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ABSTRACT 

 

The human immune system generates high-affinity antibodies against pathogens 

and diseases. These antibodies serve as key therapeutic and diagnostic tools for disease 

classification and treatment. Traditional approaches like display technologies can generate 

potential antibody leads, but they come with challenges such as expressibility, viscosity, 

immunogenicity, and pharmacokinetics.. The recent advancements in AI have led to the 

foundation of the generative AI, which has also impacted the field of bioinformatics. The 

field of generative AI like transformer-based NLP models have significantly improved the 

development of better computational tools in protein and antibody design. These models 

can leverage protein and antibody sequence information to reduce the need for resource-

intensive display technology experiments. However, existing models are often trained on 

multi-species datasets, which can introduce species-specific biases and limit their ability 

to generate diverse human antibodies. Here, this study proposed; AbSynth, a class of 

transformer-based antibody language models exclusively trained on 1 million human 

antibodies sequences dataset to improve generalizability in human antibody design. 

AbSynth models were tested on the natural antibody 1E6J to improve binding affinity. Of 

the 400 generated antibodies, 10 showed significant improvement in binding affinity.. 

Furthermore, AbSynth-generated sequences exhibited 96% humanness in heavy chain 

sequences under low sampling parameters, demonstrating its potential as an effective tool 

for designing and isolating diverse, humanized antibody candidates. 

Keywords: generative AI, antibody, protein design, binding affinity, transformers.
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CHAPTER 1: INTRODUCTION 

The first chapter introduces the human immune system, exploring its various facets 

including innate and adaptive immunity. It highlights the development of antibodies 

through diverse methodologies while also shedding light on recent breakthroughs in Deep 

Learning and the emergence of Generative Artificial Intelligence, particularly in the realm 

of Protein Language Modeling. 

1.1 Human Immune System 

            The human immune system is a complex network of cells, tissues, and molecules 

that plays a vital role in protecting the body against pathogens, such as viruses, bacteria, 

fungi, and parasites [1]. It consists of various components and functions to detect, identify, 

and neutralize invading pathogens while distinguishing them from the body's cells and 

tissues. The principal role of the immune system is to protect the host against invasion by 

infectious agents and other foreign substances. The immune system achieves this by 

recognizing and responding to a wide range of antigens, including pathogens and abnormal 

cells. The immune system is composed of two main defenses: innate immunity and 

adaptive immunity. Innate immunity is the first line of defense against pathogens and is 

antigen independent [2]. It is an immediate defense mechanism that is activated 

immediately or within hours of encountering an antigen. Innate immunity is characterized 

by its rapid response and lack of immunologic memory, meaning it does not "memorize" 

specific pathogens for future encounters. These innate immune responses include physical 

barriers like the skin and mucous membranes, as well as immune cells such as neutrophils, 

macrophages, and monocytes. Furthermore, soluble factors like cytokines and complement 
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proteins also contribute to the innate immune response [3]. In contrast, adaptive immunity 

is a more specialized and specific immune response that develops over time. This type of 

immunity is antigen-dependent and has memory, meaning it can recognize and remember 

specific pathogens for future encounters. Adaptive immunity involves the activation of 

lymphocytes, specifically B cells and T cells, which produce antibodies and mediate 

cellular immune responses, respectively [2]. Innate and adaptive immune responses work 

together to provide a comprehensive defense against pathogens [1]. A healthy immune 

system can distinguish between the body's self-components and those of foreign origin [3]. 

It can effectively detect and neutralize invading pathogens, while also distinguishing them 

from the body's cells and tissues. 

1.1.1 Innate Immunity 

The innate immune system serves as the first line of defence against pathogens and is 

characterized by its rapid response and lack of immunological memory [4]. Upon 

encountering an antigen, innate immunity is activated to provide an immediate defence 

mechanism. This response includes physical barriers such as the skin and mucous 

membranes, which prevent the entry of pathogens into the body. In addition to physical 

barriers, innate immunity also involves various immune cells, including neutrophils, 

macrophages, and monocytes [5]. These cells play crucial roles in recognizing and 

eliminating pathogens. They can recognize conserved patterns on the surface of pathogens, 

known as pathogen-associated molecular patterns, through pattern recognition receptors. 

Through the activation of pattern recognition receptors, innate immune cells can quickly 

initiate inflammatory responses and release cytokines to recruit other immune cells to the 

site of infection. 
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1.1.2 Adaptive Immunity 

The adaptive immune response is a more specialized and specific immune response that 

develops over time [4]. It is antigen-dependent and characterized by the activation of 

lymphocytes, including B cells and T cells. B cells produce antibodies, which are proteins 

that can specifically recognize and bind to antigens [6]. These antibodies can neutralize 

pathogens, mark them for destruction by other immune cells, or activate the complement 

system to eliminate the pathogen [4]. On the other hand, T cells are involved in cellular 

immune responses. They can recognize antigens presented by infected cells and directly 

kill the infected cells or release cytokines to recruit other immune cells to the site of 

infection. Overall, the adaptive immune response provides a highly targeted and specific 

defense against pathogens 

1.2 Antibody 

Antibody plural: Antibodies, also known as immunoglobulins, are a crucial component of 

the immune system. They are Y-shaped proteins produced by B lymphocytes in response 

to the presence of foreign substances, known as antigens, in the body [7]. Antibodies play 

a vital role in humoral immunity, which is one of the two types of specific immune 

responses mediated by the adaptive immune system. The cardinal features of antibodies 

and the immune system include specificity, diversity, memory, self-limitation, and 

discrimination of self from non-self. Antibodies exhibit specificity, which refers to their 

ability to recognize and bind to specific regions on antigens known as epitopes. Antibodies 

exhibit the ability to bind directly to these epitopic proteins and ultimately neutralize the 

pathogens. 
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1.2.1 Structural Features and Properties 

The structure of antibodies is composed of two identical heavy chains and two identical 

light chains, interconnected by disulfide bonds. These chains are made up of constant 

regions and variable regions [8]. The constant regions of antibodies determine their class 

or isotype, such as IgG, IgM, IgA, IgD, and IgE. The variable regions of antibodies are 

responsible for their antigen-binding specificity and diversity. The constant region is 

termed as ‘Fc region’ and variable region is termed as ‘Fab region’ respectively. The 

constant region is responsible for mediating the biological activity or the technique 

involved to combat the binding antigen based on the Antibody’s isotype while the Fab 

region is responsible for the antibody’s specificity to bind the antigen (epitope) [9]. 

The variable regions are the crucial regions in the antibody’s characteristic specificity in 

antigen binding. The Fab regions comprise of the two identical heavy (H) and two identical 

light chains (L) that contain two variable regions (VH and VL) and small portions of 

constant regions at both heavy (CH) and light chains (CL). The variable regions are termed 

as ‘Fv’ regions. A single Fv is termed as single chain variable fragment (scFv), the scFv 

contains all the antigen-binding domains of the antibody.  Each scFv region is constituted 

by four framework regions (FR) and three complementary determining regions (CDR). The 

FRs and CDRs have both been reported in the heavy and light chains Figure 1.1. These 

have a specific occurring pattern that is same for both heavy and light chain, each scFv 

chain (light and heavy) begins with FR1 followed by CDR1 and so on [10]. 
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Figure 1.1: Antibody’s Physical Features. 

 

The FRs and CDRs, both play important role in the binding of antigen to the antibody. The 

antigen-binding activity is shown maximum by the CDRs mostly observed at the CDRH3 

position, the parts or regions of the antibody that contribute to the epitope (antigen) binding 

are termed as the paratopes. However, the FRs have been mostly shown to structurally 

support the binding activity with the antigen. The overall antigen binding and each region’s 

contribution can be ranked in such order [11]: 

𝐶𝐷𝑅3𝐻;  29% > 𝐶𝐷𝑅2𝐻;  23% > 𝐶𝐷𝑅3𝐿;  21% > 𝐶𝐷𝑅1𝐻;  10% > 𝐶𝐷𝑅1𝐿;  9%

> 𝐶𝐷𝑅2𝐿; 4%, 𝑎𝑛𝑑 𝐹𝑅 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠; 4% 
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1.2.2 Applications 

Antibodies higher specificity, strong binding to the target and effective neutralizing of the 

pathogens makes them suitable for treatments against infections, cancers, and other 

disorders. Furthermore, antibodies also bind to specific markers found on cells or organs 

making them for appropriate tool for diagnostics and laboratory experiments. Antibodies 

combat antigen in various ways that include neutralizing the microbes and toxins, 

microbes’ phagocytosis and opsonization, antibody dependant cellular cytotoxicity 

(ADCC), or in other cases complement activation. Thus, understanding the structure-

function relationships of antibodies is indispensable to develop a platform for protein 

engineering to generate functionally therapeutic antibodies [12]. Laboratory-made 

antibodies have been a better solution for therapeutic drug development, one such are 

monoclonal antibodies that are required in huge volumes of identical antibodies specific to 

a single epitope. Monoclonal antibodies can be utilized for diagnosis or treatment. They 

can neutralize pathogens or cancer cells directly, prevent the growth or aid the immune 

system in killing them. Interestingly, monoclonal antibodies have a high specificity for a 

specific epitopic target and limited cross-reactivity. Other antibodies, such as polyclonal 

antibodies, show heterogeneity in nature with higher overall affinity against the antigen 

due to the recognition of multiple epitopic targets and relatively more economical [13]. 

1.2.3 Antibody Isolation and Discovery Methods 

The conventional antibody isolation methods include in vitro display technologies that 

have been successfully employed to isolate antigen-specific antibodies with therapeutic 

properties. The important feature that enables the selection of potential antibody with the 
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desired properties is that the protein variant of the antibody is coupled with its genetic 

information and is referred to genotype phenotype coupling. There are several display 

technology platforms that are used till date, comprising mammalian surface display, 

ribosomal display, phage display and yeast surface display technology. The phage display 

being the state-of-the-art and widely used [14]. Furthermore, there is also a major 

development in the unconventional methods for antibody design and modelling. Antibody 

design workflows and pipelines have been evolving with time. These pipelines shorten the 

duration of antibody design and engineering processes due to the in-silico nature of their 

implementation. 

1.2.3.1 Display Technologies 

The display technologies were first introduced in 1985 and were first use in 1990s since 

their conception. The first display technology to be implemented was the phage display 

technology, that allowed the display of the antibodies on the surface of the bacteriophages. 

After that, several other technologies have been introduced that include yeast display, 

mammalian display, ribosome display and bacterial display (Table 1.1) [14]. These 

technologies vary in their media of antibody expression. The most used are phage display 

and yeast display.  
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Table 1.1: Antibody Display Technologies with respect to their generation methods used 

in antibody discovery. 

Display 

Technology 

Description Library 

Size 

Phage Display • Antibodies are displayed on the surface of bacteriophages. 

• Allows rapid selection and optimization of antibodies. 

1010 – 1012  

Mammalian 

Display 

• Mammalian Cells are used for the expression of antibodies. 

• Allows full-length display with correct post translational 

modifications (PTM) and fold. 

107 – 109  

Yeast Display • Antibodies are displayed in yeast cells. 

• Full-length antibodies with high-throughput discovery. 

109 

Ribosome 

Display 

• Cell-free display that relies on protein synthesis reaction of 

ribosomes; no host-cell transformation. 

• A full-length display is possible. 

1012 – 1015  

Bacterial 

Display 

• Antibodies are displayed on the outer or inner membrane of 

bacteria. 

• Fast growth but Gram-positive bacteria generate non-

human PTMs. 

1011 
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1.2.3.2 In silico Design Methods 

Antibodies are one of the most important class of proteins in terms of their therapeutic 

properties against different diseases like viral and cancers. Thus, the need for 

unconventional types of design and development techniques is crucial. Therefore, the in 

silico design methods have been getting more popularity and even reduce the need for time 

and complexity in the design and development processes. The design processes are assisted 

with the use of bioinformatics techniques like antibody numbering (annotation) through 

framework and CDR delimiting via numbering schemes, CDR modelling and structure 

prediction and refinement. Moreover, molecular docking can provide insights of the 

residues interaction that involves epitope-paratope interaction forming antigen-antibody 

complex which can provide binding affinity of the antibody [15]. Recently, the 

computational methods are gaining more popularity because of their ease of usage, speed 

and improvement in reliability [16]. The improvements in dry and wet lab technologies 

have been parallel which resulted in expansion of data generated through these methods. 

Recent expansion of data volume has created ideal case in the favour of machine learning 

and artificial intelligence applications in antibody design and engineering [17]. 

1.3 Generative Artificial Intelligence (Generative AI) 

Recent developments in computing technologies and availability of vast developer 

communities have positively impacted the progress of AI methods exponentially. 

Therefore, forming a new field of deep learning and AI called the generative AI.  

Generative AI enables deep learning models not only to predict insights from data, but it 

is being employed to generate novel data as well.  This has significantly shifted trend 
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towards the use of generative AI in problem-solving [18]. The development of 

sophisticated deep learning models has impacted on antibody design methods as well.  The 

use of deep learning in computer vision (CV) and natural language processing (NLP) 

models has increased the scope of  generative AI and deep learning to be used on much 

more complex problems such as image generation and text generation with better accuracy 

and making them life-like. Therefore, these models have been deployed in 

proteins/antibody design to achieve novel and life-like proteins with greater pace and less 

complexity. One such example is the case of AlphaFold, which is an Evoformer-based deep 

learning model that can predict protein 3D structures fast and precise [19]. Another model 

IgFold [20], that combines the contextual representation of antibodies using AntiBERTy 

[21] with the geometric deep learning to predict 3D structures of the antibodies from the  

H and L chain sequence. 
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CHAPTER 2: LITERATURE REVIEW 

 In this chapter, the review of literature with different factors involved in the process 

of antibody design and development has been provided. In the first section, the antibody 

design in terms of display technologies is discussed with its strengths and its limitations. 

The section describes display technologies for their use of antibody hits discovery and 

affinity maturation along with the complexities and resource demanding factors to achieve 

mature antibodies and the significance of antibodies in therapeutics. This is followed by 

the section of unconventional methods like Protein Language Modeling (PLM) that has 

been utilized in terms of antibody sequence design by using Large Language Models 

(LLMs) to achieve diverse, human-like and affinity matured antibodies. The overall goal 

has been to summarize the conclusions and findings of the research that has been 

undertaken. 

2.1 Display Technologies and their limitations 

The process of progressing from 'target-to-hit' is a cornerstone in antibody drug discovery, 

typically identifying several potential lead candidates through methods such as hybridoma 

screening or phage and yeast display. Despite this, optimizing these leads demands 

substantial time and expense, forming most of the preclinical development phase. This 

challenge arises from the need to simultaneously address multiple factors such as 

expression levels, viscosity, pharmacokinetics, solubility, and immunogenicity [22]. Once 

a lead is identified, further engineering becomes necessary. High-throughput methods like 

phage and yeast display enable the screening of extensive mutagenesis libraries (>1×10⁹), 

primarily improving affinity or specificity to the target antigen. However, therapeutic 
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antibodies must ultimately be expressed as full-length IgG in mammalian cells, 

necessitating subsequent optimization steps in this context [23]. Mammalian cells lack the 

ability to stably replicate plasmids, resulting in a low-throughput final development stage. 

Complex procedures for cloning, transfection, and purification limit screening to small 

libraries (~1×10³), constraining changes to minor ones like point mutations. As a result, 

solving one development issue often exacerbates another or reduces antigen binding 

entirely, complicating multi-parameter optimization [24]. 

This limited scope frequently yields antibodies with suboptimal biophysical properties for 

clinical use. Such deficiencies can lead to side effects or even drug failure. For instance, 

self-administered subcutaneous antibody injections are increasingly favored for patients 

needing frequent doses. Yet, identifying highly soluble, low-viscosity antibodies that 

maintain high biological activity remains a significant challenge [25]. A notable example 

is Pfizer's withdrawal of Bococizumab, an anti-PCSK9 antibody, from clinical trials due to 

its immunogenicity undermining long-term treatment efficacy. In contrast, Sanofi and 

Regeneron's approved antibody, alirocumab, targets PCSK9 but exhibits negligible 

immunogenic effects [26] . Machine learning applied to biological sequence data presents 

a powerful tool for enhancing protein engineering by predicting genotype–phenotype 

relationships [27]. 

This capability arises from models that map complex relationships between sequence and 

function. However, collecting high-quality training data remains a critical obstacle in 

developing accurate machine-learning models. Directed-evolution systems address this 

issue by linking biological sequence data, such as DNA, RNA, or protein, to phenotypic 



13 

 

outcomes [28]. Indeed, it has long been proposed that machine-learning models trained on 

mutagenesis library data could guide protein engineering effectively. 

2.2 Natural Language Processing 

Natural Language Processing (NLP) is a field of AI which enables machine to comprehend 

and process human language whether written or spoken, that enables computers to analyse, 

interpret and generate textual information of a given query to create human-like responses. 

NLP is a challenging task due to ambiguity, complexity and diversity in human language. 

Therefore, the initial NLP models like recurrent neural networks (RNNs) struggle with life-

like language generation tasks in many cases. The length of the text and synonymous 

meanings of the words often creates problems for RNNs that are caused by vanishing and 

exploding gradient during training [29]. Therefore, pressing the need for better models for 

NLP task can be addressed through a transformer architecture shown in Figure 2.1 which 

was introduced in a paper, “Attention is All You Need” [30]. Transformers are called large 

language models (LLMs) that have an attention mechanism, which makes them superior in 

understanding context and process longer length of the textual data and better handling at 

variable length sequences. LLMs have sophisticated text processing architecture and are 

classified into three classes: 

a. Encoder, that encodes the input sequence into contextual representations. 

b. Decoder, that decodes the encoded representation into an output sequence. 

c. Encoder-Decoder, both encoder and decoder work coherently and 

generate the output. 
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The transformers have also been utilized in protein sequence space to address various 

problems. One such example is evolutionary scale model for protein folding (ESMFold), 

which is trained on 250 million protein sequences for the purpose of protein 3D structure 

prediction. Transformers have also been deployed as an effective tool for de novo protein 

design and in many cases as a mutation tool to improve protein functions and properties by 

treating protein sequence as a text language of amino acids. [31]. 

Figure 2.1: Transformer Architecture Figure 2.1: Basic Transformer Architecture 



15 

 

2.3 Protein Language Modeling (PLM) 

The recent progress in the implementation of natural language processing techniques has 

been revolving around unsupervised pre-training through utilization of large databases that 

contain raw protein sequences that particularly are used in situations where there is no 

availability of structural data. Different studies in this field have delved into a variety of 

pre-training tasks and the subsequent applications of models. A few noticeable instances 

include the ESM family of models, AntiBERTa, IgLM models family and ProtGPT2. 

The ESM performs masked language modeling during the training and exhibited 

effectiveness in protein representation learning, predicting effects of variants, and protein 

structure modeling [31]. The AntiBERTa model is also pre-trained on masked language 

modeling which is further fine-tuned on token classification model to predict paratopes 

from the input prompt sequence. The latter models have a pre-training strategy which was 

based on autoregressive language modeling. These models have been successfully utilized 

in protein variant designs such as IgLM focuses on Antibody Sequence Infilling [32]. 

ProtGPT2, that can design de novo protein sequences using greedy search strategy, then 

selects the residues that have the highest probabilities to occur in the sequence. 

Autoregressive language models have shown the ability to generate diverse protein 

sequences that can adopt natural folds, even in cases where residue composition shows 

significant divergence [33]. Some of these generated sequences have been noted to retain 

enzymatic activity which has been reported to be comparable to the naturally occurring 

proteins. Autoregressive language models have also demonstrated their effectiveness as 

powerful zero-shot predictors of protein fitness, with performance occasionally improving 

as the scale of the model increases. 
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Language models have also been pre-trained in the antibody modeling tasks specifically 

using the masked language modeling, these models were trained on the sequences in 

Observed Antibody Space (OAS) database. One such model is AntiBERTa, which is a 

single masked language model that was trained on a corpus data of 67M sequences (with 

86 that included both heavy and light chain sequences [34]. AntiBERTa representations 

were used for the paratope prediction task from a provided prompt sequence. BioPhi 

developed by Merck, a platform based on Sapiens which is a pair of masked language 

models trained distinctly on each chain (each with 569K parameters) light and heavy. The 

heavy chain model was trained on 20M sequences of heavy chains, and the light chain 

model was trained on 19M sequences of light chains respectively, model also showed its 

effectiveness in humanization of the antibody as well [35]. Autoregressive models have 

been trained on nanobody sequences and used for library design; these models are capable 

of antibody sequence generation as well [16]. The study [36] conducted experimental 

validation on a set of nanobody sequences generated with autoregressive generative 

models, including generated CDR3 loops. The results demonstrated significant 

enhancements in viability and binding affinity of the sequences when compared with 

conventional methods, even though the generated sequences were over 1000-fold smaller. 

But the model was unidirectional, it could not directly perform well to redesign the CDR3 

loop within and required needed to be oversampled to generate sequences that matched the 

residues that followed the loop. [32] developed IgLM models family, two models were 

trained on autoregressive language modelling, one being IgLM and second IgLM-S which 

is smaller in size compared to IgLM (IgLM having 12M parameters and IgLM-S having 

1.4M parameters), the IgLM family used a bidirectional encoding method and was trained 
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on 558M sequences space including both heavy and light chain variable sequences. These 

models were able to address the limitation of oversampling. However, substantial 

computational resources were utilized to train these models on a large antibodies dataset. 

Moreover, the dataset of 558M sequences included antibody sequences from different 

organisms’ studies. Therefore, it creates potential bias problems when generating 

sequences for mice and humans that limit the ability to generate diverse humanized 

sequences. Accordingly, there is further requirement for techniques that can generate 

diverse humanized libraries of de novo antibody sequences and relevant models 

contributing to antibody design, discovery, and optimization [32]. 

2.4 Study Rationale 

The design and development of antibodies involve intricate processes that integrate both 

conventional and emerging methodologies. Display technologies, such as hybridoma 

screening and phage or yeast display, remain fundamental in identifying lead candidates 

and enhancing antibody affinity. However, these approaches are resource-intensive and 

limited in throughput, constraining the ability to optimize multiple parameters 

simultaneously. Despite their successes, challenges such as low solubility, high viscosity, 

and immunogenicity often hinder the transition of lead candidates to clinical viability. 

Innovative solutions like protein language modeling (PLM), which is a subfield of natural 

language processing (NLP) have recently emerged as promising alternatives for antibody 

sequence design. By leveraging large language models (LLMs), PLM enables the 

generation of diverse and affinity-matured antibodies that mimic natural sequences. 

Models like AntiBERTa, IgLM, and ProtGPT2 illustrate the potential of machine learning 
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to address complex sequence-function relationships, streamline optimization, and create de 

novo protein sequences with therapeutic relevance. 

While these models have demonstrated significant advancements, limitations persist. 

Issues such as dataset bias, computational resource demands, limited affinity maturation, 

and restricted humanization capabilities remain barriers to broader adoption. Addressing 

these challenges is critical to furthering the development of robust and clinically viable 

antibody libraries. 

2.5 Aims and Objectives 

The following objectives have been proposed for this study: 

• To address the limitations of display technologies by Deep Learning and Generative 

AI as a parallel assistive technology. 

• To address the limitations of unidirectional nature of Autoregressive Language 

Models. 

• To achieve data efficient and less compute-intensive trained models and automated 

protein sequence data engineering frameworks. 

• To achieve diversification in the antibody for affinity maturation towards the target 

while avoiding immunogenicity issues. 
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CHAPTER 3: METHODOLOGY 

This chapter highlights the methodology focused on the source and criteria to select and 

retrieve human antibody sequences. Also highlighting the steps to prepare the dataset  and 

tokenization method applied for unsupervised training of the antibody language models 

and formulation of antibody sequence design. Furthermore, the steps and methods used for 

validation of the generated antibody sequences and desirability analyses for the therapeutic 

criteria have been explained. 

3.1 Antibody Dataset Preparation 

The dataset was prepared to train two generative models, i.e. Masked Language Model 

(MLM) and Autoregressive Language Model (ALM). The human antibody sequences were 

retrieved from the Observed Antibody Space (OAS) [37], on 22nd  October 2022. The 

antibody sequences were checked for any sequencing errors as directed by OAS. Sequences 

were annotated using AbRSA: which is a numbering tool used for antibody numbering and 

CDRs delimiting [38]. To annotate CDRs, Chothia numbering scheme was applied. The 

sequences were required to have more than 15 residues before CDR1 and about 8-10 

residues following CDR3. The sequences were filtered out to contain 6-10 residues in 

CDR1, 2-8 residues in CDR2 and CDR3 containing 10-35 residues. The entire set of 

sequences comprised of 1.03M unique sequences containing 688,614 unpaired heavy chain 

sequences and 350,590 unpaired light chain sequences. The data split of 80:10:10 ratio was 

applied into disjoint training, validation and test sets respectively each set containing both 
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unpaired heavy and light chains. Finally, the training set comprised of 831,360 sequences, 

validation and test sets containing 103,921 sequences each. 

3.2 Antibody Sequence Tokenization 

In the context of a Large Language Model (LLM), tokens are the fundamental units of 

input and output. In natural language processing tasks, tokens often correspond to words, 

subwords, or characters. During both training and inference, the LLM handles input text as 

a series of tokens, with each token representing a specific word or symbol. For an LLM, 

the input text is referred to as a ‘prompt,’ while the output text is termed a ‘completion’. 

The entire set of tokens that models use during training and inference is called its 

vocabulary. To train the models, a vocabulary of 25 tokens was used: the standard 20 amino 

acid single letters and five special tokens were used. The special tokens are: <s>, </s>, 

<pad>, <unk>, and <mask>, each amino acid residue works like a single token, therefore, 

no byte-pair encoding was used. The full-length antibody sequence was encoded as a 

sentence, each sequence was encoded with start <s> token and end </s> token, to align 

sequences of different lengths, <pad> tokens were used for padding out tensors to 

maximum allowed length of the sequence which was set at 150 to cover complete Fv region 

of the antibody sequence along with <s> and </s> tokens while minimizing the amount 

of unnecessary padding, the <mask> was used as the masking token that during the MLM. 

To handle ambiguous residues such as X, <unk> token was used. 

3.3 Antibody Sequence Design Formulation 

Antibody sequence design can be formulated into two tasks: (i) Sequence Infilling and (ii) 

Full-length Sequence Generation. The sequence infilling task involves designing spans of 
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residues and is like the text-infilling in natural language processing. Whereas the sequence 

generation is characterized as full-length antibody sequence generation through 

autoregressive sampling. The antibody sequence is represented as S = (r1, r2, …rn), and ri 

here, is the residue at the position i in the antibody sequence.  

3.3.1 Infilling Design 

The sequence is split into two main parts: the prefix, which is the span of residues preceding 

the infilling span, and the suffix, which is the span of residues succeeding the infilling span. 

To generate an infilled span of length m at position k along the antibody sequence, the span 

of residues V=(rk,rk+1, …,rk+m−1) is removed. Then the infilled span is  generated to replace 

the removed section, forming a sequence by concatenating the prefix, resulting in the 

infilled sequence S\V  with the infilled span (rk′,r k′+1, …,r k′+m−1) and the suffix. The resulting 

sequence structure can be described as follows: 

The original sequence can be written as: 

𝑂𝑟𝑖𝑔𝑛𝑎𝑙 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝑃𝑟𝑒𝑓𝑖𝑥 +  𝐼𝑛𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑆𝑝𝑎𝑛 +  𝑆𝑢𝑓𝑓𝑖𝑥 

𝑆 =  (𝑟1, 𝑟2, . . . 𝑟𝑘−1)  +  (𝑟𝑘, 𝑟𝑘+1, . . . 𝑟𝑘+𝑚−1)  +  (𝑟𝑘+𝑚, 𝑟𝑘+𝑚+1, . . . 𝑟𝑛) 

𝑆 =  (𝑟1, 𝑟2, . . . 𝑟𝑘−1, 𝑟𝑘, 𝑟𝑘+1, . . . 𝑟𝑘+𝑚−1, 𝑟𝑘+𝑚, 𝑟𝑘+𝑚+1, . . . 𝑟𝑛) 

The generated infilled sequence becomes: 

𝐼𝑛𝑓𝑖𝑙𝑙𝑒𝑑 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 =  𝑃𝑟𝑒𝑓𝑖𝑥 +  𝐼𝑛𝑓𝑖𝑙𝑙𝑒𝑑 𝑆𝑝𝑎𝑛 +  𝑆𝑢𝑓𝑓𝑖𝑥 
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Therefore, by replacing the term (rk, rk+1, ... rk+m-1) with (rk′,r k′+1, …,r k′+m−1) we get the 

equation as: 

𝑆\𝑉  =  (𝑟1, 𝑟2, . . . 𝑟𝑘−1)  + (𝑟′𝑘, 𝑟′𝑘+1, . . . 𝑟′𝑘+𝑚−1)  +  (𝑟𝑘+𝑚, 𝑟𝑘+𝑚+1, . . . 𝑟𝑛) 

𝑆\𝑉 = (𝑟1, 𝑟2, … 𝑟𝑘−1, 𝑟′𝑘, 𝑟′𝑘 + 1, … , 𝑟′𝑘 +𝑚 − 1, 𝑟𝑘+𝑚, … 𝑟𝑛) 

Hence, a fully formed equation with sequence of tokens Y for Infilling Language Model is: 

𝒀 =  (< 𝑠 >, 𝑟1, 𝑟2, … 𝑟𝑘−1, 𝑟′𝑘, 𝑟′𝑘 + 1, … , 𝑟′𝑘 +𝑚 − 1, 𝑟𝑘+𝑚, … 𝑟𝑛 , </𝑠 >) 

The inspiration for the infilling was derived from the Infilling Language Modeling (ILM) 

framework proposed in the natural language infilling [39] to learn the probability 

distribution p(V|S\V), then a deep autoregressive model was trained with parameters q 

maximizing p(Y|q), that can be broken down into a product of conditional probabilities: 

𝑚𝑎𝑥
𝑞

𝑝(𝒀|𝑞)  =  𝑚𝑎𝑥
𝑞

∏ 𝑝(𝒀𝒊|𝒀<𝒊, 𝑞)

𝒊

 

Another infilling model was also trained on a similar infilling task that is based on the 

Masked Language Modeling (MLM). The inspiration for this model was drawn from a 

similar model that was trained through unsupervised learning across 250 million protein 

sequences to understand deep contextual representation spanning evolutionary diversity 

[40]. The end model has acquired knowledge representations related to biological features. 

Therefore, a MLM has been pre-trained on the antibody sequences dataset and 15% of the 

residues in the sequences were set to perturbation. Out of these, 80% of the residues get 

replaced by <mask> token, 10% by the random residues and 10% by the original residues. 

The masking ratios, retained from the original paper of the Bidirectional Encoder 
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Representations from Transformers (BERT) [41], are demonstrated to be optimal. The 

model infills the masked residues at the perturbed positions, m in the sequences during pre-

training. The calculated MLM loss for a sequence S = (r1, r2, …rn) of a batch B is: 

ℒ𝑀𝐿𝑀  =  −
1

|𝐵|
∑ ∑ 𝑙𝑜𝑔

𝑆 ∈ 𝐵𝑖∈ 𝑚

�̂�(𝑟𝑘|𝑆𝑚) 

3.3.2 Full-length Sequence Design 

The sequence infilling task requires a parent sequence that is infilled at an infilling span V  

at specified positions replaced by (rk′,r k′+1, …,r k′+m−1) and MLM-based infilling using 

<mask> token results in generation of infilled sequences.  Full-length sequence generation 

involves Autoregressive Language Modeling (ALM), which is left to right unidirectional 

language generation task as opposed to infilling in natural language processing suggested 

in the original paper for Generative Pre-Trained Transformer (GPT2) [42]. The full-length 

antibody sequences can be autoregressively sampled from left to right in unidirectional 

context. However, unidirectional sequence generation is prone to oversampling in the case 

of antibody sequence generation and often results in generation of undesired residues [36]. 

To generate reasonable sequences of varying lengths, bidirectional context was introduced, 

such that the full-length sequence generation can occur from both ends, resulting in 

coherent antibody sequences. As the OAS database used for training features sequences 

starting from the N-terminus, a prompting strategy was devised. This strategy involved 

providing the initial 3-4 motifs distinctly for the generation of heavy and light chain 

sequences. The autoregressive modeling does not require <mask> token, as in the case of 

infilling task. The model autoregressively samples full-length sequence through p(Yi|Y<i), 
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hence breaking down the sequence prediction into next-token prediction, thus, sampling an 

entire new sequence, where Y<i denotes the tokens preceding Yi, therefore, final softmax 

layer predicts the probability distribution in discrete tokens as: 

𝑝(𝒀)  =  ∏ 𝑝(𝒀𝒊|𝒀<𝒊)

𝒏

𝒊

 

3.4 Models Implementation and Training 

Two types of transformers-based LLMs were implemented to train on the antibody dataset. 

Two Masked Language Models and Two Autoregressive Language Models were 

implemented varying in their sizes and hyperparameters. The training was unsupervised as 

implemented in the HuggingFace Transformers library. The version 4.27.4 of 

Transformers was implemented with Python version 3.9 for this task. Two RoBERTa 

(Robust BERT) based MLMs were implemented to train for Masked Language Modeling. 

And for Autoregressive Language Modeling, one standard GPT2 and another modified 

version of GPT2 based ALMs were trained, the training batch size for RoBERTas was set 

at 96 trained at 225000 and 30,000 steps respectively for RoBERTa and RoBERTa-S (S 

for small) and for GPTs batch size was 64 with training steps of 225000 and 162,500 

respectively for GPT2 and GPT2-S with 1 gradient accumulation step for both 

transformers. The models were trained on a single NVIDIA A10G GPU. The training 

hyperparameters for both models are mentioned in Table 3.1Table 3.1 . 
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Table 3.1: Hyperparameters used for models training 

Hyperparameter RoBERTa RoBERTa-S GPT2 GPT2-S 

N of Layers 12 3 12 3 

Embed Dimensions 768 768 768 768 

Hidden Dimensions 768 768 152 768 

N of Attention Heads 12 3 12 6 

Feed Forward Layer 3072 2048 2048 2048 

Total Parameters 85,784,857 17,745,433 85,191,936 21,874,176 

 

3.5 Antibody Library Generation 

The goal of this study is to train AI models that are capable of designing humanized, diverse 

and affinity matured antibodies. To achieve and test the task of antibody library generation, 

the task was divided into two parts: 

I. Antibody CDR3 redesigning for binding optimization 

II. Full-length antibody sequence generation. 

Both parts provide key insights about antibodies behavior and properties and necessary 

information about desired qualities and features to consider when designing de novo 

antibodies. And how the trained models perceive information from the antibody sequence. 
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3.5.1 Antibody CDR3 redesigning for binding optimization 

Antibody affinity maturation is the cornerstone in the field of immunotherapeutic. 

Antibody’s strong binding to the target provides it with the quality of its specificity to that 

target. Therefore, to test the models output in terms of antibody optimization, CDR3 for 

the antibody 1E6J which was downloaded from Research Collaboratory for Structural 

Bioinformatics Protein Data Bank (RCSB PDB) (https://www.rcsb.org/), an antibody 

against HIV-1 strain: B_HXB2R capsid protein p24, used as a diagnostic antibody in HIV-

1 screening tests. The p24 protein is considered as highly conserved protein in various 

HIV-1 strains due to its less susceptibility to mutations [43]. The complex was downloaded 

from the PDB, since the region of interest for this study were the variable fragments (Fv) 

sequences of the antibody, as all the target binding CDR regions are present in Fv regions, 

therefore, the Fv sequences for both heavy (H) and light (L) chains were extracted using 

Chothia numbering scheme. Since most of the variability and binding exist in the CDR3 

regions, both chains were annotated through AbRSA [38]. The CDR3 for H and L chain 

were found between the residue 95 to 102 and 89 to 97 respectively. 

3.5.2 CDR3 design through Masked Language Modeling (MLM) 

To generate de novo sequences through MLM, the CDR3 sequences of both H and L chain, 

the CDR3 regions between 95 to 102 and 89 to 97 respectively, were masked with the token 

‘X’. Both Roberta-MLMs were employed to design de novo sequences in unpaired manner, 

the total number of designed antibodies after pairing all de novo H and L sequences was 

200. The sequences were further processed for structural fold prediction. 
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3.5.3 CDR3 design through Infilling Language Modeling (ILM) 

To generate the sequences through ILM, the infill_range function was defined for 

autoregressive GPT2-models. The infill_range directs the models to infill new tokens 

autoregressively from minimum to maximum range. Therefore, the infill_range here was 

set for CDR3 regions of H and L chain respectively, which were generated in unpaired 

manner as well. The total number of antibodies generated after pairing H and L de novo 

sequences was 200, that were processed to predict 3D structures. 

3.5.4 Full-length Antibody Sequence Generation 

To generate full-length antibody sequences, the autoregressive token sampling was 

employed. For this task, the GPT2-S was employed, the initializing tokens were extracted 

from the Dataset_S02 provided in the paper [44]. The dataset is composed of 242 

therapeutic antibodies for different diseases. The initial three or four tokens were extracted 

for both H and L chains of the antibodies, the tokens were checked for redundancy and 

made sure to only consist unique tokens. The sequence generation was achieved with a 

combination of sampling temperatures (T ϵ {0.5, 0.75, 1.0}) with corresponding nucleus 

probabilities (P ϵ {0.6, 0.8, 1.0}). The temperature is the sampling parameter for the degree 

of randomization, its greater value represents more randomness whereas the nucleus 

probability indicates the selection of the tokens with the highest probabilities. A total of 

3000 sequences were generated in an unpaired manner that comprised of 1500 H chains 

and 1500 L chains, which were further analyzed and evaluated for humanness which serves 

as a proxy for immunogenicity. BioPhi (https://biophi.dichlab.org/) webserver was 
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employed with relaxed prevalence threshold to check OAS percentile for the humanness 

of the sequences [35]. 

3.6 Antibody Structure Fold Prediction 

Proteins have the tendency to fold into 3D dimensional space, this is directly linked to the 

sequential arrangement of the amino acids due to their nature and the functions they 

perform. Therefore, antibodies are an important class of proteins that also exhibit protein 

folding properties. In order to observe foldability in antibodies, the structure prediction was 

employed for the 400 paired mutant antibodies that were generated through CDR3 

redesign. To predict structures, tFold-Ab was utilized, as its reliability and precision 

surpasses AlphaFold and IgFold [45]. The structure of the extracted Fv of the wild-type 

antibody was also predicted through tFold-Ab. The structures were visualized in the 

PyMOL (https://www.pymol.org) tool, which is a protein visualization and analysis tool. 

For this study, the open-source version was used. 

3.7 Antigen-Antibody Complex Prediction 

Protein-Protein docking is the in silico method of predicting the structure of the protein-

protein complex from the given individual structures. This technique provides insights into 

the binding interactions between the target and the receptor proteins and their binding 

affinity [46]. Antibodies are also a type of protein receptor that have specificity of binding 

with their respective targets. So, to predict the antigen-antibody complex structures, an 

open-source tool ClusPro webserver was used (https://cluspro.bu.edu/ ) [47], [48], [49], 

[50], [51]. ClusPro has a dedicated “Antibody Mode”, that is specifically conditioned to 

https://cluspro.bu.edu/login.php
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Antigen-Antibody docking [52]. The complex models are ranked by the cluster size, the 

more members in the cluster interpret better complex model. 

3.8 Antigen-Antibody Complex Binding Affinity Prediction 

Protein-Protein complex binding affinity is a measure of the strength of the interaction of 

two proteins in a complex. This is the measure of the protein dissociation constant (𝐾𝑑) 

during the formation of the binding complex represented in nanomolar (𝑛𝑀). The lesser 

value of this constant represents strong binding affinity. The other measuring unit is called 

Gibbs Free Energy (∆𝐺), which is the value of the energy released during the complex 

formation measured in 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, it is represented in negative value, the greater negative 

value represents stronger binding affinity, thus more stable complex. To predict the binding 

affinity, PRODIGY (PROtein binDIng enerGY) tool was employed, available at 

(https://rascar.science.uu.nl/prodigy/) [53], [54]. The binding affinity was predicted for the 

400 complex models docked though ClusPro. 
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CHAPTER 4: RESULTS 

The major aim of this study is to develop a simple and cost-efficient framework to design 

affinity matured antibodies that can assist display technologies in selection and isolation of 

high-affinity antibodies. The results are divided into five sections, the first section provides 

the method for the antibody numbering and CDR delimiting performed through AbRSA. 

The second section provides insights into the antibody structure prediction through tFold-

Ab and structure quality assessment that is followed by the third section which explains 

results for humanness/immunogenicity evaluation for the full-length generated antibodies. 

Lastly, the fourth section deals with the binding optimization and binding affinity 

prediction for the mutated antibodies. 

4.1 AbRSA for CDR delimitation 

AbRSA incorporates the biological information of the antibody features specific to the 

regions through dynamic programming that improves the robustness of antibody 

numbering. To annotate CDRs of 1E6J, AbRSA was employed, for this study the CDR3 

for H and L chain were considered for design interest. Therefore, the CDR3-H was 

indicated from residue 95 to 102 sequence “PVVRLGYNFDY” where residue 89 to 97 for 

CDR3-L sequence “QQWNYPFT”. The Figure 4.1 shows CDRs for H and L chain 

indicated in the sequence. 
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Figure 4.1: The figure displays the arrangement of FRs and CDRs in the 1E6J H and L 

chain, The FR are indicated in black, where CDR1s for both chains are indicated in red, 

CDR2s in yellow and CDR3s in green. 

 

4.2 Antibody Structural Folding and Quality Assessment 

Proteins have the tendency to fold into 3D dimensional space, this property provides them 

with their basic functional ability. Antibodies are also an important class of proteins; to 

perform their functions properly, antibodies are folded into 3D space. Proteins generally 

tend to lose or enhance their functional abilities when exposed to mutations, this might be 

caused by the misfolds due to mutations. To predict structures for the mutated library of 

the retrieved antibody 1E6J, tFold-Ab was employed. The total of 400 structures were 

predicted. The mutated structures showed foldability like naturally occurring antibodies 
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that were compared with wild-type 1E6J through superimposing. The structures for GPTs 

and MLMs were also assessed for quality using VoroMQA [55], a webserver for protein 

quality assessment at (https://bioinformatics.lt/wtsam/voromqa), which uses interatomic 

contact areas to assess the protein structure quality and assigns a per residue score to each 

residue. The overall quality of the structure can be assessed through the global score [56]. 

The average global score for MLM infilled structures is 0.587, which is promising, whereas 

the average global score for the GPT infilled antibody structures stood at the promising 

value of 0.581. The Figure 4.2 and Figure 4.3 shows the structural visualization of the 

CDR3-H for the infilled antibodies generated through MLM and ILM compared with the 

wild-type 1E6J respectively. While Figure 4.4 and Figure 4.5 disclose predicted antibody 

structures quality assessments in terms high-quality X-ray crystallography through 

VoroMQA global scores for MLM and GPT infilled structures respectively 

https://bioinformatics.lt/wtsam/voromqa
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Figure 4.2: The figure displays the visualization of the superimposed structure of the 

wild-type 1E6J with mutant. The actual 1E6J is colored blue, the CDR3-H Loop 

(Unmutated) is highlighted in red. The whites are the structures that were predicted for 

the infilled sequences. 
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Figure 4.3: Alignment of 1E6J antibody with the de novo CDR3-H designed antibodies 

through ILM, the wild-type 1E6J is represented with blue and CDR3-H (wild-type) is 

highlighted in magenta color. The white structures represent infilled ones. 
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Figure 4.4: This plot shows the VoroMQA global scores for the MLM generated 

antibodies, a metric for structural quality, across a range of protein sizes (number of 

residues). The data is grouped into quantiles representing the best 5% (blue), median 

(gray), and worst 5% (red) of scores from high-quality X-ray structures. The black dots 

concentrated at the plot represent each structure occurring at the global score quantiles.  
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Figure 4.5: The plot displays the global scores for the infilling generated antibodies in 

the context of high-quality X-ray structures across differing protein lengths. The data is 

presented in quantiles showing the best 5% (blue), median (gray), and worst 5% (red) of 

scores. The clustering of black dots near the 200-residue mark represents individual 

structures at their respective global score quantiles. The result from the VoroMQA for the 

predicted structures of the GPT infilled antibodies. 

4.3 Humanness Evaluation 

Antibodies humanness provides the insights for the antibodies to their degree of human 

compatibility. Humanness metric can be used as a proxy to evaluate the immunogenicity 

of the antibodies. BioPhi (https://biophi.dichlab.org/) [35] platform to evaluate humanness 

for the 3000 de novo generated antibodies through bidirectional autoregressive modeling 

using the combination of three sampling temperatures corresponding with three nucleus 

probabilities that are (T ϵ {0.5, 0.75, 1.0}) and (P ϵ {0.6, 0.8, 1.0}) respectively. The H 

chain sequences show 96% OAS percentile in the 1st batch of 1000 sequences with {T=0.5, 
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P= 0.6} where L chains show less variability at 99% OAS percentile with the presence of 

duplicate sequences which by nature L chains show less variability compared to their H 

chains counterpart. The 2nd batch of 1000 sequences with sampling parameters {T=0.75, 

P= 0.8} displayed 89% OAS percentile for H and 99% OAS percentile for the L chains. 

Therefore, 3rd batch sequences with sampling values {T=1.0, P= 1.0} exhibited a 

significant drop in H OAS percentile which stood at 57% whereas the L chain OAS 

percentile was 82% as displayed in the Figure 4.6. The OAS percentile indicates the 

sequences show greater degree of humanness with lesser sampling parameter values. 

 

Figure 4.6: The plots indicate the change in the individual OAS percentiles with respect 

to the corresponding temperature and nucleus probabilities sampling values. The OAS 

percentiles (humanness) decrease with respect to increase in the sampling parameter 

values. 

4.4 Antigen-Antibody Complex Binding Analysis 

Antigen-Antibody Complex Binding Analysis involves the formation of docked complex 

from the individual components like antigen and antibody. To perform antigen-antibody 

interaction, ClusPro was employed using the “Antibody Mode” [52]. ClusPro uses the 
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clustering method to rank the best docked model. Therefore, the cluster with greatest size 

i.e. that has maximum number of members is considered the best conformation and stable 

according to ClusPro. The docking was performed on 400 antibodies that were subject to 

CDR3 design, the docked models with max number of cluster members were retrieved, 

then to predict ∆𝐺, PRODIGY was used. The results were compared with wild-type 

antibody that had the predicted ∆𝐺 = -13.0 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, where the experimentally reported 

𝐾𝑑 for 1E6J is 29 𝑛𝑀 that is ≈ 2.9e-10 𝑀. Therefore, 10 out of 400 antibodies showed 

significant improvement in ∆𝐺 values. Table 4.1, Table 4.2 and Figure 4.7, Figure 4.8 

indicate the ∆𝐺 prediction results from the PRODIGY for the antibodies generated through 

MLM and ALM respectively. The highlighted cells indicate significant improvement in 

binding affinity values. The greater ∆𝐺 values indicate strongly binding antibodies. 

Table 4.1: The results obtained from PRODIGY indicating improved Binding Affinity 

value at Complex_106 using MLM. 

Complex No. 𝑲𝒅 B. Affinity (∆𝑮) Contacts Cluster Members 

Parent (wildtype) 2.90E-10 -13.0 77 92 

Complex_58 2.40E-10 -13.111 113 87 

Complex_81 2.30E-10 -13.142 76 93 

Complex_92 2.30E-10 -13.142 76 93 

Complex_92 2.30E-10 -13.151 90 79 

Complex_106 1.10E-11 -14.955 78 96 
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Complex_170 2.50E-10 -13.102 64 101 

 

Table 4.2: Table indicating results for ALM generated antibodies complexes, the 

highlighted rows indicate significant improvement in the binding affinities compared 

with the Parent (wild-type). The increase in contacts number can be correlated with the 

increase in the specificity of antibodies. 

Complex No. 𝑲𝒅 B. Affinity (∆𝑮) Contacts Cluster Members 

Parent (wildtype) 2.90E-10 -13 77 92 

Complex_1 4.40E-11 -14.118 95 87 

Complex_9 1.10E-10 -13.552 97 115 

Complex_12 3.50E-11 -14.256 116 101 

Complex_19 9.10E-13 -16.418 112 94 

Complex_33 1.90E-10 -13.261 85 73 

Complex_41 2.60E-11 -14.423 76 79 

Complex_53 1.80E-10 -13.291 71 109 

Complex_54 2.60E-10 -13.065 66 96 

Complex_72 1.30E-10 -13.459 64 67 

Complex_76 1.40E-10 -13.442 92 73 

Complex_101 1.60E-10 -13.367 72 119 
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Complex_107 2.80E-13 -17.119 135 86 

Complex_111 7.10E-14 -17.928 139 89 

Complex_112 2.20E-12 -15.897 131 90 

Complex_114 1.30E-12 -16.211 112 85 

Complex_182 1.00E-10 -13.631 92 126 

 

 

Figure 4.7: Grouped-bar plot highlighting the binding affinity, cluster size and contacts 

for the wildtype complex vs mutant antibodies complexes for the MLM, the unique 

colormap is used to indicate the wildtype values where the AI-designed antibodies are in 

same color scale. 
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Figure 4.8: The plot indicates the comparison of binding affinities, cluster members and contacts in wildtype complex in the unique colormap vs 

mutant (AI-designed) antibodies in the same colormap, generated through GPT infilling. 
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CHAPTER 5: DISCUSSION 

The human immune system is a complex network of different biological processes. The 

immune system is the major player in human biological defenses against a variety of 

pathogens. It is composed of different cellular and subcellular entities that can work 

coordinatively against pathogens and neutralize them. It has the sophisticated ability to 

recognize human cells and distinguish them from pathogens. And it can remember 

pathogens even after the infection is cured. This sophisticated system is divided into two 

main lines of defenses, first the innate immunity and second the adaptive immunity. The 

innate immunity is the first line of defense that activates in a short time and rapidly 

neutralizes the pathogen but cannot memorize the pathogen whereas the adaptive immunity 

uses specialized proteins called “antibodies”, that makes it possible to memorize pathogens 

if they invade in the future. Antibodies have the ability to bind against the specific antigen 

which makes them an important class of therapeutics. 

The predictability of antigen-antibody interaction has always been the fundamental 

question in the field of immunology. Different techniques have been developed to discover 

high-affinity antibodies against particular antigen. For this purpose, techniques like display 

technologies have been developed to isolate high-affinity antibodies but these techniques 

rely on the target to hit approach for the lead discovery which makes complex and resource 

intensive and most of the antibody leads are discarded to isolate potential leads that have a 

high-specificity and high-affinity. And the factors like viscosity, pharmacokinetics and 

immunogenicity hinder the discovery of potential leads identification. To overcome these 

problems, computational methods have developed particularly with the use of generative 
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AI. Antibodies are a class of protein, and they have the tendency to exhibit protein-like 

properties and features. Therefore, researchers have employed various generative AI-

driven transformer-based Large Language Models (LLMs) that were originally intended to 

generate human-like textual information but show promise in the field of antibody design 

and engineering. Particular examples include: IgLM and AntiBERTa [32], [34] with 

different serving purposes with respect to their intended use. The LLMs treat antibody 

sequence just like a textual language and can learn the patterns and information from the 

amino acids arrangements due to the attention mechanism. However, these models show 

limitations and biases when used to generate diversified human antibodies and have been 

trained on the dataset of different organisms with greater resources. This study proposed a 

class of four models, AbSynth, which includes two RoBERTa-based Masked Language 

Models (MLMs) and two GPT-based Autoregressive Language Models (ALMs). 

The dataset used for this study was retrieved from OAS database, which was based on 1.03 

million sequences of human antibodies 558 times less data than IgLM that were divided 

into 80, 10, and 10 ratios. GPT-based transformers are unidirectional decoders by nature 

which make them prone to oversampling problems resulting in undesired tokens in the 

sequence. To address this issue, bidirectionality was introduced in a GPT-S by modifying 

the architecture of the model to achieve variable lengths of antibody sequences. 

Furthermore, the study employed trained models to redesign CDR3 regions for 1E6J 

antibody and another 3000 de novo sequences were generated through combination of 

sampling parameters. 

 The study proposed that the generated sequences display foldable structures like naturally 

occurring antibodies. The study also showed that the generated antibodies show binding 
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with the naturally existing target and 10 out of 400 generated antibodies show better 

binding affinity compared to the natural antibody. The study also showed that de novo 

generated sequences show average humanness of 96% at low sampling parameters in the 

H chains with diverse sequences and the diversity increases with decrease in humanness. 

Thus, reducing the risk of immunogenic response. The study also showed the L chains 

show less variability compared to the H chains. 

It is seen that the study has achieved a suitable antibody library generation method with 

potential high-affinity antibody leads and can generate diverse humanized de novo full-

length antibodies with high-affinity maturation. Currently, the trained models are antigen 

agnostic, therefore integrating the models with target antigen data will improve the models’ 

specificity in antibodies lead generation.  
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CHAPTER 6: CONCLUSIONS AND FUTURE RECOMMENDATION 

This study introduced a class of generative AI models, AbSynth, which are transformers 

based antibody language models, explaining its efficiency and effectiveness in antibody 

affinity maturation through CDR3 design and achieved diverse humanized antibodies 

through full-length de novo antibody design. The study shows that 10 out 400 AI-designed 

antibodies show greater affinity than the natural 1E6J antibody. Furthermore, the study 

showed that AbSynth autoregressive models can generate full-length diverse humanized 

antibodies with 96% humanness in H chains with low sampling parameter values. 

AbSynth can significantly reduce resources and time to generate library of affinity matured 

antibodies with diverse humanization, this can serve as an effective in silico tool for 

antibody design with greater humanized precision equipped with the understanding of 

diverse context in human antibodies better thus, reducing the potential risk of 

immunogenicity. 

Subsequent research on AbSynth will concentrate on enhancing antibody design accuracy 

and creating a portable design pipeline that integrates antigen data and permits sequence 

and structural co-design. In order to produce more cohesive, useful antibodies with better 

therapeutic qualities, this method can improve knowledge of antibody design contexts and 

integrate structural insights.  
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