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1 AIRCRAFT DYNAMICS AND KINEMATICS 
 

Nature of Aircraft dynamics and kinematics in three-dimensional (3D) 

space can be described by a set of Equations of Motion (EOM), which 

contains six degrees of freedom: three translational modes and three 

rotational modes. In the equations, it needs to define the forces and 

moments acting on the vehicle since it is the factors responsible for 

the motion. Therefore, the modeling of the forces and moments is a 

must. The mathematical model of forces and moments include the 

aerodynamic, propulsion system and gravity. These models will be 

discussed in detail in this chapter.  

In this chapter, first we briefly overview the coordinate systems 

that used as the reference frame for the description of aircraft motion. 

Then, a complete nonlinear model of the aircraft motion will be 

discussed briefly.  
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1.1 COORDINATE SYSTEMS AND TRANSFORMATION  
A number of coordinate systems will employed here to be use as a 

reference for the motion of the aircraft in three-dimensional space, 

 Local horizon-coordinate system 

 Body-coordinate system 

 Wind-coordinate system 

 

1.1.1 LOC AL HORIZON  COORDIN ATE REFERENCE SYSTEM  

The local horizon coordinate system is also called the tangent-plane; it 

is a Cartesian coordinate system. Its origin is located on pre-selected 

point of interest and its hx , hy , hz  axes align with the north, east and 

down direction respectively as shown in Figure 1-1. 

 

FIGURE 1-1  LOCAL HORIZON COORDINATE SYSTEM 

 

For simulation purpose, the local horizon local will be used as 

reference (inertial) frame. It is correct since the most of aircraft is 

flying in low altitude and range relative to the earth surface.  

 

1.1.2 BODY COORDIN ATE REFERENC E SYSTEM  

 

hx  

hy  

hz  

eX  

eZ  

eY  

  

  
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The body coordinate system is a special coordinate system which 

represents the aircraft body. Its origin is attached to the aircraft center 

of gravity, see Figure 1-2. The positive bx  axis lies along the 

symmetrical axis of the aircraft in the forward direction, its positive by  

axis is perpendicular to the symmetrical axis of the aircraft to the right 

direction, and the positive bz  is perpendicular to the b box y  plane 

making the right hand orientation. 

 

 

FIGURE 1-2  BODY-COORDINATE SYSTEM 

 

The transformation of body axes to the local horizon frame is 

carried out using Euler angle orientation procedures. The orientation 

of the body axes system to the local horizon axes system is expressed 

by Euler angles as shown in Figure 1-3.  

 

 

center of gravity 

by  
bz  

bx  
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FIGURE 1-3  AIRCRAFT ATTITUDE WITH RESPECT TO LOCAL HORIZON FRAME: 

EULER ANGLES 

 

 The transformation of local horizon coordinate system to body 

coordinate system can be expressed as [2] 

 

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos

h

bC

    

           

           



 

 

 
 
 
  

 (1-1)   

 

The above formula is very useful for determining the orientation of 

the aircraft with respect to the earth surface. This matrix is an 

orthogonal class of matrix, meaning that its inverse can be obtained by 

transposing the matrix above as 
1 T

b h h

h b bC C C


        .  

 

1.1.3 W IND COORDIN ATE SYSTEM  

Wind coordinate system represents the aircraft velocity vector. This 

frame defines the flight path of the aircraft. The term ‘wind’ used here 

is relative wind flowing through the aircraft body as the aircraft fly in 

the air [2].  

 Local Vertical 

Local Horizon 

bx  

by  
bz  

hx  

hz  

hy  
  

 

  

  

  
  
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Its origin is attached to the center of gravity while its axes 

define the direction and the orientation of flight path. The positive wx  

axis coincides to the aircraft velocity vector V . The wz  axis lies on the 

symmetrical plane of the aircraft, perpendicular to the wx  axis and 

positive downward. And the last, positive wy  axis is perpendicular to 

the w wox z  plane obeying the right-hand orientation. These axes 

definition are shown in Figure 1-4. 

 

 

FIGURE 1-4  WIND-AXES SYSTEM AND ITS RELATION TO BODY AXES 

 

Wind axes system can be transformed to the body axes system using 

the following matrix of transformation, 

 

cos cos -cos sin -sin

sin cos 0

sin cos -sin sin cos

w

bC

    

 

    

 
 


 
  

 (1-2)   

 

This equation is useful for transforming the aerodynamic lift and drag 

forces to body axes system. As can be seen in Figure 1-4, the 

 

bx

 

by

 
bz

 

wx

 

wy

 


 



 

wz

 

V

 


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aerodynamic lift vector is along the negative wz  axis while the 

aerodynamic drag is along the negative wx  axis. Since the equations of 

motion are derived in body axes system, it needs to express all forces 

and moments which acting on the aircraft in the body axes. Therefore 

the aerodynamic lift and drag vectors should be transformed from 

wind axes to the body axes.  

 

 

FIGURE 1-5  AERODYNAMIC LIFT AND DRAG 

 

Using Equation (1-2), Aerodynamic lift and drag can be 

transformed to body axes system by the following relation 

 

cos cos -cos sin -sin

sin cos 0 0

sin cos -sin sin cos

X

Y

Z

A

A

A

F D

F

LF

    

 

    

     
    

    
         

 (1-3)   

 

Similarly, after dividing Equation (1-3) by 21
2 TV S , the aerodynamic 

coefficients can be expressed as 

 

bx  

by  

bz  

wx  

wy  

  

  

wz  

V  

L  

D  
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cos cos -cos sin -sin

sin cos 0 0

sin cos -sin sin cos

X D

Y

Z L

C C

C

C C

    

 

    

     
    

    
          

 (1-4)   

 

Equation (1-4) will be used for transforming aerodynamic lift and drag 

coefficients to body axes aerodynamic coefficients XC , YC , and ZC .  

The translational velocity can also be transformed into the body 

axes system as follows: 

 

cos cos -cos sin -sin

sin cos 0 0

sin cos -sin sin cos 0

cos cos

sin

sin cos

T

T

T

T

U V

V

W

V

V

V

    

 

    

 



 

     
    

    
         

 
 

  
 
 

 (1-5)   

  

in which the total velocity TV  is defined as 2 2 2

TV U V W   . Angle 

of attack  , and angle of sideslip   can be derived from equation (2-

9) as follows:  

arctan

arcsin
T

W

U

V

V





 
  

 

 
  

 

 (1-6)   

 

Equation (2-10) will also be used in the simulation for calculating angle 

of attack and sideslip angle from body axes velocity. 

 

1.1.4 K INEM ATICS EQUATION  
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Kinematics equation shows the relation of Euler angles and angular 

velocity  
T

b P Q Rω . The physical definition of Euler angles can 

be seen in Figure 1-3. The kinematics equations are listed as follows: 

 

sin tan cos tan

cos sin

sin cos

cos cos

P Q R

Q R

Q R

    

  

 


 

  

 

 







 
(1-7)   

 

The above equation can be rewritten in the form of matrix as 

 

1 sin tan cos tan

0 cos sin

sin cos
0

cos cos

P

Q

R

    

  

  

 

 
    
    

     
    
    

 







 (1-8)   

 

Equations (2-2) and (2-3) are used to obtained the Euler angles 

from the angular velocity P , Q , and R . But the above equations have 

disadvantage, i.e. can be singular for   = ± 90 degrees. It motivates to 

use another way that can avoid the singularity. This can be done using 

quaternion which will be discussed in the next section.  

 

1.1.5 DIRECTION  COS IN E MATRIX  

Intersection angle i  of any two vectors in three-dimensional (3D) 

space, denoted by 1r  and 2r , can be found by the inner product 

relationship: 
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1 2

1 2

arccosi
 

  
  

r r

r r


 (1-9)   

 

Using above idea, the transformation coordinate from local horizon 

axes system ( , ,h h hi j z ) to body axes system ( , ,b b bi j z ) can be cast into 

the matrix form [48]: 

 

h b h b h b

h b h b h b

h b h b h b

DCM

c c c s s

s s c c s s s s c c s c

c s c s s c s s s c c c

    

           

           

 
 


 
  

 
 

  
 
   

i i i j i z

j i j j j z

z i z j z z

  

  

  
 (1-10)   

 

where symbol    sins     and    cosc     are used for 

abbreviation. Equation (1-10) is identical to Equation (1-1). Therefore 

the term DCM  will be used together with the transformation matrix 
h

bC  in the simulation.  

 

1.1.6 QUATERN ION S  

Quaternions were discovered by Sir William Hamilton in 1843. He used 

quaternion for extensions of vector algebras to satisfy the properties 

of division rings (roughly, quotients exist in the same domain as the 

operands).  It has been widely discussed as interesting topic in algebra 

and for its amazing applicability in dynamics.  

The following paragraphs discuss the application of Quaternion 

starting with its definition while more detail discussion will be 

presented in Appendix C. Quaternion is define as  
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 0 1 2 3 0 1 2 31
T

q q q q q q q q        q i j k  (1-11)   

 

where 0q , 1q , 2q , 3q  are reals, 1 is the multiplicative identity element, 

and i , j , k  are symbolic elements having the properties: 

 

2 1 i , 2 1 j , 2 1 k  







ij k

jk i

ki j

     

 

 

 

ji k

kj i

ik j

 
(1-12)   

 

 The time-derivative of the quaternion can be expressed as follows: 

 

 

0 0

1 1

2 2

3 3

3 2 1 0

2 3 0 1

1 0 3 2

0 1 2 3

0

01

02

0

1

2

b

K

q qR Q P

q qR P Q
K

q qQ P R

q qP Q R

q q q q
P

q q q q
Q K

q q q q
R

q q q q

K









 

     
    

         
     
            

   
    

         
     
          

 

q ψ q

Qω q



 (1-13)   

 

where  2 2 2 2

0 1 2 31 q q q q       is an error coefficient.  

Obviously, integrating equation (1-13) is much more efficient 

than (1-3) because it does not involve computationally expensive 

trigonometric functions. This integration can be evaluated using the 

following relation: 
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 
0

0

t

t
t dt  q q q  (1-14)   

 

where  tq  denotes quaternion at time t  and 0q  is initial quaternion 

calculated from initial Euler angles using Eqn. (1-17). 

 The rotational transformation matrix can be directly found with 

quaternion: 

 

   
   
   

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 2 1 3 2 3 0 1

2 2 2 2

1 3 0 2 2 3 0 1 0 3 1 2

2 2

2 2

2 2

h

bC DCM

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q



     
 

      
      

 

(1-15)   

 

Euler angles can be determined from the quaternion by comparing 

Eqn. (2-15) to Eqn. (2-1) which yields 

 

 

 

 

2 3 0 1

2 2 2 2

0 3 1 2

1 3 0 2

1 2 0 3

2 2 2 2

0 1 2 3

2
arctan

arcsin 2

2
arctan

q q q q

q q q q

q q q q

q q q q

q q q q







 
  

   

    

 
  

   

 (1-16)   

 

This quaternion can also be expressed in terms of Euler angles as [8]: 
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0

1

2

3

cos cos cos sin sin sin
2 2 2 2 2 2

sin cos cos cos sin sin
2 2 2 2 2 2

cos sin cos sin cos sin
2 2 2 2 2 2

cos cos sin sin sin cos
2 2 2 2 2 2

q

q

q

q

     

     

     

     

 
   

 

 
   

 

 
   

 

 
   

 

 (1-17)   

 

The above equations will be used in the simulation which will be 

conducted in this book. 
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1.2 AIRCRAFT EQUATIONS OF  MOTION  
The equations of motion are derived based on Newton law. They were 

first derived by Euler, a great mathematician. It is the reason why the 

equations of motion are dedicated to Newton and Euler.  

The solutions of the complete equations of motion provide the 

characteristics of motion of any solid body in three-dimensional space, 

three translational and three angular motions. Therefore they called 

the six degree of freedom (6-DOF) equations of motion. These 

equations are very general and apply for all rigid bodies, e.g. aircrafts, 

rockets and satellites.  

The 6-DOF equations of motion consists a set of nonlinear first 

ordinary differential equations (ODES). They express the motions of 

the aircraft in terms of external forces and moments, which can be 

subdivided in a number of categories such as aerodynamics, control 

surface, propulsion system, and gravity. In this section, the equations 

of motion will be presented along with all relevant force and moment 

equations and a large number of output equations of which some are 

needed to calculate these forces and moments. 

 

1.2.1 TRANS LATION AL MOTION   

Applying the second law of Newton, the net forces acting on the 

airplane can be found by adding up the force acting on the all parts of 

the airplane as follows: 

 

 I b
b b b

d m d
m m

dt dt

 
      

 


V V
F ω V V  (1-18)   

 

where  
T

X Y ZF F F  F  is total force vector along bx , by  and 

bz  axes respectively,  
T

b U V WV  is velocity vector coordinated 

at the body axes frame and  
T

b P Q Rω  denotes angular 
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velocity vector of the aircraft with respect to the inertial space 

coordinated at the body axes system. Upon decomposition, the 

resulting three scalar force equations become: 

 

 

 

 

X

Y

Z

F m U QW RV mU

F m V RU PW mV

F m W PV QU mW

   

   

   

 

 

 

 (1-19)   

 

The above equation then used for calculating the translational 

acceleration that can be expressed in the following equation: 

 

X

Y

Z

F mU
U QW RV

m

F mV
V RU PW

m

F mW
W PV QU

m


  


  


  







 (1-20)   

 

The term  bm m  F V  is defined as translational acceleration ba  

= 
T

x y za a a    =      
T

X Y ZF mu m F mv m F mw m       . 

Forces occurred in (2-19) and (2-20) are caused by the aerodynamics, 

control surface, propulsion system and Earth’s gravity. Hence it can be 

written as follows: 

 

X X X X

Y Y Y Y

Z Z Z Z

X A C P G

Y A C P G

Z A C P G

F F F F F

F F F F F

F F F F F

   

   

   

 (1-21)   
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where 
XAF  denotes aerodynamic force acting along bx  axis,

XHF  is 

hydrodynamic force acting along bx  axis, 
XTF  denotes the propulsion 

force acting along bx  axis 
XGF  denotes  gravity force acting along bx  

axis, and so on. 

 

 

1.2.2 AN GULAR MOTION   

Angular motion of the aircraft is also derived based on the second law 

of Newton. The net moment acting on the airplane can be found by 

adding up the moments acting on the all parts of the airplane as: 

 

 I
b b b b

d

dt
     

H
M Iω ω Iω Iω  (1-22)   

 

where  
T

X Y ZM M M  M  is total moment vector along bx , 

by  and bz  axes respectively, ω  denotes the angular velocity of the 

aircraft as mentioned before and I  denotes the inertia tensor of the 

aircraft defined as 

 

xx yx zx

xy yy zy

xz yz zz

I J J

J I J

J J I

  
 

   
   

I  (1-23)   

 

The angular acceleration can be evaluated using Equation (2-22) 

as 

 

  1

b b b b

    ω I M ω Iω Iω  (1-24)   
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Here, 1I  is the inverse of the inertia tensor as shown in Equation (2-

24). This inverse has a relatively simple form [8]: 

 

11 21 31

1

12 22 32

13 23 33

1
k k k

k k k

k k k



 
 


 
  

I  (1-25)   

 

where  

 

 

 

 

2

11

2

22

2

33

yy zz yz

zz xx xz

xx yy xy

k I I J

k I I J

k I I J

  

  

  

   

 

 

 

12 21

13 31

23 32

yz xz xy zz

xy yz xz yy

xy xz yz xx

k k J J J I

k k J J J I

k k J J J I

   

   

   

 (1-26)   

 

and  

 

2 2 22xx yy zz xy yz xz xx yz yy xz zz xyI I I J J J I J I J I J       (1-27)   

 

For conventional aircraft which is symmetrical to b box z  plane, 

the cross inertial products are very small and can be assumed to be 

zero ( 0xyJ   and 0yzJ  ). Under this condition, Eqn. (2-27) can be 

simplified as  

 

2

xx yy zz yy xzI I I I J    (1-28)   

 

By assuming the inertia tensor is constant which implies I = 0, Eqn. (2-

24) can be decomposed as: 
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   

   

   

2

2 2

2

zz zz yy xzxz xx yy zzX zz Z xz

xzzz xxY

yy yy yy

xx xx yy xz xz xx yy zzX xz Z xx

I I I J QRJ I I I PQM I M J
P

J P RI I PRM
Q

I I I

I I I J PQ J I I I QRM J M I
R

       
  


  

        
  







 

(1-29)   

 

The moments ( XM , YM  and YM ) can also be expressed in 

terms of aerodynamic, control surface and propulsion moments as 

those for the forces, 

 

X X X

Y Y Y

Z Z Z

X A C P

Y A C P

Z A C P

M M M M

M M M M

M M M M

  

  

  

 (1-30)   

 

where 
XAM  denotes aerodynamic moment which respect to bx  axis,

XCM  is control surface moment which respect to bx  axis, 
XPF  denotes 

the propulsion moment which respect to bx  axis, and so on. 

 

1.2.3 FORCE AND MOMENT DUE TO EARTH ’S  GRAVITY  

The gravity force vector can be decomposed along the body axes 

system as: 

 

sin

sin cos

cos cos

X

Y

Z

G

G

G

F mg

F mg

F mg



 

 

 





 (1-31)   
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or can be written as 

 

0 0

0 0

X

Y

Z

G

h

G b

G

F

F C DCM

mg mgF

     
     

      
     

    

 (1-32)   

 

The gravity force produces zero moment because it is acting on the 

center of gravity. Equation (2-32) is the gravity force equation which 

will be used in the simulation.  

 

1.2.4 AERODYN AMIC  FORCES  AN D MOM ENTS  

Aerodynamic forces and moments are function of some parameters. 

They can be written as: 

 

 

 

 

 

 

21
2

21
2

21
2

21
2

1

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

X

Y

Z

X

Y

A X a e r T

A Y a e r T

A Z a e r T

A l a e r T

A m a e r

F C H M U V W P Q R V S

F C H M U V W P Q R V S

F C H M U V W P Q R V S

M C H M U V W P Q R V Sb

M C H M U V W P Q R

     

     

     

     

    











 

2

2

21
2

, , , , , , , , , , , ,
Z

T

A n a e r T

V Sc

M C H M U V W P Q R V Sb



     

 (1-33)   

 

Equation (1-33) shows that the aerodynamic forces and 

moments are very complicated. Due to the limitation of methods and 

tools available for determining the aerodynamic coefficients as 

function of parameters shown in Eqn. (1-33), the simpler aerodynamic 

model will be used for the simulation, see Eqns. (1-34) and (1-35). 

These equations are adopted from aircraft control model. 

In aircraft control studies which the interest is laying in the 

aircraft’s response to a (small) deviation from a steady rectilinear 

symmetrical flight, the aerodynamic forces and moments can be 
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separated into two uncoupled groups of symmetric and asymmetric 

equations.  

 

Symmetric equations: 

  
  
  

21
2 2

21
2 2

21
2 2

,

,

,

X q R e

Z q R e

Y q R e

c
A X X X e TV

c
A Z Z Z e TV

c
A m m m e TV

F C H C q C V S

F C H C q C V S

M C H C q C V Sc







  

  

  

  

  

  

 (1-34)   

 

The aerodynamic coefficients XC  and ZC  which occurred in Eqn. 

(1-34) were calculated from aerodynamic lift and drag using Equation 

(1-8). Aerodynamic lift and drag coefficients of the aircraft were 

predicted using Digital DATCOM as function of angle of attack ( ) and 

altitude ( H ).  

 

Asymmetric equations: 

 

 

 

21
2 2 2

21
2 2 2

21
2 2 2

Y o p rR R a r

X o p rR R a r

Z o p rR R a r

b b
A Y Y Y Y Y a Y r TV V

b b
A l l l l l a l r TV V

b b
A n n n n n a n r TV V

F C C C p C r C C V S

M C C C p C r C C V Sb

M C C C p C r C C V Sb

  

  

  

   

   

   

     

     

     

 (1-35)   

Aerodynamic coefficient YC  which occurred in Equation (1-35) 

was also calculated from aerodynamic lift and drag using Equation (1-

8). For sideslip angle   = 0, the aerodynamic 
oYC , 

ol
C  and 

onC  are 

assumed to be zero.  

Stability and control derivatives occurred in equation (1-34) and 

(1-35) will be calculated using DATCOM and Smetana method. These 

parameters will be listed in Appendix C. 

 

1.2.5 LINEARIZATION  OF EQUATIONS OF MOTION   
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We rewrite the complete equation of motion for conventional aircraft 

in the form of 

 

 

 

 

   

 

2 2

sin

cos sin

cos cos

X X X

Y Y Y

Z Z Z

X X X

Y Y Y

Z

a p c

a p c

a p c

xx zz yy xz xz a p c

yy xx zz xz a p c

zz yy xx xz xz a

m U QW RV mg F F F

m V RU PW mg F F F

m W PV QU mg F F F

I P I I QR J R J PQ M M M

I Q I I PR J P R M M M

I R I I PQ J P J QR M



 

 

      

     

     

      

      

     







 



 
Z Zp cM M

 (1-36)   

 

Linearization of equations of motion is derived at trim condition, i.e. 

the condition when all acceleration (translation and rotation) are zero, 

oU  = oV  = oW  = oP  = oQ  = oR  = 0. At this condition, equations of 

motion become, 

 

 

 

 

sin

cos sin

cos cos

X X Xo oo

Y Y Yo o o

Z Z Zo o o

o o o o o A P C

o o o o o o A P C

o o o o o o A P C

m Q W R V mg F F F

m R U PW mg F F F

m PV Q U mg F F F



 

 

     

    

    

 (1-37)   

 

   

 

2 2

X X Xo o o

Y Y Yo o o

Z Z Zo o o

zz yy o o xz o o A P C

xx zz o o xz o o A P C

yy xx o o xz o o A P C

I I Q R J P Q M M M

I I P R J P R M M M

I I P Q J Q R M M M

    

     

    

 (1-38)   

 

we introduce small disturbance such that  

 

o o o

o o o

o o o

U U u d P P p

V V v d Q Q q

W W w d R R r

  

  

  

     

     

     

 (1-39)   
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Where 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝑑𝜑, 𝑑𝜃 and 𝑑𝜓 is small deviation from its steady 

state value.  

During trim condition, external force and moment can be written as: 

 

X X X X X Xo o

X X Xo

X X X X X Xo o

X X Xo

a a a p p p

c c c

a a a p p p

c c c

F F dF F F dF

F F dF etc

M M dM M M dM

M M dM etc

   

 

   

 

 (1-40)   

 

The trim condition is chosen at symmetrical cruising flight, where 0V   =  

oP  = oQ  = oR  = 0, dan o = o = o = 0. Applying Eqn. (1-37) to (1-40) 

and neglecting product of small variables, yields  

 

   cos
X X Xo o A P Cm u W q mg d dF dF dF        (1-41)   

   cos
Y Y Yo o o A P Cm v U r W p mg d dF dF dF        (1-42)   

   sin
Z Z Zo o A P Cm w U q mg d dF dF dF        (1-43)   

X X Xxx xz A P CI p J r dM dM dM      (1-44)   

Y Y Yyy A P CI q dM dM dM    (1-45)   

Z Z Zzz xz A P CI r J p dM dM dM      (1-46)   
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1.1 MATLAB AND SIMULINK TOOLS FOR FLIGHT DYNAMICS SIMULATION  
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2 FLIGHT CONTROL 
 

This chapter deals with control design and analysis using classical and 

modern techniques. The explanation will be given in examples. First 

we will give example of classical control applying for longitudinal and 

lateral control (first example), then continuing by modern control 

(second to fourth examples).   
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2.1 ATTITUDE AND ALTITUDE CONTROL USING ROOT LOCUS ANLYSIS  
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2.2 OPTIMAL PATH-TRACKING CONTROL FOR AUTONOMOUS UNMANNED 

HELICOPTER USING LINEAR QUA DRATIC REGULATOR  
 

This chapter presents tracking control design of a small-scale 

unmanned helicopter (Yamaha R-50) using Linear Quadratic Regulator 

(LQR) technique [10]. We proposed scheme involves two steps: (1) 

generate a path/trajectory off-line and (2) apply a time-invariant LQR 

to track the path/trajectory. Numerical simulation using 

MATLAB/Simulink® is carried out to demonstrate the feasibility of the 

control system.  Physical parameter of R-50 helicopter is presented in 

Table 1. 

 

 

FIGURE 2-1  A SMALL-SCALE UNMANNED HELICOPTER, YAMAHA R-50 
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FIGURE 2-2  DIMENSION OF THE YAMAHA R-50  HELICOPTER 

 

TABLE 1  PHYSICAL PARAMETER OF THE YAMAHA R-50 

Rotor speed                         850 rpm 

Tip speed                             449 ft/s 

Dry weight               97 lb 

Instrumented           150 lb 

Engine                      Single cylinder, 2-stroke 

 

2.2.1 LINEARIZED MODEL  

The linearized model of R-50 dynamics can be written in the state-

space form as 

 

     t t t x Ax Bu  (2-1)   

 

Where  

 

T

fbu v w p q r a b w r r c d    x  (2-2)   
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is state vector, and  

 

T

lat lon ped col
      u  (2-3)   

 

is control input. The matrices A and B are shown in the complete 

state-space form (Figure 1-4). 

 

 

FIGURE 2-3  THE COMPLETE STATE-SPACE FORM OF R-50 DYNAMICS 

 

The parameter values of matrix A and B for hover and cruise flight 

condition presented in Table 2 and Table 3 below. 

 

TABLE 2  PARAMETER VALUES OF MATRIX A 

Parameter Hover Cruise 

uX  -0.0505 -0.122 

X  , aX  -32.2    -32.2    

rX  0 -11      

vY  -0.154 -0.155 
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Y , bY  32.2    32.2    

rY  0 -49.2    

uL  -0.144    0 

vL  0.143 0 

wL  0 -0.213 

bL  166 213 

uM  -0.0561 0 

vM  -0.0585 0 

wM  0 0.0728 

aM  82.6    108 

aB  0.368 0.419 

dB  0.71   0.664 

bA  -0.189 -0.176 

cA  0.644 0.577 

bZ  -131      0 

aZ  -9.75   0 

wZ  -0.614 -1.01   

rZ  0.93   0 

pZ  0 11 

qZ  0 49.2 

pN  -3.53   0 

vN  0.0301 0.401 

wN  0.0857 0 

rN  -4.13 -3.9 

rfbN  -33.1 -26.4 
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rK  2.16 2.18 

rfbK  -8.26 -7.79 

 

 

TABLE 3  PARAMETER VALUES OF MATRIX B 

Parameter Hover Cruise 

latB  0.14 0.124 

lonB  0.0138 0.02 

latA  0.0313 0.0265 

lonA  -0.1 -0.0837 

colZ  -45.8 -60.3 

colM  0 6.98   

colN  -3.33  0 

pedN  33.1 26.4 

latD  0.273 0.29 

lonC  -0.259 -0.225 

pedY  0 11.23   

p  0.0991 0.0589 

f  0.046 0.0346 

cgh  -0.411 -0.321 

s  0.342 0.259 

 

 

2.2.2 MODIFIED L INEARIZED MODEL  
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We have modified the original dynamic model above for our 

convenience. We added to the model, the rotation r   and then 

rearrange the state vector as follows 

T

fbu v w p q r r a b c d     x  (2-4)   

 

Using this new state vector, we have new model with the matrices A 

and B are as follows (Eqs. 28 and 29), 

 


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
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
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2.2.3 PATH  GEN ERATOR  

The path generator was developed by a simple idea, i.e. setting the 

trajectory/path in the inertial reference and then finding its velocity 

profile. This method can be expressed in the following relation: 

 

 

 

 

x x t

y y t

z z t







   and    

   

   

   

x

y

z

x t V t

y t V t

z t V t













  (2-7)   

 

And the total velocity is 

 

2 2 2

T x y zV V V V    (2-8)   

 

The total velocity TV  must be less or equal to the maximum velocity of 

the helicopter, and it is assumed to be constant. We assume that the 

maximum velocity of the helicopter is  
22 2 2

0 0 49.2 11u v     = 

50.4 ft/s, and therefore we take TV  = 50 ft/s for simulation.   

The inertial frame, by definition, is chosen such that the positive z-

axis is downward. We then set positive x-axis is eastward, and 

therefore the positive y-axis is southward. But for our convenience, we 

choose local horizon as inertial frame where the positive x-axis is 

eastward, the positive y-axis is northward, and the positive z-axis is 

upward. So we need to transform the original inertial frame to the 

local horizon frame. The transformation can be expressed as follows: 

 

1 0 0

0 1 0

0 0 1

E I

E I

E I

X X

Y Y

Z Z

     
    

     
         

 (2-9)   

 

or inversely: 
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1 0 0

0 1 0

0 0 1

I E

I E

I E

X X

Y Y

Z Z

     
    

     
         

 (2-10)   

 

To give more precise understanding of this method, we present 

here three examples.  The first example is generating horizontal 

circular trajectory (Figure 2-4). The second example is generating 

horizontal rectangular trajectory (Figure 2-6). And the third example is 

generating (3D) spiral trajectory (Figure 2-8). 

 

 

FIGURE 2-4  TRAJECTORY FOR EXAMPLE 1, CIRCULAR 
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FIGURE 2-5  VELOCITY PROFILE FOR EXAMPLE 1 

 

 

FIGURE 2-6  TRAJECTORY FOR EXAMPLE 2, RECTANGULAR 
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FIGURE 2-7  VELOCITY PROFILE FOR EXAMPLE 2 

 

 

FIGURE 2-8  TRAJECTORY FOR EXAMPLE 3, SPIRAL 
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FIGURE 2-9  VELOCITY PROFILE FOR EXAMPLE 3 

 

2.2.4 PATH-TRACKIN G CONTROLLER DES IGN  

2.2.4.1 LINEAR REGULATOR PROBLEM  

The controller design is based on LQR problem that is to find the 

control input that can minimize the performance measure 
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ft
T T T

f f
t

J t t t t t t t t dt    x Hx x Q x u R u  (2-11)   

 

Referring to the plant 

 

         t t t t t x A x B u  (2-12)   

 

which have the physical interpretation: it is desired to maintain the 

state vector close to the origin without an excessive expenditure of 

control effort. 

The solution of this LQR problem can be seen in [6], in the form of 

optimal gain matrix K and the optimal control law. The optimal gain 
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matrix can be found by solving the matrix differential equation as 

follow 

                     1T Tt t t t t t t t t t t   K K A A K Q K B R B K  (2-13)   

 

And the optimal control input is  

         

   

1* T

opt

t t t t t

t t

 



u R B K x

K x
 (2-14)   

 

 

2.2.4.2 PATH-TRACKIN G FORM ULATION  

The tracking problem can be expressed in simple mathematics relation 

as 

     error reft t t x x x  (2-15)   

 

we then take the derivative of Eqs. (38) respect to time, yields 

     error reft t t x x x    (2-16)   

 

if we set   constantref t x  then the time derivative of Eqs. (39) can be 

simplified to be  

   error t t x x   (2-17)   

 

equation (40) give us a motivation to design control law for path 

tracking problem, that is: 

   error it t x x  ;  1,2, ,i n   (2-18)   

 

where i  is arbitrary positive constant. 
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2.2.4.3 PATH-TRACKIN G IM PLEM ENTATION  

Now, we are going to implement the path tracking controller. Our 

motivation is to minimizing the tracking error matrix errorx . Where the 

tracking error matrix is 

 
 
 
 

   
   
   

error ref

error error ref

error ref

x t x t x t

t y t y t y t

z t z t z t

   
  

    
      

x  (2-19)   

 

where errorx , errory , errorz  are error in x, y, and z position in body axis 

frame. Applying equation (41) to equation (42) yields 

 
 
 
 

 
 
 

1

2

3

error

error error

error

x t x t

t y t y t

z t z t

   
   

      
      

x

 

  

 

 (2-20)   

 

Substituting x u , y v , z w  to Eqs. (43) yields 

 

 
 
 
 

1

2

3

error

u t

t v t

w t

 
 

   
  

x  (2-21)   

 

we choose the value such that  1  = 2  =  3  =   = 0.1 by trial and 

error. 

Using equation (2-21) we develop the augmented state-space 

model: 

 

     aug aug aug augt t t x A x B u  (2-22)   
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where  

 

 
T

aug error error errorx y zx x  (2-23)   

3 3 3 3 11

14 3

0.1
aug

 



  
  
 

0 I 0
A

0 A
 (2-24)   

3 4

aug

 
  
 

0
B

B
 (2-25)   

 

The performance measure is 

 

           
0

ft
T T

aug aug
t

J t t t t t t dt    x Q x u R u  (2-26)   

 

with  

 

170.01 Q I  

40.01 R I  
(2-27)   

 

then we minimizing (2-26) using LQR technique as describe before. 

The solution is the optimal gain matrix Kopt  (2-12).  

 

2.2.5 MATLAB AND SIM ULINK IM PLEM EN TATION  

2.2.5.1 LQR  CONTROLLER IM PLEM ENTATION :  MATLAB CODE  

The following code is Matlab implementation of the controller design 

using LQR. 

 

%==================================================% 

% Simulation Yamaha R-50 Helicopter                % 

% Author : Singgih S. Wibowo                       % 

% NIM    : 23604003                                %  
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% Version 2.1, 18 Des 2004                         %  

% 1st modification, 21 Feb 2007                    % 

%==================================================% 

% References :                                     % 

% [1] A.Budiyono, H.Y. Sutarto                     % 

%     "Multivariable Controller Design for         % 

%     a small  scale helicopter using              % 

%     Coefficient Diagram Method"                  % 

% [2] B. Mettler, M.B. Tischler, Takeo Kanade      % 

%     "System Identification Modeling of           % 

%     a Small-Scale Unmanned Rotorcraft            % 

%     for Flight Control Design"                   % 

%==================================================% 

 

%==================================================% 

% Physical Parameter of The Yamaha R-50            % 

%==================================================% 

% Rotor speed        850 rpm                       % 

% Tip speed          449 ft/s                      % 

% Dry weight          97 lb                        % 

% Instrumented       150 lb                        % 

% Engine                 Single cylinder, 2-stroke % 

% Flight autonomy     30 minutes                   % 

%==================================================% 

 

clear;  

 

%===================================% 

% A matrix [Hover mode; Cruise mode]% 

%===================================% 

Xu    =  [  -0.0505;  -0.122 ]; 

Xth   =  [ -32.2   ; -32.2   ]; 

Xa    =  [ -32.2   ; -32.2   ]; 

Xr    =  [   0     ; -11     ]; 

Yv    =  [  -0.154 ;  -0.155 ]; 

Yph   =  [  32.2   ;  32.2   ]; 

Yb    =  [  32.2   ;  32.2   ]; 

Yr    =  [   0     ; -49.2   ]; 

Lu    =  [  -0.144 ;   0     ]; 

Lv    =  [   0.143 ;   0     ]; 

Lw    =  [   0     ;  -0.213 ]; 

Lb    =  [ 166     ; 213     ]; 

Mu    =  [  -0.0561;   0     ]; 

Mv    =  [  -0.0585;   0     ]; 

Mw    =  [   0     ;   0.0728]; 

Ma    =  [  82.6   ; 108     ]; 

Ba    =  [   0.368 ;   0.419 ]; 

Bd    =  [   0.71  ;   0.664 ]; 

Ab    =  [  -0.189 ;  -0.176 ]; 

Ac    =  [   0.644 ;   0.577 ]; 

Zb    =  [-131     ;   0     ]; 

Za    =  [  -9.75  ;   0     ]; 

Zw    =  [  -0.614 ;  -1.01  ]; 

Zr    =  [   0.93  ;   0     ]; 

Zp    =  [   0     ;  11     ]; 

Zq    =  [   0     ;  49.2   ]; 

Np    =  [  -3.53  ;   0     ]; 

Nv    =  [   0.0301;   0.401 ]; 

Nw    =  [   0.0857;   0     ]; 

Nr    =  [  -4.13  ;  -3.9   ]; 

Nrfb  =  [ -33.1   ; -26.4   ]; 

Kr    =  [   2.16  ;   2.18  ]; 

Krfb  =  [  -8.26  ;  -7.79  ]; 

g     =    32.2; %gravity constant = 32.2 ft/s^2 

 

%===================================% 

% B matrix [Hover mode; Cruise mode]% 

%===================================% 

Blat  =  [  0.14  ;   0.124 ]; 

Blon  =  [  0.0138;   0.02  ]; 



Flight Control  48 

 

Aircraft Flight Dynamics, Control and 

Simulation  

Using MATLAB and SIMULINK: Cases and 

Algorithm Approach 

Singgih Satrio Wibowo 

 

Alat  =  [  0.0313;   0.0265]; 

Alon  =  [ -0.1   ;  -0.0837]; 

Zcol  =  [-45.8   ; -60.3   ]; 

Mcol  =  [  0     ;   6.98  ]; 

Ncol  =  [ -3.33  ;   0     ]; 

Nped  =  [ 33.1   ;  26.4   ]; 

Dlat  =  [  0.273 ;   0.29  ]; 

Clon  =  [ -0.259 ;  -0.225 ]; 

Yped  =  [  0     ;  11.23  ]; 

Tau_p =  [  0.0991;   0.0589]; 

Tau_f =  [  0.046 ;   0.0346]; 

h_cg  =  [ -0.411 ;  -0.321 ]; 

Tau_s =  [  0.342 ;   0.259 ]; 

 

%===================================% 

% Choose fly mode  

%    1 = Hover  

%    2 = Cruise 

%===================================% 

Mode  = 2;  

if Mode == 1 

   Mtext = '[Hover Mode]'; 

elseif Mode == 2 

   Mtext = '[Cruise Mode]'; 

end 

 

A   = [Xu(Mode)  0         0        0        0  0         0  -g  0  0 ... 

       Xa(Mode)  0         0        0; 

       0         Yv(Mode)  0        0        0  0         g   0  0  0 ... 

       0         Yb(Mode)  0        0; 

       0         0         Zw(Mode) 0        0  Zr(Mode)  0   0  0  0 ... 

       Za(Mode)  Zb(Mode)  0        0; 

       Lu(Mode)  Lv(Mode)  Lw(Mode) 0        0  0         0   0  0  0 ... 

       0         Lb(Mode)  0        0; 

       Mu(Mode)  Mv(Mode)  Mw(Mode) 0        0  0         0   0  0  0 ... 

       Ma(Mode)  0         0        0; 

       0         Nv(Mode)  Nw(Mode) Np(Mode) 0  Nr(Mode)  0   0  0  Nrfb(Mode) ... 

       0         0         0        0; 

       0         0         0        1        0  0         0   0  0  0 ... 

       0         0         0        0; 

       0         0         0        0        1  0         0   0  0  0 ... 

       0         0         0        0; 

       0         0         0        0        0  1         0   0  0  0 ... 

       0         0         0        0; 

       0         0         0        0        0  Kr(Mode)  0   0  0  Krfb(Mode) ... 

       0         0         0        0; 

       0         0         0        0       -1  0         0   0  0  0 ... 

      -1/Tau_f(Mode)  Ab(Mode)/Tau_f(Mode)  Ac(Mode)/Tau_f(Mode)   0; 

       0         0         0       -1        0  0         0   0  0  0 ... 

       Ba(Mode)/Tau_f(Mode) -1/Tau_f(Mode)   0  Bd(Mode)/Tau_f(Mode); 

       0         0         0        0       -1  0         0   0  0  0 ... 

       0         0        -1/Tau_s(Mode)     0; 

       0         0         0       -1        0  0         0   0  0  0 ... 

       0         0         0       -1/Tau_s(Mode)]; 

 

B   = [0                      0                       0          0 

       0                      0                       Yped(Mode) 0 

       0                      0                       0          Zcol(Mode) 

       0                      0                       0          0 

       0                      0                       0          Mcol(Mode) 

       0                      0                       Nped(Mode) Ncol(Mode) 

       0                      0                       0          0 

       0                      0                       0          0 

       0                      0                       0          0 

       0                      0                       0          0 

       Alat(Mode)/Tau_f(Mode) Alon(Mode)/Tau_f(Mode)  0          0 

       Blat(Mode)/Tau_f(Mode) Blon(Mode)/Tau_f(Mode)  0          0 

       0                      Clon(Mode)/Tau_s(Mode)  0          0 

       Dlat(Mode)/Tau_s(Mode) 0                       0          0]; 
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%=========================================================== 

% X  = [u  v  w  p  q  r  phi  theta psi  rfb  a   b   c  d]'    

% U  = [delta_lat  delta_lon  delta_ped   delta_col]'    

%=========================================================== 

alp   = 5; 

A_aug = [0   0   0   -alp   0    0     zeros(1,11) 

         0   0   0    0    -alp  0     zeros(1,11) 

         0   0   0    0     0   -alp   zeros(1,11) 

         zeros(14,3)                   A]; 

B_aug = [zeros(3,4); B]; 

C     = eye(14);  

D     = B*0; 

    

%=========================================================== 

% Linear Quadratic Regulator is computed here    

% We defined The Performance Cost by      

%    J  = INTEGRAL (X^2 +  U^2); 

%=========================================================== 

weight  = 1; 

Q       = weight*eye(17); 

R       = weight*eye(4); 

K       = lqr(A_aug,B_aug,Q,R); 

%=========================================================== 

 

2.2.5.2 PATH TRACKIN G S IM ULATION :  S IM ULINK DIAGRAM  

The following figures show the Simulink diagram of the LQR controller 

design 

 

 

FIGURE 2-10  PATH TRACKING CONTROLLER MODEL 

 

 

FIGURE 2-11  PATH GENERATOR BLOCK 
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FIGURE 2-12  EARTH TO INERTIAL VELOCITY TRANSFORM BLOCK 

 

 

FIGURE 2-13 OPTIMAL CONTROLLER BLOCK 

 

 

FIGURE 2-14  YAMAHA R50 DYNAMICS MODEL BLOCK 
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FIGURE 2-15  BODY TO INERTIAL TRANSFORM BLOCK 

 

 

FIGURE 2-16  INERTIAL TO EARTH TRANSFORM BLOCK 

 

 

FIGURE 2-17  WRITE TO FILE BLOCK 
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The following Matlab code will plot figures of the simulation results. 

 

%==================================================% 

% This program will plotting simulation results    % 

% of Path-Tracking Controller for R-50 Helicopter  % 

%==================================================% 

% Loading data From                                % 

% [1] Yamaha_R50_OPTCON_vdata.mat                  % 

% [2] Yamaha_R50_OPTCON_xdata.mat                  % 

% [3] Yamaha_R50_OPTCON_condata;                   % 

% [4] Yamaha_R50_OPTCON_atdata;                    % 

% [5] Yamaha_R50_OPTCON_verrdata;                  % 

% [6] Yamaha_R50_OPTCON_errdata;                   % 

% then plotting them                               % 

%==================================================% 

% Author : Singgih S. Wibowo                       % 

% NIM    : 23604003                                %  

% Version 2.1, 18 Des 2004                         %  

% 1st modification, 21 Feb 2007                    % 

%==================================================% 

 

load Yamaha_R50_OPTCON_vdata; 

load Yamaha_R50_OPTCON_xdata; 

load Yamaha_R50_OPTCON_condata; 

load Yamaha_R50_OPTCON_atdata; 

load Yamaha_R50_OPTCON_verrdata; 

load Yamaha_R50_OPTCON_errdata; 

 

Tmax = X(1,end); 

 

%Flight Trajectory Geometry 

figure(1);  

plot3(X(2,:),X(3,:),X(4,:),'b',X(5,:),X(6,:),X(7,:),'r','LineWidth',2); 

xlabel('East [ft]','FontSize',14);  

ylabel('North [ft]','FontSize',14);  

zlabel('Altitude [ft]','FontSize',14); 

title('Flying Path [3D]','FontSize',14); 

legend('Path_r_e_f','Path_o_u_t'); 

axis([-200  800  -200  800 -100 100]); 

%axes('FontSize',14); 

box on; 

%grid on; 

 

%Trajectory History 

figure(2); 

subplot(311); 

plot(X(1,:),X(2,:),'b',X(1,:),X(5,:),'r','LineWidth',2); 

xlabel('time [s]'); ylabel('East [ft]'); title('X-position'); 

legend('X_r_e_f','X_o_u_t'); 

axis([0  Tmax   -200   800]); 

%grid on; 

subplot(312); 

plot(X(1,:),X(3,:),'b',X(1,:),X(6,:),'r','LineWidth',2); 

xlabel('time [s]'); ylabel('North [ft]'); title('Y-position'); 

legend('Y_r_e_f','Y_o_u_t'); 

axis([0  Tmax   -200   800]); 

%grid on; 

subplot(313); 

plot(X(1,:),X(4,:),'b',X(1,:),X(7,:),'r','LineWidth',2); 

xlabel('time [s]'); ylabel('Altitude [ft]'); title('Z-position'); 

legend('Z_r_e_f','Z_o_u_t'); 

axis([0  Tmax   -100   100]); 

%grid on; 

 

%Velocity History 

figure(3); 

subplot(311); 
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plot(V(1,:),V(2,:),'b',V(1,:),V(5,:),'r','LineWidth',2); 

xlabel('time [s]'); ylabel('V_x [ft/s]'); title('X-Velocity'); 

legend('V_x _r_e_f','V_x _o_u_t'); 

axis([0  Tmax   -60   60]); 

%grid on; 

subplot(312); 

plot(V(1,:),V(3,:),'b',V(1,:),V(6,:),'r','LineWidth',2); 

xlabel('time [s]'); ylabel('V_y [ft/s]'); title('Y-Velocity'); 

legend('V_y _r_e_f','V_y _o_u_t'); 

axis([0  Tmax   -60   60]); 

%grid on; 

subplot(313); 

plot(V(1,:),V(4,:),'b',V(1,:),V(7,:),'r','LineWidth',2); 

xlabel('time [s]'); ylabel('V_z [ft/s]'); title('Z-velocity'); 

legend('V_z _r_e_f','V_z _o_u_t'); 

axis([0  Tmax   -60   60]); 

%grid on; 

 

%Control Input History 

figure(4); 

subplot(221); 

plot(Con(1,:),Con(2,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\delta_l_a_t [deg]'); title('Control Input 1'); 

axis([0  Tmax   -30   30]); 

%grid on; 

subplot(222); 

plot(Con(1,:),Con(3,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\delta_l_o_n [deg]'); title('Control Input 2'); 

axis([0  Tmax   -30   30]); 

%grid on; 

subplot(223); 

plot(Con(1,:),Con(4,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\delta_p_e_d [deg]'); title('Control Input 3'); 

axis([0  Tmax   -30   30]); 

%grid on; 

subplot(224); 

plot(Con(1,:),Con(5,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\delta_c_o_l [deg]'); title('Control Input 4'); 

axis([0  Tmax   -30   30]); 

%grid on; 

 

%Attitude History 

figure(5); 

subplot(311); 

plot(Atd(1,:),Atd(2,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\phi [deg]'); title('roll angle'); 

axis([0  Tmax   -60   60]); 

%grid on; 

subplot(312); 

plot(Atd(1,:),Atd(3,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\theta [deg]'); title('pitch angle'); 

axis([0  Tmax   -60   60]); 

%grid on; 

subplot(313); 

plot(Atd(1,:),Atd(4,:),'b','LineWidth',2); 

xlabel('time [s]'); ylabel('\psi [deg]'); title('yaw angle'); 

axis([0  Tmax   -360   20]); 

%grid on; 

 

%Velocity Error History 

figure(6); 

subplot(311); 

plot(verr(1,:),verr(2,:),'r','LineWidth',2); 

xlabel('time [s]');  

ylabel('u_e_r_r_o_r [ft/s]');  

title('X Velocity Error'); 

axis([0  Tmax -100  100]); 

%grid on; 

subplot(312); 

plot(verr(1,:),verr(3,:),'r','LineWidth',2); 
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xlabel('time [s]');  

ylabel('v_e_r_r_o_r [ft/s]');  

title('Y Velocity Error'); 

axis([0  Tmax -100  100]); 

%grid on; 

subplot(313); 

plot(verr(1,:),verr(4,:),'r','LineWidth',2); 

xlabel('time [s]');  

ylabel('w_e_r_r_o_r [ft/s]');  

title('Z Velocity Error'); 

axis([0  Tmax -100  100]); 

%grid on; 

 

%Trajectory Error History 

figure(7); 

subplot(311); 

plot(err(1,:),err(2,:),'r','LineWidth',2); 

xlabel('time [s]');  

ylabel('X_e_r_r_o_r [ft]');  

title('X Position Error'); 

axis([0  Tmax -100  100]); 

%grid on; 

subplot(312); 

plot(err(1,:),err(3,:),'r','LineWidth',2); 

xlabel('time [s]');  

ylabel('Y_e_r_r_o_r [ft]');  

title('Y Position Error'); 

axis([0  Tmax -100  100]); 

%grid on; 

subplot(313); 

plot(err(1,:),err(4,:),'r','LineWidth',2); 

xlabel('time [s]');  

ylabel('Z_e_r_r_o_r [ft]');  

title('Z Position Error'); 

axis([0  Tmax -100  100]); 

%grid on; 

 

2.2.6 NUM ERIC AL RES ULTS  

In this section, we present our numerical experiment result using 

MATLAB/Simulink®. The Simulink model as shown in Figure 2-10. We 

have carried out three experiments as follow 

 

2.2.6.1 EXPERIMENT 1,  CIRC ULAR TRAJECTORY  

Follow the circular trajectory lies on horizontal plane as given previous 

section, see Figure 2-4. 
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FIGURE 2-18  FLIGHT TRAJECTORY GEOMETRY 

 

 

FIGURE 2-19  TRAJECTORY HISTORY 
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FIGURE 2-20  VELOCITY HISTORY 

 

 

FIGURE 2-21  CONTROL INPUT HISTORY 
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FIGURE 2-22  ATTITUDE HISTORY 

 

 

FIGURE 2-23  TRAJECTORY ERROR HISTORY 
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FIGURE 2-24  FLIGHT TRAJECTORY GEOMETRY 

 

 

 

FIGURE 2-25  TRAJECTORY HISTORY 
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FIGURE 2-26  VELOCITY HISTORY 

 

 

FIGURE 2-27  CONTROL INPUT HISTORY 
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FIGURE 2-28  ATTITUDE HISTORY 

 

 

FIGURE 2-29  TRAJECTORY ERROR HISTORY 
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FIGURE 2-30  FLIGHT TRAJECTORY GEOMETRY 

 

 

FIGURE 2-31  TRAJECTORY HISTORY 
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FIGURE 2-32  VELOCITY HISTORY 

 

 

FIGURE 2-33  CONTROL INPUT HISTORY 
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FIGURE 2-34  ATTITUDE HISTORY 

 

 

FIGURE 2-35  TRAJECTORY ERROR HISTORY 
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can be applied for full states feedback where in the real application 

may not applicable since only a part of states can be fed back. 
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2.3 COORDINATED TURN USING LINEAR QUADRATIC REGULATOR  
The following example is taken from Matlab demo, see [16]. The 

program is modified for education purpose. 

 

2.3.1 STATE-SPAC E EQUATION S FOR AN  AIRFRAM E  

For this case, the state-space equation is a standard form   

 x Ax Bu  (2-28)   

 

where  

 
T

u v w p q r  x  (2-29)   

 

The variables  𝑢, 𝑣, and 𝑤 are the three velocities with respect to the 

body frame, which is shown in Figure 2-36 below.  

 

 

FIGURE 2-36  A BODY COORDINATE FRAME FOR AN AIRCRAFT [16] 

 

The variables 𝑝, 𝑞, and 𝑟 are the roll, pitch, and yaw rates, 𝜃 and 𝜑 are 

pitch and roll respectively.  

 

2.3.2 PROBLEM DEFIN ITION  

The goal is to perform a steady coordinated turn, as shown in the 

following figure. 
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Figure 4-57: An Aircraft Making a 60° Turn  

 

To achieve this goal, we must design a controller that commands a 

steady turn by going through a 60° roll. In addition, assume that, the 

pitch angle, is required to stay as close to zero as possible.  

 

2.3.3 MATLAB AND SIM ULINK IM PLEM EN TATION  

2.3.3.1 IM PLEM ENTATION  OF LQR:  MATLAB CODE  

The following code is Matlab implementation of the controller design 

using LQR for aircraft turn. 

 

%=========================================================================% 

% LQG design for 60 degree aircraft turn 

% Copyright 1986-2002 The MathWorks, Inc. 

% $Revision: 1.5 $  $Date: 2002/04/10 06:40:38 $ 

%=========================================================================% 

% State vector =>   x = [u,v,w,p,q,r,theta,phi] 

%     u,v,w: linear velocities 

%     p,q,r: roll, pitch, yaw rates 

%     theta: pitch angle  

%     phi  : bank angle 

% Control vector => u = [u1,u2,u3,u4] 

%=========================================================================% 

% Modified by SSW, 21 Feb 2007 for education purpose 

%=========================================================================% 

 

% Linear dynamics 

A = [-0.0404    0.0618    0.0501   -0.0000   -0.0005    0.0000  0  0  

     -0.1686   -1.1889    7.6870         0    0.0041         0  0  0 

      0.1633   -2.6139   -3.8519    0.0000    0.0489   -0.0000  0  0   

     -0.0000   -0.0000   -0.0000   -0.3386   -0.0474   -6.5405  0  0   

     -0.0000    0.0000   -0.0000   -1.1288   -0.9149   -0.3679  0  0   

     -0.0000   -0.0000   -0.0000    0.9931   -0.1763   -1.2047  0  0  

           0         0    0.9056         0         0   -0.0000  0  0 

           0         0   -0.0000         0    0.9467   -0.0046  0  0]; 

  

 

B =[ 20.3929   -0.4694   -0.2392   -0.7126 

      0.1269   -2.6932    0.0013    0.0033 

    -64.6939  -75.6295    0.6007    3.2358 

     -0.0000         0    0.1865    3.6625 

     -0.0000         0   23.6053    5.6270 

     -0.0001         0    3.9462  -41.4112 

           0         0         0         0 

           0         0         0         0]; 

 

  

%=========================================================================% 

% Add integrator state dz/dt = -phi 

% Augmanted vector  => x_aug = [z,u,v,w,p,q,r,theta,phi] 

% Augmanted control => u_aug = [0,u1,u2,u3,u4] 

%=========================================================================% 

A_aug = [zeros(1,8) -1;  

         zeros(8,1)  A]; 

B_aug = [zeros(1,4) ; B]; 
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%=========================================================================% 

% LQR gain synthesis 

%=========================================================================% 

Q     = blkdiag(1,0.1*eye(6),1000,1); 

R     = diag([10,50,1,1]); 

K_lqr = lqr(A_aug,B_aug,Q,R); 

 

2.3.3.2 COORDIN ATED TURN  S IM ULATION:  SIM ULIN K DIAGRAM  

 

 

FIGURE 2-37  SIMULINK DIAGRAM OF COORDINATED TURN 

 

 

FIGURE 2-38  WRITE TO FILE BLOCK 

 

2.3.3.3 PLOTTING RES ULTS :  MATLAB C ODE  

The following Matlab code will plot figures of the simulation results. 

 

%==================================================% 

% This program will plotting simulation results    % 

% of Turn-Coordinator Controller for Aircraft      % 

%==================================================% 
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% Loading data From                                % 

% [1] Aircraft_Turn_State.mat                      % 

% [2] Aircraft_Turn_Error.mat                      % 

% [3] Aircraft_Turn_Control.mat                    % 

% then plotting them                               % 

%==================================================% 

% Author : Singgih S. Wibowo                       % 

% NIM    : 23604003                                %  

% Version 1.0, 21 Feb 2007                         % 

%==================================================% 

 

load Aircraft_Turn_State;                       

load Aircraft_Turn_Error;                       

load Aircraft_Turn_Control;                     

 

Tmax = state(1,end); 

 

%==================================================% 

%Aircraft Attitude, Pitch and Roll 

%==================================================% 

figure(1);  

set(1,'Name','Attitude History'); 

subplot(211); 

plot(state(1,:),state(8,:)*180/pi,'b','LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('Time (s)');  

ylabel('\theta (deg)');  

title('Pitch Attitude History'); 

grid on; 

subplot(212); 

plot(state(1,:),state(10,:)*180/pi,'r',... 

     state(1,:),state(9,:)*180/pi,'b','LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('Time (s)');  

ylabel('\phi (deg)');  

title ('Roll Attitude History'); 

legend ('roll ref','roll actual'); 

grid on; 

 

%==================================================% 

%Aircraft Tracking Error 

%==================================================% 

figure(2);  

set(2,'Name','Tracking Error'); 

plot(error(1,:),error(2,:)*180/pi,'b','LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('Time (s)');  

ylabel('\phi_r_e_f - \phi (deg)');  

title('Roll Tracking-Error History'); 

grid on; 

 

%==================================================% 

%Aircraft Control Input 

%==================================================% 

figure(3);  

set(3,'Name','Control Input'); 

plot(control(1,:),control(2,:)*180/pi,'b',... 

     control(1,:),control(3,:)*180/pi,'g',... 

     control(1,:),control(4,:)*180/pi,'r',... 

     control(1,:),control(5,:)*180/pi,'m',... 

     'LineWidth',2); 

set(gca,'FontSize',14); 

xlabel('Time (s)');  

ylabel('Control Input (deg)');  

title('Control Input History'); 

grid on; 

legend ('control 1','control 2','control 3','control 4'); 
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2.3.4 RES ULTS  

This figure shows the response of  to the 60° step command. Figure 4-

58: Tracking the Roll Step Command As you can see, the system tracks 

the commanded 60° roll in about 60 seconds. Another goal was to 

keep , the pitch angle, relatively small. This figure shows how well the 

LQG controller did. Figure 4-59: Minimizing the Displacement in the 

Pitch Angle, Theta Finally, this figure shows the control inputs. Figure 

4-60: The Control Inputs for the LQG Tracking Problem Try adjusting 

the Q and R matrices in lqrdes.m and inspecting the control inputs and 

the system states, making sure to rerun lqrdes to update the LQG gain 

matrix K. Through trial and error, you may improve the response time 

of this design. Also, compare the linear and nonlinear designs to see 

the effects of the nonlinearities on the system performance. 

 

 

FIGURE 2-39  ATTITUDE HISTORY 
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FIGURE 2-40  TRACKING ERROR HISTORY 

 

 

FIGURE 2-41  CONTROL INPUT HISTORY 

 

2.3.5 AN ALYSIS AN D DIS C US SION  OF THE RES ULTS  
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2.4 ADAPTIVE CONTROL FOR YAW DAMPER AND COORDINATED TURN  
This chapter presents implementation of adaptive control for yaw 

damper and coordinated turn. The major content of this chapter is 

taken from [9]. 

 

2.4.1 YAW DAM PER AN D COORDIN ATED TURN:  DEFINITION  

Yaw damper is a SAS (Stability Augmentation System) which augment 

the stability of dutch roll mode of an aircraft. The principle of this 

control system is giving command to rudder which causes a moment 

against yaw rate which finally damp the dutch roll. This control system 

sense yaw rate and use it for feedback. The following figure shows the 

block diagram of yaw damper system. 

 

 

FIGURE 2-42  BLOCK DIAGRAMFOR TURN COORDINATOR SYSTEM 

 

Coordinated turn maneuver is a turn maneuver with zero lateral 

acceleration at constant altitude. The absent of lateral acceleration 

make aircraft passengers feel comfort during the maneuver. This 

maneuver is difficult to do since it needs good coordination of control 

surface (elevator, aileron and ruder) deflection. Therefore an 

automatic control is needed for it. 

 

2.4.2 MODEL REFERENC E ADAPTIVE SYSTEM  
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Model reference adaptive system (MRAS) is an adaptive control 

method by using performance index of reference model. The 

reference model is a mathematical model of the ideal system. Block 

diagram of the MRAS shown in figure below: 

 

 

FIGURE 2-43  BLOCK DIAGRAM FOR MODEL REFERENCE ADAPTIVE SYSTEM 

 

2.4.3 STATE-SPAC E MODEL OF XX-100  AIRCRAFT  

 

 

2.4.4 MATLAB AND SIM ULINK IM PLEM EN TATION  

2.4.4.1 IM PLEM ENTATION  OF MRAS:  MATLAB CODE  

 

 

2.4.4.2 MRAS-COORDIN ATED TURN S IM ULATION :  S IM ULIN K DIAGRAM  

 

 

2.4.4.3 PLOTTING RES ULTS :  MATLAB C ODE  

 

 

2.4.5 RES ULTS  
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2.4.6 DISC USS ION  OF THE RES ULTS  
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3 FLIGHT SIMULATION 
 

This chapter deals with simulation technique using Matlab and 

Simulink. We also introduce an advance visualization tools: Virtual 

Reality toolbox and the application of the tool for visualizing aircraft 

dynamics related to previous chapter. 
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3.1 MATLAB AND SIMULINK TOO L FOR SIMULATION  

3.1.1 MATLAB C OMM AN D FOR S I M ULATION  PURPOS E  

 

3.1.2 S IM ULINK TOOLBOX FOR S IM ULATION PURPOS E  
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3.2 VIRTUA L REALITY ,  AN ADVANCE TOOL FOR VISUALIZATION  

3.2.1 IN TRODUCTION  TO VIRTUAL REALITY TOOLBOX :  A USER GUIDE  

Virtual Reality (VR) toolbox is already available in MATLAB 6.0 and the 

higher versions. However, the examples and user guide for the toolbox 

are available only for simple cases. Therefore, those who want to use 

the toolbox in advance should study the toolbox in deep themselves. 

The author has studied the toolbox for hours before using the toolbox 

for simulating aircraft. MATLAB 7.0 has been used for the simulation. 

The author suggests the reader to utilize the computer set with 

minimum specifications of: processor 1 GHz, RAM 256 MB, and Video 

Memory 32 MB. 

The following paragraphs will discuss the detail procedures of 

using the toolbox, particularly for XW aircraft. The motivation of 

writing this user guide is to provide comprehensive information to the 

readers that will give them the skill on using the VR toolbox. 

 

3.2.1.1 DEFINING THE PROBLEM  

Our problem is to visualize the motions of XW aircraft in the VR world. 

The motions defined here are three translational and three rotational 

motions of the craft. The requirements for this visualization are: the 

position w.r.t. x , y  and z  axes of VR frame (see Section 3.2) and the 

attitude angles ( ,   and  ). 

 

3.2.1.2 CREATE VIRTUAL W ORLD  

To create a virtual world, the author chose the following steps to 

achieve the best result: 
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(1) Drawing the 3D aircraft and 3D virtual environment in AutoCAD 

and then export them into 3D Studio file type. It is important to 

note that the smaller the files size the faster the visualization 

(simulation) process. The author suggests that to obtain a faster 

visualization, the files size should not be more than 10 MB. 

(2) Importing the 3D Studio file into V-Realm Builder and then 

editing the file. 

(3) Saving the virtual world which has been edited using “File\Save 

As” command. This file will be saved automatically in VRML type 

(*.wrl). The VRML file is the only file that can be used for VR 

visualization. Note: Do not use “Save” command because the 

file will be saved in original file type (*.3ds) but different 

format.  

Figure E.1 shows the 3D model of WiSE-8 craft. The 3D model 

should be drawn in the actual scale and standard dimension (meter) 

because the VR dimension is in meter. Other important things are: (1) 

setting the attitude of WiSE craft such that the bx -axis is coincide with 

x -axis of UCS world system, by -axis is coincide with z -axis of UCS 

world system and bz -axis is coincide with negative y -axis of UCS 

world system. It is important since the UCS world will be defined as 

the VR frame by V-Realm Builder, (2) setting the origin of UCS coincide 

with the aircraft center of gravity.     

 

 

FIGURE 3-1  THE 3D AUTOCAD MODEL OF XW AIRCRAFT 

 

The name for the 3D model of XW craft the author gives is 

wise8craft (.dwg). The author preserves the file name for 3D studio 
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file. Figure E.2 show the 3D model of virtual lake and hill. The file 

name of the model is 3D_lake (.dwg). This name is also preserved for 

the 3D studio file. 

 

 

FIGURE 3-2  THE 3D AUTOCAD MODEL OF LAKE AND HILL 

 

3.2.1.3 WORKIN G IN  V-REALM BUILDER  

The V-Realm Builder can be executed using one of the following ways: 

(1) Run the vrbuild2.exe ( ) directly. This executable file can 

be accessed in folder: MATLAB7\toolbox\vr\vrealm\program. 

The V-Realm window will then appear as shown in Figure E.3. 

(2) Open Simulink Library Browser. Then create new model. The new 

model window will appear. Drag the VR Sink block available in 

the Virtual Reality Toolbox into the new model window. Double 

click the block. The parameters window will then appear. Click 

the new button. This last action will run the vrbuild2.exe. Figure 

E.3 shows the V-Realm window that will be appeared just after 

the execution.  

 

 

FIGURE 3-3  THE V-REALM BUILDER WINDOW 

 

After running the V-Realm Builder, the next step is opening the 3D 

Studio files that have already been created, and then editing the files. 

The procedures are as follows:  
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(1) Click the open button, or choose the menu: File\Open, or push 

the keyboard buttons: Ctrl + O. 

(2) The open dialog window will then appear. Choose the file type of 

3D Studio and file name: wise8craft.3ds.  

(3) The 3D model of WiSE-8 craft will then appear as shown in Figure 

E.4. Rename ‘Group’ to ‘Wise’ by double clicking the word 

‘Group’ and then typing the new name ‘Wise’. 

(4) Add a background by clicking the ‘Add Background’ button ( ). 

Figure E.4 shows the result.   

(5) Saving the project using “File\Save As…” command. Name the 

project as “wise8craftVR.wrl”. 

 

 

FIGURE 3-4  THE 3D STUDIO MODEL OF XW CRAFT AFTER IMPORTED INTO 

THE V-REALM BUILDER 

 

 

FIGURE 3-5  THE 3D STUDIO MODEL OF XW CRAFT AFTER A BACKGROUND IS 

ADDED 

 

(6) Add four ‘Transform’ for ‘Wise’ by clicking the ‘Transform’ button 

( ). First ‘Transform’ will be used for translation visualization 

and the last three ‘Transform’ will be used for rotation 

visualization. The ‘Transform’ should be added such that the 

second ‘Transform’ is the child of the first ‘Transform’ and so on, 

see Figure E.6.  

(7) Rename each ‘Transform’ by ‘Wise_Translation’, ‘Wise_Roll’, 

‘Wise_Pitch’, and ‘Wise_Yaw’ as shown in Figure E.7. Note that 
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this action, renaming the transform, is very important because 

without renaming these parameters will not be identified by 

SIMULINK. 

 

 

FIGURE 3-6  ADDING FOUR ‘TRANSFORM’ 

 

(8) Move the ‘Wise’ to the child of the fourth ‘Transform’, see again 

Figure E.7. This action can be carried out by the following step: 

(1) cutting the ‘Wise’, (2) activate the ‘children’ by pointing the 

cursor to ‘children’ of the fourth ‘Transform’ or ‘Wise_Yaw’ and 

then click once, and (3) click the paste button. 

 

 

FIGURE 3-7  RENAMING THE FOUR ‘TRANSFORM’ AND MOVING THE ‘WISE’ 

 

(9) Add observer (viewer). An observer can be added into VR world 

by clicking the Viewpoint button ( ). It is better to add a 

‘Transfrom’ first then add an observer as child, see Figure E.8.  

 

 

FIGURE 3-8  ADDING A DYNAMIC OBSERVER 

 

This action can make the observer become a dynamic observer, in 

which the observer can be moving and rotating as the aircraft. The 

observer has six parameters, see again Figure E.8. In this example, only 

three parameters will be discussed. The parameters are: orientation, 
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position, and description. The orientation parameter defines the 

orientation of the observer, see Figure E.9.  

 

 

FIGURE 3-9  EDIT ROTATION (ORIENTATION) OF THE OBSERVER 

 

Input for the orientation is X axis, Y axis, Z axis, and Rotation (degree). 

The X, Y and Z axis define the vector of rotation axes in VR axes 

system, while the Rotation defines the rotation angle in degree. The 

position parameter defines the position of the observer. Inputs for the 

position are X, Y and Z position with respect to VR axes system.  

 

 

FIGURE 3-10  EDIT POSITION OF THE OBSERVER 
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The third parameter is description. This parameter defines the 

observer name, see Figure E.11. Note that the default position is 

[0,0,0] and the default orientation is along negative Z axis or can be 

written in vector notation as [0,0,1,0].  

 

 

FIGURE 3-11  EDIT DESCRIPTION OF THE OBSERVER 

 

In this example, we will show how to make an observer that will flying 

with the WiSE craft, located at [20,0,7] meter from the craft and the 

orientation is 73 degrees, see Figure E.12. 

 

 

FIGURE 3-12  AN EXAMPLE OF AN OBSERVER 

 

To make this observer, set the location as [20,0,7] and orientation as [0,1,0,73]. Then 

name this observer as “Front Right Observer”. The result is shown in Figure E.13. Note 

that the ‘Transform’ and ‘Viewpoint’ have been renamed as “RightFront_Observer”. 

 

 

FIGURE 3-13  AN EXAMPLE OF AN OBSERVER, RIGHT FRONT OBSERVER 

 

Using the same procedures, we made other observers and add the lake and hill model. 

The result is shown in Figure E.14.  
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FIGURE 3-14  FINAL RESULTS OF THE VIRTUAL WORLD 

 

3.2.1.4 PLUGGIN G THE VR  WORLD IN TO S IMULINK  M ODEL 

After creating the virtual world (wise8craftVR.wrl), the next step is 

plugging the world into SIMULINK environment. The following steps 

show the procedure. 

(1) Open Simulink Library Browser. Then create new model. The new 

model window will appear. Drag the VR Sink block available in 

the Virtual Reality Toolbox into the new model window, see 

Figure E.15. 

 

FIGURE 3-15  A NEW SIMULINK MODEL WITH VR SINK 

 

(2) Double click the block. The parameters window will then appear, 

see Figure E.16. Then click the Browse button. Select the VR file 

we already made, “wise8craftVR.wrl”. The window will show the 

VRML tree, see Figure E.17. 
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FIGURE 3-16  PARAMETER WINDOW OF VR  SINK 

 

FIGURE 3-17  PARAMETER WINDOW OF VR  SINK AFTER LOADING 

“WISE8CRAFTVR.WRL” 

 

(3) Click the OK button. Then we will back to Simulink window as 

shown in Figure E.15. Double click the VR Sink block, then VR 

window as shown in Figure E.18 will appear. 
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FIGURE 3-18  THE VR VISUALIZATION WINDOW OF WISE-8 CRAFT 

 

(4) Click the Block Parameter button ( ). This action will show the 

parameter window as already shown in Figure E.17. In the VRML 

tree, click the translation parameter for Wise_Translation, then 

click the rotation for Wise_Roll, Wise_Pitch, and Wise_Yaw, see 

Figure E.19. Click also the translation parameter for the 

Right_Observer, RightFront_Observer, Front_Observer, 

LeftFront_Oberver, Left_Observer, LeftBehind_Oberver, 

Behind_Observer, and RightBehind_Observer. Choose rotation 

parameter for StaticRight_A_Observer, StaticRight_B_Observer, 

and StaticRight_C_Observer. Finally click OK button. 
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FIGURE 3-19  THE VR PARAMETER AFTER VRML TREE EDITING 

 

(5) Back to Simulink model window. The VR Sink will show the VR 

parameter as shown in Figure E.20. Save this Simulink model as 

Tes_VR_World. Now the VR Sink is ready to be connected to 

Simulink model of WiSE-8 motion simulation. As already 

discussed in the beginning of Appendix E, the motion parameters 

needed for visualization are position and attitude angle. 
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FIGURE 3-20  THE VR SINK AFTER VR PARAMETER EDITING 

 

Before connecting the VR Sink to Simulink model, it is very important 

to note that (1) the translation input of VR Sink is in the form of vector 

containing three elements [X,Y,Z], in which each element defines the 

recent position in meter w.r.t. VR frame, and (2) the rotation input for 

VR Sink is in the form of vector containing four elements [Xr,Yr,Zr,], 

where Xr, Yr, and Zr define the vector of rotation w.r.t. VR frame and  

defines the rotation angle in radian. Please note that the unit for 

rotation input is radian, it is differs from orientation angle input 

(degree). Since the outputs of WiSE-8 simulation are in local horizon 

frame, we need to transform the output into VR frame. The 

transformation matrix from local horizon to VR frame is already shown 

in Equation (3-1). For convenience, the equation will be rewritten 

here.  
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1 0 0

0 0 1

0 1 0

h

VRC

 
 

 
 
  

 (3-1)   

 

Equation (E-1) is implemented in the VR Transform subsystem as 

shown in Figure E.21. This figure is similar with Figure 3.28. The 

different between Figure E.21 and Figure 3.28 is the transformation 

method. Although the methods are different, they give the same 

result.  

 

 

FIGURE 3-21  THE VR TRANSFORM SUBSYSTEM 

 

3.2.1.5 SUMM ARY  

The procedures of creating VR world have been discussed in detail in 

this section. The VR world then connected to any aircraft simulation 

model to visualize the aircraft motion as already discussed in previous 

chapter. The author hopes that the procedures discussed above give 

the readers a new knowledge and a guide for using the Virtual Reality 

toolbox. 

 

3.2.2 VIRTUAL REALITY FOR TRANS PORT  AIRCRAFT  

  

7
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3.3 SIMULATION OF AIRCRAFT DYNAMICS:  A VIRTUEAIR TRANSP ORT 

CRAFT  
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APPENDIX A 
 

Quick Matlab Reference: Some Basic Commands 

Note: command syntax is case­sensitive! 
 
 

Help <command> display the Matlab help for <command>  
who    lists all of the variables in matlab workspace 
whos    list the variables and describes their matrix size 
clear    deletes all matrices (variables) from active workspace 
clear u    deletes the matrix or variable u from active workspace 
save    saves all the matrices defined in the current session into the file, 

 matlab.mat 
load    loads contents of matlab.mat into current workspace 
save filename   saves the contents of workspace into filename.mat 
save filename x y z  saves the matrices x, y and z into the file titled filename.mat 
load filename   loads the contents of filename into current workspace; the file can be a  
   binary (.mat) file or an ASCII file. 
 
Matrix commands 

[1 2 3; 4 5 6]   create the matrix  
1 2 3
4 5 6

   

zeros(n)   creates an nxn matrix whose elements are zero. 

zeros(m,n)   creates a m­row, n­column matrix of zeros. 

ones(n)   creates a n x n square matrix whose elements are 1's 

ones(m,n)   creates a mxn matrix whose elements are 1's. 

ones(A)   creates an m x n matrix of 1's, where m and n are based on the size of an  
   existing matrix, A. 

zeros(A)   creates an mxn matrix of 0's, where m and n are based on the size of the 
    existing matrix, A. 

eye(n)    creates the nxn identity matrix with 1's on the diagonal. 
A'    Transpose of A 
 
 
Plotting commands 

plot(x,y)   creates an Cartesian plot of the vectors x & y 

plot(y)    creates a plot of y vs. the numerical values of the elements in the y­vector 

semilogx(x,y)   plots log(x) vs y 

semilogy(x,y)   plots x vs log(y) 
loglog(x,y)   plots log(x) vs log(y) 
grid    creates a grid on the graphics plot 

title('text')   places a title at top of graphics plot 

xlabel('text')   writes 'text' beneath the x­axis of a plot 

ylabel('text')   writes 'text' beside the y­axis of a plot 

text(x,y,'text')   writes 'text' at the location (x,y) 
text(x,y,'text','sc')  writes 'text' at point x,y assuming lower left corner is (0,0) and upper 

right corner is (1,1) 
gtext('text')   writes text according to placement of mouse hold on maintains the current  

Appendix A 
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   plot in the graphics window while executing subsequent plotting 
    commands 
hold off   turns OFF the 'hold on' option 

polar(theta,r)   creates a polar plot of the vectors r & theta where theta is in radians 

bar(x)    creates a bar graph of the vector x  (Note also the command stairs(y)) 
bar(x,y)   creates a bar­graph of the elements of the vector y, locating the bars  

according to the vector elements of 'x' (Note also the command stairs(x,y)) 
hist(x)    creates a histogram. This differs from the bargraph in that frequency is  
   plotted on the vertical axis 

mesh(z)   creates a surface in xyz space where z is a matrix of the values of the  

   function z(x,y). z can be interpreted to be the height of the surface above 
some xy reference plane 

surf(z)    similar to mesh(z), only surface elements depict the surface rather than a  
   mesh grid 

contour(z)   draws a contour map in xy space of the function or surface z 

meshc(z)   draws the surface z with a contour plot beneath it 

meshgrid  [X,Y]=meshgrid(x,y) transforms the domain specified by vectors x and y  
   into arrays X and Y that can be used in evaluating functions for 3D  
   mesh/surf plots 
print    sends the contents of graphics window to printer 
print filename ­dps  writes the contents of current graphics to 'filename' in postscript format 
 
 
Misc. commands 

length(x)   returns the number elements in a vector 

size(x)    returns the size m(rows) and n(columns) of matrix x 
rand    returns a random number between 0 and 1 
randn    returns a random number selected from a normal distribution with a mean  
   of 0 and variance of 1 

rand(A)   returns a matrix of size A of random numbers 

fliplr(x)    reverses the order of a vector. If x is a matrix, this reverse the order of the  
   columns in the matrix 

flipud(x)   reverses the order of a matrix in the sense of exchanging or reversing the  
   order of the matrix rows. This will not reverse a row vector! 

reshape(A,m,n)  reshapes the matrix A into an mxn matrix from element (1,1) working  
   column­wise 
 
Some symbolic toolbox commands 
syms t    define the variable t to be symbolic. The value of t is now t 

f = t^3 + sin(t)   let f be t3
 + sin(t) symbolically 

diff(f)    differentiate f  

diff(f,t)    differentiate f with resp. to t 

int(f)    integrate f  

int(f,t,a,b)   integrate f with resp. to t from a to b 

inv(A)    matrix inverse of A 

det(A)    determinant of A 

rank(A)   rank of A 

eig(A)    eigenvalues and eigenvectors. 

poly(A)   characteristic polynomial. 

expm(A)   matrix exponential 
help symbolic   get help on all symbolic toolbox commands. 
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APPENDIX B 
 

Continuous System Analysis: Some Basic Commands 

 

A. Transfer Function Representation 

Commands covered:  
tf2zp 

zp2tf 

cloop 

feedback 

parallel 

series 

 

 

Transfer functions are defined in MATLAB by storing the coefficients of the numerator and 

the denominator in vectors. Given a continuous-time transfer function 

𝐻 𝑠 =
𝐴(𝑠)

𝐵(𝑠)
 

where  

𝐴 𝑠 = 𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠
𝑛−1 + ⋯ + 𝑎0 and 𝐵 𝑠 = 𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠

𝑛−1 + ⋯ + 𝑏0 written in their 

coefficients, A(s) in numerator vectors num = [1 aN-1 ... a0] and B(s) is denominator den = 
[bM bM-1 ... b0].  
In this text, 
the names of the vectors are generally chosen to be num and den, but any other name could 

be used.  

For example, 

 

𝐻(𝑠)  =
2𝑠 +  3

𝑠3 +  4𝑠2 +  5
 

 

is defined by 
num = [2 3]; 

den = [1 4 0 5]; 

Note that all coefficients must be included in the vector, even zero coefficients. 

A transfer function may also be defined in terms of its zeros, poles and gain: 

H(s) = 

k(s- z )(s- z ) (s-z ) 

(s- p )(s- p ) (s-p ) 
1 2 m 

1 2 n 

K 
K 
Error! Switch argument not specified. 

To find the zeros, poles and gain of a transfer function from the vectors num and den which 

contain the coefficients of the numerator and denominator polynomials, type 
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[z,p,k] = tf2zp(num,den) 

The zeros are stored in z, the poles are stored in p, and the gain is stored in k. To find the 

numerator and denominator polynomials from z, p, and k, type 

11 

G(s) 
G(s) 
H(s) 
unity feedback 
feedback 

- 
- 

[num,den] = zp2tf(z,p,k) 

The overall transfer function of individual systems in parallel, series or feedback can be found 

using 

MATLAB. Consider block diagram reduction of the different configurations shown in Figure 

1. 

Store the transfer function G in numG and denG, and the transfer function H in numH and 

denH. 

To reduce the general feedback system to a single transfer function, Gcl(s) = 

G(s)/(1+G(s)H(s)) type 
[numcl,dencl] = feedback(numG,denG,numH,denH); 

For a unity feedback system, let numH = 1 and denH = 1 before applying the above 

algorithm. Alternately, use the command 
[numcl,dencl] = cloop(numG,denG,-1); 

To reduce the series system to a single transfer function, Gs(s) = G(s)H(s) type 
[nums,dens] = series(numG,denG,numH,denH); 

To reduce the parallel system to a single transfer function, Gp(s) = G(s) + H(s) type 
[nump,denp] = parallel(numG,denG,numH,denH); 

(Parallel is not available in the Student Version.) 

12 

G(s) 
G(s) 
H(s) 
H(s) 
series 
parallel 
 

B. Time Simulations 

Commands covered: residue 
step 

impulse 

lsim 

 

The analytical method to find the time response of a system requires taking the inverse 

Laplace 

Transform of the output Y(s). MATLAB aides in this process by computing the partial 

fraction 
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expansion of Y(s) using the command residue. Store the numerator and denominator 

coefficients of Y(s) in num and den, then type 
[r,p,k] = residue(num,den) 

The residues are stored in r, the corresponding poles are stored in p, and the gain is stored in 

k. 

Once the partial fraction expansion is known, an analytical expression for y(t) can be 

computed by 

hand. 

A numerical method to find the response of a system to a particular input is available in 

MATLAB. 

First store the numerator and denominator of the transfer function in num and den, 

respectively. 

To plot the step response, type 
step(num,den) 

13 

To plot the impulse response, type 
impulse(num,den) 

For the response to an arbitrary input, use the command lsim. Create a vector t which 

contains 

the time values in seconds at which you want MATLAB to calculate the response. Typically, 

this is 

done by entering 
t = a:b:c; 

where a is the starting time, b is the time step and c is the end time. For smooth plots, 

choose b 

so that there are at least 300 elements in t (increase as necessary). Define the input x as a 

function of time, for example, a ramp is defined as x = t. Then plot the response by typing 
lsim(num,den,x,t); 

To customize the commands, the time vector can be defined explicitly and the step response 

can be 

saved to a vector. Simulating the response for five to six time constants generally is sufficient 

to 

show the behavior of the system. For a stable system, a time constant is calculated as 1/Re(-p) 

where p is the pole that has the largest real part (i.e., is closest to the origin). 

For example, consider a transfer function defined by 

H(s) = 

2 

s+ 2 

4 

The step response y is calculated and plotted from the following commands: 
num = 2; den = [1 2]; 

t = 0:3/300:3; % for a time constant of 1/2 

y = step(num,den,t); 

plot(t,y) 

For the impulse response, simply replace the word step with impulse. For the response to 

an 

arbitrary input stored in x, type 
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y = lsim(num,den,x,t); 

plot(t,y) 

 

C. Frequency Response Plots 

Commands covered:  
freqs 

bode 

logspace 

log10 

semilogx 

unwrap 

To compute the frequency response H() of a transfer function, store the numerator and 

denominator of the transfer function in the vectors num and den. Define a vector w that 

contains 

the frequencies for which H() is to be computed, for example w = a:b:c where a is the 

lowest 

frequency, c is the highest frequency and b is the increment in frequency. The command 
H = freqs(num,den,w) 

returns a complex vector H that contains the value of H() for each frequency in w. 

To draw a Bode plot of a transfer function which has been stored in the vectors num and 

den, 

type 
bode(num,den) 

To customize the plot, first define the vector w which contains the frequencies at which the 

Bode 

plot will be calculated. Since w should be defined on a log scale, the command logspace 

is 

used. For example, to make a Bode plot ranging in frequencies from 10-1 to 102, define w by 
w = logspace(-1,2); 

The magnitude and phase information for the Bode plot can then be found be executing: 
[mag,phase] = bode(num,den,w); 

To plot the magnitude in decibels, convert mag using the following command: 
magdb = 20*log10(mag); 

To plot the results on a semilog scale where the y-axis is linear and the x-axis is logarithmic, 

type 
semilogx(w,magdb) 

for the log-magnitude plot and type 
semilogx(w,phase) 

for the phase plot. The phase plot may contain jumps of ±2which may not be desired. To 
remove 

these jumps, use the command unwrap prior to plotting the phase. 
semilogx(w,unwrap(phase)) 

 

 

E. Control Design 

Commands covered: rlocus 
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Consider a feedback loop as shown in Figure 1 where G(s)H(s) = KP(s) and K is a gain and 

P(s) 

contains the poles and zeros of the controller and of the plant. The root locus is a plot of the 

roots 

of the closed loop transfer function as the gain is varied. Suppose that the numerator and 

denominator coefficients of P(s) are stored in the vectors num and den. Then the following 

command computes and plots the root locus: 
rlocus(num,den) 

To customize the plot for a specific range of K, say for K ranging from 0 to 100, then use the 

following commands: 
K = 0:100; 

r = rlocus(num,den,K); 

plot(r,’.’) 

The graph contains dots at points in the complex plane that are closed loop poles for integer 

values 

of K ranging from 0 to 100. To get a finer grid of points, use a smaller increment when 

defining 

K, for example, K = 0:.5:100. The resulting matrix r contains the closed poles for all of 

the 

gains defined in the vector K. This is particularly useful to calculate the closed loop poles for 

one 

particular value of K. Note that if the root locus lies entirely on the real axis, then using 

plot(r,’.’) gives inaccurate results. 

F. State Space Representation 

Commands Covered: step 
lsim 

ss2tf 

tf2ss 

ss2ss 

The standard state space representation is used in MATLAB, i.e., 

&x Ax Bu 
y Cx 





5 

17 

where x is nx1 vector, u is mx1, y is px1, A is nxn, B is nxm, and C is pxn. The response of a 

system to various inputs can be found using the same commands that are used for transfer 

function 

representations: step, impulse, and lsim. The argument list contains the A, B, C, and 

D 

matrices instead of the numerator and denominator vectors. For example, the step response is 

obtained by typing: 
[y,x,t] = step(A,B,C,D); 

The states are stored in x, the outputs in y and the time vector, which is automatically 

generated, 
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is stored in t. The rows of x and y contain the states and outputs for the time points in t. 

Each 

column of x represents a state. For example, to plot the second state versus time, type 
plot(t,x(:,2)) 

To find the response of an arbitrary input or to find the response to initial conditions, use 

lsim. 

Define a time vector t and an input matrix u with the same number of rows as in t and the 

number of columns equaling the number of inputs. An optional argument is the initial 

condition 

vector x0. The command is then given as 
[y,x] = lsim(A,B,C,D,u,t,x0); 

You can find the transfer function for a single-input/single-output (SISO) system using the 

command: 
[num,den] = ss2tf(A,B,C,D); 

The numerator coefficients are stored in num and the denominator coefficients are stored in 

den. 

Given a transformation matrix P, the ss2ss function will perform the similarity transform. 

Store the state space model in A, B, C and D and the transformation matrix in P. 
[Abar,Bbar,Cbar,Dbar]=ss2ss(A,B,C,D,P); 

performs the similarity transform z=Px resulting in a state space system that is defined as: 

&x Ax Bu 
y Cx Du 




6 

where A= PAP-1, B= PB, C = CP-1, D= D. 
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