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ABSTRACT

Compressed sensing theory is based on the novel idea that, a specific class of signals i.e

sparse signals can be recovered by sampling below the traditional sampling rate, as used in

communication systems theory.

Thus the important challenge in compressed sensing is to reconstruct an undersampled

sparse signal. The amount of undersampling possible for a signal having a particular sparsity

needs to be known. Phase transition of a particular algorithm represents the sparsity vs

undersampling ratios in the form of a phase diagram. Therefore, the limit for undersampling

is revealed in the phase transition.

Phase transition improvement is required in order to be able to recover original sparse

signal by even less number of samples. Currently, new recovery algorithms that provide

higher phase transition curves are being developed.

In this thesis, we use the approach of utilizing deterministic sensing matrices in place

of random sensing matrices for reconstruction. Random sensing matrices have already been

employed to discover the limit on undersampling. The deterministic sensing matrices used in

this thesis belong to a class of sensing matrices that have lower coherence. The deterministic

sensing matrices utilized in this thesis were obtained using best antipodal spherical codes.

Experiments have been performed on few recovery algorithms in order to check the impact

of this particular type of deterministic matrices. The impact of noise is also visualized on

the phase transition of these algorithms.

From the results of the experiments it is concluded that BP and AMP algorithms have

almost same phase transitions for both random and deterministic sensing matrices. How-

ever, OMP shows a marked improvement by employing deterministic sensing matrix. Thus

suitable sensing matrix may optimize phase transition of existing algorithms.
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Chapter 1

INTRODUCTION

In the modern digital world, the transmission and reception of data at a higher rate is the

main task necessary for efficient communication. For this purpose data needs to be sam-

pled according to some criterion. The Shannon/Nyquist sampling theorem has been used to

sample analog signals. According to Shannon the signal must be sampled at a rate twice the

highest frequency of the signal. However, after sampling signals at a rate that high, a large

number of samples are obtained that need to be compressed for the purposes of transmission

and storage. Also in image, audio and video processing the Shannon/Nyquist theorem is not

optimal for sampling.

Compressed sensing is a novel theory in signal processing introduced about a decade

ago [1] [2] . It has the ability to sample particular classes of signals at a rate below the

Shannon/Nyquist rate. Compressed sensing exploits sparse signals (that have few non-zero

entries in the signal vector) for efficient sampling as compared to Shannon/Nyquist sam-

pling. Compressed sensing is important as it reduces the number of measurements required

to accurately reconstruct a signal, these measurements are obtained by multiplying the sparse

signal x with a sensing matrix A to obtain y which is the measurement vector. The equation

obtained by the operation mentioned produces an underdetermined system of linear equa-

tions. Although, underdetermined system of linear equations have infinitely many solutions

but sparsity(the number of non-zero values in a signal) provides a method to give a unique

sparsest solution.

Compressed sensing is relatively a new field yet it has many applications. Like in MRI

to take images of organs and tissues the patient has to stay still in the machine for sev-

eral minutes to acquire samples, compressed sensing can help reduce the time by reducing

the number of samples [3]. In imaging, it is important as it can reduce the cost of cam-

eras, who have expensive and large number of sensors, by reducing the number of sensors

required. Seismic data collection, is a time consuming as well as expensive process, com-

pressed sensing has helped researchers to make it a faster and cheaper process. Other areas
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of application are radars, analog to digital converter designs, astronomy, machine learning,

ultrasound imaging system, computational biology, etc.

1.1 Problem Statement

Phase transition is an important parameter in compressed sensing theory. It is the sparsity vs

undersampling tradeoff i.e it provides information on how much undersampling is possible

for a particular sparsity level. Thus the phase transition needs to be improved. The possible

ways to improve it is by designing new efficient algorithms or better sensing matrices. Then

observe the effect of noise on phase transition.

1.2 Objectives

The improvement of phase transition is the task to be accomplished in this thesis. The pos-

sible ways to improve it is by designing new efficient algorithms or better sensing matrices.

The approach we have used in this thesis is by using a better sensing matrix that is determin-

istic in nature to improve the phase transition.

1.3 Methodology

This thesis works to provide an improvement in the phase transition by using deterministic

sensing matrices. We take few algorithms in existing literature whose phase transitions have

previously been defined by using random Gaussian sensing matrices. We use a particular

deterministic sensing matrix to see its effect on phase transition, for each algorithm sepa-

rately. It is checked that does deterministic matrix optimizes the results or not. Then to view

the effect of noise on phase transition curve, a noisy environment is introduced and for each

algorithm the effect is analyzed.

1.4 Thesis Outline

This thesis is organized such that the after introduction, Chapter 2 includes the basic knowl-

edge of CS to establish a foundation for the concepts discussed in later chapters. Chapter 3

undertakes the theory of signal recovery in CS and some algorithms for signal recovery being

used in CS. In Chapter 4 the concept of phase transition which is an important parameter in

CS that needs to be improved has been introduced and some prior work in this direction has

been discussed. Chapter 5 highlights the importance of deterministic matrices and how they

are better than random sensing matrices. The theory for low coherence sensing matrices is
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established and the best antipodal spherical codes discussed in detail which produce sensing

matrix of low coherence. The results of our work on phase transition using deterministic

sensing matrix are displayed in Chapter 6 for both noiseless and noisy case.

For the ease of understanding the mathematical notations used throughout the thesis are

mentioned here:

1.5 Mathematical Notation

• Standard letters are used for representing scalars: e.g, n ∈ R

• Bold letters in the lower case are used to represent column vectors: e.g, x ∈ Rn

• Bold capital letters are used to represent matrices: e.g, A ∈ Rm×n

• Calligraphic letters are used to show vector spaces formed by sets of vectors: e.g, N

1.6 Software Tools

For simulations, MATLAB R© (R2012a) is used.
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Chapter 2

COMPRESSED SENSING AND ITS PRINCIPLE

The research area of compressed sensing was first introduced in 2006 by the two ground-

breaking research papers of Donoho and of Candes, Romberg, and Tao [1] [2]. The main

idea of compressed sensing is the exact recovery of a sparse signal using only few linear

and non-adaptive measurements by convex optimization [4] . In other words, compressed

sensing provides with a unique sparse solution to the under-determined system of linear

equations. Compressed sensing approach differs from classical sampling in that it acquires

measurements by taking inner product of signal and more general test functions. Typically

measurements are taken by the linear system obtained as a result of the product of a sparse

input signal vector and coefficient matrix called sensing matrix in CS. The basic equation of

compressed sensing is as follows:

ym×1 = Am×nxn×1, (2.1)

whereas in the equation above, the unknown signal to be retrieved is x, A is the sensing

matrix, and both of these produce y the measurement vector.

2.1 Retrieving sparse vector

Firstly, we review the basic underlying concepts like norms, basis and frames. Then discuss

the recovery of spare vector.

2.1.1 Norm

In present day signal processing, signals are modeled using vectors living in an appropriate

vector space. In an n-dimensional Euclidean space denoted by Rn the lp norm is defined as:

‖x||p =


(
∑n

i=1 |xi|p)
1
p if p ∈ [1,∞],

max
i=1,2....,n

|xi| if p =∞,
(2.2)

where xi are the components of the vector x. Norms are typically used as a measure of the

strength of a signal, or the size of an error. The most commonly encountered vector norm is
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the `2 norm which is the inner product, it may also be given by:

‖x||2 =
√
x21 + x22 + ...+ x2n. (2.3)

The `1 norm also called the taxicab norm is basically the sum of the absolute values of

columns of the vector x given by:

‖x||1 =
n∑
i=1

|xi|. (2.4)

The `0 norm is the cardinality of the non-zero content of the vector, the support( supp(x) ) of

vector is the same thing so `0 norm is given by:

‖x||0 = |supp(x)|. (2.5)

When 0 < p < 1 then the triangular inequality is not satisfied, then the `p norm is called

quasi or pseudo norm. Figure 2.1 shows the unit spheres in R2 for `1, `2 and `∞ norms as

well as ` 1
2

quasi norm.

Figure 2.1: Unit spheres for `p norms.(a) `1 norm (b) `2 norm (c) `∞ norm (d) ` 1
2

2.1.2 Sparsity

Sparsity of a vector is the number of non-zero components contained in the vector.
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2.1.3 Basis

A set of vectors {ai}ni=1 in a vector space Rn is called basis if the vectors are linearly inde-

pendent and all the vectors in that vector space form a linear combination of the the vector

set. Then for each x ∈ Rn there are unique coefficients {ci}ni=1 such that:

X =
n∑
i=0

ciai. (2.6)

A vector space Rn can have many different bases, but there are always the same number of

basis vectors in each of them. The dimension of Rn is the cardinality of its basis vectors. A

special case of basis vectors is orthonormal basis. The set of vectors {ai}ni=1 are orthonormal

if they satisfy

〈ai, aj〉 =


1 if i = j,

0 if i 6= j,

(2.7)

2.1.4 Frames

Frames are a generalization of the concept of vector basis, by taking into account sets of

vectors that are linearly dependent. The frame is defined as a set of vectors {ai}ni=1 in Rk

where k < n corresponding to a matrix P ∈ Rd×n , such that for all vectors x ∈ Rd

A||x||22 ≤ ||P||22 ≤ B||x||22, (2.8)

with 0 < A ≤ B < ∞ and A implies that rows of P are linearly independent. A frame is

called tight frame if A=B and in the case when A=B=1 the frame is called a Parseval frame.

Every orthonormal basis is a Parseval frame but all Parseval frames do not form orthogonal

basis. An equal norm frame is the one if there is a constant v such that c > 0 and ||ai||2 = c

for all i=1,...,n and is unit norm if c=1.

2.2 Sparse Signal model

In compressed sensing, sparsity is the prior information assumed of the vector, we intend to

efficiently sense or whose dimension we intend to reduce. A signal x is said to be sparse

if it has k non-zero entries at most, which is measured by the `0 norm of the signal i.e. if

||x||0 ≤ k then mathematically let

∑
k

= {x : ||x||0 ≤ k}, (2.9)
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denote a set of all the k-sparse signals. In case we have signals that are not sparse themselves,

then we check if they admit a sparse representation in some basis Φ The signal x can still be

referred as k-sparse while we can express x as x = Φc where ||c||0 ≤ k.

2.3 Compressed sensing technique

Compressed sensing theory rests of the recovery of signals by using under-determined sens-

ing matrix. The basic equation of CS theory is

ym×1 = Am×nxn×1, (2.10)

whereas in the equation above, the unknown signal to be retrieved is x, A is the sensing

matrix, and both of these produce y the measurement vector. Generally, sampling may be

termed as a linear operation performed on the signal which is basically the same as identity.

Now consider a k sparse signal x, and multiply it with identity matrix it gives y(samples).

Each entry of y can be viewed as the inner product of the identity matrix and the signal x. If

the information in x is preserved by y since y=x(no information loss), therefore the signal x

can be recovered.

Figure 2.2: No information loss when y=Ix.

However, in CS instead of multiplying with an identity matrix, an under-determined ma-

trix (m � n) is used for dimensionality reduction, taking m measurements. As the under-

determined matrix is not a full rank matrix so information cannot be preserved and there are

infinitely many solution for the same x. This can be visualized in fig 2.3

To obtain a unique solution the signal x must be k sparse. Therefore assuming x is sparse

7



Figure 2.3: When y=Ax and A(m� N) gives infinite solutions.

and since y is the linear combination of k columns of the matrix. So in this case the 3

columns corresponds to the 3 non-zero entries in the vector x.

Figure 2.4: Taking k columns at a time from A.

Compressed sensing can be further extended to the case of non-sparse signals as well in

addition to sparse signal vectors. This is achieved by converting the non-sparse signals to a

representation that is sparse, by using sets of signals called dictionaries. The scope of com-

pressed sensing has been extended by the possibility of representing signals in other basis.

This way the CS theory is applicable to non-sparse signals in temporal and spectral domain.

The dictionary matrix Ψ is constituted of a set of waveforms or components (Ψi) that may

be interpreted as columns [7]. The matrix of Discrete Fourier Transform can be considered
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as an example of dictionary containing sinusoidal waveforms. A signal that is consistent

with dictionary Ψ can be represented by a vector α , which contains the coefficients for

superposition of components (Ψi) . As stated below

xn×1 = Ψn×l.αn×l. (2.11)

The representation is exact if the signal is completely consistent with the dictionary, oth-

erwise it gives an approximation. To apply CS theory to a signal it is important to find an

appropriate dictionary or domain in which the signal is sparse, for example a signal may

be sparse in spectral domain but not in temporal. Measurement vector y is obtained from a

signal x that is sparsely representable as mentioned below:

ym×1 = Φm×n.xn×1. (2.12)

Combining the two operations performed in equ 2.11 and 2.12 into one equation we get:

y = Φ.Ψ.α. (2.13)

Equation 2.13 represents the technique of CS theory such that it can be applied to the non-

sparse signals as well.

2.4 Existence of Unique Minimal Sparse Solutions

Generally an under-determined system of linear equations has infinite solutions because the

number of variables is more than the total number of equations. A unique solution may be

obtained by considering geometric analysis. To get a unique sparsest solution with a high

probability, it is required to know the sufficient condition on the sparsity of a signal vector.

For a linear system to obtain a solution there are three possibilities it may have no solution

at all, or a unique solution else many solutions.

2.4.1 Definitions and Representations

Some basic concepts and definitions are stated before going deep in to these possibilities of

solutions.

Definition 2.1. Linear Independence of Vectors: For a set of vectors A= a1, ..., am where

a ∈ Rn and a set of scalars w1, ., wm where w ∈ Rn , the vectors are linearly independent if

the solution of the equation w1a1 + .... + wmam = 0 , provided the set of scalars wj are all
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zero [20].

If the above equation is satisfied for some other set of scalars that are not all zero then

the vectors are linearly dependent because then some vector may be represented by a linear

combination of the other.

Definition 2.2. Rank of a Matrix (A): The rank of a matrix is the maximum number of

linearly independent column or row vectors [20].

Definition 2.3. Span/Vector Space: For a set B of vectors a1, ..., am, such that a ∈ Rn, a set

of all linear combinations of these vectors is called the span/vector space of m vectors [20].

2.4.2 Existence and Number of Solutions

While determining the solution of a set of linear equations, the concept of linear indepen-

dence and rank of matrix plays an important role to discover the properties of the solution.

The properties of the solution include the existence of solution and its uniqueness. Now we

discuss the various possible types of solution for a linear system of equations with m equa-

tions and n variables. The matrix A and its augmented matrix Ac for the system of linear

equations is given as

A =


a11 . . a1n
. . . .
. . . .
. . . .
am1 . . amn

 Ac =


a11 . . a1n y1
. . . . .
. . . . .
. . . . .
am1 . . amn ym

.

Existence of Solutions: The solution for the above equations exists if and only if the ranks

of the two matrices A and Ac is equal i.e. rank(A)= rank(Ac).

Unique solution: If the rank of the matrix A is equal to the number of columns in matrix A

then a unique solution exists it can alternatively be stated as rank(A)= rank(Ac)=n.

Multiple solutions: The system has infinitely many solutions when the rank r is less than

the number of columns of the matrix. These infinite solutions can then be obtained by the r

coefficients.

The system of linear equations discussed above can be represented in another concise

form i.e. in the form of matrix vector product

Ax = y. (2.14)
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The above relation may be manifested in another form where the components of x here

may be interpreted as weights of column vectors of A. This other representation is given as

follows

a1x1 + a2x2 + .....+ anxn = y, (2.15)

where xi while i=1,.,n are the components of x. Considering the possibilities of rank the

rank of Ac can either be equal to the rank of A or can be equal to the rank(A)+1. Assume

the solution of equation 2.15 to be χ then y is supposed to be linearly dependent on χ in this

situation the rank(A) = rank(Ac)

2.4.3 Minimal sparse unique solution

In order to determine a unique sparse solution we need to define a limit for the number of

non-zero elements present in the sparse vector so that the probability of the recovery remains

high. A weak condition for the limit of sparsity is provided by spark, defined as follows:

Definition 2.4. Spark: The spark of a matrix A is the smallest number of columns that are

linearly dependent [4].

The limit for sparsity defined in terms of spark is given by the following theorem:

Theorem 2.1: For any y ∈ Rm there exists at most one k-sparse x such that Ax = y if and

only if spark(A) < 2k.

In light of the definition of spark and theorem 2.1 the limit on sparsity is k > spark(A)
2

.

The other possible limit that may be imposed on sparsity is interpreted by geometry and is

k < m − 1. However, the limit imposed on sparsity by spark is not sufficient and therefore

for a further insight into this limit brute force technique is considered.

Brute force technique is used to verify the uniqueness of the solution for a sparse signal.

For this purpose consider an under-determined system of linear equations Ax=y where A

∈ Rm×n and it is a full rank matrix i.e. rank(A) = m. For a k-sparse vector x when multiplied

by this matrix A i.e. Ax=y the product is y which is the result of the weighting of the k non-

zero elements of x against the k columns of A. This concludes that y is linearly dependent

on A and thus lies in a sub-space made up of k linearly independent vectors from A. Brute

force technique determines a sub space that is unique for y and works by taking A and y as

inputs. For brute force technique to work determinants of all possible sub matrices, obtained

by concatenating y with A need to be obtained. The algorithm then provides details about
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the solution. The solution is considered unique if out of all the determinants calculated of

the possible sub matrices, one determinant produces a zero.

In case there are more than one determinant that gives a zero then there exist multiple

solutions. There may be two cases when multiple solutions emerge. One reason being

the existence of linear dependence between the columns of the matrix A. Other case when

multiple solutions are exhibited even though the matrix A has linearly independent columns.

So to avoid multiple solutions the brute force approach needs to be improved in order to

get unique solution. To overcome the problem initially it is required to distinguish between

the two scenarios, which is done by taking different sets of matrices for each case. To form

a new modified approach the determinant taking method is discarded (as determinants can

only be taken for square matrices) due to the non-square sub-matrices due to sparsity level

below m−1. The new modified approach takes help of rank to get a unique solution. If

different sub-matrices produce rank same as the sparsity, the same method is repeated by

keeping sparsity at one level lower than the previous. Then the algorithm calculates rank of

the concatenated sub-matrices of m−2 columns of A with y.

2.5 Sensing matrix and necessary conditions on sensing matrices

An important problem in CS is that the necessary information needs to be preserved in the

signal x when multiplied by the sensing matrix A to get the measurement vector y. To handle

this problem an appropriate sensing matrix must be designed. The sensing matrix that has

dimensions m×n where m� n basically performs dimensionality reduction that is it maps

Rn to Rm. To use an appropriate sensing matrix there are some conditions in CS that must

be fulfilled. These conditions are as follows:

2.5.1 Null space condition

The sensing matrix A required should be such that all the sparse vectors when multiplied to

it give distinct measurement vectors, so that in the recovery process the right sparse vector is

retrieved. Mathematically let x and x’ be two distinct sparse vectors such that x,x’∈
∑

k then

it must be Ax 6= Ax’ so that x and x’ can be reconstructed from their respective measurement

vectors.

Null space of A is the set of signal vectors x that follow the condition Ax = 0 i.e when
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product of these vectors is taken with the sensing matrix A they produce zero/null vector [4].

N (A) = {x : Ax = 0}. (2.16)

Consider if Ax = Ax’ then A(x− x’)=0 while x - x’ ∈
∑

2k then A uniquely represents all x

∈
∑

k if and only if N (A) does not have any vectors in
∑

2k.

Now to define the Null Space Property (NSP) let a set of indices be Y⊂ {1, 2...n} and Yc

=
{1, 2...n}

Y
. This means that the zeros in a vector xY will be in accordance with the set Yc.

Definition 2.5: Null space property (NSP) of order K exists for a matrix A if there is a

constant C > 0 such that, [4]

||hY||2 ≤ C
||hYc ||1√

K
, (2.17)

holds for all h ∈ N (A) and for all Y such that |Y| ≤ K. The NSP then means that the

null space vectors of a sensing matrix A should not be too concentrated on small subset of

indices. NSP provides a good foundation for sparse recovery but does not provide sufficient

guarantees in the presence of noise. NSP is a weak condition on the sensing matrix so more

conditions are required which are discussed further.

2.5.2 Restricted Isometry Property

Candes and tao proposed the condition of restricted isometry on the sensing matrix A to

provide immunity from noise and errors [19].

Definition 2.6: A matrix A satisfies the restricted isometry property (RIP) of order K if an

element δk ∈ {0, 1} exists such that [4]

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22, (2.18)

where x is the k-sparse signal. If the sensing matrix A satisfies the RIP of order 2k, then

it implies from equ 2.18 that A approximately preserves the distance between any pair of

k-sparse vectors. The equation 2.18 shows RIP to be symmetric around 1, following is a

more generalized version that uses arbitrary bounds

α||x||22 ≤ ||Ax||22 ≤ β||x||22, (2.19)

where 0 < α < β <∞. Equation 2.19 is consistent with equ 2.18 after multiplying A with√
2

(α + β)
for scaling and δ=

β − α
β + α

.
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2.5.3 Coherence

While NSP and RIP provide sufficient guarantee for CS recovery but to verify them for

a matrix A the computational complexity is combinatorial so it is desirable to use some

property that has lower complexity. Coherence is the desired property in that case.

Definition 2.7: Coherence of a sensing matrix A denoted by µ(A) may be defined as the

largest absolute inner product of any two columns of A and mathematically given by:

µ(A) = max1≤i≤j≤n
|〈ai, aj〉|
||ai||2||aj||2

. (2.20)

The range of coherence is µ(A) ∈
√

n− 1

m(n− 1)
, 1 and the lower bound is the Welch bound.

The Welch bound i.e. the lower bound is µ(A) ≥ 1√
m

in the case when n� m [4].

2.5.4 Relation between RIP and coherence

As discussed above the Restricted Isometry Property and Coherence conditions on the sens-

ing matrix are taken as two separate conditions with different levels of simplicity and ap-

plicability. However a lemma exists that explains the relation between the two independent

conditions.

Lemma 2.1: If the coherence of matrix A has the upper bound µ and the columns of the

sensing matrix A are normalized, then for any k < µ−1 + 1, A satisfies RIP(k, (k-1)µ).

The above mentioned lemma is an application of Gresgorins theorem [37].

When the sensing matrices under observation are random in nature then the condition of

coherence provides weaker results as compared to the RIP. The condition of coherence is

considered advantageous because of the ease of calculation it provides for a particular ma-

trix, it provides an edge when considering deterministic matrices, whereas for deterministic

setting calculating RIP constant is a Non Polynomial time problem.
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Chapter 3

RECOVERY ALGORITHMS FOR COMPRESSED SENSING

The compressed sensing theory is based on the exact recovery of a sparse signal by only few

linear non-adaptive measurements by convex optimization [4]. In other words, compressed

sensing provides with a unique sparse solution to the under-determined system of linear

equations. Compressed sensing approach differs from classical sampling in that it acquires

measurements by taking inner products of signal and more general test functions. Typically

measurements are taken by the linear system obtained as a result of the product of a sparse

input signal vector and coefficient matrix called sensing matrix in CS.

ym×1 = Am×nxn×1, (3.1)

whereas in the equation above, the unknown signal to be retrieved is x, A is the sensing

matrix, and both of these produce y the measurement vector.

For recovering a sparse vector there are few types of algorithms including convex opti-

mization algorithms, greedy algorithms and combinatorial algorithms. Convex algorithms

have greater computational complexity but work well with few measurements. On the other

hand, the combinatorial algorithms require more measurements but are much faster. Greedy

algorithms provide better compromise for complexity and number of measurements.

3.1 Combinatorial Algorithms

The combinatorial algorithms apply group testing to highly structured samples of the signal,

but they are mostly not used in compressed sensing as compared to convex optimization

algorithms and greedy algorithms.

3.2 Convex Optimization

To obtain the sparse vector that is the unique solution of the underdetermined system of

linear equations using the following optimization problem

x̂ = arg minx||x||`0 subject to Ax = y. (3.2)
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We obtain the sparsest vector using this search technique. However, this approach is dif-

ficult because it involves the ||.||`0 norm which is a non-convex problem. To reduce the

computational complexity of the optimization problem we translate the problem from ||.||`0
to ||.||`1

x̂ = arg minx||x||`1 subject to Ax = y. (3.3)

The `1 minimization is a good approximation for `0 minimization as is evident in the figure

3.1. Obviously the two cannot be exactly the same yet `1 norm provides a feasible solution

for this problem. The figure shows the projections at unit circles for `0,`1 and `2 norm.

Figure 3.1: Projections at unit sphere for (a)`0, (b) `1 and (c)`2 norms.

If the measurements are contaminated by noise then the minimization problem is required

to be changed to

minx||x||`1 subject to ||Ax− y||22 ≤ ε, (3.4)

while choosing such that ε > 0. The unconstrained version equivalent of this `1 minimization

for a specific regularization parameter (λ) > 0, is given by

minx
1

2
||Ax− y||22 + λ||x||1. (3.5)

For compressed sensing problem the convex optimization algorithms that have been de-

veloped include interior-point methods [2] and projected gradient methods [6].

3.2.1 Basis Pursuit

Chen and Donoho suggested the Basis Pursuit algorithm (BP) which employs the convex

optimization method i.e. it uses the `1 minimization instead of the `0 minimization as de-

scribed in equations 3.3 and 3.2 respectively [8]. The `1 minimization method is convex i.e.

polynomial time complex as opposed to the `0 minimization which is non-polynomial (NP)
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hard. The basis pursuit algorithm may be mathematically described as [7]:

minx||x||`1 subject to Ax = y. (3.6)

Theorem 3.1: The basis pursuit recovers a signal if k < 1
2
(µ−1 + 1) and acquires a unique

sparsest solution

The fore mentioned theorem states the equivalence of `0-minimization and basis pursuit,

in other words if the signal to be recovered is sparse enough then basis pursuit can solve

the NP-complete `0-minimization problem [38]. The theorem stated below proves that `0-

minimization and `1-minimization can be treated as same if the condition of RIP is met [2].

Theorem 3.2 If a sensing matrix A fulfills RIP (2k,γ) for γ ≤ 3
(4+
√
6)

, then the sparsest

solution can be recovered correctly by Basis Pursuit if the sparsity is below k.

The advantage of basis pursuit algorithm is that it can be transformed into a linear pro-

gramming (LP) problem. LP works such that it optimizes an objective function by applying

constraints in the form of linear equations and inequalities [9]. Optimal solution is obtained

by optimizing an objective function, through identification of a similar problem which can

be solved by a polynomial time algorithm. Thus, transforming a problem into its convex

form helps in obtaining its solution.

To solve the linear programming problem there are following two types of algorithms:

Simplex algorithm: Simplex algorithm is used to solve LP, it is an iterative algorithm and

works on the principle of searching optimal solution by moving from one appropriate solu-

tion to another lying on the edges of a convex shape [11]. This algorithm is efficient with a

lower cost due to its working principle. But its performance is limited in case of degeneracy,

and hence takes longer to converge.

Interior point algorithm: Interior point algorithms [10] have a better performance as com-

pared to simplex algorithms for the case of large and degenerate problems. This type of

algorithm searches for an optimal solution by iterating inside the convex set. Complexity of

these algorithms is in polynomial time. Mosek solver [11] is employed in this thesis for l1

minimization of noise free signals, this solver is based on interior point algorithm.
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3.3 Greedy algorithms

Greedy/iterative algorithms have the advantage of being simple to implement and less com-

plex so are fast. Their performance is theoretically equivalent to those of `1 minimization

algorithms. Greedy algorithms work iteratively by approximating two parameters one is the

signal coefficients and other support of the original sparse signal until a condition for con-

vergence is fulfilled or by finding an improved estimate of the sparse signal at each iteration

to cater for the mismatch to the measured data.

Orthogonal Matching Pursuit (OMP) and iterative thresholding are two greedy algorithms

that are oldest known as well as simple.

3.3.1 Orthogonal Matching Pursuit

The idea of matching pursuit was initiated in [12]. Orthogonal Matching Pursuit (OMP)

[13] was introduced as an improvement of Matching Pursuit [12]. OMP works by initially

selecting the columns of A that are most correlated with the measurements. A residue is

calculated in each iteration and is obtained to estimate the error present in each subsequent

step. Then the same step is performed again by correlating columns with the residue of the

signal. Initially the residue is set equal to the measurement vector y, the estimate of the

sparse signal is kept equal to 0 and the active set to φ. This is represented as

r0 = y x0 = 0 and I0 = φ. (3.7)

At every step t, a new column of A is selected according to

i∗t ∈ arg maxi|〈rt−1,Ai〉|. (3.8)

Then add this column to the active set

It = It−1 ∪ {i∗t}. (3.9)

In the end it projects y on the range of AIt and the residual is renewed,

xt = (A∗ItAIt)
−1 A∗Ity, (3.10)

rt = y− Axt. (3.11)
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The criterion to stop the algorithm is either reaching a predefined number of iterations(which

also limits the number of non-zeros in y) or the comparison of A.x̂ ≈ y.The details of OMP

are given in Algorithm 1.

Algorithm 1 Orthogonal Matching Pursuit (OMP)
Input: A εRm×n, y εRm

Result: x̂
Initialization: Residue: r0 = y,
Sparsity = k,
Working Matrix Â=[],
Set of indices I0=[]
for i = 1 : k do
λi = maxj=1,...,n |〈ri−1, aj〉|
Ii = Ii−1 ∪ λi
Â = [Âai]
x̂i = arg minx̂ ||y− Âx||2 {Least Sqaures for new estimate}
ηi= Âxi {New approximation}
ri = y− ηi {updated residual}

end for

A sufficient condition for convergence is proved in [39] with reference to coherence, for the

OMP algorithm the theorem states that:

Theorem 3.3: To obtain unique sparsest solution using OMP sparsity should be such that

k < 1
2
(µ−1 + 1) to recover that solution.

The sufficient condition of RIP for OMP is as follows [40]:

Theorem 3.4: If the sensing matrix A follows RIP (k + 1, 1
(3
√
k)

) then the OMP algorithm

can recover a k-sparse signal accurately.

However, the RIP condition for OMP is weaker than the RIP condition for `1-minimization.

3.3.2 Iterative Hard thresholding

Generally greedy algorithms such as OMP are considered to be an approach better than the

`1-minimization in terms of speed. Greedy algorithms are faster than interior point or ho-

motopy methods to solve the CS problem. But because there is an inversion step required

to be performed by OMP it is still not fast enough. Another family of greedy algorithms is

considered better than OMP as it is faster than it. This family is that of iterative threshold-

ing algorithms. Iterative hard thresholding (IHT) algorithm is a good example of iterative

algorithms which are more straightforward.
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Consider the hard thresholding function

Thard(x) =


x |x| ≥ λ,

0 |x| < λ.

(3.12)

And apply this element wise to the signal vector. The equation for iterative hard thresholding

is

xt+1 = ηH(xt + A∗(y− Axt);λt), (3.13)

where λt denotes the value of threshold and xt represents the estimate of the sparse signal

at time t. The threshold value may be dependent on the iteration t. The underlying thought

is that the solution satisfies the CS problem equation y = Ax. The basic intuition is that

since the solution satisfies the equation y = Ax, the algorithm proceeds by working in the

direction of the gradient of ||y = Ax||2 and then promotes sparsity by applying a nonlinear

thresholding function. The fig 3.2 depicts this concept and represents the geometric inter-

pretation of iterative hard thresholding algorithm. The selection of the threshold parameter

is an important challenge as it affects the performance of iterative thresholding algorithm.

Assume that an oracle informs us of the true value of k. As known the nal solution is k

sparse, the threshold may be set equal to the magnitude of the (k+1)th largest coefficient.

Figure 3.2: Geometric interpretation of the iterative process of IHT algorithm.

To prove the convergence of this algorithm the following theorems are stated now.

Theorem 3.5: Suppose that k < 1
3.1
µ−1 and |x0(i)|

|x0(i+1)| < 3`i−4,∀i,1 ≤ i < k. The IHT algo-

rithm searches the correct active set in maximum
∑k

i=1 `i + k steps. After performing this
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step all of these elements will remain in the active set and the error will exponentially decay

to zero.

Theorem 3.6 Suppose that the sensing matrix A satisfies RIP(3k, γ) for γ < 1 and x is k

sparse. Then the estimate given by IHT at time t satisfies

||xt − x0||2 ≤ γ−t||x0||2. (3.14)

The IHT algorithm has very simple iterations and the mathematical operations involved

for each iteration of IHT are simple which include multiplication of a signal vector by a

matrix A or A∗. These operations are ordinary and can be efficiently performed for the

different sorts of measurement matrices including sparse, partial Fourier,etc measurement

matrices.

In iterative hard thresholding the signal estimate is initially kept zero i.e. x̂ = 0. Then

the algorithm performs a gradient descent step iteratively subsequently followed by hard

thresholding until the condition for convergence is satisfied. The steps of iterative hard

thresholding algorithm are given in Algorithm 2.

Although the results that are provided in this algorithm are slightly weaker than the results

provided for `1-minimization, in practice and specially in compressed sensing, the algorithm

performs much worse than `1 in the sparsity-measurement tradeoff.

Algorithm 2 Iterative Hard Thresholding (IHT)
Input: CS matrix/dictionary A, measurement vector y,sparsity level k.
Initialization: x̂0 = 0.
for i = 1; i := i+ 1 until stopping criterion is met do
x̂i = Hk(x̂i−1 + AT (y− Ax̂i−1))
end for
Output: Sparse representation x̂

3.3.3 Iterative Soft thresholding

Among the iterative thresholding algorithms family there is another algorithm called the

iterative soft thresholding algorithm. The soft thresholding function as given by

Tsoft(x) =


|x− λ| |x| ≥ λ,

0 |x| < λ.

(3.15)
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Then the iterative soft thresholding algorithm is defined by the following equation:

xt+1 = ηS(xt + A∗(y− Axt);λt). (3.16)

The iterative operation of iterative soft thresholding algorithm is similar to that of IHT. They

differ in the methodology of thresholding as this algorithm uses the soft thresholding opera-

tor as opposed to the hard thresholding operator used in IHT. The soft thresholding operation

used in the iterations provide an advantage that it has a connection with `1-minimization.

Let us look a bit deeper in to this concept by some more observations. To do this consider

the following optimization problem:

minx∈Rn
1

2
||z− x||22 + λ||x||1. (3.17)

The above mentioned function is minimized when x = ηS(z;λ). The soft thresholding

operation is designated as the proximity operator of the `1-norm and this calls for iterative

soft thresholding algorithm with a constant threshold parameter for solving the following

problem:

Qλ =
1

2
||y− Ax||22 + λ||x||1. (3.18)

A fascinating feature of the iterative soft thresholding algorithm is that, if the sensing matrix

A is orthonormal and A∗A = I, then the solution of Qλ is going to be ηS(A∗x;λ).

Theorem 3.7: Suppose that k < 1
4.1
µ−1 and |x0(i)|

|x0(i+1)| < 2`i−5,∀i,1 ≤ i < k. The IHT

algorithm searches the correct active set in maximum
∑k

i=1 `i + k steps. After performing

this step all of these elements will remain in the active set and the error will exponentially

decay to zero.

The number of iterations needed to recover the active set, depends on the ratio of the co-

efficients in IST and IHT. But, this dependency is roughly logarithmic and therefore it works

pretty well in practice even in case of high dynamic range signals. Also, the algorithms

search the correct active set in a defined number of iterations and once they get the correct

active set, they will converge to the exact solution exponentially fast.

Other well-known greedy algorithms are Stagewise OMP (StOMP) [14], Compressive

Sampling MP (CoSaMP) [15] and Regularized OMP (ROMP) [16]. Orthogonal Matching

Pursuit with Replacement (OMPR) [17] is yet another class of algorithms which include
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most iterative (hard)-thresholding algorithms as special cases.

3.3.4 Approximate Message Passing algorithm

Approximate Message Passing (AMP) algorithm as according to compressed sensing theory

considers a vector y of n measurements obtained from an unknown vector x of length N

according to y = Ax, where A is the n × N measurement matrix n < N [18]. Amp works

by starting from an initial guess for x0 = 0, then the iterative first order approximate message

passing (AMP) algorithm works according to

xt+1 = ηt(A∗zt + xt), (3.19)

zt = y− Axt +
1

δ
zt−1〈η′

t(A∗zt−1 + xt−1)〉. (3.20)

where ηt(.) is the scalar threshold function and η′
t(.) is its derivative, xt ∈ Rn is the current

estimate of x, zt ∈ Rn is the current residual. A∗ denotes transpose of A.

AMP is similar to iterative thresholding algorithms as given by

xt+1 = ηt(A∗zt + xt), (3.21)

zt = y− Axt. (3.22)

AMP is different from iterative thresholding algorithms because it has an additional

term 1
δ
zt−1〈η′

t(A∗zt−1 + xt−1)〉 absent in iterative thresholding, this term helps improve the

sparsity-undersampling tradeoff.
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Chapter 4

PHASE TRANSITION OF RECOVERY ALGORITHMS

The Shannon Nyquist sampling theorem provides a criterion to sample a bandlimited signal.

This theorem has been used in communication systems. But in some cases the desired signal

does not require sampling at a rate as high as the Nyquist theorem. Instead sampling can

be done at a much lower rate for a specific class of signals, this phenomenon is the subject

matter of compressive sensing. It can sample particular signals that are sparse for at least a

specific number of non-zero values k. Thus sparse signals form a class of signals that may be

sampled below the normal rate hence causing undersampling that is the basis of compressive

sampling.

The level of possible undersampling of signals in compressive sensing is necessary to

be determined. This way it will be known beforehand that minimum how many sam-

ples/measurements may be taken of a signal to accurately reconstruct a signal. Determining

this is the basic problem in compressive sensing. To determine the amount of undersam-

pling possible various reconstruction algorithms are tested and designed to optimize it. The

lesser the number of samples required to reconstruct the original signal the better the algo-

rithm. Optimization may be achieved by designing algorithms having better capability to

reconstruct signals that are highly undersampled or by designing sensing matrices that allow

better reconstructions using the same algorithms.

To graphically observe this important phenomenon phase transition curves are taken into

account. Before discussing phase transition let us define the notations. Consider an unknown

vector x ∈ Rn of interest; then there are the measurements y = Ax. Here A is an m × N

matrix i.e. the sensing matrix and N > m. Although the system is underdetermined, it has

been shown that, when it exists, sufficient sparsity of x may allow unique identification of x.

4.1 Phase transition

The `1 minimization is the basic reconstruction procedure adapted in CS for sparse signal

recovery. Therefore for the case of `1-minimization with a random sensing matrix A, there
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is a well-defined breakdown point, `1 norm can successfully recover the sparsest solution

provided k is smaller than a certain definite fraction of n.

To define phase transition [32] consider a specific space having a standard set of spar-

sity/undersampling coordinates let them be δ = m
N

which is the undersampling fraction and

let ρ = k
m

be the sparsity fraction. As a result we obtain a two-dimensional phase space

(δ, ρ) ∈ [0, 1]2 which is called the undersamplin/sparsity phase space. In this phase space

0 < δ ≤ 1 and if δ is equal to 1 then A is a square matrix and hence the system y = Ax will

be well determined and so is marginally undersampled. On the other hand if δ � 1 then the

system y = Ax is underdetermined and represents high undersampling. The ρ which is the

sparsity/density of the signal that needs to be recovered, if it is close to zero then it means

that the signal is very sparse and if it is close to 1 then the signal vector is dense having many

non-zero entries.

The phase space (δ, ρ) ∈ [0, 1]2 describes the difficulty of a problem instance, as we

move upward and towards the left side the problems start to become harder. The phase

space is a graphical representation of the success and the failure of the `1 algorithm which is

determined by the location in the phase space where the phases are separated by a curve as

shown in fig 4.1.

Figure 4.1: Phase Diagram of `1 minimization x-axis: undersampling fraction δ = m
N

. y-
axis: sparsity fraction ρ = k

m
. Dark region is region of failure. Light region: region of

success

Clearly there are two phases: one where the fraction of success is essentially one and

another where the fraction of success is essentially zero. There is a narrow transition zone
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between these two phases where the fraction of success drops from 1 to 0. As seen from the

figure 3.1 if (δ, ρ) lies above the curve then it is a success and if below then a failure. This

figure is the phase transition diagram.

The phase transition curve may be obtained experimentally or theoretically. Theoretically

it can be determined using mathematics specifically by obtaining explicit formulas for a

function ρ using combinatorial/polytopes geometry. Let ε > 0 then the probability that by

P1(`1 minimization) the sparsest solution for CS recovery problem y = Ax reaches 0 or 1 is

given by:

k ∼ n.(ρ`1(
m

N
)± ε). (4.1)

Empirical results for the fraction of success represent the transition from success to failure

as we move down from one to zero. The theoretical curve lies in between the two extreme

curves i.e. of absolute success and absolute failure. This zone between the two extreme

curves which is the phase transition zone gets narrow and narrow as N increases and starts

to match with a theorem, according to which as the limit of N becomes larger, the zone has

vanishing width. In theory the same has been proven for `1 minimization i.e. Basis Pursuit

as well as for other reconstruction algorithms used in compressed sensing.

Let us discuss this phenomenon formally by making an assumption that the signal x that

is to be reconstructed is taken from a specific distribution. Let that distribution be

Fx(xi) = (1− ε)δ0(xi) + εG(xi), (4.2)

where δ0 is 1 only when xi is zero and is zero otherwise. G(xi) is also a distribution function

and it provides the distribution for the elements of the signal vector x that are not zero, but

this is generally unknown at first. Thus the distribution equation shows that the probability

that an entry of the signal x is zero is 1 − ε, while the probability that the element will be

drawn from another distribution G(.) is ε. Now if the maximum number of elements of x are

N then the expected number of elements that are not zero isNε. Also the Hoeding inequality

says that the number of non-zeros elements will concentrate around this value quite rapidly

as N ⇒∞.

As discussed in earlier chapter the compressed sensing theory the spare signal x is mea-

sured by a sensing matrix A that is underdetermined and its elements are drawn i.i.d from
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a specific distribution. Now assume that the measurement vector y produced by y = Ax

is used by a reconstruction algorithm Alg to recover the signal x. However accurate is the

algorithm Alg there still might be some samples of the random measurements where the al-

gorithm Alg does not work good enough and cannot yield the correct result. This is possible

if the sensing matrix A is a null matrix with all entries equal to zero or in the other case when

the signal vector x is dense. Having considered this possibility, the performance is measured

in terms of the probability with which the signal is recovered accurately by the algorithm as

a function of (N, δ, ρ, F ). For the case when a particular distribution F is taken, the proba-

bility of accurate recovery is taken as a function of(N, δ, ρ). In CS the signal vectors to be

recovered are of very high dimensions so these probabilities are supposed to be considered

as N ⇒ ∞. By calculating these probabilities a 2-dimensional mapping is obtained which

is represented by (ρ, δ) manifesting the accuracy of recovery. This 2-D map is the phase

diagram like the fig 3.1 represents the phase diagram of `1 minimization. Phase transition

manifests the sparsity-measurement trade-o for an algorithm. Therefore it is useful for com-

parison and tuning purposes. Figure 3.2 shows the phase transition curve for IHT algorithm.

The figure also shows that the transition becomes sharper and sharper as the dimension of

the problem instance increases.

Figure 4.2: Phase Transitions for finite N. Probability of incorrect recovery attempts by IHT
shown as a function of sparsity fraction ρ. 3 values of N are considered: 500, 1000, 4000; as
N increases the transitions become steep.
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4.2 Estimating empirical phase transition

To empirically find the phase transition an experimental setup is considered. So to conduct

the experiment we fix a problem suite i.e. a coefficient distribution for generating the prob-

lem instance. Then take a problem instance having the measurements but not the original

signal to find out if it can be reconstructed by an algorithm by giving a success or failure on

the phase transition graph. For the complete experiment there are many problem instances.

We fix the N to let us say N=1000 and vary m = [δN ] and k = [ρm] . Now according to it

change m over a range of values from 100 to 900 in nine equal steps. For each combination

of m and N we change the sparsity k from 1 to m. As a result we have a grid of [δ, ρ] values

in parameter space [0, 1]2. At the end for every set of the problem instance a series of Monte

Carlo trails are performed let them be M=100. After this there will be a number of successes

S recorded out of the total M trails. For each problem instance a success is declared when

||x0 − x̂||2
||x0||2

≤ tol, (4.3)

where tol is the tolerance allowed which is set beforehand generally it may be set as 10−3.

The variable for the number of successes is Si which denotes that there is a success at the

ith iteration of the Monte Carlo trials. The distribution for the success is the binomial dis-

tribution Bin(π,M) where π denotes the success probability π ∈ [0, 1]. The result of these

Monte Carlo trials is observed by considering the total number of successes in those M trials.

The probability of success depends on the parameters k, m and N and is represented as:

π = π(ρ|δ;N). (4.4)

The phase transition for finite-N is the value of ρ at which the reconstruction rate crosses

50% thus the probability of success is:

π(ρ|δ;N) =
1

2
atρ = ρ∗(δ; θ). (4.5)

To empirically estimate the location of phase transition using logistic regression from the

available data, we require the sparsity k along with the total number of trials M and the

number of successes S out of the total M, i.e. this triple (k,M,S). This triple is taken for

one value of (n,N), and model S(k,n,N)∼ Bin(πk;M) using a generalized linear model with
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logistic link

logit(π) = a+ bρ, (4.6)

where ρ = k
m

and logit(π) = log( π
1−π ) in biometric language, we suppose that the dose-

response probability follows a logistic curve.

The parameters â,b̂, give the estimated phase transition from:

ρ̂∗(δ; θ) = − â
b̂
. (4.7)

The empirical phase transition for two different sets of experiments taken in [32] are

shown in fig 3.3. For each experimental data set (k,m,N) three success fraction S/M curves

are taken one with 90% reconstruction, another with 50% reconstructions and the third for

10% reconstructions. These three are represented by blue, green and red respectively. An

Figure 4.3: : The empirical phase transition for two sets of experiment. Both the lower and
the upper set of success probabilities S/M at values 0.1(red), 0.5(green) and 0.9(blue). The
black curve closer to the 0.5 curve is the theoretically obtained curve.

important thing to notice is that near the green curve which represents the 50% reconstruc-

tions is another curve in black color which is the representation of the formula for phase

transition proved through combinatorial geometry. The closeness of the theoretical curve

with the 50% reconstruction curves proves that in empirical analysis this is the curve that di-

vides the graph into two regions or phases. Thus making this graph the phase diagram. And

the transition zone between the 90% curve and 10% curve is the region where phenomenon

of phase transition occurs. The theoretical curve or the 50% curve in experimental case gives
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precise information on the number of samples needed to reconstruct x with high probability.

This defines the limit of undersampling that is possible for a particular sparsity level.

Generally the sensing matrix ensembles considered follow the i.i.d Gaussian distribution.

However, other matrix ensembles may also be considered to obtain the phase transition dia-

gram. The empirical phase transition for matrix ensembles other than Gaussian are consid-

ered in [33]. These other ensembles are Partial Fourier (obtained by selecting m rows out of

the N ×N Fourier matrix), Partial Hadamard(m x N matrix where it has been obtained from

Hadamard matrix of N by N by selecting m rows randomly),Rademacher (entries may be +1

or -1 with equal probability), Bernouli (with entries either 0 or 1 having equal probability),

Random Sparse Expander Graphs(a random matrix having columns that are not duplicate

of others with [p.n] entries as one and others zero), Random Ternary( entries of matrix are

0,+1,-1with probability of a zero entry p and the other two equally likely). The fig 3.4 shows

the 50% recovery curves of the seven non-Gaussian matrices along with the associated the-

oretical curve. With upper set of curves for the non-negative signal solved by LP and seven

lower curves using P1.

Figure 4.4: Empirical phase transition curves for 50% successful reconstruction of non-
Gaussian random matrix ensembles. The upper set of curves obtained using LP and the
lower set using P1. These curves closely match the theoretical curves proven for Gaussian
ensemble overlaid on them.

To accurately predict the phase transition a formula that identifies the amount of under-

sampling allowed for generalized sparse objects [34]. The defined formula is for approxi-

mate message passing (AMP) algorithms for compressed sensing. For this particular formula

the sparsity and undersampling parameters be ε = k
N

and δ = m
N

respectively. Hence, the
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phase space is defined by (ε, δ) ∈ [0, 1]2 for all sorts of limiting situations that may be en-

countered once (k,m,N) grow large. The formula used to get the curve for phase transition

using AMP where in compressed sensing setting the distribution for the signal class is de-

noted as FN,ε and the asymptotic minimax Mean Square Error(MSE) per coordinate using

denoiser is given by

δ >MF(ε|η). (4.8)

This is the case when for success and for failure the inequality is reversed. Where M(ε|η)

is given by

MF(ε|η) = infτ>0 supv∈Fi,εEv{|X − η(X + Z; τ)|2}. (4.9)

The figure 3.5 represents the asymptotic phase transition of AMP i.e. obtained by minimax

denoising

Figure 4.5: Minimax MSE of different separable denoisers in terms of the sparsity parameter
ε.

If the measurements of a signal have been corrupted with Gaussian noise then the phase

transition obtained by minimax MSE of matrix denoising is the same as the phase transition

of a noiseless signal measurement with Gaussian distribution [35].

The phase transition for some deterministic matrices have been taken in [36] in which

experimental results for various deterministic matrix ensembles such as Spikes and Sines,

Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices,

and Grassmannian Frames have been observed. It was concluded that the Gaussian phase
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transition is the same as that obtained for these deterministic matrices. Convex optimization

gives successful reconstruction for a sparse signal using deterministic matrices at the same

points as the Gaussian random matrices. Fig 3.6 and fig 3.7 show the results from [36].

Figure 4.6: Phase transition of chirping frames with different coefficient fields (A) represents
real while (B) represents complex.

Figure 4.7: Phase transition of DG frames with different coefficient fields (A) represents
positive while (B) represents real.

The next figure 6.3 depicts the comparison of the phase transition curves for random

sensing matrix and that of BASC based deterministic sensing matrix for OMP. This graph is

obtained by employing Orthogonal Matching Pursuit(OMP) algorithm.

The figure shows that the BASC based deterministic sensing matrix which have low co-

herence show a much better phase transition for the OMP algorithm. Thus depicts that lower

coherence of sensing matrix does have an impact on the number of successful reconstruc-

tions. Therefore causing an improvement of the phase transition as compared to that of
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Random Gaussian based sensing matrix.

The BP algorithm provides better phase transition as compared to OMP if the sensing

matrix is random in nature. the phase transition of AMP is nearly the same as that of BP.

Therefor for the case of random matrix BP has the highest phase boundary. A comparison

is made of the highest possible phase boundary by BP using random matrix to the phase

transition obtained by using deterministic matrix for OMP in figure 6.4. The analysis of this

figure shows that low coherence based matrices improve phase transition.
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Chapter 5

DETERMINISTIC SENSING MATRICES

Random measurements form the basis for testing and simulating in compressed sensing, and

its role can be considered similar to the role of random coding in traditional communica-

tion system theory i.e. Shannon theory [21]. They provide the lower bound i.e. in terms of

performance represent the worst case scenario. In traditional communication system theory,

deterministic codes that have fast encoding and decoding algorithms are designed to im-

prove typical rather than worst case performance for reliability. So in compressive sensing

deterministic measurements play the same role.

Random sensing matrices are advantageous in the sense that they are easy to construct and

provide high success probability in reconstruction. However, they have several drawbacks.

The foremost being the excessive complexity in reconstruction, which is the cost for efficient

sampling. Then they require significant space to store the entries of a random sensing matrix.

Another important one being the absence of any reliable and efficient method of verifying if

the random sensing matrix satisfies the RIP, which is the performance criterion for a sensing

matrix. In case of random measurements every k-sparse signal is considered to have equal

probability as opposed to the approaches used in sensor signal processing, which employ the

prior probability distributions [21].

To overcome the drawbacks of random sensing matrix we may exploit specific structures

of deterministic sensing matrices. The most important advantage of deterministic sensing is

that it provides simplicity in sampling and recovery process. Not only deterministic mea-

surements provide a degree of simplicity but also an improvement in the efficiency and

accuracy of reconstruction. If there is a priori information regarding the location of non-

zero elements then it is possible to further improve reconstruction efficiency. As opposed to

random matrices the entries of a deterministic sensing matrix do not require much storage

space [21].

The important conditions that a sensing matrix should satisfy have been discussed in chap-

ter 2. These conditions include Null Space Property, Restricted Isometry Property and Co-
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herence. The sensing matrix we employ for sparse recovery should satisfy these conditions.

Of the three conditions mentioned coherence is the most feasible and easy to verify con-

dition, because it has a lower complexity. Generally deterministic sensing matrices can be

classified into two categories. One type of matrices is based on coherence and the other are

the matrices that are based on RIP or some weaker RIPs.

The criterion for the construction of a better sensing matrix is to optimize the mutual

coherence present between the columns of the sensing matrix i.e. lower the coherence the

better for sparse recovery. Best spherical code algorithm can be used to construct sensing

matrices that have low coherence and thus may be suitable for recovery in compressed sens-

ing problems. Before discussing the best spherical codes in detail we briefly present the

important prerequisite concepts.

5.1 Basic concepts and definition

Basic concepts that will help develop algorithm for constructing a sensing matrix using best

spherical codes are discussed here. The concept of sphere packing is important in getting a

set of optimum vectors having desired distance properties .It is defined as:

Definition 5.1. Sphere packing: The method of arranging spheres in a particular space,

whereas the spheres are non-overlapping, is called sphere packing [22].

This concept is applicable where spheres whose centers are at a unit distance from the

origin, need to be placed without overlapping each other in a particular space. To achieve

this optimization with maximum possible radius of these spheres, the idea of sphere packing

needs to be applied. To extend it to unit norm vectors, the centers of the spheres are con-

sidered unit norm positional vectors. To lower the mutual coherence the distance between

vectors needs to be maximized. If the size of the spheres increases so does the distance

between their centers meaning that the distance between vectors is increased. Hence the

desired result of lower mutual coherence can be achieved.

Frame is an important prerequisite concept in CS

Definition 5.2. Frame: The frame [4] is defined as a set of vectors {φ}ni=1 in Rk where

k < n corresponding to a matrix Φ ∈ Rd×n, such that for all vectors x ∈ Rd

A||x||22 ≤ ||Φ||22 ≤ B||x||22, (5.1)
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with 0 < A ≤ B < ∞ and A implies that rows of Φ are linearly independent. A frame is

called tight frame if A=B and in the case when A=B=1 the frame is called a Parseval frame.

Every orthonormal basis is a Parseval frame but the converse is not always true. An equal

norm frame is the one if there is a constant v such that c > 0 ||φi||2 = c for all i=1, n and is

unit norm if c=1. A frame is called an exact frame if no proper subset of the frame spans the

inner product space. Each basis for an inner product space is an exact frame for the space

(thus a basis is a special case of a frame).

Definition 5.3. Maximum Frame Correlation: The maximum frame correlation for a unit

norm frame {ai}ni=1 ∈ Rm is mathematically defined by

MF [{ai}ni=1] = maxi,j,i6=j{|〈ai, aj〉|}. (5.2)

An important kind of frame in CS is the grassmannian frame defined as:

Definition 5.4. Grassmanian Frame: A frame that consists of vectors {ai}ni=1 ∈ Rm

gained as a result of minimizing the maximum frame correlations is a grassmannian frame,

mathematically represented as:

min{MF [{ai}ni=1]}.

Figure 5.1: (a) A frame having 5 vectors along with their antipodals in R3 (b) Grassman-
nian frame having 5 equiangularly spaced vectors along with their antipodals in a unit norm
sphere.

And the minimum is taken on all unit norm frames {ai}ni=1 ∈ Rm. The angle between

two unit norm vectors is the parameter that defines the correlation between them. So for
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a minimum of the maximum frame correlation the angle between the unit norm should be

maximum. A grassmannian frame can also be termed as an equiangular frame, because the

later has optimal angles between frame vectors.

The frame constituent vectors and their respective antipodals are plotted on a unit sphere

in Figure 3.1(a). The maximized angles between vectors result in a Grassmannian frame.

5.2 Best Spherical Codes

A unit sphere that has its center on the origin of an N-dimensional Euclidean space RN

having a set of M points located at its surface is called a spherical code and is represented

by Cs(N,M) [22]. A point contained in Cs(N,M) = {si}ni=1 is represented in a Cartesian

coordinate system by the respective coordinates as si = {si1, ., sin} where sij ∈ R. Another

way of representing the spherical codes is in the form of a matrix Cs(N,M) in RM×N ,

where the N columns represent the M-dimensional spherical code unit vectors or points in

M-dimensional Cartesian coordinate system.

By maximizing the minimum Euclidean distance between the unit vectors an improved

code is obtained known as the best spherical codes represented as Cbs(N,M) [24]. As

the distance is maximum for the spheres in a best spherical code, so its matrix Cbs(N,M)

represents spheres that are not intersecting and lie at the center of unit norm spheres and are

largest possible in size. Thus they exhibit the densest packing for a specific configuration

[26]. The distance distribution exhibited by the best spherical code matrix Cbs(N,M) is the

same in all coordinate axes orientations. The best spherical codes matrix Cbs(N,M) for any

particular configuration may be unique or may have more than one distance distribution for

the same minimum distance.

For the construction of best spherical codes matrix Cbs(N,M), consider a unit norm

sphere and let us say n number of charged particles exist on the sphere with a repulsive

force field among the particles [27]. The particles move under the influence of this repulsive

force and have a local minimum potential energy at some point. To obtain best spherical

codes, the local minima needs to be obtained. The generalized potential energy function

having a relationship with the distance distribution g(D) given in [28] helps find out the

local minima. The distance distribution g(D) in terms of potential energy is represented
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as [29]:

g(D) =
∑

1≤i<l≤n

|si − sl|−(v−2), (5.3)

where v ∈ N(v > 2). The global minima of g(D) may be obtained to get spherical codes if

v →∞.

Now to consider the problem of obtaining spherical codes for the most appropriate ar-

rangement which can be resolved by representing it as an optimization problem

Minimize : g(D) =
∑

1≤i<l≤n

, |si − sl|−(v−2)

Subject to :

{
φi =

m∑
j=1

s2ij − 1 = 0

}n
i=1

,

(5.4)

This optimization problem is resolved by lagrangian multipliers with λ = {λi}ni=1.The la-

grangian function for the potential energy may be defined as follows:

g(D, λ) = g(D) +
n∑
i=1

λiφi. (5.5)

There are some necessary conditions required for finding the global minimum of the poten-

tial energy which are stated here:

∂g(D, λ)

∂sij
= 0, and

∂g(D, λ)

∂λi
= 0, with i = {1, 2, ..., n}, and j = {1, 2, ...,m}, (5.6)

In order to utilize lagrangian multipliers for finding a solution to the optimization problem

defined in 5.4 following procedure is carried out. The distance between two position vectors

is given by:

|si − sl| = δil =

{ m∑
j=1

(sij − slj)
} 1

2

, i, l = {1, 2, ..., n}. (5.7)

So equation 5.5 becomes

g(D, λ) =
∑

1≤i<l≤n

f(δil) +
n∑
i=1

λiφi, (5.8)
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taking partial derivative of lagrangian function w.r.t λi

∂g(D, λ)

∂λi
=

∂

∂λi

n∑
i=1

λiφi
,

∂g(D, λ)

∂λi
=

{ m∑
j=1

(s2ij − 1)

}n
i=1

= 0.

(5.9)

Now partial differentiation of lagrangian function w.r.t sij

∂g(D, λ)

∂sij
=

∑
1≤i<l≤n

∂fil(δil)
∂sij

+
∂

∂sij

n∑
i=1

λiφi,

∂g(D, λ)

∂sij
=

∑
1≤i<l≤n

∂fil(δil)
∂sij

+
n∑
i=1

2λisij.

(5.10)

As
∂g(D, λ)

∂sij
= 0 and

∑n
i=1 does not contribute to result so:

∑
1≤i<l≤n

∂fil(δil)
∂sij

+ 2λisij = 0,

sij = −
∑

1≤i<l≤n
∂fil(δil)
∂sij

2λi
.

(5.11)

taking square on both sides and summation gives:

m∑
j=1

s2ij =
m∑
j=1

[∑
1≤i<l≤n

∂fil(δil)
∂sij

]
2

4λ2i
, (5.12)

as
∑m

j=1 s
2
ij = 1 thus,

m∑
j=1

[∑
1≤i<l≤n

∂fil(δil)
∂sij

]
2

4λ2i
= 1. (5.13)

Now taking square root

√√√√√√ m∑
j=1

[∑
1≤i<l≤n

∂fil(δil)
∂sij

]
2

4λ2i
= 1, (5.14)
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√√√√ m∑
j=1

[ ∑
1≤i<l≤n

∂fil(δil)
∂sij

]
2 = 2λi. (5.15)

Replacing 2λi in equ 5.10

∑
1≤i<l≤n

∂fil(δil)
∂sij

+ sij

√√√√ m∑
j=1

[ ∑
1≤i<l≤n

∂fil(δil)
∂sij

]
2 = 0. (5.16)

After δil =
√∑m

j=1(sij − slj)2 and after taking partial derivative the summation may be

ignored so:
∂δil
∂sij

=
1

2
.
2(sij − slj)

δil
=
sij − slj
δil

. (5.17)

After processing equation 5.16 using the above mentioned relations we get an equation

whose normalized version is given as follows:{
si =

m∑
j=1,j 6=i

si − sj
|si − sj|v

=
m∑

j=1,j 6=i

δij

}n
i=1

(5.18)

An arrangement of spherical codes is shown in the following figure. Solutions of the system

Figure 5.2: Figure 3.2(a) represents an arrangement of spherical codes with m=2 and n=3
while the (b) shows mutual interacting forces and the respective vectors.

of n nonlinear equations given in Equation 5.18 can be seen as a set of fixed points with the
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mapping:

F[Cbs(N,M)] = {fi(Cbs(N,M))}ni=1 (5.19)

Of all spherical codes in to themselves. Here fi can be written as

fi =

∑m
j=1,j 6=i

(si−sj)
|si−sj |v∣∣∣∣∑m

j=1,j 6=i
(si−sj)
|si−sj |v

∣∣∣∣ . (5.20)

Of all spherical codes in to themselves. This may be applied to equation 5.18.

To obtain spherical codes the local minima search needs to be carried out, so a mapping

that follows the nonlinear motion of the charged particle is given as:

Φ[Cbs(N,M)] = {si + αfi}ni=1, (5.21)

here α ∈ R is the dampening factor. The mappings F and Φ have the same set of fixed

points. The dampening factor α supports convergence during the iteration and is calculated

again before each iteration [30].

Cbs(N,M)(t+1) = Φ(Cbs(N,M)(t)); t = 0, 1, .... (5.22)

To fixed points with local minima of the potential energy of the system. As in [31] the

mapping is fixed for some points in case of m > 2 and n > m. While for other settings

of m and n there are many more fixed points. The fixed points that result by the method of

iteration following the equation 5.22 are quite close to the best optimal arrangement. Hence

the codes obtained are called best spherical codes(BSC).

5.3 Best Antipodal Spherical Codes

One of the parameters of judging a sensing matrix is the coherence between its columns the

lower the coherence the better. To achieve lower coherence arrangements similar to those of

a grassmanian frame are desired to be achieved as they provide the lower bound on coherence

known as the Welch bound. To achieve this desired result the best spherical codes discussed

earlier need to be modified.

The BSC help maximize the distance between the vectors, but linear dependence between

the codes may arise as an issue. Because in such a case the inner product of the different

column vectors of the matrix may not be minimal enough.
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The distance and inner product of vectors are related as following:

dist〈a,b〉 =
√
||a||2 + ||b||2 − 2〈a.b〉. (5.23)

The simplified version of the above equation for the particular case of best spherical codes

is:

{dist〈a,b〉}2 ∝ −〈a.b〉. (5.24)

Because the vectors each have unit norms for BSC. This relation dictates that by enhancing

one the other reduces i.e. for maximal distance the dot product of vectors will be minimum.

max{dist〈a,b〉} → min{〈a.b〉}. (5.25)

Since the coherence of vectors depends on the dot product. Coherence as defined earlier in

chapter 2 is the maximum of normalized absolute inner product of the column vectors of a

sensing matrix. The signs of the vectors effects their dot product as shown below:

− 〈a.b〉 = 〈a.− b〉 = 〈−a.b〉. (5.26)

The response to direction changes to distance and dot product are favorable as the distance

increases further and the dot product also gets high. A better version of equation 5.25 is

given as:

max{dist〈a,b〉 and dist〈a,−b〉} → min{〈a.b〉}. (5.27)

Conclusively it is known now that the antipodals of the originally existing positional vectors

play a vital role in the optimization process and thus must be considered during it. Hence the

lower bound of coherence i.e. the Welch bound is approachable via utilizing the antipodals.

This modified approach is designated as Best Antipodal Spherical Code (BASC) and the

corresponding set is denoted as Cabs(N,M). The equation 5.18 previously satisfying the

best spherical code arrangement needs to be modified for the new formation to satisfy the

modified approach, thus the equilibrium for mutually interacting forces [30] becomes{
si =

m∑
j=1,j 6=i

[
si − sj
|si − sj|v

+
si + sj
|si + sj|v

] }n
i=1

. (5.28)

Another term introduced in equation 5.18 to form the above equation caters for the modifi-

cation in BSC representing the effect of the antipodals. The resulting sensing matrix from
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the modified code Cabs(N,M) has a worst case coherence closer to the Welch bound. By

reversing the signs of the position vectors in the original matrix representing the position of

charged particles on the unit norm sphere the modification of antipodals is achieved. The

algorithm given describes in detail the process followed for best antipodal spherical codes.

The parameter v in the algorithm which exponentially increased in each iteration may have

a maximum value v=1024. During the convergence process if the value of v reaches v=2048

then the vectors whose distance from the principal vectors exceeds 1 produce a much larger

value in the denominator and consequently leads to an infinite value. Even though the higher

the value of v the finer the convergence but if the infinite values show up then the already

converged spherical codes get corrupted. Hence to avoid this situation the limitation of

v=1024 is necessary. In Figure 3.3, the position vectors, their respective antipodals and the

mutually interacting forces are shown for Cabs(2, 3).

Figure 5.3: Best Antipodal Spherical codes Cabs(2, 3) in equilibrium.
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Chapter 6

SIMULATIONS AND RESULTS

Phase transition improvement is the goal we have tried to achieve in this thesis. For this

purpose deterministic matrices are considered to experiment its impact on few reconstruc-

tion algorithms. The algorithms considered are Basis Pursuit(BP), Orthogonal Matching

Pursuit(OMP) and Approximate Message Passing(AMP). The set of deterministic matrix

belong to the Best Antipodal Spherical Code(BASC). This special kind of deterministic pro-

vides the advantage of lower coherence. Phase transition of the mentioned algorithms have

been sought using random Gaussian matrices as well as deterministic matrices for the sake

of comparison. The experiments are performed in a noiseless environment as well as in the

presence of noise.

6.1 Phase Transition

Phase transition is an important parameter in CS theory. It is the sparsity vs undersampling

trade-off. Therefore defines a limit to the amount of undersampling possible at a specific

sparsity level. The attempt is to somehow improve this limit. There is already a limit defined

using random Gaussian matrices.

The phase transition curve represents 50% successful reconstructions. The sparse signal

after processing with the sensing matrix gives the measurement vector. Using the measure-

ment vector an estimate of the signal is produced using one of the reconstruction algorithms.

The success rate results in the estimation of phase transition. The two environments consid-

ered are noise-free and noisy environments. Lets consider both in detail in the next sections.

6.1.1 Noiseless Environment

In a noiseless environment there is no interference, the entire focus is on performance and

thus may be considered as ideal case. The original sparse signal vector is reconstructed

through three different algorithms Basis Pursuit(BP), Orthogonal Matching Pursuit(OMP)

and Approximate Message Passing(AMP) and were described in detail in Chapter 3. The

analysis is performed with the following parameters:
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• Error Threshold: The error threshold is kept at 10−3.

• Iterationmax: The maximum number of iterations are taken as 1000.

• Length of signal: The length of sparse signal is taken to be N=400.

The empirical phase transition for the Basis Pursuit algorithm is shown in Figure 6.1.The

figure depicts a comparison of the phase transition obtained by using both random Gaussian

sensing matrix and deterministic sensing matrix, the Best antipodal spherical code(BASC).

As evident from the figure the result for both the sensing matrices are almost identical. Thus

showing no improvement by the use of BASC based sensing matrix.

Figure 6.1: Empirical Phase transition of Basis Pursuit: random vs deterministic sensing
matrix.
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The Figure 6.2 is a representation of phase transition comparison of random and determin-

istic sensing matrices when the reconstruction algorithm utilized is Approximate message

passing (AMP) algorithm. Like BP, this algorithm also shows no improvement with BASC

based sensing matrix.

Previous work on AMP algorithm also provides evidence that the deterministic matrices

considered in [36] did not provide an improvement but was the same as that of the random

Gaussian matrix.

Figure 6.2: Empirical Phase transition of Approximate Message Passing Algorithm: random
vs deterministic sensing matrix.

The next figure 6.3 depicts the comparison of the phase transition curves for random

sensing matrix and that of BASC based deterministic sensing matrix for OMP. This graph is

obtained by employing Orthogonal Matching Pursuit(OMP) algorithm.

The figure shows that the BASC based deterministic sensing matrix which have low co-

herence show a much better phase transition for the OMP algorithm. Thus depicts that lower

coherence of sensing matrix does have an impact on the number of successful reconstruc-

tions. Therefore causing an improvement of the phase transition as compared to that of
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Random Gaussian based sensing matrix.

Figure 6.3: Empirical Phase transition of Orthogonal Matching Pursuit(OMP): random vs
deterministic sensing matrix.

The BP algorithm provides better phase transition as compared to OMP if the sensing

matrix is random in nature. the phase transition of AMP is nearly the same as that of BP.

Therefor for the case of random matrix BP has the highest phase boundary. A comparison

is made of the highest possible phase boundary by BP using random matrix to the phase

transition obtained by using deterministic matrix for OMP in figure 6.4. The analysis of

this figure shows that low coherence based matrices improve phase transition. Hence, in

the noise-free environment BASC based sensing matrix provides an upper bound on phase

transition using OMP algorithm.
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Figure 6.4: Empirical Phase transition old using random vs improved using deterministic
sensing matrix.

6.1.2 Noisy Environment

After the analysis in an ideal noise-free environment, the same experiments with same sens-

ing matrices is done in a noisy environment. Same reconstruction algorithms are used to

analyze the impact of noise on these algorithms and determine how immune these algo-

rithms are to noise. In this case, signal to noise ratio (SNR) is introduced in the analysis as

a third dimension. This allows a study of reconstruction under varying levels of noise. The

analysis is performed with the following parameters:

• Error Threshold: The error threshold is kept at 10−3.

• Iterationmax: The maximum number of iterations are taken as 1000.

• Length of signal: The length of sparse signal is taken to be N=400.

• Signal to Noise Ratio: In order to allow a fair study, SNR is varied from 5 to 25dB.
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Noise power is determined in relation to the norm of the measurement vector y. Noise

power np is calculated as follows:

np =
||y||2

10
SNR
10

, (6.1)

A normalized random vector n is scaled with noise power np and added to the measurement

vector y in order to have a noise incorporated measurement vector yn:

yn = y +
(n.np)
||n||2

. (6.2)

Now consider the impact of noise on the phase transition of each algorithm. Figure 6.5

shows the phase transition curves after introducing noise on BP algorithm. As the SNR is

varied from 5db to 25 db the curves begin to rise. It is evident from these curves that at 5db

and 10db SNR levels the reconstruction rate is below 50% that is why the points lie on the

x-axis. However, at SNR=15db the curve starts to rise such that if the SNR is 25db then the

impact of noise hardly affects the performance as this curve reaches the noise-free curve on

top. Thus to ignore the effect of noise the SNR should be atleast 25db. Figure 6.6 shows the

behaviors of AMP in noise which is almost same as that of BP.

Figure 6.5: Empirical Phase transition of BP in the presence of noise.
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Figure 6.6: Empirical Phase transition of AMP in the presence of noise.

As discussed earlier the improvement in phase transition is visible in case of OMP al-

gorithm. Now lets consider the impact of noise on OMP in the deterministic setting by

comparing it with BP and OMP in random setting.
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The figure 6.7(a) represents the comparison when the SNR is 5db. At this BP shows no

successful reconstructions at all. While OMP in both random and deterministic setting show

a slight success at higher undersampling ratios.

Then in figure 6.7(b) when the SNR=10 db the OMP algorithm starts to show some suc-

cess at the same rate in both random and deterministic case. However, BP still fails at this

SNR.

Figure 6.7(c) which is for SNR=15 shows that now BP has also started to show a degree

of success however still lower than both cases of OMP.

Then finally in Figure 6.7(d) which represents the impact of noise when when SNR=20.

The deterministic matrix based OMP curves reaches closer to the deterministic noiseless

curve and leaving the random matrix based curve for OMP.

The SNR where all curves almost escape the impact of noise and reach the noise-free

curves of their respective algorithms and sensing matrix settings is when SNR=25. This is

visible in Figure 6.7(e).

Figure 6.8 combines these curves for different SNR’s ranging from 5db up to 25db for the

deterministic setting of OMP algorithm. Showing that an SNR of 25 can overcome the effect

of noise.

All these figures provide a comparison between the two algorithms BP/AMP and OMP. It

can easily be noted that BP and AMP both have lower noise immunity as opposed to OMP.

As both do not show any success at SNR 5db and 10db. OMP however, manifested some

amount of success which proves that it has a better immunity for noise.However, SNR of

25db can overcome noise in case of all algorithms BP, OMP and AMP.
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(a) SNR=5 (b) SNR=10

(c) SNR=15 (d) SNR=20

(e) SNR=25

Figure 6.7: Empirical phase transition analysis in noisy environment at different SNRs as
compared to the improved phase transition using deterministic matrix (a)SNR=5 (b)SNR=10
(c)SNR=15 (d)SNR=20 (e)SNR=25.
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Figure 6.8: Empirical Phase transition in the presence of noise at different SNRs for OMP
algorithm.
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Chapter 7

CONCLUSION AND FUTURE WORK DIRECTIONS

The basic idea of CS is that a particular class of signals called the sparse signals can be re-

constructed using the theory of compressed sensing. The major difference between ordinary

communication system theory and CS theory is the number of samples required to retrieve a

signal in the later are far less. Thus an important challenge in CS theory is to find out ways

to reduce the number of samples necessary to reconstruct a signal of a particular sparsity.

One way is to use sensing matrices that produce better results. Specially designed sensing

matrices termed as deterministic matrices reduce the number of samples required to recon-

struct a sparse signal. This work has been undertaken in this thesis to use deterministic

matrices to reduce the number of samples required to efficiently retrieve a signal of particu-

lar sparsity thus improving the phase transition. The deterministic matrix used has a much

lower coherence and has improved phase transition in comparison to the random sensing

matrix.

In this thesis, we have studied the notion of phase transition i.e. the sparsity undersam-

pling tradeoff, which measures the probability of exact reconstruction. It was analyzed for

the BP, OMP and AMP algorithms, by considering deterministic sensing matrices. We show

here that reconstruction of sparse objects by these algorithms works well for the determin-

istic matrices. Particularly for BP and AMP just as well as for Gaussian random matrices.

While for OMP deterministically obtained phase transition rises much higher than the ran-

dom one. The new phase transition for OMP is even higher than that of BP and AMP. We

can infer from this that low coherence sensing matrices work best for OMP making it better

for reconstruction as compared to BP and AMP which show almost same results in both

cases i.e. random and deterministic. Then in the presence of noise it was observed that BP

and AMP both have lower noise immunity as opposed to OMP. As both do not show any

success at SNR 5db and 10db. OMP however, manifested some amount of success which

proves that it has a better immunity for noise.However, SNR of 25db can overcome noise in

case of all algorithms BP, OMP and AMP.
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A number of areas were identied for future work in similar line of research.

• This work may be extended for phase transition of other types of sparse signals known

as group sparse signals such as block sparse signals.

• The phase transition obtained by using sensing matrix of BASC algorithm can be com-

pared to the results obtained by using similar techniques e.g, to simulated annealing.

• The same theory may be utilized for new and better reconstruction algorithms that will

further help the cause of CS theory.

• The phase transition of sparse signals having complex values may be checked for

improvement using this deterministic matrix.
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