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ABSTRACT 

 

The thesis is based on the detection and characterization of frequency hopping (FH) 

signals, operating in HF (2-30MHz) band. The work is focused on the blind detection and 

parameter estimation of FH. The algorithm does not require any prior information about 

the hop frequencies, hop pattern or modulation type.  For reception of a frequency 

hopping signal, the first step is detection of the signal. Detection & Estimation 

Algorithm, presented in this thesis, detects the presence of hop and estimates the time of 

hop. The detection technique used in this work is wavelet based transient detection. 

Discontinuities are enhanced via wavelet transform. For the hop time estimation of 

frequency hopping signal, firstly, the phase information is extracted from the temporal 

correlation function (TCF) of received signal. Then, by applying certain de-noising 

techniques, discrete wavelet transform (DWT) is used for extracting the time of hopping.  

Simulations are carried out in MATLAB with Additive White Gaussian (AWGN) 

Channel and the results are presented in the form of detection statistics. Results show 

reliable detection and estimation performance for SNR levels above 3dB. 
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Chapter 1 

 INTRODUCTION  

This chapter provides an introduction of the research topic along with the defining 

features of the technology. It introduces the concept of Frequency Hopping Spread 

Spectrum and its detection techniques. The problem statement is provided to explain the 

work done in this thesis. Organization of the report is also clearly outlined in the chapter. 

1.1 Concept of Frequency Hopping Spread Spectrum  

 Frequency hopping spread spectrum (FHSS) is a wireless communication technique in 

which the signal’s bandwidth is distributed over a much larger bandwidth (spread 

bandwidth) by hopping the carrier frequency. 

The information or data signal in FHSS is a lesser bandwidth signal and the data signal is 

generally FSK modulated. This modulated signal “hops” randomly in frequency and 

hopping is carried out in a pseudo-random “predictable” format with respect to time from 

frequency to another. Using FHSS improves privacy, rejects unintended interference and 

multi-path fading (distortion), it enhances signal capacity and improves the signal to 

noise ratio. 

In FH systems the available bandwidth, W is subdivided into a large number of frequency 

slots, N. The data symbol modulates the carrier frequency, fk, where k is selected by a 

pseudorandom number (PN) generator to be between 1 and N.  

The FH system can be thought of as a two-step modulation process. The first step MFSK 

modulation would be followed by the second step, FH modulation. 
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Pattern of transmitted signal in the time-frequency plane will be affected primarily by the 

FH modulation step, regardless of the particular modulation scheme or the number of 

symbols transmitted per hop. For a given hop, the occupied bandwidth is the same as that 

for conventional MFSK. When considered over many hops a much greater bandwidth 

equal to W is occupied, and the spectrum has been spread.  

                 

Figure 1.1 Frequency Hopping Spread Spectrum in Time-Frequency Plane [5] 

FHSS is characterized as slow frequency hopping (SFH) and fast frequency hopping 

(FFH). In SFH hop rate is slow and numerous symbols are transmitted in a single hop. On 

the other hand, in FFH hop rate is fast and the carrier frequency hops a number of times 

during the transmission of a single symbol.  

1.1.1 Advantages 

In FHSS, the information signal’s spectrum is distributed over a much wider bandwidth 

than that of the original signal. An intentional jammer has a fixed finite power. The 

jammer may either spread its power in small quantities over the entire spread bandwidth 
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or it may concentrate its power on any part of the spread bandwidth. In the first case, the 

jammer’s power being spread over a wide bandwidth would not be able to jam the FHSS 

signal. In the other case, FHSS signal would reduce the interference since it will not 

occupy the same spectral location as the jammer for the entire transmission. Thus, FHSS 

has the characteristic of anti-jamming or interference suppression. 

A spread spectrum technique has a Low Probability of Interception. This is because the 

signal’s power is distributed over a wider spread bandwidth, its strength at any given 

frequency wouldn’t be significant to be intercepted. Moreover, FHSS signal cannot be 

intercepted without prior knowledge of the frequency hop sequence. Hence it can be said 

that FHSS provides secure communication. 

Due to the underlying benefits of FHSS, it has found widespread applications in wireless 

communication technology.  

1.2 Literature Review 

Various techniques have been used in literature for the detection, characterization and 

demodulaion of Frequency Hopping Signals. These include energy detection technique, 

maximum likelihood approach, auto-correlation based detection, polyphase filter banks, 

wavelet detection and many of their variants. A comparison of few techniques is given in 

[1]. Energy detection is not robust to noise and its detection performance degrades at low 

SNR. Energy Detection technique gives a coarse estimate about the availability of a 

signal’s energy by measuring the energy of the signal and comparing it against a 

threshold. Maximum Likelihood detector has very good performance but it requires prior 

knowledge of the FH signal so it cannot be used for non-cooperative detection. The use 
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of polyphase filter banks using Fast Fourier Transform (FFT) was presented in [2]. 

Parameter characterization  of Frequency Hopping Signal incorporate determination of its 

time of hop, hop frequencies, hop sequence and hop rate. Various techniques have been 

applied for estimation of these parameters [3], [4].  In [6], [7] and [12] wavelet transform 

of temporal correlation function is used for detection and for extracting the time of hop. 

In [13], [14] and [15], compressive sensing is used for the detection of wideband 

Frequency Hopping signals in the Industrial, Scientific and Medical (ISM) band. 

HF (2 – 30MHz) band is specifically used for military communications. The main goal of 

this thesis is to work on FH Signal in HF band. “Wavelet Analysis” is best suited 

technique for this frequency band that is why DWT is used in this thesis for the detection 

and hop time evaluation, so as to get good Detection Performance and accurate Hop Time 

Estimation of FHSS signal. 

FHSS signal consists of both, low frequency constituents (carrier frequencies) for a 

relatively long time interval and transitional high frequency constituents (frequency hops) 

for a small time interval. This implies that Multi-Resolution Analysis will be a good 

technique to be used for FHSS signals. Wavelet Analysis has Multi-resolution 

capabilities. It enables one to “zoom in” to have a detailed view and “zoom out” to have 

an overall global view of the signal.  

1.3     Problem Statement  

Research is carried out to blindly detect a Frequency Hopping Signal in HF band. In case 

a hop is detected, its hop time is estimated.  

The technique used in this work is Discrete Haar Wavelet Transform. The methodology 

involved does not require any prior information about the hop frequencies, hop pattern or 
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modulation type. In the detection phase, the frequency hopping properties (as apparent in 

the Time-Frequency representation) of the signal are important irrespective of the 

modulation scheme involved or the number of symbols transmitted per hop. 

1.4 Organization of Thesis  

This thesis has six chapters including the first chapter of introduction. Chapter 2 gives an 

idea about the Temporal Correlation Function (TCF). Phase plot of TCF forms the basis 

of the detection and estimation of FH signal. The chapter explains how the two- 

dimensional phase plot of TCF can be used to detect and estimate the hop time of FH 

signal. It further discusses the pre-processing methods necessary before applying the 

Wavelet Analysis. Chapter 3 explains the basics of Wavelet Analysis as a useful Multi-

resolution Analysis Technique required for the study of non-stationary signals. Chapter 

also provides the application of Wavelet Transform in transient detection. Chapter 5 

discusses the steps of the Algorithm for Detection & Hop Time Estimation of FH signal 

in the HF band. It also gives detail about the MATLAB simulations carried out for testing 

the algorithm. Lastly, chapter 6 provides the conclusions and proposed future work. 
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Chapter 2           

TEMPORAL CORRELATION FUNCTION 

 

This Chapter gives an idea about the Temporal Correlation Function (TCF), its 

mathematical interpretation and phase plot. Phase plot of TCF forms the basis of the 

detection and estimation of FH signal. The chapter explains how the two- dimensional 

phase plot of TCF can be used to detect and estimate the hop time of FH signal. Later in 

this chapter, few pre-processing techniques are explained which are necessary for 

eliminating the effect of noise from the TCF phase plot. 

2.1   Definition 

Temporal Correlation Function provides time correlation of a signal. It is used for non-

stationary signals. Mathematically, TCF of a signal y(t) is expressed as [6] 

 ܶ��ሺݐ, �ሻ = ݐሺݕ + �ሻݕ∗ሺݐ − �ሻ                   2.1 

Where,‘t’ corresponds to time, ‘�′ is the lag time and * is the complex conjugate.  

Along the Ĳ- axis, TCF is conjugate symmetric i.e. 

           ܶ��ሺݐ, �ሻ = ܶ��∗ሺݐ, −�ሻ              2.2 

It means that TωF along negative Ĳ-axis gives no additional information. 

2.2    TCF of a Real Signal versus an Analytic Signal 

Let x(t) be a real sinusoidal signal, expressed as: 

ሻݐሺݔ  = sinሺʹ�݂ݐ + �ሻ              2.3 

TCF of x(t) will be:  

 ܶ��ሺݐ, �ሻ =  భ మ  [cosሺʹ�݂ݐሻ − cos ሺʹ�ሺʹ݂ሻݐ + ʹ�ሻ]           2.4 
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The first term in brackets is the auto-term at frequency, f and the second term is at twice 

the frequency of x(t).  

An Analytical Signal has no negative frequency components. It facilitates many 

mathematical calculations. The analytic form of the signal is used as a substitute for its 

real expression when it is required to suppress cross interference. While performing time-

frequency analysis, real signals result in more cross interference as compared to the 

analytic form of signals. Moreover, on removing the negative frequency components, 

there is no loss of data as well. Before time frequency analysis a real data signal is 

converted to its respective analytic form by using Hilbert Transform. 

If we consider the Analytical Signal, xa(t) derived from x(t), given as: 

         xaሺtሻ = ݁௝ଶ�௙௧+�             2.5 

In this case TCF will be: 

          ܶ��ሺݐ, �ሻ = ݁௝ଶ�௙�             2.6 

It is clear from equation 2.6 that the expression for TCF now contains only the auto-term 

at frequency of xa(t), i.e. there are no interference terms that would have been present if 

real form of signal x(t) was considered instead of its transformed analytical form. 

It is for this reason that Analytical Form of the frequency hopping signal is considered in 

this thesis for Time-Frequency Analysis. 

2.3      TCF of Frequency Hopping Signal 

Mathematically, the analytic expression of frequency hopping signal is given as [6]: 

xa(t)= ݁௝ଶ�௙భ௧[ݑሺݐሻ − ݐ)ݑ − ℎܶ௢௣)] + ݁௝ଶ�௙మ௧[ݐ)ݑ − ℎܶ௢௣ + ͳ) − ݐሺݑ − ܶሻ]                2.7                               

for 0 ≤ t ≤ T,  

Thop is the time of hop of the signal from one frequency f1 to f2. 
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u(t) is a unit step function defined as:  

ሻݐሺݑ =  { ͳ, ൒ ݐ ݎ݋݂ Ͳ Ͳ,         ݂ݐ ݎ݋ ൑ Ͳ    
Now putting equation 2.7 in equation 2.1 gives the expression for TCF as: ܶ��ሺݐ, �ሻ = ݁௝ଶ�ሺଶ௙భሻ�[ݑሺݐ − �ሻ − ݐ)ݑ + � − ℎܶ௢௣)][ݑሺݐ − �ሻ − ݐ)ݑ − � − ℎܶ௢௣)] +݁௝ଶ�ሺଶ௙మሻ�[ݐ)ݑ + � − ℎܶ௢௣ + ͳ) − ݐሺݑ + � − ܶሻ][ݐ)ݑ − � − ℎܶ௢௣ + ͳ) − ݐሺݑ − � − ܶሻ]  +݁௝ଶ�[ሺ௙మ−௙భሻ௧+ሺ௙భ+௙మሻ�][ݑሺݐ + �ሻ − ݐ)ݑ + � − ℎܶ௢௣)][ݐ)ݑ − � − ℎܶ௢௣ + ͳ) ݐሺݑ− − � − ܶሻ] + ݐሺݑ] − �ሻ − ݐ)ݑ − � − ℎܶ௢௣)][ݐ)ݑ + � − ℎܶ௢௣ + ͳ) − ݐሺݑ + � − ܶሻ]   

                     2.8 

Equation 2.8 can also be understood in a simplified manner as: 

         TωF(t, Ĳ) = TωF1(t, Ĳ) + TωF2(t, Ĳ) + TωF12(t, Ĳ)           2.9 

The three terms given in Equation 2.8, appear as non-overlapping triangular shaped 

regions which constitute the complete TCF expression. The unit step functions are used 

to model the boundary lines between the three triangular shaped TCF1(t, Ĳ), TCF2(t, Ĳ) 

and TCF12(t, Ĳ) phase regions. These triangular regions have an orientation of 45˚. 

TCF1(t, Ĳ) and TCF2(t, Ĳ) may be called the auto-term triangle and TCF12(t, Ĳ) as cross-

term triangular region. 

The phase of TCF1(t, Ĳ) and TCF2(t, Ĳ) are 2πf1Ĳ and 2πf2Ĳ respectively and are constant 

with respect to the variable ‘t’. TωF1(t, Ĳ) depends on f1 and Ĳ. Similarly, TCF2(t, Ĳ) 

depends on f2 and Ĳ . It means that for a given value of frequency and lag, TCF1(t, Ĳ) 

shows a constant phase. Same is the case for TCF2(t, Ĳ). The phase of TCF12(t, Ĳ) depends 

on f1, f2, time (t) and lag (Ĳ).  Thus for a fixed value of Ĳ, TCF phase expressed as a 

function of ‘t’  undergoes changes in its slope value when going from one region to 

another one. Moreover, cross-terms region exhibits a linear phase response. 
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Figure 2.1 shows the TCF phase plot for the signal xa(t), given by Equation 2.7, for 

f1=25.89 MHz, f2=24.2 MHz and Th= 139 samples. It is clear from figure that Thop is the 

time at which the triangular region covered by TCF1(t, Ĳ) ends and the triangular region 

covered by TCF2(t, Ĳ) starts.  

 

Figure 2.1 TCF Phase Plot 

 

Across TCF12(t,Ĳ), the phase behavior is periodic over 2π producing discontinuities at 

regular intervals. The period of these intervals is a function of f1 and f2 and, therefore, not 

predictable without knowing f1 and f2. As far as the lag, Ĳ < Thop, the cross-terms region is 
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centered on the hopping instant, Thop. Within a given auto-term triangle, there is only one 

frequency component across the Ĳ-axis.  

                                

Figure 2.2 Portion of the Phase plot of TCF, containing auto-term 

TCF1 due to f1 

 

                                   

Figure 2.3 Portion of the Phase plot of TCF, containing auto-term 

TCF2 due to f2 
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Figure 2.4 Portion of the Phase plot of TCF given in Figure 2.1, containing  

cross-term TCF12 due to both f1 and f1 

 

2.4 Pre-processing Techniques 

Till now, a noise-free signal has been considered but in practice it is not possible to have 

a noise-free signal. The detection process actually relies on changes observed between 

the three TCF phase regions discussed in the previous section. Hop time location 

estimation degrades significantly with increasing noise levels. Figure 2.5 shows an 

example demonstrating the effect of Additive White Gaussian Noise (AWGN) on TCF 

phase as a function of time, with SNR of 10 dB and a lag, Ĳ = 25. It can be observed from 

the figure that TCF1(t, Ĳ) and TωF2(t, Ĳ) are no more constant with respect to time. σoise 

distortion introduces random spikes in phase. A reliable detection algorithm must 

minimize such spike occurrences. Similarly the phase region in TCF12(t, Ĳ) region is also 

not linear. It is now very difficult to detect discontinuities in frequency hopping signal 
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and also to extract the hop time in the presence of noise. It is therefore necessary to apply 

some de-nosing or pre-processing techniques before applying the Wavelet Transform. 

Figure 2.5 TωF Phase at SσR=9dψ, Ĳ = 25 subjected to AWGσ[6] 

 

The following three pre-processing techniques are used in this work for de-noising. 

2.4.1   Phase Unwrapping 

Phase unwrapping transforms jumps greater than π between successive points to their 2π 

complement. It ensures that all the suitable multiples of 2π have been included in the 

phase response. Phase unwrapping eliminate the discontinuities due to periodicity in 

phase and reduces the spikes due to noise. 

Mathematically, TCF phase φ(t) of a signal y(t) can be unwrapped as [7]: 

Unwrap (φ (t)) = {φሺݐሻ,                �݂ |φሺݐሻ − φሺݐ − ͳሻ| ൑  �
φሺݐሻ + ʹ�       �݂ φሺݐሻ − φሺݐ − ͳሻ < −�
φሺݐሻ − ʹ�         �݂ φሺݐሻ − φሺݐ − ͳሻ > �         2.10 

Figure 2.6 describes the results obtained by unwrapping the TCF phase function with 

respect to the time axis (for a value of Ĳ =25). τbserve that the phase behavior for times 

between [0 120] and [160 256]. These portions correspond to the TCF1 and TCF2 regions 
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where the phase should have been theoretically constant for a noise free signal (as a 

function of t, for a fixed value of Ĳ ). ψut due to presence of noise, TωF1 and TCF2 

regions exhibit sudden phase jumps. The phase behavior in the TCF12 region [120 160] 

should ideally be linear (as a function of t, for a fixed value of Ĳ). ψut due to noise 

multiple phase jumps are observed in TCF12 region. 

 

(a) 

            

s(b) 

Figure 2.6 TωF Phase plotted as a function of time at SσR=9dψ and Ĳ=25, (a) before 
unwrapping and (b) after unwrapping 
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After unwrapping the TCF phase, phase behavior in TCF1 and TCF2 regions becomes 

almost constant with very small phase variations and phase in TCF12 also becomes linear. 

It can also be observed from the plot that there is large gap in phase value between TCF1 

and TCF2 regions. 

2.4.2 Differentiation 

As discussed in the previous section, TCF phase graphically shown as a function of time 

with a fixed value of lag (Ĳ) has three portions. TωF1 and TCF2 regions have almost flat 

lines while TCF12 region shows a ramp. In other words, there are two discontinuities in 

the phase plot on the whole. Differentiation sharpens these discontinuities. 

     

Figure 2.7 Unwrapped TCF Phase plot (top), TCF Phase plot after Differentiation [6] 
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The first derivative of a constant is zero and that of a ramp is a constant whose value is 

equal to the slope of the ramp, which is determined as 

Slope = 
௬మ−௬భ௧మ− ௧భ = 

∆ �௠௣௟௜௧௨ௗ௘∆ ௧௜௠௘                        2.11 

Figure 2.7 depicts the result obtained by applying differentiation to the unwrapped TCF 

Phase plot. When the unwrapped phase is differentiated with respect to time, we get a 

pulse for the ramp portion and zero otherwise. It is important to notice that this pulse is 

centered on the hop time, Thop, for Ĳ < Thop.  

Differentiation is followed by another de-noising technique, known as Median Filtering. 

Median Filtering smoothes out the noise contribution, as discussed in the next section. 

2.4.3 Median Filtering 

Median Filter is a non-linear digital filter employed for the suppression of impulse errors 

or short-term discontinuities superimposed on an image or a signal. It is used as a 

preliminary step that improves the results of later processing. Median filtering is 

extensively used in digital image processing because it has the ability to remove noise 

whilst preserving edges. An important feature of median filter is that it does not average 

out and hence preserves edges. 

In a median filter, the basic concept is to slip a window through the signal’s samples one 

by one, substituting each sample value by the median of adjacent sample values. For one-

dimensional signals, the window contains only a few entries, while for two-dimensional 

(or higher-dimensional) signals such as images, little more complicated window formats 

such as "box" or "cross" patterns can be used. When the window size is odd, then after 

numerically arranging all the sample values, median is merely taken as the centre value. 

For a vector of values, f(n) given as: 

http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Median
http://en.wikipedia.org/wiki/Median
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f(n) = {f(n), f(n-1), f(n-2),…, f(n-M)}
T
          2.12 

Here M is an arbitrary positive integer 

Median filter’s output, z(n) is defined as [8] middle sample of the collection of elements 

of x(n) 

z(n) = med{x(i)}                2.13 

for i = n, n-1, n-2, …., n-M 

Number of samples of M+1 median filter is known as length D of it. Length of median filter is 

usually odd and it determines suppression of impulse errors with various widths.  

 

After performing phase unwrapping, differentiation and median filtering of the TCF phase plot, 

wavelet transform is applied for the detection of frequency hop and its hop time evaluation. The 

following chapter provides the details of wavelet transform and its underlying concepts. 
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Chapter 3 

WAVELET ANALYSIS 

 

It has been shown in Chapter 2 that the TCF plot has three phase regions and after 

applying the pre-processing techniques at a fixed value of lag, a pulse-shaped TCF phase 

plot is obtained. Thus the phase plot exhibits step discontinuities at the TCF12 cross-term 

region. This chapter provides the concepts of signal processing, starting from Fourier 

Transform to Discrete Wavelet Transform. It explains how wavelet transform is capable 

of detecting the step discontinuities at the TCF12 cross-term region (caused by frequency 

transition). 

3.1 Fourier Transform (FT) 

Frequency Transform of a signal shows the frequency constituents (spectral components) 

that make up the signal. It is depicted as a frequency spectrum which is called frequency-

domain or frequency-amplitude representation of the signal. A frequency spectrum shows 

how much of each frequency is present in a signal. Fourier transform is a tool used for 

frequency analysis of a signal. 

Fourier transform converts a time-domain signal into frequency-domain. Mathematically, 

transformation can be represented as [5]: 

ሺ݂ሻݔ   = ∫ ∞−∞+ݐሻ݁−ଶ�௙௧݀ݐሺݔ              3.1 

Fourier Transform tells about the frequency components of the signal but it does not 

show at what time these frequency components will be present. No time information is 

obtained from the frequency transform of a signal. For this reason, frequency analysis is 

well suited for stationary signals. Frequency contents of stationary signals have no 
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variation with respect to time i.e. all frequency components are present at all times. It is 

not used in this thesis because in a Frequency Hopping Spread Spectrum signal, the 

frequency components of the signal change with time. Such signals are called non-

stationary signals.  For the study of non-stationary signals, time localization of spectral 

components is also essential, so a transform providing the Time-Frequency representation 

of signal is desired. 

Figure 3.1 shows different signal processing techniques used for stationary and non-

stationary signals. 

 
 

Figure 3.1 Signal Processing Techniques 

 

3.2 Short Time Fourier Transform (STFT) 

Short-Time Fourier Transform provides both time-based and frequency-based 

representations of the non-stationary signal. It gives a Time-Frequency representation of 

the signal. STFT provides the time information by computing a different FT for 
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successive time intervals, and then putting them together. It may be called windowed FT. 

The signal is segmented into narrow time intervals (i.e., narrow enough to be considered 

stationary) and then Fourier transform of each segment is determined. A different FT is 

obtained when the window is centered at each time location. Each FT provides the 

frequency content of a separate time-slot of the signal, thereby providing both time and 

frequency representation, at the same time. 

Mathematically, STFT can be represented as [5]: 

 ܵܶ�ܶሺ�, ݂ሻ =  ∫ ݐሻ݃∗ሺݐሺݔ − �ሻ݁−௝ଶ�௙௧݀3.2                                                      ݐ 

Here ݃∗ሺݐ − �ሻ represents the finite time sliding windowing function that is centered on 

Ĳ. Length of the window is selected in such a way that the signal can be considered 

stationary in that interval. Window length determines the time and frequency resolutions. 

A wide analysis window gives poor time resolution and good frequency resolution while 

a narrow analysis window provides good time resolution and poor frequency resolution. 

Once the window is chosen, the resolution is set for both time and frequency. 

For the extreme case of an infinitely long window, i.e. g(t) = 1, STFT becomes FT, 

providing excellent frequency information but no time information. For the case of 

infinitely short window, i.e. g(t) = δ(t), STFT gives the time signal back, with a phase 

factor, providing excellent time  localization but no frequency information. According to 

Heisenberg Uncertainty Principle, both frequency and time resolutions cannot be 

arbitrarily high. It can also be depicted as 

 ∆f. ∆t  ≥  1/4π                          3.3 
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Frequency resolution, ∆f, determines how well two spectral components can be separated 

from each other in the transform domain and Time resolution, ∆t, determines how well two 

spikes in time can be separated from each other in the transform domain. 

A major drawback of STFT is that the window once chosen remains fixed for all the bandwidth. 

Many non-stationary signals have both the long duration components as well the transient 

components. Analysis of such signals requires flexibility in the choice of window size for 

different parts of the spectrum so as to obtain more accurate either time or frequency localization. 

STFT is therefore not suited for this thesis because FHSS signals require a multi-resolution 

analysis technique for accurate hop tome estimation. 

3.3 Wavelet Transform 

Wavelet transform (WT) is a multi-resolution analysis technique. Unlike STFT, it has 

variable time-frequency resolution. This characteristic makes it a good choice for 

analyzing non-stationary signals having sudden discontinuities, as the discontinuities in 

the TCF phase plot discussed in the previous chapter. 

Wavelet Transform analyzes the signal at different frequencies with different resolutions. 

High frequencies have good time resolution and low frequencies have good frequency 

resolution. It is beneficial as it allows the low frequency components, which usually 

characterize or identify a signal, to be distinguished from one another in terms of their 

frequency content, while providing an excellent temporal resolution for the high 

frequency components, sudden discontinuities or frequency hops of signal. Hence it is 

more suitable for short duration of higher frequency and longer duration of lower 

frequency components. 
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Figure 3.2 shows a comparison of Time-Frequency plane tiling for Fourier Transform 

and Wavelet Transform. 

 

 

   

 

 

 

Figure 3.2 Time-Frequency Plane Resolution for STFT and WT 

 

3.4 Continuous Wavelet Transform 

The wavelet transform is a tool for representing functions, signal, or data into 

components of different frequency, allowing one to study each component separately.  

The word “wavelet” means a “small wave”. Wavelet is defined over a finite interval and 

has an average value of zero.  

Mathematically, a wavelet can be interpreted as: 

  ∫ �ሺݐሻ݀ݐ = Ͳ∞−∞               3.4 

and  ∫ |�ሺݐሻ|ଶ <  ∞∞−∞                  3.5 

Equation 3.4 implies that wavelet is an oscillation having an average value of zero and 

hence it is compactly supported. Equation 3.5 implies that the wavelet which is defined 

over a finite interval has a finite energy.   

Wavelet transform basically represents any function as a superposition of a set of 

wavelets or basis functions. The basis functions or baby wavelets are derived from a 

Wavelet transform Short Time Wavelet Transform 
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single prototype wavelet called the mother wavelet, by scaling (expansion or 

compression) and translations (shifts). Wavelet analysis can be compared to Fourier 

analysis because it also splits a signal down into its constituent parts for analysis. Fourier 

transform breaks the signal into a series of sine waves of different frequencies while the 

wavelet transform breaks the signal into its "wavelets", scaled and shifted versions of the 

"mother wavelet". 

 

Figure 3.3 Demonstration of Continuous Wavelet Transform 

 

Continuous Wavelet Transform of any signal y(t) can be defined as the sum over all time 

of the signal multiplied by scale , shifted version of the wavelet function ψ(t) : 

 �ܹܶሺ�, �ሻ =  ଵ√|�| ∫ ��−ሻ�∗ሺ௧ݐሺݔ ሻ݀3.4                    ݐ 

In the Equation 3.4, ‘a’ and ‘Ĳ’ represent  scale and translation variables, respectively. ଵ√|�| �ሺ௧−�� ሻ is the scaled and translated mother wavelet, ψa,τ (t) and 
ଵ√|�| is used for energy 

normalization across different scales.  

         ψa,τ (t ) =  
ଵ√|�| �ሺ௧−�� ሻ             3.5 

CWT transforms a signal into its time-scale representation. It should be noted that, in 

wavelet transform, scale is used instead of frequency. By scaling a wavelet, it is either 
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stretched or compressed. Larger scales result in dilation of wavelet and small scales result 

in compression of the wavelet. Scale and frequency have an inversely proportional 

relationship. High frequencies (low scales) correspond to compressed wavelets and give 

the rapidly changing details of signal while low frequencies (high scales) correspond to 

expanded (dilated) wavelets and provide the global information of the signal. Figure 3.4 

clarifies the concept of scaling. 

       

       

Figure 3.4 Scaling a wavelet 

 

Translation can be compared to the location of window in STFT so it contributes to the 

time localization in the transform domain. Scale contributes to the frequency localization 

in the transform domain. Compression and dilation involved in scaling correspond to the 

ability of wavelet transform to zoom in or zoom out of the signal. 

Many different types of wavelets can be used. Type of a wavelet is chosen on the basis of 

the application. Few commonly used types include Haar, Daubechies, Morlet, Coiflet and 

Symmet Wavelets. These are shown in Figure 3.5. Haar Wavelet is the simplest and is 
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best suited for detecting signal discontinuities. Daubechies (db) wavelet family may have 

different orders. Wavelet functions become more complex with increase in order. db1 

refers to Haar Wavelet. Haar wavelet is used in this thesis for detecting discontinuities in 

TCF phase plot. 

 

Figure 3.5 Different types of wavelets 

 

Figure 3.6     db-4 and db-6 wavelets with dashed lines representing scaled functions [7] 

 

3.5 Wavelet Series 

As given in Equation 3.4, CWT is computed by shifting a scaled function over a signal 

and finding the correlation between the two. Both shifting and translation follow 
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continuous time variation. Resultant wavelet coefficients are therefore highly redundant. 

This makes CWT redundant and computationally complex as well. Discrete wavelets are 

used to make the CWT discrete. Discrete wavelets are scaled and translated in discrete 

steps, instead of the continuous scaling and translation involved in CWT. It requires 

sampling of the Time-Frequency or Translation-Scale plane. Sampling is done such that 

the sampling rate is decreased (according to Nyquist's rule) at lower frequencies (higher 

scales). For instance, if the time-scale plane is sampled with a sampling rate of N1 at scale 

s1, the same plane is sampled with a sampling rate of N2, at scale s2, such that, s1 < s2 

(frequency f1>f2) and N1 > N2. It can be stated as  

                 �ଶ =  ௦భ௦మ N1                   3.6  

When stated in terms of frequency, it can be said that high sampling rate is used for high 

frequencies and vice versa. Nyquist sampling rate is the minimum sampling rate required 

for perfect reconstruction of the original time domain signal. In application where 

synthesis is not required and only analysis is to be carried out, there is no compulsion of 

Nyquist rate for discretization. 

The Translation-Scale plane is made discrete in such way that the scale parameter s is 

represented by a logarithmic grid. Discretization of time parameter is done with respect to the 

scale parameter, i.e., a different sampling rate is used for every scale. So, the sampling is 

carried out on a dyadic sampling grid as shown in Figure 3.7. CWT gives a value to the all 

the points on this plane. Consequently, number of CWT coefficients is infinite. When the 

scale axis is observed, it can be noted that out of the infinite number of points, only a finite 

number are considered by employing a logarithmic law. The base of the logarithm is 

commonly taken as 2 for ease. When 2 is used, only the scales 2, 4, 8, 16, 32, 64,...etc. are 

calculated. The time axis is discretized in accordance with the discretization of the scale axis. 
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As the discrete scale differs by factors of 2, the sampling rate also decreases for the time axis 

by a factor of 2 at every scale. Such a discrete grid is referred to as dyadic grid. 

Figure 3.7 shows that at the lowest scale (s = 1), 24 samples are taken along the time axis. 

At the next scale value, s = 2, the sampling rate of time axis reduces by a factor of 2 for 

increase in scale by a factor of 2, and hence, 12 samples are taken. At the next step, s = 4, 

only 6 samples are taken in time, and so on. 

.  

Figure 3.7 Translation-Scale Dyadic Grid [10] 

 

For Discrete Wavelets, equation 3.5 can now be modified as: 

                        �௝ ,௞ ሺݐሻ =  ଵ√௦బೕ  �ሺ௧−௞�బ௦బೕ௦బೕ ሻ               3.7 

In equation 3.6, ‘j’ and ‘k’ represent integers; s0 > 1 refers to dilation (scale 

discretization) and Ĳ0 is the translation discretization factor which is determined by s0. s0 

is usually chosen as 2  and the translation factor is chosen as Ĳ0= 1, so that the sampling 
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of both frequency and time axis is called dyadic sampling. So equation 3.6 can now be 

modified as: 

 �௝ ,௞ ሺݐሻ =  ଵ√ଶೕ  �ሺ௧−௞ଶೕଶೕ ሻ                              3.7 

A series of wavelet coefficients is obtained when discrete wavelets are used to transform 

a continuous signal. This is called wavelet series decomposition. 

 

3.6 Discrete Wavelet Transform 

Wavelet series, discussed in the previous section, is just a sampled form of the CWT, not 

a discrete transform. The information provided by wavelet series is highly surplus if the 

reconstruction of the signal is specifically focused upon. Discrete Wavelet Transform 

(DWT) reduces the computation time and also gives enough information for both analysis 

and reconstruction of the signal. DWT is comparatively easy to implement as opposed to 

CWT. 

In Discrete Wavelet Transform, digital filtering methods are utilized to get a time-scale 

representation of a digital signal. Continuous Wavelet Transform gives a correlation 

between a signal and wavelet at different scales and translations. CWT is calculated by 

altering the scale of the analysis window (wavelet), changing its time shift, multiplying 

by the signal, and integrating with respect to time. In DWT, filters of different cutoff 

frequencies are used to examine the signal at different frequencies (scales). The signal is 

passed through a number of high pass filters and low pass filters to study the high 

frequency and low frequency components of the signal, respectively. 

The filtering operations change the resolution of the signal and the scale is changed by 

upsampling and downsampling operations. 
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The concepts involved in DWT are explained in greater detail as follows. 

3.6.1 Band-pass filter 

An important property of wavelets is admissibility condition. It means that the Fourier 

Transform of the wavelet function is zero at dc, that is 

|ȥ(Ȧ)|2|Ȧ=0 = 0                     3.8 

This implies that wavelet should have a band-pass type spectrum. Fourier analysis tells 

that compression of a signal in time-domain stretches its spectrum in frequency-domain. 

Mathematically it can be stated as: 

  F { f(at) } = 
ଵ|�|  �ሺఠ� ሻ                    3.9 

Equation 3.8 shows that compression of the wavelet in time by a factor of 2 will stretch 

the frequency spectrum of the wavelet by a factor of 2 and will also move all frequency 

constituents up by a factor of 2. This approach can be used to cover the frequency 

spectrum of the signal with the spectrums of dilated wavelets in the same way as that the 

signal is covered in the time-domain with translated wavelets. So a series of dilated 

wavelets can be considered as a band-pass filter bank. The ratio between the center 

frequency of a wavelet spectrum and the width of this spectrum is the same for all 

wavelets. This ratio is called the fidelity factor Q of a filter. Wavelets are characterized as 

constant-Q filters. 

 

   Ψ4             Ψ3            Ψ2   Ψ1 

 

Figure 3.8 Wavelet Spectrum of the mother wavelet that is scaled in time [10] 
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3.6.2 Scaling Function 

In Multi-Resolution Analysis (MRA), a scaling function provides a series of 

approximations of a signal, such that each differs by a factor of 2 in scale (or resolution) 

from its neighboring approximations. Wavelets provide the difference in information 

between adjacent approximations. Scaling functions together with wavelets are used to 

analyze the signal. The scaling function actually solves the issue of the infinite number of 

wavelets required to cover the spectrum down to zero and lays down a lower limit for 

wavelets. A wavelet has a band-pass spectrum and a scaling function has a low-pass 

spectrum, so a series of dilated wavelets along with a scaling function can be considered 

as a filter bank. Figure 3.9 clearly depicts this concept. 

  

 

Figure 3.9 Concept of Scaling Function 

Scaling function may be mathematically defined as: 

 �௝ ,௞ ሺݐሻ =  ଵ√ଶೕ  �ሺ௧−௞ଶೕଶೕ ሻ              3.10 

 �௝ ,௞ ሺݐሻ =  ʹ௝/ଶ�ሺʹ௝ݐ − ݇ሻ            3.11 

Here j, k are integers and �(t) є L2
(R). L

2
(R) denotes the set of measurable, square-

integerable functions; R is set of real numbers. K determines the position of �௝,௞ ሺݐሻ and j 
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determines the width of�௝ ,௞ ሺݐሻ. The term 2
j/2

 controls the amplitude of function. Since 

the shape of �௝ ,௞ ሺݐሻ changes with ‘j’, it is called a scaling function. 

{�௝ ,௞ ሺݐሻ} is a set of expansion functions made up of binary scaling and integer time 

shifts  of φ(t). It spans a subspace of L
2(R). Subspace spanned over ‘k’ for any ‘j’ can be 

defined as [11]: 

 ௝ܸ =  Span k {φj,k ሺtሻ}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                             3.12 

With the increase in ‘j’, the size of Vj increases and �௝ ,௞ ሺݐሻ which is used to represent 

the subspace functions becomes compressed.. This allows functions with fine details to 

be included in the subspace. At low scales, the subspaces covered by the scaling function 

are enclosed within subspaces spanned at higher scales. If a function, g(t) is an element of 

V0, it is also an element of V1. It means all V0 expansion functions lie within V1. 

Mathematically it can be stated as V0 ⊂ V1. The reference subspace V0 is arbitrarily 

chosen. A general representation is: 

 V- ∞ ⊂ . . . ⊂ V-1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ V∞       3.13 

       V0 ⊂ V1 ⊂ V2  

  

 

  

 

 

      

Figure 3.10 Function subspaces spanned by a scaling function [11]  

 

 

        V0 
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3.6.3 Wavelet Functions 

A wavelet function ψ(t) along with its binary scaling and integers translates, provides the 

difference between any two adjacent subspaces Vj and Vj+1. 

If Wj is the space spanned by ψj,k(t), it can be stated as [11]: 

  ௝ܹ =  Span k {ȥj,k ሺtሻ}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                             3.14 

Now the wavelet and scaling function subspaces can be linked together as: 

 Vj+1 = Vj ⊕ Wj             3.15 

In equation 3.15, ⊕ represents the union of spaces. Vj and Wj represent the scaling 

function and wavelet function subspaces. 

       V1 = V0 ⊕ W0 

 

  

 

 

Figure 3.11 Relationship between wavelet and scaling functions [11] 

 The expansion functions of a scaling function subspace Vj is represented as weighted 

sum of the expansion functions of the next higher resolution subspace Vj+1.  

 �௝ ,௞ ሺݐሻ =  ∑ ℎ�ሺ݊ሻʹሺ௝+ଵሻ/ଶ�ሺʹሺ௝+ଵሻݐ − ݊ሻ௡             3.12 

Equation 3.12 is called the dilation equation [11]. ℎ�ሺ݊ሻ are called the scaling function 

coefficients. They refer to the sub-band coding low pass filter coefficients. Similarly, 

W1 

W0 
        V0 
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expansion functions of the wavelet function subspace Wj can also be written as weighted 

sum of the expansion functions of next higher resolution subspace Wj+1. 

 ȥ௝ ,௞ ሺݐሻ =  ∑ ℎటሺ݊ሻʹሺ௝+ଵሻ/ଶ�ሺʹሺ௝+ଵሻݐ − ݊ሻ௡             3.13 

Here ℎటሺ݊ሻ are called the wavelet function coefficients. They refer to the sub-band 

coding high pass filter coefficients. 

3.6.4 Sub-band Coding 

Sub-band coding refers to the decomposition of the signal into a set of band-limited 

components (sub-bands). The decomposition is carried out by means of digital filter 

banks.  Digital filters of different cutoff frequencies are used to examine the signal at 

different frequencies (scales). The signal is passed through a number of high pass filters 

and low pass filters to study the high frequency and low frequency constituents of the 

signal, respectively.  

Sub-band coding algorithm starts with passing the signal through a half band low pass 

filter (having an impulse response of h[n]) and a half band high pass filter (having an 

impulse response of g[n]). Low pass filter removes all frequencies that are above half of 

the highest frequency in the signal. Similarly high pass filter removes all frequencies 

below half of the highest frequency in the signal. This methodology splits the frequency 

components of the signal into two sub-bands.  If the original signal has the highest 

frequency component of ‘q’ radians then according to σyquist’s rule its sampling 

frequency would be ‘2q’ radians. After half band filtering, the highest frequency 

component of the filter’s output will be halved to ‘q/2’ radians. So according to σyquist’s 

rule, its sampling frequency should be ‘q’ radians. It means half the samples are 
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redundant. Sub sampling by 2, thus removes half of the samples. Filtering is followed by 

subsampling by 2. The decomposition procedure is repeated by successive filtering and 

downsampling. At each level filtering and downsampling will give half the number of 

samples (half the time resolution) and half the frequency band spanned (double the 

frequency resolution). Figure 3.12 demonstrates the sub-band coding methodology, 

where x[n] is the original signal. Low pass filer is represented by h[n] and high pass filter 

is represented by g[n]. Each filter’s bandwidth is marked as ‘f’. 

   
 

Figure 3.12 Sub-band Coding Demonstration 
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Figure 3.12 shows that each high pass filter’s output (after subsapmling) gives the DWT 

coefficients for the corresponding level of decomposition. The process of filtering and 

downsampling can be mathematically depicted as: 

[݊]ℎ௣ݕ  =  ∑ .[݇]ݔ ݃[ʹ݊ − ݇]௞                3.14 

[݊]௟௣ݕ  =  ∑ .[݇]ݔ ℎ[ʹ݊ − ݇]௞                        3.15 

In the above equations ݕℎ௣[݊] and ݕ௟௣[݊] correspond to the high pass and low pass filter 

outputs (after downsampling by 2), respectively. For perfect reconstruction, the impulse 

responses of high pass and low pass filters should be related as: 

 g[K - 1 - n] = (-1)
n

 . h[n]              3.16 

In equation 3.16, g[n] and h[n] are the high pass and low pass filter impulse responses, 

respectively. ‘K’ is the length of the filter (in terms of filter coefficients). Filters that 

satisfy the condition in equation 3.16 are called Quadrature Mirror Filters.  

 Any function, x(t) can be expanded as: 

 x(t) = xa(t) + xd(t)             3.17 

where, xa(t) is an approximation of the function x(t), using V0 scaling functions, and xd(t) 

is the difference between the function x(t) and its approximation expressed as a sum of 

W0 wavelets. The low frequencies of x(t) are given by xa(t) ( it gives the average value of 

x(t) in every integer interval). On the other hand, xd(t) gives the detail. When described in 

terms of the iterative filter bank, the low pass filter provides the approximation and the 

high pass filter gives the detail coefficients. 

3.7 Benefits of Wavelet Analysis 

The advantages of Wavelet Analysis can be summarized as below: 

1. Wavelets provide a simultaneous localization both in time and frequency domain. 
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2. Fast wavelet transform makes it very fast computationally. 

3. Wavelets are able to distinguish the minute details in a signal. Very small 

wavelets are best suited to isolate very fine details in a signal, while very large 

wavelets identify coarse details. 

4. Data compression and perfect reconstruction can be obtained by using Wavelet 

Theory. 

5. Wavelet Analysis provides a good approximation of a given function or signal by 

using only a few coefficients which is the great accomplishment as compared to 

Fourier transform. 

6. Wavelet transformation is capable of showing those aspects of data that other 

signal analysis techniques miss, such as breakdown points, and discontinuities in 

higher derivatives and self-similarity. 

7. It has the ability to remove noise from a signal or image without considerable 

deprivation of the signal’s characteristics. 

8. Wavelet Transform along with its many variants is widely used in Image 

Processing for edge detection. 

3.8 Detecting Discontinuities and Breakdown Points using Wavelets 

 Frequency hopping spread spectrum signals undergo abrupt changes in frequency. 

Fourier analysis is usually not able to detect these jumps.  Wavelets are best suited for 

finding out abrupt transitions in a signal or any of its high order derivatives. For this 

purpose, the chosen wavelet should be able to represent the highest order derivative 

present in the signal function. Any wavelet with, at least, p vanishing moments can be 
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used to detect a discontinuity in the p - 1 derivative [7]. Figure 3.13 shows few types of 

mother wavelets that can be used for detecting discontinuities.  

 

Figure 3.13 Wavelets with their scaling functions shown with dashed lines [7] 

 

Haar wavelet is the shortest of all wavelets and is, therefore, best suited for detecting 

discontinuities in a signal. It has only one vanishing moment and hence can only detect 

discontinuity in the p – 1 = 0 derivative (i.e. the signal itself). db-4 and db-6 have 2 and 3 

vanishing moments, respectively. They are hence, able to detect discontinuity in the first 

and second derivative of the signal, respectively. 
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Concepts developed in this chapter are utilized in the Detection and Hop Time Estimation 

Algorithm discussed in the following chapter. The phase discontinuity in the processed 

TCF plot can be considered a high frequency signal and after applying Discrete Wavelet 

Transform (DWT) along with further signal processing, detection and hop time 

evaluation of the sample FH signal is carried out. The next chapter explains all the steps 

of the algorithm in complete detail.  
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Chapter 4 

DETECTION AND HOP TIME EVALUATION ALGORITHM 

 

Based on the concepts described in chapter 2 and 3, Detection and Hop Time Evaluation 

Algorithm for a Frequency Hopping Spread Spectrum (FHSS) signal can now be 

explained stepwise. 

4.1 Algorithm Steps 

1. First step involves signal generation. General form of a frequency hopping signal 

can be written as [12]: 

ሻݐሺݔ  =  � ∑ ݐℎሺ்ݐܿ݁ݎ − ݇ ℎܶ − �ሻ݁௝ଶ�௙ೖሺ௧−௞்ℎ−�ሻ௞ +  ሻ          4.1ݐሺݓ 

Here 0 < t < T, ݓሺݐሻ is Additive white Gaussian Noise, fk is a hop frequency in the spread 

bandwidth. 

∋ ݐ   ℎܶ (t) = {ͳ ݐܿ݁ݎ ሺ− ்ℎଶ , ்ℎଶ ሻ Ͳ        ݈݁ݓ݁ݏℎ݁݁ݎ 

In this work, a two-hop Frequency Hopping system model is considered for applying the 

algorithm. So the analytic form of the two-hop frequency hopping signal would be as 

follows [12]: 

 xa(k)= ݁௝ଶ�௙భ௞[ݑሺ݇ሻ − ݇)ݑ − ℎܶ௢௣)] + ݁௝ଶ�௙మ௞[ݑ(݇ − ℎܶ௢௣ + ͳ) − ሺ݇ݑ − ܶሻ]      4.2 

for 0 ≤ k ≤ T,  

Thop is the time of hop of the signal from one frequency f1 to f2 and u(k) is the unit step 

function. 



39 

 

2.  An assumption is made about the minimum hop time, Thop_min. Value of Thop_min  

is taken as 256 samples. Based on this assumption, data is segmented into frames of 

length equal to 256. This assures that there is at most one hop in a frame. 

3.  Temporal Correlation Function (TCF) is computed for each frame. The phase of TCF 

is plotted, as described in Chapter 2. 

4.  The TωF phase is unwrapped along the time axis for a fixed value of lag, Ĳ. Phase 

unwrapping eliminates the discontinuities, in the cross-term region of TCF phase plot, 

due to periodicity in phase and also reduces the spikes due to noise. 

5.  A median filter of length 5 is applied to the unwrapped TCF phase. This step 

reduces the effect of noise. 

6. The unwrapped, median filtered, TCF phase is differentiated with respect to time. 

This changes the ramp in the TCF12 phase region into a pseudo pulse. 

7. A second median filter of length 25 is applied to the processed TCF phase, along 

time axis. This is also a de-noising technique. 

8. Discrete Wavelet Transform (DWT) is computed using Haar Wavelet. This is 

used to identify the discontinuities at the boundaries of the cross-terms region of the TCF 

phase obtained in the previous step. 

9. Haar Wavelet exactly detects discontinuities in no-noise case but its ability of 

detection is adversely effected with the occurrence of noise. To counteract this issue, 

averaging of scales is done. So the DWT detail coefficients of the first two scales, d1 and 

d2 are summed up.  In MATLAB, DWT transformation automatically downsamples the 

filter’s output by two. In order to keep the same dimension as that of the original TωF 

phase plot, upsampling by 2 is done by taking d2(2n+1) = d2(2n), for n = 0,1,2,…,σ-1. 
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N is the length of d2. Upsampling is done before summation. 

10. Detection vector is obtained by doing 45˚/135˚ summation across all values of 

lag, Ĳ. The detection vector is represented with respect to time. 

11. The resulting detection vector is compared with a threshold. This detects the 

presence of hop in the signal. 

12. The detection vector shows a peak at the time of frequency hop. The time index 

corresponding to the peak in the detection vector gives the estimated hop time of the 

Frequency Hopping Spread Spectrum signal. 

This chapter, now, describes the simulation process and further clarifies the algorithm by 

applying it to a sample frame. 

4.2 System Model 

MATLAB simulations are carried out to test the Detection & Hop Time Estimation 

Algorithm explained in the previous section.  

The Frequency Hopping Signal is generated with the following specifications: 

a) Frequency Bandwidth used for spreading: 2 – 30 MHz (HF Band) 

b) Sampling Frequency, fs = 60 MHz 

c) Signal is segmented into frames, with each frame having a length of Thop-min 

d) Thop-min is taken as 256 sample points. This assumption is made so as to make sure 

that there will be one hop in each frame, at maximum. With the sampling 

frequency of 60 MHz, the minimum hop time comes out to be 4.27µs. 

e) Minimum frequency differential ∆f = 2kHz 

f) No. of  hop frequencies in the spread bandwidth, Nf = (fmax – fmin)/ ∆f 

Nf = (30 – 2) MHz/ 2kHz = 14,000 
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g) With the above mentioned specifications, the frequency hopping signal thus 

generated either has   

i) no hop in a frame, or  

ii) it has a hop from any frequency f1, to any frequency f2, such that  

2 MHz ≤ f1, f2 ≥ 30 MHz, and |f1 – f2|≥ 2kHz 

The Frequency Hopping Signal is generated by taking a random hopping time, Thop, in 

the 256 point sample frame (between sample point 26 and 231). The twenty five samples 

at the start and end of a frame are not considered due to problems caused by edge effects.  

 If a hop occurs within a simulation frame (i.e. when Thop ≠ 0), then both frequencies 

before and after the hop are randomly generated. This results in a signal with, not more 

than, one frequency hop from f1 to f2, in the spread bandwidth such that 

2 MHz ≤ f1, f2 ≥ 30 MHz, and |f1 – f2|≥ 2kHz 

Simulation involves five hundred experiments, that are carried out with six different SNR 

values, varying from 15dB to -3dB. The algorithm determines  

a) Presence of a frequency hop in the frame  

b) The hop time estimate, in case of a frequency hop within a frame 

Out of the 500 trial experiments, 10% of the randomly generated hop times are taken as 

zero to completely test the effectiveness of the algorithm.  

In the simulations, SNR is defined as: 

 ܵ�ܴ =  ͳͲ݈݃݋ଵ଴ሺ௣�೔�೙�೗�೙೚೔��మ ሻ         4.3 

Here psignal is the signal power and ı2
noise is the noise variance. For a signal with unity 

amplitude, equation 4.3 becomes 
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 ܵ�ܴ =  ͳͲ݈݃݋ଵ଴ሺ ଵ/ଶ�೙೚೔��మ ሻ        4.4 

From equation 4.3, the Standard Deviation of Additive White Gaussian Noise can be 

computed as: 

 �௡௢௜௦௘ = √ଵଶ  ͳͲ−ௌ�ோ/ଵ଴       4.5 

 

4.3 Detection and Parameter Estimation Algorithm Applied to a Sample Frame 

In order to develop a complete understanding of the detection and hop time estimation of 

the FHSS signal carried out in this work, it is applied to a sample frame.  

4.3.1  Signal Generation 

A simulation frame of length 256 samples has a randomly generated hop time, Th of 139. 

The frequencies before and after the hop are 25.89 MHz and 24.2MHz, respectively. i.e. 

f1=25.89 MHz, f2=24.2 MHz and Th= 139 samples. After adding AWGN, the resulting 

SNR is 10 dB. 

4.3.2 Temporal Correlation Function (TCF) 

The phase of the TCF expression given in equation 2.8 is plotted for the simulation frame 

under consideration in figure 4.1. In the figure, TCF phase is plotted, with time, t along 

the y-axis and lag, Ĳ along the x-axis .The bottom triangle (TCF1 (t,Ĳ) region) is obtained 

by  the auto-terms at frequency, f1 and the top triangle (TCF2 (t, Ĳ) region) is obtained by 

the auto-term at frequency, f2. The cross-terms region TCF12 (t, Ĳ) is due to both f1and f2. 

Moreover, the cross-terms region is centered on the hop time, i.e. t = Thop, for 0 ≤Ĳ ≤ Thop.   
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Figure 4.1 TCF Phase plot with f1=25.89 MHz, f2=24.2 MHz and Th= 139 samples 

 

When observed for a fixed value of lag, the phase is constant with time in the TCF1 (t, Ĳ) 

region, shows phase variations in the TCF12 (t, Ĳ) cross-terms region and then the phase 

again becomes constant in the TCF2 (t, Ĳ) region. Figure 4.2 shows the TωF phase for a 

fixed lag of Ĳ = 25. The presence of noise causes random spikes in the phase information. 

Detection and hop time estimation process is determined by the changes in the TCF phase 

behavior in the three regions. 

 

 

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300  

Lag (Samples)

 

Ti
m

e 
(S

am
pl

es
)

-3

-2

-1

0

1

2

3
T

hop
  = 139 



44 

 

 

 

 

 

 

 

 

  Figure 4.2 TωF phase for lag, Ĳ = 25 with no-noise [6] 

 

Figure 4.3 shows the TωF phase for lag, Ĳ = 25 distorted by AWGσ. It is clear from the 

Figure that for a FH signal distorted by noise, the detection and hop time estimation 

becomes difficult. TCF1 (t, Ĳ) and TωF2 (t, Ĳ) regions also show phase variations instead 

of constant phase. 

 

  Figure 4.3 TωF phase for lag, Ĳ = 25 with SσR = 10dψ [6] 
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4.3.3 Pre-processing Techniques 

Steps 4 – 7 of the algorithm described in section 4.1, are the pre-processing methods used 

to de-noise the TCF phase of the analytic FH signal. Phase behavior is normally very 

sensitive to noise degradation. It is for this reason that few pre-processing steps are added 

to minimize noise effects. These techniques include phase unwrapping, median filtering 

and differentiation.  

Unwrapping the TωF phase for a fixed value of lag, Ĳ removes the phase discontinuities 

due to periodicity of 2π in phase. It makes the phase linear in the TωF12 region resulting 

in a ramp. The TCF1 and TCF2 regions show constant phase at different levels. 

Median filtering de-noises the TCF phase information while preserving the 

discontinuities between the regions. A median filter of length 5 is applied before 

differentiation and a second median filter of length 25 is again applied after 

differentiation. 

Differentiation changes the ramp into a pseudo-pulse and the constant phase regions 

become zero after differentiation. This step results in a pseudo-pulse whose height is 

equal to the slope of the unwrapped TCF phase and its width is equal to the width of 

cross-terms region, and centered on Thop (i.e. centered at sample point 139 of the time 

axis for the simulation frame under consideration) 

All the pre-processing techniques have been discussed in detail in section 2.4. 

4.3.4 Detecting Discontinuities using DWT 

Steps 8 and 9 of the algorithm are applied to the pseudo-pulse obtained after 

differentiation and median filtering of the unwrapped phase of TCF. Discrete Wavelet 

Transform is computed using Haar Wavelet. DWT detects discontinuities at the rising 
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and falling edges of the pulse. After this, the wavelet coefficients of the first two scales 

are added to minimize the effect of noise.  This technique is called averaging of scales. 

The concept behind is that when two or more scales are summed up and clipped at some 

threshold, the true discontinuities line up across all scales while the spikes due to noise do 

not line up. Figure 4.4 clarifies the concept where Discrete Wavelet Transform of a noisy 

stair step function is computed for six scales using Haar Wavelet. The coefficients of six 

scales are added and compared against a threshold. Thus by using averaging of scales, all 

the step times can be computed even in the presence of noise. 

                      

Figure 4.4 Detection of stair step times using averaging of scales [7] 

 

DWT transformation in MATLAψ inherently downsamples the filter’s output by two. To 

keep the same dimension as that of the original TCF phase plot, upsampling by 2 is done 

by taking d2(2n+1) = d2(2n), for n = 0,1,2,…,M-1. 
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M is the length of d2. Upsampling is done before summation. 

                    

            

Figure 4.5 DWT of the processed TωF phase for a constant Ĳ = 25, (a) After median 
filtering (of length 25) of the differentiated unwrapped TCF phase, (b) 

Level 1 detail coefficient of DWT, Haar wavelet, (c) Level 1 detail 

coefficient of DWT upsampled by 2 

 

4.3.5 Detection Vector 

In step 10 of the algorithm, detection vector is computed. It is obtained by doing 45˚/135˚ 

summation on the Discrete Wavelet Transform matrix. All values representing the edges 
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of the cross-terms region in the processed TCF phase are summed up. The result of 

summation emphasize at the hop time, Thop. Detection vector is represented with 

respected to time. It gives peak amplitude at the hop time. 

 

             

   Figure 4.6 Detection Vector 

4.3.6 Determination of Threshold 

After getting the detection vector, decision is required to be made about the presence of 

hop in the simulation frame. It has been experimentally shown that variance of the 

detection vector is the figure that can be best utilized to detect the presence of a 

frequency hop. Variance is actually a measure of the spread between amplitudes in a data 

set. Therefore, the variance of the detection vector having no hop is considered a 

reference for threshold calculation. Tthreshold is taken as a constant times the variance of 

the detection vector with no hop for a given value of SNR. 

 Tthreshold = k. variance (detection vectorno hop(t))            4.6 



49 

 

Determination of threshold is directly related to the probability of missed detections. 

Probability of detection, PD and probability of missed detection, Pm are related as follows: 

 Pm = 1 - PD                4.7 

The value of the multiple, k, in equation 4.6, is chosen so as to have a good probability of 

detection along with a reasonable probability of false alarm. 

Probability of missed detections is far more important to focus upon than probability of 

false alarm, PFA. Hop time estimation is the first stage of the Frequency Hopping signal 

Demodulation so frequency analysis in the case of a false alarm will result in the same 

frequency values in two or more successive hop durations. This will not cause any 

information loss. On the contrary, when any detection is missed, the frequency analysis 

will result in errors in the demodulated message.  

 

 

 

  

 

 

 

 

Figure 4.7 A typical Receiver Operating Characteristic Curve 

 

Receiver Operating Characteristics (ROC) curves are used to illustrate the detection 

performance. ROC curve is a graphical representation of probability of detection, PD (y-
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axis) versus the probability of false alarm, PFA (x-axis). Figure 4.7 shows how an ROC 

curve generally looks like. SNR of the signal is depicted by the “bow” in the curve. The 

more the SNR, the more the curve will bend upwards. ROC is plotted by varying the 

threshold and plotting the corresponding values of PD and PFA.   

 

4.3.7 Detection of hop 

For each of the six SNRs, the ROC curve along with the Probability of Detection (PD) 

versus Threshold multiple (k) and the Probability of False Alarm (PFA) versus Threshold 

multiple (k) plots, are used to determine the threshold. Figure 4.8 illustrates the 

procedure. Plots correspond to an SNR of 10 dB. To get a PD of 0.987, the corresponding 

PFA from ROC curve is 0.05. Now for these values of PD and PFA, the value of the 

Threshold multiple, k is chosen from “PD versus k” and “PFA versus k” plots, as shown in 

Figure 4.8. The value of k is 30, so from Equation 4.6, the value of Threshold, TThreshold 

will be 30 times the variance of detection vector obtained with no hop in the frame. The 

variance of the detection vector constructed for each frame is compared against this 

Threshold. When the detection vector variance exceeds this threshold, a hop is detected 

and if the detection vector variance is less than the threshold, no hop is detected.  
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Figure 4.8 Threshold Determination, (a) ROC curve, (b) PD vs Threshold multiple 

and PFA vs Threshold multiple 

 

4.3.8 Hop Time Estimation 

The time corresponding to the peak amplitude of the detection vector as shown in Figure 

4.6, provides the estimated hop time. The difference between the actual hop time and the 

estimated hop time gives the percentage of error. 

 

The following chapter gives the results of simulations in the form of detection statistics 

and plots. 

 

PFA 

 SNR = 10dB 
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Chapter 5 

SIMULATION RESULTS 

 

The results of simulations obtained by applying the Detection and Hop time Estimation 

Algorithm are described below: 

5.1 Detection 

Table 5.1, shown below provides the results of detection. Out of the 500 experiments, 

corresponding to each SNR, 10% of the experiments do not have a hop. It means total 

hops are 450. Table 5.1 provides the number of detections, number of misses, number of 

false alarms and also the number of “no detections” in case of no hop in the frame.   

 

SNR (dB) Total hops detections misses False 

alarms 

No hop no 

detection 

15 450 449 1 2 48 

10 450 446 4 15 35 

6 450 445 5 20 30 

3 450 432 18 25 25 

0 450 420 30 20 30 

-3 450 236 214 13 37 

 

Table 5.1 Detection Results 

 

The performance of a detection algorithm is determined by the probability of detection 

and the probability of false alarm. A high probability of detection (i.e. a low probability 

of missed detection) is required along with an acceptable probability of false alarm. For 

each SNR, the probability of detection and probability of false alarm are computed by the 

following equations:   
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 �� =  ௡௢ ௢௙ ௗ௘௧௘௖௧௜௢௡௦௧௢௧�௟ ℎ௢௣௦                                         5.1  

  ��� =  ௡௢.௢௙ ௙�௟௦௘ �௟�௥௠௦ሺ௡௢.௢௙ ௘௫௣௘௥௜௠௘௡௧௦−௧௢௧�௟ ℎ௢௣௦ሻ             5.2 

Table 5.2 gives the detection results in terms of probabilities. It gives the probability of 

detection, PD, probability of false alarm, PFA and the percentage of error corresponding to 

each of the six values of SNR varying from -3 dB to 15 dB. Percentage of error is 

determined from the false alarms and misses. It is calculated as follows: 

ݎ݋ݎݎ݁ ݁݃�%  =  ሺ௙�௟௦௘ �௟�௥௠௦+௠௜௦௦ሻ௡௢.௢௙ ௘௫௣௘௥௜௠௘௡௧௦                  5.3 

 

SNR 

(dB) 

k PD PFA %age 

error 

15 140 0.998 0.04 0.6 

10 30 0.991 0.3 0.8 

6 15 0.989 0.4 5.0 

3 11 0.960 0.5 8.6 

0 1 0.933 0.4 10.0 

-3 3 0.524 0.26 45.4 
 

Table 5.2 Detection Statistics of 500 simulations corresponding to each SNR 

 

Detection results given in Table 5.2 show that for an SNR of 3 dB, if 8.6% 

misclassification and a probability of false alarm of 0.5 is acceptable then, 96% of the 

hops in a frequency hopping signal can be detected. Figure 5.1 shows a plot of Detection 

Probability PD versus SNR.  
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Figure 5.1 Detection Performance 

 

5.2 Hop Time Estimation 

The results of hop time estimation are expressed as percentage of the difference from the 

actual hop time of the frequency hopping signal considered before applying the Detection 

and Parameter Estimation Algorithm. Table 5.3 shows all the hop time estimation results. 

SNR 1% 5% 10% 15% 20% 30% 40% 50%  

15 0.796 0.966 0.9800 0.9840 0.9840 1 1 1 

10 0.676 0.906 0.926 0.932 0.938 0.944 0.946 0.946 

6 0.474 0.812 0.848 0.868 0.884 0.898 0.898 0.904 

3 0.35 0.71 0.77 0.816 0.836 0.874 0.9 0.904 

0 0.122 0.34 0.48 0.594 0.682 0.78 0.832 0.872 

-3 0.086 0.154 0.252 0.33 0.398 0.456 0.498 0.526 

 

Table 5.3 Hop Time Estimation Results showing probabilities of estimated hops 

having a given distance, represented as percentage of Thop_min from true hop time 

 

-4 -2 0 2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

SNR

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n



55 

 

In the table 5.3, column labeled 1% indicates the probability of the detected hops having 

an estimated hop time within 1% of Thop_min (256 sample points). 1% of Thop_min means 

within 2 samples of the true hop time. Sampling is done at a frequency of 60 MHz, so one 

sample corresponds to 16.67 ns. For an SNR of 6 dB, the column labeled 1% indicates 

that estimated hop time of 47.4% of the detected hops is within 2 samples of the actual 

hop time. Similarly the column labeled 5% indicates that the estimated hop time of 81.2% 

of the detected hops is within 12 samples of the true hop time. 

Figure 5.2 shows the accuracy of hop time estimation in terms of probabilities. 

 

 

Figure 5.2 Probability of Estimation vs SNR 

It can be observed from the figure that with an increase in SNR, the probability of hop 

time estimation within a given number of samples time also increases. The lowest plot in 
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the figure corresponds to the probability of detected hops having estimated hop time 

within 1% (2 samples time i.e.33.34 ns). The middle plot corresponds to the probability 

of detected hops having estimated hop time within 5% (12 samples time i.e. 0.2 µs) and 

the uppermost plot corresponds to the probability of detected hops having estimated hop 

time within 10% (25 samples time i.e. 0.417 µs). 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

6.1 Conclusions 

The thesis is based on the application of Temporal Correlation Function and Discrete 

Wavelet Transform for the Detection and Hop time Estimation of a Frequency Hopping 

Signal in HF band (2 – 30 MHz) in Additive White Gaussian Noise. HF band is 

specifically used for military applications for security purposes. 

An introduction of Frequency Hopping Spread Spectrum technique is provided. After that 

an analytic expression of a FH signal is derived. A two-dimensional Temporal 

Correlation Function of the analytic FH signal is computed. The phase of the TCF 

expression is plotted and the phase discontinuities are enhanced by pre-processing and 

most importantly, by applying the Discrete Wavelet Transform. The Detection and Hop 

Time Estimation Algorithm “Detects” the presence or absence of a hop in the frame. It 

further estimates the time of hop.  

Results show acceptable detection performance at SNR levels above 3 dB. At 3 dB 

probability of detection is 0.96 with 8.6% misclassification. Hop time estimation 

accuracy is also reliable at SNR levels above 3 dB. 

6.2 Future Work 

The work is based on the two-dimensional plot of the phase of Temporal Correlation 

Function. The results can be improved by applying image processing techniques for de-

noising and for enhancing the hop time estimation accuracy. Morphological image 
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processing techniques can be applied to the phase plot of Temporal Correlation Function. 

Wavelet based two-dimensional edge detection technique can be utilized to refine the 

detection and hop time estimation results even at SNR levels lower than 3 dB. 
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