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ABSTRACT 

 

As we know that images are the most important Digital data now a days. Image 

compression plays vital role in terms of saving storage space and reduction of transmission 

time. Wavelet transform is considered as landmark in the field of image compression due 

to the feature that it represents a signal in terms of functions those are localized in both 

frequency and time domain, as not in case of other Transformation techniques. Set 

Partitioning in Hierarchical Trees (SPIHT) is based on wavelet transform gives us the better 

image quality after the compression in a progressive manner. It works on the principal that 

partitioning of spatial orientation trees in such manner that insignificant and significant 

coefficients (with respect to some predefined threshold) are kept in the different sets. The 

output bit stream generated by SPIHT algorithm consists of large number of seriate ‘000’ 

with probability nearly equal to ¼, and require further compression. This is achieve by the 

cascading Entropy encoding schemes with SPIHT algorithm.    

The aim of this research is comparison between cascading of SPIHT algorithm with 

two entropy encoding schemes (Arithmetic coding and Huffman coding). For the 

cascading, the output bit stream of SPIHT is divided in sets of three bits to form 23 = 8 

symbols. These symbols are given to entropy encoding schemes (Arithmetic and Huffman). 

This cascading save lots of bits during transmission of data. Due to which it decreases the 

transmission time and requires less space on hard disk.  

This research concludes that the concatenation of SPIHT and Arithmetic coding blocks 

provides better Bits saving capability as compared to SPIHT and Huffman coding 

concatenation. On the other hand, SPIHT combined with Huffman performs well in terms 

of algorithm efficiency, implementation and execution time by preserving PSNR.   
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1          Introduction 
 

1.1. Background 

A lot of achievements have done in the field of organization of digital data especially 

digital images since last two decades. Organization of the data of digital images comprises 

on the storage of image’s pixels, their processing and finally recovery. Image compression 

has a vital role in all steps of organization of digital data. Image compression has broad 

applications in rising areas of multimedia database, medical imaging diagnosis and 

worldwide web (www). As we know that web contents are principally comprises on images 

so in order to deal with it image compression is a counterpart. So image compression is a 

challenging field for all researchers. 

Image compression is a technique in which we shrink the image size by, taking into 

account that there would be no consequence on the quality of the image. Image 

compression not only helps us to store the images in less disk space and save a lot of 

memory, rather than it provides us the facility in transmission and reception of the image 

in smaller time. To achieve this compression there are lot of techniques to implement. 

Internet utilize the famous technique i.e. JPEG. In many image compression systems 

Wavelet is employed. 

Compression the digital image and compression of raw binary data are two separate 

things. If we compress digital image by using traditional image compression methods 

(normally used for raw binary data), this does not present good compression ratios and 

other compression measurement parameters. So there is need for those image compression 

techniques in which we could exploit the spatial features. If in some cases where quality is 

not big issue we can compress image by ignoring some details of the image, this technique 

known as Lossy compression.  
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At this stage we can observe compression in two different types, i.e. Lossy and lossless 

image compression techniques. In some situations where image quality and all details are 

key factors and can’t be compromised, we use lossless image compression techniques. But 

the focus of researchers is on the Lossy image compression algorithms rather than lossless 

techniques, because most of the images are related to less sensitive human vision. 

A tremendous progress is observed in the field of image compression in last three 

decades. Researchers are facilitated by the advent of Wavelet Transform. In which we get 

the details of the images, and get success in exploiting the spatial features and 

characteristics. There are lots of image compression algorithms which are based on 

Wavelet transform. In [4] Shapiro familiarize with the embedded-zero-tree wavelet (EZW). 

It is a progressive image compression technique, in which embedded bits stream comes 

out. This extensive work is extended in [5] by A. Said and W.A.Pearlman and brought a 

new idea of image compression, by employing the concept of spatial orientation trees, 

named Set Partitioning in Hierarchical Trees (SPIHT).    

 

1.2. Research Inspiration 

Dexterous Image compression is very obligatory in storing an image. For example to 

save an image of size 1024 X 1024 on the disk space requires nearly equal to 3MB. In 

addition time compulsory to transmit this image through ISDN network is 7 minutes. On 

the other hand by employing the proper compression techniques we can store the same 

image on 300KB disk space and reducing the transmission time up to 6sec. Delay enhances 

as we increase the size of the file to be transmitted. So compression becomes compulsory, 

when we are dealing with huge amount of data, without influencing the quality of digital 

image prior to storing/transmitting it. At receiving stage this compressed data is 

decompressed.  

 

1.3. Principles of Image Compression 

When we observe digital images, there exists correlation among the neighboring pixels. 

This correlation has least amount of information, which we have to remove. The quality of 

the image is affected whenever we try to remove any data from the image. Image 
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compression also deals with quality of the image after reduction of the data. A statistically 

uncorrelated set of data is formed of the pixels of image before storing or transmitting the 

image. At receiving end decompression gives us real or approximated image. To remove 

redundancy is the key part of image compression techniques, this leads us to removing 

duplications of data. There are several types of redundancies.   

1.3.1. Spatial Redundancy 

Correlation that exists among the same object is called spatial redundancy.   

 

1.3.2. Spectral Redundancy 

This is the Redundancy that exists among numerous bands of spectrum or color planes. 

 

1.3.3. Temporal Redundancy 

This is the correlation between consecutive objects or frames of image. 

If spectral and special redundancies are eliminated then the bits used to represent a 

digital image are decreased in numbers.    

 

1.4. Image Compression  

Image compression consists of different stages. Firstly the original image is 

uncorrelated (exploit self-similarity of pixels) by using a linear transformation method. 

Then the resulting coefficients of the previous stage are quantized using a quantization 

step, the yield of this feeds to entropy encoded stage and this results Lossy compression as 

shown in Fig. 1.1. Their inverses are cascaded in same manner at receiving stage to recover 

equivalent image.   

 

Figure 1Error! No text of specified style in document.-1 Compression and decompression 
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Now these are discussed separately one by one.  

1.4.1. Linear Transformation 

Linear transformation is the procedure in which we exploit the self-similarity of the 

pixels to make them uncorrelated so that irrelevant data vanishes. For the sake of purpose 

there are lots of techniques like Discrete Cosine Transform (DCT), Discrete Fourier 

Transform (DFT) and Discrete Wavelet Transform (DWT). DWT considers the most 

differentiate than all other techniques.  Later I will discuss DWT (Discrete Wavelet 

Transform) in detail. 

 

1.4.2. Quantization 

Quantization is the process in which discretization of intensity axis is done. 

Quantization minimizes the accuracy of coefficient values that obtained in the result of 

linear transformation. This also decreases the number of bits that are used to store an image 

[9]. 

 

1.4.3. Encoding 

The encoder block is used further to compress the output of quantization block. In order 

to perform encoding first of all, probabilities of values are calculated with the help of a 

model. This model helps us for the generation of appropriate code for sake of purpose that 

resulting bit- stream is lesser than the input bit-stream [8]. As we know that Huffman and 

Arithmetic are those Lossless Encoding techniques which performs in much better way as 

compared to other techniques. 

 

1.5. Objective of Research 

The basic purpose of this research is to concatenate the Set Partitioning in Hierarchical 

Trees (SPIHT) with Lossless encoding schemes also known as Entropy encoding 

techniques like Huffman and Arithmetic encoding, in order to compare the performance 

parameters like Disk saving capability in terms of no. of bits saving, Compression Ratio 

(CR), PSNR performance and Execution time etc. 
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1.6. Thesis Organization 

Literature Review comprises on chapter 2, 3, and 4. In Chapter 2 the discussion is on 

the basic concepts of wavelet Transform and Multi resolution Analysis (MRA). Chapter 3 

explains in details the MRA based compression techniques like Set Partitioning in 

Hierarchal Trees (SPIHT) and Embedded Zero-tree wavelet (EZW) with examples. 

Chapter 4 throws some light on the Lossless Entropy encoding Techniques like Huffman 

and Arithmetic Encoding with Examples. Chapter 5 describes the Cascading of SPIHT 

with Entropy coding techniques Huffman and Arithmetic. In Chapter 6 MATLAB based 

simulation and results for the comparison of cascading of both Entropy encoding 

techniques with SPIHT.  
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2          Wavelet Analysis 
 

2.1. Introduction 

From the last few decades, a transformation method, as replacement to sinusoidal 

transformation techniques like DFT and DCT come out for performing on low bit rates. In 

this transformation technique a new concepts of wavelets basis has introduced. Wavelets 

are the tiny waves of compact support i.e. limited time duration and of changing frequency.  

In order to examine the spatial frequency contents of pictorial data or image at multiple 

resolution values, these tiny wavelets can be scaled or shifted. In other words wavelets 

have the ability to observe the image at different resolutions and hence act as tremendous 

means in Multi-resolution Analysis (MRA). Additionally, Wavelet analysis is a tool for 

analyzing frequency contents of an image at varying spatial locations also called as space 

frequency localization. We can also associate the function of this technique with example 

that we are finding and analyzing the details of an image at particular special location by 

using a magnifying glass. We can zoom in or zoom out that magnifying glass to change its 

magnification in order to observe image details and also move slowly the magnifying glass 

horizontally over the surface of image to examine at different locations. This space 

localization property is absent in previous sinusoidal transformation techniques.  

An image is nothing but an arrangement of pixels values that is stored two 

dimensionally; we can’t get any information like spatial frequency from such images. 

Alternatively if we use sinusoidal transformation on image, spatial frequency information 

is achieved but one can’t judge the location on image where these contents are present. 

Wavelet Transform caters for the solution to both defects and hence provides effective 

MRA and coding capability.        

Wavelet transform is a powerful means for representing a signal. In conventional 

Fourier transform, a sinusoidal signal is used to represent a signal (this is also called basis 

function in Fourier transform). Spectral information is in detail at the cost of temporal 

information. On the other hand, in some of applications like music we do not need only 
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frequencies (also called nodes) but we have to take into account of time information of a 

specific node i.e. we have to tradeoff between Spectral and temporal information both. In 

wavelet transform we use wavelets to represent a certain signal. Wavelets are the finite 

time function with average zero value [9, 10]. Some of famous wavelets are shown in fig. 

2.1.  

 

 

Figure 2-1 some important wavelets 

As we know that image processing is actually the matrix processing, and our eye is less 

sensitive to high frequency components in an image. So taking these things into 

consideration we can compress the high frequency components and can get a compressed 

image.  

 

2.2. Background 

An image is mathematically a two dimensional array (also called matrix) of color 

intensity values between “0” to “255” these intensity values also known as pixels of the 

image. An image comprises on both large and small objects and we need high resolution 

to see small size objects and low resolution for large size objects. This idea may lead to the 

employment of multi-resolution processing. 

In wavelet transform a concept of mother wavelet Ⱳ(t) is employed to represent any 

shape of waveform by translating and scaling of mother wavelet Ⱳ(2kt-m). Where Ⱳ(t) is 

wave from time t = 0 to t = T, and k is scaling factor and m is translating or shifting factor. 

So Ⱳ(2kt-m) is that Ⱳ(t) which exists from t = m to t = m+T and contract by factor of 2k. 
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Fig. 2.2 shows mother wavelet for different values of k. It is clear from the figure that as 

we enhance the value of scaling factor the mother wavelet gets narrower and narrower. 

Expended wavelets are comparable to sinusoids of lesser frequency, while compressed 

mother wavelet resembles to sinusoids of larger frequency. A wavelet is called orthogonal 

wavelet when the inner product of a wavelet is equal to zero.  

 

 

(a) 

 

(b) 

 

 

(c) 

 

 

Figure 2-2 Scaling the wavelet with (a) k=1, (b) k=2 and (c) k=3 

 

2.3. Reason of Multi-Resolution Analysis 

The analysis of an image concludes that different location in image has different detail 

levels. Locations with high level of details have large information as compared to low level 

of details. Better resolution is necessary for high detailed areas. That’s the place where 

Multi-resolution analysis MRA plays its role to provide us location wise details knowledge, 

from which we can get our desired level of details for further processing. MRA plays a 

vital role in exploiting the self-similarities of image across the resolution. Wavelet analysis 

is one of the well-known Methods for Multi-resolution analysis.     

 

2.4. Importance of Wavelet Analysis 

The preference is given to wavelet transform in many areas like Human vision, image 

compression, turbulence and earthquake prediction. Data compression is a key area where 

wavelet transform is employed on the data (image) at different resolution levels and divides 

the image data in different sub bands depending upon their frequencies as in [12], [13] and 
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[14]. One of the most important feature of wavelet transform in performing local analysis 

of larger signal and using wavelet coefficient we can indicate the exact locations of the 

time domain discontinuities. 

 

 

2.5. Benefits of Wavelet Transform 

It is exhibited by the physical properties of wavelet transform that it is more 

advantageous than Fourier transform. As we know that in Fourier transform the bases 

functions are of infinite time interval i.e. from negative infinity to positive infinity, which 

is an impractical scenario. On the other hand, in wavelet transform the size of mother 

wavelet is of infinite time interval. Predictability is also one of the issues in Fourier 

transform due to of smoothness of the sinusoids, while in case of wavelet transform 

wavelets are irregular. So it is obvious from the figure 2.3 that irregularity of wavelets is a 

blessing to represent any kind of sharp changes in a signal. While in smooth sinusoids this 

goal is difficult to achieve.  

 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

Figure 2-3 Comparison of sine wave and wavelet (a) sine wave (b) wavelet 

 

2.6. Wavelet Analysis 

At this stage a new question arises in mind that what kind of mother wavelet Ⱳ(t) 

would be useful to represent a signal. We know that an impulse function (Haar) provides 

us with the best resolution in time domain. Conversely the sinusoids, in Fourier transform, 

provide us best resolution in frequency domain. But we are interested in both best 
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resolutions. This problem is solved by Daubechies in 1988, by presenting a new shaped 

wavelet also known as Daubechies Wavelet after his name as shown in figure 2.4. It is 

clear from figure that this wavelet is compactly supported wavelet.      

 

Figure 2-4 compactly supported Daubechies wavelet 

 A windowing notion is used in wavelet analysis. A window is an area of variable 

size rectangle as in [1].Different Interval sizes are used in wavelet analysis. Four different 

strategies are given depending upon the size of the window.  

 Shannon: A time domain view in which only high resolution of time scale is 

required and windows are adjusted only for time axis are also called Shannon as depicted 

in Fig. 2.5 (a).  

 Fourier: A frequency domain view in which only high resolution of frequency 

scale is required and windows are adjusted only for frequency axis are also known as 

Fourier transform as shown in Fig. 2.5 (b).  

 STFT: STFT stands for Short time Fourier Transform. In this case a fixed windows 

size is employed to represent a signal i.e. it is a tradeoff between Shannon and Fourier 

representation as shown in Fig. 2.5 (c).    

      Wavelet: In this representation a variable size windows is used to denote a signal. 

Fig. 2.5 (c). 
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(a)                                                           (b) 

 

   (c)                                      (d) 

Figure 2-5 Different views of a signal (a) Time-domain (Shannon), (b) frequency-domain (Fourier), (c) 
STFT based (Gabor) (d) wavelet based 

 

2.7. Perfect Reconstruction Filter Bank 

A reconstruction filter bank is set of cascaded filters that are used to reconstruct the 

signal. After passing through this reconstruction filter bank, an input signal (matrix image) 

is split into two band limited sections called sub-bands. Sub-bands are formed after the 

passing of image through the set of band limited filters. Sub-band coding is a counter part 

that relates to the Multi-Resolution Analysis (MRA). On the receiving end synthesis filters 

are employed to rejoin the sub-bands to yield the reconstruct signal without introduction 

of errors. Fig. 2.6 depicts the block diagram of two channel perfect reconstruction filter 

bank. X(z) denotes the transmitted 1-D (one dimensional) signal. In this diagram H0(z) and 

G0(z) are notations of low-pass analysis filter and high-pass analysis filter respectively. 

Whereas H1(z) and G1(z) are the notations of low-pass synthesis filter and high-pass 

synthesis filter respectively.  
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Figure 2-6 One dimensional, one level perfect reconstruction filter bank 

 Two sub-bands (high-pass and low-pass) are obtained as a result, when X(z) is input 

to analysis filters i.e. high-pass analysis G0(z) and low-pass analysis filter H0(z) 

respectively. The resulting sub-band signals from these analysis filters have smaller 

bandwidth than the original signal X(z). After that the output is down-sampled without 

skipping the information. This down-sampling completes the process of analysis. In 

reconstruction phase to recover the original signal are first up-sampled. The up-sampled 

signal is fed to the respective synthesis filters like low-pass synthesis filter H1(z) and high-

pass synthesis filter G1(z). The resulting signal is then combine together to get back the 

original perfectly reconstructed signal. Here z -1 indicates the delaying factor of combining 

both sub-bands. 

 As the analysis filters does not capable of having model magnitude response so 

aliasing is familiarizes during the struggle for reserving the sampling rate after down-

sampling. Analysis filters also introduced the phase and magnitude distortion to the signal. 

The purpose of the synthesis filters is to overcome these distortions. There should be a 

relation among analysis and synthesis filters as given below. 

 

G0(z)H0(z) + G1(z)H1(z) = 2          (2.1) 

G0(z)H0(-z) + G1(z)H1(-z) = 0           (2.2) 
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2.8.  Classification of Wavelets 

There is a little bit difference of relation among analysis and synthesis filters for 

orthogonal and bi-orthogonal bases. These wavelet bases are grouped among two classes. 

(i) Orthogonal wavelet bases 

(ii) Bi-orthogonal wavelet bases 

 

2.9. Characteristics of Orthogonal Wavelet Bases 

Some of real numbers constitute the coefficients of orthogonal filters. The length of 

these filter’s coefficients are same and they are not symmetric. A time inverse relation is 

present among this synthesis and analysis filters. 

H1(z) = H0(z−1)              (2.3) 

G1(z) = G0(z−1)              (2.4) 

 

If ‘N’ represents the length of the filter then relation can be written as under 

 

Go(z) = −z−NH(−z−1)           (2.5) 

 

 Now we can denote whole filter bank as a single filter i.e. low-pass analysis filter. 

The employment becomes easier by using set of orthogonal filters. 

 

2.10. Characteristics of Bi-Orthogonal Wavelet Filter 

Banks 

The coefficients of bi-orthogonal filters mostly comprises on integers or the real 

numbers. There exists the following relation as given below 

G0(z) = H1(−z)               (2.6) 

G1(z) = −H0(z−1)           (2.7) 

 

 It is obvious from above equations that bi-orthogonal filter bank can be constructed 

or implemented using only two filters, which are low-pass analysis and synthesis filter. Bi-
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orthogonal wavelet bases can be achieved from filters with linear phase response. The 

length of both low-pass and high filters are different with each other. Low-pass filers 

possess symmetric properties while high-pass has asymmetric features.  

 

2.11. Wavelet Transform 

In wavelet transform we use wavelets to examine a signal, as we use sine and cosine 

basis to examine spectral components of signals in time domain. Here we discuss about the 

continuous wavelet transform (CWT) and discrete wavelet transforms (DFT). 

 

2.12. Continuous Wavelet Transform (CWT) 

Assuming that reader has knowledge about the Fourier transform and mathematical 

form of Fourier transform is given as under; 

 

F(w)  = ∫ f(t)e−jωt∞

−∞
dt                (2.8) 

In above equation exponential function denotes the combination of imaginary and 

real sinusoidal components. Mathematical form of CWT given as below, 

 

C (Scale , position)  = ∫ f(t)ψ (Scale , position , t)
∞

−∞
dt              (2.9) 

  

 In order to achieve Continuous wavelet Transform (CWT) we have to take product 

of signal with mother wavelet. A signal is transformed in terms of scaled and translated 

versions of a short duration mother wavelet ψ(t) also known as compact support mother 

wavelet. The basis can be defined mathematically as given below,  

 

ψa,b(t) =  
1

√a
ψ [

t−b

a
] ;   a, bϵR1anda >

0          

(2.10) 
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 Where ‘a’ denotes scaling coefficient and ‘b’ denotes the translating coefficient in 

time domain. The mathematical form of Continuous wavelet Transform (CWT) is given as 

below, 

Wf(a, b) =  ∫ x(t)

∞

−∞

ψa,b(t)dt            
(2.11) 

 

2.13. Inverse Wavelet Transform (IWT) 

The inverse form of wavelet transform denoted mathematically as follows, 

 

x(t) =  
1

C
∫ ∫ Wf(a, b)

∞

−∞
ψa,b(t)db

da

a2

∞

0
            (2.12) 

While C = ∫
|ψ|2

ω

∞

−∞
dω < ∞ 

  

(2.13) 

 

One should cater for two conditions. Firstly C should have zero mean and finite w.r.t 

x(t) to keep away from the singularity conditions. Mathematically, 

∫ ψ(t)dt =   0   
∞

−∞
               (2.14) 

 

 Secondly, a finite amount of energy is associated with Mother Wavelet, 

 

∫ |ψ(t)|2dt =    ∞
∞

−∞
            (2.15) 

 

2.14. Discrete Wavelet Transform (DWT) 

Discrete wavelet transform (DWT) can be used for discrete time signals. It consists of 

two types, one dimensional DWT and two dimensional DWT. 

2.14.1. One Dimensional DWT  

The L2(ℛ) associated analysis equation for orthogonal DWT given as below,  

 

aj,k =  ∫ x(t)2
j

2⁄ ϕ(2jt − k)dt     bj,k = ∫ x(t)2
j

2⁄ ψ(2jt − k)dt                      (2.16) 
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And synthesis equation belongs to orthogonal Inverse Discrete Wavelet Transform 

(IDWT) for any signal that relates to L2(ℛ) as: 

 

x(t) = 2
N

2⁄ ∑ aN,kϕ (2Nt − k)k  +

 ∑ 2
j

2⁄ ∑ bj,kψ (2jt − k)k
M−1
j=N                   

(2.17) 

 

Where ϕ(t)  is orthogonal scaling function, aj,k  Are coefficients of scaling, ψ(t) is 

orthogonal wavelet function, bj,k are wavelet coefficients.   

The L2(ℛ) associated analysis equation for orthogonal DWT given as below,  

 

ãj,k =  ∫ x(t)2
j

2⁄ ϕ̃(2jt − k)dtb̃j,k =

     ∫ x(t)2
j

2⁄ ψ̃(2jt − k)dt                

(2.18) 

 

And synthesis equation belongs to orthogonal Inverse Discrete Wavelet Transform 

(IDWT) for any signal that relates to L2(ℛ) as: 

 

x(t) = 2
N

2⁄ ∑ ãN,kϕ (2Nt − k)k  +  ∑ 2
j

2⁄ ∑ b̃j,kψ (2jt − k)k
M−1
j=N                    

(2.19) 

 

Where ϕ(t) denotes function of scaling for Analysis Filter bank, aj,k are the scaling 

coefficient, ψ(t) is wavelet function for analysis filter bank, bj,k are its coefficients,  ϕ̃(t) 

is synthesis scaling function, ãj,k are its coefficients, ψ̃ (t) denotes wavelet function for 

synthesis filters, b̃j,k are its coefficients.  

 

2.14.2. Two Dimensional DWT 

Images are nothing but 2D form of 1D signal. To examine an image cascade two stages 

of 1D wavelet transform stages in series. Input data of image is fed to 1D stage in row. The 

output of previous stage is given to the 1D stage in column. The figure given below 

represents the two dimensional DWT and IDWT in perfect reconstruction filter bank. 
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Figure 2-7 Reconstruction filter bank for 2D DWT and IDWT 

 

 Output is achieved in terms of transform coefficients, when image is fed to two 

dimensional bases functions. Equations for bases functions given below,  

ϕ (u, v) =  ϕ(u) ϕ(v) 

ψ1(u, v) =  ψ(u) ϕ(v) 

ψ2(u, v) =  ϕ(u) ψ(v)                                                                  

             ψ3(u, v)  =  ψ(u) ψ(v) 

  

  

 

 

(2.20) 

 

Where ϕ (u, v) represents scaling function of image, ψ1(u, v), ψ2(u, v) and ψ3(u, v) 

represents Wavelet functions. 

As a consequence, a decomposed image is achieved as shown in figure having four 

sub-bands given below,  

(i) LL is approximation sub-band  

(ii) LH vertical details sub-band 

(iii) HL horizontal details sub-band  

(iv) HH diagonal details sub-band 
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3          SPIHT Coding 
 

3.1. Introduction 

This chapter comprises the study of embedded coding techniques based on wavelet 

transform, like Embedded Zero-tree Wavelet (EZW) and Set Partitioning in Hierarchical 

Trees (SPIHT).  

 

3.2. Embedded Zero-Tree Wavelet (EZW) 

Embedded Zero-tree Wavelet (EZW) is a technique in which self-similarity between 

the sub-bands of wavelet transformed image is exploited. The term Embedded refers to 

procedure that bit streams as a result of encoding are arranged according to their 

importance. In Embedded coding to achieve the desired bit rate limited by the channel 

EZW encoder is capable to finish the encoding at any level. To understand EZW, first of 

all we have to define the connection between different sub-bands in terms of spatial 

locations, and then establish a hierarchical tree structure which identifies the parent-

offspring relationship between elements of sub-bands. 

 

3.2.1. Relation Between Sub-bands 

A Hierarchical relationship is here in sub-bands of image. In order to explain this 

hierarchy we must realize that a particular resolution coefficient relates to set of 

coefficients at next finer resolutions stages for same spatial locations. But this does not 

apply on highest frequency sub-band. Lower frequency sub-band coefficient can be 

associated as parent coefficients and that of higher frequency as offspring coefficients. 

Decedents are those all coefficient at finer resolution stages for particular parent at same 

spatial locations. In the same way Ancestors are set of those coefficients at lower resolution 

stages for particular offspring at same spatial locations.  
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This concept is further elaborated with the help of diagram given below. LL3 act as 

parent coefficient of all Descendent coefficients. HH3, HL3 and LH3 are three offspring 

of LL3. These three offspring are further related to HH2, HL2 and LH2 respectively which 

have four time resolution. These are further relates to HH1, HL1 and LH1 respectively 

which have Sixteen time resolution. 

 

 

Figure 3-1 Parent-Offspring relationship b/w sub-bands 

 

3.2.2. Significance of DWT Coefficients 

The significance of DWT coefficient is very important in order to exploit the 

correlation between sub-bands of image to achieve encoding. A coefficient is said to be 

significant with respect to a certain threshold T0 if T0>|X| where |X| is absolute value of 

DWT coefficient which is to be encoded, and insignificant otherwise. To define T0 we have 
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to take the upper bound in powers of two of the maximum value of coefficient in the DWT 

transformed Image. The First pass is completed when all the coefficients are encoded with 

given T0 and then progressively decrease the T0 with the factor of two and complete further 

passes. As well as we move towards the higher passes more and more coefficients get 

significant and encoded accordingly. To record the significance of coefficient a map is 

established at the end of each pass called significance map. If the coefficient is significant 

the entry in map is one otherwise it is zero. It should be noted that only magnitude of 

coefficient is responsible for check significance, the effect of sign (Positive/negative) is 

encountered later stage.         

 The scanning order of DWT coefficient is followed according to English alphabet 

‘Z’ starting from the top left corner also called lowest frequency sub-band as depicted in 

given figure. In our given scenario it follows the path given as LL3, HL3, LH3, HH3, HL2, 

LH2, HH2, HL1, LH1 and finally HH1. It must be noted that no offspring should scanned 

before its parent coefficient.  

 

Figure 3-2 Sub-bands scanning procedure 

 

 

3.2.3. Encoding in EZW 

After the examination of significance of coefficients now they are ready for encoding. 

Before the encoding is done a hierarchical tree like data structure is need to be established 
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called zero-tree. To define zero-tree a coefficient and their descendants must be 

insignificant with respect to provided threshold. Generally but not always, if a coefficient 

at the low frequency sub-band is insignificant then all their descendants be normally 

insignificant. So it is not true always for an insignificant coefficient to be zero-tree. In this 

case this is called isolated zero. So at this stage we define four symbols to encode the 

significant map given below. 

(i) Zero-tree (ZTR) 

(ii) Positive Significant (PS) 

(iii) Negative Significant (NS) 

(iv) Isolated Zero (IZ) 

A coefficient is said to be positive significant if it is significant as well as positive sign, 

and negative significant if significant and have negative sign. In the figure given below a 

flow chart is used to elaborate the flow of algorithm.  

 

 

Figure 3-3 Flow chart denoting encoding of EZW 
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3.2.4. Successive Approximation Quantization 

SAQ is a stage for quantizing the DWT coefficients with the help of a threshold. For 

the purpose a threshold T0 is selected in order to attain quantization result. To define 

threshold we require Xmax which is the maximum value among all DWT coefficient. T0 is 

defined such as: 

 

T0 > |Xmax| / 2                 (3.1) 

After completing one stage of encoding the threshold is updated and repeats the 

whole procedure and compares significance with new threshold. The updating of threshold 

T0 involves the making T0 = T0 / 2. So for N number of stages the threshold becomes: 

TN = TN-1 / 2                    (3.2) 

 

A stage include two passes one is called Dominant Pass and other is known as 

Subordinate Pass.  

 

3.2.5. Example 

I will exemplify the above declared algorithm with the help of following example. Data 

for the example is shown in figure 3.3. 

 

 

                         (a)                                                              (b) 

Figure 3-4 (a) data set (b) scanning order (Morton scan) 
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First of all threshold 𝐓𝟎=32 putting in equation 3.1. Following bit stream will be the 

output after one level of the two passes. 

 

D1: pnztpttttztttttttptt 

S1: 1010 

D2: ztnptttttttt 

S2: 100110 

D3: zzzzzppnppnttnnptpttnttttttttptttptttttttttptttttttttttt 

S3: 10011101111011011000 

D4: zzzzzzztztznzzzzpttptpptpnptntttttptpnpppptttttptptttpnp 

S4: 11011111011001000001110110100010010101100 

D5: zzzzztzzzzztpzzzttpttttnptppttptttnppnttttpnnpttpttppttt 

S5: 10111100110100010111110101101100100000000110110110011000111 

D6: zzzttztttztttttnnttt 

 

We can skip the last level subordinate pass as the threshold at this level is reduced to 

minimum. 

 

3.3. SPIHT Algorithm 

Previously we have discussed about embedded zero-tree wavelet (EZW) encoding 

technique. Analysis of this algorithm exhibits two major strong points about the algorithm. 

Firstly, resulting bit stream is of embedded nature and DWT coefficients are arranged in 

accordance with their importance (significance) and precision. In this manner the output 

can be limited with respect to bit rate necessities of the channel. Secondly, it effectively 

exploits the self-similarity among sub-bands possessing similar location and it helps to trim 

down the data. In spite of its strengths, this algorithm is not optimal and it’s a number of 

constraints like threshold needs to be optimized according to required bit rate. Another 

defect in EZW is that it does not have the capability to effectively encode the insignificant 
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DWT coefficients with respect to threshold and not provide confederacy of insignificant 

coefficients to enhance encoding efficiency.   

In this chapter we discussed about the modified type of EZW algorithm, which 

continues the strong points of EZW like channel rate dependent transmission of data and 

the exploitation of correlation among sub-bands present at same locations. Additionally, it 

categorized the insignificant DWT coefficients. The Set Partitioning in Hierarchical Trees 

(SPIHT) is presented by Said and Pearlman. Experimentally, it is verified that SPIHT is 

optimized and well performance over EZW. Firstly we will discuss about fundamentals of 

progressive transmission of 2D data (image) and then throw some light on the basics of set 

partition terminology.  

 

3.3.1. Coefficient Arrangement in Progressive Image Transmission 

The Mathematical representation for the Hierarchical sub-band Transformation like 

Wavelet Transform is given below: 

𝑪 = 𝜴(𝑺)                             (3.3) 

 

Here 𝑺 denotes matrix for image to be transformed 𝑪 depicts the matrix of coefficients 

after transformation and 𝜴 is hierarchical sub-band transformation unitary matrix. The 

original image matrix and transformed coefficient matrix are dimensionally same. The 

function of the encoder is to transmit transformed coefficients in terms of bit stream and 

decoder receives the stream and estimated coefficients matrix Ĉ  are generated which 

recovers the estimated image matrix Ŝ by inverse transformation:   

Ŝ = 𝜴−𝟏(Ĉ)                             (3.4) 

 

The MSE between original image and reconstructed image can be evaluated using this 

mathematical equation: 

𝑹𝑀𝑆𝐸(𝑺 − Ŝ) =
||𝑺−Ŝ||

2

𝑀
=

1

𝑀
∑ ∑ (𝑺𝒊,𝒋 − Ŝ𝑖,𝑗)

2
𝑗𝑖                         

(3.5) 
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Where 𝑀 is total no. of pixels in the image and 𝑺𝒊,𝒋 is the pixel intensity value present 

at position(𝑖, 𝑗). The MSE is independent to transformation and can also be represented 

given below mathematically:  

𝑹𝑀𝑆𝐸(𝑺 − Ŝ) = 𝑹𝑀𝑆𝐸(𝑪 − Ĉ) =
1

𝑀
∑ ∑ (𝑪𝒊,𝒋 − Ĉ𝑖,𝑗)

2
𝑗𝑖                         (3.6) 

 

Here 𝑪𝒊,𝒋 denotes the pixel intensity value present at position(𝑖, 𝑗). Initially, Ĉ𝑖,𝑗 = 0 

for all coefficients and then encoder transmits the original value of the coefficient 𝑪𝒊,𝒋 the 

𝑹𝑀𝑆𝐸(𝑪 − Ĉ)  is lessen by 
𝑪𝒊,𝒋

2

𝑀
. This depicts that MSE is largely dependent on the 

coefficient value. The larger the coefficient value the lesser will be the MSE. So this 

provides us a criterion for arrangement of coefficients. The arrangement of coefficient must 

satisfy the inequality2𝑛 ≤ |𝑪𝒊,𝒋| < 2𝑛+1.  

 

3.3.2. The Basic Purpose of Set Partitioning 

In set partitioning procedure transmission of arranged and encoded coefficients is not 

performed explicitly. Alternatively, only those coefficients are inspected which fulfill the 

inequality2𝑛 ≤ |𝑪𝒊,𝒋| < 2𝑛+1 for provided value of n. The significance of a coefficient is 

related to the condition:       

|𝑪𝒊,𝒋| > 2𝑛                      (3.7) 

 

The coefficient to fall in the category of insignificant if it doesn’t follow equation 3.7. 

A subset Zm is defined, and is called significant if fulfill inequality given below and 

insignificant otherwise:  

max
𝑖,𝑗∈𝑍𝑚

|𝑪𝒊,𝒋| ≥ 2𝑛                   (3.8) 

 

After the declaring of significant subset it is further process unless and until separate 

out significant values.  
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3.3.3. Spatial Orientation Tree (SOT) 

One major concept on which the base of SPIHT rests is association there in the sub-

band structure of wavelet transformed image. This appearance a tree like structure in which 

the root of the tree is LL band denoted by * and the set of four children coefficients present 

at same spatial location are leaves as depicted in fig. given below:  

 

Figure 3-5 SOT diagram 

The SOT for both SPIHT and EZW are resembles but with a difference that SPIHT 

SOT as discussed earlier, as not in the case of EZW.  

 

 

3.3.4. Regulations for Set Partitioning 

Before we proceed further in the algorithm, it is necessary implement set partitioning 

and declares some of Sets necessary for the running of algorithm.  

 𝑶(𝒊, 𝒋) Is the set comprising on the coordinates of pixels those are children or 

offspring of the pixel at (𝒊, 𝒋) as ‘b’ is in diagram. It might be possible that a 

node may have four children or it doesn’t have any. So this set consists of four 

children or none depending on above statement. In below diagram b1, b2, b3 and 

b4 are offspring of b.  

 𝑫(𝒊, 𝒋) Is the set comprising on the coordinates of pixels those are children and 

children of children also known as decedents. In diagram below b1, b2, b3, b4 and 

b11, b12, b13, b14, b21, b22, b23, b24, b31, b32, b33, b34, b41, b42, b43, and b44 are decedents 

of pixel ‘b’.  
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 𝑳(𝒊, 𝒋) Is the set comprising on the coordinates of pixels those are difference of 

both decedents and offspring i.e. 𝑳(𝒊, 𝒋) = 𝑫(𝒊, 𝒋) − 𝑶(𝒊, 𝒋). In diagram below 

b11, b12, b13, b14, b21, b22, b23, b24, b31, b32, b33, b34, b41, b42, b43, and b44 are 𝑳(𝒊, 𝒋) of 

pixel ‘b’.  

 𝑯(𝒊, 𝒋) Is the set comprising on the coordinates of pixels those behaves as root 

of the tree. In diagram below a, b, c, and d are𝑯(𝒊, 𝒋). 

 

 

Figure 3-6 Set Partitioning scheme 

 

3.3.5. SPIHT Encoding and Decoding Procedure 

After the successful application of regulations for set partition now its turn to perform 

encoding and decoding operations on the data. As above stated both encoder and decoder 

does not support sending explicitly the arranged data as in case of SPIHT algorithm and 

hence enhance the coding efficiency of algorithm, so both encoder and decoder are inverse 

replica of each other. In order to preserve the changes in data three lists are devised to form: 

 LIP (List of Insignificant Pixels) 

 LSP (List of Significant Pixels) 

 LIS (List of Insignificant sets) 

Each entry in all these three sets is filled with respect to pixel(𝒊, 𝒋). LSP and LIP 

comprises on the pixels coordinates. While LIS comprises on set 𝑫(𝒊, 𝒋) and𝑳(𝒊, 𝒋).   
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To carry on SPIHT encoding first of all initialization is performed in which some 

parameters are defined to run the algorithm properly, like ‘n’ a number of refinement 

passes. After this three passes are declared as follows: 

 The sorting pass 

 The magnitude refinement pass 

 improvement of quantization step pass  

The passes are recurred but for the transmission of least significant bits for refinement 

purpose. In the sorting pass the significance of entries of LIP with respect to certain 

threshold defined previously are checked. The significant entries are now transferred to 

LSP and insignificant entries remained in LIP. Furthermore, the scanning of LIP is 

performed and check the significance of sets and if set is significant then it significant 

entries are transferred to the LSP and that of insignificant entries to LIP. In refinement pass 

previously encoded LSP entries are dealt and transmit their nth most significant bit. After 

the above discussion, we can summarize the encoding algorithm as follows: 

 

3.3.5.1. Initialization 

 Output n =  ⌊log2(max(i,j)  {|𝑪𝒊,𝒋|})⌋ 

 Set the LSP = { } 

 Set the LIP = {(i, j)  ∈  𝑯 }and LIS = {𝑫(𝒊, 𝒋), (𝒊, 𝒋) ∈  𝑯} 

 

3.3.5.2. Sorting Pass 

 In this pass examine entries of the list LIP for significance with respect to T0 

and transmit ‘1’transmit sign of significance and move that entry to LSP 

otherwise transmit ‘0’.  

 Examine sets present in LIS for significance if set is significant transmit ‘1’ for 

significance and ‘0’ otherwise, further examine entries of that respective 

significant set and follow step 4. Similarly updating LIP LIS and LSP.  
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3.3.5.3. Refinement Pass 

 In this pass examine previous entries of LSP and transmit the nth most 

significant bit of that entry of LSP.  

 

3.3.5.4. Renewing Quantization Step Pass 

 Lessen the value of n by one and recur all previous steps unless and until n 

become zero.      

 Now for the purpose to design decoder perform all steps in a reverse manner 

and out bit stream of encoder becomes the input of decoder. Further an entropy 

encoding is attached with this to make it more efficient.       

3.3.6. Example 

I exemplify the idea of this algorithm using this example.  

 

26 6 13 10 

-7 7 6 4 

4 -4 4 -3 

2 -2 -2 0 

 

Figure 3-7 Data set for example 

 

The encoder sends bit stream using three different passes then decoder recovers and 

decodes this bit stream. 

 

3.3.6.1. First Pass 

T0 = 2 ^ n and n = 4 (as stated earlier) so threshold = 16. At this level encoder generates 

following three lists.  

LIP:  {(0,0) → 26 , (0,1) → 6, (1,0) → −7, (1,1) → 7} 

LIS: {(0,1)D , (1,0)D , (1,1)D} 

LSP: {} 
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Let’s begin with the entries of LIP. As we know that first entry of the set LIP placed at 

(0,0) location is larger than 16 i.e. 26 is significant. So ‘1’ is send to receiver for the 

coefficient to be significant chased by a ‘0’ to indicate its positive sign and enter coordinate 

to the LSP. The subsequent coefficients of the LIP are insignificant so 0 is transmitted for 

all these remaining coefficients. These coefficients are not shifted to any other list. The 

elements of LIS are examined in the next step. None of descendants of coefficient at 

position (0,1) i.e. (13, 10, 6, and 4) are significant so one 0 is transmitted for these 

descendants. Similarly 0 is transmitted for the rest of coefficients whose descendants are 

found to be insignificant. In refinement pass we do not need to do anything as we don’t 

have any element in LSP from previous pass. So 8 bits are transmitted after this pass i.e. 1 

0 0 0 0 0 0 0 . After first pass the three lists are as follows: 

 

LIP: {(0,1) → 6 , (1, 0) → −7 , (1,1) → 7} 

LIS: {(0,1)D , (1,0)D , (1,1)D } 

LSP: {(0,0) → 26} 

 

3.3.6.2. Second Pass 

For this pass n is reduced to 3. So threshold becomes 8. First, the elements of LIP are 

examined in this pass as well. All the elements are insignificant for this value of threshold 

so three 0s are transmitted. Now elements of LIS are examined. The first set of LIS has 

two of its descendants i.e. 13 and 10 significant. So the whole set is significant. So 1 is 

transmitted for this set. Now the offspring of these sets are checked. Out of these offspring, 

coefficient 13 is significant so 1 is transmitted for its significance and 0 for its positive 

sign. Same is the case with offspring 10. 1 and 0 are transmitted for 10. The coordinates of 

the two offspring are shifted to LSP. Further two offspring are insignificant so they are 

shifted to LIP transmitting 0 for both. 

 

The elements of LSP came from previous pass are examined in refinement pass. Only 

26 is the element that is from the previous pass. As n = 3, looking at 3rd MSB of element 
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26 i.e. 1, we send a 1 in refinement pass. So after second pass 13 bits are transmitted. These 

are 0001101000001. After second pass the three lists are as follows: 

 

LIP:  {(0,1) → 6, (1, 0) → −7 , (1,1) → 7 , (1,2) → 6 , (1,3) → 4} 

LIS: {(1,0)D , (1,1)D} 

LSP: {(0,0) → 26 , (0,2) → 13 , (0,3) → 10} 

 

 

3.3.6.3. Third pass 

For this pass n is reduced to 2. So threshold is now 4. Since the threshold gets smaller, 

the chance of more number of coefficients considered significant is increased. After this 

pass the bit stream transmitted is 10111010101101100110000010 and the three lists are as 

follows: 

 

LIP:  {3,0) → 2 , (3,1) → −2 , (2,3) → −3 , (3,2) → −2 , (3,3) → 0} 

LIS: {} 

LSP: {(0,0) → 26 , (0,2) → 13 , (0,3) → 10 , (0,1) → 6 , (1,0) → −7 , (1,1) → 7 , (1,2) 

→ 6 , (1,3) → 4 , (2,0)  → 4 , (2,1) → −4 , (2,2) → 4} 

 

3.3.7. Features of SPIHT 

Set Partitioning in Hierarchical Trees (SPIHT) is an embedded coding technique which 

provides number of good characteristics given below: 

 Better image quality with good PSNR values 

 This algorithm is optimized 

 Fully Embedded coded output 

 Encoding decoding is fast 

 An Adaptive Algorithm 

 Can also be used for lossless compression 

 Coding is done to any specified bit rate 
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It is obvious from widespread research that all the wavelet based algorithms provides 

very good image quality for the purpose of visualization. Initially simple wavelet based 

methods are used as the foundation for the JPEG2000 standards because of its good enough 

image quality. On the other hand, Set Partitioning in Hierarchal Trees (SPIHT) is the latest 

generation encoders which are based on Wavelet transform and have classier coding 

capabilities. SPIHT achieves this place by exploitation of self-similarity of sub-bands of 

the wavelet transformed images.      

SPIHT, on the other end, is the most up-to-date algorithm that’s provide the optimal 

results in progressive transmission of wavelet based images and it outclass all other non-

progressive techniques. So it yields a fully embedded coded results based on the fact that 

best results are obtained for any given resources (i.e. on all required bit rates).  

A strict definition of the embedded coding scheme is: if two files produced by the 

encoder have size M and N bits, with M > N, then the file with size N is identical to the 

first N bits of the file with size M. Let's see how this abstract definition is used in practice. 

Suppose you need to compress an image for three remote users. Each one have different 

needs of image reproduction quality, and you find that those qualities can be obtained with 

the image compressed to at least 8 Kb, 30 Kb, and 80 Kb, respectively. If you use a non-

embedded encoder (like JPEG), to save in transmission costs (or time) you must prepare 

one file for each user. On the other hand, if you use an embedded encoder (like SPIHT) 

then you can compress the image to a single 80 Kb file, and then send the first 8 Kb of the 

file to the first user, the first 30 Kb to the second user, and the whole file to the third user. 

But what is the price to pay for this "amenity"? Surprisingly, with SPIHT all three users 

would get (for the same file size) an image quality comparable or superior to the most 

sophisticated non-embedded encoders available today. SPIHT achieves this feat by 

optimizing the embedded coding process and always coding the most important 

information first. 

SPIHT exploits properties that are present in a wide variety of images. It had been 

successfully tested in natural (portraits, landscape, weddings, etc.) and medical (X-ray, CT, 

etc.) images. Furthermore, its embedded coding process proved to be effective in a broad 

range of reconstruction qualities. For instance, it can code fair-quality portraits and high-

quality medical images equally well (as compared with other methods in the same 
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conditions). SPIHT has also been tested for some less usual purposes, like the compression 

of elevation maps, scientific data, and others. 
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4          Huffman & Arithmetic 
 

In the previous chapter I have discussed about the Lossy image compression techniques 

those are wavelet based like EZW and SPIHT. In this chapter a discussion on Lossless 

Entropy Encoding schemes like Huffman and Arithmetic coding.  

 

4.1. Huffman Coding 

In this technique a symbol probabilities based coding of bit stream is done and in spite 

of assigning same no. of bits different no. of bits assigned to symbols depending on their 

probabilities. That’s why this is also known as Variable Code Length (VLC).  

 

4.1.1. Key Principles of Huffman Coding 

Here are some principles upon which the base of Huffman coding rests: 

 

 Larger probability symbols are represented by least number of bits while lesser 

probability symbols are represented by number bits as compared to larger 

probable symbols and assign variable length Code-word to fixed group of 

symbols. 

 To make Huffman coding a distinctively decodable technique, in assigning 

Code-word to next symbol no previous Code-word is present as it is in current 

symbol’s Code-word. 

 Each Code-word of a symbol must be unique. 

 

This coding is always used in cascading with a Run Length Code (RLC) like discussed 

in previous chapter. Our aim is to concatenate this coding technique with SPIHT and record 

results for sake of comparison.  
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4.1.2. Flowchart for Huffman Coding  

In figure given below the sequence of algorithm is mentioned in terms of flowchart. In 

this first of all arrange the symbols in accordance with their decreasing probabilities values. 

Then make a subgroup by joining the two least probable symbols and then assigning both 

symbols a bit ‘1’ to upper symbol and ‘0’ to lower symbol. After that check for more 

unmerged groups if yes, then repeat previous steps otherwise start generating the Code-

word for symbols.    

   

 

Figure 4-1 Flowcharts for Huffman Coding 
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4.1.3. Example  

In order to understand the above stated procedure here is given an example to clarify 

the concept. In table below a set of symbols is given with their frequency of occurrence. 

 

 

Symbols Frequency 

222 5 

136 7 

14 9 

2 10 

0 100 

 

 

Step-1: Arrange symbols with respect to their decreasing frequency of occurrence.   

 

 

Symbols Frequency 

0 100 

2 10 

14 9 

136 7 

222 5 

 

Table 4-1 Tables of Arranged Symbols 

 

 

 

 Step-2: Merge two least frequent symbols to make subgroups and add their 

occurrences to get a total value of all subgroups.  
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Figure 4-2 formation of Subgroups 

 

 

Step-3: Check for the presence of one unmerge node  

 

 

 

Figure 4-3 Huffman tree processing 

 

 Step-4: Assign Code-word to symbols.  
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Symbols Code-

word 

Frequency 

0 1 100 

2 011 10 

14 010 9 

136 001 7 

222 000 5 

 

Table 4-2 Assigning Code-word 

 

4.2. Arithmetic Coding 

It is also a Variable Code Length (VLC) and Lossless coding technique like Huffman. 

This technique is also necessitating the information of priori of frequency of occurrence. 

The basic principles of Arithmetic coding are given as under:  

 

 

4.2.1. Key Principles of Arithmetic Coding 

 

Here are some principles upon which the base of Arithmetic coding rests: 

 

 In this technique Variable length Code-word allocate to variable length of 

symbols, opposite to Huffman coding where Variable length Code-word 

allocate to fixed length of symbols.  

 All the symbols in a message are regarded as jointly to assign a single arithmetic 

Code-word. 

 The symbols and Code-word not corresponding one to one.  

 The Code-word are depends upon a real number range from [0,1), which is a 

half-open interval. This interval is further sub-divided into smaller and smaller 

intervals as the coding progresses. 
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4.2.2. Flowchart for Arithmetic Coding  

The Algorithm for Arithmetic coding is given as under: 

 

    START  

Low-limit = 0.0; High-limit = 1.0; Interval-size = 1.0;  

while (symbol != terminator)  

{ get (symbol);  

low = low + range * Range_low(symbol);  

high = low + range * Range_high(symbol);  

range = high - low; }  

output a code so that low <= code < high;  

END.  

 

 
 

 

Figure 4-4 Flowchart of Arithmetic coding 
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4.2.3. Example 

Here given a table of symbols with their probabilities and ranges.   

Symbols Probability Range 
0 0.63 [ 0 , 0.63 ) 

2 0.11 [ 0.63 , 0.74 ) 

14 0.1 [ 0.74 , 0.84 ) 

136 0.1 [ 0.84 , 0.94 ) 

222 0.06 [ 0.94 , 1.0 ) 
 

Table 4-3 Symbols with Probabilities and Range 

 

Symbol Array:  2        0        0        136        0 

 

 

Figure 4-5 Shrinkage of Ranges procedure 

 

Output:    [ 0.6607 , 0.66303 ) 
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5 Huffman and Arithmetic with 

SPIHT 
 

5.1. Introduction 

In this chapter I will discuss about concatenation procedure in detail of SPIHT and 

Entropy coding schemes (Arithmetic and Huffman), and then compare performance 

parameters of both cascading.  

5.2. Concatenation of SPIHT and Huffman  

As we observed in previous chapter that output bit-stream of SPIHT consists of seriate 

‘0’. Statistical study of images has revealed that the symbol ‘000’ is highly probable 

symbol in most of images, normally𝑃(′000′) ≥ 0.25. Therefore the binary output bit-

stream of SPIHT algorithm is grouped into the three bits and this group constitutes a 

symbol. This grouping of three bits provide us with eight possible symbols i.e. ‘000’, ‘001’, 

‘010’, ‘011’, ‘100’, ‘101’, ‘110’and ‘111’. These symbols are then fed to the Huffman 

coder block which is a variable length coding scheme base of the symbol probabilities as 

discussed in previous chapter. 

After the grouping and symbolization of binary data, there is a possibility that either 

zero, one or two last bits remain as ungrouped and hence cannot take part in symbolization. 

So the information of these reaming bits is added to the start of output of Huffman coder 

block as header bits. This header consists of two bits denoting either zero one or two 

remaining bits following the Huffman generated bit-stream. At the end of this resulting bit-

stream the reaming bits are added to the output as shown in figure: 
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Header consisting of two bits denoting 

number of reaming bits.  

Huffman generated bit 

stream 

Reaming 

bits 

 

Figure 5-1 Huffman coder block output 

 

The probabilities of the symbols are calculated for Lena512 image which is 

recorded in table given below and their generated Code-word as a result of Huffman 

coder block. 

  

Symbols Probabilities Code-word 

‘000’     0.2410 00 

‘001’     0.1430 100 

‘010’     0.1247 101 

‘011’     0.1011 110 

‘100’     0.1456 111 

‘101’     0.0785 0011 

‘110’     0.0982 010 

‘111’     0.0679 0110 

 

Table 5-1 probabilities and Code-word for symbols for Lena512 at 0.5 Bpp 

 

Now we can observe clearly from Table above that highly probable symbols are 

represented by least number of bits. So this cascading result the decrease the number of 

bits. This helps to save lot of disk space and transmission enhancement. At the Decoder 

stage all the steps are performed in reverse order to get back the reconstructed image. 

To calculate the entropy or Average code length of Huffman coding uses the equation 

below: 

 

𝐴𝑣𝑔 𝐶𝑜𝑑𝑒 𝐿𝑒𝑛𝑔𝑡ℎ =  ∑ 𝑃(𝑖) ∗ 𝐿𝑖

8

𝑖=0

 

(5.1) 
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Here 𝐿𝑖denote the length of corresponding Code-word and 𝑃(𝑖)is probability of that 

Code-word. 

 

5.3. Concatenation of SPIHT and Arithmetic 

To concatenate Arithmetic coder block with SPIHT algorithm repeat the same 

procedure as done in previous cascading i.e. grouping of three bits and then convert the 

SPIHT bit-stream output to decimal symbols-stream consisting of eight symbols ‘0’, ‘1’, 

‘2’, ‘3’, ‘4’, ‘5’, ‘6’ and ‘7’. Then apply the Arithmetic coding on resulting Decimal 

symbol-stream and get a decimal number. 

 

5.4. Conclusion 

After the successful cascading for both entropy coding scheme using MATLAB I 

reconstruct the images and calculate important measures to judge and compare both 

techniques and drawn important results as discussed in next chapter. 
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6         Simulation and Results 
 

6.1. Simulation 

This chapter consists of the details of simulation and deduced results from the 

simulation. So in order to compare the results of cascading of entropy encoding schemes 

(Arithmetic and Huffman) with SPIHT algorithm I use MATLAB 7.11.0 (R2010b), and 

calculate some performance measures like Peak Signal to Noise Ratio (PSNR) value, 

number of saved bits, Compression Ratio (CR) and Elapsed time or Execution time for 

algorithm. Here are provided the tables below which exhibit the results Using Lena image 

of different sizes like 64x64, 128x128, 256x256 and 512x512 and calculate performance 

measures like Number of bits saving by both cascading, PSNR performance which tells 

about the quality of reconstructed image, Compression ratio (CR) another measure for 

compression efficiency of algorithm and algorithm execution time denotes the speediness 

of algorithm with cascading of entropy encoding schemes (Huffman and Arithmetic).  

Peak signal to noise ratio (PSNR) is measure the quality of image which represents 

mathematically as: 

PSNR = 10  log 1010 (
(max(h(i,j)))

2

MSE
)                

(6.1) 

 

Here h(i, j)are the image pixel values. For grayscale image it is given as below: 

(max(h(i, j))) = 255                 (6.2) 

 

Mean Square Error (MSE) denotes a term which is use to compare original image and 

reconstructed image, equation given below: 

MSE = ∑
h(i,j)− h̃(i,j)

M x NMN                    (6.3) 
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Further in order to concatenate the Entropy encoded blocks (Huffman and Arithmetic) 

with SPIHT encoder block, make combination of three bits of the resultant bit-stream of 

SPIHT to form eight symbols set and calculate the probability of each symbol and then fed 

this to the Huffman and Arithmetic coding block and calculate performance measures and 

compare results of both techniques.    

6.2. SPIHT + Huffman Vs. SPIHT + Arithmetic 

After Successful cascading of both techniques I calculate some performance 

measurements and results. In Table 5-1 I have calculated the difference of bits for Only 

SPIHT with that of both cascading (i.e. Huffman and Arithmetic) and find Number of Bits 

saving and for Different sizes of Lena image, and Draw a histogram in Figure 5-1 for better 

visualization result only for Lena 512x512. So we can conclude that SPIHT and Arithmetic 

performs in much better way as compared to SPIHT and Huffman in terms of Bits Saving 

Capability.    

 
 

 
Rate 

Number of Bits Saving 
 

 
Lena 64x64 

 

 
Lena 128x128 

 

 
Lena 256x256 

 

 
Lena 512x512 

 
SPIHT 

+ 
Huffman 

SPIHT 
+ 

Arithmeti
c 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

 0.1     34     29 71 74 296 332 1149 1290 

0.2     56     53 132 131 558 648 1888 2154 

0.3     45     47 222 232 700 819 2908 3284 

0.4     62     66 297 309 993 1186 3358 3838 

0.5     91     94 311 331 1233 1437 4153 4810 

0.6    122    129 379 420 1282 1527 4359 5150 

0.7    124    136 433 487 1522 1816 3716 4851 

0.8    143    159 524 582 1658 1989 4167 5570 

0.9    154    175 541 613 1820 2156 5093 6676 

1.0    168    189 570 653 1849 2218 5520 7224 
 

Table 6-1 for comparison of bits saving for two schemes 

Table 5-2 shows PSNR performance providing by both Cascading for Different 

sizes of Lena image like 64x64, 128x128, 256x256 and 512x512 and for different bit rates. 

We conclude from table that PSNR performance for both cascading is same. We can get 
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image compression with SPIHT and Arithmetic by preserving PSNR value i.e. Quality for 

image is preserved. A graph is shown in Figure 5-2 PSNR for both on different image 

resolutions like 64x64, 128x128, 256x256 and 512x512, from which we can conclude that 

PSNR get increased as we continue to enhance bit rate and image size.   

 
 

 
Rate 

PSNR Performance 
 

 
Lena 64x64 

 

 
Lena 128x128 

 

 
Lena 256x256 

 

 
Lena 512x512 

 
SPIHT 

+ 
Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

 0.1 18.41    18.41 21.25 21.25 24.45 24.45 28.13 28.13 

0.2 20.36    20.35 23.55 23.55 27.11 27.11 31.02 31.02 

0.3 21.85    21.85 25.22 25.22 28.73 28.73 32.95 32.95 

0.4 23.10    23.10 26.33 26.33 30.44 30.44 34.30 34.30 

0.5 24.35    24.35 27.47 27.47 31.71 31.71 35.56 35.56 

0.6 25.14    25.14 28.64 28.64 32.66 32.66 36.53 36.53 

0.7 25.89    25.89 29.74 29.74 33.76 33.76 37.36 37.36 

0.8 26.67    26.67 30.59 30.59 34.86 34.86 38.15 38.15 

0.9 27.36    27.36 31.33 31.33 35.74 35.74 38.83 38.83 

1.0 28.21    28.21 32.22 32.22 36.47 36.47 39.65 39.65 
 

Table 6-2 for comparison of PSNR for two schemes 

 
 

 
Rate 

Compression Ratio 
 

 
Lena 64x64 

 

 
Lena 128x128 

 

 
Lena 256x256 

 

 
Lena 512x512 

 
SPIHT 

+ 
Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 
 0.1 1.0907    1.0763 1.0453 1.0473 1.0473 1.0534 1.0458 1.0518 

0.2 1.0734    1.0692 1.0420     1.0417 1.0445     1.0520 1.0374 1.0428 

0.3 1.0380    1.0398 1.0473     1.0495 1.0369     1.0435 1.0384 1.0436 

0.4 1.0393    1.0420 1.0475     1.0495 1.0394     1.0474 1.0331 1.0380 

0.5 1.0465    1.0481 1.0395     1.0421 1.0391     1.0459 1.0327 1.0381 

0.6 1.0522    1.0554 1.0401     1.0446 1.0337     1.0404 1.0285 1.0339 

0.7 1.0452    1.0498 1.0392     1.0443 1.0343     1.0412 1.0207 1.0272 

0.8 1.0456    1.0510 1.0416     1.0465 1.0327     1.0394 1.0203 1.0273 

0.9 1.0436    1.0498 1.0381     1.0434 1.0318     1.0379 1.0221 1.0291 

1.0 1.0428    1.0484 1.0360     1.0415 1.0290     1.0350 1.0215 1.0283 

 

Table 6-3 for comparison of Compression Ratio (CR) for two schemes 
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Rate 

Execution time (sec) 
 

 
Lena 64x64 

 

 
Lena 128x128 

 

 
Lena 256x256 

 

 
Lena 512x512 

 
SPIHT 

+ 
Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

SPIHT 
+ 

Huffman 

SPIHT 
+ 

Arithmetic 

 0.1 0.4707     1.1237 1.4715     1.5116 1.7089 3.3623 7.7691 9.0000 

0.2 0.1963     0.2192 1.4278     1.8258 4.0136 8.4732 14.9828 21.2069 

0.3 0.2519     0.2806 0.7903     1.0740 5.1116 6.5069 22.7861 31.4346 

0.4 0.3020     0.3918 1.0538     1.3373 6.2057 7.4415 36.1099 41.3791 

0.5 0.6145     0.4376 2.6571     3.7305 7.2749 10.7266 46.4404 51.4574 

0.6 1.0001     0.5163 2.2728     2.0527 10.3345 12.1818 64.1089 74.2677 

0.7 1.0924     1.3293 2.3928     4.3114 12.0107 14.2440 72.5772 89.4216 

0.8 0.6628     1.8093 3.1464     3.9456 13.6070 16.9060 107.5733 106.6014 

0.9 0.5880     0.8097 3.7925     3.6699 16.6915 18.8235 124.0462 120.7071 

1.0 0.6782     0.8633 2.7453     5.1543 18.7386 24.2221 148.4652 151.2966 

 

Table 6-4 for comparison of Execution time for two schemes 

 

 

 

Table 5-3 provides us a comparison for both in terms of Compression Ratio (CR) which 

gave same conclusion as that of Bits Saving capability. Table 5-4 provides the information 

of Execution times for both cascading in terms of Algorithm Efficiency. Here we can get 

an idea that SPIHT with Huffman is more efficient and have easy implementation as 

compared to SPIHT with Arithmetic. To make the idea more clear a histogram is drawn in 

Figure 5-3 which shows that SPIHT with Arithmetic take much time as compared to other.  

Figure 5-4 shows the Original Lena Image at different resolutions and Reconstructed 

Lena Images with same resolution at bit rate 1.0 Bpp. As the size of image is increased the 

Quality gets better.    
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Figure 6-1 Histogram representing Bits saving using Lena 512x512 

 

 

Figure 6-2 Graph representing PSNR performance 
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Figure 6-3 Histogram representing Execution time (sec) using Lena 512x512 
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Original Lena 256x256                                   Reconstructed Lena 256x256 

 

  

Original Lena 512x512                                     Reconstructed Lena 512x512 

Figure 6-4 Original and Reconstructed Image at different sizes 

Some other images are tested for the sake of verification, the below images are 

consisted on bird, couple and Eliana images of 256x256. Left side original image and on 

right side reconstructed images. 
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More images tested for both Cascaded Algorithms 
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6.3. Discussion 

From the above results we conclude that SPIHT combined with Arithmetic coding 

yields better Compression Ratio (CR) and less Disk storage capability as compared to 

SPIHT combined with Huffman coding. But in terms of Efficiency and implementation 

point of view SPIHT with Huffman performs much better as compared to SPIHT with 

Arithmetic coding. It is also evident that PSNR performance preserves for both techniques.  

 

6.4. Future Work 

I have done my research using standards Huffman and Arithmetic encoding blocks, 

which can be optimized further and can refine and enhance the results in terms of 

compression ratio (CR), Disk saving capability, PSNR and execution time.  
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