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Abstract

Traffic flow theory allows us to mathematically describe the behavior of traf-
fic flow and thus deduce interesting properties for transportation engineers.
Traditionally, traffic flow problems are analyzed by using paper-and-pencil
proof methods, computer-based numerical techniques or computer algebra
systems. However all these methods are error-prone and thus the analysis
cannot be termed as accurate, which poses a serious threat to the safety-
critical domain of transportation systems. To guarantee the correctness of
the analysis, we propose to use higher-order-logic theorem proving for ana-
lyzing the traffic flow problems and as a first step in this direction, present
a logical framework for the formal analysis of macroscopic models of traffic
flow. In particular, we present a formalization of some foundational con-
cepts of macroscopic models, namely density, flow rate, mean speed, relative
occupancy and shockwave using the higher-order-logic theorem prover HOL
Light. To illustrate the practical utilization and effectiveness of the proposed
idea, we perform the formal analysis of a German freeway, including its input-
output and shockwave analysis by verifying their corresponding properties
using our proposed formalization.

ix



Chapter 1

Introduction

1.1 Motivation

Traffic flow theory [21] is widely used to describe the interactions between
vehicles, their drivers and the transportation infrastructures, which include
the highway and its operational devices, such as highway signals, markings
and control devices. All these parameters, contributing towards the dynamics
of the transportation systems, are mathematically modeled and analyzed to
obtain an optimal and balanced traffic flow with minimal congestion [20].

Traffic flow theory mainly consists of two models, namely microscopic
and macroscopic. Microscopic models [17] capture the dynamic behavior of
the underlying transportation system based on the individual behaviors of
the vehicles and drivers, and their mutual interaction. On the other hand,
the macroscopic model considers the behavior of multiple vehicles simultane-
ously and it is characterized by its fundamental parameters, such as flow rate,
density, mean speed, relative occupancy and shockwave [9]. Thus, in other
words, the macroscopic model captures the behavior of all of the vehicles in
a certain cross-section as opposed to the microscopic model, which includes
the analysis of an individual vehicle. In the macroscopic model, the continu-
ous traffic flow under equilibrium and non-equilibrium conditions is modeled
by the continuous-time partial differential equations, known as conservation
equations or continuity equations [1,35] and random number generations [29].
These equations can be solved to find a relation between density and flow
rate of the traffic. These fundamental parameters are further used to calcu-
late the queue size/number of vehicles. An abrupt change in this queue size,
due to some obstruction, i.e., accident, diversion etc., results into the phe-
nomenon of shockwave [15], which is a boundary between two regions having
vehicles with different average values of density, flow rate and the speed. As
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CHAPTER 1. INTRODUCTION 2

the time progresses, this shockwave moves in the direction of the traffic flow,
by creating new shockwaves that replace the earlier earlier showkwaves, de-
pending on the average values of these parameters in the respective regions.
The analysis based on these foundations, called shockwave analysis [27], pro-
vides the rate of formation or dissipation of the congestion [24] and thus the
identification of the congested areas by calculating the queue size/number
of vehicles. Traditionally, the above-mentioned analyses are conducted by
using paper-and-pencil based proofs and computer simulation methods.

However, the analysis of complex transportation systems using paper-
and-pencil based and similar proofs are prone to human errors. Hence more
rigorous analyses methods are required in the safety critical domain of trans-
portation systems.

1.2 Related Work

In the paper and pencil based analyses of transportation systems [4, 6, 22],
it is customary to not explicitly pen down all the assumptions, which are
required for the mathematical analysis on paper. The absence of these un-
derlying assumptions of the analysis adds another dimension of mistrust to
the analysis. Numerical algorithm based simulation techniques [3, 31] are
also frequently used to solve the conservation equations and thus perform
the shockwave and input-output analysis. The simple input-output analy-
sis that describes traffic queues without considering the space dimensions
where as the shockwave analysis describes the queue sizes by taking both the
dimensions of density and time into consideration [27]. METANET (a macro-
scopic simulation program for motorway) [23] and FREEFLO (a macroscopic
simulation model of freeway traffic) [26] are some of the widely used simula-
tion tools to perform these analyses. The continuous traffic flow models of
a cross-section highway area are discretized in time and space to facilitate
their analyses using computer arithmetic and numerical techniques. This
kind of discretization compromises the completeness of analysis and thus
the accuracy of the results [1]. Just like the case of macroscopic models,
the paper-and-pencil proof methods and simulation tools, like VISSIM (a
microscopic traffic flow simulator) [3, 7] and MITSIMLab (microscopic traf-
fic simulation laboratory) [2], used for analyzing microscopic models, also
suffer from the inaccuracy limitations, described above. Computer algebra
systems, such as Mathematica and Maple, have also been used to solve differ-
ential equations symbolically and thus overcome the inaccuracies introduced
by computer arithmetic based computations and numerical methods. How-
ever, the algorithms used by these systems are not rigorously verified and
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thus can produce error-prone results [5].

1.3 Problem Statement

These above mentioned flaws in the traditional techniques are tremendously
undesirable in case of the highly safety-critical domain of transportation, as
ignoring some corner cases may lead to dire consequences, such as frequent
traffic congestions, road accidents and lost of human lives in worst cases.

1.4 Proposed Solution

Formal methods [14] are computer based system analysis techniques that can
overcome the above-mentioned analysis accuracy related limitations. Theo-
rem proving [12] is a widely used formal method that allows the verification
of mathematical relations, including continuous variables, by leveraging upon
the expressiveness of higher-order logic and thus is quite appropriate for an-
alyzing traffic flow problems. As a first step towards the formal analysis of
traffic flow problems, this thesis presents a framework for the formal verifi-
cation of macroscopic models in traffic flow theory. This choice is primarily
motivated by the fact that the macroscopic models play a vital role in plan-
ning strategies in allocating resources for implementing optimized and bal-
anced transportation systems [8, 34]. The proposed framework identifies the
mathematical foundations of traffic flow theory that are required to conduct
such analysis within the sound core of a higher-order-logic theorem prover.
Moreover, it describes a step-wise procedure to develop a formal model of
the given traffic flow problems in higher-order logic and reason about its cor-
responding properties using an interactive theorem prover. For this purpose,
the thesis presents a higher-order-logic formalization of some of the widely
used macroscopic model characteristics, namely relative occupancy [21], den-
sity [21], flow rate [16], mean speed [16] and shockwave [27]. Based on this
formalization, we formally verify the properties depicting the relationship of
relative occupancy and shockwave with the basic parameters of the traffic
flow. In order to illustrate the practical effectiveness of our formalization,
we present a formal analysis of a German freeway [32] by verifying its traf-
fic flow properties, and input-output [27, 28] and shockwave analysis related
expressions [27]. We have used the HOL Light theorem prover [13] for con-
ducting the proposed formal analysis of macroscopic traffic flow models due
to its extensive support for formally reasoning about multivariate calculus
theories.
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1.5 Thesis Organization

The rest of the thesis is organized as follows: We provide a brief overview of
traffic flow theory and the HOL Light theorem prover in Chapter 2. Chapter
3 presents the proposed framework for the formalization of the macroscopic
traffic flow models and their properties. In Chapter 4, we provide the for-
malization of the traffic flow theory foundations, which include the density,
flow rate, mean speed, relative occupancy and shockwave. Moreover, we uti-
lize our foundational formalization to verify some of the properties depicting
the relationship of the relative occupancy and shockwave with the macro-
scopic model parameter, including flow rate and density. For demonstrating
the practical utilization and effectiveness of the proposed formalization, we
present a formal input-output and shockwave analysis of a German freeway
in Chapter 5. Finally, Chapter 6 concludes the thesis by highlighting some
future directions.



Chapter 2

Preliminaries

In this chapter, we provide a brief introduction to the macroscopic model
of traffic flow theory and the HOL Light theorem prover to facilitate the
understanding of the rest of the thesis.

2.1 Traffic Flow Theory - Macroscopic Model

The macroscopic model of traffic flow theory considers all of the vehicles
in a cross-section of a road simultaneously [16, 21]. In order to understand
the widely used notions of relative occupancy, flow rate, density and mean
speed, consider Fig. 2.1, which depicts two rectangular regions, namely the
spatial region and the temporal regioin. The spatial region S1 corresponds
to a measurement over a road section ∆X at a single instant dT , whereas
the temporal region S2 corresponds to the measurement in a fixed location
in space dX over a time period ∆T . The area of the spatial region S1 is
∆XdT , whereas the area of the temporal region S2 is ∆TdX. Based on the
space-time diagram (Fig. 2.1), the characteristics of the macroscopic traffic
flow model, i.e., relative occupancy, density, flow rate and mean speed for
the single-lane traffic can be defined as follows:

The relative occupancy is the measurement of the fraction of time, for
which the measurement location is occupied by the vehicles. In the temporal
region S2, it is given by the following formula [16]:

bS2 =
1

∆T

n∑
i=1

Oi =
1

∆T

n∑
i=1

Li

Vi
(2.1)

where ∆T is the length of the temporal region. Oi is the occupancy of the ith

vehicle and is equal to the ratio of the length Li and speed Vi of the vehicle,
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S1

S2

dX

ΔX

ΔTdT

x

t

Figure 2.1: Time-space Diagram [21]

whereas n is the total number of vehicles in the temporal region.
Similarly, the occupancy of the vehicles in the spatial region S1 can be

mathematically expressed as [16]:

bS1 =
1

∆X

m∑
i=1

Li (2.2)

where ∆X represents the length of the spatial region and m is the total num-
ber of vehicles in the spatial region.

The flow rate of the traffic can be defined as the number of vehicles in a
certain cross-section per unit time or, alternatively, as the ratio of the total
distance covered by all vehicles in a region and the area of the region. In the
spatial region S1, it is given by the following formula [16]:

qS1 =
1

∆X

m∑
i=1

Vi (2.3)

where Vi is the velocity of the ith vehicle in the spatial region. Similarly, the
flow rate in the temporal region S2 is given by the following formula [16]:

qS2 =
n.dX

∆T.dX
=

n

∆T
(2.4)
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where dX is the width of the temporal region.

The density of the traffic represents the number of vehicles in a certain
cross-section or, alternatively, as the ratio of the total time spent by all
vehicles in a region and the area of the region. In the spatial region S1, it is
represented by the following mathematical expression [16]:

kS1 =
m.dT

∆X.dT
=

m

∆X
(2.5)

where dT is the width of the spatial region. The following formula represents
the density in the temporal region S2 [16]:

kS2 =
1

∆T

n∑
i=1

1

Vi
(2.6)

where Vi is the velocity of the ith vehicle in the temporal region.

The mean speed can now be defined as the ratio of the flow rate (q) and the
density (k) of the traffic flow in each of the temporal and spatial regions. It
is the time mean speed when calculated for the temporal region and space
mean speed when calculated for the spatial region.

u =
q

k
(2.7)

In general, the time mean speed is the arithmetic mean of speeds observed
at some point in a specific time interval and it is generally easier to measure.
Whereas, the space mean speed used in the traffic models is calculated as
the arithmetic mean of speeds in different time intervals at a spatial region
and is generally harder to measure [10] [19].

Now, to understand the phenomenon of shockwave, consider Fig. 2.2,
which mainly depicts the flow-density diagram [18]. Consider an area of ob-
servation, in which the traffic flows with some density, flow rate and speed
where a sudden obstruction of the traffic flow, due to some accident or closed
road or some diversion, splits this area in two regions, namely R1 and R2.
This obstruction results into a phenomenon of shockwave, which basically
defines a boundary between the Regions R1 and R2 and each of these re-
gions contain vehicles having different values of average density, flow rate
and speed, i.e., q1, k1 and v1 in R1 and q2, k2 and v2 in R2, respectively at
some time instant as depicted in Fig. 2.2. With the passage of time, this
shockwave moves along the flow of the traffic with some speed vw by creating
new shockwaves and thus regions and canceling the earlier shockwave and the
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R2
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Traffic Speed
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(k)

k2
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q1

Flow rate  (q)
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Shockwave/ Point 
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A B C
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V2

Traffic Speed
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… …

Rn
R1

At time ‘t’

Figure 2.2: Flow Density Diagram

corresponding old regions. The shockwave speed vw thus plays a vital role
in the identification of the congested area by capturing the rate of formation
and dissolution of the congestions and finding out the number of vehicles in
the respective regions. The shockwave speed, for two adjacent regions Rn−1

and Rn is mathematically expressed as:

vwn =
qn − qn−1

kn − kn−1

(2.8)

where qn and qn−1 are the flow rates in Regions Rn and Rn−1, respectively.
Similarly, kn and kn−1 are the densities in Regions Rn and Rn−1, respectively.
These densities and flow rates are related by the following mathematical
expressions:

qn−1 = kn−1vn−1 (2.9)

and
qn = knvn (2.10)

where vn−1 and vn represent the average space mean speeds of the vehicles
in Regions Rn−1 and Rn, respectively.
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The relative speed of a vehicle to an observer is defined as the space mean
speed relative to the shockwave speed. In Region R1, it is mathematically
represented as:

vR1 = v1 − vw (2.11)

Similarly, the relative speed in Region R2 is given by the following for-
mula:

vR2 = v2 − vw (2.12)

Fig. 2.3 represents the time-space diagram for the macroscopic model
depicting the shockwave speeds in three different regions. The queue size
based on a shockwave analysis considering Regions R1 and R2 is mathemat-
ical expressed as follows [16,27,28]:

Queue Size = −vw1∆t∆k = − q2 − q1
k2 − k1

∆t∆k (2.13)

where ∆k and ∆t are the density range and time length, respectively for
the shockwave speed vw1 . Similarly q2, k2, q1 and k1 are the flow rates and
densities in Regions R2 and R1 of traffic flow, respectively. Whereas vw1 =
(q2− q1)/(k2− k1) in Fig. 2.3. It is important to note that the outgoing flow
rate is taken as positive and the ingoing flow rate as negative unlike the input-
output model, as the queue size for input-output analysis is mathematically
represented as [27,28]:

Queue Size = (q1 − q2)∆t (2.14)

The behavior of multiple shockwaves for three regions is depicted in the
time space domain [27] in Fig. 2.3. Where two shockwaves vw1 and vw2

are overlapping in time space graph from t1 to t2 [27] and intersect at time
point t2 where their effect disappears and consequently a new shockwave vw3

emerges at that point. We use the following generic mathematical expression
to analyze the queue size Nsw for n regions can be mathematically expressed
as:

Nsw =
m∑
j=1

−(vwj
∆tj −

n∑
i=0

vwi
∆ti)∆kj (2.15)

where vwj
has the longest existing duration with respect to time as compared

to the rest of short ranged shockwaves vwi
, which simultaneously exist in time
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ΔTt0

Shockwave Speed 
(Vw2)

t2

lm

t1

Shockwave Speed
(Vw1)

Point of intersection of 
two shockwaves

Shockwave Speed 
(Vw3)

Figure 2.3: Multiple Shockwaves in Time-Space Diagram [27]

domain with vwj
. The negative sign is used in the above equation because

in shockwave analysis, the outgoing fow rate is taken as positive and ingoing
flow rate as a negative real number

The Input-output analysis models the queue size for n number of regions
as follows:

Nio =
n∑

i=1

(qi − qi+1)∆ti (2.16)

We consider the boundary space between two regions, i.e., between Re-
gions R1 and R2, as a separate Region Rw and the average speed of the
vehicles in this shockwave region is considered as vw. This way, the average
speed shift between the two regions is v1 − vw. The density range of this
shockwave region is considered as k1 to accommodate all the incoming vehi-
cles from Region R1. Similarly consider the time required for the whole queue
size of R1 to exit from the ending point of Region R1 and to enter the Region
Rw as ∆t. Hence, ∆t and ∆k should be the same based on the universal
law of conservation. Thus, the number of vehicles crossing the boundry of
Region R1 to R2 can be mathematically expressed as:

N1 = (v1k1∆t−vwk1∆t) = vR1k1∆t = (v1−vw)k1∆t = (
q1
k1
−vw)k1∆t (2.17)

Similarly, the incoming number of vehicles from the rear boundary in
Region R2 is given as:
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N2 = vR2k2∆t = (v2 − vw)k2∆t = (
q2
k2
− vw)k2∆t (2.18)

2.2 HOL Light Theorem Prover

HOL Light [11] is a higher-order-logic proof assistant that belongs to the
HOL family of theorem provers. It provides an interactive theorem proving
environment for the construction of the proofs in higher-order logic. In order
to ensure secure theorem proving, it uses the Objective CAML (OCaml) lan-
guage [13], which is a variant of the strongly-typed functional programming
language ML [25]. HOL Light users can interactively verify theorems by
applying tactics and proof procedures, which can automatically confirm the
decidable proof goals. A HOL Light theory consist of types, constants, defi-
nitions and theorems. HOL Light theories are build in a hierarchical fashion
and new theories can inherit the definitions and theorems of their parent the-
ories. HOL Light consists of a rich set of formalized theories, including sets,
natural numbers and the multi variable calculus theories. i.e., real analysis
and vector calculus theories. The availability of these theories was the main
motivation for choosing HOL Light for the proposed formalization as these
foundations are required for reasoning about continuous (real-valued) vari-
ables and partial differential equations. Table 2.1 provides the mathematical
interpretations of some of the HOL Light symbols and functions used in this
thesis.
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Table 2.1: HOL Light Symbols and Functions

HOL Symbol Standard Symbol Meaning

/\ and Logical and
\/ or Logical or
∼ not Logical negation
T true Logical true value
F false Logical false value

==> −→ Implication
<=> = Equality in Boolean domain
!x.t ∀x.t for all x : t
λx.t λx.t Function that maps x to t(x)
num {0, 1, 2, . . .} Positive Integers data type
real All Real numbers Real data type
suc n (n+ 1) Successor of natural number
HD L head Head element of list L
TL L tail Tail of list L
EL n L element nth element of list L
CONS :: Adds a new element to the top of the list

LENGTH L length Length of list L
FST fst (a, b) = a First component of a pair
SND snd (a, b) = b Second component of a pair



Chapter 3

Proposed Framework

The proposed framework, shown in Fig. 3.1, outlines the proposed approach
for the formal analysis of macroscopic traffic flow models based on higher-
order-logic theorem proving, which includes the formalization of their funda-
mentals, i.e., density, flow rate, means speed, relative occupancy and shock-
wave. The inputs to the framework are the macroscopic model parameters.
For example, to find out the density, flow rate, mean speed and relative occu-
pancy, these input parameters are the lengths and velocities of vehicles and
the starting and ending points of the regions S1 and S2 (Fig. 2.1). Simi-
larly, to find out the shockwave speed and queue size (number of vehicles),
flow rate, density and mean speed are used as the input parameters for our
proposed framework.

The first step in conducting formal analysis is the construction of the
higher-order-logic based formal model of the given system based on the given
macroscopic model parameters. The higher-order-logic formalization, re-
quired for developing this model, can be broadly decomposed into two parts,
which are depicted by the dotted rectangles in Fig. 3.1. The first part is the
core mathematical foundations of macroscopic model of traffic flow theory
and the second part is composed of the definitions and theorems of traffic flow
theory required for the analysis of macroscopic models. This mathematical
foundations include Multivariate calculus theory and the conservation law.
The traffic flow theory part builds upon the mathematical foundations and
the formalization of the basic concepts of lengths and widths of the rectangu-
lar regions, density and flow rates, and the dependencies between them are
shown in the Figs. 2.2 and 3.1. We propose to formalize the commonly used
macroscopic characteristics i.e., density, flow rate, mean speed, relative occu-
pancy, number of vehicles and shockwave speed for capturing the dynamics
of the given transportation system. Furthermore, by using these definitions,
we propose to verify the corresponding theorems that capture the character-

13
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Figure 3.1: Proposed Framework

istics of the macroscopic traffic flow model, e.g., the properties that depict
the relationship of the relative occupancy and shockwave velocity with the
density, flow rate and number of vehicles of a transportation system.

Once the formal model, corresponding to the given macroscopic model
parameters, is constructed then the next step is to verify its properties as
higher-order-logic theorems. The proof goals can be expressed in higher-
order logic and can be discharged by interacting with the proof assistant
of the HOL Light theorem prover. The reasoning process, involved in this
interactive verification, would be mainly based on the properties of the above-
mentioned formalized notions of macroscopic model of traffic flow theory.



Chapter 4

Formalization of Macroscopic
Models

In this chapter, we present a higher-order-logic formalization of the funda-
mentals of the macroscopic models of the traffic flow theory. This formaliza-
tion builds upon the formalizations of multivariable calculus of HOL Light.
To the best of our knowledge, these mathematical foundations have not been
formalized in higher-order logic so far.

4.1 Formalization of Relative Occupancy

In this chapter, we present a higher-order-logic formalization of relative oc-
cupancy, which is one of the foremost elements of the macroscopic model of
the traffic flow theory, as depicted in Fig. 3.1. This formalization builds
upon the formalizations of multi variable calculus and the notions of length
and widths of the rectangular regions and velocities, density, flow rate and
mean speed from the traffic flow theory part.

A macroscopic model of the traffic flow theory consists of two rectangular
regions, namely spatial region S1 and temporal region S2 (Fig. 2.1), and the
lengths and speeds of the vehicles. We model the length and width of both
of the regions in terms of their starting and ending points as a pair of real
numbers (R, R), where the first element represents the starting point and
the second element represents the ending point of the length and width. For
example, taking a measurement of the traffic flow between 2km and 5km on
a highway in the spatial region, the starting point of the length of this region
is 2 and the ending point is 5 and it can be represented as a pair (2, 5). We
formally describe the macroscopic model as the following data type:

15
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Definition 4.1. Time Space Model Datatype for Relative Occupancy
new type abbrev "ts macro traffic flow",

:(((real × real) × (real × real) × (real ×
real) × (real × real)) × ((real × real)list × (real ×
real)list ))

In the above definition, a time space model is a pair with the first element
as a 4-tuple. The first element of the 4-tuple is a pair (real× real), which
represents the starting and ending points of the length of the spatial re-
gion (vertical rectangle). The second element of the 4-tuple is also a pair
(real× real), representing the starting and ending points of the width of
the spatial region. Similarly, the third and fourth elements of the 4-tuple
are also pairs (real× real) representing the starting and ending points of
the length and width of the temporal region (horizontal rectangle). The sec-
ond element of the macroscopic model pair is itself a pair. The first element
(real× real)list of this pair is a list of pairs in which the first element
represents the length of a vehicle and the second element is its corresponding
speed in the spatial region. Likewise, the second element (real× real)list
of this pair is also a list of pairs, where each pair represents the lengths and
speed of the vehicles in the temporal region.

In order to obtain the characteristics of the macroscopic model of the
traffic flow, i.e., relative occupancy, density, flow rate and mean speed, we
need to find out the lengths, widths and the occupancy of the spatial and
temporal regions. For this purpose, we use the following function that allows
us to find the length and width of a rectangle:

Definition 4.2. Length/Width of the Rectangles
` ∀ x t rec . differ x t rec = SND x t rec - FST x t rec

The function differ accepts the starting and ending point of the length/width
of the rectangle in the form of a pair and returns its length/width by taking
the arithmetic difference between the elements of the given pair.

The list containing the occupancies of all of the vehicles can be obtained
as follows:

Definition 4.3. List Containing the Occupancies of a Collection of
Vehicles
` occ list [ ] = [ ] ∧
occ list (CONS h t) = CONS (FST h / SND h) (occ list t)
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The function occ list:((real× real) list→ real list) accepts a list of pairs,
where each pair represents the length and speed of a vehicle, and returns the
list of their corresponding occupancies.

In order to obtain the relative occupancy in temporal region S2, we need
the sum of the occupancies of all of the vehicles:

Definition 4.4. Sum of the Occupancies of all the Vehicles
` ∀ L . occ sum L =

sum (1..LENGTH (occ list L)) (λi. EL (i - 1) (occ list L))

The function occ sum:((real × real) list → real) accepts a list of pairs,
where each pair represents the length and speed of a vehicle, and returns a
real number that is the sum of the occupancies of all of the vehicles. This
definition uses the HOL Light function sum in order to take sum of a function
over a range of values.

Now, we can obtain relative occupancy in temporal region S2 (Equation
2.1) by using Definitions 4.2 and 4.4 as follows:

Definition 4.5. Relative Occupancy in Temporal Region S2

` ∀ xv tv xh lng spd v lng spd h th.

rel occ s2 ((xv,tv,xh,th),lng spd v,lng spd h) =

occ sum lng spd h / differ th

The function rel occ s2:(ts macro traffic flow → real) accepts an ele-
ment of data type ts macro traffic flow and returns the corresponding
relative occupancy of the vehicles in the temporal region S2.

To obtain the relative occupancy in spatial region S1, we need to find the
summation of the lengths of all of the vehicles.

Definition 4.6. Summation of the lengths of all of the vehicles in
Spatial Region S1

` ∀ L. sum l list L =

sum (1..LENGTH (l list L)) (λi. EL (i - 1) (l list L))

The function sum l list:((real × real) list → real) accepts a list of pairs,
where each pair represents the length and speed of a vehicle, and returns the
sum of the lengths of all of the vehicles in the given list. The function l list

used in the above definition, takes the list of pairs containing lengths and
speeds of the vehicles and returns a list containing their lengths only.

Now, the relative occupancy in the spatial region S1 (Equation 2.2) is
formalized as follows:
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Definition 4.7. Relative Occupancy in Spatial Region S1

` ∀ tv xh th lng spd h lng spd v xv.

rel occ s1 ((xv,tv,xh,th),lng spd v,lng spd h) =

sum l list lng spd v / differ xv

The function rel occ s1 accepts an element of data type
(ts macro traffic flow) and returns the relative occupancy of the vehicles
in the spatial region S1.

Our next step is to formalize the notion of traffic density in the spatial
(Equation 2.5) and temporal regions (Equation 2.6):

Definition 4.8. Density in Spatial Region S1

` ∀ xh th lng spd h lng spd v tv xv.

density s1 ((xv,tv,xh,th),lng spd v,lng spd h) =

(&(no veh lng spd v) * differ tv) / (differ xv * differ

tv)

The function density s1:((ts macro traffic flow)→ real) accepts an
element of data type ((ts macro traffic flow)) and returns the correspond-
ing traffic density in the spatial (S1) region.

The density in the temporal region (Equation 2.6) can be formalised as
follows:

Definition 4.9. Density in Temporal Region S2

` ∀ xv tv lng spd v lng spd h th xh.

density s2 ((xv,tv,xh,th),lng spd v,lng spd h) =

sum v inv lng spd h / (differ th)

The function density s2 takes an element of data type
(ts macro traffic flow) and returns the density in temporal region S2. The
function sum v inv in the above definition accepts a list of pairs, where each
pair represents the length and speed of a vehicle, and returns the summation
of the inverse of their speeds.

We formally define the traffic flow rate in the spatial region (Equation
2.3) as follows:

Definition 4.10. Flow Rate in Spatial Region S1

` ∀ xh th lng spd h lng spd v tv xv.
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flow rate s1 ((xv,tv,xh,th),lng spd v,lng spd h) =

(sum v list lng spd v / differ xv)

The function flow rate s1 takes a time space macroscopic model and
returns the flow rate in the spatial region. In this definition, the function
sum v list accepts a list of pairs, where each pair represents the length and
speed of a vehicle, in the region S1 and returns the sum of their speeds.

Similarly, the flow rate in the temporal region (Equation 2.4) can be
defined as follows:

Definition 4.11. Flow Rate in Temporal Region S2

` ∀ xv tv lng spd v lng spd h th xh.

flow rate s2 ((xv,tv,xh,th),lng spd v,lng spd h) =

(&(no veh lng spd h) * differ xh) / (differ th * differ

xh)

The function flow rate s2: ((ts macro traffic flow)→ real) accepts
an element of data type (ts macro traffic flow) and returns the flow rate
in the temporal region. In this function, the function no veh takes a list
of pairs containing the lengths and speeds of the vehicles in region S2 and
returns the number of vehicles in the region. This function uses the HOL
Light function LENGTH, which accepts a list of any data type and returns its
length as a positive integer.

We next formalize the mean speed in both of the regions. The mean
speed in spatial region S1 (Equation 2.7) is defined as follows:

Definition 4.12. Mean Speed in Spatial Region S1

` ∀ xv tv xh th lng spd v lng spd h.

mean speed s1 ((xv,tv,xh,th),lng spd v,lng spd h) =

flow rate s1 ((xv,tv,xh,th),lng spd v,lng spd h) /

density s1 ((xv,tv,xh,th),lng spd v,lng spd h)

The function mean speed s1 takes an element of data type ts macro traffic flow
and returns the mean speed in the spatial region.

The mean speed in the temporal region S2 is given as follows:

Definition 4.13. Mean Speed in Temporal Region S2

` ∀ xv tv xh th lng spd v lng spd h.

mean speed s2 ((xv,tv,xh,th),lng spd v,lng spd h) =
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flow rate s2 ((xv,tv,xh,th),lng spd v,lng spd h) /

density s2 ((xv,tv,xh,th),lng spd v,lng spd h)

In order to ensure the correctness and soundness of our definitions, we
use them to verify a couple of properties representing some important char-
acteristics of the macroscopic model. The first property deals with the case
when length of all of the vehicles is the same then the relative occupancy in
the spatial region S1 is equal to the length times the density of vehicles in
the region. The second property captures the same characteristic under the
same assumption for the vehicles in the temporal region S2.

We verify the first property as the following HOL Light theorem:

Theorem 4.1. Relationship of the Relative Occupancy and Density in
Spatial Region S1

` ∀ xv tv xh th lng spd v lng spd h c.

∼NULL lng spd v ∧ &0 < SND xv - FST xv ∧
&0 < (SND tv - FST tv) ∧ ∀ i. EL i (l list lng spd v) = c

⇒ rel occ s1 ((xv,tv,xh,th),lng spd v,lng spd h) =

c ∗ density s1 ((xv,tv,xh,th),lng spd v,lng spd h)

The variable lng spd v represents the list of pairs having lengths and veloc-
ities of the vehicles, whereas, xv and tv represent the starting and ending
points of the length (∆X) and width (dT ) of the spatial region, respectively.
The first assumption ensures that the list lng spd v is not empty. The next
two assumptions guarantee that each of the length and width of the region
are always positive, as these are the distance and time. The last assumption
represents the condition that the lengths of all the vehicles is same. The con-
clusion of the theorem describes the relationship of the relative occupancy
to the density of the vehicle.

The reasoning process of Theorem 1 is primarily based on the definitions
of the functions rel occ s1 and density s1, and a lemma that says if all the
elements of a list are same, i.e., equal to some constant c, then the summation
of this list is equal to c times the length of the list.

Lemma 1. Summation of the List having same element c is equal to c
times length of the list
` ∀ c L. ∼(NULL L) ∧ (∀ i. EL i L = c)

⇒ sum (1..LENGTH L) (λi. EL (i - 1) L) = &(LENGTH L)

∗ c
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Similarly, the second property depicting the relationship of the relative
occupancy with the density in temporal region S2 is given by the following
theorem:

Theorem 4.2. Relationship of the Relative Occupancy and Density in
Temporal Region S2

` ∀ xv tv xh th lng spd v lng spd h c.

∼(NULL lng spd v) ∧ &0 < SND th - FST th ∧
&0 < SND xh - FST xh ∧ (∀ i. FST (EL i lng spd h) = c)

⇒ rel occ s2 ((xv,tv,xh,th),lng spd v,lng spd h) =

c ∗ density s2 ((xv,tv,xh,th), lng spd v, lng spd h)

The variable lng spd h represents the list of pairs having lengths and veloc-
ities of the vehicles, whereas, xh and th represent the starting and ending
points of the length (∆T ) and width (dX) of the temporal region, respec-
tively. All the assumptions of this theorem are same as that of Theorem 4.1,
but in the context of the temporal region. The conclusion of the Theorem 4.2
describes the relationship of relative occupancy with the density of the vehi-
cles. The verification process of this theorem is similar to the one of Theorem
4.1 and more details can be found in the source code of the formalization [33].

4.2 Formalization of Shockwave

For the shockwave analysis, we have modeled a single region as a pair ((q, k),
v), where the first element itself represents a pair i.e., q and k represent the
flow rate and density and the second element depicts the shockwave speed,
respectively. All these parameters are real-valued, i.e., q, k, v ∈ R. For
example, traffic flow of 2000 veh/hr, 80 veh/km density and shockwave speed
of 1 km/hr on a highway is represented as ((2000, 80), 1). Consequently all
the regions generating the shockwaves (Fig. 2.2) can be individually modeled
using a list of regions. Then the multiple shockwaves, shown in Fig. 2.3,
modeled from the pairs of regions, are added for all the regions shown in
Fig. 2.2. To simplify the reasoning process about shockwave phenomenon,
we encode the above information using the three type abbreviations in HOL
Light, namely, ptrgn, sw and sw d as follows:

Definition 4.14. Macroscopic Model Datatype for Shockwave Analysis
new type abbrev "ptrgn", :(real × real) × real

new type abbrev "sw", :((ptrgn)list × (real × real))

× (num × num)
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new type abbrev "sw d", :((sw)list × (real × real))

where the first element of sw is itself a pair, in which the first element repre-
sents the list of the regions. The second pair of sw is a pair (real × real)

representing time points corresponding to start and end of a shockwave. Sim-
ilarly, the second element of sw is also a pair (num x num), representing the
indices of the two adjacent regions as shown in Fig. 2.2.

Similarly a shockwave regional model sw d is a pair, which models the
dynamic behaior of all the shockwaves in an entire area, as shown in Fig.
2.3. The first element of sw d is a list of sw elements and the second element
having data type real × real, shows the initial and final density points of the
area under consideration. Consequently the following data type would be
able to model the dynamic behavior for the area of observation on a road or
highway as a composition of shockwave’s elements, i.e., flow, density, region’s
index and density range with multiple regions depicted in Fig. 2.2.

Definition 4.15. Point list in the Regions
` ∀ p. pt list p = FST(FST p)

The function pt list:(sw → (ptrgn)list) accepts a variable of data type
sw and returns the first element of the first pair of variable, i.e., (ptrgn)list.
The returned element is itself a list of points and each point in the list
represents the flow rate, density and shockwave speed in one region.

Definition 4.16. Time Range
` ∀ p. time p = SND(SND(FST p)) - FST(SND(FST p))

The function time:(sw → real) accepts a variable of data type sw and
returns the difference of the second element with the first part of the pair
(data type: sw), which represents the considered time length for a shockwave
in the area of consideration.

Definition 4.17. First Index of Point from Points/Regions List
` ∀ p. ind m p = FST(SND p)

The function m:(sw → num) accepts a variable of data type sw and
returns the index of the first region for the shockwave considered in the area
of consideration.
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Definition 4.18. Seond Index of Point from Points/Regions List
` ∀ p. ind n p = SND(SND p)

The function n:(sw → num) accepts a variable of data type sw and
returns the index of the second region for the shockwave considered in the
area of consideration.

Definition 4.19. Average Flow Rate of one Point/Region
` ∀ t. flow rate t = FST(FST t)

The function flow rate:(ptrgn→ real) accepts an element of data type
ptrgn and returns the first element of the first pair of a variable, i.e., the
average flow rate of the vehicles.

Definition 4.20. Average Density of one Point/Region
` ∀ t. density t = SND(FST t)

The function density:(ptrgn → real) accepts an element of data type
ptrgn and returns the second element of the first pair of a variable, i.e., the
average density of the vehicles.

Definition 4.21. Shockwave Speed associated with one Point/Region
` ∀ t. shock wv t = SND t

The function shock wv:(ptrgn → real) accepts a variable of data type
ptrgn and returns the second element of the pair, i.e., the shockwave speed
corresponding to underlying region.

Definition 4.22. Number of vehicles crossing line(n) from Region
Rn−1 (during some time period ∆t is
` ∀ p n. n crossing p n =

(( flow rate (EL n (pt list p)) / density (EL n (pt list p)) -

shock wv (EL n (pt list p))) * density (EL n (pt list p)))

* time p

The function n crossing:((sw num) → real) accepts two variables of
data types sw and num, respectively, and returns the number of vehicles
crossed to or from the boundary of the n region with index n (according
to Equations 2.17 and 2.18). Where flow rate/density represents v and
shock wv represents vw.
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Definition 4.23. List Containing the shockwaves of all of the Areas
` sw list [ ] = [ ] ∧
sw list (CONS h t) =

CONS (shock wv (EL (n h) (pt list h)) * time h) (sw list t)

The function sw list:((sw)list→ real(list)) accepts an element of data
type (sw)list and multiplies each element of the list with time (the required
time length of the shockwave to be considered for the analysis) and then
returns the new list of real values. This represents the space regions in
the time space diagram or a shockwave over a time length according to the
shockwave analysis [27].

Definition 4.24. Summation of the Shockwaves
` ∀ L. sum sw L =

sum (1..LENGTH L) (λi. EL (i - 1) (sw list L))

The function sum sw:((real)list → real) accepts a list of real numbers
and returns a real number, i.e., the shockwave sums in the required time
lengths according to shockwave analysis [27].

Next, we use the above-mentioned formalization for the verification of
shockwave equation [6, 28, 30], which elaborates the average speed shift or
speed change between two adjacent regions in terms of average flow rates
and densities in those regions.

Theorem 4.3. Shockwave Speed Verification in two Regions Rm and
Rn

` ∀ p.

n crossing p (ind n p) = n crossing p (ind m p) ∧
∼(density (EL (ind n p) (pt list p)) =

density (EL (ind m p) (pt list p))) ∧
∼(density (EL (ind n p) (pt list p)) = &0) ∧
∼(density (EL (ind m p) (pt list p)) = &0) ∧
shock wv (EL (ind n p) (pt list p)) =

shock wv (EL (ind m p) (pt list p)) ∧ &0 < time p

⇒ shock wv (EL (ind n p) (pt list p)) =

(flow rate (EL (ind n p) (pt list p)) -

flow rate (EL (ind m p) (pt list p))) /

(density (EL (ind n p) (pt list p)) -

density (EL (ind m p) (pt list p)))
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The variable p is a pair having data type sw, representing a list of points
in regions, i.e, indices for the list of points in regions and the time interval, to
compute a single shockwave, respectively. The first assumption ensures that
the number of vehicles crossing (Defintion 4.22) from one region (Equation
4.17) would be the same as to the other region’s incoming number of vehicles
crossing (Equation 4.18) from the rear adjacent boundary, according to the
universal law of conservation. The next assumption describes that the den-
sities in both regions are not same and thus making them separate regions.
The next assumption models the conditions that the densities of vehicles in
both of the considered regions are non-zero. The last assumption ensures
that the considered time interval is not negative. Finally, the conclusion of
this theorem describes the relationship of the shockwave with flow rates and
densities in any two regions.

The reasoning process of Theorem 4.3 is primarily based on the defini-
tions of the functions n crossing, flow rate, density, pt list, ind m and
ind n and a lemma that ensures that the inverse of all non-zero real num-
bers would also be a non zero quantity and another lemma that describes
the cross multiplication of four real numbers. This theorem and the rest of
the theorems verified in the thesis can be found at [33].

We formalize the queue size/number of vehicles via an input-output anal-
ysis (Equation 2.14) as the following HOL Light defintion:

Definition 4.25. Queue Size (Number of Vehicles) via Input-output
Analysis
` ∀ p . n io p = (flow rate (EL ind m (pt list p)) -

flow rate (EL ind n (pt list p))) * time p

The function n io:(sw → real) accepts an element of data type sw and
returns a real number, which is the number of vehicles in a region.

In order to obtain the number of vehicles in n regions, we write the
following HOL Light function:

Definition 4.26. Queue Size for n Regions via Input-output Analysis
` io list [ ] = [ ] ∧
io list (CONS h t) = CONS ((n io h) (io list t))

The function io list:((sw)list→ real list) accepts a list of the elements
of datatype sw, and a list with each of its element as a real number, and its
each element is the number of vehicles in any region.
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Definition 4.27. Summation of the number of vehicles via
Input-output analysis
` ∀ L. sum io L =

sum (1..LENGTH L) (λi. EL (i - 1) (io list L))

The above function sum io:((sw)list→ real) accepts sw list and returns
the total number of vehicles in all the regions, i.e., the sum of the number of
vehicles via input-output analysis according to Equation 2.16.

Next, in order to formalize Equation 2.15, we first model a single term,
i.e., for n = 1, as the following HOL Light definition:

Definition 4.28. Number of Vehicles in a Single Region
` ∀ r. sw rgn r =

--(shock wv (EL (ind n (HD(FST r))) (pt list (HD(FST r))) *

time (HD(FST r)) - sum sw (TL(FST r))) *

(SND(SND r) - FST(SND r))

The function sw rgn:(sw d → real) accepts an element of data type sw d

and returns the number of vehicles in a single region via shockwave analysis.
In order to obtain the number of vehicles in n regions, we write the

following HOL Light function:

Definition 4.29. Queue Size (Number of Vehicles for n Regions) via
Shockwave Analysis
` sw rgn list [ ] = [ ] ∧
sw rgn list (CONS h t) = CONS (sw rgn h) (sw rgn list t)

The function sw rgn list:((sw d)list→ (real)list) accepts an (sw d)list

and returns a list containing the number of vehicles in n regions. It uses
sw rgn (Definition 4.29) to obtain the number of vehicles in a single region.

In order to obtain the summation of shockwave in an entire area, we
need the to sum up of the individual accumulative shockwaves effect in the
individual regions.

Definition 4.30. Sum of the Regional List
` ∀ L. sum sw rgn L =

sum (1..LENGTH L) (λ i. EL (i - 1) (sw rgn list L))
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This function sum sw rgn:((sw d)list → real) accepts an sw d list and
returns the total number of vehicles in all the regions, i.e., the sum of the
number of vehicles via shockwave analysis.

The formalization presented in this chapter took about 500 lines of code
and 50 man-hours. All the verified theorems are of generic nature as all
the variables are universally quantified and can be specialized to obtain the
formal analysis of any transportation system.



Chapter 5

Case Studies

In order to illustrate the utilization and effectiveness of our proposed frame-
work, we formally analyze the German freeway by verifying its foremost
property depicting the average vehicle flow in different lanes [32]. We also
present the formal shockwave and input-output analysis and consistency be-
tween both of these analyses [27].

5.1 German Freeway

We utilize our formalization, presented in Chapter 4.1, to formally model and
verify some vital properties of a German freeway macroscopic model [32].
The traffic flow pattern on the German freeway’s A8-East from Munich to
Salzburg is shown in Fig. 5.1.

There are three traffic lanes on this freeway as shown in Fig. 5.1. In this
case study, we consider two, three and four vehicles traveling on lanes 1, 2
and 3 of the freeway, respectively. Based on these parameter the macroscopic
traffic flow model for the first lane is given by the following definition:

Definition 5.1. Macroscopic Model of Lane 1
` ∀ xv tv xh th L11v V11v L12v V12v L11h V11h L12h V12h.

german freeway lane 1 xv tv xh th L11v V11v L12v V12v

L11h V11h L12h V12h =

(xv,tv,xh,th),[L11v,V11v; L12v,V12v],[L11h,V11h;

L12h,V12h]

where xv, tv, xh and th are the pairs containing the starting and ending
points of the lengths and widths of the spatial and temporal regions, respec-
tively. Similarly, Lijv and Lijh represent the length of the jth vehicle in

28
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Figure 5.1: German Freeway [32]

the ith lane in the spatial and temporal regions, respectively, whereas Vijv

and Vijh represent the speed of the jth vehicle in the ith lane in the spatial
and temporal regions, respectively. The function german freeway lane 1 ac-
cepts all of these parameters and returns the time space macroscopic model
of the traffic flow on Lane 1 of the German freeway.

Similarly, the following definitions provide the macroscopic models of traf-
fic flow for Lanes 2 and 3.

Definition 5.2. Macroscopic Model of Lane 2
` ∀ xv tv xh th L21v V21v L22v V22v L23v V23v L21h V21h

L22h V22h L23h V23h.

german freeway lane 2 xv tv xh th L21v V21v L22v V22v L23v

V23v

L21h V21h L22h V22h L23h V23h = (xv,tv,xh,th),

[L21v,V21v;

L22v,V22v; L23v,V23v],[L21h,V21h; L22h,V22h; L23h,V23h]

Definition 5.3. Macroscopic Model of Lane 3
` ∀ xv tv xh th L31v V31v L32v V32v L33v V33v L34v V34v

L31h V31h L32h V32h L33h V33h L34h V34h.

german freeway lane 3 xv tv xh th L31v V31v L32v V32v L33v
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V33v

L34v V34v L31h V31h L32h V32h L33h V33h L34h V34h =

(xv,tv,xh,th), [L31v,V31v; L32v,V32v; L33v,V33v;

L34v,V34v],

[L31h,V31h; L32h,V32h; L33h,V33h; L34h,V34h]

Our next step is to formally verify the lane-averaged vehicle flow of the
considered German freeway, which is given by the following theorem:

Theorem 5.1. Lane-Averaged Mean Velocity of the German Freeway
` ∀ xv tv xh th L11v V11v L12v V12v L11h V11h L12h V12h L21v

V21v L22v V22v L23v V23v L21h V21h L22h V22h L23h V23h L31v V31v

L32v V32v L33v V33v L34v V34v L31h V31h L32h V32h L33h V33h L34h

V34h.

&0 < SND th - FST th ∧ &0 < SND xh - FST xh ∧ L = 3

⇒ sum (1..L) (λ i. EL (i - 1)[

flow rate s2 (german freeway lane 1 xv tv xh th

L11v V11v L12v V12v L11h V11h L12h V12h) / &L;

flow rate s2 (german freeway lane 2 xv tv xh th L21v V21v

L22v V22v L23v V23v L21h V21h L22h V22h L23h V23h) / &L;

flow rate s2 (german freeway lane 3 xv tv xh th L31v V31v

L32v V32v L33v V33v L34v V34v L31h V31h L32h V32h L33h

V33h

L34h V34h) / &L]) = &9 / (&L ∗ (SND th - FST th))

where the first two assumptions ensure that the length and width of the
temporal region are positive, as they represent time ∆T and distance dX,
respectively. The last assumption represents the number of lanes in the
freeway. The conclusion of Theorem 5.1 represents the lane-averaged mean
velocity of the freeway. The proof process starts by rewriting with the def-
initions of the functions german freeway lane 1, german freeway lane 2,
german freeway lane 3 and density s2. Then the goal is verified using
some properties from the list theory and the sum function and some arith-
metic reasoning [33].

5.2 Formal Input-output and Shockwave Anal-

yses and their Consistency

We use our formalization of shockwave, presented in Chapter 4.2, to formally
verify the queue size/number of vehicles based on both the input-output and
shockwave analysis [27]. The input-output model (also called cumulative



CHAPTER 5. CASE STUDIES 31

arrival and departure model) is commonly used to describe traffic congestions
on highways. Conventionally, the queue size at any time can be measured
by the difference between the cumulative arrival and the departure curves
(shown in the Fig. 5.3). In the same way, shockwave analysis keeps track
of the queue propagation, discharging and dissipation. The queue size is
measured by the product of the queue length and density at any time via
Shockwave analysis (Fig. 5.3). The difference between these two analyses is
that the input-output analysis keeps track of queue length and also travel
time by considering the time dimensions only unlike the shockwave analysis,
which considers both dimensions, i.e., time and density.

The traffic flow patterns for the considered scenario are shown in Figs.
5.3 and 5.4 indicating the changes in arrival and discharging flow rates, where
a queue is considered as a lane or sequence of vehicles that are waiting for
their turn to be attended. A region where the vehicles experience bottleneck
or some obstructions on some highway are called high dense regions. The
upstream region is considered along the direction of traffic flow is an area
before the point of observation and downstream region is formed after the
point of observation. Considered the scenario depicted in Fig. 5.2, having
an upstream density and flow rate of qa and ka and a downstream flow and
density of qc and kc at one time instant. After some time, i.e., at time t1 of
Fig. 5.3, congestions is observed. As a result, the density and flow rate in
the arrival region gets disturbed due to congestions in the upcoming region
(capacity) and thus a new region is formed having flow qa′ and density ka′ .

Then, at the next time instant, when the queue starts dissolving then the
discharging (congestion distortion) rate is introduced in the process. Fig.
(5.4) shows the comparative sketches for the change of queue dissolving rates
for the input-output model and the shockwave analysis. Whereas, at time
t1, another boundary or releasing wave (shockwave), i.e., vp (due to partial
removal of incident) occurs for time t1 → t2. After time instant t2, when vp
reaches the farthest end of the the queue, another wave vr is formed (Fig.5.4),
due to the introduction of a new Region Rr (Fig. 5.2) in the process, and
terminates until the complete removal of incident/congestion till time td as
shown in Fig. 5.4.

In order to illustrate the effectiveness of our proposed formalization (Sec-
tion 4.2), we present the formal input-output and shockwave analysis of a
highway considering three regions as shown in Fig. 5.2. Moreover, we prove
the consistency of both these analyses by verifying that the number of vehi-
cles verified in both cases, i.e., via input-output and shockwave analysis are
same for each of the region.

For time interval t0 → t1 (Fig. 5.3), congestion propagates upstream and
the queue size can be described by the input-output and shockwave analysis.
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Changes in flow rate in the upstream region is called a change in the arriving
demand. Then at t1, the arriving flow rate is reduced to qa′ , (or qa2) due
to the accumulation of vehicles in the arrival region. The queue size for the
change in arriving demand for two time intervals can be represented, using
Equation 2.16, as follows:

Nio =
2∑

i=1

(qmi
− qni

)∆ti (5.1)

Nio = (qa − qc)t1 + (qa2 − qc)(t− t1) (5.2)

We formally verify the queue size for the case of change in arriving demand
via input-output analysis as the following HOL Light theorem:

Theorem 5.2. Queue Size for Change in Arriving Demand via
Input-output Analysis
` ∀ vw vw2 qa qa2 qc ka ka2 kc t1 t.

⇒ sum io [

([(qa ,ka), vw; (qc,kc), vw], &0, t1), 0,1;

([(qa2,ka2),vw2; (qc,kc), vw2], t1, t ), 0,1]

= (qa - qc) * t1 + (qa2 - qc) * (t - t1)
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where vw and vw2 represent the shockwave speeds before and after the change
in arrival flow, respectively. Similarly, qa, qc, qa2 and ka, kc, ka2 rep-
resent flow rates and densities in approaching/arrival, capacity and changed
approaching state, respectively. The reasoning process of Theorem 5.2 is
based on rewriting with Definition 4.27, properties of HOL Light function
sum along with some arithmetic reasoning.

In the same way, Equation 2.15 for the arrival/approaching change, as
shown in Fig. 5.3, for shockwave analysis is mathematically expressed as:

Nsw =
2∑

j=1

−(vwj
∆tj −

0∑
i=0

vwi
∆ti)∆kj (5.3)

Nsw = −vw1(t1 − t0) + vw2(t− t1) (5.4)

Similarly, we verify the queue size as described in the above equation for
the case of change in arriving time via shockwave analysis as the following
HOL Light theorem:

Theorem 5.3. Queue Size for Change in Arriving Demand via
Shockwave Analysis
` ∀ vw vw2 qc qa qa2 ka kc ka2 t1 t.

∼(ka = kc) ∧ ∼(ka2 = kc) ∧
∼(ka = &0) ∧ ∼(ka2 = &0) ∧ ∼ (kc = &0 ) ∧
(∀ p. n crossing p (ind n p) = n crossing p (ind m p)) ∧
(∀ p. shock wv (EL (ind n p) (pt list p)) =

shock wv (EL (ind m p) (pt list p))) ∧
(∀ p. &0 < time p)

⇒ sum sw rgn [

[([(qa, ka ), vw; (qc, kc), vw], &0, t1), 0, 1], ka

,kc;

[([(qa2, ka2), vw2; (qc, kc), vw2], t1, t), 0, 1], ka2,

kc]

= (qa - qc) * t1 + (qa2 - qc) * (t - t1)

where vw and vw2 represent the shockwave speeds before and after the change
in arriving flow (Fig. 5.3), respectively. Similarly, qa, qc, qa2 and ka, kc,

ka2 represent flow rates and densities in arrival, capacity and changed ar-
rival regions, respectively. The first two assumptions of Theorem 5.3 ensure
that the densities in both regions are not same. The next three assumptions
model the conditions that the densities of vehicles in the considered three
regions are non-zero. The next assumption says that the number of vehi-
cles crossing (Definition 4.22) from one region’s front boundary (Equation
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4.17) would be the same as to the other adjacent region’s number of vehicles
crossing from the rear adjacent boundary and is thus according to the uni-
versal law of conservation. The next assumption models the condition that
the shockwave speed in both regions are same. The last assumption models
the non-negativity condition for the time interval. Finally, the conclusion
of Theorem 5.3 presents the number of vehicles (queue size) for change in
arrival demand via shockwave analysis. The reasoning process for Theorem
5.3 is based on Definition 4.30, properties of HOL Light’s function sum along
with some real arithmetic reasoning. More details about its proof can be
found at [33].

Then at the next time instant, the arriving flow rate reaches its maximum
value and the discharging flow rate in the downstream region starts changing.
Thus leads to two cases, i.e., first for the queue propagation when the queue
size increases and the second for the queue dissipation when the queue size
decreases. This phenomena is shown in the Fig. 5.4.

Changes in queue size, such as the introduction of discharging rate in the
process, can be represented as follows:

Nio =
2∑

i=1

(qmi
− qni

)∆ti (5.5)

Nio = (qa − qc)t1 + (qa − qr)(t− t1) (5.6)

The queue size (number of vehicles) for the case of queue propagation via
input-output analysis is formalized as follows:

Theorem 5.4. Queue Size for the Case of Queue Propagation via
Input-output Analysis
` ∀ vw vp qa qc ka kc kr t1 t.

⇒ sum io [

([(qa, ka), vw; (qc, kc), vw], &0, t1), 0, 1;

([(qa, ka), vp; (qr, kr), vp], t1, t), 0, 1]

= (qa - qc) * t1 + (qa - qr) * (t - t1)

where all the input variables are the same as in Theorem 5.2 except kc and kr,
which represent the densities in the capacity and the recovery regions (Fig.
5.4), respectively. Similarly vp is the shockwave speed. The verification
process of the above theorem is similar to the one for Theorem 5.2, and its
details can be found in [33].
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The queue size for the case of queue propagation via shockwave analysis,
is mathematically expressed as:

Nsw =
2∑

j=1

−(vwj
∆tj −

1∑
i=0

vwi
∆ti)∆kj (5.7)

Nsw = −{vw(t− t0)− vp(t− t1)}+−vp(t− t1) (5.8)

Similarly, we verify the queue size as described in the above equation for
the case of change in propagation via shockwave analysis as the following
HOL Light theorem:

Theorem 5.5. Queue Size for the case of Queue Propagation via
Shockwave Analysis
` ∀ vp vw qa qc qr ka kc kr t1 t.

∼(ka = kc) ∧ ∼(kc = kr) ∧
∼(ka = &0) ∧ ∼(kc = &0) ∧ ∼(kr = &0) ∧
(∀ p. n crossing p (ind n p) = n crossing p (ind m p)) ∧
(∀ p. shock wv (EL (ind n p) (pt list p)) =

shock wv (EL (ind m p) (pt list p))) ∧
(∀ p. &0 < time p)

⇒ sum sw rgn [[

([(qc, kc), vp; (qr, kr), vp], t1, t), 0, 1], ka, kr; [

([(qa, ka), vw; (qc, kc), vw], &0, t), 0, 1;

([(qc, kc), vp; (qr, kr), vp], t1, t), 0, 1], ka, kc]

= (qa - qc) * t1 + (qa - qr) * (t - t1)

where vw and vp represent the shockwave speeds before the propagation
starting in arrival region and after the propagation introduced at time t1
(Fig. 5.4), respectively. vw is the shockwave between arrival and capacity
regions and vp is between capacity and recovery regions (Fig. 5.2). Simi-
larly, qa, qc, qr and ka, kc, kr are representing flow rates and densities
in approaching/arrival, capacity and recovery regions, respectively. All the
assumptions for Theorem 5.5 are the same as for the the Theorem 5.3 and
also describing the same conditions. Similarly, the verification process for
the above theorem is the same as that of Theorem 5.3.

The conclusions of both the theorems, i.e., Theorems 5.4 and 5.5, show
that the queue size in the case of input-output and shockwave analyses are
same, which means both analyses are consistent.

The releasing wave vp reaches at the maximum possible end of the queue
at time t2. This is where the recovery of the normal operation of the highway
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begins i.e., the congestion of the queue starts dissipating (this phenomena
is called queue dissipation) and another wave vr starts to grow as a result
of discharging flow qr (Fig. 5.4). This emerging wave vr moves downstream
until the complete removal of the queue congestion at t, and the road way
section returns to its normal operating condition.

The queue size via Equation 2.16 for the case of queue dissipation via
input-output analysis is represented as follows:

Nio =
3∑

i=1

(qmi
− qni

)∆ti (5.9)

Nio = (qa − qc)t1 + (qa − qr)(t2 − t1) + (qa − qr)(t− t2) (5.10)

Theorem 5.6. Queue Size for the Case of Queue Dissipation via
Input-output Analysis
` ∀ vw vp vr qa qc qr ka kc kr t1 t.

⇒ sum io [

([(qa, ka), vw; (qc, kc), vw], &0, t1), 0, 1;

([(qa, ka), vr; (qr, kr), vr], t1, t2), 0, 1;

([(qa, ka), vr; (qr, kr), vr], t2, t ), 0, 1] =

(qa - qc) * t1 + (qa - qr) * (t2 - t1) + (qa - qr) * (t -

t2)

The verification process for the above theorem is very similar to that of
Theorems 5.2 and 5.4.

Finally, we verify the queue size for the case of queue dissipation via
shockwave analysis as the following modified Equation 2.15:

Nsw =
2∑

j=1

−(vwj
∆tj −

0∑
i=0

vwi
∆ti)∆kj (5.11)

Nsw = [−vw(t2 − t0) +−vr(t− t2)](kr − ka) (5.12)

Theorem 5.7. Queue Size for the Case of Queue Dissipation via
Shockwave Analysis
` ∀ vp vw vr qa qc qr ka kc kr t1 t2 t.

∼(ka = kc) ∧ ∼(kc = kr) ∧ ∼(ka = kr) ∧
∼(ka = &0) ∧ ∼(kc = &0) ∧ ∼(kr = &0) ∧
(∀ p. n crossing p (ind n p) = n crossing p (ind m p)) ∧
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(∀ p. shock wv (EL (ind n p) (pt list p)) =

shock wv (EL (ind m p) (pt list p))) ∧
(∀ p.&0 < time p) ∧
sw rgn ([([(qa ,ka), vw; (qc,kc), vw], (&0, t2)), 0, 1], ka,

kr) =

sum sw rgn [

[([( qc ,kc), vp; (qr, kr), vp], t1, t2), 0, 1], ka, kr;

[([((qa ,ka), vw); (qc, kc), vw], (&0, t2)), (0, 1);

([((qc ,kc), vp); (qr, kr), vp], t1, t2), 0, 1], ka, kc]

⇒ sum sw rgn [[

([(qa ,ka), vw; (qc, kc), vw], (&0, t2)), (0, 1)], ka,

kr;

[([(qa ,ka), vr; (qr, kr), vr], (t2, t)), (0, 1)], ka,

kr] = (qa - qc) * t1 + (qa - qr) * (t2 - t1)

+ (qa - qr) * (t - t2)

where the first nine assumptions of the above theorem are the same as that
of Theorems 5.3 and 5.5. While the last assumption describes that the queue
size is already evaluated before time t2 (in the last time interval) in Theorem
5.5. Finally, the conclusion of the above theorem represents the queue size
in the case of queue dissipation.

The verification process of this theorem is similar to Theorems 5.3 and 5.5.
More details about whole of the formalization, presented in this chapter, can
be found at [33]. Again, the conclusions of both theorems, i.e., Theorems 5.6
and 5.5, show that the queue size in the case of input-output and shockwave
analyses are the same, which means both analyses are consistent.

The formal analysis presented, in this chapter, took about 1500 lines of
code and 120 man-hours. Moreover, the straightforward proof scripts for
the properties, verified in this chapter, clearly indicate the usefulness of our
foundational formalization presented in Chapter 4 of this thesis. Our for-
malization may be utilized to formally reason about may other macroscopic
model related properties and the results would be guaranteed to be correct
due to the inherent soundness of theorem proving. Moreover, our theorems
are generic in nature, i.e., all the variables in these theorems are universally
quantified. To the best of our knowledge, no other computer-based analysis
technique for traffic flow problems can provide such benefits.



Chapter 6

Conclusions

In this thesis, we propose to use higher-order-logic theorem proving to an-
alyze macroscopic models of traffic flow. Due to the high expressiveness of
the underlying logic, we can formally model the continuous components of
macroscopic models while capturing their true behavior and the soundness
of theorem proving guarantees correctness of results. We formally model
the basic parameters of a transportation system, which include density, flow
rate, speed, relative occupancy and shockwave and used our formalization
to formally analyze a German freeway and a commonly used highway, by
performing the input-output and shockwave analyses. The main challenge
in the proposed approach is the enormous amount of user intervention re-
quired due to the undecidable nature of the logic. We propose to overcome
this limitation by formalizing the foundational mathematical theories and
core concepts of traffic flow theory so that these available results can be
built upon to minimize user interaction. The case studies demonstrated the
practicability of this idea.

In future, we plan to develop the formal reasoning support for the mi-
croscopic models of traffic flow theory. Modeling of the equations, capturing
the dynamics of the microscopic model, would include the formal model-
ing of many human characteristics as well, which makes the exercise a bit
complex [21].
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