
NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

Modeling and Simulation of Spiking Neural
Network Models using SpiNNaker

by

Saqib Khan

A thesis submitted in partial fulfillment for the
degree of Master of Science

in the
Computational Science & Engineering

Research Center for Modeling & Simulation (RCMS)

September 6, 2014

http://www.nust.edu.pk/Pages/Home.aspx
saqib.khan@seecs.edu.pk
Faculty Web Site URL Here (include http://)
http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/Pages/default.aspx

Declaration of Authorship

I, Saqib Khan, declare that this thesis titled, ‘Modeling and Simulation of Spiking Neural Net-

work Models using SpiNNaker’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at this

University

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated

� Where I have consulted the published work of others, this is always clearly attributed

� Where I have quoted from the work of others, the source is always given. With the excep-

tion of such quotations, this thesis is entirely my own work

� I have acknowledged all main sources of help

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself

Signed:

Date:

i

“Learning is the process whereby knowledge is created through the transformation of experi-

ence.”

David Kolb

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Computational Science & Engineering

Research Center for Modeling & Simulation (RCMS)

Master of Science

by Saqib Khan

Simulating Spiking Neural Networks (SNN) models is a research field attracting the interest

of researchers from various fields, from biology to computer science. The final objective is

understanding the mechanisms defining the human brain working. Multiple neural models have

been proposed, each with their peculiarities, from the very complex and biologically realistic

Hodgkin-Huxley neuron model to the very simple leaky integrate-and-fire neuron. Researchers

can, depending on the objective, choose which model to use in their simulation. For an efficient

simulation of large population of neurons using these models, there need to be a real parallel

system architecture and biologically realistic simulator. This research work revolves around

using a universally accepted biologically accurate NEST (software simulator) and SpiNNaker

(hardware based simulator). During this research, Hodgkin Huxley model has been implemented

for the first time on SpiNNaker using fixed point notation and its results have been verified with

those from NEST. Similarly, a newly proposed AJ neural model has been implemented for the

first time over NEST and SpiNNaker and we successfully verified its results with those from

MATLAB. The research contributed in devising implementation libraries for these two models

for researchers interested to simulate neural populations over SpiNNaker and NEST using these

models.

http://www.nust.edu.pk/Pages/Home.aspx
Faculty Web Site URL Here (include http://)
http://www.nust.edu.pk/INSTITUTIONS/Centers/RCMS/Pages/default.aspx
saqib.khan@seecs.edu.pk

Acknowledgements

I would like to express my thanks and sincere gratitude to my advisor Dr. Muhammad Mukaram

Khan for his continuous support, helpful advice and valuable guidance throughout this work.

His emphasis for excellence kept me well-directed and focused. I am immensely grateful to Dr.

Jamil Ahmad for his valuable inputs. His vast research experience of the field has assisted me

right to the completion. I am thankful to Mr. Tariq Saeed for his support during my implemen-

tation. My sincere appreciation goes to Dr. Adnan Maqsood for providing necessary resources

and facilities to carry out this project in time.

My sincere gratitude to the SpiNNaker team at the University of Manchester, including Dr.

Alexander Rast, Dr. Francesco Galluppi and Prof. Steve Furber, for their valued time/effort and

prompt response which helped me complete my work in time. Finally, I am extremely gratified

and indebted to my family members for their enormous support, persistent encouragement and

earnest prayers throughout my studies.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures viii

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Aim & Objectives . 4
1.4 Contributions . 4
1.5 Thesis Structure . 5

2 Neural Network Modeling 6
2.1 Introduction . 6
2.2 The Brain . 6
2.3 Neuron . 7
2.4 Axon . 7
2.5 Dendrite . 8
2.6 Synapse . 8
2.7 Mathematical Neuron Modeling . 8

2.7.1 Neuron Electrophysiology . 8
2.7.2 The Hodgkin-Huxley Model . 9

2.7.2.1 Dynamics . 10
2.8 The Integrate-and-Fire Model . 12
2.9 The Izhikevich Model . 13
2.10 Summary . 14

3 Neural Network Simulators 16
3.1 Introduction . 16
3.2 Categorization of SNN Simulators . 16

3.2.1 Hardware Simulators . 17

v

Contents vi

3.2.2 Software Simulators . 19
3.3 Review of Main Simulators Developed . 20

3.3.0.1 Hardware . 20
SyNAPSE . 20
Blue Brain Project . 21
FACETS BrainScalesS . 21
Neurogrid . 22
VLSI Chips from Zurich . 22

3.3.0.2 Softwares . 22
Brian . 22
Neuron . 22
Nest . 23
Genesis . 23
SpikeFunDigiCortex . 23
NEF Nengo . 23

3.3.0.3 SpiNNaker . 24
3.4 Neuron Models Available on SpiNNaker . 25

3.4.1 Izhikevich Model . 26
3.4.2 Leaky Integrate-and-Fire Model . 26
3.4.3 Poisson Spike Source Generator Neuron 27
3.4.4 Spike Source Neuron . 27
3.4.5 Spike Source Live Neuron . 27
3.4.6 NEF Interface Neurons . 28
3.4.7 Plasticity Models Available . 28
3.4.8 Needs of Implementation of More Neuronal Models 28

3.5 Summary . 29

4 Implementation of Spiking NN models over NEST 30
4.1 Introduction . 30

4.1.1 A NEST simulation consists of following main components 31
4.1.1.1 Nodes . 31
4.1.1.2 Events . 31
4.1.1.3 Connections . 32
4.1.1.4 Classes . 32
4.1.1.5 Model Variations . 32
4.1.1.6 Data management . 32

4.2 Need/Requirement of PyNN . 33
4.2.1 Using PyNN . 33

4.2.1.1 Data Conversion . 34
From PyNN to SLI . 34
From SLI to PyNN . 35

4.2.1.2 Data Handling . 36
4.2.2 Hodgkin-Huxley model over NEST 38

4.2.2.1 Using PyNN- Hodgkin-Huxley Model 39
4.2.3 Fixed Point Unit vs Floating Point Unit Implementation of HH Model . 43

4.3 Summary . 46

Contents vii

5 Implementing Spiking Neural Network Model over SpiNNaker 47
5.1 Introduction . 47
5.2 Feature of SpiNNaker . 47

5.2.1 Architecture: . 48
Chip Inter-Connection . 49

5.3 Pacman . 51
5.3.1 Splitter . 51
5.3.2 Grouper . 52
5.3.3 Mapper . 52
5.3.4 Routing . 52
5.3.5 SpiNNaker File Generator . 52

5.4 Implementing Hodgkin Huxley on SpiNNaker 52
5.5 32-BIT FIXED POINT IMPLEMENTATION OF THE HODGKIN-HUXLEY

MODEL . 54
5.5.1 Implementation Constraints . 55

5.5.1.1 Elementary Mathematical Operations Only 55
5.5.1.2 32-bit Fixed-Point Representation 55
5.5.1.3 Limited Local Memory . 55
5.5.1.4 Limited Time to Process a Neuron 55
5.5.1.5 Synaptic Data Only Available on Input Event 55

5.5.2 Implementation Rules . 56
5.5.2.1 Defer Event Processing with Annotated Delays 56
5.5.2.2 Solve Differential Equations using the Euler Method 56
5.5.2.3 Represent most Variables using 16-bit Values 56
5.5.2.4 Pre-Compute Constant Parameters where Possible 56
5.5.2.5 Compute Non-Polynomial Functions by Lookup Table 57
5.5.2.6 Exploit free Operations such as Shifting 57

5.6 The Hodgkin-Huxley Model . 57
5.6.1 Choice of Scaling Factors . 58
5.6.2 The Transformation of Equations . 59

5.7 Summary . 62

6 Conclusion & Future Work 63
6.1 Conclusion . 63
6.2 Future Work . 64
6.3 Summary . 64

Bibliography 67

List of Figures

2.1 [1]. 7
2.2 EQUIVALENT CIRCUIT REPRESENTATION OF CELL MEMBRANE [2] 9
2.3 ACTION POTENTIAL GENERATION IN THE HODGKIN-HUXLEY MODEL [3] 11
2.4 THE SCHEMATIC DIAGRAM OF THE LEAKY INTEGRATE-AND-RE MODEL BY GER-

STNER [] . 13

3.1 DIFFERENCE BETWEEN ABSTRACT-TIME SIMULATOR AND DISCRETE-TIME SIM-
ULATOR. [3] . 17

3.2 RELATION BETWEEN SIMULATION TIME AND BIOLOGICAL TIME. [4] 18
3.3 HIERARCHICAL REPRESENTATION OF HARDWARE NEURAL NETWORK SIMULA-

TORS. [5] . 19
3.4 HIERARCHICAL REPRESENTATION OF SOFTWARE NEURAL NETWORK SIMULA-

TORS. [6] . 20
3.5 COMPARISON BETWEEN THE SPIKKING NEURAL NETWORK SIMULATOR [7] . . . 25

4.1 STRUCTURE OF THE SIMULATION SYSTEM AND ITS MAIN PARTS ARE A SIMULA-
TION KERNEL, SIMULATION LANGUAGE INTERPRETER (SLI) AND SOME AUXIL-
IARY MODULES. THE SIMULATION LANGUAGE INTERPRETER INTEGRATES ALL

PARTS AND ACTS AS INTERFACE TO THE USER. 31
4.2 INPUT CURRENT I OF AN EXCITORY NEURON. 41
4.3 INPUT CURRENT I OF AN INHIBITORY NEURON. 41
4.4 MEMBRANE VOLTAGE OF AN EXCITORY NEURON. 42
4.5 MEMBRANE VOLTAGE OF AN INHIBITORY NEURON. 42
4.6 FIXED POINT UNIT VS FLOATING POINT UNIT IMPLEMENTATION OF HH MODEL. 43
4.7 ACTION POTENTIAL USING FLOATING POINT UNIT. 43
4.8 ACTION POTENTIAL USING FIXED POINT UNIT. 44
4.9 EQUILIBRIUM FUNCTION FOR THREE VARIABLES M,N,H USING FLOATING POINT

UNIT. 45
4.10 EQUILIBRIUM FUNCTION FOR THREE VARIABLES M,N,H USING FIXED POINT UNIT. 45
4.11 TIME CONSTANT FOR THREE VARIABLES M,N,H USING FLOATING POINT UNIT. . 46

5.1 BLOCK DIAGRAM OF THE FULL SPINNAKER CHIP [] 49
5.2 TWO-DIMENSIONAL GRID OF SPINNAKER CHIPS WITH THE NEEDED CONNEC-

TIONS (IN GREEN) TO FORM THE TOROIDAL SHAPE. [] 50
5.3 HEXAGONAL SHAPED SPINNAKER CHIP NETWORK. [] 50
5.4 BLOCK DIAGRAM OF THE PARTITION AND CONFIGURATION SOFTWARE (PAC-

MAN). [] . 51

viii

List of Figures ix

5.5 FIGURE 4.5:A GENERAL EVENT-DRIVEN FUNCTION PIPELINE FOR NEURAL NET-
WORKS AND VARIABLE RETRIEVAL RECOVERS VALUES STORED FROM DEFERRED-
EVENT PROCESSES AS WELL AS LOCAL VALUES. POLYNOMIAL EVALUATION COM-
PUTES SIMPLE FUNCTIONS EXPRESSIBLE AS MULTIPLY AND ACCUMULATE OPER-
ATIONS. THESE THEN CAN FORM THE INPUT TO LOOKUP TABLE EVALUATION FOR

MORE COMPLEX FUNCTIONS. POLYNOMIAL INTERPOLATION IMPROVES ACHIEVED

PRECISION WHERE NECESSARY, AND THEN FINALLY THE DIFFERENTIAL EQUATION

SOLVER CAN EVALUATE THE EXPRESSION (VIA EULER METHOD INTEGRATION).
EACH OF THESE STAGES IS OPTIONAL (OR EVALUATES TO THE IDENTITY FUNC-
TION) []. 57

5.6 OUTPUT OF HODGKIN-HUXLEY MODEL SIMULATION ON SPINNAKER 59
5.7 OUTPUT OF HODGKIN-HUXLEY MODEL ON SPINNAKER EMULATOR 60

Dedicated to My Family & Friends.

x

Chapter 1

Introduction

1.1 Background

The neuronal networks in our brains can be described as weighted, directed graphs, with neurons

as nodes and synaptic connections as edges. Neurons communicate by sending and receiving

point events (spikes) through their connections (synapses)[8]. In the mammalian cortex, each

neuron sends its output to about 104 other neurons and receives input from almost the same

number of neurons. Just 1 mm3 cortex contains some 105 neurons with 109 connections [9][8].

This represents a threshold size for simulations, as a realistic number of synapses per neuron

can be combined with realistic sparseness (connection probability 0.1). Brain function emerges

from the spatio-temporal patterns of neuronal spike activity, but the principles are poorly under-

stood. Progress in understanding brain function therefore depends on simulation studies of large

cortical networks. In large neuronal networks, we can neglect the geometric and biophysical

complexity of individual nerve cells and describe neurons as point-like objects with a dynamic

state governed by a set of differential equations. The most common state variable is the mem-

brane potential V, which is affected by spikes that arrive at the neurons synapses. Whenever V

crosses a threshold value Vth, the neuron produces a spike, which is transmitted to all adjacent

neurons with a delay of a few milliseconds. Each connection can have a different delay and

weight. Weights may evolve as a result of neuronal activity, a phenomenon known as synap-

tic plasticity, the biological substrate of learning. The spikes of an individual neuron are rare

and occur at rates of 150 Hz, whereas the rate of incoming spikes is of the order of 100 kHz

due to some 104 incoming connections. Simulating large-scale neuronal networks poses several

challenges [10]:

• 109 to 1012 connections must be stored; this requires a specific representation.

• A large number of spikes must be buffered until they are transmitted across the network.

1

List of Figures 2

• Simulation results must be reproducible down to the level of membrane potentials and

spike times.

• The object-oriented implementation must be appropriate for the problem domain and al-

low network and machine level optimizations such as efficient caching.

In this contribution, we describe how the neural simulation tools NEST [2] and SpiNNaker

address these issues to efficiently simulate neuronal networks of more than 105 neurons and 109

synapses [8]. Many methods investigated to speed up simulation basically go in two directions:

• Developing more computationally efficient neuronal models and training rules. This has

been explored mostly by psychologists [11]; the approach is a trade-off between simu-

lation performance and precision. The Hodgkin-Huxley model [12] introduced in 1952

is probably the best known model for such neurons. It is biologically plausible, yet the

most sophisticated and computationally expensive model. It takes about 1200 floating-

point operations to simulate 1ms of activity. The simplest model i.e. Leaky Integrate and

Fire model takes less time to compute (5 floating-point operations per 1ms), but it is less

precise and can reproduce fewer firing patterns than the Hodgkin-Huxley model. This

indicates that neuronal dynamics involves trade of between speed and accuracy [13].

• Using more computationally powerful hardware, a lot of hardware architectures, from

FPGAs [14] to the IBM Blue Gene supercomputer [15], have been investigated both the-

oretically and experimentally to support the simulation of neural networks.

General-purpose supercomputer systems such as Blue Gene or Beowulf [14]clusters are ex-

tremely powerful and easier to program than dedicated hardwired devices such as FPGAs etc.

However, firstly, their standard communication systems are usually not efficient enough to meet

the high communication demands of neural networks; and secondly, their large physical size

and power consumption make them almost impossible to use in embedded neural network ap-

plications such as robots. On the other hand, dedicated hardware such as FPGAs and VLSI

implementations lack scalability and flexibility [16]. Different applications have variable net-

work sizes. For example, some simple applications such as a control system requires fewer

neurons while others such as brain simulation require a larger population of neurons and more

connections. Thus linear scalability can help to maintain constant simulation speed by expand-

ing the size of the hardware when the scale of the neural network increases. As computational

neuroscience is still developing, the best neuronal model has not yet been discovered. Different

models, connection patterns and learning rules are investigated [17]. Therefore, the neuro-

morphic hardware needs to be reconfigurable and general-purpose to support different neural

applications. In this context, what is expected is dedicated neuromorphic hardware which is not

List of Figures 3

hardwired and offers programmability in order to support a variety of neural network applica-

tions.

Neural networks (both biological and artificial) are naturally parallel. Neurons in such a system

operate concurrently. Information is stored in a distributed way among synaptic connections.

Most traditional computer systems are sequential [18]. This fundamental difference in the struc-

ture is one of the most important reasons why it is so inefficient to simulate neural networks

on traditional computers. This problem is not only with the speed but also with the memory

requirements. As computer science research moves in the direction of multi-core systems, par-

allel architectures have become a very hot research topic [15]. Our solution is to produce areal”

parallel system, that uses a parallel machine to simulate parallel neural networks.

Such a system should be efficient in computation and communication, yet low power, compact

and scalable.

1.2 Motivation

The SpiNNaker project [19] is motivated by an idea of simulating large scale neural populations

in real time. The aim of the SpiNNaker project is to provide a scalable and massively-parallel

computing system as a general-purpose platform for the parallel simulation of large-scale neural

systems. The SpiNNaker architecture is an attempt to capture the possible features that ideal

parallel machines should have for neural network simulation, as discussed above. Each SpiN-

Naker chip is a chip multiprocessor (CMP) containing up to 20 ARM968 processors and other

components such as a router, communication controllers, etc. There are two different types of

memory system associated with each chip, and each processor has an internal RAM block called

the tight-couple memory (TCM) which is fast but small, and a block of external SDRAM which

is large in capacity but much slower. The TCMs provide instant access to application code and

variables, while the SDRAM stores large data sets with comparatively low access rates, for ex-

ample, the synaptic connectivity data. Each SpiNNaker chip also has 6 self-timed external links

by which multiple chips can be linked together to expand the scale of the system and a multi-

cast mechanism is provided for efficient one to many communications. Small chip area and low

power consumption are also taken into account in the design [20].

This thesis focuses on the software design and implementation on SpiNNaker system. There

are many neural simulators, such as Brian [GB09], NEURON [NEU] and PCSIM [PNS09]

that run on desktop computers to make neural simulation straight forward to users. With a

dedicated parallel machine such as SpiNNaker, software support is necessary to enable users

to run previous experiments on the SpiNNaker system as easily and efficiently as on a desktop

List of Figures 4

computer. To develop such software, the most important problem to be solved is to map large-

scale neural networks efficiently onto SpiNNaker. To achieve high performance, the design of

the software and its modeling algorithms must emphasize efficiency.

1.3 Aim & Objectives

The aim of this research is to integrate different neuronal models into system library of SpiN-

Naker using spiking neural network models. We also aim to efficiently map these implemen-

tations over NEST (software simulator) and SpiNNaker (hardware simulator), thus users can

choose from these to be used in their simulations.

We achieved our goals by pursuing the following objectives in mind:-

• Performance: Achieving real-time (or near to real-time) performance of spiking neural

networks models without compromising its accuracy.

• Scalable Mapping: Designing a flexible and scalable mapping technique to map under-

lying neural network over various software and hardware architectures.

• Computation: To speed up the computation, fixed-point arithmetic is used during the

implementation, and a dual-scaling factor scheme is developed to reduce the loss of pre-

cision.

• Storage: Neuronal and synaptic information are distributed to different processors or

chips. The data structure is organized very carefully and a compressed storage scheme is

used to save space.

1.4 Contributions

The research has contributed in providing:

• A neural network modeling scheme over NEST and SpiNNaker (Chapter 3)

• Fixed Point Implementation of spiking neuronal models to improve processing perfor-

mance over SpiNNaker system (Chapter 4)

• First time implementation of Hodgkin-Huxley neural network model and AJ neural net-

work model over SpiNNaker system (Chapter 4)

• Validation of our implementation methodology using NEST simulator for the functional

verification (Chapter 5).

List of Figures 5

1.5 Thesis Structure

The thesis comprises six chapters including this one. Other chapters cover the following:

• Chapter 2 gives brief introduction of modeling theory of neuronal models.

• Chapter 3 reviews neural network simulators and models implemented on it.

• Chapter 4 discuses design and implementation of Hodgkin-Huxley model and AJ model

over NEST simulator

• Chapter 5 presents the approaches for building a neural system for the Hodgkin-Huxley

model on a single ARM968 processor. This includes the approaches for modeling neu-

ronal dynamics, neural representations and implementation on SpiNNaker system.

• Chapter 6 concludes the thesis and possible evolution in future

Chapter 2

Neural Network Modeling

2.1 Introduction

Computational neuroscientists are trying to mimic the functionality of brain and research into

neurobiology has been carrying out for centuries therefore, understanding of brain and biological

neural networks have been developed.Now-a-days, computational neuroscientists are using the

knowledge electrochemical processes of neurons in the brain and their connectivity pattern for

building models and rigorous mathematical methods are being used for describing the brain

activities [21]. There are also modeling theories about neural coding, connectivity, and learning

along with neuronal dynamic models. This chapter gives a brief overview of the biological

research as well as computational modeling of neural networks.

2.2 The Brain

The structure of brain is composed of three most important parts which includes are [22]:

• BrainstemIt provides main motor and sensor functions to face and neck because it is the

lowest part of the brain and is connected to the spinal cord.

• CerebellumIt is responsible for integration and coordination between sensory perception

and motor control because it is located behind the brain stem.

• CerebrumThe major portion of brain is consists of cerebrum with an outer layer known

as cortex and inner layer is composed of only white matter. The focus of the most research

in neuroscience is cortex and it is responsible for process visual information either static

or moving objects, recognition of pattern, planning and controlling muscle movements.

6

Chapter 2. Neural Network Modeling 7

2.3 Neuron

The key component in the cortex is neuron cell and their inter connection therefore scientists

found cortex is versatile and so powerful in the structure of brain.It is the basic building block

of the nervous system that is responsible for communicating information in both chemical and

electrical forms. There are several different types of neurons responsible for different tasks

in the human body. Sensory neuron carries massage from a sense organ to the brain. Motor

neuron transmits information from the brain to the muscles of the body. Associative neurons

are responsible for communicating information between different neurons in the body.More

specifically, a neuron cell is different in that it has interaction with other neurons by receiving or

sending electrical pulses (spikes). A neuron has three main parts; membrane, axon and dendrite

in 2.1 [23].

FIGURE 2.1: [1].

2.4 Axon

The long wire like structure that acts as output terminal of neuron is called axon. The axon

may branch and send multiple fibers to attach to the other neurons. These fibers are called axon

terminals [24].

Chapter 2. Neural Network Modeling 8

2.5 Dendrite

The cell body of the neuron contains multiple fibers called dendrites. The dendrites of a neuron

may range from a few short fibers to a huge mass of entangled bushes. A typical neuron can

have 104 to 105 dendrites. The axons from one neuron can be connected to the cell body of

another neuron directly or through dendrites. The dendrites of many neurons contain thousands

of little extensions called dendritic spines [25].

2.6 Synapse

The point of functional contact between two neurons is called synapse. In between the contact

points, there is a space of about 20 nanometers called synaptic cleft. When a synapse is active,

the vesicles open and release neurotransmitters into the synaptic cleft. The synapse can be either

excitatory or inhibitory depending upon the type of neurotransmitter. The excitatory synapses

increase the activation of target neurons while the inhibitory synapse reduces their activation

[26].

2.7 Mathematical Neuron Modeling

2.7.1 Neuron Electrophysiology

An ionic movement around the membrane causes the neuronal activity and it is due to four types

of ions which are: sodium, potassium, calcium, and chloride. Basically, their concentrations

vary inside and outside of a cell and electrochemical gradient drives their movements [26].

Actually ions move in opposite direction, towards either inside or outside of cell due to effect

of concentration and electric potential gradient. The equilibrium phenomenon is achieved when

the ionic concentration and the electric potential gradient would equal but in opposite direction

because net cross-membrane current is zero [27]. On the contrary side, ions flow through the

cell membrane which separates the interior part of cell from the extracellular and difference

between membranes creates the phenomenon of membrane potential. Assuming the membrane

potential is V, the equilibrium potential (Nernst potential) of K+ is EK and the net K+ current is

IK(A = cm2) [28], we have:

IK = gK(V −EK) (2.1)

Chapter 2. Neural Network Modeling 9

where the positive parameter gK is the K+ conductance. As indicated in Equation 2.2, K+ ions

are driven by the difference between the membrane potential V and the equilibrium potential

EK ; the same equation also applies to other ions. The electrical properties of membranes can be

represented by the equivalent circuits shown in Figure 2.5. According to Kirchhoffs law [29],

we have:

I =C(dv/dt)+ INa + ICa + IK + ICl (2.2)

or in the standard dynamical system form:

C(dv/dt) = I − INa − ICa − IK − ICl (2.3)

where I is the total current; C is the membrane capacitance (C = 1:0F=cm2), and dv/dt is the

derivative of the voltage variable V with respect to time t. If there are no additional current

sources such as synaptic current or current injections via an electrode [30], then I = 0.

FIGURE 2.2: EQUIVALENT CIRCUIT REPRESENTATION OF CELL MEMBRANE [2]

2.7.2 The Hodgkin-Huxley Model

Hodgkin and Huxley [31]performed a series of experiments on the giant axon of the squid and

succeeded in measuring ion currents and described their dynamics by a set of nonlinear differ-

ential equations [HH52]. This is one of the most important qualitative models in computational

neuroscience. Three types of current are taken into consideration [Izh07]: The K+ current with

four activation gates (resulting in the term n4), the Na+ current with three activation gates and

one inactivation gate (resulting in the term m3h), and the Cl− Ohmic leak current (note that most

Chapter 2. Neural Network Modeling 10

neurons in the central nervous system have additional currents). The complete Hodgkin-Huxley

equations are [13]:

du
dt

=−gNam3h(u−ENa)−gKn4(u−EK)−gL(u−EL)+ I(t) (2.4)

ENa = 115mV,EK =−12mV,EL = 10.6mV,gNa =
120ms

cm2 ,gK = 36ms
cm2 ,gL = 0.3ms

cm2

dm
dt = αm(u)(1−m)−βm(u)m

while

αm(u) = 2.5−0.1u
e−0.1u+2.5−1 and βm(u) = 4× e

−u
18

dn
dt = αn(u)(1−n)−βn(u)n

while

αn(u) = 0.1−0.01u
e−0.1u+1−1 and βn(u) = 0.125× e

−u
80

dh
dt = αh(u)(1−h)−βh(u)h

while

αh(u) = 0.07u

e
−u
20

and βh(u) = 1
e3−0.1u+1

The three variables n, m, and h are activation gates (or gating variables) for the three variables

n, m, and h are activation gates (or gating variables) for K+, Na+, and Cl− respectively [GK02],

[Izh07]. The gK , gNa, and gL are the conductance variables. The membrane capacitance is

C = 1.0F
cm2 and the applied current is I = 0A/cm2. The parameters that Hodgkin and Huxley used

were based on a voltage scale that was shifted by approximately 65 mV, making the resting

potential zero for convenience [32]. The shifted Nernst equilibrium potentials are:

Ek = 12mv;ENa = 120mv;EL = 10 : 6mv

and the typical values of the conductance are: gK = 36mS
cm2 ; gNa =

120mS
cm2 ; gL = 0.3mScm2. Now

we look into the dynamics the Hodgkin-Huxley model to see how an activation potential (spike)

is generated. When the membrane potential V equalises rest value Vrest(0mV in the Hodgkin-

Huxley model and about -65mV in reality) [33]. All types of currents balance each other and

the rest state is stable.

2.7.2.1 Dynamics

When a small pulse of current I is applied as shown in Figure, the membrane potential V raises.

This causes the variable m to be increased, hence increasing the conductance of the sodium

(Na+) channels. The influx of positive sodium currents to the cell body then pushes the mem-

brane potential even higher. The effect of the input current I is thus amplified significantly,

causing rapid increase of V. If the membrane potential is not big enough to generate a spike,

only a positive perturbation of the membrane potential (a small depolarization) is produced as

Chapter 2. Neural Network Modeling 11

shown in Figure. This small depolarization is immediately pulled back to the resting value by a

small net current. If the amplitude of input current I is much larger, a spike is generated. The

sodium conductance is shut off due to the effect of h, when the membrane potential is high.

The outflow of potassium (K+)currents then pulls down the membrane potential V. In this case,

the on going outflow of K+currents causes V to go below its rest value Vreset, which is called

the after-hyperpolarization progress. This is followed by an absolute refractory period, which

prevents the system from producing another spike, because the Na+ currents are still depressed

and take time to recover. After a long relative refractory period, the membrane potential V goes

back to its rest value and the system reaches a new stable state. Generally speaking, the duration

of a spike is about1 ms and the amplitude is about 100mv (based on a rest value of 0mv) [34].

FIGURE 2.3: ACTION POTENTIAL GENERATION IN THE HODGKIN-HUXLEY MODEL [3]

Chapter 2. Neural Network Modeling 12

2.8 The Integrate-and-Fire Model

The detailed high-dimensional Hodgkin-Huxley model is biological plausible, but is complex

to analyze and difficult to implement in hardware. As a result, simplified models are desired.

As a first step, the objective is to reduce the four-dimensional Hodgkin-Huxley model to a two-

dimensional model.The key idea of the reduction is to eliminate two of the four variables in the

Hodgkin-Huxley model. This is based on two qualitative observations [GK02].Firstly, in the

Hodgkin-Huxley model, the time scale of the dynamics of the activation gate m is much faster

than others variables n, h, and V . As a result,m can be treated as an instantaneous variable and

can therefore be replaced by it steady-state value m0; this is called a quasi steady-state approx-

imation. Secondly, then and h in the Hodgkin-Huxley model can be replaced by a single effec-

tive variable, since their time scales are roughly the same [GK02]. Based on these assumptions,

several two-dimensional models have been proposed, such as the Morris-Lecar model and the

Fitz Hugh-Nagumo model.These models are conductance-based models, in which the variables

and parameters have well-defined biological meanings, and can be measured experimentally.

However, the conductance-based models are still complex to analyze. The simple phenome-

nal models, on the other hand, are not biological meaningful, but address most key properties

of neurons and are less computationally intensive.The three key properties of a neuron that a

phenomenological model usually addresses are [19]:

• The ability to generate spikes when the membrane potential crosses a well-defined thresh-

old.

• A reset value to initialize the membrane potential after firing.

• A certain refractory period to depress the neuron from generating another spike immedi-

ately.

Phenomenal models, which capture these features, are easier to implement and analyze, hence

they are more popular in computational neuroscience.Amongthem, the leaky integrate-and-fire

(LIF) model [Ste67, Tuc88] as well as its generalized versions (such as the nonlinear integrate-

and fire model) are probably the best know spiking neuronal models. A schematic diagram of

the LIF model is shown in Figure 2.7. It is an integrate-and-fire model with a leak” term added

to the membrane potential to solve the memory problem. The basic circuit of the LIF model is

comprised of a capacitor C in parallel with a resistor R driven by a current I[35]. Based on the

circuit, we have:

I =
V
R
+C

dV
dt

(2.5)

Chapter 2. Neural Network Modeling 13

If we introduce a time constant τm = RC of the leaky integrator”[36], we get a standard form of

the LIF model:

τm
dV
dt

=−V +RI (2.6)

where V is the membrane potential and τm is the membrane time constant. In this model, if the

membrane potential V reaches the threshold value Vthresh, the neuron Vres and then V is reset

to a certain value Vreset . In the general version the LIF model also incorporates an absolute

refractory period tabs. If the neuron fired at time t, we stop the neuron dynamics for a period

of tabs and start the dynamics again at time t + tabs with V = Vreset . The LIF model is simple

enough to implement and easy to analyze. However, it has a severe drawback - it is too simple

to reproduce the versatile firing patterns of real neurons[37].

FIGURE 2.4: THE SCHEMATIC DIAGRAM OF THE LEAKY INTEGRATE-AND-RE MODEL BY
GERSTNER []

2.9 The Izhikevich Model

Another important phenomenal model is the Izhikevich model [Izh03]. This uses the bifurcation

theory to reduce the high-dimensional conductance-based model to a two dimensional system

with a fast membrane potential variable v and as low membrane recovery variable u [Izh07].

The Izhikevich model is based on a pair of coupled differential equations [38]:

dv
dt

= 0.04v2 +5v+140−u+ I (2.7)

du
dt

= a(bv−u) (2.8)

Chapter 2. Neural Network Modeling 14

if v ¿ = 30mV; then v = c; u = u + d

Where t is time in ms, I is the synaptic current (in mV), v represents the membrane potential (in

mV). u represents a membrane recovery variable (also in mV), which reflects the negative effects

on the membrane potential caused by some factors such as the active of K+and the inactive of

Na+ ionic current. a,b,c, and d are adjustable parameters [39]:

• a is the time scale of the recovery variable u. Smaller values results in slower recovery. A

typical value is a = 0.02.

• b is the sensitivity of the recovery variable u to the membrane potential v.Greater values

couple v and u more strongly. A typical value is b = 0.2.

• c is the after-spike reset value of the membrane potential v. A typical value is c=−65mV .

• d is the after-spike offset of the recovery variable u. A typical value is d = 2.

It should be noted that the threshold value of this model is typically between −70mV and

−50mV and is dynamic. In this model, when the membrane potential v exceeds the threshold

value, the neuron spikes with a 30mV apex of membrane potential v. The membrane potential

v is limited to 30mV . If the membrane potential v goes above the limitation, it is firstly reset to

30mV . Then the membrane potential v and the recovery variable u are both reset according to

equation 2.10 [40].

There are two important features that make this model ideal for the real-time simulation of a

large-scale network. Firstly, the Izhikevich model is computationally simple compared to the

Hodgkin-Huxley model in that it takes only 13 floating-point operations to simulate 1 ms of

modeling (with 1 ms resolution),but can reproduce firing patterns of all known types of cortical

neuron. In comparison, the Hodgkin-Huxley model takes 1200 floating-point operations for

1 ms of modeling. Secondly, one of the most important advantages of the Izhikevich model

over the leaky integrate-and-fire model is that the former is capable of reproducing rich firing

patterns. With the choice of neuron parameters a, b, c,and d, the Izhikevich model can generate

all six known classes of firing pattern.

2.10 Summary

This chapter is helpful in understanding a neural simulation application, it is important to under-

stand neural network modeling and its computational modeling. Our brain is made of billions of

neurons - functionally independent processing units with a tremendous amount of connectivity.

The neuron’s behavior is dictated by its electro-physiological properties controlled by chemical

Chapter 2. Neural Network Modeling 15

ions inside and around its cell body. Stimuli to a neuron in the shape of neurotransmitters cause

an action potential - a spike or pulse. Neurons communicate with each other using these spikes.

All our body movements, responses to our senses and learning/ memories are controlled with

these spikes. Much is known about the neural and learning dynamics in the nervous systems.

However, a lot remains to be discovered, especially the emergent behaviors of neural networks.

Many mathematical models have been proposed based on empirical hypotheses to capture the

neural dynamics in the nervous systems.

Chapter 3

Neural Network Simulators

3.1 Introduction

This chapter presents an introduction to the tools and strategies used in the simulation of Spiking

Neural Networks (SNN). The description gives, first, a theoretical overview on a possible way

of categorizing neural network simulators. The second part of the chapter then focuses on the

main simulators developed in the field and describes them relative to the categorization scheme

proposed. This chapter gives the reader the grounds for a critical comparison between the var-

ious simulators developed in that field and the one in which this thesis work has been carried

out[32].

3.2 Categorization of SNN Simulators

In this section a categorization of the SNN simulators is proposed. The first characteristic splits

the whole class in two halves: hardware and software simulators.Hardware simulators are those

which include the development of dedicated hardware (e.g. a Printed Circuit Board, a special-

purpose chip, etc.). Software simulators are those developed to run on a standard computational

unit (e.g. a Personal Computer, a computer cluster, etc.). In addition there are hybrid simulators

which require both the development of custom hardware and software to complete the simulator

(e.g. FPGA device, custom built chip including a computational unit, etc.). Since, for this class

of simulators, the development of new hardware is required to provide a computational substrate

for the software simulator, they can be classified as hardware neural network simulators [19].

16

Chapter 3. Neural Network Simulators 17

3.2.1 Hardware Simulators

Hardware simulators are those which include the development of dedicated hardware to simu-

late SNN. This class includes simulators with specific software which runs on dedicated hard-

ware. This class comprises analogue and digital hardware simulators, differentiated by how

the neurons are implemented: if neurons are implemented directly with analogue components

(transistors, capacitors, resistors, etc.) then it is an analogue hardware simulator. Alternatively,

if the simulator is based on digital circuits which run dedicated software of a specific neuron

model, and the values of the physical quantities can assume only discrete values, then this is

a digital hardware simulator. The literature also describes hardware projects which involve a

combination of the two techniques. Often the distribution of the spikes across a system may

use digital circuits, while the neural model is simulated using analogue components. In this

case the technique used to build the circuit which emulates the neural model is used as refer-

ence to identify the type of simulator. Both these classes can be subdivided on the basis of

the number of neuron models which the simulator is able to run: single and multiple neuron

models. Single neuron model simulators are those which, besides the re-configurability of the

synapses and the variability of neuron parameters, permit only one specific neuron model to be

run (e.g.leaky integrate-and-fire, adaptive exponential leaky integrate-and-fire, etc.). Multiple

neuron model hardware simulators are those which permit different neuron models to run on

the same hardware in a reconfigurable network. This means that the same chip permits different

neuron models to run in different runs of a simulation. While both analogue and digital simula-

tors are able to run a single neuron model simulation, only digital hardware simulators are likely

to be able to simulate multiple neuron models; in digital hardware it is easy to modify the part

connected to the computation of the state variable update of the model developed (e.g. modify-

ing the connection between multipliers, adders and other basic components), while in analogue

hardware it is very hard to reconfigure the circuitry (e.g. transistors, capacitors and resistances)

to a second neuron model. Over all these taxonomies of simulators there is a relation with time:

the simulation can be in continuous time (analogue hardware), in discrete time (analogue and

digital hardware) or in abstract time (digital hardware) (Rast, 2010). Continuous and discrete

time simulations are generally well-known paradigms[41].

FIGURE 3.1: DIFFERENCE BETWEEN ABSTRACT-TIME SIMULATOR AND
DISCRETE-TIME SIMULATOR. [3]

Chapter 3. Neural Network Simulators 18

Simulators running in continuous time have the physical values of the simulation always mean-

ingful. Discrete time simulators have the time divided into events in which the values of the

simulation are meaningful. An abstract time simulator has temporal slots in which the bound-

aries have a definition in the real life time. Between these boundaries the computation takes

place to move the simulation one step forward integrating the differential equation(s) across one

time step. The difference between the abstract time simulator and the discrete time simulator

can be described through Fig.2.1: a discrete time simulator presents computation intervals which

may not be constant in time. An abstract time simulator has, instead, time-constant computa-

tion intervals. Therefore, a discrete time simulator may become an abstract time simulator if

the computation interval is kept constant in all the slots. Time relation is a characteristic that

transcends the categorization of the simulators. These, in fact, can be classified with respect to

biological time (Fig.2.2) [42]:

• Real-Time simulators: the time of the simulation corresponds to biological time.Therefore

one millisecond of simulation corresponds to one millisecond in biological time. This is

a strict constraint.

• Accelerated time: the time of the simulation runs faster than biological time. Therefore

in one millisecond the simulation will model more than one millisecond of activity of the

biological model.

• Non real-time simulators: the time of the simulation runs slower than biological time.

Therefore in one millisecond the simulation will model less than one millisecond of ac-

tivity of the biological model.

A hierarchical definition of the classes of hardware simulator is graphically described in Fig.2.3.

FIGURE 3.2: RELATION BETWEEN SIMULATION TIME AND BIOLOGICAL TIME. [4]

Chapter 3. Neural Network Simulators 19

3.2.2 Software Simulators

Software simulators are those developed to run on a standard computational unit (e.g. A Per-

sonal Computer, a computer cluster, etc.). The neuron model implemented in these types of

simulators is represented by some lines of code which implement the mathematical model (in

terms of Ordinary Differential Equations - ODE) of a biological neuron. Since the neuron model

here is implemented in software, it is very likely that those simulators are able to simulate mul-

tiple neuron models (perhaps even within the same run of a simulation). However it is possible

that simulators implement only single neuron model, in which case, the simulator has usually

been strongly optimized for a specific neuron model. Software simulators can be clock driven

(synchronous simulators) or event driven (asynchronous simulators) and always run in discrete

time (Brette et al., 2007) or in abstract time (Rast, 2010). Also, in this case, there is a time

relationship which transcends the categories of simulator presented until now. Usually the sim-

ulation is slow as the number of neuron increases, because the simulator substrate has a finite

computational power shared between all the neurons: the greater the number of neurons sim-

ulated, the greater the computation demands of the simulator and hence the greater time taken

to perform a time step in the simulation. Eventually, for medium scale neural networks, the

time relation goes below the real-time boundary (in other words, it becomes slower than real

time)[43].

FIGURE 3.3: HIERARCHICAL REPRESENTATION OF HARDWARE NEURAL NETWORK
SIMULATORS. [5]

Chapter 3. Neural Network Simulators 20

3.3 Review of Main Simulators Developed

In this section a review of some existing simulators is presented; these have usually been de-

veloped as part of neuro scientific projects. To reflect the differentiation made in the previous

section, here, hardware and software simulators are presented separately[44].

FIGURE 3.4: HIERARCHICAL REPRESENTATION OF SOFTWARE NEURAL NETWORK
SIMULATORS. [6]

However, this section presents only a summary of the reviewed simulators. Complete descrip-

tions of each simulator are available in the cited references. Moreover, more complete reviews

have been published in numerous articles (e.g. Brette et al. (2007), Misra and Saha (2010),

Draghici (2000) and Zhu and Sutton (2003)) [45].

3.3.0.1 Hardware

SyNAPSE SyNAPSE is the acronym of the System of Neuromorphic Adaptive Plastic Scal-

able Electronics project. The goal of this project is to design a neuromorphic chip which is able

to replicate a mammalian brain in size, functionality and power consumption: it should be able

to recreate 1010 neurons with 1014 synapses consuming 1KW of electrical power and occupy-

ing 2dm3 (liters) of space (Seo et al., 2011; Ananthanarayanan et al., 2009). The simulator uses

digital components to simulate a leaky integrate-and-fire neuron model. Spikes are transmitted

from one neuron to subsequent ones using a communication crossbar (Merolla et al., 2011) [46].

Chapter 3. Neural Network Simulators 21

Four different chips have been produced (Seo et al., 2011):

1. A base design chip with binary synapses and standard leaky integrate-and fire neurons.

2. A slim neuron variant, which fixes spiking, learning parameters and the structure of the

network in a two-layer learning network.

3. A 4-bit synapse variant which allows modification of synaptic weights in a way closer to

biology.

4. A low leakage variant to reduce power dissipated by neurons. This has some cost in terms of

the minimum operating voltage of the memory array.

In summary, this project can be classified as hardware, digital, real-time simulatorwith learning

capabilities. The neural model is integrated over steps of 0.1 ms with a discrete time paradigm.

Blue Brain Project The Blue Brain Project aims to provide a computational substrate for

molecular-level simulations that present biological realism. The goal of this platform is to sim-

ulatethe brains of mammalians with a high level of biological accuracy and, ultimately, tostudy

the emergence of biological intelligence (Markram, 2006). The platform Blue Gene/L is pro-

vided by IBM and comprises 8,192 CPU nodes each being a PowerPC 440 running at 700 MHz,

with a peak performance of 22.4TFLOPS and 2 TB of memory (Markram, 2006). As described

before, the software running the simulation involves biological details,therefore this simulator

can be classified as: hardware neural network simulator, running slower than real-time with a

discrete time paradigm. The capabilities incorporated in this simulator involve learning, as well

as other biological details [23].

FACETS BrainScalesS The FACETS (Fast Analog Computing with Emergent Transient

States) project delivered wafer-scale integration of neuromorphic chips which simulate adaptive

exponential leaky integrate-and-fire neurons (Schemmel et al., 2010). In addition it is possible

to reconfigure the circuit such that the adaptation part can be deactivated and hence the neuron

can behave as a standard leaky integrate-and-fire neuron. Short-term plasticity and long-term

plasticity mechanisms are implemented on the synapses. The distribution of spikes uses dig-

ital components and digital interfaces may be used to route spikes between two wafers or to

a computer. The system runs 104 times faster than real-time, consequently, this simulator can

be classified as multiple-model analogue hardware simulator with learning capabilities running

faster than real-time. The FACETS project is completed and the outcome forms the basis of the

current BrainScalesS project [22].

Chapter 3. Neural Network Simulators 22

Neurogrid The core of this simulator is a neuromorphic analogue chip simulating 256 x 256

leaky integrate-and-fire neurons in real-time (Silver et al., 2007). The distribution of spikes

across the system uses digital interconnections which propagate spikes from one layer to the

subsequent using an Address Event Representation (AER) protocol (Boahen, 2000). This pro-

tocol defines the transmission of neural events (action potentials) in simulators by sending the

address of the element which had emitted it. In the Neurogrid project, an external FPGA is

required to program arbitrarily neuron interconnectivity. In summary, this is a single-model

hardware simulator running in real-time without learning capabilities [47].

VLSI Chips from Zurich The chips built by the group at the Institute for NeuroInformat-

ics (INI) in Zurich implement analogue leaky integrate-and-fire neurons with 28 plastic and

4 non-plastics synapses per neuron, running in real-time (Indiveri et al., 2009). The learning

rule implemented in hardware is related to the standard STDP learning rule, but uses bi-stable

state synapses: one state provides a high synaptic weight, while the other state provides a low

weight. The distribution of the spikes in the architecture takes advantage of the AER protocol.

This simulator can be classified as a single-model, analogue, hardware simulator with learning

capabilities running in real-time [48].

3.3.0.2 Softwares

Brian Brian is a software neural simulator written in Python (Goodman and Brette, 2008).

It is able to simulate multiple neuron models, but much slower than real-time, especially when

simulating complex neural networks. It is a clock-driven simulator, where all events take place

on a fixed time grid (t = 0, dt, 2dt, 3dt, ..). Learning features are available for the simulation.

In summary, this is a software simulator which allows multiple neuron models in the same

simulation and implements learning features. It uses a discrete, clock-driven, time paradigm,

running slower than real-time [2].

Neuron Neuron is a software simulator for creating and using models of biological neurons

and neural circuits (Brette et al., 2007). It is supported by a complete development environ-

ment to describe characteristics of neurons and neural circuits. To advance simulations in time,

users have a choice between built-in clock-driven methods (a backward Euler and a Crank-

Nicholson variant both using fixed time step) and event-driven methods (fixed or variable time

step which may be system-wide or local to each neuron, with second order threshold detection).

In summary, this is a software simulator which allows multiple neuron models in the same sim-

ulation and implements learning features. It uses a discrete clock-driven and event-driven time

paradigm, running slower than real time

Chapter 3. Neural Network Simulators 23

Nest The purpose of the simulator Nest was to be the reference implementation to supportthe

development of neural network simulators (Brette et al., 2007). The networks this simulator

is able to run can easily grow up to 105 neurons and beyond, with realisticconnectivity. This

simulator supports heterogeneity of neurons and synapses in a single simulation. It implements

both a global time-driven simulation mechanism and an event driven algorithm, so that spikes are

not fixed on the discrete grid. In summary, Nest is a software simulator which allows multiple

neuron models in the same simulation and implements learning features. It uses a discrete clock-

driven and event-driven time paradigm, running slower than real time [19].

Genesis Genesis (Wilson et al., 1989) (GEneralNEuralSImulation System) is a simulator

thataims to reproduce the biological behavior of neural systems with details ranging from bio-

chemical reactions to large scale neural networks. Genesis was the first simulator able to cope

with large scale neural networks and the main application is connected with the simulation of

biological neural systems. In summary Genesis is a software simulator which allows multiple

neuron models in the same simulation and implements learning features[27].

SpikeFunDigiCortex This project aims to build a large-scale biologically-realistic neural

network simulatorfor a standard PC (Dimkovic, 2011). The simulator engine is called Digi-

Cortex,while the graphical user interface is called SpikeFun. Currently it implements onlythe

Izhikevich neuron model with 30 compartments per neuron and AMPA, GABA and NMDA

synapses; learning capabilities are based on the standard STDP rule. The simulator uses a dis-

crete time paradigm and its speed depends on the number of neurons simulated. However, even

for small scale simulations, the speed of the simulation appears to be slower than real-time. In

summary this project can be classified as a software simulator, running a single neuron model

in discrete time with learning capabilities [2].

NEF Nengo The Neural Engineering Framework (NEF) is a mathematical background which

allows the use of neural networks in the field of control theory (Eliasmith and Anderson, 2004).

Using values encoded as neuron spiking rates it is possible to evaluate functions (even non-

linear) with the purposes of computing more complex algorithms. Nengo is the software simu-

lator which implements the principles of the NEF. The simulator uses one main neural model,

the leaky integrate-and-fire neuron model, and sets of encoders and decoders to represent nu-

meric values. Numeric values are encoded as collection of spike rates for each population of

neurons. The number is converted into spike rates by an encoder population, and backward by a

decoder population. The principles of the Neural Engineering Framework allow the possibility

of synaptic plasticity with the purpose of training the network to perform a particular function.

The learning paradigm featured in this case is, probably, supervised training with a teaching sig-

nal which performs error correction. In summary, this simulator allows multiple neuron models,

Chapter 3. Neural Network Simulators 24

runs slower than real time, has a discrete clock-based time paradigm, and incorporates learning

features [3].

3.3.0.3 SpiNNaker

The acronym SpiNNaker stands for Spiking Neural Network Architecture (Furber et al., 2006)

which is a hardware-based, real-time, universal, neural network simulator following an event-

driven computational approach (Furber et al., 2012; Rast et al., 2010c). This project involves

the design of a chip and the development of dedicated software to simulate neural networks

(Jin et al., 2008). This system tries to mimic the features of biological neural networks and

SpiNNaker system provides some features that have not been proposed by other simulators. For

each simulator, the features developed have been marked with a tick. Onlysimulators including

software development have been categorized using the Eventdriven and Clock-driven classes.

For Hardware simulators the two categories are marked as Non Addressable.

Chapter 3. Neural Network Simulators 25

FIGURE 3.5: COMPARISON BETWEEN THE SPIKKING NEURAL NETWORK SIMULATOR
[7]

3.4 Neuron Models Available on SpiNNaker

Various neural models have been implemented for the software simulator. Below there is, a list

of the most relevant, with the mathematical model (in terms of Ordinary DifferentialEquation(s)

- ODE) that each of these implement:

Chapter 3. Neural Network Simulators 26

3.4.1 Izhikevich Model

A model of the Izhikevich neuron (Izhikevich, 2003) has been implemented for the SpiNNaker

software simulator (Jin et al., 2008). The ODEs representing this mathematical model are:
dv
dt = 0.04v2 +5v+140−u− I

du
dt = a(bv−u)

i f v = 30mVthenv = c,u = u+d

Where the state variable v is the neuron membrane potential, while the state variable u is the

neuron recovery variable. The condition v = 30mV is the spiking condition. Whenever this

condition is met, the neuron fires (emits an action potential) and then goes back to the reset

state expressed in the same formula. The constants 0:04, 5 and 140 have been chosen by Izhike-

vich (2004); using these it is possible to simulate at least 20 biologically meaningful spiking

behaviors. a, b, c and d are the four parameters of the Izhikevich neuron model (Izhikevich,

2003):

• The parameter a describes the time-scale of the recovery variable u. Smaller values result

in slower recovery.

• The parameter b describes the sensitivity of the recovery variable u to the subthreshold

fluctuations of the membrane potential v. Greater values couple v and u more strongly

resulting in possible sub-threshold oscillations and low-threshold spiking dynamics.

• The parameter c describes the after-spike reset value of the membrane potential v caused

by the fast high-threshold K+conductance.

• The parameter d describes after-spike reset of the recovery variable u caused by slow high-

threshold Na+ and K+conductance. The mathematical equations are integrated twice in

each time step to avoid the mathematical instabilities suggested by Izhikevich (2010): a

biologically unrealistic oscillation of the membrane potential due to an integration step

too long.

3.4.2 Leaky Integrate-and-Fire Model

A model of the Leaky Integrate-and-Fire neuron (Dayan and Abbott, 2001) has also been imple-

mented for the SpiNNaker system (Rast et al., 2010b). The mathematical model of this neuron

is:

τ
dv
dt =VL −V +Rm × Iinput

Chapter 3. Neural Network Simulators 27

The spike condition is defined by the condition V >=Vthreshold . Whenever the neuron membrane

potential satisfies this condition, it emits a spike and then the membrane potential resets to Vreset .

Where:

V is the neuron membrane potential. τ is the membrane time constant of the neuron. If the

input is null, the membrane potential exponentially relaxes with this time constant. VL is the

resting potential of the cell. If the input is null, the membrane potential of the neuron decays

exponentially to this value; Rm is the membrane resistance; Iinput is the current injected in the

neuron; Vthreshold is the threshold potential for a spike emission. Vreset is the reset value for the

membrane potential after the neuron emits spike.

This neuron model has been implemented in various versions according to the precision required

for the simulation: the first implementation used 16 bits in fixed point precision, with 8 bits

representing the integer part and 8 bits representing the decimal part. A second implementation

has been produced with 32 bit precision: 16 bits to represent each of the integer and decimal

parts. This implementation replaced the 16 bit one.

3.4.3 Poisson Spike Source Generator Neuron

This neuron generates a spike train according to a Poisson process: the Inter-Spike Interval (ISI)

is an instance of a Poisson random variable generated during the simulation. Limitations in the

implementation, due to the fixed-point arithmetic, limit the rate of the spike train in the interval

between 25Hz ¡= rate ¡= 1000Hz [4].

3.4.4 Spike Source Neuron

This neuron generates spikes according to a pattern saved in the SDRAM memory chip. Due to

limitations in the memory available for this purpose, the input pattern has to be less than 8MB.

3.4.5 Spike Source Live Neuron

This neuron generates spikes according to data input from a host computer through theEthernet

channel. This neuron works in partnership with the SpikeServer software that will be introduced

in the next chapter.

Chapter 3. Neural Network Simulators 28

3.4.6 NEF Interface Neurons

To import the Neural Engineering Framework (NEF) (Eliasmith and Anderson, 2004) into the

SpiNNaker simulator, a value encoder neuron and a value decoder neuron are required (Galluppi

et al., 2012b), as described earlier in section 2.3.2

3.4.7 Plasticity Models Available

In the SpiNNaker architecture synaptic weights are available for computation only when a spike

event is received. Therefore, to trigger potentiation when the postsynaptic neuron emits an action

potential, an implementation model is required to store this information until the subsequent pre-

synaptic spike is received. This model is called the Deferred Event Model (Rast et al., 2009),

and has been applied to reproduce two learning rules. The first algorithm has been developed

according to the Spike-Timing-Dependent Plasticity (STDP) general rule (Bi and Poo, 1998; Jin

et al., 2009). A second algorithm has been developed to reproduce a simplified learning rule:

the spike-pair STDP (also known as nearest-neighbour STDP) [5].

This research discovers that there are also ranges of other popular neuronal models such as the

Hodgkin-Huxley model which can be implemented on SpiNNaker. It also leads to the point

that different models can be integrated into the system library, and then users can choose which

model to use in their simulation. Moreover, for better utilization of SpiNNaker system, it is

necessary we built novel model which is comparative to renowned model but less in computation

cost and it can be verified using software simulator such as NEST. This is the main contribution

of author for his dissertation.

3.4.8 Needs of Implementation of More Neuronal Models

This research discovers that there are also ranges of other popular neuronal models such as the

Hodgkin-Huxley model which can be implemented on SpiNNaker. It also leads to the point

that different models can be integrated into the system library, and then users can choose which

model to use in their simulation. Moreover, for better utilization of SpiNNaker system, it is

necessary we built novel model which is comparative to renowned model but less in computation

cost and it can be verified using software simulator such as NEST. This is the main contribution

of this thesis.

Chapter 3. Neural Network Simulators 29

3.5 Summary

The purpose of this chapter was to put neural network hardware & software simulators in histori-

cal context and reviewed the main research developments in neural network simulator. It consid-

ered the architectures: basic platforms for neural networks that have capabilities of simulation.

There is no reason to believe that previous hardware designed for biological simulation and it

performed well in computational applications. This chapter discussed that one domain where

neural networks may be particularly valuable is embedded systems. Such applications usually

demand real-time adaptability for simulating the neural network modes. It also inspected that

software neural simulator is very important for model exploration and validation. Here the dis-

cussion used the SpiNNaker chip as a specific example to introduce as Spiking Neural Network

architecture. The study examined that there are range of some popular neuronal models was

implemented on this architecture so there is need of implementation of Hodgkin-Huxley model

on this architecture.

Chapter 4

Implementation of Spiking NN models
over NEST

4.1 Introduction

In Computational Neuroscience, simulations are used to investigate models of the nervous sys-

tem at functional or process levels. Consequently, a lot of effort has been put into developing

appropriate simulation tools and techniques, and a plethora of simulation software, specialized

for the single neuron or small sized networks is available. Recently, however, there has been

growing interest in large scale simulations, involving some 104 neurons while maintaining an

acceptable degree of biological detail. Thus, there is need for simulation software, possibly par-

allel, which supports such simulations in a flexible way. Here, we describe the Neural Simulation

Technology (NEST) initiative, a collaborative effort to develop an open simulation framework

for biologically realistic neuronal networks. The system is distinguished by following features.

• It aims at large structured networks of heterogeneous, biologically realistic elements at

different description levels.

• It employs an iterative incremental development strategy, maintaining a running system

at any time.

• The software is developed as a collaborative effort of several research groups. Since

NEST is a research tool,it has to continuously adapt to the ever changing demands of the

researchers who are using it.

• In an electrophysiological experiment, a number of different devices are used to stimu-

late and observe the neuronal system. Accordingly, devices are explicitly mapped to the

simulation.

30

Chapter 4. Implementation of Spiking NN models over NEST 31

• It is written in an object-oriented style (C++). An abstract base class defines a core inter-

face which has to be implemented by each module. The various modules are combined

by a module loader, which is part of a simulation language interpreter (SLI).

FIGURE 4.1: STRUCTURE OF THE SIMULATION SYSTEM AND ITS MAIN PARTS ARE A
SIMULATION KERNEL, SIMULATION LANGUAGE INTERPRETER (SLI) AND SOME

AUXILIARY MODULES. THE SIMULATION LANGUAGE INTERPRETER INTEGRATES ALL
PARTS AND ACTS AS INTERFACE TO THE USER.

4.1.1 A NEST simulation consists of following main components

4.1.1.1 Nodes

Nodes are all neurons, devices, and also sub-networks. Nodes have a dynamic state that changes

over time and that can be influenced by incoming events.

4.1.1.2 Events

Events are pieces of information of a particular type. The most common event is the spike-event.

Other event types are voltage events and current events.

Chapter 4. Implementation of Spiking NN models over NEST 32

4.1.1.3 Connections

Connections are communication channels between nodes. Only if one node is connected to

another node, can they exchange events.

4.1.1.4 Classes

NEST offers a number ofmechanisms to structure and organize not only your simulations, but

also your simulation data using Python interface.

4.1.1.5 Model Variations

To change minor aspects of a model. For example, in one version it has homogeneous connec-

tions and in another randomized weights.

4.1.1.6 Data management

To run simulations with different parameters or other variations and forget to record which data

file belonged to which simulation. Pythons class mechanisms provide a simple solution.

To organize the model into a class, by realizing that each simulation has five steps which can be

factored into separate functions:

• Define all independent parameters of the model. Independent parameters are those that

have concrete values which do not depend on any other parameter.

• Compute all dependent parameters of the model. These are all parameters or variables

that have to be computed from other quantities (e.g. the total number of neurons).

• Create all nodes (neurons, devices, etc.)

• Connect the nodes.

• Simulate the model.

We translate these steps into a simple class layout that will fit most models:

Chapter 4. Implementation of Spiking NN models over NEST 33

4.2 Need/Requirement of PyNN

The first user interface for NEST was the simulation language SLI, a stack-based language

derived from PostScript.However, programming in SLI turned out to be difficult to learn and

researchers asked for a more convenient programming language for NEST. When it was decided

to use Python as the new simulation language, it was almost unknown in Computational Neuro-

science. In fact, Matlab was far more common, both for simulations and for analysis. But the

Python has a number of advantages over commercial software like Matlab such as it is a powerful

interactive programming language with a surprisingly concise and readable syntax and supports

many programming paradigms such as object-oriented and functional programming installed by

default on all Linuxand Mac-OS based computers. Moreover, a number of neuroscience labora-

tories meanwhile use Python for simulation and analysis, which further supports this choice.But

there is also a drawback that is whenever a new feature is implemented in the application, the

interface to Python must be changed as well.Similarly on high performance computer Python is

not available for NEST simulation. In order, to avoid two different interfaces, there is need of

common interface that enables simulation scripts to be run on any supported system.

Thus researcher developed PyNN (pronounced pine), a common interface for specifying mod-

els that would work across multiple systems would retain the benefits of simulator/hardware

diversity while reducing or removing the translation barrier and enables simulation scripts to

be run on any supported system.Itis both an application programming interface (API) for the

Python programming language and an implementation of the interface for a number of sys-

tems. A simulation script is written in Python, with neuronal network modeling functions and

classes provided by PyNN.It takes care of translating the neuron, synapse and network models

into the required form for a given simulator,consistent handling of physical units, and consis-

tent handling of random numbers, and provides a high-level, object-oriented interface to enable

structured development of large-scale, complex models.

4.2.1 Using PyNN

A neural network in NEST consists of two basic element types: Nodes and connections. Nodes

are neurons, devices or subnetworks. Devices are used to stimulate neurons or to record from

them. Nodes can be arranged in subnetworks to build hierarchical networks like layers, columns,

and areas. After starting NEST, there is one empty subnetwork, the so-called root node. New

nodes are created with the command Create(), which takes the model name and optionally the

number of nodes as arguments and returns a list of handles to the new nodes. These handles are

integer numbers, called ids. Most PyNN functions expect or return a list of ids. Thus it is easy

to apply functions to large sets of nodes with a single function call. Nodes are connected using

Chapter 4. Implementation of Spiking NN models over NEST 34

Connect(). Connections have a configurable delay and weight. The weight can be static or dy-

namic. Different types of nodes and connections have different parameters and state variables.

To avoid the problem of fat interfaces, we use dictionaries with the functions GetStatus() and

SetStatus() for the inspection and manipulation of an elements configuration. The properties of

the simulation kernel are controlled through the commands GetKernelStatus() and SetKernel-

Status(). PyNN contains the submodules rasterplot and voltagetrace to visualize spike activity

and membrane potential traces. They use Matplotlib internally and are good templates for new

visualization functions.

4.2.1.1 Data Conversion

From PyNN to SLI The data conversion between PyNN and SLI exploits the fact that most

data types in SLI have an equivalent type in PyNN. The function slipush() calls PyObjectTo-

Datum() to convert a Python object pyob ject to the corresponding SLI data type. PyObject-

ToDatum() determines the type of pyob ject in a cascade of type checks (e.g. PyIntCheck(),

PyStringCheck(), PyFloatCheck()). The listing below shows how this technique is used for the

conversion of the PyNN type float and for arrays of doubles:

void Datum* PyObjectToDatum(PyObject *py_object)

{

if (PyFloat_Check(py_object))

{

return new DoubleDatum(PyFloat_AsDouble(

py_object));

}

if (PyArray_Check(py_object)) 10 {

intsize = PyArray_Size(py_object);

PyArrayObject *array;

array = (PyArrayObject*) py_object;

assert(array != 0);

switch (array->descr->type_num)

{

case PyArray_DOUBLE:

{

double *begin = (double*) array->data;

return new DoubleVectorDatum(

new std::vector<double>(

begin, begin+size));

}} }

Chapter 4. Implementation of Spiking NN models over NEST 35

From SLI to PyNN To convert a SLI data type to the corresponding PyNN type, it avoids

the cascade of type checks, since all SLI data types are derived from a common base class,

called Datum. This would add a pure virtual conversion function convert() to the class Datum.

Each derived class (e.g. DoubleDatum, DoubleVectorDatum) then overloads this function to

implement its own conversion to the corresponding PyNN type. This approach is shown for

the SLI type DoubleDatum in the following listing. The function get() is implemented in each

Datum and returns its data member.

void Datum::use_converter(DatumConverter& converter)

{converter.convert_me(* this);

} PyObject*DoubleDatum::convert()

{return PyFloat_FromDouble(get());}

The function useconverter() is defined in the base class Datum and inherited by all derived

classes.

class DatumConverter

{public: virtual void convert_me(Datum&);

virtual void convert_me(DoubleDatum&)=0;

virtual void convert_me(DoubleVectorDatum&)=0;};

The PyNN specific part of the conversion is encapsulated in the class DatumToPythonConverter,

which derives from DatumConverter and implements the convertme() functions to actually con-

vert the SLI types to Python objects.

void DatumToPythonConverter::convert_me(

DoubleDatum&dd)

{py_object = PyFloat_FromDouble(dd.get());}

The diagram in Figure illustrates the sequence of events in slipop(): First, slipop() retrieves

a SLI Datum d from the operand stack (not shown). Second, it creates an instance of Da-

tumToPythonConverter and calls its convert() function, which then passes itself as visitor to

the useconverter() function of d.Datum :: useconverter() calls the DatumToPythonConverters

convertme() function that matches the type of d. The function convertme() then creates a new

Python object from the data in d and stores it in the DatumToPythonConverters member variable

pyob ject, which is returned to slipop().

Chapter 4. Implementation of Spiking NN models over NEST 36

4.2.1.2 Data Handling

Recorded data in PyNN is always associated with the Population or Assembly from which it

was recorded. Data may either be written to file, using the writedata() method, or retrieved

as objects in memory, using getdata(). Handling of recorded data in PyNN makes use of the

NEO package, which provides a common Python data model for neurophysiology data (whether

real or simulated). The getdata() method returns a Neo Block object. This is the top-level data

container, which contains one or more Segments. Each Segment is a container for data sharing

a common time basis - a new Segment is added every time the reset() function is called. A

Segment can contain lists of AnalogSignal, AnalogSignalArray and SpikeTrain objects. These

data objects inherit from NumPys array class, and so can be treated in further processing (anal-

ysis, visualization, etc.) in exactly the same way as NumPy arrays, but in addition they carry

metadata about units, sampling interval, etc.

import pyNN.neuron as sim # can of course replace ‘neuron‘ with ‘nest‘, ‘brian‘, etc.

import matplotlib.pyplot as plt

import numpy as np

sim.setup(timestep=0.01)

p_in = sim.Population(10, sim.SpikeSourcePoisson(rate=10.0), label="input")

p_out = sim.Population(10, sim.EIF_cond_exp_isfa_ista(), label="AdExp neurons")

syn = sim.StaticSynapse(weight=0.05)

random = sim.FixedProbabilityConnector(p_connect=0.5)

connections = sim.Projection(p_in, p_out, random, syn, receptor_type=’excitatory’)

p_in.record(’spikes’)

p_out.record(’spikes’) # record spikes from all neurons

p_out[0:2].record([’v’, ’w’, ’gsyn_exc’]) # record other variables from first two neurons

sim.run(500.0)

spikes_in = p_in.get_data()

data_out = p_out.get_data()

fig_settings = {

’lines.linewidth’: 0.5,

’axes.linewidth’: 0.5,

’axes.labelsize’: ’small’,

Chapter 4. Implementation of Spiking NN models over NEST 37

’legend.fontsize’: ’small’,

’font.size’: 8

}

plt.rcParams.update(fig_settings)

plt.figure(1, figsize=(6,8))

def plot_spiketrains(segment):

for spiketrain in segment.spiketrains:

y = np.ones_like(spiketrain) * spiketrain.annotations[’source_id’]

plt.plot(spiketrain, y, ’.’)

plt.ylabel(segment.name)

plt.setp(plt.gca().get_xticklabels(), visible=False)

def plot_signal(signal, index, colour=’b’):

label = "Neuron %d" % signal.annotations[’source_ids’][index]

plt.plot(signal.times, signal[:, index], colour, label=label)

plt.ylabel("%s (%s)" % (signal.name, signal.units._dimensionality.string))

plt.setp(plt.gca().get_xticklabels(), visible=False)

plt.legend()

n_panels = sum(a.shape[1] for a in data_out.segments[0].analogsignalarrays) + 2

plt.subplot(n_panels, 1, 1)

plot_spiketrains(spikes_in.segments[0])

plt.subplot(n_panels, 1, 2)

plot_spiketrains(data_out.segments[0])

panel = 3

for array in data_out.segments[0].analogsignalarrays:

for i in range(array.shape[1]):

plt.subplot(n_panels, 1, panel)

plot_signal(array, i, colour=’bg’[panel%2])

panel += 1

plt.xlabel("time (%s)" % array.times.units._dimensionality.string)

plt.setp(plt.gca().get_xticklabels(), visible=True)

plt.show()

Chapter 4. Implementation of Spiking NN models over NEST 38

4.2.2 Hodgkin-Huxley model over NEST

The NEST simulates the dynamics of the membrane voltage, the membrane current and the

Hodgkin-Huxley variables h,m,n of the ordinary differential equations. The neuron model has

no spatial structure, i.e., only a single compartment is simulated. Following are main attribute

of its implementation

• Compartment Characteristics: This section defines the compartment physics like its di-

ameter, the membrane capacitance Cm, the axial resistance Ra, the sodium conductance

GNa, the potassium conductance GK and the leakage conductance Gl. It is also possible

to alter the concentration of potassium and sodium inside and outside the compartment

with the four variables Ki, Ko, Nai and Nao.

• Applying External Current/Voltage: The external excitation of the compartment is nor-

mally a step like function of current or voltage. It is helpful in taggling between voltage

and current .The beginning of the simulation indicates the time at which the current or

voltage step is applied. The duration of the stimulus should be entered in the field marked

‘duration’.

• Simulation Parameters: The begin and end values control the total interval of a simulation.

This allows you to continue the integration of the Hodgkin Huxley model even after the

stimulation has stopped.

• Voltage Clamp: The characteristics of Hodgkin-Huxley cells may best be studied by con-

sidering some voltage clamp experiments. In voltage clamp experiments, the voltage is

fixed. Hence the capacitive current Ic is set to zero. As in the voltage clamp experiments,

the potassium current is outward and the sodium current inward. In particular, the sodium

current reacts rapidly to an increase in the potential whereas the potassium current reacts

more slowly.

• Current Clamp: It is also called space clamp since it shunts the inner axial resistance

Ra. Injected current is therefore uniformly distributed over the part of axon which is

investigated. The effect is that an axon which normally has some spatial characteristics

will be transformed to an axon that behaves like one single big compartment.

• Spike Variation: The spike shapes can mainly be controlled by the intensity of the current

that flows into the cell (simulated here by the externally applied current). The amount of

time needed to produce a new spike after a first one is called the ”refractory period”. The

shorter this time, the less time the spike has to attain its peak value. In the extreme case,

it oscillates around some value between the resting state and the peak value.

Chapter 4. Implementation of Spiking NN models over NEST 39

4.2.2.1 Using PyNN- Hodgkin-Huxley Model

PyNN with a simulation of a neuron receiving input from an excitatory and an inhibitory pop-

ulation of neurons. Each pre-synaptic population is modeled by a Poisson generator, which

generates a unique Poisson spike train for each target. The simulation adjusts the firing rate of

the inhibitory input population such that the neurons of the excitatory population and the target.

from nest import *

import nest.voltage_trace as plot

t_sim = 100000.0 , n_ex = 16000

n_in = 4000 , r_ex = 5.0 ,epsc = 45.0

ipsc = 45.0, d = 1.0, lower = 5.0 upper = 25.0 , prec = 0.05

neuron = Create("hh_neuron")

noise= Create("poisson_generator", 2)

voltmeter = Create("voltmeter")

spikedetector = Create("spike_detector")

SetStatus([noise [0]], [{ "rate" : n_ex*r_ex }])

SetStatus(voltmeter, [{ "interval" : 1000.0,"withgid" : True}])

First, we import all necessary modules for simulation, analysis and plotting neuron fire at the

same rate.Second, the parameters for the simulation are set. Third, the nodes are created using

Create(). Its arguments are the name of the neuron or device model and optionally the number

of nodes to create. If the number is not specified, a single node is created. Create() returns a list

of ids for the new nodes, which we store in variables for later reference.Fourth, the excitatory

Poisson generator (noise[0]) and the voltmeter are configured using SetStatus(), which expects

a list of node handles and a list of parameter dictionaries. The rate of the inhibitory Poisson

generator is set . For the neuron and the spike detector we use the default parameters. Fifth, the

neuron is connected to the spike detector and the voltmeter, as are the two Poisson generators to

the neuron.

Connect(neuron, spikedetector)

Connect(voltmeter, neuron)

ConvergentConnect(noise, neuron,[epsc, ipsc], [d, d])

The command Connect() has different variants. Plain Connect() just takes the handles of pre-

synaptic and postsynaptic nodes and uses the default values for weight and delay. Convergent-

Connect() takes four arguments: A list of presynaptic nodes, a list of postsynaptic nodes, and

Chapter 4. Implementation of Spiking NN models over NEST 40

lists of weights and delays. It connects all pre-synaptic nodes to each postsynaptic node. All

variants of the Connect() command reflect the direction of signal flow in the simulation kernel

rather than the physical process of inserting an electrode into a neuron. For example, neurons

send their spikes to a spike detector, thus the neuron is the first argument to Connect(). By

contrast, a voltmeter polls the membrane potential of a neuron in regular intervals, thus the

voltmeter is the first argument of Connect().

To determine the optimal rate of the neurons in the inhibitory population, the network is sim-

ulated several times for different values of the inhibitory rate while measuring the rate of the

target neuron. This is done until the rate of the inhibitory neurons is determined up to a given

relative precision, such that the target neuron fires at the same rate as the neurons in the excita-

tory population. The algorithm is implemented in two steps: First, the function out putrate() is

defined to measure the firing rate of the target neuron for a given rate of the inhibitory neurons.

SetStatus([noise [1]], [{"rate": rate}])

SetStatus(spikedetector, [{"n_events": 0}])

Simulate(t_sim)

n_events = GetStatus(spikedetector,"n_events")[0]

r_target = n_events*1000.0/t_sim

print "r_in = %.4f Hz," % guess,

print "r_target = %.3f Hz" % r_target

return r_target

The function takes the firing rate of the inhibitory neurons as an argument. It scales the rate with

the size of the inhibitory population and configures the inhibitory Poisson generator (noise[1]).

The spike-counter of the spike detector is reset to zero. It simulates the network using Simu-

late(), which takes the desired simulation time in milliseconds and advances the network state

by this amount of time. During the simulation, the spike detector counts the spikes of the target

neuron and the total number is read out at the end of the simulation period. The return value

of out putrate() is an estimate of the fi ring rate of the target neuron in Hz. Finally, we plot the

target neurons membrane potential as a function of time.

plot. f romdevice(voltmeter, timeunit = ”s”)

A transcript of the simulation session and the resulting plot are shown in following figures

Chapter 4. Implementation of Spiking NN models over NEST 41

FIGURE 4.2: INPUT CURRENT I OF AN EXCITORY NEURON.

FIGURE 4.3: INPUT CURRENT I OF AN INHIBITORY NEURON.

Chapter 4. Implementation of Spiking NN models over NEST 42

FIGURE 4.4: MEMBRANE VOLTAGE OF AN EXCITORY NEURON.

FIGURE 4.5: MEMBRANE VOLTAGE OF AN INHIBITORY NEURON.

Chapter 4. Implementation of Spiking NN models over NEST 43

4.2.3 Fixed Point Unit vs Floating Point Unit Implementation of HH Model

FIGURE 4.6: FIXED POINT UNIT VS FLOATING POINT UNIT IMPLEMENTATION OF HH
MODEL.

FIGURE 4.7: ACTION POTENTIAL USING FLOATING POINT UNIT.

Chapter 4. Implementation of Spiking NN models over NEST 44

FIGURE 4.8: ACTION POTENTIAL USING FIXED POINT UNIT.

In Figure : Action Potential using floating point unit has been initiated by current pulse before

t=0. The time course of the membrane potential shows the action potential (positive peak)

followed by a relative refractory period where the potential is below the resting potential. In

the spike response framework, the time course of the action potential for t ¿ 0. The overall

effect of the sodium and potassium currents is a short action potential followed by a negative

overshoot.The amplitude of spike is 100 mV and the spike has been initiated by a short current

pulse of 1 millisecond duration applied at t¡0. In the Figure 1.2 the action potential using fixed

point unit has been taken by NEST (software based simulator) and the voltage scales is different

from voltage scale of floating point unit because of data over flow. In fact Hodgkin-Huxley

model exceeds its memory of 64 bits data range using fixed point unit, thus positive peak of

membrane voltage followed by refractory period after 3 millisecond.

Chapter 4. Implementation of Spiking NN models over NEST 45

FIGURE 4.9: EQUILIBRIUM FUNCTION FOR THREE VARIABLES M,N,H USING FLOATING
POINT UNIT.

FIGURE 4.10: EQUILIBRIUM FUNCTION FOR THREE VARIABLES M,N,H USING FIXED
POINT UNIT.

As both Figure 4.9 and Figure 4.10 respectively depicts that values of m and n increases as

voltage increases while h decreases. Therefore, the rise of membrane voltage depends upon

some external input and the conductance of sodium channel increases due to increasing value of

m. Consequently, positive sodium ions flow into the cell and raise the membrane potential even

further.

Chapter 4. Implementation of Spiking NN models over NEST 46

FIGURE 4.11: TIME CONSTANT FOR THREE VARIABLES M,N,H USING FLOATING POINT
UNIT.

4.3 Summary

The aim of this chapter is to implement the Hodgkin-Huxley model using NEST simulator. We

used PyNN simulation script for erasing the translation barrier in order to run on hardware ar-

chitecture. We derived a scheme of fixed point implementation of Hodgkin-Huxley model and

evaluated its precision with floating point unit implementation by executing it on NEST simula-

tor. From analytical and experimental results we observed that that our proposed scaling factor

scheme computationally efficient, requires less memory space and is more scalable floating point

scheme.

Chapter 5

Implementing Spiking Neural Network
Model over SpiNNaker

5.1 Introduction

In SpiNNaker, the treatment of spikes is a key innovation implemented with application-specific

hardware: a multicast, packet-switched and self-timed communication fabric with on-chip routers.

To maintain flexibility and generality, the neuronal models run in software on embedded ARM968

processors. These neuronal models communicate by means of spike packets directly supported

by the SpiNNaker architecture. The SpiNNaker test chips in 2009 with the batch arriving in

Manchester in December. Here, we offer our research thesis and running spiking neurons based

on Hodgkin-Huxley model and novel model is known as AJ model which is comparative to

Izhikevichs model in function but computationally is less expensive than it.

5.2 Feature of SpiNNaker

This system tries to mimic the features of biological neural networks in various ways:

• Native Parallelism: Each biological neuron is a primitive computational element within

a massively parallel system. Likewise, SpiNNaker uses parallel computation.

• Spiking communications: In biology, neurons communicate through spikes.The SpiN-

Naker architecture uses source-based and address event representation (AER) packets to

transmit the equivalent of neural signals (i.e. action potentials). Each AER packet iden-

tifies the event source through an addressing scheme.The time of the event is basically

identified by the time of the packet itself.

47

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 48

• Event-Driven Behavior: Neurons are very power efficient, and consume muchless power

than modern hardware. To reduce power consumption, the hardwareis put into sleep state

when idle, awaiting an interrupt.

• Distributed Memory: In biology, neurons use only local information for processing com-

ing stimuli. The SpiNNaker architecture features a hierarchy of memories.

• Re-Configurability: In biology, synapses are plastic. This means that neural connec-

tivity change both in shape and strength. The SpiNNaker architectureallows on-the-fly

reconfiguration.

5.2.1 Architecture:

This architecture is a real-time simulator running on an event driven abstract-time paradigm us-

ing multiple neural models during the same simulation, and incorporating learning capabilities.

The core of this simulator is the SpiNNaker chip (Furber, 2011): a full-custom ASIC chip with

18 ARM 968 cores, running at 200MHz with low power consumption specifications and ex-

tended instruction set for digital signal processing. No floating point unit has been embedded in

the architecture of this chip to comply with the low power specifications and the space available

on the die. Consequently, all computation implemented in the software must be based only on

fixed-point operations. Additionally, the division operation is not part of the instruction set of

the ARM architecture, and therefore must be implemented in software, or avoided if possible.

Figure 3.1 describes the chip by functional blocks, and Figure 3.2 labels each major component

on the die.

A full-custom router (Plana et al., 2007) stands between the cores and the input/output links

where it can receive network packets from any source and route network packets to their correct

destination(s). A Network on Chip (system NoC) interfaces the cores with the peripherals:

System RAM, System ROM, MII (Ethernet) interface, Watchdog, System controller, PLLs and

PL340. There are three types of memory available to each core:

• Tightly Coupled Memory (TCM) which is part of each ARM core and is dividedin two

parts: instruction TCM (ITCM) which is 32 KB and data TCM (DTCM) which is 64 KB.

This memory is integrated into each core, and therefore each core accesses its own TCM.

• System RAM, which is integrated into the SpiNNaker chip and shared between all the

processors. Its size is 32KB.

• SDRAM, which is a mobile laptop memory chip external to the SpiNNaker chip and

accessible through the PL340 interface, shared between all the cores. The size of this

memory is 128 MByte.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 49

FIGURE 5.1: BLOCK DIAGRAM OF THE FULL SPINNAKER CHIP []

Chip Inter-Connection The SpiNNaker chip has six external links, as described in Figure

5.1, to connect to six other SpiNNaker chips in a 2-dimensional network of up to 256 x 256

chips. The extremities of such a grid can be wrapped to form a toroidal network. Alternatively,

it is possible, also, to visualize the 2-dimensional array of chips as a hexagonal-shaped network

and Two-dimensional grid of SpiNNaker chips with the needed connections (in green) to form

the toroidal shape as shown in Figure 5.2.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 50

FIGURE 5.2: TWO-DIMENSIONAL GRID OF SPINNAKER CHIPS WITH THE NEEDED
CONNECTIONS (IN GREEN) TO FORM THE TOROIDAL SHAPE. []

FIGURE 5.3: HEXAGONAL SHAPED SPINNAKER CHIP NETWORK. []

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 51

5.3 Pacman

Pacman is the acronym for Partition and Configuration Manager (Galluppi et al.,2012a). This

software converts a neural network description (using the standard PyNN language (Davison

et al., 2008)) into binary files which need to be loaded into the SpiNNaker system to run the

simulation. The block diagram of this software is depicted in Figure 5.4.

FIGURE 5.4: BLOCK DIAGRAM OF THE PARTITION AND CONFIGURATION SOFTWARE
(PACMAN). []

5.3.1 Splitter

This component splits populations and projections into parts which can be mapped onto single

processors.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 52

5.3.2 Grouper

This component groups populations which contain fewer neurons than those which could fit

into a single core. In this way it is possible to use the SpiNNaker system for neural simulation

efficiently.

5.3.3 Mapper

This component maps the outcome of the grouper on the SpiNNaker cores available, considering

the topology of the network of chips and the functioning processors available.

5.3.4 Routing

This component assigns the addressing space to the populations of neurons and computes the

routing tables for the SpiNNaker system to map the projections between the populations.

5.3.5 SpiNNaker File Generator

This component generates files to describe each single neuron, each single synapse and all the

auxiliary files to run the simulation on the SpiNNaker system. The outcome of this process is

the binary files to be loaded on SpiNNaker, or used to run the simulation.

5.4 Implementing Hodgkin Huxley on SpiNNaker

Neuronal activity is a result of ionic movement, caused by two electrochemical gradientsconcen-

tration and electric potential gradientsaround the cell bodys membrane. The two electrochemical

gradient forces drive ions in opposite directions, toward either the inside or the outside of the

cell. Several different types of mathematical models have been developed to describe neuronal

dynamics. Alan Lloyd Hodgkin and Andrew Huxley developed a well-known biologically plau-

sible conductance-based model (Hodgkin-Huxley) that describes ion currents dynamics by a set

of nonlinear differential equations. In conductance based models, the variables and parameters

have well-defined biological meanings, and can be measured experimentally. However, analyz-

ing the conductance- based models is complicated. It quantitatively describes the subcellular

level ionic behaviors and the membrane current underlying the generation and propagation of

neural spike. The Hodgkin-Huxley model is one of the most biological plausible models in com-

putational neuroscience and their model is a complicated nonlinear ODE system consisting of

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 53

four equations describing the membrane potential, activation and inactivation of different ionic

gating variables respectively. The HH equations are given as follows.

du
dt

=−gNam3h(u−ENa)−gKn4(u−EK)−gL(u−EL)+ I(t) (5.1)

ENa = 115mV,EK =−12mV,EL = 10.6mV,gNa =
120ms

cm2 ,gK = 36ms
cm2 ,gL = 0.3ms

cm2

dm
dt = αm(u)(1−m)−βm(u)m

while

αm(u) = 2.5−0.1u
e−0.1u+2.5−1 and βm(u) = 4× e

−u
18

dn
dt = αn(u)(1−n)−βn(u)n

while

αn(u) = 0.1−0.01u
e−0.1u+1−1 and βn(u) = 0.125× e

−u
80

dh
dt = αh(u)(1−h)−βh(u)h

while

αh(u) = 0.07u

e
−u
20

and βh(u) = 1
e3−0.1u+1

Accurate brain modeling requires not only the neuronal dynamics but also a comprehensive

map of structural connection patterns in the human brain. Connectivity is closely related to the

neural coding problem: information is coded and propagated within the neural network through

structural links such as synapses and fiber pathways. Based on connectivity patterns discovered

in laboratory experiments, researchers have built several mathematical models of connectivity.

The resulting connectivity knowledge was used to create large-scale neural network models,

including Hodgkin Huxley model to simulate brain activity.

We selected the Hodgkin Huxley to demonstrate real-time simulation with 1 ms resolution on

SpiNNaker. We derived a 16-bit fixed-point arithmetic implementation to save both computation

and storage space, as well as to avoid having a floating point unit in the ARM968 cores. We

take advantage of knowing the membrane potentials exact range of values (-80 = v = 380). By

using a dual scaling factor scheme, we can reduce the precision lost during the conversion and

hence maintain a good precision level. We also optimize the implementations performance and

accuracy by:

• Expanding the width from 16 to 32 bits during the computation to achieve better precision.

• Transforming the equations to allow the use of efficient ARM instructions.

• Adjusting the parameters and pre computing Equation 1 as much as possible; and pro-

gramming in ARM assembly language.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 54

In our implementation, one iteration of Hodgkin-Huxley equations takes six fixed-point arith-

metic and two shift operations. This is more efficient than the original implementation, which

requires 13 floating-point operations. In a practical implementation, the complete subroutine for

computing Hodgkin-Huxley equations can be performed in as few as 20 instructions if the neu-

ron doesnt fire. If the neuron does fire, it takes 10 more instructions to reset the value and send a

spike event. An event address mapping (EAM) scheme is used to achieve minimum communi-

cation. The EAM scheme keeps synaptic weights at the post-synaptic end (neurons receiving the

spike) and set a relationship (in a mapping table) between the spike event and the address of the

synaptic weight. Hence, no synaptic weight information needs to be carried in a spike packet.

When a neuron fires, the packet propagates through a series of multicast routers according to

the preloaded routing table in each router, and finally arrives at the destination processing cores.

The EAM scheme employs the two memory systems, DTCM and SDRAM, to store and access

efficiently synaptic connections. DMA operations transfer each weight block from the SDRAM

to the local DTCM, before computing the update following the Hodgkin-Huxley equations. A

core can easily find the synaptic weights associated with the fired neuron. It does this by match-

ing the incoming spike packet with entries in the mapping table, which is organized as a binary

tree. The neural simulation involves a 500-neuron network with an excitatory inhibitory ratio at

4:1. Each neuron is randomly connected to 25 other neurons. We randomly selected 12 exci-

tatory and three inhibitory neurons as biased neurons, each receiving a constant input stimulus

of 20 mV.The spike raster plots compare a fixed-point arithmetic simulation in Matlabwith the

same neural model executing on a real SpiNNaker chip.

5.5 32-BIT FIXED POINT IMPLEMENTATION OF THE HODGKIN-
HUXLEY MODEL

The Hodgkin-Huxley model of spiking neuron is selected as the neuronal model used in the

SpiNNaker system. Floating-point numbers are used in the original Hodgkin-Huxley model,

however, fixed point operations are more efficient than their floating-point alternatives and the

ARM processor does not have a Floating Point Unit (FPU). As a result, we propose to use fixed-

point operations instead of floating-point operations in the system. 16-bit fixed-point arithmetic

is used to further speed-up the processing and save storage space. Pearson et al. have im-

plemented spiking neural networks based on fixed point leaky-integrate-and-fire (LIF) model

on FPGA [16, 17]. We are modelling spiking neural networks of a different neuron model on

different hardware with a new approach of using two scaling factors.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 55

5.5.1 Implementation Constraints

Implementation of the Hodgkin-Huxley model must consider SpiNNakers hardware architec-

ture. In particular, the following details of the hardware act as model design constraints:

5.5.1.1 Elementary Mathematical Operations Only

The ARM968 has basic add and subtract, logical, shift, and multiply operations, but does not

have native support for division, transcendental functions, and other nonlinear computations.

Therefore, the Hodgkin-Huxley model must express its processing in terms of simple polyno-

mial mathematical operations.

5.5.1.2 32-bit Fixed-Point Representation

Similarly, the ARM has no floating-point unit. The Hodgkin-Huxley model needs to translate

any floating-point quantities into fixed-point numbers, while determining a position for the dec-

imal point, hence assigning a fractional precision.

5.5.1.3 Limited Local Memory

SpiNNakers individual processors have 64k data memory and 32k instruction memory each.

This effectively prohibits having synaptic data local at all times and limits the number of param-

eters. Memory management must therefore attempt to store as much information as possible on

a per neuron rather than per-synapse basis using HH model.

5.5.1.4 Limited Time to Process a Neuron

To stay within the real-time update requirement, each neuron of HH model must be able to

update its state in the time between external events. If a processor is modelling multiple neurons,

this means updating at worst in 1 NRmax, where N is the number of neurons modelled and Rmax

is the maximum event rate.

5.5.1.5 Synaptic Data Only Available on Input Event

Because of the limited memory, SpiNNaker stores synaptic data off-chip and brings it to the local

processor only when an input event arrives. Synapse processing must therefore be scheduled for

a fixed time after the input, and can only depend on information knowable at the time the input

arrived.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 56

5.5.2 Implementation Rules

To meet SpiNNakers hardware constraints with an efficient, accurate model it is necessary to

introduce a set of design rules that help to define the Hodgkin-Huxley model implementation.

These rules are indicative but not forcing, while Hodgkin-Huxley model generally obeys this

pattern.

5.5.2.1 Defer Event Processing with Annotated Delays

The deferred-event model is a method to allow event reordering. Under this scheme only per-

form minimal processing at the time of a given event, storing state information of Hodgkin-

Huxley model in such a way as to be available to a future event, so that processes can wait upon

contingent future events. Future events thus trigger state update relevant to the current event.

5.5.2.2 Solve Differential Equations using the Euler Method

The Euler method is the simplest general way to solve nonlinear differential equations. Thus,

using it for Hodgkin-Hulxey model, the processor updates the equations using a small fixed time

step t, using the formula X(t+t) = X(t)+ dx/dt(t+t). The time step is programmable (nom-

inally 1 ms in our model), allowing us to select the time step to optimize the precision/timing

margin tradeoff.

5.5.2.3 Represent most Variables using 16-bit Values

Various studies indicate that 16-bit precision is adequate for most neural models. Since the

ARM contains efficient 16-bit operations it makes sense to conserve memory space and use 16-

bit variables throughout. Intermediate values, however, may use 32 bits to avoid unnecessary

precision loss. Thus we have to go for 32 bits for HH model implementation.

5.5.2.4 Pre-Compute Constant Parameters where Possible

By an astute choice of representation, it is often possible to transform a set of parameters in a

neural equation into a single parameter that can be pre-computed and simplifies the computation

remaining. For example, in the expression x(t) = Aekt, we can use the substitution logab =

logcblogca , choose 2 for c and arrive at x(t) = A(2(log2e)kt), which allows us to pre-compute a

new constant ? = klog2e and determine x with simple shift operations.

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 57

5.5.2.5 Compute Non-Polynomial Functions by Lookup Table

Lookup tables provide a simple, and in fact the only general way of computing an arbitrary

function. The ARM takes at most 2N instructions to compute a LUT-based function with N

variables. Memory utilization is a concern: a 16-bit lookup table is impractical; however, 8- or

12-bit lookup tables are feasible, occupying 512 or 8192 bytes for 16- bit values respectively.

Where Hodgkin-Huxley model need greater precision we implement various interpolations.

5.5.2.6 Exploit free Operations such as Shifting

Most ARM instructions can execute conditionally, many can shift an operand before doing the

instruction, and there are built-in multiply-accumulate instructions. Taking advantage of such

free operations is an obvious optimization. Using these rules, we build up a generalized function

pipeline to represent a neural process that is adequate for HH model as shown in Figure ??.

FIGURE 5.5: FIGURE 4.5:A GENERAL EVENT-DRIVEN FUNCTION PIPELINE FOR NEURAL
NETWORKS AND VARIABLE RETRIEVAL RECOVERS VALUES STORED FROM

DEFERRED-EVENT PROCESSES AS WELL AS LOCAL VALUES. POLYNOMIAL EVALUATION
COMPUTES SIMPLE FUNCTIONS EXPRESSIBLE AS MULTIPLY AND ACCUMULATE

OPERATIONS. THESE THEN CAN FORM THE INPUT TO LOOKUP TABLE EVALUATION FOR
MORE COMPLEX FUNCTIONS. POLYNOMIAL INTERPOLATION IMPROVES ACHIEVED
PRECISION WHERE NECESSARY, AND THEN FINALLY THE DIFFERENTIAL EQUATION

SOLVER CAN EVALUATE THE EXPRESSION (VIA EULER METHOD INTEGRATION). EACH
OF THESE STAGES IS OPTIONAL (OR EVALUATES TO THE IDENTITY FUNCTION) [].

5.6 The Hodgkin-Huxley Model

The Hodgkin-Huxley model uses this instruction pipeline. Many of the techniques it uses are

common to the reference. The basic approach applies to virtually any spiking model with

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 58

voltage-variable differential-equation dynamics: an illustration of the universal design of the

software as well as the hardware.

• Variable Retrieval: Hodgkin-Huxely neuron uses the deferred-event model to place in-

put spikes into a circular array of current bins representing the total input in a given

time step Arrival of an input triggers a DMA operation which retrieves a source neuron-

indexed synaptic row. Completion of the DMA triggers a second stage of deferral, adding

the synaptic weight (representing the current injection) to the bin corresponding to the

synapses delay. The Timer event that occurs when that delay expires recovers the to-

tal current from the bin and the neurons associated state block, containing the voltage

variable and internal parameters. We pre-compute natural frequency fn = 1/t from time

constant t in order to avoid division

5.6.1 Choice of Scaling Factors

To approximate the floating point arithmetic by the fixed-point arithmetic we need to adopt

scaling factors. The choice of scaling factors is essential in the floating-point to fixed-point

transformation. To choose a proper scaling factor, firstly we investigate the range of variables

and the parameters relevant to the transformation. According to the experimental results from

the simulation on Hodgkin-Huxley model, the value of membrane potential v during computing

is in the range -80 to 380, where 380 is the value before reset (representing the -65mV resting

potential at 0mV as a reference voltage. By restoring the membrane potential back to its original

value, we get Vrest = -65mV after it reaches 380). A 16-bit half word can represent a signed

integer number in the range -32768 to 32768. Hence we get

−32786 < vp < 32767(−80 < v < 380) (5.2)

Where p is the scaling factor and according to 5.2, we get p < 86. In this case, we only consider

values for p that are powers of 2 so that they can be implemented simply by shifting. Since a

greater value of p always leads to better precision (see experimental results in Table I and Table

II below), we choose p = 64. If we select any value for p greater than 64, the membrane potential

v may overflow during computation. However, ARM968E-S is a 32-bit processor. Some 32-bit

operations are therefore as efficient as some 16-bit operations. This allows us to expand some

operations from 16-bit to 32-bit during computation to gain better numerical precision without

losing performance, and we can still keep variables in the data structure in 16-bit format. In

this way, a greater value of p can be applied to produce better precision without increasing the

computation time and the storage space. Although the value of the membrane potential v during

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 59

computing is in the range -80 to 380 as we described above, the final value of the membrane

potential v hold in the data structure will be in the range -80 to 380. We get

−32768 < vp < 32767(−80 < v < 380) (5.3)

p = 256 can be selected to satisfy the equation.So far, we have considered only the variable which

has the greatest numerical value. Some parameters have very small floating-point values also

need to be considered since they may cause a decrease of the precision if the value of the scaling

factor is not big enough. There are six parameters am,m,?a?n?,?n,ah,??hand four constants

0.07,0.125,0.01 and 0.25 that we have to care about a and range roughly from 0.02 to 0.1 and

from 0.2 to 0.25 respectively when modeling different types of neuron. The scaling factor p

= 256 is probably just enough for these values. However, to get a better performance, some

changes to the presentation of equations, which makes the precision worse when the equations

are transformed to fixed-point using the scaling factor p = 256. The solution we have adopted

here is to use two scaling factors”, and p2 with a small and large value respectively. We apply the

smaller scaling factor p1 to parameters, variables and constants with values greater than 0.5 and

the larger scaling factor p2 to those with values less than 0.5. p2= 65536 is selected because it

is both large enough and efficient to implement using multiply-accumulate operations (detailed

below). So we get p1 = 256, p2 = 65536

FIGURE 5.6: OUTPUT OF HODGKIN-HUXLEY MODEL SIMULATION ON SPINNAKER

5.6.2 The Transformation of Equations

In order to get an extremely fast processing speed, a few changes are made to the presentation

of equations. These changes are made based on two objectives:

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 60

FIGURE 5.7: OUTPUT OF HODGKIN-HUXLEY MODEL ON SPINNAKER EMULATOR

• Pre-computing as much as possible

• Reducing the number of operations as much as possible

Continuous-time differential equations can be implemented in discrete time by the following

equations,

Cdv/dt=t(-F+I)

F(V,m,h,n) = gNam3h(V −VNa)+gKn4(V −VK)+gL(V −VL) (5.4)

Where, ? is time step which can be small to achieve adequate numerical precision. We set ? = 1

for 1 ms resolution. In the ARM architecture, there is a signed multiply-accumulate operation

(32 ¡= 32 x 16 + 32) ”SMLAWB”, where ”B” means use the bottom half of the register (bits

[15:0]). An operation with the form of (ax*b)/(x + c) can be implemented by one ”SMLAWB”

instruction when x = 216 and b is a 16-bit value. It takes only one CPU cycle to obey this

instruction in the ARM.We transform equations to the following:

After applying scaling factors p1 andp2, equations turn out to be: To setup a new data structure

for each neuron:

structNeuronState

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 61

{

signed short Param_V;

signed short Param_EL;

signed short Param_EN;

signed short Param_EK;

signed short Param_GL;

signed short Param_GN;

signed short Param_GK;

signed short Param_M;

signed short Param_N;

signed short Param_H;

signed short Param_InverseCM; } NeuronStates;

In this data structure, scaling factors p1 and p2 have been applied. Hence variables and param-

eters are fixed-point numbers and pre-computed. Constants in equation are also pre-computed.

In ARM assembly code, when p2 = 216 (65536), 1 ms simulation of equation consists of:

vP1 = P1(1/C)[P2(−F.P1)/P2+P1(I)]

F(V,m,h,n) = gNam3h(V −VNa)+gKn4(V −VK)+gL(V −VL) (5.5)

1. A = (Vp1 (VLp2) * VG p2.

2. A = A <<(16 log2p1).

3. A = (Vp1 VN p1)

4. A = A <<(16 log2p2).

5. A = (Vp1 Vk p1)

6. A = A <<(16 log2 p2)

7. A = A+ Ip1 one "ADD" operation.

8. vp, = Aup1 one "SUB" operation.

9. A =[(p1/C2)(p2(-F. p1)] / p2+Ip1,

10. A = A >> log2p2, one shift operation

Where, Arepresents the partial result of each step. In step 1, vp1 is stored in the bottom 16 bits

of a register. When the instruction is obeyed, what it actually does is multiplying p2 (32 bits) by

vp1 (16 bits) in the bottom 16 bits of a register and only the top 32 bits of the multiplication result

is pre reserved. If p2 = 216, the division operation of /p2 is done automatically as the bottom

16 bits is dismissed during the multiplication. The result is added to 6p1 finally. However, in

step 4 p1 ? 216, so we need a shift operation in step 3 to fit the condition. In step 5, Vp1

and Vkp1is kept in the top 16 bits of two different registers respectively. The computational

Chapter 5. Implementing Spiking Neural Network Model over SpiNNaker 62

result of step 6 is in the most significant 16 bits. As a result, a shift operation is required in

step 7.In this approach, 1 ms simulation only takes 6 fixed-point mathematical operations plus

2 shifting operations. Obviously it is more efficient than the original which took 1200floating-

point operations.

5.7 Summary

We discovered that Hodgkin-Huxley model was not implemented yet, so we opted Hodgkin-

Huxley model for implementation on SpiNNaker architecture. We derived a 32-bit fixed-point

arithmetic implementation to save both computation and storage space in the ARM968 proces-

sor. We observed that by expanding the fixed point unit causes the loss in precision of model.

Our present scaling factor of fixed point athematic is computationally efficient because in origi-

nal implementation requires 13 floating-point operations and there are eight instructions units in

a single floating point operation. In a fixed point unit implementation, the complete subroutine

for computing Hodgkin-Huxley equations can be performed in 20 instructions if the neuron does

not fire. If the neuron does fire, it takes 10 more instructions to reset the value and send a spike

event.

Chapter 6

Conclusion & Future Work

6.1 Conclusion

The research work described in this thesis demonstrated the feasibility of, and provides the

implementation details for, modeling neural network model on a scalable chip multiprocessor

system and NEST. During the study, a number of problems were solved by developing novel

approaches which may also be applicable to other, larger, neural hardware models. In this re-

search we modeled and simulated Hodgkin-Huxley model on hardware and software simulator.

We derived a 32 bit fixed point unit implementation scheme for Hodgkin-Huxley model imple-

mentation on ARM processor and validate the result by executing the model on NEST simulator.

We maximum expanded the fixed point arithmetic of ARM processor in order to get better per-

formance without losing precision. We evaluated the performance parameters like number of

instruction units carried out in fixed point unit implementation and floating point unit imple-

mentation and compared results of our proposed scaling factor scheme with original model. We

observed that data structure in 32 bit format was taking minimum number of instruction sets

than floating point operation. Because in original implementation requires 13 floating-point op-

erations and there are eight instructions units in a single floating point operation. In a fixed point

unit implementation, the complete subroutine for computing Hodgkin-Huxley equations can be

performed in 20 instructions if the neuron does not fire. If the neuron does fire, it takes 10 more

instructions to reset the value and send a spike event. NEST simulator was used for validation

of our proposed scheme scaling factor. PyNN script simulation erased the translation barrier for

executing the model over SpiNNaker architecture and NEST simulator. For ASIC implemen-

tation (i.e. on SpiNNaker massively parallel CMP system), the current problem is transformed

into PyNN specific format. It is because SpiNNaker middleware (Pacman) takes the input for a

non-spiking model in the PyNN format.

63

Chapter 6. Conclusion & Future Work 64

6.2 Future Work

The research discovers several potential issues related to the real-time simulation of neural net-

works, leading to further investigation:

• Spiking neural networks are the type of neural network that SpiNNaker was originally

designed for. The Hodgkin-Huxley and AJ neuronal models are used as an example during

the study. There must be novel model developed and they can also be implemented on

SpiNNaker for its better utilization. The implementation of a neuronal model is dependent

on other parts of the system, making it easy to extend the library of models.

• Learning rules can also be investigated and implemented using this new implementation

on SpiNNaker architecture.

• Neuron to processor mapping for simulating spiking neural network model is needed.

• Application can be run with the implementation of new models on SpiNNaker so the

testing and verification of model and system can be examined.

• New neuronal functions such as neuronal dynamics, short term plasticity and conductance-

based synapses need to be implemented on SpiNNaker and neural library must be regu-

larly updated to support new theories.

6.3 Summary

This thesis explores algorithms as well as software implementation for simulation of neural

networks on the SpiNNaker chip multiprocessor system and software neural simulator- NEST.

The main focus are on implementing of spiking neural network models dealing with minimizing

the processing time, and saving memory usage. A typical neural networks model has been

investigated: Hodgkin-Huxley model. The modeling schemes are either fully implemented or

validated, or analytically studied and evaluated.

In this thesis, initially, a brief introduction to the modeling theory of spiking neural networks is

presented in Chapter 2. This chapter is helpful in understanding a neural simulation application,

it is important to understand neural network modeling and its computational modeling. Our

brain is made of billions of neurons - functionally independent processing units with a tremen-

dous amount of connectivity. The neuron’s behavior is dictated by its electro-physiological

properties controlled by chemical ions inside and around its cell body. Stimuli to a neuron in

the shape of neurotransmitters cause an action potential - a spike or pulse. Neurons communi-

cate with each other using these spikes. All our body movements, responses to our senses and

Chapter 6. Conclusion & Future Work 65

learning/ memories are controlled with these spikes. Much is known about the neural and learn-

ing dynamics in the nervous systems. However, a lot remains to be discovered, especially the

emergent behaviors of neural networks. Many mathematical models have been proposed based

on empirical hypotheses to capture the neural dynamics in the nervous systems.

There have been many attempts to build engineering systems for simulating large-scale neu-

ral networks. They were reviewed in Chapter 3.The purpose of this chapter was to put neural

network hardware & software simulators in historical context and reviewed the main research

developments in neural network simulator. It considered the architectures: basic platforms for

neural networks that have capabilities of simulation. There is no reason to believe that pre-

vious hardware designed for biological simulation and it performed well in computational ap-

plications. This chapter discussed that one domain where neural networks may be particularly

valuable is embedded systems. Such applications usually demand real-time adaptability for

simulating the neural network modes. It also inspected that software neural simulator is very

important for model exploration and validation. Here the discussion used the SpiNNaker chip

as a specific example to introduce as Spiking Neural Network architecture. The study examined

that there are range of some popular neuronal models was implemented on this architecture so

there is need of implementation of Hodgkin-Huxley model on this architecture.

Most of the solutions have their particular benefits as well as downside. Based on the study

of neural network models and existing engineering systems, a new system called SpiNNaker

was proposed accordingly to these requirements. SpiNNaker provides a general-purpose and

high-performance platform for large-scale neural network simulation. The proposed SpiNNaker

architecture raises the research topic of understanding how to map neural models onto such a

system a topic investigated in the rest of the chapters. For modeling and simulation on ARM

processor, it is necessary to execute the model on single processor. Thus chapter 4 aims to

run the Hodgkin-Huxley model on NEST simulator and the result of single processor system

verified and validate with the original implementation of model. Chapter 5 discusses building

a neural system using the Hodgkin-Hulxey model on a single ARM968 processor. The first

problem addressed was to determine how to simulate the Hodgkin-Huxley equations efficiently

on the ARM968 using 32-bit fixed- point arithmetic. The aim of this chapter is to implement the

Hodgkin-Huxley model using NEST simulator. We used PyNN simulation script for erasing the

translation barrier in order to run on hardware architecture. We derived a scheme of fixed point

implementation of Hodgkin-Huxley model and evaluated its precision with floating point unit

implementation by executing it on NEST simulator. From analytical and experimental results

we observed that that our proposed scaling factor scheme computationally efficient, requires less

memory space and is more scalable floating point scheme.

A scheme fixed point implementation was used to achieve an accurate resolution without sacri-

ficing performance and by converting the presentation of the equations, and using ARM specific

Chapter 6. Conclusion & Future Work 66

instructions.The last chapter concludes the thesis with the direction of future prospects. We dis-

covered that Hodgkin-Huxley model was not implemented yet, so we opted Hodgkin-Huxley

model for implementation on SpiNNaker architecture. We derived a 32-bit fixed-point arith-

metic implementation to save both computation and storage space in the ARM968 processor.

We observed that by expanding the fixed point unit causes the loss in precision of model. Our

present scaling factor of fixed point athematic is computationally efficient because in original

implementation requires 13 floating-point operations and there are eight instructions units in a

single floating point operation. In a fixed point unit implementation, the complete subroutine for

computing Hodgkin-Huxley equations can be performed in 20 instructions if the neuron does

not fire. If the neuron does fire, it takes 10 more instructions to reset the value and send a spike

event.

Bibliography

[1] Lawrence Livermore National Laboratory Blaise Barney. Parallel Computing Lectures.

https://computing.llnl.gov/tutorials/parallel_comp/. [Online; accessed 23-

Dec-2013].

[2] Paul A Merolla, John V Arthur, Bertram E Shi, and Kwabena A Boahen. Expandable net-

works for neuromorphic chips. Circuits and Systems I: Regular Papers, IEEE Transactions

on, 54(2):301–311, 2007.

[3] Timothée Masquelier, Rudy Guyonneau, and Simon J Thorpe. Spike timing dependent

plasticity finds the start of repeating patterns in continuous spike trains. PloS one, 3(1):

e1377, 2008.

[4] Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L Krichmar, Alex Nicolau, and

Alex Veidenbaum. Efficient simulation of large-scale spiking neural networks using cuda

graphics processors. In Neural Networks, 2009. IJCNN 2009. International Joint Confer-

ence on, pages 2145–2152. IEEE, 2009.

[5] Martin Pearson, Ian Gilhespy, Kevin Gurney, Chris Melhuish, Benjamin Mitchinson,

Mokhtar Nibouche, and Anthony Pipe. A real-time, fpga based, biologically plausi-

ble neural network processor. In Artificial Neural Networks: Formal Models and Their

Applications–ICANN 2005, pages 1021–1026. Springer, 2005.

[6] Benjamin W Walt and Lon-Chan Chit. Efficient mapping of neural networks on multicom-

puters. Urbana, 51:61801.

[7] Maryam Alavi and John C Henderson. An evolutionary strategy for implementing a deci-

sion support system. Management Science, 27(11):1309–1323, 1981.

[8] Rafic A Ayoubi and Magdy A Bayoumi. Efficient mapping algorithm of multilayer neural

network on torus architecture. Parallel and Distributed Systems, IEEE Transactions on, 14

(9):932–943, 2003.

[9] Sophie Achard and Ed Bullmore. Efficiency and cost of economical brain functional net-

works. PLoS computational biology, 3(2):e17, 2007.

67

https://computing.llnl.gov/tutorials/parallel_comp/

Bibliography 68

[10] Jay B Angevine and Carl W Cotman. Principles of neuroanatomy. Oxford University

Press, 1981.

[11] Tom Binzegger, Rodney J Douglas, and Kevan AC Martin. A quantitative map of the circuit

of cat primary visual cortex. The Journal of Neuroscience, 24(39):8441–8453, 2004.

[12] Guy E Blelloch and Charles R Rosenberg. Network learning on the connection machine.

In IJCAI, pages 323–326. Citeseer, 1987.

[13] Kwabena A Boahen. Point-to-point connectivity between neuromorphic chips using ad-

dress events. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Trans-

actions on, 47(5):416–434, 2000.

[14] Guo-qiang Bi and Mu-ming Poo. Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of

neuroscience, 18(24):10464–10472, 1998.

[15] WJ Bainbridge, Luis A Plana, and Stephen B Furber. The design and test of a smart-

card chip using a chain self-timed network-on-chip. In Proceedings of the conference on

Design, automation and test in Europe-Volume 3, page 30274. IEEE Computer Society,

2004.

[16] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numeri-

cal methods. Prentice-Hall, Inc., 1989.

[17] Gully APC Burns and Malcolm P Young. Analysis of the connectional organization of

neural systems associated with the hippocampus in rats. Philosophical Transactions of the

Royal Society of London. Series B: Biological Sciences, 355(1393):55–70, 2000.

[18] Santiago Ry Cajal. Texture of the Nervous System of Man and the Vertebrates: I, volume 1.

Springer, 1999.

[19] Muhammad Mukaram Khan, David R Lester, Luis A Plana, A Rast, Xin Jin, Eustace

Painkras, and Stephen B Furber. Spinnaker: mapping neural networks onto a massively-

parallel chip multiprocessor. In Neural Networks, 2008. IJCNN 2008.(IEEE World

Congress on Computational Intelligence). IEEE International Joint Conference on, pages

2849–2856. IEEE, 2008.

[20] Sharon M. Crook, G Bard Ermentrout, Michael C. Vanier, and James M. Bower. The role

of axonal delay in the synchronization of networks of coupled cortical oscillators. Journal

of computational neuroscience, 4(2):161–172, 1997.

[21] Barry W Connors and Michael J Gutnick. Intrinsic firing patterns of diverse neocortical

neurons. Trends in neurosciences, 13(3):99–104, 1990.

Bibliography 69

[22] Catherine E Carr and Masakazu Konishi. Axonal delay lines for time measurement in the

owl’s brainstem. Proceedings of the National Academy of Sciences, 85(21):8311–8315,

1988.

[23] Iain S Duff, Roger G Grimes, and John G Lewis. Sparse matrix test problems. ACM

Transactions on Mathematical Software (TOMS), 15(1):1–14, 1989.

[24] John C Eccles. The understanding of the brain. McGraw-Hill, 1973.

[25] Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in the

primate cerebral cortex. Cerebral cortex, 1(1):1–47, 1991.

[26] Shou King Foo, Paramasivan Saratchandran, and Narasimhan Sundararajan. Parallel im-

plementation of backpropagation neural networks on a heterogeneous array of transputers.

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(1):118–

126, 1997.

[27] Steve Furber and Steve Temple. Neural systems engineering. Journal of the Royal Society

interface, 4(13):193–206, 2007.

[28] Steve Furber, Steve Temple, and Andrew Brown. On-chip and inter-chip networks for

modeling large-scale neural systems. In Circuits and Systems, 2006. ISCAS 2006. Pro-

ceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE, 2006.

[29] Dan Goodman and Romain Brette. Brian: a simulator for spiking neural networks in

python. Frontiers in neuroinformatics, 2, 2008.

[30] Wulfram Gerstner, Raphael Ritz, and J Leo van Hemmen. A biologically motivated and

analytically soluble model of collective oscillations in the cortex. Biological cybernetics,

68(4):363–374, 1993.

[31] Dan FM Goodman and Romain Brette. The brian simulator. Frontiers in neuroscience, 3

(2):192, 2009.

[32] Mark A Glover, Alister Hamilton, and Leslie S Smith. An analog vlsi integrate-and-fire

neural network for sound segmentation. In NC, pages 86–92, 1998.

[33] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, popula-

tions, plasticity. Cambridge university press, 2002.

[34] Wulfram Gerstner, Richard Kempter, J Leo van Hemmen, and Hermann Wagner. A neu-

ronal learning rule for sub-millisecond temporal coding. Nature, 383(LCN-ARTICLE-

1996-002):76–78, 1996.

[35] Roger W Sperry. Cerebral organization and behavior. Science, 133(3466):1749–1757,

1961.

Bibliography 70

[36] Xin Jin, Mikel Luján, Muhammad Mukaram Khan, Luis A Plana, Alexander D Rast,

Stephen R Welbourne, and Stephen B Furber. Algorithm for mapping multilayer bp net-

works onto the spinnaker neuromorphic hardware. In Parallel and Distributed Computing

(ISPDC), 2010 Ninth International Symposium on, pages 9–16. IEEE, 2010.

[37] Xin Jin, Mikel Luján, Luis A Plana, Alexander D Rast, Stephen R Welbourne, and Steve B

Furber. Efficient parallel implementation of multilayer backpropagation networks on spin-

naker. In Proceedings of the 7th ACM international conference on Computing frontiers,

pages 89–90. ACM, 2010.

[38] Xin Jin, Alexander Rast, Francesco Galluppi, Mukaram Khan, and Steve Furber. Imple-

menting learning on the spinnaker universal neural chip multiprocessor. In Neural infor-

mation processing, pages 425–432. Springer, 2009.

[39] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. Optimizing sparse matrix-

vector multiplication using index and value compression. In Proceedings of the 5th con-

ference on Computing frontiers, pages 87–96. ACM, 2008.

[40] Sun-Yuan Kung and JN Hwang. A unified systolic architecture for artificial neural net-

works. Journal of Parallel and Distributed Computing, 6(2):358–387, 1989.

[41] Muhammad Mukaram Khan, David R Lester, Luis A Plana, A Rast, Xin Jin, Eustace

Painkras, and Stephen B Furber. Spinnaker: mapping neural networks onto a massively-

parallel chip multiprocessor. In Neural Networks, 2008. IJCNN 2008.(IEEE World

Congress on Computational Intelligence). IEEE International Joint Conference on, pages

2849–2856. IEEE, 2008.

[42] MM Khan, E Painkras, X Jin, LA Plana, JV Woods, and SB Furber. System level modelling

for spinnaker cmp system. In Proc. 1st International Workshop on Rapid Simulation and

Performance Evaluation: Methods and Tools (RAPIDO09), 2009.

[43] AK Kreiter and W Singer. Oscillatory neuronal responses in the visual cortex of the awake

macaque monkey. European Journal of Neuroscience, 4(4):369–375, 1992.

[44] Vipin Kumar, Shashi Shekhar, and Minesh B. Amin. A scalable parallel formulation of

the backpropagation algorithm for hypercubes and related architectures. Parallel and Dis-

tributed Systems, IEEE Transactions on, 5(10):1073–1090, 1994.

[45] Jens Langner. Development of a parallel computing optimized head movement correction

method in positron-emission-tomography. PhD thesis, University of Applied Sciences,

2003.

[46] Rémy Lestienne. Determination of the precision of spike timing in the visual cortex of

anaesthetised cats. Biological cybernetics, 74(1):55–61, 1996.

Bibliography 71

[47] Joseph Lin, Paul Merolla, John Arthur, and Kwabena Boahen. Programmable connections

in neuromorphic grids. In Circuits and Systems, 2006. MWSCAS’06. 49th IEEE Interna-

tional Midwest Symposium on, volume 1, pages 80–84. IEEE, 2006.

[48] Misha Mahowald. VLSI analogs of neuronal visual processing: a synthesis of form and

function. PhD thesis, California Institute of Technology, 1992.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Aim & Objectives
	1.4 Contributions
	1.5 Thesis Structure

	2 Neural Network Modeling
	2.1 Introduction
	2.2 The Brain
	2.3 Neuron
	2.4 Axon
	2.5 Dendrite
	2.6 Synapse
	2.7 Mathematical Neuron Modeling
	2.7.1 Neuron Electrophysiology
	2.7.2 The Hodgkin-Huxley Model
	2.7.2.1 Dynamics

	2.8 The Integrate-and-Fire Model
	2.9 The Izhikevich Model
	2.10 Summary

	3 Neural Network Simulators
	3.1 Introduction
	3.2 Categorization of SNN Simulators
	3.2.1 Hardware Simulators
	3.2.2 Software Simulators

	3.3 Review of Main Simulators Developed
	3.3.0.1 Hardware
	SyNAPSE
	Blue Brain Project
	FACETS â�� BrainScalesS
	Neurogrid
	VLSI Chips from Zurich

	3.3.0.2 Softwares
	Brian
	Neuron
	Nest
	Genesis
	SpikeFunâ��DigiCortex
	NEF â�� Nengo

	3.3.0.3 SpiNNaker

	3.4 Neuron Models Available on SpiNNaker
	3.4.1 Izhikevich Model
	3.4.2 Leaky Integrate-and-Fire Model
	3.4.3 Poisson Spike Source Generator Neuron
	3.4.4 Spike Source Neuron
	3.4.5 Spike Source Live Neuron
	3.4.6 NEF Interface Neurons
	3.4.7 Plasticity Models Available
	3.4.8 Needs of Implementation of More Neuronal Models

	3.5 Summary

	4 Implementation of Spiking NN models over NEST
	4.1 Introduction
	4.1.1 A NEST simulation consists of following main components
	4.1.1.1 Nodes
	4.1.1.2 Events
	4.1.1.3 Connections
	4.1.1.4 Classes
	4.1.1.5 Model Variations
	4.1.1.6 Data management

	4.2 Need/Requirement of PyNN
	4.2.1 Using PyNN
	4.2.1.1 Data Conversion
	From PyNN to SLI
	 From SLI to PyNN

	4.2.1.2 Data Handling

	4.2.2 Hodgkin-Huxley model over NEST
	4.2.2.1 Using PyNN- Hodgkin-Huxley Model

	4.2.3 Fixed Point Unit vs Floating Point Unit Implementation of HH Model

	4.3 Summary

	5 Implementing Spiking Neural Network Model over SpiNNaker
	5.1 Introduction
	5.2 Feature of SpiNNaker
	5.2.1 Architecture:
	Chip Inter-Connection

	5.3 Pacman
	5.3.1 Splitter
	5.3.2 Grouper
	5.3.3 Mapper
	5.3.4 Routing
	5.3.5 SpiNNaker File Generator

	5.4 Implementing Hodgkin Huxley on SpiNNaker
	5.5 32-BIT FIXED POINT IMPLEMENTATION OF THE HODGKIN-HUXLEY MODEL
	5.5.1 Implementation Constraints
	5.5.1.1 Elementary Mathematical Operations Only
	5.5.1.2 32-bit Fixed-Point Representation
	5.5.1.3 Limited Local Memory
	5.5.1.4 Limited Time to Process a Neuron
	5.5.1.5 Synaptic Data Only Available on Input Event

	5.5.2 Implementation Rules
	5.5.2.1 Defer Event Processing with Annotated Delays
	5.5.2.2 Solve Differential Equations using the Euler Method
	5.5.2.3 Represent most Variables using 16-bit Values
	5.5.2.4 Pre-Compute Constant Parameters where Possible
	5.5.2.5 Compute Non-Polynomial Functions by Lookup Table
	5.5.2.6 Exploit â��freeâ�� Operations such as Shifting

	5.6 The Hodgkin-Huxley Model
	5.6.1 Choice of Scaling Factors
	5.6.2 The Transformation of Equations

	5.7 Summary

	6 Conclusion & Future Work
	6.1 Conclusion
	6.2 Future Work
	6.3 Summary

	Bibliography

