum ) ./ (1.0 - exp(sum./6.0));  

  

end 

 

I_ext 

function y = I_ext(t) 

 if t>00 && t<02   

        y = 5; 

 else 

 y = 0; 

end 

end 

 

h_inf_Na 

function y = h_inf_Na(v) 

y = alpha_hNa(v) ./ ( alpha_hNa(v) + beta_hNa(v)); 

end 

 

h_inf_K2 
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function y = h_inf_K2(v) 

sum = v+25;     

y   = 1 ./ (exp(sum./4));  

end 

 

h_inf_K1 

function y = h_inf_K1(v) 

sum = v+110.0; 

y   = ( 1 ) ./ (1.0 + exp(sum./18.0));  

end 

 

getCA_at_N 

function [X] = getCA_at_N(X,no_shells,m_CA1,V,Parameter) 

format long 

=========================================================== 

        Concentrations here are in mu M 

        Parameter (1) = rsize; 

        Parameter (2) = rcore; 

        Parameter (3) = delta_t; 

        Parameter (4) = forward binding rate; 

        Parameter (5) = backward binding rate; 

        Parameter (6) = Diffusion Constant; 

        Parameter (7) = B_iT; 

         

        Binding Concent ration below 

        level no_shells 

         

        Parameter (8) = B_nT; 
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        Binding Concentration at 

        level no_shells 

         

        Parameter (9) = C_i; 

         

        Ca Concentration below 

        level no_shells 

         

        Parameter (10) = C_n; 

         

        Ca Concentration at 

        level n 

=========================================================== 

 

N                       = no_shells; 

rsize                   = Parameter(1); 

rcore                   = Parameter(2); 

delta_t                 = Parameter(3); 

forward_binding_rate    = Parameter(4); 

backward_binding_rate   = Parameter(5); 

Diffusion_Constant      = Parameter(6); 

B_iT                    = Parameter(7); 

B_nT                    = Parameter(8); 

C_i                     = Parameter(9); 

C_n                     = Parameter(10); 

  

A1      = zeros((2*N) +2,(2*N)+2); 

DV1     = zeros((2*N)+2,1); 

  

A2      = zeros((2*N)+2,(2*N)+2); 

DV2     = zeros((2*N)+2,1); 

  

A3      = zeros((2*N)+2,(2*N)+2); 

DV3     = zeros((2*N)+2,1); 

  

A4      = zeros((2*N)+2,(2*N)+2); 

DV4     = zeros((2*N)+2,1); 

  

A       = zeros((2*N)+2,(2*N) +2); 

Acopy   = zeros((2*N)+2,(2*N) +2); 

  

DV      = zeros((2*N)+2,1); 
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%       construct buffer discretization matrices 

  

[A1,DV1] = set_buffers(X,A1,DV1,N,Parameter); 

A = A1;  

DV = DV1'; 

  

%       construct diffusion discretization matrices 

  

[A2,DV2] = set_diffusion (X,A2,DV2,N,Parameter); 

A   = A + A2; 

DV  = DV + DV2; 

  

%       construct ICA current matrices 

  

[A3,DV3] = set_ICA (X,A3,DV3,N,m_CA1,V,Parameter); 

A   = A + A3; 

DV  = DV + DV3; 

  

%       construct Ca pump matrices 

  

[A4, DV4] = set_Pump (X,A4,DV4,N,V,Parameter); 

A   = A + A4; 

DV  = DV + DV4; 

  

  

  

X = (A\DV)'; 

  

  

end 

 

Alpha_mK2 

function y = alpha_mK2(v) 

  

    sum = v+12; 

    y   = (-0.0047.*sum) ./ (-1 + exp(-sum./12.0)); 

  

end 
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Ca_update 

This function calculates the Calcium concentrations in the neuron after the action 

potential has fired. 

function x = Ca_update(V,dt,Ca,B,I_Ca) 

  

% Ca is Calcium Concentration Layer wise 

% B is the buffer Concentration 

  

A  = zeros(11,11); 

DV = zeros(11,1); 

  

F  = 96490; 

D  = 6.0e-3;           %cm2sec-1 

n  = 10; 

f  = 1.0e2; 

b  = 1e-1; 

  

  

r_core   = 19;    % um micrometer 

r_i      = zeros(11,1); 

delta_r  = 0.1;      % um micrometer 

B_it     = zeros(11,1); 

Ca_equil = 50e-3; 

Ca_n     = Ca(n+1,1); 

Km       = 0.02; 

tau_pump = 17.7*exp(V*1e-3/35); 

K_rest   = 2.5; 

  

% Setting up the radius of the Shells 

  

for i=0:10 

    

    r_i(i+1) = r_core + (i*delta_r); 

  

end 

  

r_out   = power(r_i(n+1),3); 
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r_in    = power(r_i(n),3); 

r_diff  = (r_out-r_in); 

V_n     = (4*pi/3)*r_diff ; 

  

% Setting up the [B]i,total Concentrations 

  

B_it(n+1) = 30e-0; 

for i=1:n 

    B_it(i)= 3.0e-0;  

end 

  

 

A(1,1) = ( 1+((3*D*dt)/(2*r_core*r_core))+(f*dt*B(1)*0.5) ); 

A(1,1) = A(1,1)-( (f*dt*dt*B(1)*(b+(f*Ca(1))))/(2*(2+(b*dt)+(f*dt*Ca(1)))) ); 

  

A(1,2) = -(3*D*dt)/(2*r_core*r_core); 

  

for i=2:n 

     

    A(i,i-1)= ( (-D*dt*(r_i(i)-delta_r))/(2*r_i(i)*delta_r*delta_r) ); 

     

    A(i,i)  = 1+( (D*dt)/(delta_r*delta_r) )+( f*dt*B(i)*0.5 ); 

    A(i,i)  = A(i,i)-( (dt*dt*f*B(i)*(b+(f*Ca(i))))/(2*(2+(b*dt)+(f*dt*Ca(i)))) ); 

     

    A(i,i+1)= ( (-D*dt*(r_i(i)+delta_r))/(2*r_i(i)*delta_r*delta_r) ); 

  

end 

  

A(11,10)   = -( (D*dt*(r_i(11)-delta_r))/(2*r_i(11)*delta_r*delta_r) ); 

  

A(11,11) = 1+( (D*dt*(r_i(11)-delta_r)) / (2*r_i(11)*delta_r*delta_r) 

)+(f*dt*B(11)*0.5)+(dt/(2*tau_pump)); 

A(11,11) = A(n+1,n+1)-( 

(dt*dt*f*B(11)*(b+(f*Ca(11))))/(2*(2+(b*dt)+(f*dt*Ca(11)))) ); 

  

  

DV(1,1) = (Ca(1)*(1+((3*D*dt)/(2*r_core*r_core)))) + 

((3*D*dt*Ca(2))/(2*r_core*r_core)); 

DV(1,1) = DV(1,1)+(b*dt*B_it(1))-(b*dt*0.5); 

DV(1,1) = DV(1,1)-( 

(2*b*dt*dt*B_it(1)*(b+(f*Ca(1))))/(2*(2+(b*dt)+(f*dt*Ca(1)))) ); 

DV(1,1) = DV(1,1)-( (B(1)*((2*b*dt)+(dt*dt*b*b)+(dt*f*Ca(1))-

(dt*dt*f*b*Ca(1))))/(2*(2+(b*dt)+(f*dt*Ca(1)))) ); 
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for i=2:n 

     

    DV(i,1) = ( (D*dt*(r_i(i)+delta_r)*Ca(i+1))/(2*r_i(i)*delta_r*delta_r) )+( 

Ca(i)*(1+((D*dt)/(delta_r*delta_r))) ); 

    DV(i,1) = DV(i,1)+( (D*dt*Ca(i-1)*(r_i(i)-delta_r))/(2*r_i(i)*delta_r*delta_r) 

)+(2*dt*B_it(i))-(0.5*b*dt*B(i));  

    DV(i,1) = DV(i,1)-( (dt*dt*B_it(i)*(b+(f*Ca(i))))/(2+(b*dt)+(f*dt*Ca(i))) ); 

    DV(i,1) = DV(i,1)-( (dt*B(i)*((2*b)-(b*b*dt)+(Ca(i)*((2*f)-

(f*b*dt)))))/(2*(2+(b*dt)+(f*dt*Ca(i)))) ); 

     

end 

  

DV(11,1) = ( (D*dt*(r_i(11)-delta_r)*Ca(10))/(2*r_i(11)*delta_r*delta_r) )-( 

(D*dt*Ca(11)*(r_i(11)-delta_r))/(2*r_i(11)*delta_r*delta_r) );  

DV(11,1) = DV(11,1)-( (dt*I_Ca)/(2*F*V_n) )+(b*dt*B_it(11))-(b*dt*B(11))+( 

(dt*Ca_equil)/(tau_pump) )-( (dt*Ca(11))/(2*tau_pump) );  

DV(11,1) = DV(11,1)-( (dt*dt*B_it(11)*(b+(f*Ca(11))))/(2+(b*dt)+(f*dt*Ca(11))) 

); 

DV(11,1) = DV(11,1)-( (dt*B(11)*((2*b)-(b*b*dt)+(Ca(11)*((2*f)-

(f*b*dt)))))/(2*(2+(b*dt)+(f*dt*Ca(11)))) ); 

  

  

a = zeros(11,1); 

b = zeros(11,1); 

c = zeros(11,1); 

d = DV; 

  

for i=2:(n+1) 

     

    a(i,1)= A(i,(i-1)); 

    c(i,1)= A((i-1),i); 

     

end 

  

for i=1:(n+1) 

     

    b(i,1)= A(i,i); 

     

     

end 
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a, b, c are the column vectors for the compressed tridiagonal matrix, d is the right 

vector 

n = length(b); % n is the number of rows 

  

% Modify the first-row coefficients 

c(1) = c(1) / b(1);    % Division by zero risk. 

d(1) = d(1) / b(1);    % Division by zero would imply a singular matrix. 

  

for i = 2:n-1 

    temp = b(i) - a(i) * c(i-1); 

    c(i) = c(i) / temp; 

    d(i) = (d(i) - a(i) * d(i-1))/temp; 

end 

  

d(n) = (d(n)-(a(n)*d(n-1)))/( b(n)-a(n)*c(n-1)); 

  

% Now back substitute. 

x(n) = d(n); 

for i = n-1:-1:1 

    x(i) = d(i) - c(i) * x(i + 1); 

end 

  

x = x'; 

for i=1:11 

    if x(i)<0 

        x(i)=0; 

    end 

end 

end 

  

 

beta_mNa 

function y = beta_mNa(v) 

  

    sum = v+42.0; 

    y   = ( -0.40.*sum ) ./ (1.0 - exp(sum./20.0));  

  

end 
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beta_mK2 

function y = beta_mK2(v) 

  

    sum = v+147.0; 

    y   = exp(-sum./30.0); 

  

end 

 

beta_hNa 

function y = beta_hNa(v) 

  

    sum = v+0.0; 

    y   = ( 4.5 ) ./ (1.0 + exp(-sum./10.0));  

  

end 

 

 

alpha_mNa 

function y = alpha_mNa(v) 

  

    sum = v+33.0; 

    y   = ( 0.36.*sum ) ./ (1.0 - exp(-sum./3.0));  

  

end 

 

 


