
1

COMPREHENSIVE GIS BASED IMPLEMENTATION

STRATEGY FOR ENABLING DYNAMIC RIDE SHARING

AND CAB HAILING

 FINAL YEAR PROJECT UG 2012

By

NUST201200751BIGIS10412F - Syed Ramiz Sami

NUST201200275BIGIS10412F - Sarmad Ali Qureshi

NUST201200629BIGIS10412F - Shahid Nawaz Khan

NUST201201096BIGIS10412F - Zunerah Sanai

Institute of Geographical Information System

School of Civil and Environmental Engineering

National University of Sciences and Technology, Islamabad, Pakistan

2

CERTIFICATE

Certified that the contents and form of Final Year Project entitled “Comprehensive GIS

based implementation strategy for enabling dynamic ride sharing and cab hailing”

submitted by Syed Ramiz Sami, Sarmad Ali Qureshi, Zunerah Sanai, and Shahid Nawaz

Khan have been found satisfactory for the requirement of the degree.

Supervisor: ____________________

Lecturer (Ms. Quratulain Shafi, IGIS-NUST)

External Examiner: _________________

Name: _____________________________

Designation: _________________________

3

DEDICATED TO OUR PARENTS AND TEACHERS

4

ABSTRACT

Travelling in the urban areas could at times be a herculean task due to the overburden on

public transport and high rates of taxi. There is a dire need of an efficient system that will

be able to accommodate people along with the convenience and reliability. “A

comprehensive GIS based implementation strategy for dynamic ride sharing and cab

hailing”, is a service which will address those issues of transport which were previously

left unaddressed. It is a cross platform compatible system, having the ability to work on

different devices with ease. The main aim of the project is to provide a reliable cab sharing

system which will be able to reduce total distance covered by the vehicle along with cost

by allowing customers with same route and time window to share cabs. The data used for

the project was acquired from OSM (Open street maps) an open source volunteered

Geographic information system from which users can upload and download the data

depending on their needs. The database of the system resides on a remote server which

accepts requests through a user interactive user interface and then makes decision based on

different algorithms and user needs. The system has two main interfaces that is the web

and android interface. Different algorithms have been tested on the database depending on

the type of request some of which are, Dijkstra Shortest path algorithm, A* for optimal

routing and TSP (travelling salesman problem) for finding out route for more than two

points. The algorithms in the start phase gave satisfactory results and with the passage of

time through artificial intelligence the system will be able to learn and make the system

more efficient on the usage of data accumulated on daily basis and running artificial

algorithms on it. The system will be able to cater the user needs in an urban environment,

in a country where such concept is naïve.

5

ACKNOWLEDGEMENTS

We would like to show our gratitude to Almighty Allah for giving us knowledge, power

and strength to accomplish this task. We learnt a lot while doing this project and this will

certainly help us in our forth coming life.

We would like to thank our supervisor Ms.Quratulain Shafi, who was very supportive

throughout the project. Her supervision helped us a lot during the times of difficulties.

We wish to thank our teachers for their detailed suggestions and insights of their thoughtful

teaching style on the overall development of Comprehensive GIS Based Implementation

Strategy for Enabling Dynamic Ride Sharing and Cab Hailing.

Syed Ramiz Sami

Sarmad Ali

Shahid Nawaz

Zunerah Sanai

6

LIST OF TABLES

Table 1: PHP vs Python vs Ruby .. 20

Table 2: Custom vs CMS vs MVC ... 22

Table 3: Django vs Pyramid vs Flask ... 23

Table 4: Spatial Lookups in Spatial Databases ... 24

Table 5: Spatial Functions possible in Spatial Databases ... 25

7

LIST OF FIGURES

Figure 1: Locating objects using GPS .. 11

Figure 2: Workflow... 19

Figure 3: Tools and Technologies... 26

Figure 4: System Architecture .. 29

Figure 5: Data Preparation .. 34

Figure 6: Creating Routing System .. 39

Figure 7: Self Learning of road networks ... 40

Figure 8: Location and speed calculated every 5 seconds .. 41

Figure 9: Location and speed sent to server.. 42

Figure 10: Timestamp assigned to information received at server 43

Figure 11: Road selected from Location Information... 44

Figure 12: Harmonic mean taken .. 45

Figure 13: Values updated using harmonic mean ... 46

Figure 14: Ride Matching Algorithm ... 47

Figure 15: ER Diagram ... 50

Figure 16: Sign in page ... 51

Figure 17: Signup Page ... 51

Figure 18: Edit profile page .. 52

Figure 19: Admin home page ... 52

Figure 20: Roads editing page .. 53

Figure 21: Page to digitize roads .. 53

Figure 22: A request, as viewed in the admin panel ... 54

Figure 23: Application Homepage .. 55

Figure 24: Setting time on the application for time window .. 56

Figure 25: Picking origin and destination points on the application 57

Figure 26: Scheduling rides on the application... 58

8

TABLE OF CONTENTS

ABSTRACT .. 4

ACKNOWLEDGEMENTS .. 5

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

TABLE OF CONTENTS .. 8

CHAPTER 1 ... 10

INTRODUCTION .. 10

1.1 Background ... 10

1.2 Literature Review.. 18

CHAPTER 2 ... 19

MATERIALS AND METHODS .. 19

2.1 Market Research ... 20

2.2 Tools and Technologies .. 26

2.3 Server Side Development ... 29

2.4 Preliminary Data Preparation ... 32

2.5 Algorithm Development ... 40

2.6 Data Model Development ... 49

CHAPTER 3 ... 51

RESULTS….... ... 51

CHAPTER 4 ... 59

RECOMMENDATIONS .. 59

REFERENCES ... 60

9

LIST OF ABBREVIATIONS

1 OGC Open Geospatial Consortium

2 GIS Geographical Information System

3 GPS Global Positioning System

4 JSON Javascript Object Notation

5 API Application Program Interface

6 MVC Model View Controller

7 DSF Django Software Foundation

8 CMS Content Management System

9 XML Extensible Markup Language

10 HTML Hypertext Markup Language

11 WWW World Wide Web

12 CSS Cascading Style Sheets

13 DBMS Database Management System

14 OSM Open Street Map

15 TSP Traveling Sales Person

16 JWT JSON Web Token

17 HTTP Hyper Text Transfer Protocol

18 JS Java Script

19 VGI Volunteered Graphic Information

10

CHAPTER 1

INTRODUCTION

1.1 Background

The word ‘real-time’ refers to the actual time in which a process is taking place. With the

advancement in telecommunication and modern electronics field, most of the data

transmission not only has become online but is also providing the users with real-time

access to useful information, along with adding more product proficiency and

resourcefulness to the analyses which are associated with it. Different analysis related to

navigation, weather forecasting, natural hazard and disaster management are now being

done in real-time environment enabling the analysts to study and analyze the phenomena

in a dynamic way where it can bring efficiency and enhance the confidence level in the

results from the analysis. With the advancements in GIS and remote sensing, the urge to

perform geospatial analysis increased, resulting in the incorporation of such tools and

techniques in almost every field. GPS is one of the most useful inventions of the 20th

century which not only changed the perception of getting accuracy in location acquisition

but also contributed a lot in the different domains of science and technology. Global

Positioning System is a satellite based navigation system which was designed for military

and intelligence purposes at the climax of Cold War in 60s. GPS consists of a network of

satellites, orbiting the Earth in their destined paths, beaming down signals on the Earth

which can be detected through a GPS receiver. These signals carry the time (determined

through high precision clocks on-board) at which the signal transmit the satellite and the

geographical data, enabling the users to get their exact location, velocity as well as

elevation anywhere and anytime on the planet. In 1960, US navy tested the GPS satellites

launched by the USA. There were 5 satellites, orbiting the Earth, which helped the ships in

navigating the oceans to correct their location according to the planned path after every

hour. In 1967, previous system was succeeded by the Timation satellites. Timation

satellites were launched and developed by the National Research Laboratory. The main

11

objective behind Timation was the transmission of precise time reference using highly

accurate clocks to send ranging signals on the ground. With the success of timation, GPS

developed rapidly. Between 1978 and 1985, 11 satellites were launched and GPS was

widely used for military purposes. In the summer of 1993, US launched their 24th Satellite

into the orbit which completed the modern constellation of GPS satellites. Today, 32 active

satellites are in the orbit and are being widely used for a variety of purposes.

Figure 1: Locating objects using GPS

Figure 1 illustrates how satellites work to locate an object. The precision of the location

depends on the satellites which are relaying signals to the receiver. Increase in the number

of satellites results into accurate locations. Another factor that can affect the accuracy of

location determination is the receiver type. Typical cellular phones with GPS have

accuracy ranging from 8 meters to 600 meters depending on the cellular position or wi-fi

positioning which would be covered later in this report. Differential GPS or DGPS, on the

other hand is an enhanced form of Global Positioning System that provides location with

improved accuracy in the range of 15 meter to 10 cm depending on its best utilization

methods.

Our aim is to develop a cross platform compatible system which will be able to provide the

ease of dynamic ride sharing, carpooling, and cab-hailing. Keeping in mind the current

12

needs and difficulties. This project is being designed to take care of one of the major needs

of today. It will help reduce fuel cost and consumption, save time, increase the safety level,

which will consequently lead to lesser air pollution and a greener environment.

To provide a better understanding of the work, below are brief descriptions of some

important terms used in the project:

1.1.1 Carpooling

Carpooling (also known as auto sharing, lift-sharing, ride-sharing and covoiturage), is the

sharing of auto adventures so that more than one individual can travel in a single auto.

By having more individuals utilizing one vehicle, carpooling decreases every individual's

travel expenses, for example, fuel expenses, tolls, and the anxiety of driving. Carpooling

is likewise an all the more ecologically agreeable and practical approach to go as sharing

excursions lessens carbon discharges, movement clog on the streets, and the requirement

for parking spots.

1.1.2 Continuous ridesharing

Continuous ridesharing (otherwise called moment ridesharing, element ridesharing,

specially appointed ridesharing, on-interest ridesharing, and element carpooling) is an

administration that masterminds one-time shared rides without prior warning. This kind of

carpooling by and large makes utilization of two late innovative advances:

• GPS route gadgets to decide a driver's course and orchestrate the common ride

• Smartphones for a voyager to ask for a ride from wherever they happen to be

These components are facilitated through a system administration, which can promptly

handle the driver installments and match rides utilizing an advancement calculation.

Similar to carpooling, continuous ridesharing is elevated as an approach to better use the

vacant seats in most vehicles, bringing down fuel utilization and transport costs as a result.

It can serve territories not secured by an open travel framework and go about as a travel

13

feeder administration. Ridesharing is likewise equipped for serving one-time trips, not just

intermittent or planned drive excursions.

1.1.3 E-hailing or taxicab hailing

E-hailing or taxicab hailing is a procedure of requesting an auto, taxi, limousine, or any

other type of transportation using virtual gadgets: PC or cell phone.

In figuring, cross-stage, multi-stage, or stage independent, is presented to PC programming

or registering techniques and ideas that are executed and between work on different PC

stages. Cross-stage programming may be partitioned into two sorts; one requires individual

building or assemblage for every stage that it underpins, and the other one can be

straightforwardly keep running on any stage without unique planning, Cross-stage projects

may keep running on the same number as of every single existing stage, or on as few as

two stage

For the completion of the tasks, the following technologies were used:

1.1.4 Android OS

Android OS was developed by Google and it is based on the Linux kernel. This OS was

mainly designed for touchscreen mobile devices and tablets. Different functions are

written, focused on the specific tasks, to get the desired results out of it. Classes and

functions are written depending on the requirement to accomplish the tasks. Different APIs

(Application Program Interface) which are the set of protocols and routines for application

development are also incorporated in the java file of the project. The other branch of

android is Extensible Mark-up Language (XML) is used for designing the interface of the

application which includes icons, buttons, views and toolbars. XML is also used for the

styling part which includes colors, background, themes and other styling techniques. Apart

from these, GoogleMap API was used for the basemap in the application.

1.1.5 HTML

HTML or Hypertext Markup Language, is a standardized system for tagging text files to

achieve font, graphic, color, and hyperlink effects on World Wide Web (WWW) pages. It

14

is the most popular scripting language for creating web pages and showing them. It is a

language with predefined tags. Each HTML tag defines different parts of a document like

head, body, title etc. There are different tags which provide different functionalities such

as acronym tag etc. All the browsers are capable of reading and interpreting HTML. In

short HTML is the language of browser. The frontend webpage for the project was created

in HTML 5.

1.1.6 CSS

CSS stands for Cascading Style Sheets. CSS is a web scripting language that is used to

define the layout of HTML pages. Features that CSS covers include fonts, margins, images,

height and width and advanced styling techniques. CSS is now supported by all the

browsers. There is a difference between HTML and CSS as both are confused by the users

in their working. HTML is used to structure contents in specific tags, each with its own

specific functionality. However, CSS focuses mainly on the styling of the web pages.

1.1.7 Javascript

Javascript is the most popular programming language of the world. It defines how a

webpage behaves. HTML and CSS are used to define how a webpage looks like Javascript

helps to get the answer to the question that what does a webpage do. JavaScript is a

programming language used to make web pages interactive. It runs on the client device and

doesn't require constant downloads from the website. The script is read by the client from

the website and those scripts are then executed by the browser.

1.1.8 Web hosting server

It is a kind of Internet hosting service which allows organizations and individuals to

provide accessibility to their website using the World Wide Web. Companies that facilitate

with the space on a server owned or leased for use by clients are known as Web hosts. They

also provide Internet connectivity, usually in a data center.

1.1.9 Python

https://en.wikipedia.org/wiki/Internet_hosting_service
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Data_center

15

It is a commonly used high-level, interpreted, general-purpose, dynamic programming

language. Its design idea focuses on code readability. Comparatively, Python provides a

better syntax that allows programmers to convey concepts in lesser lines of code than in

languages like Java or C++. This language offers constructs intended to allow

understandable programs on both small and large scale.

Python supports several programming paradigms, together with object-oriented,

functional and imperative programming or procedural styles. It has an outsized and

comprehensible standard library, along a dynamic type system and automatic memory

management.

1.1.10 Django

It is an open-source web framework, written in Python, that follows the model–view–

controller (MVC) architectural pattern. It is managed by a self-regulating organization

recognized as a non-profit, known as Django Software Foundation (DSF).

Django's main purpose is to ease the formation of complex, database-driven websites.

Django put emphasis on reusability and "pluggability" of elements, rapid development, and

the rule of “don't repeat yourself”. It also provides an interface for optional

administrative create, read, update and delete functions, that is generated dynamically

through introspection and constructed via admin models. The language Python works

throughout Django, even for files, settings, and data models.

1.1.11 MVC (Model–view–controller)

MVC is a software architectural design usually used for implementing user interfaces on

computers. It splits a given software application into three interconnected parts, so as to

separate internal representations of information from the ways that information is presented

to or accepted from the user.

1.1.12 PostGIS

https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/General-purpose_programming_language
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Dynamic_programming_language
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Lines_of_code
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Programming_paradigm
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Procedural_programming
https://en.wikipedia.org/wiki/Dynamic_type
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Memory_management
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Architectural_pattern_(computer_science)
https://en.wikipedia.org/wiki/Django_Software_Foundation
https://en.wikipedia.org/wiki/Reusability
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Introspection_(computer_science)
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/User_interface

16

PostGIS is an open source software program that adds support for geographic objects to

thePostgreSQL object-relational database. PostGIS follows the Simple Features for SQL

specification from the Open Geospatial Consortium (OGC).

1.1.13 Web server

This is a computer that provides web pages. Each and every web server has an IP address

and perhaps a domain name. For example, entering the URL

http://www.webopedia.com/index.html in your browser, sends a request to the web

server which has a domain name webopedia.com.

1.1.14 Cloud server

It is a logical server that through a cloud computing platform, is assembled, hosted and

delivered over the Internet. Cloud servers have and show comparable capabilities and

functionality to a usual server but are accessed remotely from a cloud service provider. The

other name for a cloud server can be virtual server or virtual private server.

1.1.15 RESTful web services

REST stands for Representational State Transfer. It is an architectural style for networked

hypermedia applications, and is mainly used to build web services that are manageable,

and accessible. A service based on REST is known as RESTful service.

1.1.16 Database

A database management system (DBMS) is a computer software application that

cooperates with the user, other applications, and with database to collect and analyze data.

A normal or usual DBMS is designed to permit the definition, creation, querying, update,

and administration of databases.

1.1.17 Spatial Database

A spatial database, or geodatabase is a database that is developed to store and query data

that symbolizes objects defined in a geometric space. Most spatial databases allow to

represent simple geometric objects like points, lines and polygons.

https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Simple_Features
https://en.wikipedia.org/wiki/Open_Geospatial_Consortium

17

1.1.18 Web development frameworks

A software framework called web framework (WF) or web application framework (WAF),

is designed to support the development of web applications including web services, web

resources and web APIs. Web framework’s objective is to improve the overhead associated

with common activities performed in web development.

1.1.19 Content Management System

A content management system (CMS) is a computer application that helps to create and

modify digital content using a mutual user interface and thus usually supporting multiple

users working in a cooperative environment.

1.1.20 Custom development

Custom software (also called bespoke software or tailor-made software) is a software that

is particularly developed for some specific organization or another user.

1.1.21 JQUERY

jQuery is a library of Javascript that is fast, small, and feature-rich. It makes things such as

HTML file traversal and management, event handling, animation, and Ajax a lot simpler

with an easy-to-use API that works across a host of browsers.

1.1.22 Bootstrap

Bootstrap is a free and open-source front-end web framework for

designing websites and web applications. It contains HTML- and CSS-based design

templates for typography, forms, buttons, navigation and other interface components, as

well as optional JavaScript extensions. Unlike many web frameworks, it concerns itself

with front-end development only.

1.1.23 Leaflet

Leaflet is a widely used open source JavaScript library used to build web

mapping applications. First released in 2011, it supports most mobile and desktop

platforms, supporting HTML5 and CSS3. Along with OpenLayers, and the Google Maps

https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/Typography
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Front-end_web_development
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Web_mapping
https://en.wikipedia.org/wiki/Web_mapping
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/HTML5
https://en.wikipedia.org/wiki/CSS3
https://en.wikipedia.org/wiki/OpenLayers
https://en.wikipedia.org/wiki/Google_Maps_API

18

API, it is one of the most popular JavaScript mapping libraries and is used by major web

sites such as FourSquare, Pinterest and Flickr.

Leaflet allows developers without a GIS background to very easily display tiled web

maps hosted on a public server, with optional tiled overlays. It can load feature data from

GeoJSON files, style it and create interactive layers, such as markers with popups when

clicked.

1.2 Literature Review

The research conducted in this paper formally defines dynamic or real-time ride-sharing,

identifies optimization problems for finding best sets of ride-share matches in a number of

operational scenarios, develops approaches for solving ride-share optimization problems,

and tests the concepts via a simulation study of work trips in the Atlanta metropolitan

area. (Wang, X., 2013)

 In this paper, an integrated system for the organization of a car pooling service is shown,

using several recent Information and Communication Technologies (ICT's) technologies:

web, GIS and SMS. The main part of the system is an optimization module that solves

heuristically the specific routing problem. (Calvo, R. W., de Luigi, F., Haastrup, P., &

Maniezzo, V., 2004)

This paper examines the value of real-time traffic information to optimal vehicle routing

in a nonstationary stochastic network. (Kim, S., Lewis, M. E., & White III, C. C., 2005)

https://en.wikipedia.org/wiki/Google_Maps_API
https://en.wikipedia.org/wiki/Foursquare
https://en.wikipedia.org/wiki/Pinterest
https://en.wikipedia.org/wiki/Flickr
https://en.wikipedia.org/wiki/Tiled_web_map
https://en.wikipedia.org/wiki/Tiled_web_map

19

CHAPTER 2

MATERIALS AND METHODS

The development of this project took place in a number of important and essential steps.

To give a comprehensive illustration, the following flowchart in Figure 2, has been

constructed:

Figure 2: Workflow

20

2.1 Market Research

To start a project, and to make it go smoothly, it is necessary to begin with understanding

its needs and requirements, and the environment it can be developed in, and the things

needed to be aggregated to form the most productive output. To get all these details, Market

Research was carried out to choose the best technologies for our project. Out of the variety

of technologies available, few selections were made, which seemed the most useful for this

application.

Language

Language is the building block of any application or program. Choosing one is not an easy

task. Firstly, it is important to know that what are the pros and cons of any language, and

then we select the most suitable for any specific purpose. Language requires time to be

learned, so it extends the duration of the progress if the learning time is long. Python fits

in the criteria of most suitable language in our application. It’s the easiest to learn and

implement, and it is flexible as well. It has the ability to fasten up the processing more than

any other web development language, and has gained a lot of popularity in research

community due to this. In our application, GIS has a major role, which can be easily

incorporated using Python. It supports a vast number of libraries that can help add up GIS

related functionalities.

Table 1 shows the comparison:

Table 1: PHP vs Python vs Ruby

PHP Python Ruby

Purpose Web

Development

General purpose with

emphasis on

productivity and

code readability

Making programming

fun and flexible for

the programmer

21

Readability and

usability

Follows a classic

approach

Most readable

programming

language.

Elegant, powerful,

and expressive

Learning Easy Easiest Hardest

Popular sites Facebook,

Wikipedia,

Udemy

Google, Youtube,

Disqus, Instagram,

Pinterest, Dropbox

Twitter, Github,

Soundcloud

Run Time

(average)

4.1 1.8 2.9

GIS support Lowest Highest Intermediate

Development model

Development model provides us with rules to develop software. However, not all models

give us the flexibility to create the system as required. MVC (model view controller) helps

us to develop application by making the best use of our knowledge. It gives us a complete

control without any restrictions on creativity. It provides us with the ability to create any

application according to our business logic and according to the way we like; we don’t

need to find plug-ins of exact functionalities. It has good built-in flexible APIs and offers

an ease to change the code. Additionally, it has an easy maintenance. All these abilities

make MVC a convenient and foolproof development model. On the other hand, CMS can

be used only for general purposes, as it is made for all users and is resistant to changes.

22

Good programming practices cannot be implemented with CMS, and it does not allow

customizability according to the requirements of the business logic. Rarely, but another

issue that occurs in CMS is that if a performance problem arises in the core, it is very

difficult to be fixed. The differences made MVC an easy and obvious choice for the

development model of our project.

Table 2 shows the comparison:

Table 2: Custom vs CMS vs MVC

Custom CMS MVC

Development

Speed

Slowest Fastest Moderately Fast

Learning speed Slow Fastest Slowest

Learning

requirements

Programming

language

Framework Language +

Framework APIs

Customizability Very High Lowest Very High

Coding

required

Too much Almost none Moderate

Popular usage PHP Wordpress, Joomla,

Drupal

Laravel, Django, Rails

Security Depends on

programmer

High High, but still depends

on programmer

Scope Supports

everything

Supports typical

applications

Supports everything

23

Framework

A framework can be explained as a layered structure that can help to understand which

programs can be built together to produce a useful web application, and how they will

interrelate. Such framework must be able to link a number of components; a connection to

database, a template rendering system, a means to map urls to views, any kind of

authentication system, and other components. A framework is usually more

comprehensive than a protocol and more prescriptive than a structure. We have a few

options when it comes to frameworks, but in order to select the best one, here are the

differences. Talking about Pyramid first, it has a lot of flaws. At the very least, the online

support available for Pyramid is very low and the range of libraries it supports is quite less

in number. Next is Flask. Flask cannot scale and bear computational burden, as it is

designed for minimal applications. Its support also doesn’t fit the help requirement of a

programmer beginning to code in a MVC system. At last we have Django which we

decided to incorporate in this project. Django offers amazing features for admin interface.

This feature allows us to generate an administration site directly from an application’s

model. It shortens the time required to code everything right away by putting the snippets

together which you write down in Django. It doesn’t take the complete control, and

instead asks for your preference of models to give accessibility via the administration

interface. It also has a GIS framework called geodjango incorporated in it by default

which supports a lot of GIS applications. These things make Django the super-feasible

choice for the project.

Table 3 shows the comparison:

Table 3: Django vs Pyramid vs Flask

DJANGO Pyramid Flask

Popularity Highest Lowest Lowest

24

Online support 110,000

StackOverflow

questions

1700

StackOverflow

questions

10,000 StackOverflow

questions

Inbuilt

functionalities

Very much Little moderate

Maturity High High Low

GIS Support Geographic

framework inside

Moderate Moderate

Database

As a Spatial Database, PostGIS was used for the complete package it provides. Following

are the operations it can perform in comparison to other spatial databases.

• Spatial Lookups

These are the spatial lookups possible with different databases, shown in Table

4.

Table 4: Spatial Lookups in Spatial Databases

LOOKUP TYPE PostGIS Oracle MySQL SpatiaLite

Bbcontains

Bboverlaps

Contains

25

Coverdby

Crosses

distance_gt

Left

Right

Within

overlaps_above

overlaps_below

strictly_above

• Database Functions

Table 5 shows the database functions that are possible with different spatial

databases

Table 5: Spatial Functions possible in Spatial Databases

FUNCTION PostGIS Oracle MySQL SpatiaLite

Area

AsGeoJSON

AsGML

26

AsKML

BoundingCircle

Centroid

ForceRHR

Scale

GeoHash

Intersection

MemSize

Translate

2.2 Tools and Technologies

Figure 3: Tools and Technologies

27

2.2.1 AJAX:

To update the web page without refreshing it again and again

2.2.2 JQuery:

It was used on the web front-end to create UI extensions

2.2.3 Mailgun:

It was used for sending emails.

2.2.4 PYTHON:

It was the development language used for the project.

2.2.5 GOOGLE MAPS:

They were used for representation on the android side.

2.2.6 LEAFLET:

Leaflet is an open source mapping library; it was used for showing maps on the web front

end.

2.2.7 PostgreSQL:

It is an open source relational database; our data was stored in PostgreSQL.

2.2.8 JAVA:

It was used for the development of android application.

2.2.9 HTML:

It was the scripting language used for creating web frontends.

2.2.10 JAVASCRIPT:

It was used as the programming language at the web client side.

28

2.2.11 CSS:

It was used for styling the web frontend.

2.2.12 BOOTSTRAP:

It is an extension of CSS that was used for styling web frontend.

2.2.13 PostGIS:

It is an OGC compliant spatial database and the spatial extension of PostgreSQL, our

spatial data was stored in PostGIS.

2.2.14 UBUNTU:

It is the operating system that was used for the project. The system was deployed on Ubuntu

server 14.04.

2.2.15 MICROSOFT AZURE:

It is the cloud service by Microsoft. A D1_V2 cloud VM instance was used to deploy the

project.

2.2.16 PILLOW:

It is the python imaging library. It was used for manipulating user’s profile pictures.

2.2.17 ANDROID STUDIO:

It was used as the development IDE for developing Android application.

2.2.18 GOOGLE API:

Google APIs were used for getting results for routing and used as a standard.

2.2.19 DJANGO:

Django was the MVC framework used for our project.

2.2.20 DJANGO REST Framework:

29

This was a sub framework of Django. It was used for deploying REST based web services.

2.2.21 PGROUTING:

Pgrouting is the routing extension of PostGIS. It was used to make the routing engine.

2.2.22 JSON:

It is a light weight data format. It was used as the data transfer format on the REST.

2.3 Server Side Development

Figure 4: System Architecture

30

The system in Figure 4 is based on thin client architecture where most of the work is done

on the server side. The server is based on Django 1.9.5 which is an MVC environment and

all the modules are not dependent on the design of each other and work solely with the

input that is given to them and produce outputs as required. The system is deployed on a

Microsoft Azure cloud VM of D1_V2 instance which has 3.5 GB ram, 1 core of D_V2

series processor and 50 GB solid state drive (SDD). The system is running on Ubuntu

Server 14.04. For the database, PostgreSQL, an open source database, is used along with

its spatial extension PostGIS that is used for storing geographic data. Another extension of

PostgreSQL and PostGIS i.e. Pgrouting reference is used for managing the road network

of Islamabad and solve routing problems. The website and the Android application are

acting as the frontends of the system and logics are handled at the server side.

The frontends are linked to the URL manager. The purpose of the URL manager is to

establish a connection between the server and the frontends. URL manager is a kind of

diverter. Each request received at the URL Manager is then forwarded to appropriate views.

There are two kinds of views. One view is interacting with the web interface and the other

with the android application through RESTful Web Services. REST stands for

Representational State Transfer. REST is an architectural style for networked hypermedia

applications. It is used to create lightweight web services that can be easily used by any

client side language to transfer data.

Views for the web based views had two security layers. i.e. CSRF security layer and

Session Based Authentication Layer. CSRF stands for Cross Site Resource Forgery. CSRF

security layers use CSRF Tokens which are kind of system generated passwords that are

sent with HTTP requests to identify the request and to stop the possible misuse of the

system. The idea behind CSRF is that an “attacker (hacker) is ‘forging’ a HTTP request

when a victim executes html or JavaScript created by the hacker”. Therefore, those requests

are not entertained at the server side. For example, one of the CSRF Tokens generated on

our system for a request was TAzB3Ge5Slh82OgynQQvuxGoImJbjGCC. The other

security layer that is used for this type of view is the Session Authentication Layer. This

layer is used to identify and allow registered users to use the system. Whenever a user logs

in, a session is generated for him and the session information is passed with each request

31

via cookies to the server. This layer is used to prevent any unauthorized user from using

the system.

On the REST based views, the security layer used is JWT authentication. JWT stands for

JSON Web Token. “JSON Web Token (JWT) is a JSON-based open standard (RFC 7519)

for passing claims between parties in web application environment. The tokens are

designed to be compact, URL-safe and usable.” On the login endpoint, when the username

and password are parsed to the server, the server returns a key that is also like a system

generated password. This key is then in the Authorization header and passed with each

request. For example, one of the JSON Web Key generated by our system is

9f066e630a0e6d2e0ba1644839ffb3b434589089. On the logout endpoint, the key is

deleted, both from the server and the cookies of the device. This layer only allows

authorized users to use the application. Django REST framework is used to create the

REST based views.

After passing through the security layers, the request finally reaches the appropriate view

where logics are implemented. The views process the requests according to the business

logic, and after processing the requests, views forward their processed information to the

models.

At the models level, classes are declared and the system is based on ORM. ORM stands

for Object Relational Model. ORM connects these classes to the database. When a class is

declared, a corresponding table is created in the database and database entries are

manipulated just like objects are manipulated in the OOP (Object Oriented Programming).

The system connects the ORM with the database via configuration settings where it is

specified that which Database API is to be used. Database APIs for all the popular

databases are placed in the system by default and these are then used to convert the queries

written in Models API format to SQL queries. If we need to change the database, we only

need to specify the new database API in the settings configuration and the system itself

translates all the queries according to the SQL syntax of the new database and thus there is

no need to change the queries of whole system just to change the database.

32

At the database side, we are using PostgreSQL and PostGIS and they are connected through

PostGIS API of the system. Pgrouting is not covered by the database API so Raw SQL

Querysets are written for them.

2.4 Preliminary Data Preparation

Figure 5 and Figure 6, show flowcharts that have been constructed to illustrate the

following explanation:

2.4.1 Data Preparation

Complete and accurate data is a crucial part of intelligent system and have a vital

importance in a project like this. It is the data which runs huge systems online. Without

data we can confidently say that no system can operate intelligently because with the

passage of time it is the data, which, with the aid of different algorithms makes the system

more intelligent artificially. Different steps were involved in the data preparation, from

acquiring data from open source utilities like OSM towards preprocessing and further

processing so that the data should be able to satisfy, at least, minimum requirements, which

it did. Data preparation and processing consumed a huge amount of time in our case as any

errors in data would let our system do erroneous calculation or sometimes no calculations.

The whole process of data preparation consists of different steps which are explained below

sequentially.

2.4.2 Data Acquisition

The data used was acquired from OSM (Open Street Map) which is open source or VGI

(Volunteered Geographic information) system. In volunteered Geographic information

system user upload the data they collect through their mobile or any other device and then

upload the data online free for further use. Users who require data can download the data

uploaded by other users and use it any purpose, according to their requirement. OSM is a

VGI system which is designed for such a purpose on which, users can upload and download

from, freely without any cost. Although the data is free, but most of the times the data isn’t

completely free of errors and uncertainties which must be removed. The data of Islamabad

33

area was downloaded, which can be downloaded usually by making a polygon and in the

area of interest and then exporting all the data in that polygon. Further the data was

processed by using different tools and technologies to make it usable.

2.4.3 Importing the data in QGIS

The data coming from Open street maps usually comes in XML (extensible markup

language) format and is not directly readable by many softwares and tools. QGIS is an

open source GIS utility having support for Open street maps data. By using those tools and

technologies, OSM data can be manipulated and different kinds of processing can be

performed on that data. QGIS was used to perform some preliminary operations on the data

and was then exported to ESRI shapefile format for further processing.

2.4.4 ESRI Shape File

The ESRI Shape file is a well-known GIS vector data format. Developed and maintained

by ESRI the data format is used widely for data interoperability between various GIS

softwares. It is a GIS data exchange format which is used widely in different tools and

technology developed by ESRI. ESRI shape file can also be used in different open source

GIS technologies such as QGIS, SAGA GIS, and ENVI etc. ESRI or Environmental

System Research Institute is a proprietary software development company which designs

a variety of tools and technologies used in geospatial processing. The company is in

operation for several decades and has a huge market share in proprietary Geospatial

development and analysis tools such ArcMap, ArcView, ArcInfo, ArcObjects etc. The Esri

shape file is also coined and developed by ESRI, which is used widely for Geospatial data

exchange.

2.4.5 Extracting Roads data

The data acquired form OSM consisted of a lot of information about different entities in

the area of interest but we were interested only in roads data which was to be the base of

our system. All the data that was not related to roads was removed from the data and only

roads data was exported for further processing.

34

Figure 5: Data Preparation

2.4.6 OGR2OGR

OGR2OGR is a command line utility, a part of GDAL (Geospatial data abstraction library),

which is widely used for data conversion from one format to another. Usually different

tools and technologies work differently, but few tools and technologies are used for specific

purposes, and often accept specific data formats to work with. The command line utility is

designed for the purpose to ease the data conversion from one format to another. The beauty

of the utility is that it imports the data and can convert data into more than 200 different

formats, which is vitally important specifically in the field of Geoinformatics where

hundreds of softwares use different data formats, and it is sometime impossible to work on

data in some specific format, with different softwares because each software uses a new

35

data format. Therefore, the command line utilities like OGR2OGR is a blessing for those

people who work on different data formats.

2.4.7 PostGIS

PostGIS is a spatial extension of PostgreSQL, a database system used widely for data

storage purpose. A database system stores data in different tables connected with each

other, the main purpose of which is, efficient data retrieval and proper data storage.

Database systems are used widely over the world for storing different kinds of relational

and non-relational data. The purpose of using PostGIS is that it comes with a lot of spatial

functions which usually don’t exist in other databases. In spatial databases, different kinds

of spatial operations can be performed on the data, depending on the purpose of the system.

The data was then imported to PostGIS and stored in tables, which was prepared for further

processing.

2.4.8 Admin Panel (Django)

The admin panel in the model view controller was a user interactive panel which can be

used for data manipulation, using user interfaces. By using our admin panel, the data can

be manipulated and updated through the use of UI. If there are some errors in the data, they

can be corrected through this panel. Missing data can be recreated and updated through the

use of that Admin panel. We used the admin panel frequently, for data correction and

updating the data. New data was also created by the usage of that panel.

2.4.9 Removing NULL values

As discussed above, the data acquired from OSM was not completely error-free. The

obtained data usually contains a lot of errors and uncertainties. Facing similar problem with

our data, we had to correct or remove the errors, as they were contaminating the data. In

our case, Islamabad’s data contained many roads with missing highway type, for example,

Highway type can be a highway, Primary road, Secondary road, Tertiary road or Link road,

which usually determine the cost. Intuitively, if the highway type of any road is missing,

Pgrouting queries cannot work on that data, because Pgrouting calculate cost based on

36

speed or time required and these parameters are determined by the type of highway. Errors

like these were removed both manually and automatically through queries. Errors in some

specific data were removed manually one-by-one, while general errors and discrepancies

were removed through SQL queries. For example, if the highway type of all or some of the

streets are NULL we can remove it by using SQL query like:

update roads set highway=’Tertiary’

where name like ‘%street%’

There were thousands of records in the data and if we start updating each and every street,

a huge amount of time would be required to correct the data alone. As we know that streets

are usually tertiary highway types, we used queries similar to the above one, to save time,

instead of updating each and every record separately. The most difficult, crucial and

laborious task was correcting and rectifying the NULL values, as it was difficult to identify

highway types, and the surface type, whether it is paved or not. Through digitization admin

panel, we were able to view the roads visually and decide subjectively, that, which data

must be updated to which type.

2.4.10 Node Network

After removing NULL values and rectifying the data properly, the data was prepared to be

used in Pgrouting applications. Creating node network is a function in Pgrouting

application which creates different nodes depending on the data. Whenever a road splits

into two or more routes, the line segments are broken and new individual line segments are

made by node network, to create a way for routing. These line segments are connected with

each other through those nodes. Node network of the data was created by using built-in

Pgrouting queries. The node network is important to create, as it split the road into nodes

and divide them for possible routes in different cases.

2.4.11 Create Topology

The ‘create topology’ query in Pgrouting converts the node network into vertices. Creating

the vertices is a part of Pgrouting for making proper data usable and understandable by

Pgrouting queries. The create topology tools were used to make vertices from the node

37

network data that was made already in the previous step. After create topology tool

execution, the data is prepared for running different kinds of queries, consisting of logic

from a variety of routing algorithms. Some of the algorithms are tested directly while other

are optimized. The algorithm tested in this study were direct and straight forward for two

points i.e. source-destination routing. TSP was also tested and gave positive results. The

TSP starts from the source point, taking into consideration all the points that come in the

way, and then back to the source. Optimized algorithms can also be tested and executed on

the data which is not the scope of this study

2.4.12 Pgrouting Queries

In the previous step, by using topology tools, vertices were created for the whole data to

make it capable of running Pgrouting queries on. Pgrouting have many algorithms

implemented for different routing functions. Shortest path, reduced costs, multiple points

and other several algorithms can be used while using Pgrouting. In our case, three

algorithms were tested which were:

2.4.12.1 Travelling sales man problem for multiple points

The TSP or travelling salesman problem is an algorithm in computer science use for finding

optimal route containing a large number of points. In travelling sales man problem, the

route starts from a source and go through all the points in the route and come back towards

the destination after completing the cycle. The TSP is widely used in routing application

especially in delivery services where a deliverer has to deliver some products on multiple

points and then come back towards destination. We have to optimize the algorithm along

with the manipulation of the results. As we don’t need the driver to come back towards the

origin, the results need to manipulate for not coming to origin again.

2.4.12.2 Dijkstra for shortest path between two points

Dijkstra algorithm is an algorithm in computer sciences which is also implemented in

Pgrouting, is used to find out the optimal route between two points which is a short distance

reduced cost. The cost can be in terms of distance, speed and travel time. For example, if

highway type of a road is primary, it is believed through common sense that the speed of

38

vehicle will be higher as compared to the speed at some other secondary or tertiary roads.

Speed values were given to the roads on the basis of subjective findings. The algorithm

starts from the source node and solve each node directly connected to the source node in

the first step. After first step, all unsolved nodes connected to the solved nodes are solved

and marked as solved. As the solved nodes are marked as solved all the subsequent nodes

connected to that node are solved. After solving all the nodes, different path connected

from source to destination are marked and summed. The route having the lowest cost is

selected further. Dijkstra works by analyzing vertices in such a manner in which the first

vertex is examined and solved for all closest vertices and thus going in towards the end

vertex. The algorithm work in a manner looking all the points from start to end. For small

data the Dijkstra works better but for large number of points in the way the algorithm takes

a lot of time going towards a worst performance.

2.4.12.3 A* for two points

A* algorithms is same like Dijkstra in manner that both algorithms are used to find the

shortest optimal route between two points. A* algorithm is an alternative for Dijkstra when

Dijkstra doesn’t work well. A* is in the class of greedy algorithm which works in heuristic

manner as compared to the all points approach of Dijkstra. A* have very good performance

for larger data but Dijkstra work well than A* when the amount of data is less or number

of vertices in the path reduced. A* is usually called a complete algorithm which means it

will found out the result, if they exist. The process of searching is speeded up by using

heuristic, which is the main advantage of A* over Dijkstra. One of the main advantage of

A* algorithm is, it is able to search in multiple directions.

39

Figure 6: Creating Routing System

40

2.5 Algorithm Development

2.5.1 Self-Learning

The following flow diagram in Figure 7, represents the machine learning part of the system:

Figure 7: Self Learning of road networks

41

This flow was incorporated to first acquire and then enhance the quality of the Spatio-

Temporal data of road networks present in the system. Traffic pattern is a spatio-temporal

phenomenon. i.e. it changes with time. Density of traffic on a road might be very high at

daytime and the same road might be completely empty at night. Each day is divided into

96 time windows, i.e. each hour is divided into 4 quarters. These time windows save the

information and speed information is classified into these time windows.

Figure 8 explains that the driver’s android application calculates the current speed of the

vehicle and transmits it along with the current location of the driver to the server after every

5 seconds, if the driver is on duty.

Figure 8: Location and speed calculated every 5 seconds

42

Figure 9 explains that the speed and location information that is collected every five

seconds on the driver’s application is then sent to the server, the moment it is collected.

Figure 9: Location and speed sent to server

43

Figure 10 explains that when the request arrives at the server, a time window is assigned

to the information according to the current time.

Figure 10: Timestamp assigned to information received at server

44

Figure 11 explains that the location information is used to select the particular road on

which the vehicle is moving currently.

Figure 11: Road selected from Location Information

45

Figure 12 explains that the value of speed of the current time window of the road on which

the vehicle is moving is then updated using weighted harmonic mean.

Figure 12: Harmonic mean taken

Figure 13 explains that weighted harmonic mean is used because it removes the outliers

while aggregating the speed information. The current speed that is sent to the server is

given a weight of one while the speed stored in the system is given a weight equal to the

count of previous updates on that road on the current time window. These weights are then

used to calculate harmonic mean. Speed and new count is then updated in the system.

46

Figure 13: Values updated using harmonic mean

This information can then be used to give a more accurate and more dynamic estimation

of the time needed to complete a trip. Time window, for a better understanding, is a time

period, which is in this case divided into 15 minutes. Each division of 15 minutes of the

day is allotted a speed, according to the taxi's speed and it then dynamically maps the traffic

density of each time window.

2.5.2 Ride Matching Algorithm

The following flow diagram in Figure 14, gives a detailed illustration of the algorithm used

to match rides:

47

Figure 14: Ride Matching Algorithm

The algorithm is dynamic enough to process the requests that are received on the server

within next 10 minutes. The algorithm shown in Figure14 runs every 10 minutes.

48

When a request arrives at the server, it already has origin and destination points with it.

Origin and destination are then matched and the best possible route for the two points is

made and saved along with the request in the database. The request also sends the

information about the user that whether the user is ready to share the ride or not.

The request also contains the earliest departure time and the latest arrival time for the

request. This information is also sent by the user. This gives the algorithm an idea about

the time window that has to be considered while planning the shared trip.

After every 10 minutes, when the ride matching algorithm is called, it checks for the ride

requests within next 15 minutes. For each request, it makes the same kind of checks:

First, it sees if the user is asking for a ride share or not. In case of ‘no’, the algorithm assigns

a separate taxi to that request. If the user wants to share, it moves to the next step.

In the next step, the system checks if there are any other requests in the next 15 minutes

which have their routes within 1 mile of this request. If there is no other request in the next

15 minutes with its route in the proximity of 1 mile of the route of this request, it means

that there is no other route that is closer to this one so a separate taxi for this route is

assigned to this request. If there is another request in the next 15 minutes with its route in

the proximity of 1 mile of the route of this request, it means that the two requests are similar

and the two requests are sent to the next step.

In the next step, we see if the total number of seats required is more than three. If it is more

than three, ride is not shared because usually there are only 3 seats in a taxi.

In the next step, we check which origin has to be reached earlier and which destination has

to be reached latest. This is checked from the time window information that comes with

the request. The earliest origin and latest departure points are taken as origin and

destination respectively and the other two points are taken as way points and a shared route

is calculated using the TSP algorithm. The duration of this route is then calculated.

Then the duration of the shared path is compared to the sum of durations of the individual

paths of the two requests. If the duration of shared path is more than the sum of duration

of individual paths, it means that the ride sharing is not feasible and total system wide time

49

is increasing. If the duration of shared route is less than the duration of sum of individual

routes, it means that total system wide time is decreasing and sharing the ride will be

feasible.

Therefore, in case the duration of shared route is less than the sum of duration of individual

routes, ride sharing is feasible. Otherwise, separate taxis are assigned to both the requests

because ride sharing is not feasible in this case.

In the next step, we check if the total duration of the shared routes satisfies the time

windows of both the requests. i.e. no user has to arrive after the latest arrival time. If the

time windows are not satisfied, rides are not shared, and separate taxis are assigned to both

the requests for their individual routes. If the time windows are satisfied, rides are shared

and a single taxi is assigned to both requests for their shared paths.

The above steps are repeated for each request in the next 15 minutes and the whole

algorithm is recalled after every 10 minutes hence making it possible to process each ride

request within 10 minutes.

2.6 Data Model Development

ER Diagram

An Entity-Relationship model or ER Diagram, helps define the interrelated things of

interest in a specific area of data. It is composed of entity types and specifies relationships

that may exist between instances of those entity types. Figure 15 shows the ER diagram of

all the entities required for the formation of tables of our data.

It explains which the entities are linked together, which entities are dependent on the other,

which are independent, and how they are linked. It can be helpful to understand the working

of the project, and about the data required to carry the operations and functions on.

In this project, the USER entity is the main element, that directly or indirectly connects to

most of the other entities. For further understanding, take a look at this diagram:

50

Figure 15: ER Diagram

51

CHAPTER 3

RESULTS

A system like this can make daily commute much better and easier. It will save user’s

money, time and fuel and making the environment greener. Machine learning capabilities

make the system intelligent enough to help it get better with time.

Following are very few the snapshots of our system’s prototype:

Figure 16: Sign in page

Figure 17: Signup Page

52

Figure 18: Edit profile page

Figure 19: Admin home page

53

Figure 20: Roads editing page

Figure 21: Page to digitize roads

54

Figure 22: A request, as viewed in the admin panel

55

Figure 23: Application Homepage

56

Figure 24: Setting time on the application for time window

57

Figure 25: Picking origin and destination points on the application

58

Figure 26: Scheduling rides on the application

59

CHAPTER 4

RECOMMENDATIONS

The following are the recommendations as well as our future plans to convert this prototype

into a product and take the project to the market and take it to the next level:

1) Getting on field speed data for enhancement of road network

2) Work on the UX according to user feedback

3) Optimizing pgrouting queries for performance

4) Starting the system on some professional routing service like Google’s directions API

and then Shifting to pgrouting using native data after enough data has been gathered from

the field and the data is good enough.

60

REFERENCES

1) Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2010). Sustainable passenger

transportation: Dynamic ride-sharing.

2) Agatz, N., Erera, A., Savelsbergh, M., & Wang, X. (2012). Optimization for

dynamic ride-sharing: A review. European Journal of Operational Research,223(2),

295-303.

3) Agatz, N. A., Erera, A. L., Savelsbergh, M. W., & Wang, X. (2011). Dynamic ride-

sharing: A simulation study in metro Atlanta. Transportation Research Part B:

Methodological, 45(9), 1450-1464.

4) Ma, S., Zheng, Y., & Wolfson, O. (2013, April). T-share: A large-scale dynamic

taxi ridesharing service. In Data Engineering (ICDE), 2013 IEEE 29th International

Conference on (pp. 410-421). IEEE.

5) Tao, C.C. (2007, September). Dynamic taxi-sharing service using intelligent

transportation system technologies. In Wireless Communications, Networking and

Mobile Computing, 2007. WiCom 2007. International Conference on (pp. 3209-

3212). IEEE.

6) Zhang, L., & He, X. (2012). Route Search Base on pgRouting. In Software

Engineering and Knowledge Engineering: Theory and Practice (pp. 1003-1007).

Springer Berlin Heidelberg.

7) Django Documentation: https://docs.djangoproject.com/en/1.9

8) Django vs Laravel vs Rails: http://www.findalltogether.com/post/django-vs-

laravel-vs-rails/

9) CMS vs MVC: http://www.findalltogether.com/post/cms-vs-mvc-frameworks/

10) Python vs PHP vs Ruby: http://www.findalltogether.com/post/python-vs-php-vs-

ruby/

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	TABLE OF CONTENTS
	CHAPTER 1
	INTRODUCTION
	1.1 Background
	1.1.2 Continuous ridesharing
	1.1.5 HTML
	1.1.6 CSS
	1.1.11 MVC (Model–view–controller)
	1.1.12 PostGIS
	1.1.13 Web server
	1.1.14 Cloud server
	1.1.15 RESTful web services
	1.1.16 Database
	1.1.17 Spatial Database
	1.1.18 Web development frameworks
	1.1.19 Content Management System
	1.1.20 Custom development
	1.1.21 JQUERY
	1.1.22 Bootstrap
	1.1.23 Leaflet

	1.2 Literature Review

	CHAPTER 2
	MATERIALS AND METHODS
	2.1 Market Research
	Framework
	Database

	2.2 Tools and Technologies
	2.2.2 JQuery:
	2.2.6 LEAFLET:
	2.2.7 PostgreSQL:
	2.2.8 JAVA:
	2.2.9 HTML:
	2.2.10 JAVASCRIPT:
	2.2.11 CSS:
	2.2.12 BOOTSTRAP:
	2.2.13 PostGIS:
	2.2.14 UBUNTU:
	2.2.15 MICROSOFT AZURE:
	2.2.16 PILLOW:
	2.2.17 ANDROID STUDIO:
	2.2.18 GOOGLE API:
	2.2.19 DJANGO:
	2.2.20 DJANGO REST Framework:
	2.2.21 PGROUTING:
	2.2.22 JSON:

	2.3 Server Side Development
	2.4 Preliminary Data Preparation
	2.4.1 Data Preparation
	2.4.2 Data Acquisition
	2.4.3 Importing the data in QGIS
	2.4.4 ESRI Shape File
	2.4.5 Extracting Roads data
	2.4.6 OGR2OGR
	2.4.7 PostGIS
	2.4.8 Admin Panel (Django)
	2.4.9 Removing NULL values
	2.4.10 Node Network
	2.4.11 Create Topology
	2.4.12 Pgrouting Queries

	2.5 Algorithm Development
	2.5.1 Self-Learning
	2.5.2 Ride Matching Algorithm

	2.6 Data Model Development
	ER Diagram

	CHAPTER 3
	results

	CHAPTER 4
	recommendations

	REFERENCES

