

Aircraft Flight Dynamics,

Control and Simulation

Using MATLAB and SIMULINK: Cases and Algorithm Approach

SINGGIH SATRIO WIBOWO

Preface 1

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

PREFACE

This book is written for students and engineers interesting in flight

control design, analysis and implementation. This book is written

during preparation of Matlab and Simulink course in UNIKL-MIAT

(University of Kuala Lumpur-Malaysian Institute of Aviation

Technology) in third week of February 2007. Although this book is still

in preparation, I hope that this book will be useful for the readers.

I wish to express my great appreciation to Professor Said D. Jenie

for his support. I wish to acknowledge Mr. Kharil Anuar and Mr.

Shahrul Ahmad Shah of MIAT for their invitation to the author to give

Matlab course in MIAT during the period of 26 February to 2 March

2007. I also wish to acknowledge the support of my colleagues at

Institut Teknologi Bandung (ITB): Javensius Sembiring and Yazdi I.

Jenie, and also my friends at Badan Pengkajian dan Penerapan

Teknologi (BPPT): Dewi Hapsari, Dyah Jatiningrum and Nina Kartika.

No words can express the thanks I owe to my parents: Ibunda Sulasmi

and Ayahanda Satrolan, and my family for their continuous support

through out my life. Finally and the most importantly, I would like to

thank The Highest Sweetheart Allah Almighty, The Creator and The

Owner of the universe.

Kuala Lumpur, 25 February 2007

Singgih Satrio Wibowo

Contents 2

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

CONTENTS

Preface .. 1

Contents ... 2

List Of Figures ... 5

List of Tables ... 7

1 Aircraft Dynamics and Kinematics .. 9

1.1 Coordinate Systems and Transformation ... 10

1.1.1 Local Horizon Coordinate Reference System 10

1.1.2 Body Coordinate Reference System ... 10

1.1.3 Wind Coordinate System .. 12

1.1.4 Kinematics Equation ... 15

1.1.5 Direction Cosine Matrix .. 16

1.1.6 Quaternions .. 17

1.2 Aircraft equations of motion .. 21

1.2.1 Translational Motion .. 21

1.2.2 Angular Motion ... 23

1.2.3 Force and Moment due to Earth’s Gravity ... 25

1.2.4 Aerodynamic Forces and Moments.. 26

1.2.5 Linearization of Equations of Motion ... 27

1.1 Matlab and Simulink Tools for Flight Dynamics Simulation 30

2 Flight Control.. 31

2.1 Attitude and Altitude Control using Root Locus Anlysis 32

2.2 Optimal Path-Tracking Control for Autonomous Unmanned Helicopter Using

Linear Quadratic Regulator .. 33

2.2.1 Linearized Model .. 34

2.2.2 Modified Linearized Model .. 37

Contents 3

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.2.3 Path Generator ... 39

2.2.4 Path-Tracking Controller Design ... 43

2.2.5 Matlab and Simulink Implementation .. 46

2.2.6 Numerical Results ... 54

2.2.7 Analysis and Discussion of the Results ... 63

2.3 Coordinated Turn Using Linear Quadratic Regulator 65

2.3.1 State-Space Equations for an Airframe .. 65

2.3.2 Problem Definition ... 65

2.3.3 Matlab and Simulink Implementation .. 66

2.3.4 Results... 69

2.3.5 Analysis and Discussion of the Results ... 70

2.4 Adaptive Control for Yaw Damper and Coordinated Turn 71

2.4.1 Yaw Damper and Coordinated Turn: Definition 71

2.4.2 Model Reference Adaptive System .. 71

2.4.3 State-Space Model of XX-100 Aircraft .. 72

2.4.4 Matlab and Simulink Implementation .. 72

2.4.5 Results... 72

2.4.6 Discussion of The Results ... 73

3 Flight Simulation .. 74

3.1 Matlab and Simulink tool for simulation .. 75

3.1.1 Matlab command for simulation purpose ... 75

3.1.2 Simulink toolbox for simulation purpose ... 75

3.2 Virtual Reality, an advance tool for visualization ... 76

3.2.1 Introduction to Virtual Reality toolbox: a user guide 76

3.2.2 Virtual Reality for transport aircraft ... 88

3.3 Simulation of Aircraft Dynamics: a VirtueAir transport craft 89

Appendix A ... 90

Contents 4

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Appendix B ... 93

References .. 99

List Of Figures 5

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

LIST OF FIGURES

Figure 1-1 Local horizon coordinate system .. 10

Figure 1-2 Body-coordinate system ... 11

Figure 1-3 Aircraft attitude with respect to local horizon frame: Euler angles 12

Figure 1-4 Wind-axes system and its relation to Body axes .. 13

Figure 1-5 Aerodynamic lift and drag .. 14

Figure 2-1 A small-scale unmanned helicopter, Yamaha R-50 .. 33

Figure 2-2 Dimension of the Yamaha R-50 Helicopter .. 34

Figure 2-3 The complete state-space form of R-50 dynamics ... 35

Figure 2-4 Trajectory for example 1, circular .. 40

Figure 2-5 Velocity profile for example 1 .. 41

Figure 2-6 Trajectory for example 2, rectangular .. 41

Figure 2-7 Velocity profile for example 2 .. 42

Figure 2-8 Trajectory for example 3, spiral ... 42

Figure 2-9 Velocity profile for example 3 .. 43

Figure 2-10 Path tracking controller model... 49

Figure 2-11 Path generator block .. 49

Figure 2-12 Earth to inertial velocity transform block .. 50

Figure 2-13 Optimal controller block.. 50

Figure 2-14 Yamaha R50 dynamics model block ... 50

Figure 2-15 Body to inertial transform block .. 51

Figure 2-16 Inertial to Earth transform block .. 51

Figure 2-17 Write to file block ... 51

Figure 2-18 Flight trajectory geometry .. 55

Figure 2-19 Trajectory history ... 55

Figure 2-20 Velocity history ... 56

Figure 2-21 Control input history .. 56

Figure 2-22 Attitude history .. 57

Figure 2-23 Trajectory error history .. 57

Figure 2-24 Flight trajectory geometry .. 58

Figure 2-25 Trajectory history ... 58

Figure 2-26 Velocity history ... 59

Figure 2-27 Control input history .. 59

Figure 2-28 Attitude history .. 60

Figure 2-29 Trajectory error history .. 60

Figure 2-30 Flight trajectory geometry .. 61

Figure 2-31 Trajectory history ... 61

List Of Figures 6

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Figure 2-32 Velocity history ... 62

Figure 2-33 Control input history .. 62

Figure 2-34 Attitude history .. 63

Figure 2-35 Trajectory error history .. 63

Figure 2-36 A Body Coordinate Frame for an Aircraft [16] ... 65

Figure 2-37 Simulink diagram of coordinated turn ... 67

Figure 2-38 Write to file block ... 67

Figure 2-39 Attitude history .. 69

Figure 2-40 Tracking error history ... 70

Figure 2-41 Control input history .. 70

Figure 2-42 Block diagramfor Turn Coordinator system ... 71

Figure 2-43 Block diagram for Model Reference Adaptive System... 72

Figure 3-1 The 3D AutoCAD model of XW aircraft .. 77

Figure 3-2 The 3D AutoCAD model of lake and hill ... 78

Figure 3-3 The V-Realm Builder window ... 78

Figure 3-4 The 3D studio model of XW craft after imported into the V-Realm Builder 79

Figure 3-5 The 3D studio model of XW craft after a background is added 79

Figure 3-6 Adding four ‘Transform’ ... 80

Figure 3-7 Renaming the four ‘Transform’ and moving the ‘Wise’ ... 80

Figure 3-8 Adding a dynamic observer .. 80

Figure 3-9 Edit rotation (orientation) of the observer .. 81

Figure 3-10 Edit position of the observer .. 81

Figure 3-11 Edit description of the observer ... 82

Figure 3-12 An example of an observer .. 82

Figure 3-13 An example of an observer, Right Front Observer ... 82

Figure 3-14 Final results of the Virtual World ... 83

Figure 3-15 A new SIMULINK model with VR Sink... 83

Figure 3-16 Parameter window of VR Sink .. 84

Figure 3-17 Parameter window of VR Sink after loading “wise8craftVR.wrl” 84

Figure 3-18 The VR visualization window of WiSE-8 craft ... 85

Figure 3-19 The VR parameter after VRML Tree editing ... 86

Figure 3-20 The VR Sink after VR parameter editing ... 87

Figure 3-21 The VR Transform subsystem ... 88

List of Tables 7

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

LIST OF TABLES

Table 1 Physical Parameter of The Yamaha R-50 .. 34

Table 2 Parameter values of matrix A ... 35

Table 3 Parameter values of matrix B ... 37

List of Tables 8

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Aircraft Dynamics and

Kinematics

 9

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1 AIRCRAFT DYNAMICS AND KINEMATICS

Nature of Aircraft dynamics and kinematics in three-dimensional (3D)

space can be described by a set of Equations of Motion (EOM), which

contains six degrees of freedom: three translational modes and three

rotational modes. In the equations, it needs to define the forces and

moments acting on the vehicle since it is the factors responsible for

the motion. Therefore, the modeling of the forces and moments is a

must. The mathematical model of forces and moments include the

aerodynamic, propulsion system and gravity. These models will be

discussed in detail in this chapter.

In this chapter, first we briefly overview the coordinate systems

that used as the reference frame for the description of aircraft motion.

Then, a complete nonlinear model of the aircraft motion will be

discussed briefly.

Aircraft Dynamics and

Kinematics

 10

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1.1 COORDINATE SYSTEMS AND TRANSFORMATION
A number of coordinate systems will employed here to be use as a

reference for the motion of the aircraft in three-dimensional space,

 Local horizon-coordinate system

 Body-coordinate system

 Wind-coordinate system

1.1.1 LOC AL HORIZON COORDIN ATE REFERENCE SYSTEM

The local horizon coordinate system is also called the tangent-plane; it

is a Cartesian coordinate system. Its origin is located on pre-selected

point of interest and its hx , hy , hz axes align with the north, east and

down direction respectively as shown in Figure 1-1.

FIGURE 1-1 LOCAL HORIZON COORDINATE SYSTEM

For simulation purpose, the local horizon local will be used as

reference (inertial) frame. It is correct since the most of aircraft is

flying in low altitude and range relative to the earth surface.

1.1.2 BODY COORDIN ATE REFERENC E SYSTEM

hx

hy

hz

eX

eZ

eY





Aircraft Dynamics and

Kinematics

 11

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

The body coordinate system is a special coordinate system which

represents the aircraft body. Its origin is attached to the aircraft center

of gravity, see Figure 1-2. The positive bx axis lies along the

symmetrical axis of the aircraft in the forward direction, its positive by

axis is perpendicular to the symmetrical axis of the aircraft to the right

direction, and the positive bz is perpendicular to the b box y plane

making the right hand orientation.

FIGURE 1-2 BODY-COORDINATE SYSTEM

The transformation of body axes to the local horizon frame is

carried out using Euler angle orientation procedures. The orientation

of the body axes system to the local horizon axes system is expressed

by Euler angles as shown in Figure 1-3.

center of gravity

by
bz

bx

Aircraft Dynamics and

Kinematics

 12

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 1-3 AIRCRAFT ATTITUDE WITH RESPECT TO LOCAL HORIZON FRAME:

EULER ANGLES

 The transformation of local horizon coordinate system to body

coordinate system can be expressed as [2]

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

h

bC

    

           

           



 

 

 
 
 
  

 (1-1)

The above formula is very useful for determining the orientation of

the aircraft with respect to the earth surface. This matrix is an

orthogonal class of matrix, meaning that its inverse can be obtained by

transposing the matrix above as
1 T

b h h

h b bC C C


        .

1.1.3 W IND COORDIN ATE SYSTEM

Wind coordinate system represents the aircraft velocity vector. This

frame defines the flight path of the aircraft. The term ‘wind’ used here

is relative wind flowing through the aircraft body as the aircraft fly in

the air [2].

 Local Vertical

Local Horizon

bx

by
bz

hx

hz

hy









Aircraft Dynamics and

Kinematics

 13

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Its origin is attached to the center of gravity while its axes

define the direction and the orientation of flight path. The positive wx

axis coincides to the aircraft velocity vector V . The wz axis lies on the

symmetrical plane of the aircraft, perpendicular to the wx axis and

positive downward. And the last, positive wy axis is perpendicular to

the w wox z plane obeying the right-hand orientation. These axes

definition are shown in Figure 1-4.

FIGURE 1-4 WIND-AXES SYSTEM AND ITS RELATION TO BODY AXES

Wind axes system can be transformed to the body axes system using

the following matrix of transformation,

cos cos -cos sin -sin

sin cos 0

sin cos -sin sin cos

w

bC

    

 

    

 
 


 
  

 (1-2)

This equation is useful for transforming the aerodynamic lift and drag

forces to body axes system. As can be seen in Figure 1-4, the

bx

by

bz

wx

wy





wz

V



Aircraft Dynamics and

Kinematics

 14

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

aerodynamic lift vector is along the negative wz axis while the

aerodynamic drag is along the negative wx axis. Since the equations of

motion are derived in body axes system, it needs to express all forces

and moments which acting on the aircraft in the body axes. Therefore

the aerodynamic lift and drag vectors should be transformed from

wind axes to the body axes.

FIGURE 1-5 AERODYNAMIC LIFT AND DRAG

Using Equation (1-2), Aerodynamic lift and drag can be

transformed to body axes system by the following relation

cos cos -cos sin -sin

sin cos 0 0

sin cos -sin sin cos

X

Y

Z

A

A

A

F D

F

LF

    

 

    

     
    

    
         

 (1-3)

Similarly, after dividing Equation (1-3) by 21
2 TV S , the aerodynamic

coefficients can be expressed as

bx

by

bz

wx

wy





wz

V

L

D

Aircraft Dynamics and

Kinematics

 15

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

cos cos -cos sin -sin

sin cos 0 0

sin cos -sin sin cos

X D

Y

Z L

C C

C

C C

    

 

    

     
    

    
          

 (1-4)

Equation (1-4) will be used for transforming aerodynamic lift and drag

coefficients to body axes aerodynamic coefficients XC , YC , and ZC .

The translational velocity can also be transformed into the body

axes system as follows:

cos cos -cos sin -sin

sin cos 0 0

sin cos -sin sin cos 0

cos cos

sin

sin cos

T

T

T

T

U V

V

W

V

V

V

    

 

    

 



 

     
    

    
         

 
 

  
 
 

 (1-5)

in which the total velocity TV is defined as 2 2 2

TV U V W   . Angle

of attack  , and angle of sideslip  can be derived from equation (2-

9) as follows:

arctan

arcsin
T

W

U

V

V





 
  

 

 
  

 

 (1-6)

Equation (2-10) will also be used in the simulation for calculating angle

of attack and sideslip angle from body axes velocity.

1.1.4 K INEM ATICS EQUATION

Aircraft Dynamics and

Kinematics

 16

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Kinematics equation shows the relation of Euler angles and angular

velocity  
T

b P Q Rω . The physical definition of Euler angles can

be seen in Figure 1-3. The kinematics equations are listed as follows:

sin tan cos tan

cos sin

sin cos

cos cos

P Q R

Q R

Q R

    

  

 


 

  

 

 







(1-7)

The above equation can be rewritten in the form of matrix as

1 sin tan cos tan

0 cos sin

sin cos
0

cos cos

P

Q

R

    

  

  

 

 
    
    

     
    
    

 







 (1-8)

Equations (2-2) and (2-3) are used to obtained the Euler angles

from the angular velocity P , Q , and R . But the above equations have

disadvantage, i.e. can be singular for  = ± 90 degrees. It motivates to

use another way that can avoid the singularity. This can be done using

quaternion which will be discussed in the next section.

1.1.5 DIRECTION COS IN E MATRIX

Intersection angle i of any two vectors in three-dimensional (3D)

space, denoted by 1r and 2r , can be found by the inner product

relationship:

Aircraft Dynamics and

Kinematics

 17

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1 2

1 2

arccosi
 

  
  

r r

r r


 (1-9)

Using above idea, the transformation coordinate from local horizon

axes system (, ,h h hi j z) to body axes system (, ,b b bi j z) can be cast into

the matrix form [48]:

h b h b h b

h b h b h b

h b h b h b

DCM

c c c s s

s s c c s s s s c c s c

c s c s s c s s s c c c

    

           

           

 
 


 
  

 
 

  
 
   

i i i j i z

j i j j j z

z i z j z z

  

  

  
 (1-10)

where symbol    sins    and    cosc    are used for

abbreviation. Equation (1-10) is identical to Equation (1-1). Therefore

the term DCM will be used together with the transformation matrix
h

bC in the simulation.

1.1.6 QUATERN ION S

Quaternions were discovered by Sir William Hamilton in 1843. He used

quaternion for extensions of vector algebras to satisfy the properties

of division rings (roughly, quotients exist in the same domain as the

operands). It has been widely discussed as interesting topic in algebra

and for its amazing applicability in dynamics.

The following paragraphs discuss the application of Quaternion

starting with its definition while more detail discussion will be

presented in Appendix C. Quaternion is define as

Aircraft Dynamics and

Kinematics

 18

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

 0 1 2 3 0 1 2 31
T

q q q q q q q q        q i j k (1-11)

where 0q , 1q , 2q , 3q are reals, 1 is the multiplicative identity element,

and i , j , k are symbolic elements having the properties:

2 1 i , 2 1 j , 2 1 k







ij k

jk i

ki j

 

 

 

ji k

kj i

ik j

(1-12)

 The time-derivative of the quaternion can be expressed as follows:

 

0 0

1 1

2 2

3 3

3 2 1 0

2 3 0 1

1 0 3 2

0 1 2 3

0

01

02

0

1

2

b

K

q qR Q P

q qR P Q
K

q qQ P R

q qP Q R

q q q q
P

q q q q
Q K

q q q q
R

q q q q

K









 

     
    

         
     
            

   
    

         
     
          

 

q ψ q

Qω q



 (1-13)

where  2 2 2 2

0 1 2 31 q q q q      is an error coefficient.

Obviously, integrating equation (1-13) is much more efficient

than (1-3) because it does not involve computationally expensive

trigonometric functions. This integration can be evaluated using the

following relation:

Aircraft Dynamics and

Kinematics

 19

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

 
0

0

t

t
t dt  q q q (1-14)

where  tq denotes quaternion at time t and 0q is initial quaternion

calculated from initial Euler angles using Eqn. (1-17).

 The rotational transformation matrix can be directly found with

quaternion:

   
   
   

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 2 1 3 2 3 0 1

2 2 2 2

1 3 0 2 2 3 0 1 0 3 1 2

2 2

2 2

2 2

h

bC DCM

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q



     
 

      
      

(1-15)

Euler angles can be determined from the quaternion by comparing

Eqn. (2-15) to Eqn. (2-1) which yields

 

 

 

2 3 0 1

2 2 2 2

0 3 1 2

1 3 0 2

1 2 0 3

2 2 2 2

0 1 2 3

2
arctan

arcsin 2

2
arctan

q q q q

q q q q

q q q q

q q q q

q q q q







 
  

   

    

 
  

   

 (1-16)

This quaternion can also be expressed in terms of Euler angles as [8]:

Aircraft Dynamics and

Kinematics

 20

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

0

1

2

3

cos cos cos sin sin sin
2 2 2 2 2 2

sin cos cos cos sin sin
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2 2

q

q

q

q

     

     

     

     

 
   

 

 
   

 

 
   

 

 
   

 

 (1-17)

The above equations will be used in the simulation which will be

conducted in this book.

Aircraft Dynamics and

Kinematics

 21

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1.2 AIRCRAFT EQUATIONS OF MOTION
The equations of motion are derived based on Newton law. They were

first derived by Euler, a great mathematician. It is the reason why the

equations of motion are dedicated to Newton and Euler.

The solutions of the complete equations of motion provide the

characteristics of motion of any solid body in three-dimensional space,

three translational and three angular motions. Therefore they called

the six degree of freedom (6-DOF) equations of motion. These

equations are very general and apply for all rigid bodies, e.g. aircrafts,

rockets and satellites.

The 6-DOF equations of motion consists a set of nonlinear first

ordinary differential equations (ODES). They express the motions of

the aircraft in terms of external forces and moments, which can be

subdivided in a number of categories such as aerodynamics, control

surface, propulsion system, and gravity. In this section, the equations

of motion will be presented along with all relevant force and moment

equations and a large number of output equations of which some are

needed to calculate these forces and moments.

1.2.1 TRANS LATION AL MOTION

Applying the second law of Newton, the net forces acting on the

airplane can be found by adding up the force acting on the all parts of

the airplane as follows:

 I b
b b b

d m d
m m

dt dt

 
      

 


V V
F ω V V (1-18)

where  
T

X Y ZF F F  F is total force vector along bx , by and

bz axes respectively,  
T

b U V WV is velocity vector coordinated

at the body axes frame and  
T

b P Q Rω denotes angular

Aircraft Dynamics and

Kinematics

 22

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

velocity vector of the aircraft with respect to the inertial space

coordinated at the body axes system. Upon decomposition, the

resulting three scalar force equations become:

 

 

 

X

Y

Z

F m U QW RV mU

F m V RU PW mV

F m W PV QU mW

   

   

   

 

 

 

 (1-19)

The above equation then used for calculating the translational

acceleration that can be expressed in the following equation:

X

Y

Z

F mU
U QW RV

m

F mV
V RU PW

m

F mW
W PV QU

m


  


  


  







 (1-20)

The term  bm m  F V is defined as translational acceleration ba

=
T

x y za a a   =      
T

X Y ZF mu m F mv m F mw m       .

Forces occurred in (2-19) and (2-20) are caused by the aerodynamics,

control surface, propulsion system and Earth’s gravity. Hence it can be

written as follows:

X X X X

Y Y Y Y

Z Z Z Z

X A C P G

Y A C P G

Z A C P G

F F F F F

F F F F F

F F F F F

   

   

   

 (1-21)

Aircraft Dynamics and

Kinematics

 23

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

where
XAF denotes aerodynamic force acting along bx axis,

XHF is

hydrodynamic force acting along bx axis,
XTF denotes the propulsion

force acting along bx axis
XGF denotes gravity force acting along bx

axis, and so on.

1.2.2 AN GULAR MOTION

Angular motion of the aircraft is also derived based on the second law

of Newton. The net moment acting on the airplane can be found by

adding up the moments acting on the all parts of the airplane as:

 I
b b b b

d

dt
     

H
M Iω ω Iω Iω (1-22)

where  
T

X Y ZM M M  M is total moment vector along bx ,

by and bz axes respectively, ω denotes the angular velocity of the

aircraft as mentioned before and I denotes the inertia tensor of the

aircraft defined as

xx yx zx

xy yy zy

xz yz zz

I J J

J I J

J J I

  
 

   
   

I (1-23)

The angular acceleration can be evaluated using Equation (2-22)

as

  1

b b b b

    ω I M ω Iω Iω (1-24)

Aircraft Dynamics and

Kinematics

 24

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Here, 1I is the inverse of the inertia tensor as shown in Equation (2-

24). This inverse has a relatively simple form [8]:

11 21 31

1

12 22 32

13 23 33

1
k k k

k k k

k k k



 
 


 
  

I (1-25)

where

 

 

 

2

11

2

22

2

33

yy zz yz

zz xx xz

xx yy xy

k I I J

k I I J

k I I J

  

  

  

 

 

 

12 21

13 31

23 32

yz xz xy zz

xy yz xz yy

xy xz yz xx

k k J J J I

k k J J J I

k k J J J I

   

   

   

 (1-26)

and

2 2 22xx yy zz xy yz xz xx yz yy xz zz xyI I I J J J I J I J I J      (1-27)

For conventional aircraft which is symmetrical to b box z plane,

the cross inertial products are very small and can be assumed to be

zero (0xyJ  and 0yzJ ). Under this condition, Eqn. (2-27) can be

simplified as

2

xx yy zz yy xzI I I I J   (1-28)

By assuming the inertia tensor is constant which implies I = 0, Eqn. (2-

24) can be decomposed as:

Aircraft Dynamics and

Kinematics

 25

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

   

   

   

2

2 2

2

zz zz yy xzxz xx yy zzX zz Z xz

xzzz xxY

yy yy yy

xx xx yy xz xz xx yy zzX xz Z xx

I I I J QRJ I I I PQM I M J
P

J P RI I PRM
Q

I I I

I I I J PQ J I I I QRM J M I
R

       
  


  

        
  







(1-29)

The moments (XM , YM and YM) can also be expressed in

terms of aerodynamic, control surface and propulsion moments as

those for the forces,

X X X

Y Y Y

Z Z Z

X A C P

Y A C P

Z A C P

M M M M

M M M M

M M M M

  

  

  

 (1-30)

where
XAM denotes aerodynamic moment which respect to bx axis,

XCM is control surface moment which respect to bx axis,
XPF denotes

the propulsion moment which respect to bx axis, and so on.

1.2.3 FORCE AND MOMENT DUE TO EARTH ’S GRAVITY

The gravity force vector can be decomposed along the body axes

system as:

sin

sin cos

cos cos

X

Y

Z

G

G

G

F mg

F mg

F mg



 

 

 





 (1-31)

Aircraft Dynamics and

Kinematics

 26

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

or can be written as

0 0

0 0

X

Y

Z

G

h

G b

G

F

F C DCM

mg mgF

     
     

      
     

    

 (1-32)

The gravity force produces zero moment because it is acting on the

center of gravity. Equation (2-32) is the gravity force equation which

will be used in the simulation.

1.2.4 AERODYN AMIC FORCES AN D MOM ENTS

Aerodynamic forces and moments are function of some parameters.

They can be written as:

 

 

 

 

 

21
2

21
2

21
2

21
2

1

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

X

Y

Z

X

Y

A X a e r T

A Y a e r T

A Z a e r T

A l a e r T

A m a e r

F C H M U V W P Q R V S

F C H M U V W P Q R V S

F C H M U V W P Q R V S

M C H M U V W P Q R V Sb

M C H M U V W P Q R

     

     

     

     

    











 

2

2

21
2

, , , , , , , , , , , ,
Z

T

A n a e r T

V Sc

M C H M U V W P Q R V Sb



     

 (1-33)

Equation (1-33) shows that the aerodynamic forces and

moments are very complicated. Due to the limitation of methods and

tools available for determining the aerodynamic coefficients as

function of parameters shown in Eqn. (1-33), the simpler aerodynamic

model will be used for the simulation, see Eqns. (1-34) and (1-35).

These equations are adopted from aircraft control model.

In aircraft control studies which the interest is laying in the

aircraft’s response to a (small) deviation from a steady rectilinear

symmetrical flight, the aerodynamic forces and moments can be

Aircraft Dynamics and

Kinematics

 27

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

separated into two uncoupled groups of symmetric and asymmetric

equations.

Symmetric equations:

  
  
  

21
2 2

21
2 2

21
2 2

,

,

,

X q R e

Z q R e

Y q R e

c
A X X X e TV

c
A Z Z Z e TV

c
A m m m e TV

F C H C q C V S

F C H C q C V S

M C H C q C V Sc







  

  

  

  

  

  

 (1-34)

The aerodynamic coefficients XC and ZC which occurred in Eqn.

(1-34) were calculated from aerodynamic lift and drag using Equation

(1-8). Aerodynamic lift and drag coefficients of the aircraft were

predicted using Digital DATCOM as function of angle of attack () and

altitude (H).

Asymmetric equations:

 

 

 

21
2 2 2

21
2 2 2

21
2 2 2

Y o p rR R a r

X o p rR R a r

Z o p rR R a r

b b
A Y Y Y Y Y a Y r TV V

b b
A l l l l l a l r TV V

b b
A n n n n n a n r TV V

F C C C p C r C C V S

M C C C p C r C C V Sb

M C C C p C r C C V Sb

  

  

  

   

   

   

     

     

     

 (1-35)

Aerodynamic coefficient YC which occurred in Equation (1-35)

was also calculated from aerodynamic lift and drag using Equation (1-

8). For sideslip angle  = 0, the aerodynamic
oYC ,

ol
C and

onC are

assumed to be zero.

Stability and control derivatives occurred in equation (1-34) and

(1-35) will be calculated using DATCOM and Smetana method. These

parameters will be listed in Appendix C.

1.2.5 LINEARIZATION OF EQUATIONS OF MOTION

Aircraft Dynamics and

Kinematics

 28

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

We rewrite the complete equation of motion for conventional aircraft

in the form of

 

 

 

 

   

 

2 2

sin

cos sin

cos cos

X X X

Y Y Y

Z Z Z

X X X

Y Y Y

Z

a p c

a p c

a p c

xx zz yy xz xz a p c

yy xx zz xz a p c

zz yy xx xz xz a

m U QW RV mg F F F

m V RU PW mg F F F

m W PV QU mg F F F

I P I I QR J R J PQ M M M

I Q I I PR J P R M M M

I R I I PQ J P J QR M



 

 

      

     

     

      

      

     







 



 
Z Zp cM M

 (1-36)

Linearization of equations of motion is derived at trim condition, i.e.

the condition when all acceleration (translation and rotation) are zero,

oU = oV = oW = oP = oQ = oR = 0. At this condition, equations of

motion become,

 

 

 

sin

cos sin

cos cos

X X Xo oo

Y Y Yo o o

Z Z Zo o o

o o o o o A P C

o o o o o o A P C

o o o o o o A P C

m Q W R V mg F F F

m R U PW mg F F F

m PV Q U mg F F F



 

 

     

    

    

 (1-37)

 

   

 

2 2

X X Xo o o

Y Y Yo o o

Z Z Zo o o

zz yy o o xz o o A P C

xx zz o o xz o o A P C

yy xx o o xz o o A P C

I I Q R J P Q M M M

I I P R J P R M M M

I I P Q J Q R M M M

    

     

    

 (1-38)

we introduce small disturbance such that

o o o

o o o

o o o

U U u d P P p

V V v d Q Q q

W W w d R R r

  

  

  

     

     

     

 (1-39)

Aircraft Dynamics and

Kinematics

 29

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Where 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝑑𝜑, 𝑑𝜃 and 𝑑𝜓 is small deviation from its steady

state value.

During trim condition, external force and moment can be written as:

X X X X X Xo o

X X Xo

X X X X X Xo o

X X Xo

a a a p p p

c c c

a a a p p p

c c c

F F dF F F dF

F F dF etc

M M dM M M dM

M M dM etc

   

 

   

 

 (1-40)

The trim condition is chosen at symmetrical cruising flight, where 0V =

oP = oQ = oR = 0, dan o = o = o = 0. Applying Eqn. (1-37) to (1-40)

and neglecting product of small variables, yields

   cos
X X Xo o A P Cm u W q mg d dF dF dF       (1-41)

   cos
Y Y Yo o o A P Cm v U r W p mg d dF dF dF       (1-42)

   sin
Z Z Zo o A P Cm w U q mg d dF dF dF       (1-43)

X X Xxx xz A P CI p J r dM dM dM     (1-44)

Y Y Yyy A P CI q dM dM dM   (1-45)

Z Z Zzz xz A P CI r J p dM dM dM     (1-46)

Aircraft Dynamics and

Kinematics

 30

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1.1 MATLAB AND SIMULINK TOOLS FOR FLIGHT DYNAMICS SIMULATION

Flight Control 31

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2 FLIGHT CONTROL

This chapter deals with control design and analysis using classical and

modern techniques. The explanation will be given in examples. First

we will give example of classical control applying for longitudinal and

lateral control (first example), then continuing by modern control

(second to fourth examples).

Flight Control 32

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.1 ATTITUDE AND ALTITUDE CONTROL USING ROOT LOCUS ANLYSIS

Flight Control 33

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.2 OPTIMAL PATH-TRACKING CONTROL FOR AUTONOMOUS UNMANNED

HELICOPTER USING LINEAR QUA DRATIC REGULATOR

This chapter presents tracking control design of a small-scale

unmanned helicopter (Yamaha R-50) using Linear Quadratic Regulator

(LQR) technique [10]. We proposed scheme involves two steps: (1)

generate a path/trajectory off-line and (2) apply a time-invariant LQR

to track the path/trajectory. Numerical simulation using

MATLAB/Simulink® is carried out to demonstrate the feasibility of the

control system. Physical parameter of R-50 helicopter is presented in

Table 1.

FIGURE 2-1 A SMALL-SCALE UNMANNED HELICOPTER, YAMAHA R-50

Flight Control 34

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-2 DIMENSION OF THE YAMAHA R-50 HELICOPTER

TABLE 1 PHYSICAL PARAMETER OF THE YAMAHA R-50

Rotor speed 850 rpm

Tip speed 449 ft/s

Dry weight 97 lb

Instrumented 150 lb

Engine Single cylinder, 2-stroke

2.2.1 LINEARIZED MODEL

The linearized model of R-50 dynamics can be written in the state-

space form as

     t t t x Ax Bu (2-1)

Where

T

fbu v w p q r a b w r r c d    x (2-2)

Flight Control 35

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

is state vector, and

T

lat lon ped col
      u (2-3)

is control input. The matrices A and B are shown in the complete

state-space form (Figure 1-4).

FIGURE 2-3 THE COMPLETE STATE-SPACE FORM OF R-50 DYNAMICS

The parameter values of matrix A and B for hover and cruise flight

condition presented in Table 2 and Table 3 below.

TABLE 2 PARAMETER VALUES OF MATRIX A

Parameter Hover Cruise

uX -0.0505 -0.122

X  , aX -32.2 -32.2

rX 0 -11

vY -0.154 -0.155

Flight Control 36

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Y , bY 32.2 32.2

rY 0 -49.2

uL -0.144 0

vL 0.143 0

wL 0 -0.213

bL 166 213

uM -0.0561 0

vM -0.0585 0

wM 0 0.0728

aM 82.6 108

aB 0.368 0.419

dB 0.71 0.664

bA -0.189 -0.176

cA 0.644 0.577

bZ -131 0

aZ -9.75 0

wZ -0.614 -1.01

rZ 0.93 0

pZ 0 11

qZ 0 49.2

pN -3.53 0

vN 0.0301 0.401

wN 0.0857 0

rN -4.13 -3.9

rfbN -33.1 -26.4

Flight Control 37

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

rK 2.16 2.18

rfbK -8.26 -7.79

TABLE 3 PARAMETER VALUES OF MATRIX B

Parameter Hover Cruise

latB 0.14 0.124

lonB 0.0138 0.02

latA 0.0313 0.0265

lonA -0.1 -0.0837

colZ -45.8 -60.3

colM 0 6.98

colN -3.33 0

pedN 33.1 26.4

latD 0.273 0.29

lonC -0.259 -0.225

pedY 0 11.23

p 0.0991 0.0589

f 0.046 0.0346

cgh -0.411 -0.321

s 0.342 0.259

2.2.2 MODIFIED L INEARIZED MODEL

Flight Control 38

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

We have modified the original dynamic model above for our

convenience. We added to the model, the rotation r  and then

rearrange the state vector as follows

T

fbu v w p q r r a b c d     x (2-4)

Using this new state vector, we have new model with the matrices A

and B are as follows (Eqs. 28 and 29),





























































s

s

fdffa

fcfbf

rfbr

rfbrpwv

awvu

bwvu

barw

bv

au

BB

AA

KK

NNNNN

MMMM

LLLL

ZZZZ

YgY

XgX

/10000000010000

0/1000000000000

/0/1/0000010000

0///10000000000

000000000000

00000000100000

00000000010000

00000000001000

000000000

0000000000

0000000000

0000000000

00000000000

00000000000

 =A

(2-5)





























































000/

00/0

00//

00//

0000

0000

0000

0000

00

000

0000

000

000

0000

slat

flon

flonflat

flonflat

colped

col

col

ped

D

C

BB

AA

NN

M

Z

Y

B

(2-6)

Flight Control 39

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.2.3 PATH GEN ERATOR

The path generator was developed by a simple idea, i.e. setting the

trajectory/path in the inertial reference and then finding its velocity

profile. This method can be expressed in the following relation:

 

 

 

x x t

y y t

z z t







 and

   

   

   

x

y

z

x t V t

y t V t

z t V t













 (2-7)

And the total velocity is

2 2 2

T x y zV V V V   (2-8)

The total velocity TV must be less or equal to the maximum velocity of

the helicopter, and it is assumed to be constant. We assume that the

maximum velocity of the helicopter is  
22 2 2

0 0 49.2 11u v    =

50.4 ft/s, and therefore we take TV = 50 ft/s for simulation.

The inertial frame, by definition, is chosen such that the positive z-

axis is downward. We then set positive x-axis is eastward, and

therefore the positive y-axis is southward. But for our convenience, we

choose local horizon as inertial frame where the positive x-axis is

eastward, the positive y-axis is northward, and the positive z-axis is

upward. So we need to transform the original inertial frame to the

local horizon frame. The transformation can be expressed as follows:

1 0 0

0 1 0

0 0 1

E I

E I

E I

X X

Y Y

Z Z

     
    

     
         

 (2-9)

or inversely:

Flight Control 40

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1 0 0

0 1 0

0 0 1

I E

I E

I E

X X

Y Y

Z Z

     
    

     
         

 (2-10)

To give more precise understanding of this method, we present

here three examples. The first example is generating horizontal

circular trajectory (Figure 2-4). The second example is generating

horizontal rectangular trajectory (Figure 2-6). And the third example is

generating (3D) spiral trajectory (Figure 2-8).

FIGURE 2-4 TRAJECTORY FOR EXAMPLE 1, CIRCULAR

-300

-200

-100

0

100

200

300

-100

0

100

200

300

400

500

-100

-50

0

50

100

150

200

A
lt
it
u
d
e
 [

ft
]

Trajectory

East [ft]
North [ft]

Flight Control 41

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-5 VELOCITY PROFILE FOR EXAMPLE 1

FIGURE 2-6 TRAJECTORY FOR EXAMPLE 2, RECTANGULAR

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60
Velocity Profile

V
x
 [

ft
/s

]

Time [s]

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60
Velocity Profile

V
y
 [

ft
/s

]

Time [s]

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60
Velocity Profile

V
z
 [

ft
/s

]

Time [s]

-200
-100

0
100

200
300

400
500

600
700

800

-200

0

200

400

600

800

-100

-50

0

50

100

150

200

A
lt
it
u
d
e
 [

ft
]

Trajectory

East [ft]
North [ft]

Flight Control 42

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-7 VELOCITY PROFILE FOR EXAMPLE 2

FIGURE 2-8 TRAJECTORY FOR EXAMPLE 3, SPIRAL

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60
Velocity Profile

V
x
 [

ft
/s

]

Time [s]

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60
Velocity Profile

V
y
 [

ft
/s

]

Time [s]

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60
Velocity Profile

V
z
 [

ft
/s

]

Time [s]

-300

-200

-100

0

100

200

300

-100

0

100

200

300

400

500

-100

-50

0

50

100

150

200

East [ft]

Trajectory

North [ft]

A
lt
it
u
d
e
 [

ft
]

Flight Control 43

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-9 VELOCITY PROFILE FOR EXAMPLE 3

2.2.4 PATH-TRACKIN G CONTROLLER DES IGN

2.2.4.1 LINEAR REGULATOR PROBLEM

The controller design is based on LQR problem that is to find the

control input that can minimize the performance measure

               
0

1 1

2 2

ft
T T T

f f
t

J t t t t t t t t dt    x Hx x Q x u R u (2-11)

Referring to the plant

         t t t t t x A x B u (2-12)

which have the physical interpretation: it is desired to maintain the

state vector close to the origin without an excessive expenditure of

control effort.

The solution of this LQR problem can be seen in [6], in the form of

optimal gain matrix K and the optimal control law. The optimal gain

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60
Velocity Profile

V
x
 [

ft
/s

]

Time [s]

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60
Velocity Profile

V
y
 [

ft
/s

]
Time [s]

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60
Velocity Profile

V
z
 [

ft
/s

]

Time [s]

Flight Control 44

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

matrix can be found by solving the matrix differential equation as

follow

                     1T Tt t t t t t t t t t t   K K A A K Q K B R B K (2-13)

And the optimal control input is

         

   

1* T

opt

t t t t t

t t

 



u R B K x

K x
 (2-14)

2.2.4.2 PATH-TRACKIN G FORM ULATION

The tracking problem can be expressed in simple mathematics relation

as

     error reft t t x x x (2-15)

we then take the derivative of Eqs. (38) respect to time, yields

     error reft t t x x x   (2-16)

if we set   constantref t x then the time derivative of Eqs. (39) can be

simplified to be

   error t t x x  (2-17)

equation (40) give us a motivation to design control law for path

tracking problem, that is:

   error it t x x  ; 1,2, ,i n  (2-18)

where i is arbitrary positive constant.

Flight Control 45

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.2.4.3 PATH-TRACKIN G IM PLEM ENTATION

Now, we are going to implement the path tracking controller. Our

motivation is to minimizing the tracking error matrix errorx . Where the

tracking error matrix is

 
 
 
 

   
   
   

error ref

error error ref

error ref

x t x t x t

t y t y t y t

z t z t z t

   
  

    
      

x (2-19)

where errorx , errory , errorz are error in x, y, and z position in body axis

frame. Applying equation (41) to equation (42) yields

 
 
 
 

 
 
 

1

2

3

error

error error

error

x t x t

t y t y t

z t z t

   
   

      
      

x

 

  

 

 (2-20)

Substituting x u , y v , z w to Eqs. (43) yields

 
 
 
 

1

2

3

error

u t

t v t

w t

 
 

   
  

x (2-21)

we choose the value such that 1 = 2 = 3 =  = 0.1 by trial and

error.

Using equation (2-21) we develop the augmented state-space

model:

     aug aug aug augt t t x A x B u (2-22)

Flight Control 46

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

where

 
T

aug error error errorx y zx x (2-23)

3 3 3 3 11

14 3

0.1
aug

 



  
  
 

0 I 0
A

0 A
 (2-24)

3 4

aug

 
  
 

0
B

B
 (2-25)

The performance measure is

           
0

ft
T T

aug aug
t

J t t t t t t dt    x Q x u R u (2-26)

with

170.01 Q I

40.01 R I
(2-27)

then we minimizing (2-26) using LQR technique as describe before.

The solution is the optimal gain matrix Kopt (2-12).

2.2.5 MATLAB AND SIM ULINK IM PLEM EN TATION

2.2.5.1 LQR CONTROLLER IM PLEM ENTATION : MATLAB CODE

The following code is Matlab implementation of the controller design

using LQR.

%==%

% Simulation Yamaha R-50 Helicopter %

% Author : Singgih S. Wibowo %

% NIM : 23604003 %

Flight Control 47

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

% Version 2.1, 18 Des 2004 %

% 1st modification, 21 Feb 2007 %

%==%

% References : %

% [1] A.Budiyono, H.Y. Sutarto %

% "Multivariable Controller Design for %

% a small scale helicopter using %

% Coefficient Diagram Method" %

% [2] B. Mettler, M.B. Tischler, Takeo Kanade %

% "System Identification Modeling of %

% a Small-Scale Unmanned Rotorcraft %

% for Flight Control Design" %

%==%

%==%

% Physical Parameter of The Yamaha R-50 %

%==%

% Rotor speed 850 rpm %

% Tip speed 449 ft/s %

% Dry weight 97 lb %

% Instrumented 150 lb %

% Engine Single cylinder, 2-stroke %

% Flight autonomy 30 minutes %

%==%

clear;

%===================================%

% A matrix [Hover mode; Cruise mode]%

%===================================%

Xu = [-0.0505; -0.122];

Xth = [-32.2 ; -32.2];

Xa = [-32.2 ; -32.2];

Xr = [0 ; -11];

Yv = [-0.154 ; -0.155];

Yph = [32.2 ; 32.2];

Yb = [32.2 ; 32.2];

Yr = [0 ; -49.2];

Lu = [-0.144 ; 0];

Lv = [0.143 ; 0];

Lw = [0 ; -0.213];

Lb = [166 ; 213];

Mu = [-0.0561; 0];

Mv = [-0.0585; 0];

Mw = [0 ; 0.0728];

Ma = [82.6 ; 108];

Ba = [0.368 ; 0.419];

Bd = [0.71 ; 0.664];

Ab = [-0.189 ; -0.176];

Ac = [0.644 ; 0.577];

Zb = [-131 ; 0];

Za = [-9.75 ; 0];

Zw = [-0.614 ; -1.01];

Zr = [0.93 ; 0];

Zp = [0 ; 11];

Zq = [0 ; 49.2];

Np = [-3.53 ; 0];

Nv = [0.0301; 0.401];

Nw = [0.0857; 0];

Nr = [-4.13 ; -3.9];

Nrfb = [-33.1 ; -26.4];

Kr = [2.16 ; 2.18];

Krfb = [-8.26 ; -7.79];

g = 32.2; %gravity constant = 32.2 ft/s^2

%===================================%

% B matrix [Hover mode; Cruise mode]%

%===================================%

Blat = [0.14 ; 0.124];

Blon = [0.0138; 0.02];

Flight Control 48

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Alat = [0.0313; 0.0265];

Alon = [-0.1 ; -0.0837];

Zcol = [-45.8 ; -60.3];

Mcol = [0 ; 6.98];

Ncol = [-3.33 ; 0];

Nped = [33.1 ; 26.4];

Dlat = [0.273 ; 0.29];

Clon = [-0.259 ; -0.225];

Yped = [0 ; 11.23];

Tau_p = [0.0991; 0.0589];

Tau_f = [0.046 ; 0.0346];

h_cg = [-0.411 ; -0.321];

Tau_s = [0.342 ; 0.259];

%===================================%

% Choose fly mode

% 1 = Hover

% 2 = Cruise

%===================================%

Mode = 2;

if Mode == 1

 Mtext = '[Hover Mode]';

elseif Mode == 2

 Mtext = '[Cruise Mode]';

end

A = [Xu(Mode) 0 0 0 0 0 0 -g 0 0 ...

 Xa(Mode) 0 0 0;

 0 Yv(Mode) 0 0 0 0 g 0 0 0 ...

 0 Yb(Mode) 0 0;

 0 0 Zw(Mode) 0 0 Zr(Mode) 0 0 0 0 ...

 Za(Mode) Zb(Mode) 0 0;

 Lu(Mode) Lv(Mode) Lw(Mode) 0 0 0 0 0 0 0 ...

 0 Lb(Mode) 0 0;

 Mu(Mode) Mv(Mode) Mw(Mode) 0 0 0 0 0 0 0 ...

 Ma(Mode) 0 0 0;

 0 Nv(Mode) Nw(Mode) Np(Mode) 0 Nr(Mode) 0 0 0 Nrfb(Mode) ...

 0 0 0 0;

 0 0 0 1 0 0 0 0 0 0 ...

 0 0 0 0;

 0 0 0 0 1 0 0 0 0 0 ...

 0 0 0 0;

 0 0 0 0 0 1 0 0 0 0 ...

 0 0 0 0;

 0 0 0 0 0 Kr(Mode) 0 0 0 Krfb(Mode) ...

 0 0 0 0;

 0 0 0 0 -1 0 0 0 0 0 ...

 -1/Tau_f(Mode) Ab(Mode)/Tau_f(Mode) Ac(Mode)/Tau_f(Mode) 0;

 0 0 0 -1 0 0 0 0 0 0 ...

 Ba(Mode)/Tau_f(Mode) -1/Tau_f(Mode) 0 Bd(Mode)/Tau_f(Mode);

 0 0 0 0 -1 0 0 0 0 0 ...

 0 0 -1/Tau_s(Mode) 0;

 0 0 0 -1 0 0 0 0 0 0 ...

 0 0 0 -1/Tau_s(Mode)];

B = [0 0 0 0

 0 0 Yped(Mode) 0

 0 0 0 Zcol(Mode)

 0 0 0 0

 0 0 0 Mcol(Mode)

 0 0 Nped(Mode) Ncol(Mode)

 0 0 0 0

 0 0 0 0

 0 0 0 0

 0 0 0 0

 Alat(Mode)/Tau_f(Mode) Alon(Mode)/Tau_f(Mode) 0 0

 Blat(Mode)/Tau_f(Mode) Blon(Mode)/Tau_f(Mode) 0 0

 0 Clon(Mode)/Tau_s(Mode) 0 0

 Dlat(Mode)/Tau_s(Mode) 0 0 0];

Flight Control 49

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

%===

% X = [u v w p q r phi theta psi rfb a b c d]'

% U = [delta_lat delta_lon delta_ped delta_col]'

%===

alp = 5;

A_aug = [0 0 0 -alp 0 0 zeros(1,11)

 0 0 0 0 -alp 0 zeros(1,11)

 0 0 0 0 0 -alp zeros(1,11)

 zeros(14,3) A];

B_aug = [zeros(3,4); B];

C = eye(14);

D = B*0;

%===

% Linear Quadratic Regulator is computed here

% We defined The Performance Cost by

% J = INTEGRAL (X^2 + U^2);

%===

weight = 1;

Q = weight*eye(17);

R = weight*eye(4);

K = lqr(A_aug,B_aug,Q,R);

%===

2.2.5.2 PATH TRACKIN G S IM ULATION : S IM ULINK DIAGRAM

The following figures show the Simulink diagram of the LQR controller

design

FIGURE 2-10 PATH TRACKING CONTROLLER MODEL

FIGURE 2-11 PATH GENERATOR BLOCK

input

u,v ,w

p,q,r

phi,theta,psi

State

Yamaha R50 Dynamics

Vel_Earth_Axes (f t/s)

Pos_Earth_Axes (f t)

Control_Input (rad)

Attitude (rad)

Ref _V_E_Axes (f t/s)

Ref _Pos_E_Axes (f t)

Write to File

V [f t/s]

Pos [f t]

Path Generator

Local Horizon Frame

error

State
Control Input

Optimal Controller

Vx,Vy ,Vz

ph,th,psi

u,v ,w

Inertial to Body

Inertial Earth

I to E transform1

Inertial Earth

I to E transform

u,v ,w

ph,th,psi

Vx,Vy ,Vz

X,Y,Z

Body to Inertial

2

Pos [ft]

1

V [ft/s]

0

Vz

cos

sin

Step1

Step

1

s

50

Flight Control 50

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-12 EARTH TO INERTIAL VELOCITY TRANSFORM BLOCK

FIGURE 2-13 OPTIMAL CONTROLLER BLOCK

FIGURE 2-14 YAMAHA R50 DYNAMICS MODEL BLOCK

1

u,v,w

Matrix

Multiply

Eul2DCM

Earth Inertial

E to I transform

2

ph,th,psi

1

Vx,Vy,Vz

1

Control Input
Saturation

-K* u

LQ Gain

1

s

2

State

1

error

4

State

3

phi,theta,psi

2

p,q,r

1

u,v,w

-11

v_ini

49.2

u_ini

x' = Ax+Bu

 y = Cx+Du

State-Space Model

of Yamaha R50

1

input

Flight Control 51

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-15 BODY TO INERTIAL TRANSFORM BLOCK

FIGURE 2-16 INERTIAL TO EARTH TRANSFORM BLOCK

FIGURE 2-17 WRITE TO FILE BLOCK

2.2.5.3 PLOTTING SIM ULATION RES ULTS : MATLAB C ODE

2

X,Y,Z

1

Vx,Vy,Vz

u,v ,w

DCM

Vx,Vy ,Vz

u
T

1

s

Eul2DCM2

ph,th,psi

1

u,v,w

1

Earth

-1

-11

Inertial

-K-

rad2deg

-K-

rad2deg

Yamaha_R50_OPTCON_verrdata

To File5

Yamaha_R50_OPTCON_atdata

To File4

Yamaha_R50_OPTCON_condata

To File3

Yamaha_R50_OPTCON_xdata

To File2

Yamaha_R50_OPTCON_errdata

To File1

Yamaha_R50_OPTCON_vdata

To File

6

Ref_Pos_E_Axes (ft)

5

Ref_V_E_Axes (ft/s)

4

Attitude (rad)

3

Control_Input (rad)

2

Pos_Earth_Axes (ft)

1

Vel_Earth_Axes (ft/s)

Flight Control 52

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

The following Matlab code will plot figures of the simulation results.

%==%

% This program will plotting simulation results %

% of Path-Tracking Controller for R-50 Helicopter %

%==%

% Loading data From %

% [1] Yamaha_R50_OPTCON_vdata.mat %

% [2] Yamaha_R50_OPTCON_xdata.mat %

% [3] Yamaha_R50_OPTCON_condata; %

% [4] Yamaha_R50_OPTCON_atdata; %

% [5] Yamaha_R50_OPTCON_verrdata; %

% [6] Yamaha_R50_OPTCON_errdata; %

% then plotting them %

%==%

% Author : Singgih S. Wibowo %

% NIM : 23604003 %

% Version 2.1, 18 Des 2004 %

% 1st modification, 21 Feb 2007 %

%==%

load Yamaha_R50_OPTCON_vdata;

load Yamaha_R50_OPTCON_xdata;

load Yamaha_R50_OPTCON_condata;

load Yamaha_R50_OPTCON_atdata;

load Yamaha_R50_OPTCON_verrdata;

load Yamaha_R50_OPTCON_errdata;

Tmax = X(1,end);

%Flight Trajectory Geometry

figure(1);

plot3(X(2,:),X(3,:),X(4,:),'b',X(5,:),X(6,:),X(7,:),'r','LineWidth',2);

xlabel('East [ft]','FontSize',14);

ylabel('North [ft]','FontSize',14);

zlabel('Altitude [ft]','FontSize',14);

title('Flying Path [3D]','FontSize',14);

legend('Path_r_e_f','Path_o_u_t');

axis([-200 800 -200 800 -100 100]);

%axes('FontSize',14);

box on;

%grid on;

%Trajectory History

figure(2);

subplot(311);

plot(X(1,:),X(2,:),'b',X(1,:),X(5,:),'r','LineWidth',2);

xlabel('time [s]'); ylabel('East [ft]'); title('X-position');

legend('X_r_e_f','X_o_u_t');

axis([0 Tmax -200 800]);

%grid on;

subplot(312);

plot(X(1,:),X(3,:),'b',X(1,:),X(6,:),'r','LineWidth',2);

xlabel('time [s]'); ylabel('North [ft]'); title('Y-position');

legend('Y_r_e_f','Y_o_u_t');

axis([0 Tmax -200 800]);

%grid on;

subplot(313);

plot(X(1,:),X(4,:),'b',X(1,:),X(7,:),'r','LineWidth',2);

xlabel('time [s]'); ylabel('Altitude [ft]'); title('Z-position');

legend('Z_r_e_f','Z_o_u_t');

axis([0 Tmax -100 100]);

%grid on;

%Velocity History

figure(3);

subplot(311);

Flight Control 53

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

plot(V(1,:),V(2,:),'b',V(1,:),V(5,:),'r','LineWidth',2);

xlabel('time [s]'); ylabel('V_x [ft/s]'); title('X-Velocity');

legend('V_x _r_e_f','V_x _o_u_t');

axis([0 Tmax -60 60]);

%grid on;

subplot(312);

plot(V(1,:),V(3,:),'b',V(1,:),V(6,:),'r','LineWidth',2);

xlabel('time [s]'); ylabel('V_y [ft/s]'); title('Y-Velocity');

legend('V_y _r_e_f','V_y _o_u_t');

axis([0 Tmax -60 60]);

%grid on;

subplot(313);

plot(V(1,:),V(4,:),'b',V(1,:),V(7,:),'r','LineWidth',2);

xlabel('time [s]'); ylabel('V_z [ft/s]'); title('Z-velocity');

legend('V_z _r_e_f','V_z _o_u_t');

axis([0 Tmax -60 60]);

%grid on;

%Control Input History

figure(4);

subplot(221);

plot(Con(1,:),Con(2,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\delta_l_a_t [deg]'); title('Control Input 1');

axis([0 Tmax -30 30]);

%grid on;

subplot(222);

plot(Con(1,:),Con(3,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\delta_l_o_n [deg]'); title('Control Input 2');

axis([0 Tmax -30 30]);

%grid on;

subplot(223);

plot(Con(1,:),Con(4,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\delta_p_e_d [deg]'); title('Control Input 3');

axis([0 Tmax -30 30]);

%grid on;

subplot(224);

plot(Con(1,:),Con(5,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\delta_c_o_l [deg]'); title('Control Input 4');

axis([0 Tmax -30 30]);

%grid on;

%Attitude History

figure(5);

subplot(311);

plot(Atd(1,:),Atd(2,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\phi [deg]'); title('roll angle');

axis([0 Tmax -60 60]);

%grid on;

subplot(312);

plot(Atd(1,:),Atd(3,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\theta [deg]'); title('pitch angle');

axis([0 Tmax -60 60]);

%grid on;

subplot(313);

plot(Atd(1,:),Atd(4,:),'b','LineWidth',2);

xlabel('time [s]'); ylabel('\psi [deg]'); title('yaw angle');

axis([0 Tmax -360 20]);

%grid on;

%Velocity Error History

figure(6);

subplot(311);

plot(verr(1,:),verr(2,:),'r','LineWidth',2);

xlabel('time [s]');

ylabel('u_e_r_r_o_r [ft/s]');

title('X Velocity Error');

axis([0 Tmax -100 100]);

%grid on;

subplot(312);

plot(verr(1,:),verr(3,:),'r','LineWidth',2);

Flight Control 54

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

xlabel('time [s]');

ylabel('v_e_r_r_o_r [ft/s]');

title('Y Velocity Error');

axis([0 Tmax -100 100]);

%grid on;

subplot(313);

plot(verr(1,:),verr(4,:),'r','LineWidth',2);

xlabel('time [s]');

ylabel('w_e_r_r_o_r [ft/s]');

title('Z Velocity Error');

axis([0 Tmax -100 100]);

%grid on;

%Trajectory Error History

figure(7);

subplot(311);

plot(err(1,:),err(2,:),'r','LineWidth',2);

xlabel('time [s]');

ylabel('X_e_r_r_o_r [ft]');

title('X Position Error');

axis([0 Tmax -100 100]);

%grid on;

subplot(312);

plot(err(1,:),err(3,:),'r','LineWidth',2);

xlabel('time [s]');

ylabel('Y_e_r_r_o_r [ft]');

title('Y Position Error');

axis([0 Tmax -100 100]);

%grid on;

subplot(313);

plot(err(1,:),err(4,:),'r','LineWidth',2);

xlabel('time [s]');

ylabel('Z_e_r_r_o_r [ft]');

title('Z Position Error');

axis([0 Tmax -100 100]);

%grid on;

2.2.6 NUM ERIC AL RES ULTS

In this section, we present our numerical experiment result using

MATLAB/Simulink®. The Simulink model as shown in Figure 2-10. We

have carried out three experiments as follow

2.2.6.1 EXPERIMENT 1, CIRC ULAR TRAJECTORY

Follow the circular trajectory lies on horizontal plane as given previous

section, see Figure 2-4.

Flight Control 55

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-18 FLIGHT TRAJECTORY GEOMETRY

FIGURE 2-19 TRAJECTORY HISTORY

-300

-200

-100

0

100

200

300

-100

0

100

200

300

400

500

-100

-80

-60

-40

-20

0

20

40

60

80

100

East [ft]

Flying Path [3D]

North [ft]

A
lt
it
u
d
e
 [

ft
]

Path
ref

Path
out

0 2 4 6 8 10 12 14 16 18 20
-300

-200

-100

0

100

200

300

time [s]

E
a
s
t

[f
t]

X-position

0 2 4 6 8 10 12 14 16 18 20
-100

0

100

200

300

400

500

time [s]

N
o
rt

h
 [

ft
]

Y-position

0 2 4 6 8 10 12 14 16 18 20
-20

-10

0

10

20

time [s]

A
lt
it
u
d
e
 [

ft
]

Z-position

X
ref

X
out

Y
ref

Y
out

Z
ref

Z
out

Flight Control 56

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-20 VELOCITY HISTORY

FIGURE 2-21 CONTROL INPUT HISTORY

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60

time [s]

V
x
 [

ft
/s

]

X-Velocity

V
x

ref

V
x

out

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60

time [s]

V
y
 [

ft
/s

]

Y-Velocity

V
y

ref

V
y

out

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60

time [s]

V
z
 [

ft
/s

]

Z-velocity

V
z

ref

V
z

out

0 5 10 15 20
-30

-20

-10

0

10

20

30

time [s]


la

t [
d
e
g
]

Control Input 1

0 5 10 15 20
-30

-20

-10

0

10

20

30

time [s]


lo

n
 [

d
e
g
]

Control Input 2

0 5 10 15 20
-30

-20

-10

0

10

20

30

time [s]


p
e
d
 [

d
e
g
]

Control Input 3

0 5 10 15 20
-30

-20

-10

0

10

20

30

time [s]


c
o
l [

d
e
g
]

Control Input 4

Flight Control 57

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-22 ATTITUDE HISTORY

FIGURE 2-23 TRAJECTORY ERROR HISTORY

2.2.6.2 EXPERIMENT 2, RECTAN GULAR TRAJEC TORY

Follow the rectangular trajectory as given in Fig.17.

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60

time [s]


 [

d
e
g
]

roll angle

0 2 4 6 8 10 12 14 16 18 20
-60

-40

-20

0

20

40

60

time [s]

 [

d
e
g
]

pitch angle

0 2 4 6 8 10 12 14 16 18 20

-300

-200

-100

0

time [s]


 [

d
e
g
]

yaw angle

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

time [s]

X
e
rr

o
r [

ft
]

X Position Error

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

time [s]

Y
e
rr

o
r [

ft
]

Y Position Error

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

time [s]

Z
e
rr

o
r [

ft
]

Z Position Error

Flight Control 58

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-24 FLIGHT TRAJECTORY GEOMETRY

FIGURE 2-25 TRAJECTORY HISTORY

-200
-100

0
100

200
300

400
500

600
700

800

-200

0

200

400

600

800

-100

-80

-60

-40

-20

0

20

40

60

80

100

East [ft]

Flying Path [3D]

North [ft]

A
lt
it
u
d
e
 [

ft
]

Path
ref

Path
out

0 10 20 30 40 50 60
-200

0

200

400

600

800

time [s]

E
a
s
t

[f
t]

X-position

0 10 20 30 40 50 60
-200

0

200

400

600

800

time [s]

N
o
rt

h
 [

ft
]

Y-position

0 10 20 30 40 50 60
-100

-50

0

50

100

time [s]

A
lt
it
u
d
e
 [

ft
]

Z-position

X
ref

X
out

Y
ref

Y
out

Z
ref

Z
out

Flight Control 59

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-26 VELOCITY HISTORY

FIGURE 2-27 CONTROL INPUT HISTORY

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60

time [s]

V
x
 [

ft
/s

]

X-Velocity

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60

time [s]

V
y
 [

ft
/s

]

Y-Velocity

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60

time [s]

V
z
 [

ft
/s

]

Z-velocity

V
x

ref

V
x

out

V
y

ref

V
y

out

V
z

ref

V
z

out

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30

time [s]


la

t [
d
e
g
]

Control Input 1

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30

time [s]


lo

n
 [

d
e
g
]
Control Input 2

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30

time [s]


p
e
d
 [

d
e
g
]

Control Input 3

0 10 20 30 40 50 60
-30

-20

-10

0

10

20

30

time [s]


c
o
l [

d
e
g
]

Control Input 4

Flight Control 60

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-28 ATTITUDE HISTORY

FIGURE 2-29 TRAJECTORY ERROR HISTORY

2.2.6.3 EXPERIMENT 3, SPIRAL TRAJEC TORY

Follow the spiral trajectory as given in Fig.23.

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60

time [s]


 [

d
e
g
]

roll angle

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60

time [s]


 [

d
e
g
]

pitch angle

0 10 20 30 40 50 60

-300

-200

-100

0

time [s]


 [

d
e
g
]

yaw angle

0 10 20 30 40 50 60
-100

-50

0

50

100

time [s]

X
e
rr

o
r [

ft
]

X Position Error

0 10 20 30 40 50 60
-100

-50

0

50

100

time [s]

Y
e
rr

o
r [

ft
]

Y Position Error

0 10 20 30 40 50 60
-100

-50

0

50

100

time [s]

Z
e
rr

o
r [

ft
]

Z Position Error

Flight Control 61

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-30 FLIGHT TRAJECTORY GEOMETRY

FIGURE 2-31 TRAJECTORY HISTORY

-300

-200

-100

0

100

200

300

-100

0

100

200

300

400

500

-100

-50

0

50

100

150

200

250

300

East [ft]

Flying Path [3D]

North [ft]

A
lt
it
u
d
e
 [

ft
]

Path
ref

Path
out

0 5 10 15 20 25 30 35 40
-200

0

200

400

600

800

time [s]

E
a
s
t

[f
t]

X-position

0 5 10 15 20 25 30 35 40
-200

0

200

400

600

800

time [s]

N
o
rt

h
 [

ft
]

Y-position

0 5 10 15 20 25 30 35 40
-100

0

100

200

300

time [s]

A
lt
it
u
d
e
 [

ft
]

Z-position

X
ref

X
out

Y
ref

Y
out

Z
ref

Z
out

Flight Control 62

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-32 VELOCITY HISTORY

FIGURE 2-33 CONTROL INPUT HISTORY

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60

time [s]

V
x
 [

ft
/s

]

X-Velocity

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60

time [s]

V
y
 [

ft
/s

]

Y-Velocity

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60

time [s]

V
z
 [

ft
/s

]
Z-velocity

V
x

ref

V
x

out

V
y

ref

V
y

out

V
z

ref

V
z

out

0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

time [s]


la

t [
d
e
g
]

Control Input 1

0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

time [s]


lo

n
 [

d
e
g
]

Control Input 2

0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

time [s]


p
e
d
 [

d
e
g
]

Control Input 3

0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

time [s]


c
o
l [

d
e
g
]

Control Input 4

Flight Control 63

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-34 ATTITUDE HISTORY

FIGURE 2-35 TRAJECTORY ERROR HISTORY

2.2.7 AN ALYSIS AN D DIS C US SION OF THE RES ULTS

The path tracking controller using LQR applied to our platform

(Yamaha R-50) have advantage and disadvantage. The LQR approach

can be minimizing error tracking while keep control input low. But it

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60

time [s]


 [

d
e
g
]

roll angle

0 5 10 15 20 25 30 35 40
-60

-40

-20

0

20

40

60

time [s]


 [

d
e
g
]

pitch angle

0 5 10 15 20 25 30 35 40

-600

-400

-200

0

time [s]


 [

d
e
g
]

yaw angle

0 5 10 15 20 25 30 35 40
-50

0

50

time [s]

X
e
rr

o
r [

ft
]

X Position Error

0 5 10 15 20 25 30 35 40
-50

0

50

time [s]

Y
e
rr

o
r [

ft
]

Y Position Error

0 5 10 15 20 25 30 35 40
-50

0

50

time [s]

Z
e
rr

o
r [

ft
]

Z Position Error

Flight Control 64

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

can be applied for full states feedback where in the real application

may not applicable since only a part of states can be fed back.

Flight Control 65

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.3 COORDINATED TURN USING LINEAR QUADRATIC REGULATOR
The following example is taken from Matlab demo, see [16]. The

program is modified for education purpose.

2.3.1 STATE-SPAC E EQUATION S FOR AN AIRFRAM E

For this case, the state-space equation is a standard form

 x Ax Bu (2-28)

where

 
T

u v w p q r  x (2-29)

The variables 𝑢, 𝑣, and 𝑤 are the three velocities with respect to the

body frame, which is shown in Figure 2-36 below.

FIGURE 2-36 A BODY COORDINATE FRAME FOR AN AIRCRAFT [16]

The variables 𝑝, 𝑞, and 𝑟 are the roll, pitch, and yaw rates, 𝜃 and 𝜑 are

pitch and roll respectively.

2.3.2 PROBLEM DEFIN ITION

The goal is to perform a steady coordinated turn, as shown in the

following figure.

Flight Control 66

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Figure 4-57: An Aircraft Making a 60° Turn

To achieve this goal, we must design a controller that commands a

steady turn by going through a 60° roll. In addition, assume that, the

pitch angle, is required to stay as close to zero as possible.

2.3.3 MATLAB AND SIM ULINK IM PLEM EN TATION

2.3.3.1 IM PLEM ENTATION OF LQR: MATLAB CODE

The following code is Matlab implementation of the controller design

using LQR for aircraft turn.

%===%

% LQG design for 60 degree aircraft turn

% Copyright 1986-2002 The MathWorks, Inc.

% $Revision: 1.5 $ $Date: 2002/04/10 06:40:38 $

%===%

% State vector => x = [u,v,w,p,q,r,theta,phi]

% u,v,w: linear velocities

% p,q,r: roll, pitch, yaw rates

% theta: pitch angle

% phi : bank angle

% Control vector => u = [u1,u2,u3,u4]

%===%

% Modified by SSW, 21 Feb 2007 for education purpose

%===%

% Linear dynamics

A = [-0.0404 0.0618 0.0501 -0.0000 -0.0005 0.0000 0 0

 -0.1686 -1.1889 7.6870 0 0.0041 0 0 0

 0.1633 -2.6139 -3.8519 0.0000 0.0489 -0.0000 0 0

 -0.0000 -0.0000 -0.0000 -0.3386 -0.0474 -6.5405 0 0

 -0.0000 0.0000 -0.0000 -1.1288 -0.9149 -0.3679 0 0

 -0.0000 -0.0000 -0.0000 0.9931 -0.1763 -1.2047 0 0

 0 0 0.9056 0 0 -0.0000 0 0

 0 0 -0.0000 0 0.9467 -0.0046 0 0];

B =[20.3929 -0.4694 -0.2392 -0.7126

 0.1269 -2.6932 0.0013 0.0033

 -64.6939 -75.6295 0.6007 3.2358

 -0.0000 0 0.1865 3.6625

 -0.0000 0 23.6053 5.6270

 -0.0001 0 3.9462 -41.4112

 0 0 0 0

 0 0 0 0];

%===%

% Add integrator state dz/dt = -phi

% Augmanted vector => x_aug = [z,u,v,w,p,q,r,theta,phi]

% Augmanted control => u_aug = [0,u1,u2,u3,u4]

%===%

A_aug = [zeros(1,8) -1;

 zeros(8,1) A];

B_aug = [zeros(1,4) ; B];

Flight Control 67

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

%===%

% LQR gain synthesis

%===%

Q = blkdiag(1,0.1*eye(6),1000,1);

R = diag([10,50,1,1]);

K_lqr = lqr(A_aug,B_aug,Q,R);

2.3.3.2 COORDIN ATED TURN S IM ULATION: SIM ULIN K DIAGRAM

FIGURE 2-37 SIMULINK DIAGRAM OF COORDINATED TURN

FIGURE 2-38 WRITE TO FILE BLOCK

2.3.3.3 PLOTTING RES ULTS : MATLAB C ODE

The following Matlab code will plot figures of the simulation results.

%==%

% This program will plotting simulation results %

% of Turn-Coordinator Controller for Aircraft %

%==%

phi_ref

W rite to File

s+20

20

x' = Ax+Bu

 y = Cx+Du

Linearized

Dynamics

K*u

LQR Gain

1

s

Integrator
U U(E)

Aircraft_Turn_Error

To File5

Aircraft_Turn_Control

To File1

Aircraft_Turn_State

To File

U U(E)

3

States

2

Control

1

Roll_Ref

Flight Control 68

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

% Loading data From %

% [1] Aircraft_Turn_State.mat %

% [2] Aircraft_Turn_Error.mat %

% [3] Aircraft_Turn_Control.mat %

% then plotting them %

%==%

% Author : Singgih S. Wibowo %

% NIM : 23604003 %

% Version 1.0, 21 Feb 2007 %

%==%

load Aircraft_Turn_State;

load Aircraft_Turn_Error;

load Aircraft_Turn_Control;

Tmax = state(1,end);

%==%

%Aircraft Attitude, Pitch and Roll

%==%

figure(1);

set(1,'Name','Attitude History');

subplot(211);

plot(state(1,:),state(8,:)*180/pi,'b','LineWidth',2);

set(gca,'FontSize',14);

xlabel('Time (s)');

ylabel('\theta (deg)');

title('Pitch Attitude History');

grid on;

subplot(212);

plot(state(1,:),state(10,:)*180/pi,'r',...

 state(1,:),state(9,:)*180/pi,'b','LineWidth',2);

set(gca,'FontSize',14);

xlabel('Time (s)');

ylabel('\phi (deg)');

title ('Roll Attitude History');

legend ('roll ref','roll actual');

grid on;

%==%

%Aircraft Tracking Error

%==%

figure(2);

set(2,'Name','Tracking Error');

plot(error(1,:),error(2,:)*180/pi,'b','LineWidth',2);

set(gca,'FontSize',14);

xlabel('Time (s)');

ylabel('\phi_r_e_f - \phi (deg)');

title('Roll Tracking-Error History');

grid on;

%==%

%Aircraft Control Input

%==%

figure(3);

set(3,'Name','Control Input');

plot(control(1,:),control(2,:)*180/pi,'b',...

 control(1,:),control(3,:)*180/pi,'g',...

 control(1,:),control(4,:)*180/pi,'r',...

 control(1,:),control(5,:)*180/pi,'m',...

 'LineWidth',2);

set(gca,'FontSize',14);

xlabel('Time (s)');

ylabel('Control Input (deg)');

title('Control Input History');

grid on;

legend ('control 1','control 2','control 3','control 4');

Flight Control 69

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.3.4 RES ULTS

This figure shows the response of to the 60° step command. Figure 4-

58: Tracking the Roll Step Command As you can see, the system tracks

the commanded 60° roll in about 60 seconds. Another goal was to

keep , the pitch angle, relatively small. This figure shows how well the

LQG controller did. Figure 4-59: Minimizing the Displacement in the

Pitch Angle, Theta Finally, this figure shows the control inputs. Figure

4-60: The Control Inputs for the LQG Tracking Problem Try adjusting

the Q and R matrices in lqrdes.m and inspecting the control inputs and

the system states, making sure to rerun lqrdes to update the LQG gain

matrix K. Through trial and error, you may improve the response time

of this design. Also, compare the linear and nonlinear designs to see

the effects of the nonlinearities on the system performance.

FIGURE 2-39 ATTITUDE HISTORY

0 10 20 30 40 50 60
0

1

2
x 10

-3

Time (s)


 (

d
e

g
)

Pitch Attitude History

0 10 20 30 40 50 60
0

50

100

Time (s)


 (

d
e

g
)

Roll Attitude History

roll ref

roll actual

Flight Control 70

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 2-40 TRACKING ERROR HISTORY

FIGURE 2-41 CONTROL INPUT HISTORY

2.3.5 AN ALYSIS AN D DIS C US SION OF THE RES ULTS

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

60

Time (s)


re

f -
 

 (
d

e
g

)

Roll Tracking-Error History

0 10 20 30 40 50 60
-1

0

1

2

3

4

5

Time (s)

C
o

n
tr

o
l I

n
p

u
t
(d

e
g

)

Control Input History

control 1

control 2

control 3

control 4

Flight Control 71

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.4 ADAPTIVE CONTROL FOR YAW DAMPER AND COORDINATED TURN
This chapter presents implementation of adaptive control for yaw

damper and coordinated turn. The major content of this chapter is

taken from [9].

2.4.1 YAW DAM PER AN D COORDIN ATED TURN: DEFINITION

Yaw damper is a SAS (Stability Augmentation System) which augment

the stability of dutch roll mode of an aircraft. The principle of this

control system is giving command to rudder which causes a moment

against yaw rate which finally damp the dutch roll. This control system

sense yaw rate and use it for feedback. The following figure shows the

block diagram of yaw damper system.

FIGURE 2-42 BLOCK DIAGRAMFOR TURN COORDINATOR SYSTEM

Coordinated turn maneuver is a turn maneuver with zero lateral

acceleration at constant altitude. The absent of lateral acceleration

make aircraft passengers feel comfort during the maneuver. This

maneuver is difficult to do since it needs good coordination of control

surface (elevator, aileron and ruder) deflection. Therefore an

automatic control is needed for it.

2.4.2 MODEL REFERENC E ADAPTIVE SYSTEM

Flight Control 72

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Model reference adaptive system (MRAS) is an adaptive control

method by using performance index of reference model. The

reference model is a mathematical model of the ideal system. Block

diagram of the MRAS shown in figure below:

FIGURE 2-43 BLOCK DIAGRAM FOR MODEL REFERENCE ADAPTIVE SYSTEM

2.4.3 STATE-SPAC E MODEL OF XX-100 AIRCRAFT

2.4.4 MATLAB AND SIM ULINK IM PLEM EN TATION

2.4.4.1 IM PLEM ENTATION OF MRAS: MATLAB CODE

2.4.4.2 MRAS-COORDIN ATED TURN S IM ULATION : S IM ULIN K DIAGRAM

2.4.4.3 PLOTTING RES ULTS : MATLAB C ODE

2.4.5 RES ULTS

Flight Control 73

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

2.4.6 DISC USS ION OF THE RES ULTS

Flight Simulation 74

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

3 FLIGHT SIMULATION

This chapter deals with simulation technique using Matlab and

Simulink. We also introduce an advance visualization tools: Virtual

Reality toolbox and the application of the tool for visualizing aircraft

dynamics related to previous chapter.

Flight Simulation 75

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

3.1 MATLAB AND SIMULINK TOO L FOR SIMULATION

3.1.1 MATLAB C OMM AN D FOR S I M ULATION PURPOS E

3.1.2 S IM ULINK TOOLBOX FOR S IM ULATION PURPOS E

Flight Simulation 76

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

3.2 VIRTUA L REALITY , AN ADVANCE TOOL FOR VISUALIZATION

3.2.1 IN TRODUCTION TO VIRTUAL REALITY TOOLBOX : A USER GUIDE

Virtual Reality (VR) toolbox is already available in MATLAB 6.0 and the

higher versions. However, the examples and user guide for the toolbox

are available only for simple cases. Therefore, those who want to use

the toolbox in advance should study the toolbox in deep themselves.

The author has studied the toolbox for hours before using the toolbox

for simulating aircraft. MATLAB 7.0 has been used for the simulation.

The author suggests the reader to utilize the computer set with

minimum specifications of: processor 1 GHz, RAM 256 MB, and Video

Memory 32 MB.

The following paragraphs will discuss the detail procedures of

using the toolbox, particularly for XW aircraft. The motivation of

writing this user guide is to provide comprehensive information to the

readers that will give them the skill on using the VR toolbox.

3.2.1.1 DEFINING THE PROBLEM

Our problem is to visualize the motions of XW aircraft in the VR world.

The motions defined here are three translational and three rotational

motions of the craft. The requirements for this visualization are: the

position w.r.t. x , y and z axes of VR frame (see Section 3.2) and the

attitude angles ( ,  and ).

3.2.1.2 CREATE VIRTUAL W ORLD

To create a virtual world, the author chose the following steps to

achieve the best result:

Flight Simulation 77

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

(1) Drawing the 3D aircraft and 3D virtual environment in AutoCAD

and then export them into 3D Studio file type. It is important to

note that the smaller the files size the faster the visualization

(simulation) process. The author suggests that to obtain a faster

visualization, the files size should not be more than 10 MB.

(2) Importing the 3D Studio file into V-Realm Builder and then

editing the file.

(3) Saving the virtual world which has been edited using “File\Save

As” command. This file will be saved automatically in VRML type

(*.wrl). The VRML file is the only file that can be used for VR

visualization. Note: Do not use “Save” command because the

file will be saved in original file type (*.3ds) but different

format.

Figure E.1 shows the 3D model of WiSE-8 craft. The 3D model

should be drawn in the actual scale and standard dimension (meter)

because the VR dimension is in meter. Other important things are: (1)

setting the attitude of WiSE craft such that the bx -axis is coincide with

x -axis of UCS world system, by -axis is coincide with z -axis of UCS

world system and bz -axis is coincide with negative y -axis of UCS

world system. It is important since the UCS world will be defined as

the VR frame by V-Realm Builder, (2) setting the origin of UCS coincide

with the aircraft center of gravity.

FIGURE 3-1 THE 3D AUTOCAD MODEL OF XW AIRCRAFT

The name for the 3D model of XW craft the author gives is

wise8craft (.dwg). The author preserves the file name for 3D studio

Flight Simulation 78

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

file. Figure E.2 show the 3D model of virtual lake and hill. The file

name of the model is 3D_lake (.dwg). This name is also preserved for

the 3D studio file.

FIGURE 3-2 THE 3D AUTOCAD MODEL OF LAKE AND HILL

3.2.1.3 WORKIN G IN V-REALM BUILDER

The V-Realm Builder can be executed using one of the following ways:

(1) Run the vrbuild2.exe () directly. This executable file can

be accessed in folder: MATLAB7\toolbox\vr\vrealm\program.

The V-Realm window will then appear as shown in Figure E.3.

(2) Open Simulink Library Browser. Then create new model. The new

model window will appear. Drag the VR Sink block available in

the Virtual Reality Toolbox into the new model window. Double

click the block. The parameters window will then appear. Click

the new button. This last action will run the vrbuild2.exe. Figure

E.3 shows the V-Realm window that will be appeared just after

the execution.

FIGURE 3-3 THE V-REALM BUILDER WINDOW

After running the V-Realm Builder, the next step is opening the 3D

Studio files that have already been created, and then editing the files.

The procedures are as follows:

Flight Simulation 79

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

(1) Click the open button, or choose the menu: File\Open, or push

the keyboard buttons: Ctrl + O.

(2) The open dialog window will then appear. Choose the file type of

3D Studio and file name: wise8craft.3ds.

(3) The 3D model of WiSE-8 craft will then appear as shown in Figure

E.4. Rename ‘Group’ to ‘Wise’ by double clicking the word

‘Group’ and then typing the new name ‘Wise’.

(4) Add a background by clicking the ‘Add Background’ button ().

Figure E.4 shows the result.

(5) Saving the project using “File\Save As…” command. Name the

project as “wise8craftVR.wrl”.

FIGURE 3-4 THE 3D STUDIO MODEL OF XW CRAFT AFTER IMPORTED INTO

THE V-REALM BUILDER

FIGURE 3-5 THE 3D STUDIO MODEL OF XW CRAFT AFTER A BACKGROUND IS

ADDED

(6) Add four ‘Transform’ for ‘Wise’ by clicking the ‘Transform’ button

(). First ‘Transform’ will be used for translation visualization

and the last three ‘Transform’ will be used for rotation

visualization. The ‘Transform’ should be added such that the

second ‘Transform’ is the child of the first ‘Transform’ and so on,

see Figure E.6.

(7) Rename each ‘Transform’ by ‘Wise_Translation’, ‘Wise_Roll’,

‘Wise_Pitch’, and ‘Wise_Yaw’ as shown in Figure E.7. Note that

Flight Simulation 80

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

this action, renaming the transform, is very important because

without renaming these parameters will not be identified by

SIMULINK.

FIGURE 3-6 ADDING FOUR ‘TRANSFORM’

(8) Move the ‘Wise’ to the child of the fourth ‘Transform’, see again

Figure E.7. This action can be carried out by the following step:

(1) cutting the ‘Wise’, (2) activate the ‘children’ by pointing the

cursor to ‘children’ of the fourth ‘Transform’ or ‘Wise_Yaw’ and

then click once, and (3) click the paste button.

FIGURE 3-7 RENAMING THE FOUR ‘TRANSFORM’ AND MOVING THE ‘WISE’

(9) Add observer (viewer). An observer can be added into VR world

by clicking the Viewpoint button (). It is better to add a

‘Transfrom’ first then add an observer as child, see Figure E.8.

FIGURE 3-8 ADDING A DYNAMIC OBSERVER

This action can make the observer become a dynamic observer, in

which the observer can be moving and rotating as the aircraft. The

observer has six parameters, see again Figure E.8. In this example, only

three parameters will be discussed. The parameters are: orientation,

Flight Simulation 81

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

position, and description. The orientation parameter defines the

orientation of the observer, see Figure E.9.

FIGURE 3-9 EDIT ROTATION (ORIENTATION) OF THE OBSERVER

Input for the orientation is X axis, Y axis, Z axis, and Rotation (degree).

The X, Y and Z axis define the vector of rotation axes in VR axes

system, while the Rotation defines the rotation angle in degree. The

position parameter defines the position of the observer. Inputs for the

position are X, Y and Z position with respect to VR axes system.

FIGURE 3-10 EDIT POSITION OF THE OBSERVER

Flight Simulation 82

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

The third parameter is description. This parameter defines the

observer name, see Figure E.11. Note that the default position is

[0,0,0] and the default orientation is along negative Z axis or can be

written in vector notation as [0,0,1,0].

FIGURE 3-11 EDIT DESCRIPTION OF THE OBSERVER

In this example, we will show how to make an observer that will flying

with the WiSE craft, located at [20,0,7] meter from the craft and the

orientation is 73 degrees, see Figure E.12.

FIGURE 3-12 AN EXAMPLE OF AN OBSERVER

To make this observer, set the location as [20,0,7] and orientation as [0,1,0,73]. Then

name this observer as “Front Right Observer”. The result is shown in Figure E.13. Note

that the ‘Transform’ and ‘Viewpoint’ have been renamed as “RightFront_Observer”.

FIGURE 3-13 AN EXAMPLE OF AN OBSERVER, RIGHT FRONT OBSERVER

Using the same procedures, we made other observers and add the lake and hill model.

The result is shown in Figure E.14.

Flight Simulation 83

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 3-14 FINAL RESULTS OF THE VIRTUAL WORLD

3.2.1.4 PLUGGIN G THE VR WORLD IN TO S IMULINK M ODEL

After creating the virtual world (wise8craftVR.wrl), the next step is

plugging the world into SIMULINK environment. The following steps

show the procedure.

(1) Open Simulink Library Browser. Then create new model. The new

model window will appear. Drag the VR Sink block available in

the Virtual Reality Toolbox into the new model window, see

Figure E.15.

FIGURE 3-15 A NEW SIMULINK MODEL WITH VR SINK

(2) Double click the block. The parameters window will then appear,

see Figure E.16. Then click the Browse button. Select the VR file

we already made, “wise8craftVR.wrl”. The window will show the

VRML tree, see Figure E.17.

Flight Simulation 84

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 3-16 PARAMETER WINDOW OF VR SINK

FIGURE 3-17 PARAMETER WINDOW OF VR SINK AFTER LOADING

“WISE8CRAFTVR.WRL”

(3) Click the OK button. Then we will back to Simulink window as

shown in Figure E.15. Double click the VR Sink block, then VR

window as shown in Figure E.18 will appear.

Flight Simulation 85

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 3-18 THE VR VISUALIZATION WINDOW OF WISE-8 CRAFT

(4) Click the Block Parameter button (). This action will show the

parameter window as already shown in Figure E.17. In the VRML

tree, click the translation parameter for Wise_Translation, then

click the rotation for Wise_Roll, Wise_Pitch, and Wise_Yaw, see

Figure E.19. Click also the translation parameter for the

Right_Observer, RightFront_Observer, Front_Observer,

LeftFront_Oberver, Left_Observer, LeftBehind_Oberver,

Behind_Observer, and RightBehind_Observer. Choose rotation

parameter for StaticRight_A_Observer, StaticRight_B_Observer,

and StaticRight_C_Observer. Finally click OK button.

Flight Simulation 86

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 3-19 THE VR PARAMETER AFTER VRML TREE EDITING

(5) Back to Simulink model window. The VR Sink will show the VR

parameter as shown in Figure E.20. Save this Simulink model as

Tes_VR_World. Now the VR Sink is ready to be connected to

Simulink model of WiSE-8 motion simulation. As already

discussed in the beginning of Appendix E, the motion parameters

needed for visualization are position and attitude angle.

Flight Simulation 87

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

FIGURE 3-20 THE VR SINK AFTER VR PARAMETER EDITING

Before connecting the VR Sink to Simulink model, it is very important

to note that (1) the translation input of VR Sink is in the form of vector

containing three elements [X,Y,Z], in which each element defines the

recent position in meter w.r.t. VR frame, and (2) the rotation input for

VR Sink is in the form of vector containing four elements [Xr,Yr,Zr,],

where Xr, Yr, and Zr define the vector of rotation w.r.t. VR frame and 

defines the rotation angle in radian. Please note that the unit for

rotation input is radian, it is differs from orientation angle input

(degree). Since the outputs of WiSE-8 simulation are in local horizon

frame, we need to transform the output into VR frame. The

transformation matrix from local horizon to VR frame is already shown

in Equation (3-1). For convenience, the equation will be rewritten

here.

Flight Simulation 88

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

1 0 0

0 0 1

0 1 0

h

VRC

 
 

 
 
  

 (3-1)

Equation (E-1) is implemented in the VR Transform subsystem as

shown in Figure E.21. This figure is similar with Figure 3.28. The

different between Figure E.21 and Figure 3.28 is the transformation

method. Although the methods are different, they give the same

result.

FIGURE 3-21 THE VR TRANSFORM SUBSYSTEM

3.2.1.5 SUMM ARY

The procedures of creating VR world have been discussed in detail in

this section. The VR world then connected to any aircraft simulation

model to visualize the aircraft motion as already discussed in previous

chapter. The author hopes that the procedures discussed above give

the readers a new knowledge and a guide for using the Virtual Reality

toolbox.

3.2.2 VIRTUAL REALITY FOR TRANS PORT AIRCRAFT

7

Angle C [rad]

6

Angle B [rad]

5

Angle A [rad]

4

yaw angle [rad]

3

pitch angle [rad]

2

roll angle [rad]

1

X Y Z [m]

25

Zo [m]2

25

Zo [m]1

25

Zo [m]

1100

Xo [m]2

600

Xo [m]1

200

Xo [m]

atan2

atan2

atan2

Matrix

Multiply
(0 1 0)

(0 1 0)

(0 1 0)

(1 0 0)

[0 -1 0]

(0 0 1)

[3x3]

LH to VR matrix

1

Motion Bus

<signal2>

<signal3>

Flight Simulation 89

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

3.3 SIMULATION OF AIRCRAFT DYNAMICS: A VIRTUEAIR TRANSP ORT

CRAFT

Appendix A 90

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

APPENDIX A

Quick Matlab Reference: Some Basic Commands

Note: command syntax is case­sensitive!

Help <command> display the Matlab help for <command>
who lists all of the variables in matlab workspace
whos list the variables and describes their matrix size
clear deletes all matrices (variables) from active workspace
clear u deletes the matrix or variable u from active workspace
save saves all the matrices defined in the current session into the file,

 matlab.mat
load loads contents of matlab.mat into current workspace
save filename saves the contents of workspace into filename.mat
save filename x y z saves the matrices x, y and z into the file titled filename.mat
load filename loads the contents of filename into current workspace; the file can be a
 binary (.mat) file or an ASCII file.

Matrix commands

[1 2 3; 4 5 6] create the matrix
1 2 3
4 5 6

zeros(n) creates an nxn matrix whose elements are zero.

zeros(m,n) creates a m­row, n­column matrix of zeros.

ones(n) creates a n x n square matrix whose elements are 1's

ones(m,n) creates a mxn matrix whose elements are 1's.

ones(A) creates an m x n matrix of 1's, where m and n are based on the size of an
 existing matrix, A.

zeros(A) creates an mxn matrix of 0's, where m and n are based on the size of the
 existing matrix, A.

eye(n) creates the nxn identity matrix with 1's on the diagonal.
A' Transpose of A

Plotting commands

plot(x,y) creates an Cartesian plot of the vectors x & y

plot(y) creates a plot of y vs. the numerical values of the elements in the y­vector

semilogx(x,y) plots log(x) vs y

semilogy(x,y) plots x vs log(y)
loglog(x,y) plots log(x) vs log(y)
grid creates a grid on the graphics plot

title('text') places a title at top of graphics plot

xlabel('text') writes 'text' beneath the x­axis of a plot

ylabel('text') writes 'text' beside the y­axis of a plot

text(x,y,'text') writes 'text' at the location (x,y)
text(x,y,'text','sc') writes 'text' at point x,y assuming lower left corner is (0,0) and upper

right corner is (1,1)
gtext('text') writes text according to placement of mouse hold on maintains the current

Appendix A

Appendix A 91

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

 plot in the graphics window while executing subsequent plotting
 commands
hold off turns OFF the 'hold on' option

polar(theta,r) creates a polar plot of the vectors r & theta where theta is in radians

bar(x) creates a bar graph of the vector x (Note also the command stairs(y))
bar(x,y) creates a bar­graph of the elements of the vector y, locating the bars

according to the vector elements of 'x' (Note also the command stairs(x,y))
hist(x) creates a histogram. This differs from the bargraph in that frequency is
 plotted on the vertical axis

mesh(z) creates a surface in xyz space where z is a matrix of the values of the

 function z(x,y). z can be interpreted to be the height of the surface above
some xy reference plane

surf(z) similar to mesh(z), only surface elements depict the surface rather than a
 mesh grid

contour(z) draws a contour map in xy space of the function or surface z

meshc(z) draws the surface z with a contour plot beneath it

meshgrid [X,Y]=meshgrid(x,y) transforms the domain specified by vectors x and y
 into arrays X and Y that can be used in evaluating functions for 3D
 mesh/surf plots
print sends the contents of graphics window to printer
print filename ­dps writes the contents of current graphics to 'filename' in postscript format

Misc. commands

length(x) returns the number elements in a vector

size(x) returns the size m(rows) and n(columns) of matrix x
rand returns a random number between 0 and 1
randn returns a random number selected from a normal distribution with a mean
 of 0 and variance of 1

rand(A) returns a matrix of size A of random numbers

fliplr(x) reverses the order of a vector. If x is a matrix, this reverse the order of the
 columns in the matrix

flipud(x) reverses the order of a matrix in the sense of exchanging or reversing the
 order of the matrix rows. This will not reverse a row vector!

reshape(A,m,n) reshapes the matrix A into an mxn matrix from element (1,1) working
 column­wise

Some symbolic toolbox commands
syms t define the variable t to be symbolic. The value of t is now t

f = t^3 + sin(t) let f be t3
 + sin(t) symbolically

diff(f) differentiate f

diff(f,t) differentiate f with resp. to t

int(f) integrate f

int(f,t,a,b) integrate f with resp. to t from a to b

inv(A) matrix inverse of A

det(A) determinant of A

rank(A) rank of A

eig(A) eigenvalues and eigenvectors.

poly(A) characteristic polynomial.

expm(A) matrix exponential
help symbolic get help on all symbolic toolbox commands.

Appendix A 92

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Appendix B 93

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

APPENDIX B

Continuous System Analysis: Some Basic Commands

A. Transfer Function Representation

Commands covered:
tf2zp

zp2tf

cloop

feedback

parallel

series

Transfer functions are defined in MATLAB by storing the coefficients of the numerator and

the denominator in vectors. Given a continuous-time transfer function

𝐻 𝑠 =
𝐴(𝑠)

𝐵(𝑠)

where

𝐴 𝑠 = 𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ⋯ + 𝑎0 and 𝐵 𝑠 = 𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠

𝑛−1 + ⋯ + 𝑏0 written in their

coefficients, A(s) in numerator vectors num = [1 aN-1 ... a0] and B(s) is denominator den =
[bM bM-1 ... b0].
In this text,
the names of the vectors are generally chosen to be num and den, but any other name could

be used.

For example,

𝐻(𝑠) =
2𝑠 + 3

𝑠3 + 4𝑠2 + 5

is defined by
num = [2 3];

den = [1 4 0 5];

Note that all coefficients must be included in the vector, even zero coefficients.

A transfer function may also be defined in terms of its zeros, poles and gain:

H(s) =

k(s- z)(s- z) (s-z)

(s- p)(s- p) (s-p)
1 2 m

1 2 n

K
K
Error! Switch argument not specified.

To find the zeros, poles and gain of a transfer function from the vectors num and den which

contain the coefficients of the numerator and denominator polynomials, type

Appendix B 94

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

[z,p,k] = tf2zp(num,den)

The zeros are stored in z, the poles are stored in p, and the gain is stored in k. To find the

numerator and denominator polynomials from z, p, and k, type

11

G(s)
G(s)
H(s)
unity feedback
feedback

-
-

[num,den] = zp2tf(z,p,k)

The overall transfer function of individual systems in parallel, series or feedback can be found

using

MATLAB. Consider block diagram reduction of the different configurations shown in Figure

1.

Store the transfer function G in numG and denG, and the transfer function H in numH and

denH.

To reduce the general feedback system to a single transfer function, Gcl(s) =

G(s)/(1+G(s)H(s)) type
[numcl,dencl] = feedback(numG,denG,numH,denH);

For a unity feedback system, let numH = 1 and denH = 1 before applying the above

algorithm. Alternately, use the command
[numcl,dencl] = cloop(numG,denG,-1);

To reduce the series system to a single transfer function, Gs(s) = G(s)H(s) type
[nums,dens] = series(numG,denG,numH,denH);

To reduce the parallel system to a single transfer function, Gp(s) = G(s) + H(s) type
[nump,denp] = parallel(numG,denG,numH,denH);

(Parallel is not available in the Student Version.)

12

G(s)
G(s)
H(s)
H(s)
series
parallel

B. Time Simulations

Commands covered: residue
step

impulse

lsim

The analytical method to find the time response of a system requires taking the inverse

Laplace

Transform of the output Y(s). MATLAB aides in this process by computing the partial

fraction

Appendix B 95

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

expansion of Y(s) using the command residue. Store the numerator and denominator

coefficients of Y(s) in num and den, then type
[r,p,k] = residue(num,den)

The residues are stored in r, the corresponding poles are stored in p, and the gain is stored in

k.

Once the partial fraction expansion is known, an analytical expression for y(t) can be

computed by

hand.

A numerical method to find the response of a system to a particular input is available in

MATLAB.

First store the numerator and denominator of the transfer function in num and den,

respectively.

To plot the step response, type
step(num,den)

13

To plot the impulse response, type
impulse(num,den)

For the response to an arbitrary input, use the command lsim. Create a vector t which

contains

the time values in seconds at which you want MATLAB to calculate the response. Typically,

this is

done by entering
t = a:b:c;

where a is the starting time, b is the time step and c is the end time. For smooth plots,

choose b

so that there are at least 300 elements in t (increase as necessary). Define the input x as a

function of time, for example, a ramp is defined as x = t. Then plot the response by typing
lsim(num,den,x,t);

To customize the commands, the time vector can be defined explicitly and the step response

can be

saved to a vector. Simulating the response for five to six time constants generally is sufficient

to

show the behavior of the system. For a stable system, a time constant is calculated as 1/Re(-p)

where p is the pole that has the largest real part (i.e., is closest to the origin).

For example, consider a transfer function defined by

H(s) =

2

s+ 2

4

The step response y is calculated and plotted from the following commands:
num = 2; den = [1 2];

t = 0:3/300:3; % for a time constant of 1/2

y = step(num,den,t);

plot(t,y)

For the impulse response, simply replace the word step with impulse. For the response to

an

arbitrary input stored in x, type

Appendix B 96

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

y = lsim(num,den,x,t);

plot(t,y)

C. Frequency Response Plots

Commands covered:
freqs

bode

logspace

log10

semilogx

unwrap

To compute the frequency response H() of a transfer function, store the numerator and

denominator of the transfer function in the vectors num and den. Define a vector w that

contains

the frequencies for which H() is to be computed, for example w = a:b:c where a is the

lowest

frequency, c is the highest frequency and b is the increment in frequency. The command
H = freqs(num,den,w)

returns a complex vector H that contains the value of H() for each frequency in w.

To draw a Bode plot of a transfer function which has been stored in the vectors num and

den,

type
bode(num,den)

To customize the plot, first define the vector w which contains the frequencies at which the

Bode

plot will be calculated. Since w should be defined on a log scale, the command logspace

is

used. For example, to make a Bode plot ranging in frequencies from 10-1 to 102, define w by
w = logspace(-1,2);

The magnitude and phase information for the Bode plot can then be found be executing:
[mag,phase] = bode(num,den,w);

To plot the magnitude in decibels, convert mag using the following command:
magdb = 20*log10(mag);

To plot the results on a semilog scale where the y-axis is linear and the x-axis is logarithmic,

type
semilogx(w,magdb)

for the log-magnitude plot and type
semilogx(w,phase)

for the phase plot. The phase plot may contain jumps of ±2which may not be desired. To
remove

these jumps, use the command unwrap prior to plotting the phase.
semilogx(w,unwrap(phase))

E. Control Design

Commands covered: rlocus

Appendix B 97

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

Consider a feedback loop as shown in Figure 1 where G(s)H(s) = KP(s) and K is a gain and

P(s)

contains the poles and zeros of the controller and of the plant. The root locus is a plot of the

roots

of the closed loop transfer function as the gain is varied. Suppose that the numerator and

denominator coefficients of P(s) are stored in the vectors num and den. Then the following

command computes and plots the root locus:
rlocus(num,den)

To customize the plot for a specific range of K, say for K ranging from 0 to 100, then use the

following commands:
K = 0:100;

r = rlocus(num,den,K);

plot(r,’.’)

The graph contains dots at points in the complex plane that are closed loop poles for integer

values

of K ranging from 0 to 100. To get a finer grid of points, use a smaller increment when

defining

K, for example, K = 0:.5:100. The resulting matrix r contains the closed poles for all of

the

gains defined in the vector K. This is particularly useful to calculate the closed loop poles for

one

particular value of K. Note that if the root locus lies entirely on the real axis, then using

plot(r,’.’) gives inaccurate results.

F. State Space Representation

Commands Covered: step
lsim

ss2tf

tf2ss

ss2ss

The standard state space representation is used in MATLAB, i.e.,

&x Ax Bu
y Cx





5

17

where x is nx1 vector, u is mx1, y is px1, A is nxn, B is nxm, and C is pxn. The response of a

system to various inputs can be found using the same commands that are used for transfer

function

representations: step, impulse, and lsim. The argument list contains the A, B, C, and

D

matrices instead of the numerator and denominator vectors. For example, the step response is

obtained by typing:
[y,x,t] = step(A,B,C,D);

The states are stored in x, the outputs in y and the time vector, which is automatically

generated,

Appendix B 98

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

is stored in t. The rows of x and y contain the states and outputs for the time points in t.

Each

column of x represents a state. For example, to plot the second state versus time, type
plot(t,x(:,2))

To find the response of an arbitrary input or to find the response to initial conditions, use

lsim.

Define a time vector t and an input matrix u with the same number of rows as in t and the

number of columns equaling the number of inputs. An optional argument is the initial

condition

vector x0. The command is then given as
[y,x] = lsim(A,B,C,D,u,t,x0);

You can find the transfer function for a single-input/single-output (SISO) system using the

command:
[num,den] = ss2tf(A,B,C,D);

The numerator coefficients are stored in num and the denominator coefficients are stored in

den.

Given a transformation matrix P, the ss2ss function will perform the similarity transform.

Store the state space model in A, B, C and D and the transformation matrix in P.
[Abar,Bbar,Cbar,Dbar]=ss2ss(A,B,C,D,P);

performs the similarity transform z=Px resulting in a state space system that is defined as:

&x Ax Bu
y Cx Du




6

where A= PAP-1, B= PB, C = CP-1, D= D.

References 99

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

REFERENCES

Textbooks

[1] Brian L. Stevens and Frank L. Lewis, Aircraft Control and Simulation, John Wiley and

Sons, Inc, 2003.

[2] Said D. Jenie, Flight Control, Lecture Notes, Department of Aeronautics and

Astronautics, Bandung Institute of Technology, 2006. (in Bahasa Indonesia)

[3] Said D. Jenie and Hari Muhammad, Flight Dynamics, Lecture Notes, Department of

Aeronautics and Astronautics, Bandung Institute of Technology, 2006. (in Bahasa

Indonesia)

[4] John H. Blakelock, Automatic Control of Aircraft and Missiles, John Wiley and Sons, Inc,

1991.

[5] J.A. Mulder, W.H.J.J van Staveren, and J.C. van der Vaart, Flight Dynamics, Lecture

Notes, Faculty of Aerospace Engineering, TU-Delft, 2000.

[6] Donald E. Kirk, Optimal Control Theory an Introduction, Prentice-Hall, Inc, 1970.

Thesis

[7] Singgih S. Wibowo, Virtual Reality of Wing in Surface Effect Craft, Graduate Thesis,

Department of Aeronautics and Astronautics, Bandung Institute of Technology, 2006.

[8] Singgih S. Wibowo, Calculation of Aerodynamic Parameter of RX 250 LAPAN Rocket and

Analysis of its Dynamics, Undergraduate Thesis, Department of Aeronautics and

Astronautics, Bandung Institute of Technology, 2002. (in Bahasa Indonesia)

[9] Ony Arifianto, Adaptive Control Design for Yaw Damper and Turn Coordinator, Case

Study: N-250 PA-2 Aircraft, Undergraduate Thesis, Department of Aeronautics and

Astronautics, Bandung Institute of Technology, 1997. (in Bahasa Indonesia)

Paper

[10] Singgih S. Wibowo, Optimal Path Tracking Control for Autonomous Helicopter using

LQR, Unpublished Paper, Department of Aeronautics and Astronautics, Bandung

Institute of Technology, 2004.

References 100

Aircraft Flight Dynamics, Control and

Simulation

Using MATLAB and SIMULINK: Cases and

Algorithm Approach

Singgih Satrio Wibowo

[11] Singgih S. Wibowo, Effect of Weighing Matrix in Error Tracking for Autonomous

Helicopter, Unpublished Paper, Department of Aeronautics and Astronautics, Bandung

Institute of Technology, 2004.

[12] Singgih S. Wibowo and Hari Muhammad, Real-Time Simulation with Virtual Reality

Visualization, National Conference in Computational Technology-BPPT, 2006.

[13] Singgih S. Wibowo, Hari Muhammad and Said D. Jenie, Simulation with VR

Visualization of WiSE Craft during Takeoff Maneuver, The Sixth Asian Control

Conference-Bali, 2006.

Online Resources

[14] www.control.lth.se/~kursdr/matlab/matlabref.pdf

[15] www.ee.unlv.edu/kevin/index_files/tutorials/matlab_tutorial.pdf

Other Documents

[16] MATLAB 7.0 Help Documentation

http://www.control.lth.se/~kursdr/matlab/matlabref.pdf
http://www.ee.unlv.edu/kevin/index_files/tutorials/matlab_tutorial.pdf

	Preface
	Contents
	List Of Figures
	List of Tables
	Aircraft Dynamics and Kinematics
	Coordinate Systems and Transformation
	Local Horizon Coordinate Reference System
	Body Coordinate Reference System
	Wind Coordinate System
	Kinematics Equation
	Direction Cosine Matrix
	Quaternions

	Aircraft equations of motion
	Translational Motion
	Angular Motion
	Force and Moment due to Earth’s Gravity
	Aerodynamic Forces and Moments
	Linearization of Equations of Motion

	Matlab and Simulink Tools for Flight Dynamics Simulation

	Flight Control
	Attitude and Altitude Control using Root Locus Anlysis
	Optimal Path-Tracking Control for Autonomous Unmanned Helicopter Using Linear Quadratic Regulator
	Linearized Model
	Modified Linearized Model
	Path Generator
	Path-Tracking Controller Design
	Linear Regulator Problem
	Path-Tracking Formulation
	Path-Tracking Implementation

	Matlab and Simulink Implementation
	LQR Controller Implementation: Matlab Code
	Path Tracking Simulation: Simulink Diagram
	Plotting Simulation Results: Matlab code

	Numerical Results
	Experiment 1, Circular Trajectory
	Experiment 2, Rectangular Trajectory
	Experiment 3, Spiral Trajectory

	Analysis and Discussion of the Results

	Coordinated Turn Using Linear Quadratic Regulator
	State-Space Equations for an Airframe
	Problem Definition
	Matlab and Simulink Implementation
	Implementation of LQR: Matlab Code
	Coordinated Turn Simulation: Simulink Diagram
	Plotting Results: Matlab code

	Results
	Analysis and Discussion of the Results

	Adaptive Control for Yaw Damper and Coordinated Turn
	Yaw Damper and Coordinated Turn: Definition
	Model Reference Adaptive System
	State-Space Model of XX-100 Aircraft
	Matlab and Simulink Implementation
	Implementation of MRAS: Matlab Code
	MRAS-Coordinated Turn Simulation: Simulink Diagram
	Plotting Results: Matlab code

	Results
	Discussion of The Results

	Flight Simulation
	Matlab and Simulink tool for simulation
	Matlab command for simulation purpose
	Simulink toolbox for simulation purpose

	Virtual Reality, an advance tool for visualization
	Introduction to Virtual Reality toolbox: a user guide
	Defining the problem
	Create virtual world
	Working in V-Realm Builder
	Plugging the VR world into SIMULINK model
	Summary

	Virtual Reality for transport aircraft

	Simulation of Aircraft Dynamics: a VirtueAir transport craft

	Appendix A
	Appendix B
	References

