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Abstract 

Pupil dilations are sensitive to human affective responses. The 

assessment of pupillary responses has found multi-purpose applications such 

as lie detection in law enforcement agencies, providing an innovative solution 

for human-computer interaction, minimizing dangers in air traffic displays, 

communicating with people suffering from ailments such as autism, developing 

interactive video games, eye gaze correction for videoconferencing, marketing 

and consumer research. 

In this work, the detection and assessment of pupil diameter is done by 

developing a low-cost eye tracking system. The scope of the system 

development is to accurately detect pupillary responses over a period of time 

i.e. subtle changes in pupil size that indicate cognitive load. The features of the 

proposed framework are eye and pupil-localization, pupil area and diameter 

calculation in a recorded video sequence and investigation of pupil size 

variation during and after auditory stimulation. In this case human eye images 

were acquired by a webcam and processed offline. 

The hardware includes a micro-lens webcam and head mounted 

structure with a USB data transfer capability to computer. The framework for 

the algorithm development includes iris and pupil localization, pupil area and 

diameter extraction and calibration that are implemented in MATLAB. 

Subsequently, the algorithm is implemented on video sequences from the 



webcam. Pattern Recognition techniques are used to transform the images 

from RGB to binary and Hough Transform is used to detect pupil area from the 

rest of the eye image. Moreover, a high performance implementation of the 

proposed algorithm is done using MATLAB® parallel processing toolbox and 

Graphical Processor Unit (GPU). A comparison of speedups achieved by 

implementing the above techniques is analyzed. Finally, experiments are 

conducted on two subjects to measure human cognition and the algorithmic 

efficiency of eye pupil location and variation. 
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1.1 Introduction 

The number of applications in which a user’s facial expression is tracked by 

a video camera and analyzed is growing exponentially these days. Cameras, 

webcams and cellphones are constantly capturing facial images. Using facial 

information as an authentic indicator of the current state of the user’s mind, 

several car companies in Japan and US are fitting cameras in the dashboard to 

detect drowsiness in drivers. Likewise, advertisers on web portals use facial 

information to determine the influence of their billboards and logos, with the 

intention of changing the look of a website in response to user’s response about 

the advertisements. Moreover, video game companies and human-computer 

interaction experts are interested in assessing the player's emotions during 

game play to help measure the success of their products. 

There are two goals in the development of real-time algorithms for eye 

detection and assessment. The first is the assistive techniques used in Human–

Computer Interaction (HCI) applications and the second is to advance our 

theoretical understanding of emotions and associated facial expression. By using 

knowledge algorithms, we can link rich datasets of facial expression points and 

physiological reactions to emotional responses. So we can design precise models 
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of how emotions stated in reply to suggestive stimuli are captured through facial 

expressions.  

1.2 Human Autonomic Nervous System 

The Human Autonomic Nervous System constitutes a part of the 

peripheral nervous system. Its primary function is to transmit impulses from the 

central nervous system to peripheral organ system. The main purpose of the 

Autonomic Nervous System is to maintain homeostasis (managing highly 

complex internal human body interactions to maintain stability and return the 

body systems to function within a normal range) in the body. The autonomic 

nervous system controls the pulse rate, constriction and dilation of blood 

vessels, contraction and relaxation of smooth muscles in various organs, 

pupillary size and the action of sweat glands. Autonomic Nervous System also 

controls the coordination and regulation of many emotional responses produced 

in reaction to environmental stimuli and usually these reactions are automatic or 

impulsive in nature. 

1.2.1 Sympathetic and Parasympathetic responses 

Based on anatomy and functionality differences, the autonomic nervous system 

is subdivided into two distinct parts called the Sympathetic and Parasympathetic 

nervous systems. The sympathetic nervous system enables the body to be 

prepared for emotionally charged stimuli, by mobilizing body resources to allow 

the organism to utilize a large amount of energy. Sympathetic responses include 

an increase in heart rate, blood pressure, pupil size, and sweat gland activity[1] 
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and a decrease in peripheral blood vessel diameters (i.e. vasodilatation).In 

contrast, the parasympathetic nervous system is concerned with conservation 

and restoration of energy by restoring bodily resources into their initial state. 

Parasympathetic responses include a decrease in heart rate, blood pressure, 

pupil size, sweat gland activity, and increase in peripheral blood vessel 

diameters (i.e. vasodilatation). The basic responses used to measure the 

cognitive load [2]of the human nervous system are explained ahead. 

1.2.2 Skin Conductance Response (SCR) 

The skin conductance response (SCR) also known as electro-dermal 

activity (EDA) is used to describe a method of measuring changes in the 

electrical properties of the skin in response to environmental stimuli. A change 

in skin conductance reflects sweat glands activity which is controlled by the 

Autonomic Nervous System. SCR has been found to be related to various 

behavioral phenomena and may serve as an effective measure of intuitive 

processes of decision making. 

1.2.3 Peripheral Arterial Tone (PAT) 

The term Peripheral Arterial Tone (PAT) is used to describe a method for 

measuring variations in the vascular size (i.e., diameter of the blood vessels) at 

the human fingertip. The level of sympathetic activation is indicated by a 

decrease in the transparency of the blood, as a function of its pulsatile volume i.e. 

blood pressure.  Iani et al. [3]in 2007 used PAT to investigate mental effort 

during a simulated flight task. Their result demonstrated increased arousal as 
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the cognitive requirements of the task increased. Thus, although not directly 

related to emotional or intuitive processes, it seems that PAT may serve as an 

effective measure of intuitive processes in decision making. 

1.2.4 Pupil Diameter (PD) 

The term Pupil Diameter (PD) response refers to a method of measuring 

changes in the diameter of the pupillary aperture of the eye. ‘Pupil’ is the sphere 

that is found at the center of the iris of the eye. One of its major functions is to 

control the amount of light entering the eye. Andreassi [4] shows that 

psychologically-invoked pupillary dilations can override physiologically-invoked 

responses, such as intense light 

Typical pupil diameter measuring equipment includes an infrared camera 

and an infrared light source. The infrared light is required to enable clear 

capturing of pupil in bad-lighting environments. The pupil diameter of the 

human eye is measured in millimeters and it ranges from 1.5 mm to 9 mm. In 

addition, pupils may dilate in response to stimuli in as little as 0.2 seconds, and 

peak in about 0.5 or 1.0 seconds. Thus, unlike other autonomic system measures, 

the pupillary responses require high temporal resolution[2]. 

1.3 Anatomy of Pupil 

Pupillary movements [5],  as shown in Figure 1, are determined by the 

state of the iridic musculature (muscles controlling the iris) under the direct 

control of both the sympathetic and parasympathetic branches of the autonomic 

nervous system. The coupling of pupillary movements to cognitive processes, 
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however, must occur at much higher levels within the human nervous system. 

The amount of light entering the eye is restricted by the aperture in the iris, the 

pupil. 

When a person is in a dark room his pupil is large, perhaps eight millimeters (0.3 

inch) in diameter, or more. When the room is lighted there is an immediate 

constriction of the pupil, the light reflex; this is bilateral, so that even if only one 

eye is exposed to the light both pupils contract to nearly the same extent. After 

some time the pupils expand even though the bright light is maintained, but the 

expansion is not large. The final state is determined by the actual degree of 

illumination; if this is high, then the final state may be a diameter of only about 

three to four millimeters (about 0.15 inch); if it is not so high, then the initial 

constriction may be nearly the same, but the final state may be with a pupil of 

four to five millimeters (about 0.18 inch). During this steady condition, the pupils 

do not remain at exactly constant size; there is a characteristic oscillation in size 

that, if exaggerated, is called hippus - the rhythmic but irregular (usually < 0.04 

Hz) constrictions and dilations [5] of the pupil that occur independent of eye 

movements or changes in illumination. Dilation of the pupil occurs as a result of 

strong psychical stimuli and also when any sensory nerve is stimulated; dilation 

thus occurs in extreme fear and in pain. The dilator muscle of the iris is activated 

by sympathetic nerve fibers. Stimulation of the sympathetic nerve in the neck 

causes a powerful dilation of the iris; again, the influx of adrenalin into the blood 

from the adrenal glands during extreme excitement results in pupillary dilation. 
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Figure 1: Muscles of the iris.Two opposing muscle groups within the iris of the human eye determine 
the aperture of the pupil. The sphincter muscles of the iris constrict the pupil when they contract, 

whereas constriction of the dilator muscles increases pupillary diameter[4]Pupillary Reflex Dilations 

Any sensory occurrence [6] – whether tactile (sense of touch), auditory, 

gustatory (sense of taste), olfactory (sense of smell), or noxious (constituting a 

harmful influence on mind or behavior) – evokes a pupillary reflex dilation. 

Exceptions to this are light stimuli and accommodation to near visual stimuli, 

both of which produce pupil constrictions. However, one should not assume that 

pupillary reflex dilations occur only to external sensory events, because 

emotions, mental processes, increases in intentional efforts, and motor output 

also produce systematic changes in pupillary diameter. Several factors determine 

the magnitude of these pupillary dilations – for example, the individual’s tonic 

state of arousal, the emotional effect of the stimulus, and luminance levels. 

1.3.1 Task-Evoked Pupillary Responses 

Non-reflexive phasic pupillary movements are of interest in cognitive 

psychophysiology because they function as empirically based reporter indicators 

for brain processes that underlie the dynamic, intensive aspects of human 

cognition. In order to understand the use of task-evoked pupillary responses in 
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cognitive psychophysiology, it is necessary to review the methods by which they 

are measured and analyzed. 

1.4 Parallel Programming 

Traditionally, software architectures are based on serial computations. A 

problem is broken into a discrete series of instructions. Instructions are executed 

sequentially one after another on a single processor. Only one instruction can be 

executed at any moment in time. With the evolution of simulation algorithms and 

extensively increasing data spaces and the limitations imposed at transistor level 

on CPU processing speeds, parallel computing has emerged as a prevalent 

method to provide good performance metrics, especially for graphical processing 

applications. In the simplest sense, parallel computing is the simultaneous use of 

multiple computing resources to solve a computational problem. A problem is 

broken into discrete parts that can be solved concurrently. Each part is further 

broken down to a series of instructions. Instructions from each part execute 

simultaneously on different processors. An overall control/coordination 

mechanism is employed. 

1.5 Research Objectives 

Eye tracking devices are a powerful alternative for individuals with no 

control, or only limited control, over their physical movements. The device 

follows the movement of the eyes and detects behaviors with only pupil dilation. 

The target objectives for this research are summed-up as follows: 

 Setting-up an ergonomic Eye Tracker apparatus 
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 Designing an efficient eye pupil-tracker algorithm  

 Parallel implementation of the algorithm 

 Precise measurement of affective human response detection through 

human experiments 

1.6 Methodology 

Figure 2 shows the methodology followed throughout the thesis project phase: 

 

Figure 2: Methodology Flowchart 

 

Initially a detailed literature study was done to review the research carried out 

previously to prove pupil dilation as an authentic measure of human cognitive 

load. Different image segmentation techniques were studied to select one 

method for detection and measurement of pupil diameter from the input eye 

image to meet the required criteria that the segmentation should be invariant to 

Cognitive Load Assesment and Potential 
Speed-up 

Cognitive Experiment Conduction 

Parallel Implementation on Cluster 

Segmentation Algorithm Development 

Literature Review 
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rotation and translation. Then previously applied speed-up methods for Hough 

transform were summarized to follow one criterion for our parallel 

programming implementation. In the second phase, a pupil detection algorithm 

was developed on MATLAB® 2012a using Hough transform for parabola and 

ellipse and the diameter of pupil was measured. Observing the speed tradeoffs 

that were made at the expense of accuracy of the algorithm, the program was 

parallelized on 8 CPU cores and GPU. Then, human experiments were conducted 

by setting up a camera apparatus and three aural experiments were performed 

to show pupil diameter variation as a reflection of human cognitive load. Finally, 

the results obtained through cognition experiments and high performance 

techniques are analyzed to draw conclusions. 

1.7 Contributions 

Eye tracking and eye movement-based interaction using computer vision 

techniques have the potential to become an important component in future 

perceptual user interfaces. Instead of measuring a person's emotional reaction, 

pupil-dilation provides a tangible gauge to assess the cognitive reactions. The 

main contributions of the current research work include: 

1. Development of low-cost assessment procedure 

2. Development of parallel processing algorithm 

3. Testing the algorithm on human subjects 

4. One journal manuscript preparation  
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1.8 Organization of the Thesis 

This thesis comprises of six chapters. The brief outline of each chapter is 

discussed as follows: 

Chapter 1 --- Introduction  

The first chapter gives an introduction to pupillary actions, some basic 

methods of measurement of pupil dilation and the motivation about what are the 

task-evoked pupillary responses and why is there a need to measure and assess 

them in cognitive psychophysiology. The objectives, scopes and methodology 

used in the research are documented. A systematic framework of the report is 

given at the end of the chapter. 

Chapter 2 --- Literature Review 

A detailed review of related literature is given in this chapter. 

Identification of challenges from the literature survey is also presented as a 

driver for the research. 

Chapter 3 --- Segmentation Techniques 

In this chapter, some basic computer vision methods used for pattern 

recognition of the human eye are discussed.  

Chapter 4 --- Parallel Implementation for High Performance 

In this chapter, three different parallel computing methods were 

implemented and some integrative combinations of these techniques were 

executed to make a comparison for potential speedups. 

Chapter 5 --- Cognitive Experiments 
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In this chapter two cognitive experiments are designed and performed to 

record and analyze human cognitive load as reflected in pupil size variation.  

Chapter 6 --- Results, Conclusions and Future Work 

Results from the segmentation algorithm designed to detect and measure pupil 

diameter, high performance techniques and configurations implemented and 

potential speedups achieved are reported in this chapter. The outcomes from the 

cognitive experiments are also interpreted in this chapter. Finally, conclusions 

drawn from the research presented in dissertation are summarized and 

recommendations for future line of action are laid down in this chapter. 
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2.1 Background 

A review of existing literature was performed to support the methodology 

undertaken in this thesis. A general survey was first performed to account for the 

past research efforts done in developing a connection between pupillometry and 

human cognition. Next, the potential applications and advantages of using pupil 

dilation as an authentic and newly emerging biometric technology versus 

fingerprint, facial and iris recognition technologies are discussed. Lastly, a 

discussion of literature study associated with eye pattern recognition techniques 

is performed along with a discussion of high performance computing issues. 

2.2 Survey of research in pupil dilation responses and human 

cognition 

Partalaa et al. [7] investigated pupil size variation in the course of 

auditory emotional stimulation. Pupil responses from thirty subjects’ (15 female 

and 15 male) were measured while they listened to 30 kinds of highly arousing 

sounds, 10 negative and 10 positive e.g. voice of a baby laughing and crying, and 

10 neutral sounds e.g. regular office noise. The results depicted that the size of 

pupil was considerably larger during both emotionally negative and positive 

  CHAPTER 2 

Literature Review 
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stimuli as compared to neutral stimuli. The results were simulated for the time 

period of 2 seconds after the stimulus offset. Their findings suggest that the 

human autonomic nervous system is sensitive to highly arousing emotional 

stimulation. The subjective ratings proved that the stimuli influenced the 

subjects’ emotional experiences as expected. Further analysis on the subject’s 

gender showed that female subjects had significantly larger pupil responses than 

male subjects during both neutral and auditory stimulation. The results revealed 

that stimuli chosen in a systematic way significantly effect subject’s physiological 

responses and subjective experiences. Hence, pupil size variation can be used as 

a potential input signal in affective computing. Furthermore, audio related 

emotion stimuli could also be used to control a person’s emotional reactions. 

Klingner et al. [8] in 2008 performed several experiments to measure 

cognitive load known as task-evoked pupillary response (TEPR) using a remote 

video eye tracker and suggested two extensions to the previous research in this 

area. First, they showed that cognitive pupillometry can be improved from head-

mounted to remote eye-tracking systems. Second, they showed the feasibility of 

a more fine-grained approach to the assessment of pupil diameter variation 

captured with the help of an eye tracker, which provides further detail about the 

timing and magnitude of short-term pupillary responses showing cognitive load, 

instead of using a simple aggregate mean measurement over a long time period. 

They performed three experiments on 8 subjects. First they performed a mental 

multiplication task in which the subjects heard a multiplicand and a multiplier 

and performed calculation orally. Their second experiment was a short term 

memory task in which the subjects were asked to memorize numbers in the 
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exact sequence as heard. In their third task, the subjects consciously listened to a 

number sequence and picked three errors in it as they were made. In 2010, 

Klingner [9] studied the effect of aural versus visual task presentation on pupil 

dilation. They performed three tasks spanning a range of cognitive activities: 

mental multiplication, digit sequence recall, and vigilance. The patterns of 

dilation were similar for both aural and visual presentation for all three tasks, 

but the magnitudes of pupil response were greater for aural presentation. 

Accuracy was higher for visual presentation for mental arithmetic and digit 

recall. The findings can be accounted for in terms of dual codes in working 

memory and suggest that cognitive load is lower for visual than for aural 

presentation.  

Wang et al. [10] in 2010 reported experiments on sender-receiver games 

with a reason for senders to exaggerate. Their experimental results indicate that 

subjects “overcommunicate” – messages are more informative of the true state 

than they should be, in equilibrium. Senders’ pupils also dilate when they send 

deceptive messages (MS) and dilate more when the deception is larger in 

magnitude. They demonstrated that combining sender messages and proposed 

look-up patterns, one can predict the true state and lower the miss rate of 

subjects by one half. These predictions are shown to increase receiver payoffs up 

to 16-20 percent. Within this paradigm, eye-tracking receivers can be useful for 

launching their degree of strategic superiority in making inferences from 

messages.  

Jianga et al. [11]aimed to explore how TEPR reflects mental workload 

changes in a surgical environment. They conducted a simulated surgical task that 
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has 3 different subtasks with different mental workload requirements. They 

found a significant effect among these different subtask groups by measuring 

pupil diameter change rate. Their findings may improve patient safety in a real 

operating room by non-intrusively monitoring the surgeon’s mental workload 

while performing a surgery using an eye-tracking system. 

Palinko et al. [12]showed that pupil diameter can be used as a physiological 

measure of cognitive load in driving simulator studies. They found that it is 

possible to dissociate the effects of light and cognitive load for subjects scanning 

images from a driving simulator. Kun et al. [13] in a recently published  study 

confirmed that it is feasible to use pupil diameter to differentiate between parts 

of the dialogue that increase the cognitive load of the driver, and those that 

decrease it during a spoken dialogue with a remote conversant. Their long term 

goal is to build a spoken dialogue system that can adapt its behavior when the 

driver is under high cognitive load, whether from the driving task or the dialogue 

task.   

As technology and services have developed, humans regularly engage in 

transactions in which rapid and reliable personal identification is required. 

Examples include [14] passport control, computer login control, automatic teller 

machines and other financial transaction authorizations, premises access 

control, and security systems for meeting the critical needs of homeland security. 

Speedy, reliable, automated identification procedures are especially necessary 

for law and counterterrorism enforcement. 
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2.3 High performance implementation requirements 

The high performance implementation framework is developed on two 

requirements, time and memory issues. In this case, parallel computing is used to 

reduce the computation time. Memory issues are of less importance in this case.  

MATLAB® [15] provides several built-in tools that can help determine not only 

the amount of time and memory a program is taking but also which specific parts 

are taking the most time and memory. In the current pupil detection algorithm 

Hough transform for both parabola (eyelash) and ellipse detection (iris and pupil) 

is used. The most time consuming part of the program is the calculation for the 

Hough voting array[16] for both Hough parabola and ellipse.  

2.4 Parallelizing Hough Transform 

Chen et al. [13] proposed a new Hough Transform implementation in 

2008, after analyzing the performance bottlenecks of original Hough Transform 

on multi-core processors. Initially, a coarse-grain and a fine-grain parallelization 

of a straightforward Hough Transform implementation on an 8- core machine 

was studied. It was found that due to parallelization overheads and memory 

requirements, these schemes do not fully utilize computation power. After that, 

they proposed a new Hough Transform implementation for parallelization. Their 

data showed that the new Hough Transform exposes a significant amount of 

concurrency and improved data locality. On the 8-core machine, the new 

implementation showed 25% better performance than the old ones. 
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Experiments have been performed on one platform with sequential 

program and parallel program so as to testify the efficiency of parallel algorithm. 

Wu et al. [16] presented another two parallel methods based on block of threads 

known as Thread Building Block (TBB) and CUDA. Results show that algorithms 

of circle detection are extremely good in consideration with the amount of time 

the processing takes. 

Braak et al.[17]introduced two novel methods for the Hough transform on 

a Graphical Processing Unit, one is a fast method and other is an input-data 

independent method. The Cartesian or polar parameterization used for lines in 

images does not increase the execution speedup of the Hough transform 

considerably. Improving the GPU-based program for speed does result in a 

considerable improvement. Other way to improve the GPU code is to make it 

input-data independent. Results show that the fast-implementation is the better 

of both. An implementation that is independent of input data has the similar 

processing speed for each image and is quicker if the number of edge pixels go 

above a certain threshold.  

The code for the input-data independent execution is difficult that it is very 

hard to make any alterations to parameters for e.g. image size. However the fast 

implementation does not suffer from this disadvantage. Therefore the fast 

implementation of the Hough transform should be used in every case where the 

processing time is not fixed. GPU used here already supports storing typical data 

types into vectors. Packing will cost a little extra hardware costs. The equivalent 

Hough space is much larger than the Hough space for lines, since it has three 

dimensions instead of two. This will create a new tradeoff between the fast and 
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the input-data independent approach. For the input-data independent execution, 

the image no longer has to be revolved, which would save over half of the 

processing time in the Hough transform for lines. But the Hough [16]space is 

much larger when detecting circles, ellipses or parabolas which will restrict the 

number of sub-Hough spaces to be generated and make them more inflated to 

add together. 

2.5 Missing Links in Literature 

Eye tracking and eye movement-based interaction using computer vision 

techniques have the potential to become an important component in future 

perceptual user interfaces. Instead of measuring a person's emotional reaction, 

pupil-dilation provides a tangible gauge to assess the cognitive reactions. To do 

so, two experiments will be conducted in such a fashion that a subject is 

answering a series of true-and-false questions and the measurements including 

pupil dilation, response time and errors are recorded. 

As has been noted above, most of the biometric identification systems[18] 

are based on facial, fingerprint or iris recognition methods. Pupil variation is the 

new emerging technique which has recently gained a very significant and 

authentic effect in biometrics and other related fields.  

If we consider the current market scenario then the cost of these systems 

is quite high (due to the high resolution IR cameras used) and efforts are being 

made to make this system economical. This research builds on the foundation of 

designing an algorithm that is compatible with a low cost eye-tracking camera. 
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Most of the filters are implemented computationally that make the input usable 

producing a high pupil detection rate.  

Another distinct problem encountered was the large datasets and 

requirement of high processing rates for the intended applications. Hence, the 

second problem addressed in this thesis is to implement the designed 

segmentation program using high performance computing techniques. The most 

time consuming part of the program was identified to be the calculation of Hough 

voting array for both Hough parabola and ellipse. The parallel Hough transform 

model that was determined through literature review was characterized as 

follows: 

 Fine Grain New Hough transform 

 Cartesian parameterization,  

 No shared memory and  

 No use of locks 
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3.1 Background 

According to one definition given by R. Haralick and L. Shapiro[19] in 1992, 

“Image segmentation is the partition of an image into a set of non-overlapping 

regions whose union is the entire image. The purpose of segmentation is to 

decompose the image into parts that are meaningful with respect to a particular 

application.” 

Segmentation is defined as subdivision of an image into its component 

regions or objects. Segmentation stops when the regions of interest (ROI) in an 

application have been isolated or identified. The series of algorithmic steps 

applied for the segmentation of pupil from the input eye image are shown in 

Figure 3 and explained in this chapter in detail. Images are cropped according to 

the region of interest (ROI). Thresholding is a fundamental approach of 

segmentation that is applied as a basic step to separate regions with high 

intensity i.e. pupil, iris and eyelashes from regions of low intensity such as skin. 

Image smoothening is done next to smoothen the abrupt noisy jumps in the 

image called ‘dots’ or ‘speckles’. Subsequently, image sharpening is done to fine-

tune the edges. Edge-based segmentation is applied afterwards using canny edge 

detector to obtain a good edge pattern of the eye. Finally Region-based 
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segmentation is done through Hough parabola detection for the eye-lashes and 

Hough ellipse detection for the iris and pupil of human eye.  

 

 

Figure 3: Segmentation steps followed through the program 

3.2 Region of Interest Cropping 

A Region of Interest (ROI) is a region of the image that deals with 

operation on image matrix of specific area. In this case, ROI is defined by 

rectangle-cropping of the input image frame taken from the input video. Figure 4 

shows the reselt obtained after cropping the input image: 
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Figure 4: Image cropped from the original image obtained from the camera 

3.3 Image Sharpening and Smoothening 

Median filter is used to perform image smoothening as presented in 

Figure 5 to attenuate abrupt noise also known as ‘salt and pepper’ noise. Median 

filter is used here instead of convolution because the goal is to simultaneously 

reduce noise and preserve edges at the same time.  

 

Figure 5: Input image (a), Image sharpened once (b), Image sharpened twice (c) 

The main function of the median filter is to run through the image pixel by 

pixel, replacing each entry with the median of neighboring entries. The pattern 

of neighbors is called the "window", which slides, point by point, over the entire 

image array. The window pattern used here is the "box" pattern and the size of 

the window is 3 by 3. Since, the window has an odd number of entries i.e. 9; the 

median is simply the middle value after all the entries in the window are sorted 

numerically. 
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3.4 Canny Edge Detection 

The Canny edge detector was developed in 1986 by John F. Canny. It is an 

edge detection function that uses a multi-stage algorithm to detect a widely 

specified range of edges in an image. The Canny algorithm contains a number of 

adjustable parameters, which can affect the computation time and effectiveness 

of the algorithm. 

 Size of the Median filter: The size of median filter used in the first stage for 

image smoothening directly affects the results of the Canny Edge detector. 

A larger filter causes more blurring which can result in the smearing out 

of the value of a given pixel over a larger area of the image. Small filters 

cause less blurring and allow detection of small, sharp lines. In this case, a 

median filter of 3x3 dimensions is used for image smoothening in the first 

stage.  

 Thresholds: We used two thresholds with hysteresis to allow more 

flexibility than a single-threshold approach. A threshold set too high can 

skip important information. Alternatively, a threshold set too low will 

identify false and irrelevant edges (such as noise) as important. In this 

case, the threshold values that produce most accurate results are set by 

iterative approximations on adhoc basis.  

Figure 6 shows the image obtained after applying Canny edge detection 

and thresholding: 
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Figure 6: Edge map obtained after applying Canny edge detector and thresholding 

3.5 Hough Transform 

Hough transform[20] is a technique which is used to determine and 

isolate features of a particular geometric shape within an image. The 

conventional Hough transform requires that the desired shapes be specified in 

some parametric (algebraic or polar) form. It is commonly used for the detection 

of simple curves such as lines, circles, and ellipses within a given image. 

Computationally, the Hough algorithm is implemented according to the following 

steps: 

1) An edge detected image is taken as input and highlight all possible 

discontinuities in the image 

2) The parameter region i.e. input image region is discretized into suitable 

intervals to state the size of the Hough accumulator array 

3) A histogram is constructed, representing an accumulator function defined on 

the (discretized) parameter space: for each pixel in the parameter space, the 

value of the accumulator corresponds to the number of transformed curves 

passing through that pixel. The highest number of votes corresponds to the 

most voted curve, which is then identified to be the required curve. 
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The main advantages provided by Hough Transform are that: 

 It is tolerant of occlusions i.e. gaps in the edges. 

 It is reasonably unaffected by noise. 

 It is unaffected by rotation and translation of the input images as the 

voting procedure depends on the highest number of votes and not the 

order of edges. 

3.5.1 Parabolic Hough Transform 

For eye lash detection, Parabolic Hough Transform is applied to the upper 

half of the input eye image using (x, y, r) points in the input 2-D image to 

generate and (x0, y0) points in the Hough transform space for parabolas. The 

algorithm uses the Cartesian equation for the parabola in vertex form: 

   (    )
      …………………………………..(1) 

where 

 ‘x0’ and ‘y0’ are the coordinates of the parabola vertex. The upper 

left corner of image is considered as the origin of coordinate 

system. 

 ‘r’ is the factor that defines the shape and extent of stretching of 

the parabola. If ‘r’ is positive then parabola opens upwards like a 

regular ‘U’. If ‘r’ is negative then parabola opens downwards like 

an upside down ‘U’.If    | |     , the graph of the parabola widens. 

If    | |      , the graph of the parabola becomes narrow. 
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 Size for ‘x’ is 900 pixels, size for ‘y’ is 600 pixels and size for ‘r’ is 

15. So, the Hough-array becomes of the size 600x900x15. 

3.5.1.1 Explanation 

The function takes edge image as an input and returns detected parabola points 

as output. In this case 15 parabolas are found. Figure 7 obtained after detecting 

the parabola and removing the extra edges is as follows: 

 

(a)                                                                     (b) 

Figure 7: Detected parabola (a) and filtered extra edges (b) 

 

Hence, Hough array for the entire image is generated a separate time to find each 

parabola. For each (x, y) edge point in the original image, where x and y both not 

zero, the algorithm calculates the first dimension value (x0,y0) and votes in the 

Accumulator as A(y0,x0,r)++. The algorithm then finds all the possible parabolas 

in the given range, votes for them in the Hough-space, and finds out the one 

parabola containing the largest number of votes or points. Then it finds the peak 

point in the (y0,x0,r) Hough transform space. The peak point identifies the 
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required parabola segment in the original image space. Figure 8 shows the 

detected eyelash through parabolis Hough transform: 

 

Figure 8: Detected eyelash parabola on the grayscale image 

 

3.5.2 Elliptic Hough Transform 

For iris and pupil detection, Elliptic Hough Transform is applied to the rest of the 

edge eye image using (x0, y0, a, b) parameters from the input 2-D image to 

generate and (x, y) points in the Hough transform space for all possible ellipses. 

The algorithm uses the Cartesian equation for the parabola in vertex form: 

(    )
 

  
  

(    )
 

  
         ………………………………………………… (2) 

where,  

 ‘x0’ and ‘y0’ are the coordinates of the ellipse center. The upper left 

corner of image is considered as the origin of coordinate system. 

 ‘a’ and ‘b’ respectively represent the length of the major and minor 

axis of the ellipse.If         , then ‘a’ is considered as the major 

axis and if         , then ‘b’ is considered as the major axis. 
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 Size for ‘x’ is 900 pixels, size for ‘y’ is 600 pixels and for ‘a’ and ‘b’, 

the size of the window is 20. So, the Accumulator-array becomes of 

the size 600x900x400. 

3.5.2.1 Explanation 

The function takes edge image as an input and returns detected ellipse 

points as output. In our case we are checking for 400 ellipses i.e. 400 

combinations of ‘a’ and ‘b’. For each (x, y) edge point in the original image, where 

x and y both not zero, the algorithm calculates the first dimension value (x0,y0) 

and votes in the Accumulator as A(y0,x0,r)++. The algorithm then finds all the 

possible combination of ellipses in the given range, votes for them in the Hough-

space, and finds out the one ellipse containing the largest number of votes or 

points. Then it finds the peak point in the (y0,x0,r) Hough transform space. The 

peak point identifies the required ellipse segment in the original image space and 

takes it to be the true iris. The detected iris from the program is shown in Figure-

9 below: 

              

Figure 9: Detected iris on the edge-map (left) and on the original grayscale image (right) 

 

Now we can isolate the pupil from the rest of the image from the known 

information that it has to be inside iris.  Hence all points on and outside the 
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perimeters of the iris are deleted and the remaining edge image is tested for 

pupil. This whole process is repeated for a small value of ‘a’ and ‘b’ for the 

detection of pupil inside the iris. Figure 10 presents the detected pupil on the 

input eye image and a zoomed version for clarity: 

 

Figure 10: Detected pupil region and fitted ellipse through Hough ellipse transform 

The complete eye pattern detected through the proposed methodology is shown 

in Figure 11 below: 

 

 

Figure 11: Complete eye pattern detected through the proposed methodology 

3.6 Pupil Area and Diameter Calculation 

Finally, the area of eye’s pupil is calculated to plot the pupil responses 

under a series of cognitive stimuli in a digital video. First, each video frame is 
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read and processed using MATLAB’s Image Acquisition feature; then, the eye's 

position is found on the initial frame. Later, in order to locate the boundary 

pixels of the pupil, above-mentioned image segmentation techniques are used to 

the eye's cropped image. Finally, the ellipse is fitted to the pupil using a direct 

Hough algorithm, and the pupil area is approximated by using ellipse area 

equation. 

3.6.1 Pixel to mm Conversion 

In digital image processing, a pixel is a physical point in an image, or we 

can say the smallest constituent in a displaying screen. The pixel address relates 

to its physical coordinates on the screen. The X coordinate is the horizontal 

address of any pixel or addressable point on a display screen. Similarly the Y 

coordinate is the vertical address of any pixel or addressable point on a display 

screen. 

1 pixel (X or Y) = 0.264583333333334 mm 

Out of the 500 images processed from 250 subjects 436 showed correctly segmented 

pupils, which gives the proposed algorithm 87.2% pupil detection accuracy.  Figure 

12 shows the segmentation results of some samples in the CASIA iris dataset. 
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Figure 12: Segmentation results of some samples in the CASIA iris dataset 
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4.1 High Performance Computer Architecture 

High performance computing includes computers, networks, algorithms 

and environments to make the systems ranging from multicore PCs to fastest 

supercomputers usable. In this chapter we will analyze the parallel programming 

methods that can be implemented in MATLAB, the supported hardware, and the 

analysis procedures including speedup and efficiency. 

4.2 Parallel Programming Methods in MATLAB 

MATLAB® Parallel Computing Toolbox[21]can solve computationally and 

data-intensive problems using multicore processors, GPUs and computer 

clusters. High-level constructs – parallel for-loops, special array types, and well-

developed GPU and MPI integrated libraries are available that allow us to 

parallelize MATLAB applications. In this section we will look at how the different 

parallel methods executed in MATLAB influence the speedup and efficiency of 

our segmentation code.  

4.2.1 The Par-for Loop 

A parallel for-loop[15] is an easy way to divide independent loop iterations 

of intensive computation among different workers. A par-for loop is useful in 
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situations where many loop iterations are required to perform simple 

calculations e.g. Hough Transform and Monte Carlo simulation. Par-for loops are 

also useful when we have loop iterations that take a long time to execute, 

because the workers can execute those iterations simultaneously. There are 

some rules of executing a par-for loop: 

 A par-for loop cannot be used when iteration in our loop depends on the 

results of other iterations. In other words, all iterations must be 

independent of each other. 

 Since there is a communication cost involved in a par-for loop, there 

might be no advantage in using it for a small number of iterations. 

 

4.2.2 GPU Computing in MATLAB 

GPU computing offers a unique application performance by offloading 

compute-intensive portions of the application to the GPU, while the remainder of 

the code still runs on the CPU. From a user's perspective, applications simply run 

significantly faster. 

4.2.2.1 How GPU Acceleration Works ? 

GPU is used to process the computationally intensive in a massive-parallel 

manner, hence the speed of processing is increased. GPU[22] systems use a 

combination of CPU and GPU to produce a co-processing model. Computationally 

intensive parts which need to be processed in a massively parallel manner are 

accelerated by the GPU in order to benefit from their high computing 
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performance while the CPU works on sequential algorithms. Overall, the 

application runs faster and the sharing of tasks makes handling of 

computationally-intensive calculations very efficient. The performance 

advantage provided by the use of graphics processing units makes this 

technology particularly fascinating for scientific applications. Figure 13 shows 

the method for using GPU acceleration in programming applications: 

 

Figure 13: Working of GPU acceleration on a piece of code 

4.3 Parallelizing Hough Transform 

Hough Transform is accepted as a powerful technique in computer vision 

and pattern recognition for shape and motion analysis in images having noisy, 

missing, and extraneous data but it has not been adopted as much due to its high 

computational cost and storage complexity. After considering the performance 

blockages of the Hough transform on a single-core processor, a multi-core, multi-

node and GPU-based Hough transform implementation for both parabolic Hough 

transform and elliptic Hough transform was done and results were analyzed. The 
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performance of Hough transform improved significantly because of the 

introduction of parallel computing techniques. 

4.4 Speed-Up Results 

A comparison and analysis of the potential speedups achieved between 

CPU and GPU platforms and different configurations implemented using 

abovementioned techniques is given below:  

 

4.4.1 MATLAB Parallel-for workers 

The easiest code to parallelize in MATLAB using all cores of a CPU is 

through the ‘par-for’ loops. Within the par-for loop each iteration is independent 

of all others, and the MATLAB built in scheduler, portions-out each iteration to a 

worker for computation. The results are then collected and returned 

appropriately by the scheduler. The full listings of the codes can be found in 

appendix [A]. 

4.4.1.1 Parabolic Hough Transform 

For our purpose, we need to run the voting procedure for the Hough transform parallel 

because it takes 96% of the total computational runtime. Hence, the voting part is 

executed in parallel on MATLAB workers working together as a parallel pool. The 

input data on which parfor operates is sent from the client to workers, where most of 

the computation happens, and the results are sent back to the client and patched 

together.   Table 1 shows the algorithm execution time for the detection of eyelash 

through sequential and parallel versions of parabolic Hough transform:  
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 Sequential 
Implementation 

Number of MATLAB workers 

2 4 6 8 

CPU Runtime (s) 84.233097 70.877573 56.016808 45.05133 42.171589 

CPU Speedup (x) 1x 1.1884x 1.5037x 1.8697x 1.9974x 

Table 1: Serial and parallel execution times for a single frame on a multicore machine 

 

The reduced computational runtime and speedup achieved by 

distributing the voting calculation on 2, 4, 6 and 8 processors of a single CPU is 

presented below: 

 

Figure 14: Parallel Runtime of Parabolic Hough Transform on an 8-core Machine 

 

Figure 14 shows parallel runtime of parabolic Hough transform on an 8-core 

machine. It is clear that the runtime is reduced by increasing the number of 

processors.  
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Figure 15: Parallel Speedup of Parabolic Hough Transform on  8-core Machine 

Our parallel parabolic Hough Transform (PPHT) reduces the runtime of the program 

to half the sequential one on an 8-core machine. However, the speedup of PHT as 

presented in Figure 15 is 200% higher than that of PPHT, a factor of 2. Thus, our 

program enables data distribution on 8 cores with no performance loss. In PPHT, 8 

processors take the responsibility for the maximum of 96 threads, so that the 

maximum of 84.23309 seconds taken for the sequential Hough Array Computation 

reduces to 42.17158 seconds using 8 processors which give more than 50% increase 

in computational speedup. 

 

4.4.1.2 Elliptic Hough Transform 

In EPHT, all 8 processors on the machine are used to calculate 400 threads for 

the ellipse combinations to detect the iris. Table 2 shows the runtimes and 

speedups achieved for 1 to 8 processors.  
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 Sequential 
Implementation 

Number of MATLAB workers 

2 4 6 8 

CPU Runtime (s) 66.17994 62.780388 38.412232 31.842755 28.661424 

CPU Speedup (x) 1x 1.0541x 1.7229x 2.0783x 2.309x 

Table 2: Serial and parallel execution times for a single frame on a multicore machine 

 

For example, our data distribution technique enables a single processor to 

distribute its workload to eight processors. 

 

Figure 16: Parallel Runtime of Elliptic Hough Transform on an 8-core Machine 

Following graph shows the increase in speedup achieved on an 8-core machine:   

 

Figure 17: Parallel Speedup of Elliptlic Hough Transform on  8-core Machine  

The maximum time for Hough Array Computation in EPHT is reduced from 

66.17994 to 28.661424 seconds which indicates almost 2.30 times increase in 

computational speedup. 
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4.4.2 GPU-based Implementation 

For the purpose of implementation of the parallel algorithm, a low end graphics 

processing is used which still provides good results to the speedup of the program. 

The GPU used in our setup is TESLA T10 448 CUDA cores running at 1.2 GHz and 

has 1280 MB of off-chip global memory. 

4.4.2.1 Parabolic Hough Transform 

Table 3 shows the algorithm execution times for the detection of eyelash through 

parabolic Hough transform: 

CPU Runtime  CPU Speedup CPU Runtime 
8-core 

CPU Speedup 8-
cores 

GPU 
Runtime 

GPU 
Speedup 

84.233097 1x 42.171589 1.9974x 32.462755 2.5948x 

Table 3: Execution times and Speedups for CPU, CPU (8-cores) and GPU for parabolic Hough transform 

 

 

Figure 18:  GPU runtime for Parabolic Hough Transform on NVIDIA Tesla T10 processor 

The speedup obtained on the GPU is 2.5948 times the sequential CPU runtime 

and 1.2991 times the parallel 8-core runtime for eyelash detection in a single 

frame. This is a considerable improvement, given the small sample size of the 

parallelizing data for parabola detection. 
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4.4.2.2 Elliptic Hough Transform 

Table 4 shows the algorithm execution times for the detection of eyelash through 

elliptic Hough transform: 

CPU Runtime  
(s) 

CPU Speedup CPU Runtime 
8-core (s) 

CPU Speedup  
8-cores 

GPU 
Runtime (s) 

GPU 
Speedup 

66.17994 1x 28.661424 2.309x 26.518284 2.4956x 

Table 4: Execution times and Speedups for CPU, CPU (8-cores) and GPU for elliptic Hough transform 

 

 

Figure 19: GPU runtime for Elliptic Hough Transform on NVIDIA Tesla T10 processor 

 

The speedup obtained on the GPU is 2.5 times the sequential CPU runtime and 1.0336 

times the parallel 8-core runtime for eyelash detection in a single frame. This is a 

considerable improvement, given the small sample size of the parallelizing data for 

parabola detection. 

4.4.3 Parallelized Pupil Detection on a single eye frame  

The effect of parallelizing elliptic and parabolic Hough codes on the whole pupil 

detection program is given for a single frame is reported in the following section. 
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Table 5 gives the execution times and speedups achieved with both multicore 

and GPU-based implementations: 

 Sequential 
Implementation 

Number of MATLAB workers 

2 4 6 8 

CPU Runtime (s) 151.948562 132.853126 90.038256 83.542407 81.43823 

CPU Speedup (x) 1x 1.1437x 1.6876x 1.8188x 1.8658x 

Table 5: Execution times and speedups achieved by the proposed pupil detection methodology 
applied on a single eye image 

Our multicore implementation of the proposed program reduces the runtime of 

the program to almost half the sequential one on an 8-core machine. However, 

the speedup achieved is 86.6% higher than that of sequential program, a factor of 

1.8658.  

 

 

Figure 20: Parallel Runtime of proposed method on an 8-core Machine 
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Figure 21: Parallel Runtime of proposed method on an 8-core Machine 

 

The GPU-based implementation made the algorithm performance even better. 

The following table shows a comparison of runtimes and speedups achieved with 

sequential, multicore and GPU-based executions for the proposed program. 

CPU 
Runtime (s) 

CPU 
Speedup 

(x) 

CPU Runtime 
8-core  

(s) 

CPU Speedup 
8-cores 

(x) 

GPU Runtime 
(s) 

GPU 
Speedup 

(x) 

151.948562 1x 81.43823 1.8658x 42.634876 3.5639x 

Table 6: Execution times and speedups achieved for CPU, CPU-8 cores and GPU-based 
implementation for a single eye frame on NVIDIA Tesla T10 processor 

 

Table 6 shows a comparison between the CPU-single core, CPU-8 core, and GPU 

runtimes for the proposed methodology. The multi core implementation gives us 

a 51.75% increase in speed. Whereas the GPU-based code provides an 85% 

increase in the speedup of the pupil detection program. In conclusion we can say 

that our GPU-based program’s performance is better than CPU and multicore 

implementations. 
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Figure 22: A comparison of CPU, CPU-8 core and GPU runtimes for proposed algorithm for a single eye 
frame on NVIDIA Tesla T10 processor 

 

As Figure 12 shows, due to high performance on the GPU both competitive 

implementations (CPU and CPU-8 core) are less efficient. Unless the number of 

cores available for the multicore program is increased or a multi-node 

comparison is made, GPU processor provides the best efficiency results as of 

now. 
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5.1 Background 

In this work two pupil detection experiments were conducted. The 

developed software was used to convert and analyze the recorded pupil 

variation data. This chapter summarizes the results of the applied algorithm and 

analyzed data. 

5.1.1 Participants 

This research was carried out with the assistance of 2 participants. There 

were two different experiments. All subjects participated in all experiments. 

Participants were paid a rupee 100 honorarium. One of the participants was the 

project supervisor, one was author’s friend. All of them had either normal or 

corrected-to-normal vision. 

5.1.2 Apparatus 

For all our experiments, we used a Logitech HD Pro Webcam C920, which 

has a sampling rate of 60 Hz. The resolution of this display was set to 1920x1080 

pixels. The distance of participant’s eye and the camera was approximately 0.5 m. 

A normal room temperature of 25oC was maintained. The windows of the room 

were all covered to maintain a constant ambient luminance. 
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Figure 23: Experimental Setup 

 

5.1.3 Procedure 

The experimenter began each experiment by providing the participant 

with task instructions, positioning the subject’s head to have a front and zoomed 

image of the subject’s eye. Each trial began with the participants listening to 

recorded questions of a target pattern for about 10 seconds, during which the 

participants were to perform mental tasks and answer the questions. 

5.2 Experiment Runs and Analysis 

The proposed pupil detector system employs a desktop webcam which 

eradicates the need for distracting head-mounted equipment or chin rests. This 

enables non-intrusive measurement of cognitive load during normal computer 

use with a computer system that resembles standard desktop models. To 
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measure and study the task evoked pupillary response, we conducted two 

experiments.  

5.2.1 Experiment I 

The first experiment was setup as the experimenter could see the eye 

movements of the subject on the desktop screen. This experiment was a replica 

of an experiment performed by Klingner, Kumar, and Hanrahan[8]who 

measured the Task Evoked Pupillary Response (TEPR) for mental arithmetic. In 

each trial, subjects listened to two pronounced numbers between 1 and 20. Five 

seconds after the second number was spoken, subjects were prompted to speak 

out the numbers’ product. The pupil video files were saved and later analyzed 

with the pupil variation algorithm. 

 

Figure 24: Pupillary response during the mental multiplication task on the major axis ‘a’ of the ellipse 
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Figure 25: Pupillary response during the mental multiplication task on the minor axis ‘b’ of the ellipse 

 

 

Figure 26: Pupillary Area Variation during the mental multiplication task 

 

5.2.2 Analysis Experiment I 

There is a small (0.2 mm) increase in pupil size as the subjects hear the 

multiplier and begin computing the product. Fig.0-4 shows the results from our 

replication of their experiment. Although we gave problems at all three 

difficulties, the easy level was the only one for which we collected sufficient 

correct responses for analysis. The pupillary response we observed for these 

easy problems resembles the prior result for medium and difficult problems.  

5.2.3 Experiment II 
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In the second experiment, we measured the TEPR for an aural vigilance 

task. Subjects listened to an audio where the experimenter was counted from 1 

to 12 and were told that the experimenter might make a mistake by dropping 

any number. Two such mistakes were inserted randomly, and subjects were 

required to speak out the dropped number as soon as they perceived the mistake.  

 

Figure 27: Pupillary response during the aural vigilance task on the major axis ‘a’ of the ellipse 

 

Figure 28: Pupillary response during the aural vigilance task on the minor axis ‘b’ of the ellipse 

 

Figure 29 : Pupillary Area Variation during the aural vigilance task 
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5.2.4 Analysis Experiment II 

Sharp spikes were observed in pupil diameter with consistent magnitude, 

duration, and shape following both the mistake points. Figure 29, 30 and 31 

show pupillary response during the aural vigilance task. In both experiments, 

pupil diameter increases as the digits to be memorized are heard and encoded, 

peaks during the pause while they are retained, and declines as the subjects 

report them back.  
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6.1 Conclusions 

The conclusions drawn from the work presented in this thesis can be 

divided into three major groups. The grouping is based on whether the 

conclusions are related to eye pattern recognition, high performance 

computation and human cognitive experiments. 

6.1.1 Conclusions Related to Eye Pattern Segmentation 

 Firstly, an automatic segmentation algorithm was presented, which would 

localize the pupil region from an eye image and isolate eyelid and eyelash 

areas. Automatic segmentation was achieved through the use of the elliptic 

Hough transform for localizing the iris and pupil regions, and the parabolic 

Hough transform for localizing occluding eyelids.  

 It can be stated that segmentation is the critical stage of pupil detection, since 

diameter of a pupil during cognition changes by only 2.5 – 5 mm, there is a 

strong chance that the change in pupil diameter is falsely calculated which 

can corrupt the cognition results on the whole. We showed that this 

algorithm is effective even when applied to datasets obtained using low cost 

equipment and very noisy backgrounds. 

  CHAPTER 6 

Conclusions & Future Work 
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 We used elliptic Hough transform for the measurement of pupil area instead 

of circular Hough transform to counteract the fact that a live pupil undergoes 

a constant state of small oscillation. Wildes[23] suggested that this situation 

can be avoided by checking for these small changes in pupil size between 

successive captures of the eye. Although, these factors are rarely considered 

in the open literature, they are critical to the accuracy and success of pupil 

detection as a biometric technology. 

6.1.2 Conclusions Related to High Performance Computational 

Techniques 

 Initially, speed was not one of the objectives for developing this system, but it 

was considered if the system had to be used for real-time applications. The 

most computation intensive stages indicated was the Houghvoting procedure. 

Since the system is implemented in MATLAB, speed benefits were achieved 

by implementing the computationally intensive parts through par-for loop, 

GPU and MPI programming methods. 

 The results show an almost 50% speedup for parabolic Hough transform and 

an almost 65% speedup for elliptic Hough transform when all 8 cores of the 

machine are utilized instead of one which MATLAB uses by default to run 

sequential programs.  

 A 60% speedup in parabolic Hough transform and a 70% speedup in elliptic 

Hough calculation is observed when the heavy computation parts of the code 

are shifted to GPU instead of CPU.  
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 The reason in both the abovementioned results being the problem size for 

parabolic Hough transform is smaller as compared to the elliptic Hough 

transform. The parabola to be detected lies in the range 0.0002<r<0.050 

which is the range set according to the physical dimension of the human 

eyelid. Hence, the number of combinations the Hough algorithm has to scan 

the input eye image is limited. Hough ellipse is designed to scan all possible 

combinations and find an accurate winner ellipse (pupil). 

6.1.3 Conclusions Related to Human Cognition 

 Most of the previous work utilizing eye trackers to estimate cognitive load 

has used head-mounted cameras, which provide high precision but can be 

cumbersome and annoying to users. Marshall[24] reported that some of her 

experimental subjects were bothered by wearing a head-mounted eye 

tracker, and that this may have distorted some of her results.  Although 

remote systems that resemble standard desktop models typically have less 

precision and are subject to more measurement noise than head-mounted 

systems, we found that our remote eye tracker can be used for measuring 

cognitive load. 

6.2 Future Work 

In the course of designing and evaluating the pupil variation system and 

using resource management techniques for high-performance computing 

platforms, we have found several interesting issues that are still unresolved. 
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These section overviews some of these open issues that need further 

investigation: 

 

 Optimize Efficiency: As the experimental results show, the proposed 

algorithm can detect the pupil even in tough occlusive cases. According to 

results, the algorithm is able to detect the pupil boundary when 50% of its 

contour is visible by the camera. An improved version of the algorithm can be 

implemented where the pupil is detected and the diameter is measured 

accurately with 20-30% of the contour visible in the edge map. 

 Optimize Speedup: We have implemented the algorithm via high 

performance techniques using par-for loop and GPU. All these techniques 

include at least one for/par-for loop to calculate the Hough voting space. A 

completely vectored implementation for multicore, GPU and MPI can be done 

and to achieve an optimized speed up for both parabolic and elliptic Hough 

transform.  Several other configurations such as GPU+par-for, Multi-GPU, 

GPU+MPI, par-for+MPI can be programmed and analyzed for speed and 

performance.  
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1. Parabolic Hough Transform 

function [w1,w2,Ep] = houghparabola(Ep) 
[npmp] = size(Ep) 
E = imcrop(Ep,[1 50 mp-1 np/2]); 
rvals = 0.0002:0.0002:0.0048; 

A = zeros(n,m,R); 

Index = find(E); 
forcnt = 1:length(Index(1,:)) 
for r=1:R 
for x0 = 1:m 
y0 = round(Index(1,cnt)-rvals(r)*(Index(2,cnt)-x0)^2); 
if y0 < n && y0 >= 1 
A(y0,x0,r) = A(y0,x0,r)+1; 
end 
end 
end 
end 
cnt = 1:R; 
H(cnt) = max(max(A(:,:,cnt))); 
[maxval, maxind] = max(H); 

 

2. Elliptic Hough Transform 

function [stptx,stpty,ea,eb] = houghellipse(I,mina,minb,maxa,maxb) 
[edgeredgec]=find(I); 
windowa=maxa-mina+1;           windowb=maxb-minb+1; 
maxab = windowa*windowb; 
Accumulator = zeros(row,col,maxab);frame=1; 
for a = mina:maxa; 
a2 = a^2; 
for b = minb:maxb; 
b2 = b^2; 
ratio=b2/a2; 
foredg = 1:length(edgec); 
xCenter = edgec(edg);     yCenter = edger(edg);         
x = xmx:xpx; 
y = real(round(yCenter - sqrt(b2 - (ratio*(xCenter - x)).^2))); 
if(x>0 & x<col & y>0 & y<row) 
    Accumulator(y,x,frame) = Accumulator(y,x,frame)+1; 
end 
if(frame<maxab) 
frame=frame+1; 

Appendix A 

MATLAB Program Codes 
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end 
cnt = 1:maxab; 
H(cnt) = max(max(Accumulator(:,:,cnt))); 
startptx = mX-aa;         startpty = mY-bb; 
ellipsea=2*aa;            ellipseb=2*bb;  
rectangle('Position',[stptxstptyeaeb],'Curvature',[1,1],'EdgeColor','

r');  

 

3. Parabolic Hough Transform with Parallel-for 

function[ w1,w2,Ep ] = houghparabola_par(Ep,E) 
[npmp] = size(Ep) 
imshow(Ep); 
E               =imcrop(Ep,[1 50 mp-1 (np/2)]); 
[n m]           = size(E); 
rvals           = [0.0002 0.0008 0.0016 0.0024 0.032 0.0040 0.050]; 
R               = length(rvals); 
A               = zeros(n,m,R); 
[yIndexxIndex] = find(E); 
x0          = 1:m; 
xIndexrep   = repmat(xIndex,1,m); 

 
parfor r=1:R 
n_temp=n; 
m_temp=m; 
xIndex_temp    = xIndex; 
rvals_temp     = rvals; 
rv             = rvals_temp(r); 
    b         =rv.*(((bsxfun(@minus,xIndexrep_temp,x0rep_temp)).^2)); 
    y01       = round(bsxfun(@minus,yIndexrep_temp,b));   
lencol    = m_temp; 
lenrow    = length(xIndex_temp); 
x0plot  = x0rep(i,j); 
y0plot  = y0(i,j); 
tmp_A   = zeros(n_temp,m_temp); 
if (x0plot>=1 & y0plot>=1) 
tmp_A(y0plot,x0plot) = tmp_A(y0plot,x0plot) + 1; 
end 
A(:,:,r) = A(:,:,r) + tmp_A; 
fprintf ( 1, ' Thread %d executed on core # %d\n', r, t.ID ); 
end 
H(cnt) = max(max(A(:,:,cnt))); 
[maxval, maxind] = max(H); 
figure, imshow(Ep); hold on; 
plot(x((m/5):((4*m)/5)),y((m/5):((4*m)/5)),'Color','b'); 
end 

 

4. Elliptic Hough Transform with Parallel-for 

function [startptx,startpty,ellipsea,ellipseb] = 

houghellipse_par(I,mina,minb,maxa,maxb) 
[edgeredgec]= find(I); 
[row col]   = size(I); 
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Accumulator = zeros(row,col,maxab); 
parfor frame=1:length(combab) 

 
combab_temp = combab; 
    a2       = (combab_temp(frame,1))^2; 
    b2       = (combab_temp(frame,2))^2; 
ratio    = b2/a2; 
edgenum  = 1:length(edge(:,1)); 
    x        = x0(edgenum,1):x0(edgenum,2);  
    b        = ratio.*(((bsxfun(@minus,edgecrep,xrep)).^2)); 
y        = real(round(bsxfun(@minus,edgerrep,b))); 
xplot= xrep(ie,je); 
yplot    = y(ie,je); 
temp_Accumulator = zeros(row,col); 

 
if(xplot>0 &xplot<col &yplot>0 &yplot<row &ynplot>0 &ynplot<row) 
temp_Accumulator(y,x) = temp_Accumulator(y,x) + 1; 
end 

 
Accumulator(:,:,frame) = Accumulator(:,:,frame) + temp_Accumulator; 
fprintf ( 1, ' Thread %d executed on core # %d\n', frame, t.ID ); 
end 
H(cnt)           = max(max(Accumulator(:,:,cnt))); 
[maxval, maxind] = max(H); 
ellipsea = 2*aa;            ellipseb = 2*bb; 
rectangle('Position',[startptxstartpty-

offstellipseaellipseb],'Curvature',[1,1],'EdgeColor','r');            
end 

 

5. Parabolic Hough Transform with GPU 

function [ w1,w2,Ep ] = houghparabola_gpu(Ep,E) 
Epg = gpuArray(Ep); 
[np, mp] = size(Epg) 
rectangle('Position', [1 50 mp-1 np/2],'EdgeColor', 'r'); 
[n, m]           = size(E); 
rvals           = [0.0002 0.0008 0.0016 0.0024 0.032 0.0040 0.050]; 
R               = length(rvals); 
A               = zeros(n,m,R); 
Ag              = gpuArray(A); 
[yIndex, xIndex] = find(E); 
xIndexrep   = repmat(xIndex,1,m);  
yIndexrep   = repmat(yIndex,1,m); 

 

 
for r=1:R 
xIndex_temp    = xIndex; 
rv             = rvals;    
    b         = rv.*(((bsxfun(@minus,xIndexrep,x0rep)).^2)); 
    y01       = round(bsxfun(@minus,yIndexrep,b));  
lencol    = m; 
lenrow    = length(xIndex_temp); 
    x0plot    = x0rep(i,j); 
    y0plot    = y0(i,j); 
    gx0plot   = gather(x0plot); 
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    gy0plot   = gather(y0plot); 
if (gx0plot>=1 & gy0plot>=1) 
Ag(y0plot,x0plot,r) = Ag(y0plot,x0plot,r) + 1; 
end 
end 

 
cnt = 1:R; 
H(cnt) = max(max(A(:,:,cnt))); 
[maxval, maxind] = max(H);  
gEp=gather(Epg); 
figure, imshow(gEp); hold on; 
plot(x((m/5):((4*m)/5)),y((m/5):((4*m)/5)),'Color','b'); 
imwrite(gEp,'figure1.jpg'); 
end 

 

6. Elliptic Hough Transform with GPU 

function [startptx,startpty,ellipsea,ellipseb] = 

houghellipse_gpu(Im,mina,minb,maxa,maxb) 
edge = find(I); 
[row, col]   = size(I); 
Accumulator = zeros(row,col,maxab); 
Accumulatorg = gpuArray(Accumulator); 
a      = mina:maxa; 
b      = minb:maxb; 

 
for frame=1:length(combab) 

 
    a2       = (combab(frame,1)).^2; 
    b2       = (combab(frame,2)).^2; 
ratio    = b2./a2; 
xpx      = edge(:,2) + combab(frame,1);          
xmx      = edge(:,2) - combab(frame,1); 
  x        = xmx:xpx; 
gx=gpuArray(x); 
edgeg=gpuArray(edge); 
gx(gx<=0)  = 0; 
xrep     = repmat(x,size(edgeg(:,2)),1); 

edgerrep = repmat(edgeg(:,1),1,xlen); 
b         = ratio.*(((bsxfun(@minus,edgecrep,xrep)).^2)); 
y         = real(round(bsxfun(@minus,edgerrep,b))); 

 
if(gxplot>0 &gxplot<col &gyplot>0 &gyplot<row &gynplot>0 

&gynplot<row) 
Accumulatorg(y,x,frame) = Accumulatorg(y,x,frame) + 1; 
end 
end 
gAccumulator=gather(Accumulatorg); 
H(cnt)           = max(max(gAccumulator(:,:,cnt))); 
gH=gather(H); 
[maxval, maxind] = max(gH); 
ellipsea = 2*aaellipseb = 2*bb 
rectangle('Position',[startptxstartptyellipseaellipseb],'Curvature',[

1,1],'EdgeColor','r');            
end 
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