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Abstract

Mixed chemo-immunotherapy is an effective strategy for cancer treatment. This study uti-
lizes a six-state nonlinear mathematical model to describe the dynamics of tumor growth
and immune responses during mixed chemo-immunotherapy. The model incorporates key
components, including tumor cells (T), natural killer cells (N), CD8+T cells (L), circulat-
ing lymphocytes (C), chemotherapy concentration (M), and immunotherapy concentration
(I). Advanced nonlinear controllers such as Terminal Sliding Mode Control (TSMC), Su-
per Twisting Sliding Mode Control (STSMC), Adaptive Terminal Sliding Mode Control
(ATSMC), and Adaptive Super Twisting Sliding Mode Control (ASTSMC) are proposed to
optimize drug delivery and achieve rapid tumor regression. These controllers ensure drug
dosages remain within safe toxicity limits while minimizing side effects and supporting im-
mune system recovery. To fine-tune the gain parameters of these controllers, the Improved
Grey Wolf Optimization (IGWO) algorithm is employed with the Mean Squared Error
(MSE) as the cost function. The stability of these controllers is rigorously analyzed us-
ing Lyapunov-based stability theory, ensuring reliable performance during treatment. The
proposed controllers are simulated in MATLAB/Simulink and further validated through a
hardware-in-the-loop (HIL) experimental setup using the C2000 Delfino™ MCU F28379D
Launchpad, confirming the practicality and effectiveness of the proposed approach. Simu-
lation results show that ASTSMC achieves tumor regression in just 9 days, approximately
5.42 times faster than the previous study (48.77 days), while maintaining safe toxicity
limits and ensuring optimal drug dosages.
Keywords: Chemotherapy, Immunotherapy, Biomedical Control, Mixed cancer therapy
Sliding mode control, Tumor
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Chapter 1

Introduction

1.1 Cancer and Its Stages
Cancer is a group of diseases where cells in the body begin to grow and divide in an
irregular way. This growth can occur in different organs and tissues, often leading to
significant health challenges. Early detection and effective treatment are key factors in
improving survival and quality of life for patients. Despite advancements in research and
treatment, cancer continues to be one of the leading causes of death worldwide.

1.1.1 Types of Cancer
There are various types of cancer, each affecting different parts of the body and requiring
unique approaches for diagnosis and treatment:

• Sarcomas: Rare cancers arising in connective tissues like bones, muscles, and fat.
They are aggressive and require early detection for better outcomes.

• Leukemia: A cancer of the bone marrow, leading to overproduction of abnormal
white blood cells that impair the body’s ability to fight infections.

• Lymphomas: Cancers of the lymphatic system, including Hodgkin and non-Hodgkin
lymphoma, affecting lymph nodes and the immune system.

• Melanomas: A type of skin cancer that arises from pigment-producing cells and can
spread quickly if not treated early.

• Brain and Spinal Cord Cancers: Cancers that develop in the brain or spinal cord,
often leading to neurological symptoms and requiring complex treatment.

• Gastrointestinal Cancers: Cancers affecting the digestive system, including the
colon, stomach, and pancreas, often diagnosed late due to subtle symptoms.

• Endocrine Cancers: Cancers that affect hormone-producing glands like the thyroid
and pancreas, disrupting hormonal balance and causing various symptoms.

• Urological Cancers: Cancers affecting the urinary system, including the kidneys,
bladder, and prostate, often detected through urinary symptoms or imaging.

• Respiratory Cancers: Cancers of the lungs and respiratory system, with lung can-
cer being the most common and deadly, often linked to smoking.
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1.1.2 Stages of Cancer
The staging of cancer plays a vital role in assessing the extent of the disease and is crucial
for planning effective treatment and predicting outcomes. Stages range from localized
conditions to advanced cases where the cancer has spread to other parts of the body. The
following are the stages of cancer:

• Stage 0: Also known as carcinoma in situ, this is an early stage where cancer cells
are present but have not spread beyond the original tissue. The tumor is localized
and often curable with minimal intervention.

• Stage I: The cancer is still localized within its original tissue and has not spread
to nearby lymph nodes or distant areas. This stage is typically considered an early,
more treatable stage of cancer.

• Stage II: The cancer has grown larger or spread to nearby tissues, but it remains con-
fined to the primary site. It may involve nearby lymph nodes or organs, depending
on the type of cancer. Treatment may involve surgery or radiation.

• Stage III: The cancer has spread more extensively within the local area, often in-
volving nearby lymph nodes or distant tissues but not yet reaching distant organs. At
this stage, the cancer is more aggressive, and treatment may include a combination
of surgery, chemotherapy, radiation, or targeted therapies.

• Stage IV: Known as metastatic cancer, it has spread to distant parts of the body,
such as the bones, lungs, liver, or brain. This stage is often more difficult to treat and
focuses on managing symptoms and prolonging life through advanced treatments
like chemotherapy, immunotherapy, or palliative care.

• Recurrent: Cancer that has returned after treatment, either at the original site or in
a new location. Treatment options depend on the location of the recurrence and may
include surgery, chemotherapy, or radiation to manage the disease.

1.1.3 Cancer Statistics
Cancer is a prevalent and significant health concern that impacts the lives of millions of in-
dividuals across the globe, posing substantial challenges for patients, families, and health-
care systems [6]. As highlighted in the cancer report by the World Health Organization
(WHO) [16], [17], cancer is recognized as the second leading cause of death globally, un-
derscoring its profound effect on public health. In 2022, an estimated 19.3 million new
cases of cancer were recorded worldwide. Among these cases, lung cancer comprised
12.4%, breast cancer 11.5%, colorectal cancer 9.6%, and prostate cancer 7.3%. Stomach
and liver cancers accounted for 4.8% and 4.3%, respectively, while all other types made
up 49.9% (see Figure 1.1).
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Figure 1.1: New cases of Cancer in 2022 (For all ages and genders)

With 10 million cancer-related deaths in 2022 (see Figure 1.2), the disease continues
to cause considerable global mortality. Lung cancer accounted for 18.7% of these deaths,
while colorectal cancer made up 9.3%, liver cancer 7.8%, breast cancer 6.8%, stomach
cancer 6.8%, and pancreatic cancer 4.8%. Other types of cancer contributed to 45.9%
of the total deaths. The situation is similarly alarming in Pakistan, where approximately
207,000 new cancer cases were reported in the same year, resulting in nearly 160,000
cancer-related fatalities [2].These numbers emphasize the urgent need for improved pre-
vention, early detection, and treatment, both globally and in countries like Pakistan.
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Figure 1.2: Cancer Deaths in 2022 (For all ages and genders)

1.2 Treatment Methods and Side Effects
The treatment of cancer involves various methods, including radiotherapy, immunotherapy,
surgery, and chemotherapy, often combined to increase their effectiveness depending on
the type and stage of the disease.

• Chemotherapy, as a mainstay of cancer treatment, employs powerful cytotoxic drugs
to target rapidly dividing cancer cells throughout the body. While effective at de-
stroying cancer cells, these drugs can also affect healthy cells that divide quickly,
such as those in hair follicles, bone marrow, and the digestive tract. This non-
selective action leads to well-known side effects including hair loss, decreased blood
cell counts, nausea, and fatigue. Modern chemotherapy protocols have been refined
to maximize effectiveness while minimizing adverse effects through careful dosing
schedules and supportive care measures.

• Immunotherapy has emerged as a revolutionary approach that harnesses the body’s
immune system to fight cancer. This treatment works by either stimulating the
immune system’s natural ability to attack cancer cells or providing synthetic im-
mune system components to enhance the anti-cancer response. Various types of
immunotherapy include checkpoint inhibitors, CAR T-cell therapy, and cancer vac-
cines, each working through different mechanisms to strengthen the body’s natural
defenses against cancer.

• Radiation therapy utilizes high-energy radiation beams like super-powerful X-rays,
to destroy the DNA of cancer cells, preventing them from growing and dividing.
This treatment can be delivered externally (external beam radiation) or internally
(brachytherapy). The process usually involves multiple sessions over days or weeks

4



to achieve the desired results. Modern radiation techniques like intensity-modulated
radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) allow for
highly precise delivery of radiation, minimizing damage to healthy tissues while
maximizing the dose to the tumor.

• Hormone therapy is particularly important in treating hormone-sensitive cancers
such as breast and prostate cancer. This treatment works by either blocking the
body’s ability to produce specific hormones or interfering with how hormones be-
have in the body, thereby slowing or stopping the growth of hormone-dependent
cancer cells. For breast cancer, the treatment works by either blocking estrogen
receptors using drugs like tamoxifen (SERMs) or preventing estrogen production
through aromatase inhibitors. In prostate cancer, the therapy focuses on reducing
testosterone levels through medications or surgery.

• Surgery therapy is a fundamental approach in cancer treatment where skilled sur-
geons physically remove cancerous tissues from the body. The primary goal is to
eliminate the tumor and some surrounding healthy tissue (called margins) to ensure
all cancer cells are removed.

1.2.1 Mixed Chemo-Immunotherapy
One of the promising methods is mixed chemo-immunotherapy, which combines chemother-
apy and immunotherapy. In this treatment, chemotherapy directly attacks and kills cancer
cells, while immunotherapy helps strengthen the body’s natural defenses to fight cancer.
Together, they work in tandem, making the treatment more powerful than when used sep-
arately.

This combined method has shown positive results in many studies [19, 5, 15, 23].
While chemotherapy can sometimes weaken the immune system, adding immunotherapy
helps keep the immune response strong, improving the body’s ability to fight cancer. Many
patients have had better outcomes with this combined treatment than with chemotherapy
alone.

1.2.2 Side Effects of Mixed Chemo-Immunotherapy
While combining chemotherapy and immunotherapy has shown potential in improving
cancer treatment outcomes, there are some important drawbacks to consider. One major
concern is the increased risk of severe immune-related side effects (irAEs). These side
effects occur when the immune system, stimulated by immunotherapy, mistakenly targets
healthy tissues. Symptoms of irAEs can include inflammation, rashes, fatigue, and fever,
which may cause discomfort for patients. In more severe cases, these side effects can
become life-threatening, requiring immediate medical intervention.

Another challenge is that chemotherapy can weaken the immune system, making pa-
tients more susceptible to these immune-related side effects. While chemotherapy targets
cancer cells, it also reduces the body’s ability to fight off infections and inflammation,
complicating the response to immunotherapy and increasing the risk of irAEs.

Thus, although the combination of chemotherapy and immunotherapy can improve
cancer treatment, it also requires careful monitoring to manage the potential risks.
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1.3 Control Strategies in Cancer Treatment
Control strategies have emerged as crucial tools in modern cancer treatment, allowing for
the optimization of therapeutic regimens while managing the complexities associated with
cancer therapy. The dynamic nature of cancer, marked by tumor growth, immune system
responses, and drug interactions, makes it difficult to deliver successful treatments. Control
theory, particularly nonlinear control methods, offers a robust framework for managing
these complexities and improving patient outcomes.

One of the primary applications of control strategies in cancer treatment is the op-
timization of drug delivery. Drugs must be carefully administered to ensure they reach
therapeutic levels that effectively target tumor cells while minimizing toxicity. Control
strategies enable the adjustment of drug dosages in real-time, taking into account the tu-
mor’s growth, immune system activity, and the pharmacokinetics of the drugs involved.
This dynamic adjustment facilitates the delivery of drugs at optimal concentrations, maxi-
mizing their tumor-killing effects while minimizing harmful side effects.

The control systems are categorized into linear and nonlinear types. Linear control
assumes proportional relationships between inputs (e.g., drug dosage) and outputs (e.g.,
therapeutic effects) while nonlinear control techniques are well-suited for cancer treatment
because of the unpredictable and nonlinear characteristics of biological systems. Methods
such as sliding mode control (SMC) and various adaptive methods have been successfully
implemented to manage drug delivery systems. These techniques enable quick adjustments
and provide stability against uncertainties in the system, such as changes in tumor behavior
or patient-specific factors. By incorporating these advanced control methods, cancer treat-
ments can be more accurately tailored to individual patients, leading to better therapeutic
results.

1.4 Problem Statement
The challenge of minimizing drug dosage and treatment time in mixed chemo-immunotherapy
remains a critical concern, as excessive dosages can lead to toxicity and severe side effects.
This study utilizes advanced nonlinear controllers such as Terminal Sliding Mode Con-
trol (TSMC), Super Twisting Sliding Mode Control (STSMC), Adaptive Terminal Sliding
Mode Control (ATSMC), and Adaptive Super Twisting Sliding Mode Control (ASTSMC)
to optimize drug delivery and achieve rapid tumor regression while maintaining safe toxic-
ity limits. The gain parameters of these controllers are optimized using the Improved Grey
Wolf Optimization (IGWO) algorithm to enhance performance. The proposed approach is
validated through Lyapunov-based stability analysis and MATLAB/Simulink simulations,
ensuring its effectiveness in improving cancer treatment.

1.5 Contribution
The robust nonlinear controllers, which are adaptive variants of Sliding Mode Control
(SMC), are utilized for efficient drug delivery in Mixed Chemo-Immunotherapy. To the
best of my knowledge, these adaptive controllers have not been applied to this particular
problem in the existing literature.
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1.6 Research Objectives:
1. Study and analyze models from the literature

2. Implement control techniques and reproduce simulation results using MATLAB/Simulink

3. Evaluate system stability using Lyapunov Stability Theory

4. Apply Improved Grey Wolf Optimization (IGWO) to optimize control parameters

5. Perform Hardware-in-the-Loop (HIL) simulation for real-time validation

6. Compare the results with each other

1.7 Outline
The forthcoming chapters outline the study’s framework, methods, findings, and future di-
rections in a sequential arrangement. Chapter 2 presents a literature review on the develop-
ment and application of mathematical models in cancer treatment, focusing on chemother-
apy, immunotherapy, and their combined strategies. Chapter 3 details the implementa-
tion of advanced control strategies, including TSMC, STSMC, ATSMC, and ASTSMC,
to control tumor growth while minimizing drug usage and treatment duration in chemo-
immunotherapy. Chapter 4 discusses simulations and results. Chapter 5 delves into future
directions and provides the conclusion.
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Chapter 2

Literature Review

This chapter outlines the development of cancer treatments, focusing on the combination of
chemotherapy and immunotherapy. Initially introduced in earlier decades, these treatments
have progressed over time, reflecting advancements in their application. A review of key
studies offers an overview of their use and identifies areas that require further investigation.
This chapter also establishes a foundation for the subsequent chapters, providing a basis
for the experiments and findings that examine the role of combined chemotherapy and
immunotherapy in cancer care.

2.1 Mathematical Models in Cancer Treatment
Mathematical modeling plays a vital role in the analysis of cancer and its treatment. By
creating mathematical representations of tumor growth and progression, researchers can
simulate various biological processes that occur within the body. These models often use
differential equations to describe how tumors evolve over time in response to internal and
external factors. Through simulations, researchers can predict tumor behavior under differ-
ent conditions, which aids in evaluating potential treatment strategies. The development of
these models allows for the identification of key parameters that influence tumor behavior,
enabling researchers to assess how changes in treatment protocols may affect outcomes.
Additionally, mathematical models can incorporate real-time patient data, allowing for
adjustments based on individual responses and addressing the variability seen in cancer
cases. This capability supports the optimization of drug delivery systems by facilitating
the examination of different dosing schedules and combinations of therapies. Further-
more, mathematical modeling contributes to a deeper understanding of cancer biology by
clarifying the mechanisms underlying tumor growth and response to treatment. Overall,
mathematical modeling serves as an essential tool for advancing research in cancer treat-
ment and refining therapeutic methodologies.

2.1.1 Chemotherapy
Chemotherapy represents a class of cancer treatments that use drugs designed to stop or
slow cancer cell growth. The treatment introduces chemical agents into the bloodstream to
attack cells that divide rapidly - a key characteristic of cancer. However, this mechanism
also affects normal fast-dividing cells throughout the body, leading to unintended effects
on healthy tissues. Doctors must carefully plan drug amounts and timing to strike a balance
between fighting cancer and protecting the patient’s overall health. Mathematical models
of chemotherapy have evolved substantially since the 1970s, progressing from basic tumor
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growth equations to sophisticated control systems.
In 1973, Swan and Vincent [1] created one of the first mathematical frameworks incor-

porating Gompertzian growth equations and Monte Carlo simulations to study tumor ki-
netics during chemotherapy. This early work modeled cell cycle behavior and drug effects,
though it assumed uniform tumor populations and simplified drug interactions. By 1994,
advances in mathematical modeling [13] addressed optimal drug scheduling through direct
search optimization techniques. The models solved constrained optimal control problems
using differential equations to represent tumor growth and drug dynamics. This method re-
duced tumor size to 25,700 cells while maintaining drug concentrations within safe limits,
achieving a 47% improvement over previous studies. The resulting drug schedule showed
two peak periods of maximum drug concentration, demonstrating how mathematical op-
timization could guide treatment timing. We introduce adaptive and higher-order sliding
mode controllers for dynamic, real-time control of drug delivery.

Recent studies [22] have introduced more complex modeling approaches with a four-
state ordinary differential equation model capturing interactions between tumor cells, nor-
mal cells, immune cells, and chemotherapy drugs. This model incorporated logistic growth
patterns and cell interaction parameters, allowing for more realistic representations of treat-
ment dynamics. Our model includes additional variables, offering a more comprehensive
representation of multidimensional treatment strategies.

Control theory applications in chemotherapy models have expanded to include vari-
ous strategies. Research in [32] applied Sliding Mode Control (SMC) and its variants like
Terminal Sliding Mode Control (TSMC) to brain tumor treatment models. These con-
trollers aim to minimize tumor cells while preserving healthy tissue and reducing drug
usage. Their research demonstrated that TSMC achieved rapid tumor reduction with min-
imal drug requirements, validated through Lyapunov stability analysis. Our work extends
beyond TSMC by introducing ATSMC and ASTSMC for greater resilience and adaptive
control.

Additional studies [31] examined Lyapunov redesign controllers and Terminal Slid-
ing Mode Control, finding that TSMC eliminated control chattering while requiring less
drug input compared to other methods. Further research [30] evaluated Backstepping and
Synergetic controllers, with Backstepping achieving faster tumor reduction and maintain-
ing zero steady-state error in the system response. We validate stability using Lyapunov
theory and incorporate hardware-in-the-loop testing for real-time applicability, along with
adaptive mechanisms to enhance control performance.

The progression of mathematical models in chemotherapy showcases increasing com-
putational capabilities and biological understanding. Modern models consider multiple
cell populations, drug pharmacokinetics, and system uncertainties, enabling more precise
treatment planning and evaluation.

2.1.2 Immunotherapy
Immunotherapy works by activating and strengthening the body’s natural defense mech-
anisms to identify and destroy cancer cells. Mathematical models help analyze the in-
tricate interactions between immune system components and tumors, guiding treatment
decisions and timing. In pioneering research [11], a system of ordinary differential equa-
tions (ODEs) modeled the dynamic relationships between tumor cells, immune effector
cells, and interleukin-2 (IL-2). By incorporating Michaelis-Menten kinetics, the model
represented saturation effects in immune responses and cytokine production. The research

9



showed how antigenicity - the tumor’s ability to be recognized by the immune system -
and immune response strength determined treatment outcomes. While this model added
to understanding of tumor dormancy and recurrence through stable limit cycles, it did not
account for spatial variations in tumor tissue or the roles of other immune components
like regulatory T cells and macrophages. Vladimir [12] described cytotoxic T lymphocyte
responses to immunogenic tumors through nonlinear ODEs. This research modeled the
creation of effector cell-tumor cell conjugates and tracked how effector cells became inac-
tive over time. The model matched experimental data from BCL1 lymphoma in chimeric
mice, demonstrating cyclic patterns of tumor growth and reduction. The equations helped
identify transitions between states of dormancy and uncontrolled tumor growth through
bifurcation theory. However, the model relies on estimated parameters, assumes homo-
geneous effector populations, overlooks tumor heterogeneity, and lacks control strategies
like nonlinear controllers.

Later, validated models [21] combined differential equations with experimental data to
create a comprehensive picture of N and CD8+T cells behavior. The equations represented
key biological processes: tumor cell growth, immune-driven destruction, and regulation
through cytokine production. While mathematically rigorous, these models noted limita-
tions in excluding factors like regulatory T cells and the tumor microenvironment. The
complex equations, though accurate, posed challenges for real-time clinical applications.

Advanced modeling [20] built a three-equation system to represent interactions be-
tween tumor cells, natural killer (N) cells, and CD8+T cells. This model introduced new
mathematical terms for immune-mediated killing, with N cells following traditional prod-
uct forms while CD8+T cells used ratio-dependent functions that better matched experi-
mental observations. The equations included baseline NK cell production, tumor-driven
recruitment, and cell inactivation after prolonged tumor contact. The model also showed
how ligand-transduced tumor cells could trigger stronger immune responses. The model
overlooks spatial heterogeneities, relies on data-driven parameters with limited generaliz-
ability.

Further Babbs [3] created a mathematical framework based on predator-prey dynamics,
where immune cells acted as predators and tumor cells as prey. Two differential equations
formed the core of this model: one describing tumor cell growth affected by intrinsic
growth and immune-mediated killing, and another representing immune cell dynamics
influenced by tumor-immune interactions and immune cell decay. This work revealed os-
cillation patterns in cell populations and determined specific thresholds that separated suc-
cessful treatments from failures. The model stressed the necessity of maintaining consis-
tent immune stimulation over extended periods, as early stoppage of treatment could lead
to poor outcomes. However, the simplification to a predator-prey system, while making
the model more accessible, left out critical factors like tumor heterogeneity and immune
resistance mechanisms.

Research focusing on dendritic cell vaccines [7] developed ODEs to track tumor-
specific CD4 T helper cells, CD8 cytotoxic T cells, cancer cells with tumor-associated
antigens, mature dendritic cells, and IL-2 cytokines. Through optimal control theory, the
model calculated ideal injection schedules. The mathematics suggested an initial high-
dose injection to rapidly decrease tumor size, followed by smaller periodic doses for main-
tenance. This hybrid control strategy balanced treatment effectiveness with patient safety
considerations.
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2.1.3 Mixed Chemo-Immunotherapy
Mixed chemo-immunotherapy combines chemotherapy and immunotherapy to fight cancer
through complementary mechanisms, and we have applied this in our studies. Chemother-
apy targets cancer cells by exploiting their high growth rate, while immunotherapy strength-
ens the body’s natural defenses to identify and remove these cells. Mathematical models
and clinical trials have focused on refining this combination to maximize its potential.

Mixed chemo-immunotherapy has drawn significant attention in therapeutic circles.
For example, [28] unveiled synergistic patterns between chemotherapy and immunother-
apy. While this work highlighted biological interplay, the absence of mathematical rep-
resentations to quantify these interactions, reduced its utility for predicting outcomes or
optimizing protocols.

Additional progress was made in feedback design and model updating, which expanded
on De Pillis’ model using nonlinear predictive control (NMPC) to dynamically modify
therapy schedules [8]. While this effort handled certain uncertainties, it remained con-
strained by its reliance on simplified models and simulations. Adaptive inversion models
used constrained optimization techniques to coordinate chemotherapy and immunother-
apy, achieving tumor reduction and immune restoration [29]. However, the reliance on
static parameter assumptions limited their relevance to real-world scenarios. Pulsed ther-
apy models [24] considered periodic treatment regimens, showing that combined regimens
outperformed monotherapies. Nevertheless, their limited flexibility in responding to real-
time conditions and omission of cytokine interactions reduced their clinical applicability.

Multiple model predictive control [18] used an adaptive method to increase drug de-
livery to reduce tumor volume and support immune function. However, difficulties arose
due to its emphasis on system homogeneity and precise parameter values, which limit its
generalizability. Immunogenic chemotherapy [26] centered on medium-dose intermittent
chemotherapy (MEDIC) to balance tumor suppression and immune activation, but did not
account for mechanisms of real-time feedback or adaptability to individual patient needs.
Developments in drug delivery systems [27] looked at technologies such as nanoparticles
and hydrogels to optimize targeted delivery and reduce systemic toxicity. However, the
absence of quantitative modeling hindered efforts to predict and adjust therapeutic results.

Lung cancer treatment combinations [10] pinpointed the interplay between conven-
tional cytotoxic therapies and immune checkpoint blockers for non-small cell lung cancer.
While this work decoded biological mechanisms, the lack of mathematical representations
hampered broader implementation. A seven-state ODE architecture [9] yielded strategies
to balance tumor reduction and immune system preservation. However, the rigid control
design and fixed treatment schedules curtailed its adaptation to physiological fluctuations.
A comprehensive nine-state immune-tumor model showed how immune regulators and cy-
tokines work together, revealing complicated biological interactions. Yet, parameter esti-
mation uncertainties and limited experimental validation created barriers to adoption. The
merged immunotherapy-chemotherapy strategy [25] used Pontryagin’s Maximum Prin-
ciple to orchestrate treatment timing. Its homogeneous assumptions and computational
nature, though, diminished its practical value in personalized medicine protocols.

2.1.4 Nonlinear Tumor Model
The six-state mathematical model established by de Pillis [19] served as the basis for many
research efforts on mixed chemo-immunotherapy. The model encompassed tumor growth,
immune responses involving natural killer cells, cytotoxic T lymphocytes, and circulating
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lymphocytes, along with the effects of chemotherapy and immunotherapy agents. Ordinary
differential equations were used to represent the nonlinear interactions between tumor cells
and immune cells, as well as the changes brought about by treatment interventions. Our
research built on this important model by using its parameters (see Table 2.1) and adding
robust nonlinear controllers, such as Terminal Sliding Mode Control, Super Twisting Slid-
ing Mode Control, Adaptive Terminal Sliding Mode Control, and Adaptive Super Twisting
Sliding Mode Control, to achieve better treatment results.

State Variables:

The mathematical structure meticulously monitors:

• Tumor Cell Population (T): Depicts the cancer cell count, which multiplies through
logistic growth and decreases through immune system attacks and therapeutic inter-
ventions.

• Natural Killer Cells (N): These innate immune system elements exist naturally in
the body, sustaining their defensive role even without tumor detection. N cells serve
as the first line of defense against cancer cells.

• Cytotoxic T Lymphocytes (L): Known as CD8+T cells, these specialized immune
cells execute targeted responses against tumor cells. Their population shifts through
various pathways such as tumor interaction, N cell modulation, and therapeutic ac-
tivation.

• Circulating Lymphocytes (C): These embody the broader immune system ele-
ments, sustaining a baseline defense mechanism and bolstering the overall immune
response.

• Chemotherapy Concentration (M): Measures the presence of cytotoxic agents in
the system, which attack rapidly dividing cells such as tumor cells.

• Immunotherapy Concentration (I): Monitors IL-2 levels, this variable character-
izes the immunotherapeutic agent that amplifies the body’s natural immune response.
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Mathematical Model:

The coupled differential equations describe the relationships between these state variables:

dT
dt

= aT (1−bT )− cNT −DT − kT (1− e−M)T, (2.1)

dN
dt

= eC− f N +g
T 2

h+T 2 N − pNT − kN(1− e−M)N, (2.2)

dL
dt

=−mL+ j
D2T 2

k+D2T 2 L−qLT +(r1N + r2C)T

−uNL2 − kL(1− e−M)L+
pILI

gI + I
+ vL(t), (2.3)

dC
dt

= α −βC− kC(1− e−M)C, (2.4)

dM
dt

=−γM+ vM(t), (2.5)

dI
dt

=−µII + vI(t), (2.6)

D = d

( L
T

)l

s+
( L

T

)l . (2.7)

In the tumor equation 2.1 (dT
dt ), logistic growth (aT (1−bT )) shows how the tumor grows

naturally, while the terms −cNT and −DT show how N cells and CD8+T cells destroy
tumor cells. The effect of chemotherapy is shown by −KT (1− e−M)T . The N cell equa-
tion 2.2 (dN

dt ) includes how N cells are produced from circulating lymphocytes (eC), their
natural death rate (− f N), how tumors cause them to grow (g T 2

h+T 2 N), and how they be-
come less effective after interacting with tumors (−pNT ). Chemotherapy affects NK cells
through −KN(1− e−M)N. The CD8+T cells equation 2.3 (dL

dt ) includes several factors:
natural death (−mL), how tumors recruit more CD8+ T cells ( j D2T 2

k+D2T 2 L), how tumor in-
teractions make them exhausted (−qLT ), how N and lymphocyte interactions help re-
cruit them (r1NT and r2CT ), how N cells regulate them (−uNL2), chemotherapy effects
(−KL(1− e−M)L), IL-2 stimulation ( pILI

gI+I ), and external TIL addition (vL(t)). Circulating
lymphocytes equation 2.4 (dC

dt ) maintain balance by constant production (α), natural death
(βC), and chemotherapy effects (−KC(1− e−M)C). Chemotherapy equation 2.5 (dM

dt ) and
immunotherapy equation 2.6 (dI

dt ) are eliminated through first-order kinetics (−γM and
−µII) with external inputs (vM(t) and vI(t)). Equation 2.7, the fractional kill term D
measures how well CD8+T cells work against tumor cells, showing how immune-tumor
interactions change over time.

The system is governed by three inputs that are essential for optimizing treatment out-
comes. These inputs are summarized as follows:

vL(t): External source of TIL (tumor infiltration lymphocytes)
vM(t): External administration of chemotherapy drug
vI(t): External administration of immunotherapy drug (IL-2)
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Figure 2.1: The schematic diagram depicts the interactions and effects of natural killer
cells, CD8+ T cells, circulating lymphocytes, chemotherapy, and immunotherapy on tumor
cells.

Rewriting equation (2.1) - (2.7) by replacing T (t), N(t), L(t), C(t), M(t) and I(t) with
x1, x2, x3, x4, x5 and x6 respectively, we get:

ẋ1 = ax1(1−bx1)− cx2x1 −Dx1 −KT (1− e−x5)x1, (2.8)

ẋ2 = ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 −KN(1− e−x5)x2, (2.9)

ẋ3 =−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 −KL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t),

(2.10)

ẋ4 = α −βx4 −KC(1− e−x5)x4, (2.11)
ẋ5 =−γx5 + vM(t), (2.12)
ẋ6 =−µIx6 + vI(t), (2.13)

D = d

(
x3
x1

)l

s+
(

x3
x1

)l . (2.14)
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Table 2.1: HUMAN PARAMETER VALUES (PATIENT 9)

No. Symbol Description Value Units
1. a The growth rate of Tumor. 4.31×10−1 day−1

2. b 1/b is the tumor carrying capacity. 1.02×10−9 cells−1

3. c The fraction of tumor cells killed by NK cells. 6.41×10−11 cells−1 day−1

4. d The fraction of tumor cell killed by CD8+T cells. 2.34 day−1

5. e
The fraction of circulating lymphocytes becoming

NK cells. 2.08×10−7 day−1

6. l
Exponent of tumor cell in fraction which are killed by

CD8+T cells.
2.09 None

7. f The death rate of NK cells. 4.12×10−2 day−1

8. g Maximum rate at which tumor cells recruit NK. 1.25×10−2 day−1

9. h
The steepness coefficient of NK cells recruitment

curve. 2.02×107 Cells2

10. j Maximum recruitment rate of CD8+T cells. 2.49×10−2 day−1

11. k
Steepness coefficient of the CD8+T cell recruitment

curve. 3.66×107 Cell2

12. m The death rate of CD8+T cells. 2.04×10−1 day−1

13. q Inactivation rate of CD8+T cells by tumor cells. 1.42×10−6 cells−1 day−1

14. p Inactivation rate of NK cells by Tumor cells. 3.42×10−6 cells−1 day−1

15. s
Steepness coefficient of the Tumor and circulating

lymphocyte interaction. 8.39×10−2 None

16. r1
CD8+T cells production rate as a result of tumor cells

killing by NK cells. 1.10×10−7 cells−1 day−1

17. r2
CD8+T cells production rate as a result of tumor cells

killing by circulating lymphocytes. 6.50×10−11 cells−1 day−1

18. u NK cells regulatory function on CD8+T-cells. 3×10−10 cells−2day−1

19. kT The fraction of tumor cells killed by chemotherapy. 9×10−1 day−1

20 kN The fraction of immune cells killed by chemotherapy 6×10−1 day−1

21 kL The fraction of immune cells killed by chemotherapy. 6×10−1 day−1

22 kC The fraction of immune cells killed by chemotherapy. 6×10−1 day−1

23 α Circulating lymphocytes source 7×108 cells−1day−1

24 β Natural death of circulating lymphocytes. 1×10−2 day−1

25 γ Chemotherapy drug decay rate. 9×10−1 day−1

26 pI IL-2 recruitment rate of maximum CD8+T-cells. 1×10−1 day−1

27 gI
Steepness of recruitment curve of CD8+T-cells by

IL-2. 2×107 Cell2

28 µII The decay rate of IL-2 drug. 1×100 day−1
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Chapter 3

Controller Utilization And Methodology

This chapter discusses the use of advanced nonlinear robust control strategies, specifically
TSMC, STSMC, ATSMC, and ASTSMC, to optimize drug dosages and treatment dura-
tions in mixed chemo-immunotherapy. The aim is to reduce toxicity and side effects while
managing tumor growth and prioritizing patient health. Control gains are optimized using
an Improved Grey Wolf Optimization algorithm, with the mean squre error (MSE) as the
objective function. A mathematical model is developed to combine these controllers for
tumor reduction with minimal drug use and treatment time. The chapter details the designs
of the controllers and reviews the various sliding mode control techniques that are applied.
To ensure finite-time convergence of the tracking errors to their reference values, the con-
trollers use sliding surfaces that define the desired system behavior. Since the immune
system is regulated through external dosages in this model, the role of circulating lym-
phocytes (C) is considered negligible and is therefore not explicitly incorporated into the
sliding surface formulation. This approach enables rapid tumor regression while minimiz-
ing side effects and maintaining patient stability, without adding unnecessary complexity
into the control framework.

3.1 Robust Controller Design
In this section, robust control techniques TSMC and STSMC are discussed.

3.1.1 Terminal Sliding Mode Controller Design
The Terminal Sliding Mode Controller (TSMC) is a robust technique designed to make
sure finite-time convergence of the system. By incorporating a nonlinear sliding surface,
TSMC increases the system’s ability to cope with uncertainties and disturbances, resulting
in rapid error elimination and precise tracking performance. To enable the states to track
their respective reference values, the tracking errors are defined as:

e1 = x1 − x1re f (3.1)
e2 = x2 − x2re f (3.2)
e3 = x3 − x3re f (3.3)
e5 = x5 − x5re f (3.4)
e6 = x6 − x6re f (3.5)

Where:
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• e1: error between tumor cell population x1 and its desired reference value x1re f .

• e2: error between natural killer cell population x2 and its desired reference value
x2re f .

• e3: error between CD8+ T cell population x3 and its desired reference value x3re f .

• e5: error between chemotherapy dose x5 and its desired reference value x5re f .

• e6: error between immunotherapy dose x6 and its desired reference value x6re f .

Additionally, the error e4 = x4 − x4re f represents the difference between the circulating
lymphocyte population x4 and its desired reference value x4re f . While e4 is not directly
used in the sliding surface design, it is defined for completeness and reflects the behavior
of x4 within the system dynamics.
By taking the time derivative of the errors given in equations (3.1)-(3.5), we get

ė1 = ẋ1 − ẋ1re f (3.6)
ė2 = ẋ2 − ẋ2re f (3.7)
ė3 = ẋ3 − ẋ3re f (3.8)
ė5 = ẋ5 − ẋ5re f (3.9)
ė6 = ẋ6 − ẋ6re f (3.10)

We consider the three sliding surfaces as follows:

S1 = c1e1 + c2e2 + c3e3 + c7

(∫
e1 dt

) p1
q1
+ c8

(∫
e2 dt

) p2
q2

+ c9

(∫
e3 dt

) p3
q3

(3.11)

S2 = c2e2 + c5e5 + c8

(∫
e2 dt

) p2
q2
+ c11

(∫
e5 dt

) p5
q5

(3.12)

S3 = c2e2 + c6e6 + c8

(∫
e2 dt

) p2
q2
+ c12

(∫
e6 dt

) p6
q6

(3.13)

Where:

• c1, c2, c3, c5, c6, c7, c8, c9, c11, c12 are design coefficients, and all are positive real
numbers.

• p1, p2, p3, p5, p6 and q1, q2, q3, q5, q6 are positive odd integers such that 1 < pi
qi
< 2

for i = 1,2,3,5,6.
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Taking time derivative of the sliding surfaces given in equations (3.11)-(3.13), we get

Ṡ1 = c1ė1 + c2ė2 + c3ė3 + c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+

c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.14)

Ṡ2 = c2ė2 + c5ė5 + c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.15)

Ṡ3 = c2ė2 + c6ė6 + c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.16)

Substituting the values of ė1, ė2, ė3, ė5 and ė6 from equations (3.6)-(3.10) into equa-
tions (3.14)-(3.16), we get

Ṡ1 = c1(ẋ1 − ẋ1re f )+ c2(ẋ2 − ẋ2re f )+ c3(ẋ3 − ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.17)

Ṡ2 = c2(ẋ2 − ẋ2re f )+ c5(ẋ5 − ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.18)

Ṡ3 = c2(ẋ2 − ẋ2re f )+ c6(ẋ6 − ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.19)

By substituting the values of ẋ1, ẋ2, ẋ3, ẋ5, and ẋ6 from equations (2.8)-(2.13), into equa-
tions (3.17)-(3.19), we get
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Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.20)

Ṡ2 = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.21)

Ṡ3 = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.22)

To analyze the stability of the system, a Lyapunov candidate function is designed as:

V =
1
2

S2
1 +

1
2

S2
2 +

1
2

S2
3 (3.23)

Taking time derivative of equation (3.23), we get

V̇ = S1Ṡ1 + S2Ṡ2 + S3Ṡ3 (3.24)

Substitute the values of Ṡ1, Ṡ2, and Ṡ3 from equations (3.20) - (3.22), in equation 3.24, we
get:
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V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+ c7e1

p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1)

+ S2

(
c2(ex4

− f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+ c5(−γx5

+ vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1)

+

S3

(
c2(ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1)

(3.25)

By reaching law, we define the signum candid functions as:

Ṡ1 =−k1|S1|αsign(S1) (3.26)

Ṡ2 =−k2|S2|αsign(S2) (3.27)

Ṡ3 =−k3|S3|αsign(S3) (3.28)

Where

sign(Sn) =


1, if Sn > 0
0, if Sn = 0
−1, if Sn < 0

(3.29)

Where n= 1, 2, 3 and k1, k2, k3 and α are positive number, with α having a value between
0 and 1.

From equations (3.20)-(3.22) and equations (3.26)-(3.28), we get
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−k1|S1|αsign(S1) = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.30)

−k2|S2|αsign(S2) = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.31)

−k3|S3|αsign(S3) = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.32)

By solving and simplifying equations (3.30)-(3.32), we get our desired control inputs.
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vL (t) =
1
c3

[
− k1|S1|αsign(S1)−

(
c1
(
ax1 (1−bx1)− cx2x1 −Dx1−

kT
(
1− e−x5

)
x1
)
+ c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1−

kN
(
1− e−x5

)
x2
))

+ c1ẋ1re f + c2ẋ2re f + c3ẋ3re f

−
(

c7e1
p1

q1

(∫
e1dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3dt

) p3
q3
−1)]

+mx3 − j
D2x2

1
k+D2x2

1
x3

+qx3x1 − (r1x2 + r2x4)x1 +ux2x2
3 +KL

(
1− e−x5

)
x3

− pIx3x6

gI + x6
(3.33)

vM (t) =
1
c5

[
− k2|S2|αsign(S2)− c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1−

kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c5ẋ5re f −

(
c8e2

p2

q2

(∫
e2dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5dt

) p5
q5
−1)]

+ γx5 (3.34)

vI (t) =
1
c6

[
− k3|S3|αsign(S3)− c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1−

kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c6ẋ6re f −

(
c8e2

p2

q2

(∫
e2dt

) p2
q2
−1

+ c12e6
p6

q6

(∫
e6dt

) p6
q6
−1)]

+µIx6 (3.35)

For stability analysis, substitute the values of Ṡ1, Ṡ2, and Ṡ3 from equations (3.26)-(3.28)
in equation (3.24), we get

V̇ = S1
(
− k1|S1|αsign(S1)

)
+S2

(
− k2|S2|αsign(S2)

)
+S3

(
− k3|S3|αsign(S3)

)

V̇ = −
3

∑
n=1

Sn(kn|Sn|αsign(Sn)) (3.36)

From equation (3.36), Lyapunov analysis shows that V̇ is negative definite, which im-
plies that the system is asymptotically stable.
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3.1.2 Super Twisting Sliding Mode Controller Design
Super-twisting sliding mode control (STSMC) is an another sophisticated robust control
technique for controlling systems more effectively. A key advantage of STSMC lies in
its ability to handle system uncertainties, external disturbances, and nonlinear behavior. It
reduces the chattering phenomenon while ensuring finite-time convergence of the system.
To ensure accurate tracking of states to their respective reference values, errors are defined
as

e1 = x1 − x1re f (3.37)
e2 = x2 − x2re f (3.38)
e3 = x3 − x3re f (3.39)
e5 = x5 − x5re f (3.40)
e6 = x6 − x6re f (3.41)

Where:

• e1: error between tumor cell population x1 and its desired reference value x1re f .

• e2: error between natural killer cell population x2 and its desired reference value
x2re f .

• e3: error between CD8+ T cell population x3 and its desired reference value x3re f .

• e5: error between chemotherapy dose x5 and its desired reference value x5re f .

• e6: error between immunotherapy dose x6 and its desired reference value x6re f .

By taking the time derivative of the errors given in equations (3.37)-(3.41) , we get

ė1 = ẋ1 − ẋ1re f (3.42)
ė2 = ẋ2 − ẋ2re f (3.43)
ė3 = ẋ3 − ẋ3re f (3.44)
ė5 = ẋ5 − ẋ5re f (3.45)
ė6 = ẋ6 − ẋ6re f (3.46)

Additionally, the error e4 = x4 − x4re f represents the difference between the circulating
lymphocyte population x4 and its desired reference value x4re f . While e4 is not directly
used in the sliding surface design, it is defined for completeness and reflects the behavior
of x4 within the system dynamics. We consider the three sliding surfaces as follows:

S1 = c1e1 + c2e2 + c3e3 (3.47)
S2 = c2e2 + c5e5 (3.48)
S3 = c2e2 + c6e6 (3.49)

Where c1, c2, c3, c5 and c6 are real positive numbers.
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Taking time derivative of equations (3.47)-(3.49) , we get

Ṡ1 = c1ė1 + c2ė2 + c3ė3 (3.50)

Ṡ2 = c2ė2 + c5ė5 (3.51)

Ṡ3 = c2ė2 + c6ė6 (3.52)

Substituting the values of ė1, ė2, ė3, ė5, ė6 from equations (3.42)-(3.46) in equations (3.50)-
(3.52) , we get

Ṡ1 = c1(ẋ1 − ẋ1re f )+ c2(ẋ2 − ẋ2re f )+ c3(ẋ3 − ẋ3re f ) (3.53)

Ṡ2 = c2(ẋ2 − ẋ2re f )+ c5(ẋ5 − ẋ5re f ) (3.54)

Ṡ3 = c2(ẋ2 − ẋ2re f )+ c6(ẋ6 − ẋ6re f ) (3.55)

Put the values of ẋ1, ẋ2, ẋ3, ẋ5, ẋ6 from equations (2.8)-(2.14) into equations (3.53)-(3.55) ,
we get

Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f ) (3.56)

Ṡ2 = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f ) (3.57)

Ṡ3 = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f ) (3.58)

To analyze the stability of the system, a Lyapunov candidate function is designed as:

V =
1
2

S2
1 +

1
2

S2
2 +

1
2

S2
3 (3.59)

Taking time derivative of equation (3.59), we get

V̇ = S1Ṡ1 + S2Ṡ2 + S3Ṡ3 (3.60)
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Substitute the values of Ṡ1, Ṡ2, and Ṡ3 from equations (3.56)-(3.58) , in equation (3.60) ,
we get

V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )

)
+ S2

(
c2(ex4

− f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+ c5(−γx5

+ vM(t)− ẋ5re f

)
+ S3

(
c2(ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1−

kN(1− e−x5)x2 − ẋ2re f )+ c6(−µIx6 + vI(t)− ẋ6re f )

)
(3.61)

Put Ṡ1, Ṡ2, Ṡ3 = 0 in equations (3.56)-(3.58) , we get

0 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f ) (3.62)

0 = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f ) (3.63)

0 = c2(ex4 − f x2 +g
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f ) (3.64)

By solving and simplifying equations (3.62)-(3.64) , we get our equivalent control signals.
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u1eq =
1
c3

[
−
(

c1
(
ax1 (1−bx1)− cx2x1 −Dx1 − kT

(
1− e−x5

)
x1
)

+ c2
(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2
))

+ c1ẋ1re f + c2ẋ2re f + c3ẋ3re f

]
+mx3 − j

D2x2
1

k+D2x1
x3+

qx3x1 − (r1x2 + r2x4)x1 +ux2x2
3 +KL

(
1− e−x5

)
x3 −

pIx3x6

gI + x6
. (3.65)

u2eq =
1
c5

[
− c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c5ẋ5re f

]
+ γx5 (3.66)

u3eq =
1
c6

[
− c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c6ẋ6re f

]
+µIx6 (3.67)

For STSMC, the switching control is defined as:

uisw =−ki|Si|αsign(Si)− kii

∫
sign(Si)dt (3.68)

Where i= 1, 2, 3 and ki, kii, and α are positive constants, with α having a value between 0
and 1.

The final control law for STSMC is given as:

uiST SMC = uieq +uisw (3.69)

Where i=1, 2, 3.

By putting the values of ueq and usw from equations (3.65)-(3.68) in equation (3.69), we
get
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u1ST SMC =
1
c3

[
−
(

c1
(
ax1 (1−bx1)− cx2x1 −Dx1 − kT

(
1− e−x5

)
x1
)

+ c2
(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2
))

+ c1ẋ1re f + c2ẋ2re f + c3ẋ3re f

]
+mx3 − j

D2x2
1

k+D2x1
x3

+qx3x1 − (r1x2 + r2x4)x1 +ux2x2
3 +KL

(
1− e−x5

)
x3 −

pIx3x6

gI + x6

− k1|S1|0.2sign(S1)− k11

∫
sign(S1)dt (3.70)

u2ST SMC =
1
c5

[
− c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c5ẋ5re f

]
+ γx5 − k2|S2|0.2sign(S2)−

k22

∫
sign(S2)dt (3.71)

u3ST SMC =
1
c6

[
− c2

(
ex4 − f x2 +g

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c6ẋ6re f

]
+µIx6 − k3|S3|0.2sign(S3)−

k33

∫
sign(S3)dt (3.72)

Using equations (3.70)-(3.72) and equation (3.61) , we get

V̇ =−
3

∑
n=1

(
Sn

(
kn sign(Sn)+ knn

∫
sign(Sn) dt

))
(3.73)

As V̇ is negative definite in equation (3.73), the system is stable and ensures finite-time
convergence of all errors to zero.

3.2 Adaptive Controller Design
In this section, we design the ATSMC and ASTSMC using adaptive laws to get more
accurate results.

3.2.1 Adaptive Terminal Sliding Mode Controller Design
To ensure the states track their respective reference values, the tracking errors are defined
in equations (3.1)-(3.5) and the sliding surfaces are defined in equations (3.11)-(3.13).
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We adapt the parameter g, as it varies between individuals and can be treated as an
uncertain value. So let

δ = g (3.74)

For parameter estimation, we define the estimation error δ̃ as:

δ̃ = δ̂ −δ (3.75)

Where δ̂ is the estimated value of the parameter δ .

Putting g = δ in equations (3.20)-(3.22), we get

Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +δ
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.76)

Ṡ2 = c2(ex4 − f x2 +δ
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.77)

Ṡ3 = c2(ex4 − f x2 +δ
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.78)

Using equations (3.75), the equations (3.76)-(3.78) becomes
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Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +(δ̂ − δ̃ )
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.79)

Ṡ2 = c2(ex4 − f x2 +(δ̂ − δ̃ )
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.80)

Ṡ3 = c2(ex4 − f x2 +(δ̂ − δ̃ )
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.81)
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By separating δ̃ from equations (3.79)-(3.81), we get

Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

− δ̃c2
x2

1
h+ x2

1
x2 (3.82)

Ṡ2 = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

− δ̃c2
x2

1
h+ x2

1
x2 (3.83)

Ṡ3 = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

− δ̃c2
x2

1
h+ x2

1
x2 (3.84)

For stability analysis, we consider the following positive definite Lyapunov candidate func-
tion:

V =
1
2

S2
1 +

1
2

S2
2 +

1
2

S2
3 +

1
2η

δ̃
2 (3.85)

where η is a is a positive real number.
By computing the time derivative of V from equation (3.85),we get

V̇ = S1Ṡ1 +S2Ṡ2 +S3Ṡ3 +
1
η

δ̃
˙̃
δ (3.86)

Now substitute the expressions of Ṡ1, Ṡ2, Ṡ3 from equations (3.82)-(3.84) in equation (3.86),
we get
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V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+ c7e1

p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

− δ̃c2
x2

1
h+ x2

1
x2

)
+S2

(
c2(ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

− δ̃c2
x2

1
h+ x2

1
x2

)
+S3

(
c2(ex4 − f x2

+ δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

− δ̃c2
x2

1
h+ x2

1
x2

)
+

1
η

δ̃
˙̃
δ (3.87)

Taking δ̃ common from equation (3.87), we get
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V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+ c7e1

p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1)

+S2

(
c2(ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1)

+S3

(
c2(ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2−

px2x1 − kN(1− e−x5)x2 − ẋ2re f )+ c6(−µIx6 + vI(t)− ẋ6re f )

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1)

+

δ̃

( ˙̂
δ

η
−

3

∑
i=1

Sic2
x2

1
h+ x2

1
x2

)
(3.88)

For parameter estimation, we define the adaptive law as:

˙̂
δ =

3

∑
i=1

η(Sic2
x2

1
h+ x2

1
x2) (3.89)

Put the value of ˙̂
δ from equations (3.88)-(3.89), we get
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V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+ c7e1

p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1)

+S2

(
c2(ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1)

+S3

(
c2(ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2−

px2x1 − kN(1− e−x5)x2 − ẋ2re f )+ c6(−µIx6 + vI(t)− ẋ6re f )

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+ c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1)

(3.90)

By reaching law defined in equations (3.26)-(3.29), we get

−k1|S1|αsign(S1) = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )+

c7e1
p1

q1

(∫
e1 dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c9e3
p3

q3

(∫
e3 dt

) p3
q3
−1

(3.91)
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−k2|S2|αsign(S2) = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5 dt

) p5
q5
−1

(3.92)

−k3|S3|αsign(S3) = c2(ex4 − f x2 +(δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )+ c8e2
p2

q2

(∫
e2 dt

) p2
q2
−1

+

c12e6
p6

q6

(∫
e6 dt

) p6
q6
−1

(3.93)

By simplifying equations (3.91)-(3.93), we obtain our desired input controls.

vL (t) =
1
c3

[
− k1|S1|αsign(S1)−

(
c1
(
ax1 (1−bx1)− cx2x1 −Dx1−

kT
(
1− e−x5

)
x1
)
+ c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1−

kN
(
1− e−x5

)
x2
))

+ c1ẋ1re f + c2ẋ2re f + c3ẋ3re f

−
(

c7e1
p1

q1

(∫
e1dt

) p1
q1
−1

+ c8e2
p2

q2

(∫
e2dt

) p2
q2
−1

+ c9e3
p3

q3

(∫
e3dt

) p3
q3
−1)]

+mx3 − j
D2x2

1
k+D2x2

1
x3

+qx3x1 − (r1x2 + r2x4)x1 +ux2x2
3 + kL

(
1− e−x5

)
x3

− pIx3x6

gI + x6
. (3.94)

vM (t) =
1
c5

[
− k2|S2|αsign(S2)− c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1−

kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c5ẋ5re f −

(
c8e2

p2

q2

(∫
e2dt

) p2
q2
−1

+

c11e5
p5

q5

(∫
e5dt

) p5
q5
−1)]

+ γx5 (3.95)
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vI (t) =
1
c6

[
− k3|S3|αsign(S3)− c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1−

kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c6ẋ6re f −

(
c8e2

p2

q2

(∫
e2dt

) p2
q2
−1

+ c12e6
p6

q6

(∫
e6dt

) p6
q6
−1)]

+µIx6 (3.96)

By substituting the updated values of Ṡ1, Ṡ2 and Ṡ3 from equations (3.91)-(3.93) in equa-
tion (3.90), the Lyapunov function V̇ becomes:

V̇ = S1(−k|S1|αsign(S1)+S2(−k2 |S2|α sign(S2))+ (3.97)
S3(−k3 |S3|α sign(S3))

V̇ =
3

∑
i=1

−ki|Si|α+1sign(Si) (3.98)

Hence, V̇ is negative definite, indicating that the overall system is asymptotically stable.

3.2.2 Adaptive Super Twisting Sliding Mode Controller Design
STSMC is adapted using an adaptive law to enhance robustness and reduce chattering. To
ensure the states track their respective reference values, the tracking errors are defined in
equations (3.1)-(3.5) and the sliding surfaces are defined in equations (3.47)-(3.49).

The parameter g, denoted as δ , is again adapted to address uncertainties and individual
variations, with its estimation error δ̃ specified in equations (3.74)-(3.75).
Putting g = δ in equations (3.56)-(3.58), we get

35



Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

+ c2(ex4 − f x2 +δ
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f ) (3.99)

Ṡ2 = c2(ex4 − f x2 +δ
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f ) (3.100)

Ṡ3 = c2(ex4 − f x2 +δ
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f ) (3.101)

Using equation (3.75), the equations (3.99)-(3.101) become

Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 +(δ̂ − δ̃ )
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f ) (3.102)

Ṡ2 = c2(ex4 − f x2 +(δ̂ − δ̃ )
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f ) (3.103)

Ṡ3 = c2(ex4 − f x2 +(δ̂ − δ̃ )
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f ) (3.104)

By separating δ̃ from equations (3.79)-(3.81), we get
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Ṡ1 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f )− δ̃c2

x2
1

h+ x2
1

x2 (3.105)

Ṡ2 = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )− δ̃c2
x2

1
h+ x2

1
x2 (3.106)

Ṡ3 = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )− δ̃c2
x2

1
h+ x2

1
x2 (3.107)

For stability analysis, we consider the following positive definite Lyapunov candidate func-
tion:

V =
1
2

S2
1 +

1
2

S2
2 +

1
2

S2
3 +

1
2η

δ̃
2 (3.108)

where η is a is a positive real number.
By computing the time derivative of V from equations (3.85), we get

V̇ = S1Ṡ1 +S2Ṡ2 +S3Ṡ3 +
1
η

δ̃
˙̃
δ (3.109)

Now substitute the expressions of Ṡ1, Ṡ2, Ṡ3 from equations (3.105)-(3.107) in equation (3.109),
we get
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V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )− δ̃c2

x2
1

h+ x2
1

x2

)
+S2

(
c2(ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )− δ̃c2
x2

1
h+ x2

1
x2

)
+S3

(
c2(ex4 − f x2

+ δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )− δ̃c2
x2

1
h+ x2

1
x2

)
+

1
η

δ̃
˙̃
δ (3.110)

Taking δ̃ common from equation (3.110), we get

V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )

)
+S2

(
c2(ex4 − f x2

+ δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )

)
+S3

(
c2(ex4 − f x2

+ δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )

)
+ δ̃

( ˙̂
δ

η
−

3

∑
i=1

Sic2
x2

1
h+ x2

1
x2

)
(3.111)

For parameter estimation, we define the adaptive law as:
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˙̂
δ =

3

∑
i=1

η(Sic2
x2

1
h+ x2

1
x2) (3.112)

Put the value of ˙̂
δ from equation (3.112) in equation (3.111), we get

V̇ = S1

(
c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1 −ux2x2

3−

kL(1− e−x5)x3 +
pIx3x6

gI + x6
+ vL(t)− ẋ3re f )

)
+S2

(
c2(ex4 − f x2

+ δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f )

)
+S3

(
c2(ex4 − f x2

+ δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f )

)
(3.113)

By putting the updated values of Ṡ1, Ṡ2, and Ṡ3 from equations (3.105)-(3.107) equal to
zero, we get:

0 = c1
(
ax1(1−bx1)− cx2x1 −Dx1 − kT (1− e−x5)x1 − ẋ1re f

)
+

c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )+

c3(−mx3 + j
D2x2

1
k+D2x2

1
x3 −qx3x1 +(r1x2 + r2x4)x1

−ux2x2
3 − kL(1− e−x5)x3 +

pIx3x6

gI + x6
+ vL(t)− ẋ3re f ) (3.114)
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0 = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c5(−γx5 + vM(t)− ẋ5re f ) (3.115)

0 = c2(ex4 − f x2 + δ̂
x2

1
h+ x2

1
x2 − px2x1 − kN(1− e−x5)x2 − ẋ2re f )

+ c6(−µIx6 + vI(t)− ẋ6re f ) (3.116)

By solving and simplifying equations (3.114)-(3.116), we get our equivalent control sig-
nals.

u1eq =
1
c3

[
−
(

c1
(
ax1 (1−bx1)− cx2x1 −Dx1 − kT

(
1− e−x5

)
x1
)

+ c2
(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2
))

+ c1ẋ1re f + c2ẋ2re f + c3ẋ3re f

]
+mx3 − j

D2x2
1

k+D2x1
x3+

qx3x1 − (r1x2 + r2x4)x1 +ux2x2
3 +KL

(
1− e−x5

)
x3 −

pIx3x6

gI + x6
(3.117)

u2eq =
1
c5

[
− c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c5ẋ5re f

]
+ γx5 (3.118)

u3eq =
1
c6

[
− c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c6ẋ6re f

]
+µIx6 (3.119)

For STSMC, the switching control is defined as:

uisw =−ki|Si|αsign(Si)− kii

∫
sign(Si)dt (3.120)

Where i= 1, 2, 3 and ki, kii, and α are positive constants, with α having a value between 0
and 1.

The final control law for STSMC is given as:

uiST SMC = uieq +uisw (3.121)

Where i=1, 2, 3.
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By putting the values of ueq and usw from equations (3.117)-(3.119) in equation (3.120),
we get

u1ST SMC =
1
c3

[
−
(

c1
(
ax1 (1−bx1)− cx2x1 −Dx1 − kT

(
1− e−x5

)
x1
)

+ c2
(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2
))

+ c1ẋ1re f + c2ẋ2re f + c3ẋ3re f

]
+mx3 − j

D2x2
1

k+D2x1
x3

+qx3x1 − (r1x2 + r2x4)x1 +ux2x2
3 +KL

(
1− e−x5

)
x3 −

pIx3x6

gI + x6

− k1|S1|0.2sign(S1)− k11

∫
sign(S1)dt (3.122)

u2ST SMC =
1
c5

[
− c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c5ẋ5re f

]
+ γx5 − k2|S2|0.2sign(S2)−

k22

∫
sign(S2)dt (3.123)

u3ST SMC =
1
c6

[
− c2

(
ex4 − f x2 + δ̂

x2
1

h+ x2
1

x2 − px2x1 − kN
(
1− e−x5

)
x2

)
+ c2ẋ2re f + c6ẋ6re f

]
+µIx6 − k3|S3|0.2sign(S3)−

k33

∫
sign(S3)dt (3.124)

Using equations (3.122)-(3.124) and equation (3.120), we get

V̇ =−
3

∑
n=1

(
Sn

(
kn sign(Sn)+ knn

∫
sign(Sn) dt

))
(3.125)

As V̇ is negative definite in equation (3.73), the system is stable and ensures finite-time
convergence of all errors to zero.

3.3 Controller Optimization
Improved Grey Wolf Optimization (IGWO) is a population-based algorithm inspired by the
hunting behavior and social structure of grey wolves [14]. IGWO enhances the standard
Grey Wolf Optimization (GWO) by introducing adaptive mechanisms and chaotic maps,
which improve its ability to explore and exploit the search space. This helps the algorithm
avoid getting stuck in local optima and speeds up convergence toward the global best
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solution.
In IGWO, the wolf pack hierarchy consists of four search agents: alpha (α), beta (β ),

delta (δ ), and omega (ω). The alpha agent represents the best solution, beta and delta
represent the second and third-best solutions, and omega explores new areas randomly.
This hierarchy allows IGWO to balance between exploring new solutions and improving
existing ones.

In this study, IGWO is used to optimize the controller gains for four control strate-
gies: Terminal Sliding Mode Controller (TSMC), Super-Twisting Sliding Mode Controller
(STSMC), Adaptive Terminal Sliding Mode Controller (ATSMC), and Adaptive Super-
Twisting Sliding Mode Controller (ASTSMC). The goal is to minimize the system error,
evaluated using the Mean Squared Error (MSE) cost function. The MSE is defined as:

minMSE = min

(
1
N

N

∑
i=1

(ei)
2

)
(3.126)

where ei is the error between the desired and actual output, and N is the total number
of time steps or days in the simulation.
IGWO updates the search agents’ positions in each iteration to reduce the MSE, leading
to better controller performance. Figure (3.1) show the decreasing trend of the MSE cost
function for each controller, proving IGWO’s effectiveness in optimizing these control
strategies.

The search process continues until a stopping condition is met, such as reaching the
maximum number of iterations or achieving a predefined error level. The best solution is
the search agent with the lowest MSE value.

Applying IGWO in this study successfully optimizes controller parameters, improving
system stability and performance. The results demonstrate IGWO’s flexibility and effec-
tiveness in reducing the Mean Squared Error for different control systems.
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Figure 3.1: Decreasing Trend of MSE Cost Function for Different Controllers
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Table 3.1 and Table 3.2 present the optimized controller gains, their corresponding values,
and the cost values for the controllers.

Controller Gains TSMC ATSMC
c1 0.505 63.101
c2 103.694 0.145
c3 0.245 0.100
c5 4.642 7.214
c6 13010 1706.7
c7 1.552 1.000
c8 0.004 1.0×10−6

c9 0.775 1.285
c11 0.192 2.306
c12 13010 1708.6
k1 82.465 0.100
k2 1.38×10−5 1.3×10−5

k3 1.47×10−4 0.546
Cost 0.1835 0.2910

Table 3.1: Optimized Gains and Costs for TSMC and ATSMC

Controller Gains STSMC ASTSMC
c1 0.237 0.237
c2 60.296 60.296
c3 0.0011 0.001
c5 0.179 0.0003
c6 0.0001 0.0006
k1 0.060 0.597
k2 2.0×10−4 1.0×10−4

k3 0.0010 1.0×10−4

k11 4.402 4.402
k22 2.0×10−4 1.0×10−4

k33 2.3×10−3 4.0×10−4

Cost 0.0979 0.0950

Table 3.2: Optimized Gains and Costs for STSMC and ASTSMC
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Chapter 4

Results And Discussion

This chapter presents the simulation results and performance analysis of the proposed con-
trollers applied to the cancer model described by equations (2.1)- (2.7).
MATLAB/SIMULINK was used to simulate tumor dynamics and evaluate the perfor-
mance of the designed controllers.
The x-axis in all simulation graphs represents time (in days), while the y-axis represents
the cell population. The comparison is done involving all four designed controllers and
existing research.
In addition, the values of all the parameters used for the analysis are provided in Tables
(2.1), (3.1), and (3.2). The initial conditions and drug dosage saturation (control bound)
values used in this study are adopted from [24] and are presented in Tables 4.1 and 4.2.

Variable Description Initial Value
T (0) Tumor Cell Population 2×107

N(0) Natural Killer (NK) Cells 1×104

L(0) CD8+ T Cells 100
C(0) Circulating Lymphocytes 1×109

M(0) Chemotherapy Concentration 0
I(0) Immunotherapy Concentration 0

Table 4.1: Initial Conditions of States

Variable Lower Limit Upper Limit

uL(t) (cells day−1) 0 1010

uM(t) (mg kg−1 day−1) 0 2

uI(t) (I.U. kg−1 day−1) 0 4×106

Table 4.2: Limits (Bounds) of Control Variables
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4.1 Comparison of Robust Controllers

4.1.1 Tumor Cell Comparison
Figure 4.1 shows complete tumor regression under the four controllers: TSMC, STSMC,
ATSMC, and ASTSMC. Among these, the ASTSMC demonstrates the remarkable perfor-
mance, reducing the tumor population to 0.001 in just 9 days, owing to its high adaptability
and precise control. The ATSMC follows closely, lowering the tumor to 0.002 in 10 days,
reflecting its ability to handle system changes well. The STSMC achieves the same tumor
reduction of 0.001 in 12 days, indicating moderate performance. In contrast, the TSMC
is the slowest, taking 13 days to reach the same level. This comparison clearly shows the
superiority of adaptive controllers, particularly the ASTSMC, in achieving rapid and stable
tumor regression, making it a more robust and advantageous strategy for successful cancer
treatment.

Figure 4.1: Tumor Cell Population Comparison Over Time.

4.1.2 Natural Killer Cell Comparison
Figure 4.2 demonstrates that all controllers stimulate natural killer cells (N) over time,
eventually reaching a steady-state equilibrium. Initially, the presence of tumor cells and
chemotherapy suppresses the N cell population. As the tumor burden and chemotherapy
are reduced or eliminated, the N cells recover and achieve reference convergence in 800
days, reflecting the restoration of a healthy and functional immune system.
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Figure 4.2: Natural Killer Cell Population Comparison Over Time.

4.1.3 CD8+ T Cell Comparison
Figure 4.17 illustrates the L cells dynamics under the controllers. At the start, all con-
trollers exhibit an initial spike in L, representing the immune system’s immediate response
to the tumor presence and therapeutic interventions (TIL and IL-2). As the tumor burden
decreases, the L population declines at varying rates. The TSMC achieves the fastest de-
cay, with L reaching 0.01 within 80 days, reflecting its focus on rapid immune response
suppression. The ATSMC follows, reaching 0.01 in 85 days, balancing control and main-
taining the immune response slightly longer. The STSMC extends this duration further,
with L reaching 0.01 in 100 days, showcasing moderate adaptability. The ASTSMC sus-
tains L at higher levels for the longest time, with L reaching 0.01 only after 105 days,
demonstrating its superior ability to sustain an immune response. This prolonged stimula-
tion provided by ASTSMC is due to its highly adaptive design, which dynamically adjusts
the immune system’s response as needed. This helps maintain the immune response for a
longer period, offering long-term benefits and reducing the risk of tumor relapse. These
results shows that ASTSMC in maintaining a strong and lasting immune response during
and after therapy.
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Figure 4.3: CD8+ T Cell Population Comparison Over Time.

4.1.4 Circulating Lymphocytes Comparison
Figure 4.4 displays the behavior of the C cells over time under the controllers. Initially,
the presence of tumor cells and the effects of chemotherapy suppress the C population.
However, during the treatment phase, C does not drop below 109, ensuring that the im-
mune system remains stable despite the therapeutic stress. For a healthy patient, C levels
below 108 are considered unsafe, which confirms that the patient remains in a healthy state
throughout the treatment. After the tumor burden decreases and chemotherapy is stopped,
the C population gains strength, eventually achieving a reference convergence of order
1010 in 800 days. This reflects the full restoration of a healthy and functional immune
system.

Figure 4.4: Circulating Lymphocytes Population Comparison Over Time.
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4.1.5 Chemotherapy Concentration Comparison
Figure 4.5 depicts the behavior of chemotherapy drug concentration (M) under the con-
trollers. At the start of treatment, M rises quickly due to the initial administration of the
chemotherapy drug (vM) to suppress the tumor. As the tumor decreases, M naturally de-
clines because the body eliminates the drug faster than it is being administered.
TSMC and STSMC reduce M the fastest, bringing it down to 0.001 in 7 days. ATSMC
takes 14 days, allowing M to decrease more slowly, while ASTSMC sustains M for the
longest time, reaching 0.001 in 16 days. This shows that ASTSMC can extend the chemother-
apy treatment when necessary. Throughout the treatment, the C cell population remains
above 109, ensuring no significant toxicity. By the end of the treatment, all controllers re-
duce M to zero, ensuring the complete elimination of chemotherapy from the body. These
results provide insights into how the controllers successfully manage tumor suppression
while ensuring patient safety.

Figure 4.5: Chemotherapy Concentration Comparison Over Time.

4.1.6 Immunotherapy Concentration Comparison
Figure 4.6 shows the dynamics of the immunotherapy drug concentration (I) under the four
controllers, which is influenced by vI (IL-2). At the start of treatment, vI is administered
to stimulate the immune system, boosting the immune response. Each controller regulates
vI differently, leading to varying rates of decline in I.
TSMC reduces I to 0.01 within 4 days, reflecting a rapid decrease in immunotherapy con-
centration. STSMC achieves an even faster reduction, lowering I to 0.005 in just 2 days.
ATSMC sustains immunotherapy longer, bringing I down to 0.003 over 10 days. ASTSMC
completely phases out immunotherapy, reducing I to 0 in 10 days.
These results show how the controllers regulate immunotherapy to balance effective im-
mune stimulation with the timely elimination of the drug. By the end of treatment, I is
fully eliminated, ensuring no risk of overstimulation or adverse effects.
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Figure 4.6: Immunotherapy Concentration Comparison Over Time.

4.1.7 Drug Delivery Scenario
In this study, three types of drug dosages are considered (Figure 4.7): immunotherapy drug
dosage (TIL): vL(t) , immunotherapy drug dosage (IL-2): vI(t), and chemotherapy drug
dosage: vm(t). Each drug dosage is regulated by the controllers such as TSMC, STSMC,
ATSMC, and ASTSMC in order to achieve effective tumor suppression while ensuring
therapy remains safe and within acceptable limits. The dynamics of drug elimination vary
depending on the controller.
Under TSMC, vL(t), vm(t), and vI(t) are eliminated the fastest, reaching zero in 1 day,
0.3 days, and 3.6 days, respectively. STSMC phases out vL(t), vm(t), and vI(t) in 32
days, 0.2 days, and 0.2 days, respectively, showing a quicker reduction of chemotherapy
and IL-2 but a slower elimination of TIL. ATSMC maintains the dosages slightly longer,
reducing vL(t), vm(t), and vI(t) to zero in 1.7 days, 5.8 days, and 9.3 days, respectively.
ASTSMC demonstrates the most extended duration of drug delivery, phasing out vL(t),
vm(t), and vI(t) in 39 days, 7.3 days, and 7.5 days, respectively. These results show how
the controllers handle drug delivery differently, ensuring the tumor is effectively treated
while safely eliminating the drugs to avoid side effects.

50



(a)

(b)

(c)

Figure 4.7: Comparison of Drug Delivery Scenarios Across Controllers.

As shown in Table 4.3, the ASTSMC controller demonstrates the best overall perfor-
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State TSMC STSMC ATSMC ASTSMC Previous Study [24]

T 13 12 10 9 48.77

N 800 800 800 800 800

L 80 100 85 105 105.2

C 800 800 800 800 800

M 7 7 14 16 40.96

I 4 2 10 10 38.69

Table 4.3: Convergence of States (in Days) Under Different Controllers

mance in terms of convergence across all states. It achieves tumor regression in just 9
days, the fastest among the four controllers and significantly quicker than the 48.77 days
reported in the previous study [24]. For chemotherapy drug clearance, ASTSMC requires
16 days, slightly longer than the TSMC and STSMC, but this allows it to sustain a con-
trolled and gradual treatment process. Additionally, ASTSMC maintains immune cells at
safe levels over time, providing a robust and adaptive approach for long-term therapy. The
overall comparison indicates that ASTSMC is the most efficient and adaptive controller
for tumor regression and immune system recovery.

4.2 Hardware-in-loop
Hardware-in-Loop (HIL) testing is used to test the performance of the proposed control
strategies in real-time [4]. It is an affordable method where the system is converted
into a discrete form to run in real-time, simulating real-world conditions. The setup,
shown in Figure 4.8, uses a Delfino C2000 LaunchPad F28379D integrated with MAT-
LAB/Simulink. The results confirm accurate reference tracking and show that the con-
troller operates as intended on actual hardware.

52



Figure 4.8: HIL Simulation System Display

4.2.1 Hardware-in-Loop Simulation Results
The trends observed in the HIL simulation graphs closely align with those from the con-
tinuous data simulations, confirming the reliability and robustness of the proposed con-
trollers. These simulations validate the controllers’ ability to achieve desired changes in
physiological conditions in real-time.

The following graphs present a performance comparison of the six states (tumor cells,
natural killer cells, CD8+ T cells, circulating lymphocytes, chemotherapy, and immunother-
apy) across three dosage scenarios. Each graph illustrates that the controllers consistently
maintain stability and effectiveness, ensuring convergence to the desired reference values
within the expected timeframes. This consistency highlights the practical feasibility of
implementing the controllers in hardware systems.
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Figure 4.9: Tumor Cell Population Comparison Over Time.

Figure 4.10: Natural Killer Cell Population Comparison Over Time.
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Figure 4.11: CD8+ T Cell Population Comparison Over Time.

Figure 4.12: Circulating Lymphocytes Population Comparison Over Time.
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Figure 4.13: Chemotherapy Concentration Comparison Over Time.

Figure 4.14: Immunotherapy Concentration Comparison Over Time.
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Figure 4.15: Immunotherapy Dosage (TIL): vL(t) Comparison Over Time.

Figure 4.16: Chemotherapy Dosage: vM(t) Comparison Over Time.
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Figure 4.17: Immunotherapy Dosage (IL-2): vI(t) Comparison Over Time.

4.2.2 Benefits of Hardware-in-the-Loop (HIL)
Hardware-in-the-loop (HIL) testing is a vital approach used in many fields, including con-
troller design, offering the following key benefits:

• Realistic Simulations: Combines real hardware with virtual scenarios for accurate
testing.

• Early Issue Identification: Detects problems early for timely fixes before deploy-
ment.

• Time and Cost Efficiency: Cuts the need for prototypes and field testing, saving
resources.

• Smooth Component Integration: Ensures seamless collaboration between hard-
ware and software.

• Versatility and Reusability: Tests risky situations without endangering lives or
equipment.

• Improved Safety: Allows testing in multiple scenarios and can be reused for future
projects.

• Performance Enhancement: Optimizes system functionality through iterative test-
ing.
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Chapter 5

Conclusion And Future Directions

5.1 Conclusion
In this thesis, advanced nonlinear controllers such as Terminal Sliding Mode Control
(TSMC), Super Twisting Sliding Mode Control (STSMC), Adaptive Terminal Sliding
Mode Control (ATSMC), and Adaptive Super Twisting Sliding Mode Control (ASTSMC)
were designed and applied to optimize drug delivery in mixed chemo-immunotherapy. The
controllers were designed to minimize drug dosages, reduce treatment durations, and en-
sure rapid tumor regression while maintaining immune system health.

Among the proposed controllers, the Adaptive Super Twisting Sliding Mode Controller
(ASTSMC) demonstrated the best performance, achieving tumor convergence to near-zero
levels within 9 days. The parameters of all controllers were fine-tuned using the Improved
Grey Wolf Optimization (IGWO) algorithm, with the Mean Squared Error (MSE) as the
cost function. Stability was rigorously analyzed through Lyapunov theory to ensure reli-
able performance. The effectiveness of the controllers was validated through simulations
conducted in MATLAB/Simulink and further verified in Hardware-in-the-Loop (HIL) ex-
periments using the C2000 DelfinoTM MCU F28379D Launchpad. The results demon-
strated the ability of these controllers to stabilize tumor dynamics, reduce tumor cell pop-
ulations, and maintain immune cell populations within desired limits.

The proposed approach outperformed existing methods, achieving faster tumor reduc-
tion, better immune recovery, and improved drug efficiency. The consistency between con-
tinuous and HIL simulations highlights the feasibility of implementing these controllers in
real-world applications.

5.2 Scopes and Limitations
This study explores the application of advanced nonlinear controllers, including TSMC,
STSMC, ATSMC, and ASTSMC, for optimizing drug delivery in mixed chemo-immunotherapy.
The scope includes validating the controllers using MATLAB/Simulink simulations, an-
alyzing drug and immune system dynamics through a six-state cancer model, and com-
paring the controllers to identify the most efficient approach for tumor suppression and
immune recovery. Real-time feasibility was verified through Hardware-in-the-Loop (HIL)
experiments using the C2000 DelfinoTM MCU F28379D Launchpad.

However, the study has some limitations. The six-state model simplifies certain phys-
iological complexities, excluding factors like tumor heterogeneity and microenvironment
interactions. The results are parameter-dependent and not validated with patient-specific
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clinical data. Additionally, the HIL implementation has hardware constraints, and long-
term side effects, immune response variability, and therapy resistance remain unaddressed.

5.3 Further Research Work
Future work can focus on exploring additional advanced nonlinear control strategies, such
as barrier-based nonlinear controllers and synergetic controllers. Additionally, optimiza-
tion techniques like Red Fox Optimization (RFO) and improved Grey Wolf Optimization
(I-GWO) with the Integral of Time-weighted Absolute Error (ITAE) as the cost function
could be employed for parameter tuning to improve computational efficiency and accu-
racy. Furthermore, clinical validation through personalized patient data and extending the
framework to real-time adaptive control systems could pave the way for practical and per-
sonalized cancer treatment strategies.
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