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ABSTRACT 

Everyday an enormous amount of information is stored, processed, and 

transmitted. Because much of this information is graphical or pictorial in nature, the 

storage and communications requirements are immense. Though in recent time’s 

bandwidth capacities got much higher and cost of mass storage space got lower but 

still a lot of problems are faced during transmitting and storing images. Image 

compression plays vital role in terms of saving storage space and reduction of 

transmission time. Wavelet transform is considered as landmark in the field of image 

compression due to the feature that it represents a signal in terms of functions those 

are localized in both frequency and time domain, as not in case of other 

Transformation techniques. Various techniques have been explored by different 

authors to employ wavelet transform for image compression e.g. EZW, SPIHT etc. 

The idea of any scheme is to remove the correlation present in the data. Tensor 

product orthogonal wavelet bases are unable to adapt towards directional geometric 

features. 

The purpose of this work is to develop an algorithm that exploits spatial 

correlation between pixel values and then compresses the image using wavelet 

transform. Images are connected regions of similar texture and intensity levels that 

combine to form objects. Typically, magnitude of pixels relate very closely to each 

other, thereby having less difference between them. Main idea is what already 

suggested in chain codes but contrary to it encoding is with respect to direction. 

Applying such a technique reduces entropy of geometrical features.  
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LIST OF ACRONYMS 

Acronym Meaning 

WT Wavelet Transform 

1D One Dimensional 

2D Two Dimensional 

SNR Signal to Noise Ratio 

PSNR Peak Signal to Noise Ratio 

DWT Discrete Wavelet Transform 

IDWT Inverse Discrete Wavelet Transform 

QMF Quadrature Mirror Filter 

DT  Discrete Transform 

EPWT Easy Path Wavelet Transform 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Digital images play an important role both in daily life applications such as satellite 

television, magnetic resonance imaging, computer tomography as well as in areas of 

research and technology such as geographical information systems and astronomy. 

Image compression has broad applications in rising areas of multimedia database, 

medical imaging diagnosis and worldwide web (www). As we know that web 

contents are principally comprises on images so in order to deal with it image 

compression is a counterpart. So image compression is a challenging field for all 

researchers Image compression plays vital role in terms of saving storage space and 

reduction of transmission time. Wavelet transform is considered as landmark in the 

field of image compression due to the feature that it represents a signal in terms of 

functions those are localized in both frequency and time domain, as not in case of 

other transformation techniques. 

Wavelet theory has great application in digital image processing. Wavelets are 

developed by Morlet and Grossman. The relationship between wavelets and filter 

banks is developed by French researchers Meyer, Mallat and Cohen [3], this theory 

is now used in most of technical work. The main application of wavelet transform is 

image or signal compression.  

The Daubechies [5] work is useful for those who have limited knowledge of wavelets 

and mathematics. Wavelet transform is very useful and interesting tool for 

investigating images. Wavelet transform overcome the limitation of Fourier 

transform. Fourier transform shows the signal only in time domain or in frequency 

domain. It only shows the global information of the signal. A mother wavelet whose 

mean is zero have all its energy in time domain and is well observed by time varying 

signals. Scaling and wavelets function are basis function in wavelet transforms. 

Mallat [6] multi resolution representation theory allowed researchers to create their 

own family of wavelets on the specific criteria. The usefulness of DWT over other 

transformation is because it shows time frequency localization. 

EPWT works on the principle of correlation between pixel values of geometric figures 

in natural images and exploits them. 

Image compression is a technique in which we shrink the image size by, taking into 

account that there would be no consequence on the quality of the image. Image 

compression not only helps us to store the images in less disk space and save a lot 
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of memory, rather than it provides us the facility in transmission and reception of the 

image in smaller time. To achieve this compression there are lot of techniques to 

implement. Internet utilize the famous technique i.e. JPEG. 

Compression of a digital image and compression of raw binary data are two separate 

things. If we compress digital image by using traditional image compression methods 

(normally used for raw binary data), this does not present good compression ratios 

and other compression measurement parameters. So there is need for those image 

compression techniques in which we could exploit the spatial features. If in some 

cases where quality is not big issue we can compress image by ignoring some 

details of the image, this technique known as Lossy compression. 

At this stage we can observe compression in two different types, i.e. Lossy and 

lossless image compression techniques. In some situations where image quality and 

all details are key factors and can’t be compromised, we use lossless image 

compression techniques. But the focus of researchers is on the Lossy image 

compression algorithms rather than lossless techniques, because most of the 

images are related to less sensitive human vision. 

A tremendous progress is observed in the field of image compression in last three 

decades. Researchers are facilitated by the advent of Wavelet Transform. In which 

we get the details of the images, and get success in exploiting the spatial features 

and characteristics. There are lots of image compressions algorithms which are 

based on Wavelet transform. In [4] Shapiro familiarize with the embedded-zero-tree 

wavelet (EZW). It is a progressive image compression technique, in which 

embedded bits stream comes out. This extensive work is extended in [22] by A. Said 

and W.A.Pearlman and brought a new idea of image compression, by employing the 

concept of spatial orientation trees, named Set Partitioning in Hierarchical Trees 

(SPIHT). 

1.2. Motivation of Research 

This research is intended to develop a novel algorithm employing wavelet 

transform which can remove redundancy from images. Several factors are 

motivating this research; image compression is very obligatory in storing an image 

and. Although capacities of transmission lines got much higher and cost of mass 

storage space got lower in recent years, there are still a lot of problems transmitting 

and storing images. For example to save an image of size 1024 X 1024 on the disk 

space requires nearly equal to 3MB. In addition time compulsory to transmit this 

image through ISDN network is 7 minutes. On the other hand by employing the 
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proper compression techniques we can store the same image on 300KB disk space 

and reducing the transmission time up to 6sec. Delay enhances as we increase the 

size of the file to be transmitted. So compression becomes compulsory, when we are 

dealing with huge amount of data, without influencing the quality of digital image 

prior to storing/transmitting it. At receiving stage this compressed data is 

decompressed. 

1.3. Problem Statement 

Presently, there are many image compression techniques both in spatial and 

transform domain. Each technique performs outstandingly in removal of image 

compression of a particular type but fails to perform compress geometric features. 

The purpose is to develop a novel image compression technique employing wavelet 

transform which can perform satisfactorily on compress images. 

1.4. Objectives of Research 

This research is intended for literature review of the research work already done 

on image compression specialy in wavelet transform domain & then to develop an 

new method for image compression in order to compare the performance 

parameters like Disk saving capability in terms of no. of bits saving, Compression 

Ratio (CR), PSNR performance with exisiting compression algorithms. 

1.5. Organization of Thesis Document 

Chapter 1 introduces image compression importance and some research 

background as well as motivations of research and problem statement is also 

defined. Goal, objectives and scopes of research are stated clearly.  

In Chapter 2  brief literature review of wavelets and subband coding techniques.  

Chapter 3 and chapter 4 define in depth detail of proposed algorithum with test 

matrix. 

Chapter 4 delineates experimental results based on the proposed algorithm and their 

analysis in detail.                          

Chapter 5 includes experimental results by taking different sample images 

Chapter 6 proposes future work and conclusion. 
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CHAPTER 2 

WAVELET ANALYSIS 

2.1 Evolution of Wavelets 

The road towards the wavelets started with Josef Fourier with his research on 

frequency analysis. The term wavelets was first mentioned by Haar in 1909 and 

introduced compactly supported Haar wavelet. However, it was not perceived at that 

time that the wavelets will be established so strongly in mathematics, modern 

physics and engineering disciplines. The researchers in 1930 molded the research 

direction [2] from frequency analysis into scale analysis. Paul Levy found that in 

order to investigate small and complex details, Haar has more flexible and 

advantageous basis over Fourier. Littlewood, Paley, and Stein proved the energy 

conservation of the signal is domain independent led Davis Mar in 1980 to introduce 

an effective way to use the wavelets in Digital Image Processing applications. Since 

then various types of wavelet transforms have been developed and many other 

applications have been found. The continuous wavelet transform (CWT) finds out 

most of its applications in data analysis where it yields an affine invariant time 

frequency representation. DWT is however, the most popular. It has excellent signal 

compaction properties for many classes of real world signals while being 

computationally very efficient. Therefore, it has been applied to almost all technical 

fields including edge detection, image segmentation, compression, denoising, 

Pattern recognition and numerical integration. The theory of wavelets can be evolved 

from different approaches. Fourier transform constitutes fixed bases with infinite 

support. It is localized in frequency but does not provide space or time information of 

the signal. The widowing approach of Fourier transform known as short time Fourier 

transforms (STFT) is a trade off between localization of frequency and time. It does 

not give flexibility to application to change the resolution as per requirements. 

Therefore, it is not well adapted to isolate local singularities. It leads to more general 

and flexible approach in which analysis at different resolution and details can be 

made. A function can be analyzed by taking its projection on a single prototype 

function along its translations and scaling such that the prototype function obeys 

certain mathematical criteria. This phenomenon results in CWT. If the said basis 

function is discretized and then the signal is analyzed, it is termed as discrete time 

wavelet transforms. If the translations are integer multiples of two then it results in 

well known dyadic wavelet transform. Another approach is based on multi resolution 

approach which states that any lower dimensional signal can be represented by its 
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higher dimension or a higher dimensional signal can be represented by lower 

dimension signal along its orthogonal complement. The appeal of such an approach 

known as MRA facilitates retention of structural contents that might go undetected at 

one resolution may be easy to spot at another. However wavelets could not be 

effectively used till Mallat discovered that dyadic wavelets can be implemented by 

filter banks. Implementation of wavelets has its roots in subband coding. In the 

subsequent sections each aspect of wavelets will be briefly explained. 

2.2 Short Time Fourier Transform 

Fourier representation of signals is known to be effective in analysis of 

stationary periodic signals and not advocated for dynamic signals. STFT restricts the 

signal to an interval by multiplying it by a fixed window function, before carrying out a 

Fourier analysis of the product. Repeating the process with translated versions of 

window function allows localized frequency information throughout the signal to be 

obtained. Since the window width is same for all the frequencies, the amount of 

localization remains constant for different frequencies. STFT can be mathematically 

defined as  

 

�(�, �) = � �(�)��,�
∗

��∝

���∝

(�)��                                            (2.1) 

where 

 

 

��,� = �(� − �)����                                                               (2.2) 

The function ω(t) is a windowing function, the simplest of which is a rectangular 

window that has a unit value over a finite interval and is zero elsewhere. 

 

2.3 Continuous Time Wavelet Transform 

In contrast to sinusoidal function, a wavelet is a small wave whose energy is 

concentrated in time. Wavelets [7], [18], [19], [20], [21] are functions generated from 

one single function called mother wavelet by dilatations and translations in time 

domain. A wavelet denoted by Ψ(t) should have zero average value and unit energy. 

� �
∝

�∝

(�)�� = 0                                                                 (2.3) 
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� |�(�)|��� = 1                                                           (2.4)
∝

�∝

 

 

This guarantees its oscillating behaviour. The shifted and scaled wavelets Ψa,b(t) 

can be represented as:- 

��,� = |�|��/�� �
� − �

�
�                                                         (2.5) 

 

Where a and b are two arbitrary real numbers and represent dilations and 

translations respectively. The pre factor |�|��/� is normalization constant and 

responsible to ensure that all scaled functions|�|�
�

��∗(
�

�
) with aεR have the same 

energy. Thus the wavelet transform of a signal is computed as a collection of inner 

products of the signal and translated and scaled versions of a mother wavelet ψ(t) 

which can be written as 

��(�, �) = 〈�, ��,�〉                                                       (2.6) 

Based on this definition, the wavelet transform of a function f(t) can be expanded as 

 

��(�, �) = � �(�)��,�
∗

∝

�∝

(�)��                                                   (2.7) 

Since the analysis function ψ(t) is scaled and not modulated like the kernel of STFT, 

a wavelet analysis is often called time scale analysis rather than time frequency 

analysis. For the existence of its inverse, the admissibility condition must be met i.e. 

 

�
|�(�)|�

|�|

∝

�∝

�� < ∝                                                             (2.8) 

 

where Ψ(�) is the Fourier transform of mother wavelet Ψ(t). The inverse transform to 

reconstruct f(t) from ��(�, �) is represented as 

�(�) =
1

�
� � ��(�, �)��,�(�)����                                  (2.9)

∞

�∞

∞

�∞

 

where 

 

� = �
|�(�)|�

|�|

∞

�∞

��                                                                        (2.10) 
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ψ(t) is equipped with vanishing moments, so there must be some function say φ(t) 

with non vanishing mean such that the former is the derivative of later 

�(�) =
��(�)

��
                                                        (2.11) 

 

 

Φ(t) is called as father wavelet which can be similarly scaled and translated on 

continuous scale such that the energy remains unity. 

��,� = |�|��/�� �
� − �

�
�                                                 (2.12) 

 

 

However the relation between father and mother wavelets will be refined in section 

2.5 with the help of nested spaces. 

CWT is highly redundant and the scales are taken on real axis which is unsuitable 

for digital processing. If small scales are taken with integer translation at each scale 

then it is termed as discrete time wavelet transform. 

 

2.4 Discrete Time Wavelet Transform 

Since image is processed by a digital computing machine, it is prudent to 

discretize a and b and then represent the discrete wavelets accordingly [8]. The 

generally appreciated approach of discretizing a and b is 

                                    � = ��
� , � ∈ ℤ                                                                                     (2.13) 

� = �����
� , � ∈ ℤ                                                                             (2.14) 

Hence the wavelets can be represented as 

�� ,� (�) = ��

�
�
� � (��

�� � − ���),     � , � ∈ ℤ                                  (2.15) 

 

The widely used DWT in signal processing applications is by discretizing the wavelet 

on dyadic time scale such that �� = 2  and �� = 1   that is called dyadic wavelet 

transform. 

 

�� ,� (�) = 2
�

�� � (2�� � − �)                                           (2.16) 

Where m and n denote scale and translation parameters respectively. 

The DWT of a function f(t) hence becomes 
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��(� , �) = 〈�, �� ,� 〉= � �(�)�� ,�
∗ (�)��                              (2.17)

∞

�∞

 

The selection of ψ(t) is made such that the wavelet basis set ψ{m,n} constitute an 

orthonormal basis. Hence the wavelet expansion of f (t) can be expressed as 

��(�) = � � ��

��

(� , �)Ψ� ,� (�)                                     (2.18) 

Equation (2.18) does not suffice PR and a portion of original signal is absent which 

will be dwelled in the subsequent sections. In the similar footing, we can extend 

discrete version of scaling function from (2.12) as follow 

�� ,� (�) = 2�
�
� �(2�� � − �)                                                (2.19) 

Most of the signal energy is concentrated in fewer wavelet coefficients, therefore, it is 

also termed as sparse feature representation. 

2.5 Multi resolution Analysis 

MRA presents a systematic approach to generate the wavelets. The idea of 

MRA is to approximate a function f(t) at different levels of resolution. Two functions 

are considered: the mother wavelet ψ(t) and the scaling function φ(t). The scaled 

and translated versions of scaling function are given by (2.19). For fixed m, the set of 

scaling functions φm,n(t) are orthonormal. MRA is based on hierarchy of increasing 

resolutions of scaling functions and the wavelet functions emerge as consequence. 

By linear combinations of the scaling function and its translations we can generate a 

set of functions to represent any signal 

�(�) = � ��

�

�� ,� (�), �(�)���                                              (2.20) 

The set [8] of all such functions generated by linear combinations of the set{φm,n(t)} 

is called span of the set, denoted by Span{φm,n(t)}. Now consider Vm to be vector 

space corresponding to the given set. Assume that the resolution increases with 

increasing m, these vector spaces describe successive approximation vector spaces 

�−∞ ⊂ ⋅⋅⋅⊂ �−3 ⊂  �−2 ⊂  �−1 ⊂  �0 ⊂  �1 ⊂  �2 ⊂  �3 ⊂ ⋅⋅⋅⊂ �∞ 

each with resolution 2� . Similarly 

⋯  ⊥  � −3 ⊥ � −2 ⊥ � −1 ⊥ � 0 ⊥ � 1 ⊥ � 2 ⊥ � 3 ⊥ ⋯                                        (2.21) 

The set of subspaces must meet the following criteria in order to be a successful 

candidate for MRA 

a. Each space must be contained in the next higher resolution space 

��  ⊂  �� +1 ⋅⋅⋅⋅ ∀�  ∈ ℞                             (2.22) 



  17 

b. b. The union of subspaces is dense in the space of square integrable 

functions ��(ℜ )  

� ��
������ = ��(ℜ )                                                                    (2.23) 

c. The intersection of all the spaces is a singleton set containing the all zero 

function or zero vector 

∩ ��
������ = 0                                                                       (2.24) 

d. Contracting a function from resolution space �� by a factor of 2�  results in 

the higher resolution space ��  

�(�) ∈ �� ↔ �(2� �) ∈ �� … ..�   ∈  ℝ �                     

Or if 

�(�) ∈ �� ↔ �(2��) ∈ �� �� … . � , � ∈  ℝ �                               (2.25) 

 

e. The spaces are shift invariant i.e. translating a function in a resolution 

space does not change the resolution 

�(�) ∈ �� ↔ �(� − �) ∈ ��                                                               (2.26) 

f. There exist a set that its integer translates forms an orthonormal 

basis of �� 

{�(� − �) ∈ ��:� ∈  ℤ} 

such that 

〈�� , � � 〉= ���� = {� � ��
� � � � �                                                            (2.27) 

 

The doctrine of MRA is that lower dimensional signals can be elegantly represented 

in higher dimensional spaces. As the spaces are nested within the next higher 

dimensional space, so the difference between the two adjacent spaces is the 

orthogonal complement of the lower dimension space within the next higher 

dimensional space i.e. 

〈�� ,� , Ψ� ,�〉= 0 … . . ∀ � , �, � ∈ ℤ                                                (2.28) 

For a space �� along its orthogonal complement say � � , will constitute the next 

higher dimensional space �� �� 

 

�� �� = �� ⨁ � �                                                                                                                         (2.30) 

 

or equivalently 

�� = �� ��⨁ � � ��                                                                                                                          (2.29) 
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which can be further decomposed into lower dimensional spaces along with their 

complements 

�� = �� ��⨁ � � ��⨁ � � ��  

=   �� ��⨁ � � ��⨁ � � ��⨁ � � ��                                                                                                (2.31)  

 

 

 

 

 

 

�� ⊂ �� ⊂ �� ⊂ ��                                                                  �� = ��⨁ � �⨁ � �⨁ � � 

 

Figure 2.1 Nested spaces. (a) Nested function 

spaces spanned by scaling functions (b) 

Relation between scaling and wavelet spaces 

We can express space of all the measureable and square integral functions as      

ℒ�(ℜ ) = ��⨁ ∑ � �
∞
� �� = ��⨁ ∑ � �

∞
���                                                       (2.32)       

or even 

ℒ�(ℜ ) = � � �

∞

� ��∞

                                                        (2.33) 

As per above description of spaces, it is prudent to say that 

�(�) ∈ �� ⇔ �(2�) ∈ ��                                                     (2.34) 

which ensures elements in a space are simply scaled versions of the elements in the 

next space and if φ(t) is in Vo it is also in V1 spanned by the spaceφ(2t). Vo and Wo 

are the subspaces of V1 which can be expressed in terms of dilation equations or 

refinement relations for Haar 

� (�) = � (2�) + (2� − 1)                                          (2.35) 

 

Similarly 

�  � = � 2� − (2� − 1)                                             (2.36) 

In general φ(t) can be expressed in terms of weighted sum of shifted φ(2t) as 

� � 
� � 

� � 
�� 

�� 
�� 

�� 
�� 
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�(�) = � ℎ∅(�)√2�(2� − �) … . . � ∈ ℤ                                             (2.37)

�

 

√2 is normalization constant, with similar reasoning and supplemented with Figure 

2.1, we find that the wavelets too reside in the space spanned by the next narrower 

scaling function and can be represented by a weighted sum of shifted scaling 

functions 

� (�) = � ℎ� (�)√2�(2� − �)

�

… . . � ∈ ℤ                                   (2.38) 

Equation (2.38) establishes that wavelets span the orthogonal complement spaces 

and integer shifts are also orthogonal, therefore relation between ℎ�  is inverted and 

modulated form of ℎ�  that can be stated as 

ℎ� (�) = (−1)� ℎ� (1 − �)                                                   (2.39) 

 

So far we developed the concept of nested spaces by which any finite energy signal 

in space can be represented by linear combination of bases from its subspace along 

its orthogonal complements. If �� ��(�) has the resolution m+1 then it can be 

expanded as 

 

�� ��(�) = � ∝� ,�

�

�� ,� + � �� �� ,�        

�

                        (2.40) 

Incorporating (2.37) and (2.38) in (2.40) we can represent a function f(t)∈�� as 

�(�) = � ℎ� (�)√2

�

�(2� − �) + � ℎ� (�)√2

�

�(2� − �)                  (2.41) 

Equation (3.41) represents the complete �� space in the form of its scaled and 

translated versions of the next higher space. Thus a signal f(t) can be expanded in 

general as 

�(�) = � 〈�, �� ,� 〉

� ,�∈ℤ

�� ,� (�)                                                                   (2.42) 

 

= � 〈�, �� ,� 〉�� ,� (�) +

�∈ℤ

� 〈�, � �,� 〉��,� (�)

� �� ,�∈ℤ

 

or can be stated as 

�(�) = � ∝��
(�)���,�

(�) + � � ���
(�)��,�

(�), �� ≥ �                  (2.43)

�

∞

�����
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Where �� is an arbitrary starting scale and ���(�) and ��(�) are called .approximation 

and detail coefficients respectively which are obtained by taking the inner products of 

the function with scaling and wavelet functions as following 

���(�) = 〈�, ���,�〉= � �(�)���,�
(�)��                                                 (2.44) 

 

��(�) = 〈�, ���,�〉= � �(�)���,�
(�)��                                                (2.45) 

Equation (2.43) also called wavelet expansion series, reconstructs the original signal 

without noticeable error and incorporates the lost portion of f(t) that was missing in 

(2.18). 

2.6 Implementation of Wavelets 

2.6.1 Image Pyramids 

A lot of similarities have been found between MRA equations and image 

pyramids in which image is decomposed into its lower resolutions making pyramid 

like image structure [9]-[10] as shown in figure 2.2. Prediction residual is taken at 

each level so that its inverse transform exist without error. The Image pyramid along 

with prediction residual as depicted in figure is analogous to course scale 

approximations and fine scale details of the wavelets. 

 

Figure 2.2 Image pyramid 

 

 

2.6.2 Subband Coding 

 The wavelets could not be effectively implemented in signal processing 

applications till its linkage with subband coding was explored. In this scheme, the 
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image is decomposed into a set of band limited components, called subbands. The 

decomposition is performed in a manner such that the decomposed bands can be 

inverted back to re-construct the original signal without error. The decomposed 

signal is decimated such that it retains same number of data points after decimation 

as the original signal. Each decomposed band is separately up sampled and filtered 

in such a way that their combination yields back the original signal or in other words 

the combination of lower dimensional space can generate the next higher 

dimensional space. For this purpose; the transfer function of the system should be 

unity i.e. the synthesis filter bank should be the inverse of the analysis filter bank. 

[��  � �]�
�
�

�= � 

�
�
�

�[��  � � ]= �
�   0
0  �

�                                                 (2.46) 

Where L and B denote coefficients of analysis filter bank then their transpose 

constitute coefficients of synthesis filter bank. 

 

Figure 2.3 Pyramid Implementation 

Another way to say is to factorize unity into two factors. One factor can correspond to 

coefficients of analysis filter bank and the other factor can correspond to synthesis 

filter bank. However these factors are constrained by certain mathematical 

conditions. There is no set procedure or derivations for finding these factors. The 

factors may be termed as magic numbers fulfilling the mathematical conditions such 

as compact support and orthogonality or biorthogonality in order to be successful 

candidate for wavelets. 

Consider two channel perfect reconstruction filter bank as shown in Figure 2.4. The 

analysis filter bank consists of  ℎ�[�] and ℎ�[�], is used to break the input sequence 

f[n] into two half length sequence ℎ��[�] and ℎ��[�], the subbands that represents 
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the input. The ho[n] and h1[n] are half band filters whose idealized transfer 

characteristics, ℎ� and ℎ� are shown in figure 2.5 (b). Filter ℎ�[�] is a lowpass filter 

whose output, subband ���[�], is called an approximation of f[n] while ℎ�[�] is a high 

pass filter whose output, subband ���[�], is called high frequency or detail part of 

f[n]. These filters are power complementary and FIR Each band is decimated by of 

two so that the amount of data should coincide with original signal. For synthesis the 

signal is up sampled by a factor of two by inserting zeros in between consecutive 

samples. Then it is passed to synthesis filters separately and then combined to re-

construct the signal. 

 

Figure 2.4 Subband coding and synthesis filter bank 

 

Figure 2.5 Spectrum of half band filters 

The goal in subband coding is to select ℎ�[�], ℎ�[�], ��[�] and  ��[�] so that 

�[�]� = �[�].That is to say that input and output of subband coding and decoding 

system are identical. 

 In all sub band coding, synthesis filters are modulated version of the analysis filters. 

One synthesis filter is being reversed as well. For perfect reconstruction, the impulse 

responses of the synthesis and analysis filters must be related in one of the following 

form 

��[�]= (−1)� ℎ�[�]                                                                                    (2.47) 

 

��[�]= (−1)���ℎ�[�]                                                                                 (2.48) 
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or 

 

��[�]= (−1)���ℎ�[�]                                                                                 (2.49) 

 

 

��[�]= (−1)� ℎ�[�]                                                                                       (2.50) 

 

Filter ℎ�[�], ℎ�[�], ��[�] and  ��[�] in above equations are said to be cross 

modulated because diagonally opposed filters in Figure 2.4 are related by 

modulation. Further that, they satisfy the under mentioned biorthogonal condition 

 

〈ℎ�[2� − �], ��[�]〉= �[� − �]�[�], �, � = {0,1}                                      (2.51) 

 

To develop fast wavelet transform we put further constrains such that 

〈��[2� − �], ��[� + 2� ]〉= �[� − �]�[�], �, � = {0,1}                                  (2.52) 

 

which defines orthonormality for perfect reconstruction filter banks. In addition to 

equation above, orthonormal filters can be shown to satisfy the following two 

conditions 

��[�]= (−1)�  �� [�� − 1 − �]                                                                   (2.53) 

ℎ�[�]=  �� [�� − 1 − �] , �, � =  {0,1}                                                            (2.54) 

where the subscript �� is used to indicate that the number of filter coefficients must 

be even. Above equations indicate that synthesis filter �� is related to �� by order 

reversal and modulation. In addition both ℎ� and ℎ� are order reversed version of 

synthesis filters ��  and ��. Thus an orthonormal filter bank can be developed around 

an impulse response of a single filter, called prototype, the remaining filters can be 

computed by using (2.47)- (2.54). Subband coding in the similar fashion can be 

applied to two dimension separable signals by processing in one dimension followed 

by the other dimension which will be discussed in the next sections. 

2.6.3 Fast wavelet Transform 

The wavelets could not be effectively used till Mallat [11] discovered that 

continuous wavelet basis formed by inner products of orthonormal basis can be 

implemented by a band of constant Q filters, the non overlapping bandwidths of 

which differ by an octave. A lot of similarities have been found in FWT and subband 

coding. The highpass ℎ�[�] and lowpass ℎ�[�] used in figure 2.4 for subband coding 
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have been used interchangeably as ℎ� [�]and ℎ� [�] respectively for clarity where 

needed without the loss of generality in the wavelet implementation through filter 

banks. Reconsider (2.37), scaling t by 2j , translating by k, and substituting m=2k+n 

��2�� − �� = � ℎ�

�

[�]√2��2�2�� − �� − �� 

= � ℎ�

�

[� − 2�]√2 ��2���� − � �                                                           (2.55)  

The scaling vector ℎ�  can be thought of as the weights used to expand  ��2�� −

�) as sum of scale j+1 scaling functions. A similar sequence of operations on (2.38) 

yields 

� �2�� − �� = � ℎ�

�

[� − 2�]√2 ��2���� − � �                                     (2.56)  

Putting the value of � �2�� − �� in (2.45) results 

 

��(�) = � �(�)2
�

�� �� ℎ� [� − 2�]√2��2���� − � �

�

���       

With a little manipulation of integrals and summation we get 

��(�) = � ℎ�

�

[� − 2�]�� �(�)2
(���)

�� ��2���� − � ����                 (2.57) 

Therefore, the above equation can be written as 

 

��(�) = � ℎ� [� − 2�]

�

∝��� (� )                                                                   (2.58) 

The detail coefficients at scale j are functions of the approximation coefficients at 

scale j+1. In similar fashion the wavelet series expansion approximation coefficients 

yield 

 

 

∝� (�) = � ℎ� [� − 2�]

�

∝��� (� )                                                             (2.59) 

When f(t) is discrete, the wavelet series expansion coefficients become DWT 

coefficients � � (�, �) and � � (�, �) which can be expanded showing relation between 

DWT coefficients with adjacent scales. 

� � (�, �) = � ℎ� [� − 2�]� � (� + 1, �)

�

                                                    (2.60) 
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� � (�, �) = � ℎ� [� − 2�]� � (� + 1, �)

�

                                                      (2.61) 

Equation(2.58) and (2.59) reveals that higher dimensional signal can be 

decomposed into lower dimensional signal. The scale and detail coefficients of 

higher dimensional space can be calculated by order reversed scaling and wavelet 

vectors ℎ� [�]and ℎ� [�] and then decimation by two is similar to analysis bank as 

depicted in figure 2.6 with addition that ℎ� [�]= ℎ� [−�]and ℎ� [�]= ℎ� [−�]. 

 

 

Figure 2.6 FWT analysis filter bank 

Or can be equated as convolutions of � � (� + 1) with ℎ� [�]and ℎ� [�]and then 

decimated by a factor of two yields 

 

� � (�, �) = ℎ�  [−�] ∗ �� � (� + 1, �)�
����,�

                                        (2.62) 

� � (�, �) = ℎ�  [–�] ∗ �� � (� + 1, �)�
����,�

                                    (2.63) 

Above equations are the defining equations of FWT. The filter banks shown in 

preceding diagram can be iterated to yield multistage structures for computing DWT 

coefficients at two or more successive scales. 
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Figure 2.7 Two dimensional four band filter bank for suband coding 

 

Figure 2.8 Spectrum splitting of the bands 

The above diagram shows the iteration of � � (�) splitting to next resolution into 

� � (� − 1) and� � (� − 1). The scaling function is again subjected to same lowpass 

and highpass filters yielding � � (� − 2) and� � (� − 2). Hence � � (� − 2) can further 

split into scaling and wavelet function in next lower dimension. The process can be 

iterated to any stage as per usage of the application. However the non-

decomposition of data when it reaches to apex is trivial. The spectrum of the function 

as per their resolution is depicted in figure2.8. 

The inverse wavelet transform is simple and the filter coefficients for inverse 

transform are calculated through (2.47)-(2.54). The scaling and wavelet vectors used 

in forward transform, together with level j approximation and detail coefficients 

generate the level j+1 approximation coefficients. The condition of order reversal of 
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filter coefficients must be taken into account for orthogonal filter banks. However for 

biorthogonal filter banks the analysis and synthesis filter should be cross modulated 

as per (2.53)- (2.54), which must be satisfied. 

 

Figure 2-9 IFWT synthesis filter bank 

The implementation of figure 2.9 can be worked out as 

� � (� + 1, �) = ℎ�  (�)  ∗ � �
�↑(�, �) +    ℎ�  (�)  ∗ �� �

�↑(�, �)�
���

                    (2.64) 

where ψ�↑ signifies up sampling by two so that it gets back to original resolution. The 

up sampled coefficients are filtered with ℎ� [�] and ℎ� [�] and then added to generate 

a higher scale approximation. The coefficients combining process as depicted in 

above figure can be extended upto any level provided the resolution is above single 

point. A two stage inverse FWT for Figure 3.7 is shown below which guarantees 

perfect construction. 

 

Figure 2.10 Two scale inverse IFWT synthesis filter bank 

The existence of FWT depends upon the availability of a scaling function for the 

wavelets being used, as well as the orthogonality or bi orthogonality of the scaling 

function and corresponding wavelets. If these conditions are not met like Mexican 
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Hat wavelets which does not have a companion scaling function, cannot be 

implemented in filter banks. 

 

In Z domain the conditions for perfect reconstruction [58], considering figure 

2.4, can be established as 

� � (�) =
1

2
��(�)[��(�)�(�) − ��(−�)�(−�)]        

+
1

2
��(�)[��(�)�(�) − ��(−�)�(−�)]                       (2.65) 

Rearranging the terms 

� � (�) =
1

2
[��(�)��(�) − ��(�)��(�)] �(�)        

+
1

2
[��(−�)��(�) − ��(−�)��(�)]�(−�)                  (2.66) 

The above equations highlight the fact that for PR the aliasing effect due to down 

sampling and then up sampling, the filter responses must be such that these cancel 

the aliasing effects of each other i.e. 

��(−�)��(�) − ��(−�)��(�) = 0                                                             (2.67) 

To eliminate the amplitude distortion effects, under mentioned must be satisfied 

��(�)��(�) − ��(�)��(�) = 2                                                               (2.68) 

These equations can be simplified into matrix equations as 

[��(�) ��(�)]�
��(�)   ��(−�)

��(�)   ��(−�)
�= [2 0]                                               (2.69) 

Where analysis modulation matrix is 

�� (�) = �
��(�)   ��(−�)

��(�)   ��(−�)
�                                                                 (2.70) 

�
��(�)

��(�)
�=

2

det (�� (�))
�

��(−�)

−��(−�)
�                                               (2.71) 

The above matrix equation guarantees PR and the results are in line with the time 

domain analysis explaining orthogonality conditions in (2.47)-(2.52). Above 

equations can also demonstrate biorthogonality conditions by taking the product filter 

of lowpass and highpass as P (z) 

�(�) =  ��(�)��(�) =  
2

det (�� (�))
   ��(�)��(�)                                  (2.72)  

Similarly 

��(�)��(�) =
−2

det (�� (�))
��(−�)��(�) = �(−�)                            (2.73) 
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or 

��(�)��(�) = �(−�) = ��(−�)��(−�)                                                  (2.74) 

Hence equations becomes 

��(�)��(�) + ��(−�)��(−�) = 2                                                            (2.75)    

We can rewrite the equation after substituting the values 

�(�) + �(−�) = 2                                                                          (2.76) 

Inverse Zee transform of (2.76) supplements the biorthogonality condition of the 

filters stated in (47)-(50) for PR of the original signal. 

2.7 Wavelet’s Extension in Higher Dimensions 

One dimensional transform can be easily extended to two dimension provided 

[1] that the signal must be separable i.e. filtering and down sampling can be applied 

in one dimension followed by the other dimension. For images, a two dimensional 

scaling function φ(x, y) and three two dimensional wavelets, � �(�, �), � �(�, �) and 

� �(�, �) are required. Each function is the product of separable two one dimensional 

functions and separable directional wavelets. 

�(�, �) = �(�)�(�)                                                                                    (2.77) 

� �(�, �) = � (�)�(�)                                                                               (2.78) 

� �(�, �) = �(�)� (�)                                                                              (2.79) 

� �(�, �) = � (�)� (�)                                                                           (2.80) 

Equation (2.77) calculates the approximation and remaining equations calculate 

directional variations. Equations (2.78), (2.79) and (2.80) give variation along 

horizontal, vertical and diagonal directions respectively. Two dimensional wavelets 

can be simply extended from one dimensional wavelet as 

��,� ,� (�, �) = 2
�

�� � �2�� − � , 2�� − ��                                                   (2.81) 

��,� ,�
� (�, �) = 2

�
�� � ��2�� − � , 2�� − ��, � = 1,2&3                     (2.82) 

Where index i=1,2,3 indicates the directional wavelets i.e. horizontal, vertical and 

diagonal. The DWT of image f(x,y) of size M x N is 

 

� � (��, � , �) =
1

√��
� � �(�, �)

� ��

���

� ��

� ��

���,� ,� (�, �)                                 (2.83) 

� �
�(�, � , �) =

1

√��
� � �(�, �)

� ��

���

� ��

� ��

� �,� ,�
� (�, �) , � = {� , �, � }             (2.84) 

 

 



  30 

As in one dimensional case, �� is an arbitrary starting scale and � � (��, � , �) 

coefficients define an approximation of f(x,y) at scale ��. The � �
�(�, � , �) coefficients 

add horizontal, vertical and diagonal details for scales j ≥ ��.Normally ��=0 and 

N=M=2� for j=0,1,2,3…, j-1 and m=n= 0,1,2,…, 2��� is taken. 

The inverse two dimensional DWT can be obtained by 

�(�, �) =
1

√��
� � � � (��, � , �)���,� ,� (�, �)

� ��

���

� ��

� ��

+
1

√��
� � � � � �

�(�, � , �)

��

∝

������� ,�,�

 ��,� ,�
� (�, �)                                  (2.85) 

Two dimensional separable scaling and wavelet functions can be implemented by 

simply taking the one dimensional FWT of the rows of f(x,y) followed by one 

dimensional FWT of the resulting columns. Figure 2.11 shows the block diagram of 

the filter banks. 

 

Figure 2.11 Two dimensional FWT; analysis filter bank using QMF for image 

decomposition 
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Figure 2.12 Image Synthesis using inverse QMF 
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CHAPTER 3 

RIGOROUS EASY PATH WAVELET TRANSFORM (EPWT) 

3.1. Introduction 

Most methods for image compression were the tensor product image 

compression techniques which had a disadvantage of giving a particular importance 

to the horizontal and vertical directions. Tensor product orthogonal wavelet bases 

are unable to adapt towards directional geometric features. Consequently a lot of 

research to overcome this difficulty lead to adaptive wavelet transforms. Bandelets 

[13], Wedgelets [14], Tetrolets [15], Grouplets [16], are some of the main highlights 

of these adaptive techniques. This chapter presents a scheme for exploitation of 

correlated image pixels and moving on from neighbour to neighbour of each pixel 

value thereby finding a path vector across all points. Dyadic wavelet transform on the 

path vector is then used to produce coefficients for the next lower level images of 

high pass and low pass coefficients. However to achieve optimality of image 

compression level of image decomposition through wavelet transform is continued 

until a single pixel images are obtained. It is an extension to technique proposed by 

Naqvi [17]. 

Basic Terminologies 

Let consider an image of even dimensions such that P and Q  denote the 

dimensions and PQ = 2� P, Q, L ∈  ℕ . (p, q) can be indexed as I= {(p, q):p = 0, … , P −

1, q = 0, … , Q − 1}.  A function ‘S’ that converts image indices to discrete sequence of 

numbers is such that: 

 S:  I→ {0,1, … , (PQ − 1)} , where S�(p, q)�:= p + qP . 

 If (p�, q�) ∈ I, then the neighborhood, nb� , of an index (p, q) is defined by: 

nb�(p, q) = nb�(i) = {|p − p�| ≤ 1, |q − q�| ≤ 1 }                                                                    (3.1)  

  p ≠ p�, q ≠ q�                                                    

Using discrete sequence of values from �(�) neighbourhood of any pixel � ∈ �  as eq. 

(3.1) is as follows: 
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���(�)

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

  �� → {(� + �), (� + � + 1), (� + 1)}

   �� → �
(� + �), (� + � + 1), (� + 1),

(� − 1), (� + � − 1)
�

  �� → {(� + �), (� − 1), (� + � − 1)}

     �� → �
(� + �), (� − �), (� − � − 1),

(� − 1), (� + � − 1)
�

    �� →  {(� − �), (� − � − 1), (� − 1)} 

       �� → �
(� + 1), (� − � + 1), (� − �),

(� − � − 1), (� − 1)
�     

   �� → {(� + 1), (� − � + 1), (� − �)} 

  �� → �
(� + �), (� + � + 1), (� + 1),

 (� − � + 1), (� − �)
�

       �� → �

(� + �), (� + � + 1), (� + 1),
(� − �), (� − � + 1),

(� − � − 1), (� − 1), (� + � − 1)
�

                                                          (3.2)�   

  

� 0 � 7 � 6 

� 1 � 8 � 5 

� 2 � 3 � 4 

Figure 3.1 Grouping of indexes with common neighbours 

 

Therefore, indices belonging to block �� have maximum neighbors. Dividing the 

index set such that F= {��, ��, ��,… ,��}  and intersection of any two subsets is an 

empty set, mathematically where �� ∩  �� = ∅  and union of all sets gives the indexed 

set S such that ⋃ �� = ��
��� . Also �� ∈ ��� (��) , if there is at least one index from 

each set who are neighbors of each other i.e. � ∈ ��� (��). Connect a path through the 

index set S(I) of the image block such that absolute difference is minimum and 

encode these path indices. The complete path vector �� through �(�) is an integer 

vector of length �� composed of all indices of �(�) in a certain order. The complete 

path vector of all levels will constitute � number of path vectors i.e. if �� = 2� then 

complete path vector of all levels will constitute ��, ��, ��, ��. Furthermore functional 

values of each path vector are compressed using DWT. Whenever a pathway is 

closes on itself a new pathway is chosen and such transition is known as 

interruption. 
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3.2. Rigorous Easy Path Wavelet Transform 

Introduction    

 Determine a path along the indices of �(�) of image as discussed before. 

Starting from the matrix value of �(�, �) = (0,0) or S(0,0)={0}. Next from ��� (0)  

(neighbouring pixels) lookup a function value whose relative value is nearest to ‘f (S 

(0, 0) =0)’. This neighbour �(�, �) ∈  ��� (0)  will be our new entry in the path vector 

set. Mathematically:  

��(� + 1) = ������
�

{������(�)� − ��(�)�� ∈     ������(�)�                                            (3.3) 

Where a ∈ nb�(0) which are unoccupied or not in the path vector or 

admissible. �����(�)� is the function value of current index set (i). pL(i + 1) is chosen 

from these admissible neighbors and that fulfils eq. 3.3. Similarly scan along the 

values of the matrix and calculate a series of path vectors that belong to one 

dimensional index set ‘S’. Equation 3.3 may not give a unique answer, for that case 

chose the direction which follows the momentum of the previous pathway or favorite 

direction. Apart from the case of index when i= {0} one may come across a situation 

when no neighboring indices are empty and are already consumed in the pathway 

then start new pathway with preferably the smallest index left in the grid which 

reduces the computation complexity. Such situation is known as an interruption i.e. 

choose minimum available unused index in �(�) as ��(� + 1). Or another choice is to 

look for a next index, such that again the absolute difference is given by ������(�)� −

��(�)� a ∈ S(I)  is minimal. After calculation of pathway, apply DWT using any dyadic 

wavelet, say e.g. Haar wavelets, along the pathway of values. 

 Lets take an example of two 4x4 matrices to delineate the concept of above 

mentioned technique of finding a path across all the data points of a image/frame. 

Suppose each frame is of dimensions 4 × 4 with following intensity values: 

 �� = �

0.443 0.493 0.424 0.422
0.442 0.474 0.463 0.429
0.432 0.443 0.422 0.436
0.441 0.442 0.475 0.464

�  

 �� = �

0.443 0.494 0.432 0.439
0.472 0.443 0.468 0.490
0.498 0.412 0.442 0.434
0.463 0.442 0.433 0.455

� 

Let’s walk through the indices of �4  and find values that satisfy eq. (3.3). Initializing 

from ��(0.0) = 0.443. Looking through the neighbors of  �4(0.0) = 0.443 i.e.  ��� (0) 
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and finding an index that qualifies eq. 3.3. Following the above procedure which 

gives following first path vector: 

  �� = (0, 1, 6, 7, 3, 2, 5, 9, 14, 13, 8, 12, |4, | 10, 15, 11) 

Where ′|′  signifies an interruption in the path vector. 

Efficient Storage of Path Vector Set 

To reduce the processing cost an efficient method is devised to reduce 

processing cost. We encode the path followed under eq. 3.3 instead of the indexed 

set sequence. Therefore a considerable budget is economized in shape of encoded 

path vector �� . For first entry  ��(0) = 0 the encoded index is will be represented by 

���(0) = 0. This will always be used as a starting point. In future path vector entries, 

an entry will only be zero if it does not cause a change in pathway with respect to the 

previous pathway. This is known as following favorite direction. To encode the 

second entry  ��(1) we follow a simple standard, put 

���(1) = �

0 �� ��(1) = �

1 �� ��(1) = � + 1

2 �� ��(1) = 1

�                                                                                           (3.3.1) 

For encoding index values of the path vector we determine the favorite direction by 

the following equation:  

��(� + 1) = 2��(�) − ��(� − 1))                                                                                          (3.4) 

 If it is satisfied we put ���(� + 1) = 0. If the pathway does not satisfy eq. 3.4 then it 

means favorite direction is not followed and then it will be encoded with respect to 

right handed or clockwise distance. Mathematically consider the following set: 

� = ��(�)�
���

�
∈  ℤ�                                                                                                         (3.5) 

 

and � = (�, � + 1,1, −� + 1, −�, −� − 1, −1, � − 1) 

Find the index �� ∈ {0,1 … 7}  which will direct towards the favorite direction such that 

�(��) =  (��(�) − ��(� − 1)                                                                                                  (3.6) 

If there is a circular shift �� of q such that �� = �(��), … �(7), �(0), … … . �(�� −

1)= (��(�))���
�  and ��(0) = ��(�). Above procedure gives us all possible neighbors with 

following encoded path vectors: 
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���(� + 1) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

0    ��(� + 1) = ��(�) + ��(0)

1     ��(� + 1) = ��(�) + ��(1)

2     ��(� + 1) = ��(�) + ��(2)

3     ��(� + 1) = ��(�) + ��(3)

 4     ��(� + 1) = ��(�) + ��(5) 

5     ��(� + 1) = ��(�) + ��(6)

 6     ��(� + 1) = ��(�) + ��(7) 

�           (3.7) 

 

If ��� ���(�)� are not all admissible, we delete all components ��(�) in �� that do not 

point towards and admissible neighbor (index) and follow the above procedure 

without changing the order. 

For example encoding the third path vector i.e. index ‘6’ the above mentioned 

procedure is as follows: 

� = (4, 5, 1, −3, −4, −5, −1, 3) then �(��) =  1 − 0 = 1 therefore giving a cyclic shift 

yields �� = {1, −3, −4, −5, −1, 3, 4, 5} which sets corresponding favorite direction as 

index ‘2’ and following clockwise order and deleting non-admissible neighbors 

�� = {1, 3, 4} which means index ‘6’ can be reached from index ‘1’ when we add 4 into 

it. As ��(0) = 1 , so ��(3) = 4 which upon using eq. 3.7 encodes ‘6’ as ‘3’. Encoded 

pathway ��  is: 

��4 = (0,2,3,1,0,0,0,1,1,3,1,0, |0, |0,0,0) 

Presence of zero symbols signifies a sparser representation which means less 

space is engaged. Path vectors can be encoded more sparsely if Relaxed EPWT 

algorithm (described in later chapter) is used. When the path vectors are calculated 

a one dimensional discrete Haar wavelet transform on functional values  

(��(��(�)))���
���� along all levels of path vectors is applied, which gives scaling 

function coefficients���� ∈ ℝ
��

�� , and a wavelet function coefficient  ���� ∈ ℝ
��

�� . 

Used filters are Haar filters such that ℎ(0) = ℎ(1) = 1 2⁄  and �(0) = − 1 2⁄ , �(1) =

1 2⁄ : 

�� = (0.0005, 0.0005, 0.0045, 0.0055, 0.0035, 0.0010, 0.0355, −0.0055) 

�� = (0.4425, 0.4425, 0.4365, 0.4685, 0.4325, 0.4230, 0.4575, 0.4695) 

 

Subsequent Levels 

As Haar wavelets decrease the size of the image at dyadic scale. Therefore 

we use interpolation to fill in the coefficients values that maintains the same size of 
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���� as the original frame size ��. Such interpolation yields a smooth continuous 

function �̃���. So imitate the eight coefficients to produce 16 values. Such matrix or 

blown up version is obtained when each coefficient from low pass filtering is 

interpolated at the same index the path vector was calculated to get����. 

Mathematically: 

��
��� = {��(2�), ��(2� + 1)}, where  � = 0, ,

��

�
− 1                                                               (3.8) 

 

As a result: 

 

�̃������(2�)� = ����(�) ; �������(2� + 1)� = ����(�)                                                (3.9) 

where � = 0, …  ,
��

�
− 1 .Thus we group all indices to retain the original size of matrix 

as PQ (4 x 4 here) and both indices grouped together are considered to be a single 

index for subsequent compression. 

By above procedure  �� takes form of ���: 

��� = �

0.4425 0.4575 0.4230 0.4230
0.4425 0.4685 0.4685 0.4325
0.4365 0.4425 0.4575 0.4325
0.4365 0.4425 0.4695 0.4695

�  

First member of each  �� will always be considered as index ‘0’. For further 

evaluation of path vector indices, ����(� + 1), if present entry is ����(�), apply the 

following equation for 0 < � < �: 

����(� + 1) = argmin
�

������ �����(�)� − ����(�)� �                             (3.10) 

Where ����(�) are the function values of the neighboring index set ‘a’. More 

generally evaluation of neighboring index sets of ��
��� 

where 0 < � < � is:��� ���
��� 

� =

 ��� ��
������(��)

����� � ∪ ��� ��
������(����)

����� �                        (3.11) 

As before again DWT using Haar is operated on the path vectors. Applying above 

equations result in following:                                                   

 

�� = (0,1,2,3,6,7,4,5) 

��� = (0,1,1,0,1,1,0,0) 

�� = (0.4425, 0.4525, 0.4635, 0.4277) 

�� = (0, −0.0160, 0.0047, −0.0060) 

                0.5575, 0.5695) 

���   is obtained by interpolation: 
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��� = �

0.4425 0.4635 0.4277 0.4277
0.4425 0.4525 0.4525 0.4277
0.4525 0.4425 0.4635 0.4277
0.4525 0.4425 0.4635 0.4635

� 

And next path vector with its encoded counterpart is: 

�� = (0,1,2,3) 

��� = (0,0,1,0) 

Similarly for next level: 

�� = (0.4475, 0.4456) 

�� = (−0.0050, −0.0179) 

Interpolation gives �̃�: 

��� = �

0.4475 0.4456 0.4456 0.4456
0.4475 0.4475 0.4475 0.4456
0.4475 0.4475 0.4456 0.4456
0.4475 0.4475 0.4456 0.4456

� 

 

Similarly path vector for this level is: 

�� = (0,1) 

��� = (0,0) 

In the end a single scaling function coefficient and single wavelet function coefficient 

i.e.�� = (0.4466),  �� = (0.00095). Entropy is given as ∑ �� log� 1/���  where  ��   is 

the probability of a symbol. Entropy of ���
� where �� =

�

��
, �� =

�

��
, �� =

�

��
, �� =

�

��
 is 

1.591 bits per symbol or bits per pixel. Applying similar procedure on 2nd 

image/frame  �4 : 

�� = �

0.443 0.494 0.432 0.439
0.472 0.443 0.468 0.490
0.498 0.412 0.442 0.434
0.463 0.442 0.433 0.455

� 

For f= 2 & � = 4: 

�� = (0, 5, 10, 7, 11, 14, 15| 1, 4, 9, 13, 12, 8 | 2, 3, 6) 

��� = (0, 1 ,0 ,2 ,3 ,1 ,0 | 0 ,0 ,1 ,3 ,1 ,0 | 0 ,1 ,0) 

�� = (0.4430, 0.4420, 0.4335, 0.4635, 0.4810, 0.4645, 0.4650, 0.4375) 

�� = (0, 0, −.0005, −.0085, .0130, 0.0255, −0.0330, .0255) 

 

Again we find a path vector as follows: 

 

 �� = (0,1, 7, 2 , 3, 6, 5, 4)    

��� = (0, 0, 5, 1, 0, 1, 0, 0) 
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Applying wavelet filters we evaluate the coefficients as: 

 

 

�� = (0.4425, 0.4355, 0.4642, 0.4727) 

�� = (0.0005, 0.0020, −0.0007, −0.0082) 

 

Again same procedure as applied: 

 

  �� = (0,1, 2, 3)    

��� = (0, 0, 0, 0) 

Coefficients of this level are: 

�� = (0.4390, 0.4685) 

�� = (0.0035, −0.0043) 

 

At the last level   �� = (0,1); ��� = (0, 0); �0 = (0.4537); �� = −0.0147. Entropy of 

second frame at level four i.e ��4 as 1.69 bits per pixel.  

All path vectors are requisite for perfect lossless reconstruction, therefore we store 

them separately. 

Reconstruction Algorithm  

Using the following code we can reconstruct back our original matrix of pixel 

values with the help of 

� = (��, ��, ��, …  , ��) ∈  ℝ
���(��

�

��)
and � = ( ��, ��, ��, … , ����) ∈ ℝ �� 

 

��� (� = 1 , � ≤  �, � + + ) 

{      ��� (� = 0, � ≤  � − 1, � + + ) 

{ 

Applying IDWT to the vector �
��

��� ∈ ℝ ��
 to obtain ����.  ����  are restricted to their location 

by: 

���� ���(�)� = ����(�), where � = 0, …  , 2��� − 1 

} 

} 
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Figure 3.2 Pathways followed by Rigorous EPWT at (a) L= 4, (b) L= 3,(c) L= 2, (d) L= 1 

 

 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



  41 

CHAPTER 4 

RELAXED EASY PATH WAVELET TRANSFORM (EPWT) 

4.1. Relaxed EPWT  

 To decrease the computational complexity of Rigorous EPWT Relaxed EPWT 

can be employed where we a special bound ‘∅’ is set and if this threshold is violated 

only then the direction of the pathway is changed otherwise it keeps on following the 

favorite direction which ensures encoded path vector to have maximum zeroes. 

4.2. Calculation of Path Vector 

 Threshold criterion is set as follows and if it is satisfied a symbol ‘0’ is 

encoded in the path vector : 

������(�)� − ���2��(�) − ��(� − 1)�� ≤ ∅                                 (4.1)                             

  �2��(�) − ��(� − 1)� determines the favorite direction in eq. (4.1). If (� − 1) =

0 ��� (�) = 4 which is the favorite direction starting from ‘0’ index then eq. 41 gives 

index ‘8’. This condition will not cater for any neighbors of index ‘i’ unless violated. If 

favorite direction is already occupied then use the condition employed in the 

previous section of Rigorous EPWT. We delete all components ��(�) in �� that do not 

give an admissible index and the scheme will be altered as  ���(� + 1) ∶= �  ;  �� ��(� +

1) = ��(�) + �(�)�  and if the selected ��(� + 1)satisfies������(�)� − �����(�)�� ≤ ∅. If 

equation above threshold fails to satisfy then we fall back to Rigorous EPWT to 

determine ��(� + 1) which warrants us to use the following equation: 

��(� + 1) = argmin
�

�������(�)� − ��(��(�)� �                   (4.2) 

It can be seen that all path vectors follow the favorite direction criteria as the 

threshold is not violated. This causes the encoded path vector ��� have all zeroes in it 

which considerably reduces the overall entropy. Diagrammatically path vectors are 

shown in fig4.1 [a-d].  
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Figure 4.1 Relaxed EPWT pathways for  = 0.1 (a) L= 4, (b) L= 3,(c) L= 2, (d) L= 1 

 

    If set a threshold to be  = 0.1 then it will be violated almost every time and our 

Relaxed EPWT will be equivalent to Rigorous EPWT. It is of importance to note that 

as the size of the image increases the entropy of path vector cut down rapidly.                     

4.3. Further Levels 

 Converting the adjacent entries to a form a single index for further 

compression. After combining these entries DWT is taken and a blown up image is 

created by interpolating the matrix with scaling coefficient. As before first entry of 

path vector is always taken o be ‘0’. Therefore  ����� = 0 is first member of encoded 

set. For determining subsequent path entries use the already index set or current 

index set ‘i’ from first level and proceed as follows for � ≥ 0: If   ����(�) + 1   is an 

admissible neighbor of  ����(�) and it fulfills the threshold criterion: 

|���� �����(�)� − ���������(�) + 1�| ≤ ∅               (4.3) 

Then we can take it as our next path vector entry as 

   ����(� + 1) ∶= ����(�) + 1 and encode it as  �����(� + 1) ∶= 0. There may be a case 

when  ����(�) + 1 is not an admissible neighbor of   ����(�) or it fails to satisfy eq. 

(4.4) then check on  ����(�) − 1 as the next candidate and similarly apply eq. (4.4) in 

following manner: 

|���� �����(�)� − ���������(�) − 1�| ≤ ∅                (4.4) 

If the both conditions above satisfy then   ����(� + 1) ∶= ����(�) − 1  and encoded 

entry is ‘0’ if   ����(� + 1) not admissible neighbor of  ����(�)  and if it is then take 

encoded entry to be ‘1’. 
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If all above conditions fail to satisfy then look through all admissible neighbors 

in {0,1, … . . , (
��

��
− 1)} of  ����(�)  and place them in a vector �∗ in descending order of 

the index. Remove   ����(�) + 1 , ����(�) − 1  and let �� ∈ {0,1,2} be removed indices. 

Let  �∗(�) = (�∗(0), �∗(1), �∗(2) … ) be the vector that contains the admissible 

neighbor of ����(�) then take �∗ which is the smallest index of �∗(�), such that it 

qualifies the following equation: 

  |���� �����(�)� − ����(�∗(�∗))| ≤ ∅                             (4.5) 

If the above condition is satisfied then ����(� + 1) ∶= �∗(�∗) and �����(� + 1) ∶= �∗ + ��. 

If still no above conditions fail to hold then look for neighbors of index  ����(�) that 

gives minimum absolute difference value, mathematically: 

�∗ = argmin
�

������ �����(�)� − ����(�∗(�))��            (4.6) 

Then put ����(� + 1) ∶= �∗ (�∗) and encode it as �����(� + 1) ∶= �∗ + ��. If there is an 

interruption or a break take the smallest unused index as the new starting point. 

When Relaxed EPWT is applied on�4 , following is path vector and encoded path 

vectors are obtained: 

�� = (0, 4, 8, 12, 13,14, 15, 11, 7, 3, 2, 1, 5, 9, 10, 6) 

 ��� = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

 

DWT on pixel values toss out following coefficients: 

 

�� = (0.4680, 0.4230, 0.4325, 0.4695, 0.4415, 0.4370, 0.4685, 0.4325) 

 �� = (−0.0250, 0.0010, −0.0035, −0.005, 0.0005, −0.0050, 0.0055, −0.0105),                                                      

                                                               

Repeating the same procedure of interpolation the matrix ��� is obtained as: 

��� = �

0.4680 0.4680 0.4230 0.4230
0.4370 0.4685 0.4685 0.4325
0.4370 0.4325 0.4325 0.4325
0.4415 0.4415 0.4695 0.4695

� 

 

Applying Relaxed EPWT at L=3 gives: 

�� = (0, 1, 2, 3, 4, 5, 6, 7) 

��� = (0, 0, 0, 0, 0, 0, 0, 0) 

DWT on the path’s functional values: 

 �� = (0.4455, 0.4510, 0.4393, 0.4505) 
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 �� = (0.0225, −0.0185, 0.0023, 0.0180) 

��� is obtained after interpolating: 

��� = �

0.4455 0.4455 0.4455 0.4455
0.4393 0.4505 0.4505 0.4510
0.4393 0.4505 0.4505 0.4510
0.4393 0.4393 0.4510 0.4510

� 

Further iteration produces: 

�� = (0, 1, 2, 3) 

��� = (0, 0, 0, 0) 

And their coefficient values are: 

 �� = (0.4483, 0.4449) 

 �� = (−0.0027, −0.0056) 

Similarly we have the ��� : 

�1� = �

0.4483 0.4483 0.4483 0.4483
0.4449 0.4449 0.4449 0.4483
0.4449 0.4449 0.4449 0.4483
0.4449 0.4449 0.4483 0.4483

� 

Only one wavelet and scaling coefficient is achieved at the end of the algorithm 

with �� = (0.4466) �� = (0.0017). Details coefficient of Rigorous EPWT are smaller 

in magnitude as compared to Relaxed counterpart e.g. �� = (0.00095) for Rigorous 

and �� = (0.0017) for Relaxed EPWT, therefore there is a tradeoff in this approach.  

We can even use combination of Relaxed and Rigorous EPWT. If we take  = 0.02 

path vector �� followed is shown in fig. 

 

Figure 4.2 EPWT with  = 0.02 
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CHAPTER 5 

RESULTS AND ANALYSIS 

5.1. Introduction 

The technique proposed in this research is used to redundancies from the 

images. This chapter presents step wise experimental results of the proposed 

algorithm and their analysis. In this research MATLAB R2008a was used as 

programming environment. 

5.2. Input data 

Standard bench mark images used in image processing as input data. 

5.3. Experiment and Results 

Here I will discuss the results of new technique by applying hard threshold on our 

resultant coefficients, and compare them with Generalized Tree Based Wavelet 

Transform [12]. First lets discuss lossy and lossless compression. 

5.4. Lossless Reconstruction 

 Standard ‘lena’ image is shown in fig. 5.1 which is reconstructed from a single 

scaling and detail vectors. �� and �� is passed through levels 8 to 14 levels to the 

reconstructed image Fig. 5.1 (h). Images are zoomed to give a reader a comparable 

difference when more coefficients are added. 

 

Figure 5.1 Lossless reconstruction with  = �. ��� (a) Original image, (b–g) Reconstructed 

levels 8 to 13, (h) reconstructed image 14 level 



  46 

 

It must be noted that for reconstruction that all coefficients to be ordered in the same 

manner in which they were calculated. Since  log
2
(128 ∗ 128) = 14 therefore fig. 6 

needs 7 levels to yield original image. As was discussed in chapter 4, higher 

threshold leads to more compact path vector or more number of zeroes. Therefore 

we have a tradeoff between entropy of path and threshold, higher threshold less 

entropy of path vector and vice versa. Lossless reconstructions of an image using 

both versions of EPWT are illustrated in figs. 7, 8. Matrix or image used is: 

c4 = �

0.4688 0.1622 0.7656 0.7892
0.5694 0.6943 0.6020 0.9482
0.0119 0.3112 0.2630 0.6505
0.2371 0.4285 0.5541 0.3838

� 

We can also see different correlated pixels pairing up in the reconstruction phase 

also. It is evidently seen from the reconstruction images of fig. 5.2[a-f], 5.3[a-f] the 

pathways that the pathways followed by both Relaxed and Rigorous EPWT. Trade 

for Rigorous EPWT is we get low coefficients of details but we have to store the path 

vectors. 

 

Figure 5.2 Rigorous EPWT reconstruction of �� (a) Original frame (b) ��, (c) ��, (d) ��  

(e) �� (f)  �� 
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Figure 5.3 Relaxed EPWT reconstruction of �� with  = 0.8 (a) Original frame  (b) ��, (c) 

��, (d) ��, (e) ��, (f) �� 

5.5. Lossy Reconstruction 

Let’s compare EPWT with conventional tensor product wavelet transform or 

adaptive GTBWT. For this take the standard image of ‘house. Fig. 5.4 I have used 

tensor product Haar, GTBWT and EPWT with different threshold to draw a 

comparative result of the superior compression. I have used 1024 details coefficients 

out of total 65536 i.e. compressed the image 64 times. Results expressed are clear 

indication of the superior compression technique employed. 

Relaxed and Rigorous EPWT only differs in the quality of path storage capacity. 

As EPWT requires storing of encoded path, so we can calculate the efficiency of 

compression with the help of entropy versus PSNR. For ideal path vectors we must 

achieve it with minimum entropy and maximum PSNR. As we increase our threshold 

the entropy decreases. As discussed before number of zeroes increases with 

increasing threshold as then path followed will be of favorite direction with maximum 

number of zeroes stored as encoded path vector. This can be seen in fig. 5.5. 
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Figure 5.4 (a) House original image, (b) tensor product (Haar), (c) tensor product (db4), (d) 

GTBWT (Haar), (e) tetrolet 16, (f) EPWT (Haar)  = 0.0 (g) EPWT (Haar)  = 0.05, (h) 

EPWT (Haar)  = 0.1, and (i) EPWT (Haar)  = 0.15 

 

 

Figure 5.5 Threshold   vs number of ‘0’s 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

MRA has been elaborated and implemented on bench images. From above 

numerical results it can be conclude that selecting an optimal threshold leads to an 

optimal compression ratio which cannot be calculated rather can be determined by 

hit and trial method. We also found out a tradeoff between entropy and the threshold. 

Other compression methods were compared with EPWT with EPWT coming out as a 

superior technique.  

    This paper’s research can be used for compression of three dimensional video. It 

can be used for compression satellite video/imagery. Any type of large amount of 

data can be stored. We can even compress the each individual tensor product 

wavelet transformed images. 
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