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ABSTRACT 

Image de-noising based on wavelet can be extended to video de-noising by using it on 

each frame separately. By manipulating inter-frame correlations de-noising performance can be 

enhanced by using appropriate temporal filtering. Fixed temporal filtering may not give 

appropriate results due to their inability to deal with the variations of inter-frame correlations. 

Many adaptive temporal filtering methods for de-nosing in spatial domain exist, but they do not 

directly outspread in wavelet-based de-noising. 

 In scalar Hidden Markov Tree, prior state probabilities are plugged into algorithm to 

estimate conditional probability density function. Hidden Markov tree modeling vector extension 

in wavelet domain is proposed, that exploits the frame reliance of wavelet coefficients. This will 

estimate unknown parameters by using expectation maximization algorithm. 

 Experimental results reveal that the vector estimation of wavelet coefficients gives better 

de-noising performance as compared to existing techniques, in terms of quantitative and 

qualitative analysis. 
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NOTATION  

  

 MSE  Mean Square Error  

 WGN  White Gaussian Noise  

 AWGN  Additive White Gaussian Noise  

 CWT  Continuous Wavelet Transform  

 DWT  Discrete Wavelet Transform  

 EM  Expectation Maximization  

 GMM  Gaussian Mixture Model  

 HMM  Hidden Markov Model  

 PDF  Probability Density Function  

 HMT  Hidden Markov Tree  

     

 PMF  Probability Mass Function  

          

             
PSNR

  
 
 

  

STFT  

Peak Signal to Noise Ratio  

Short term Fourier Transform  
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IMM  Independent Mixture Model  

MAP  Maximum aposteriori  

CMF  Conjugate Mirror Filters  

FFT  Fast Fourier Transform  

IDWT  Inverse Discrete Wavelet Transform  



vii  

  

Table of Contents 

 

C h a p t e r 1 ............................................................................................................ 1 

Introduction .......................................................................................................... 1 

1.1 Past research in the relevant area ............................................................... 2 

1.2 Thesis Statement/Synopsis .......................................................................... 3 

1.3 Objective......................................................................................................... 3 

1.4 Methodology used .......................................................................................... 3 

1.5 Benefits ........................................................................................................... 4 

1.6 Application areas ........................................................................................... 4 

1.7 Thesis outline ................................................................................................. 5 

CHAPTER 2: ........................................................................................................... 6 

Introduction to wavelets ...................................................................................... 6 

2.1. Wavelet .......................................................................................................... 6 

2.2. Applications of wavelet ............................................................................... 7 

2.3 Fourier Transform ........................................................................................... 8 

2.3.1 Comparison between Wavelet and Fourier ................................... 12 

2.3.2 Rationale behind Wavelets ............................................................ 13 

2.4 Types of Wavelet ....................................................................................... 14 

2.5 Haar Wavelet ................................................................................................ 16 

2.5.1 Reconstruction .............................................................................. 21 

2.5.2 2-Dimesional Wavelet Transform ................................................... 23 

2.6  Families of Wavelets .................................................................................. 27 

CHAPTER 3 ...........................................................................................................32 



viii  

  

Estimation of vectors ......................................................................................... 32 

3.1 Introduction ................................................................................................. 32 

3.2 Maximization of Expectation algorithm ..................................................... 34 

3.3 HMT of Wavelet Coefficients ...................................................................... 36 

3.4 Vector hidden markov tree ......................................................................... 38 

C h a p t e r 4 ..........................................................................................................41 

4.1 Spatio-Temporal filtering ............................................................................ 41 

4.1.1 Wiener Filter ............................................................................................. 42 

4.1.2 Implementation: ........................................................................................ 42 

4.1.3 Results from experimentation .................................................................. 43 

4.2 Kalman Filter ............................................................................................... 44 

4.2.1 Temporal Kalman Filtering ..................................................................... 47 

4.3 Nonlinear Filtering Techniques ............................................................... 48 

4.3.1 Median Filtering ....................................................................................... 48 

4.3.2 Soft Coring ............................................................................................. 49 

4.3.3 Results and Discussion .............................................................................. 50 

C h a p t e r 5 ..........................................................................................................53 

Experiments and Results ..................................................................................... 53 

5.1. Role of signal covariance matrix estimation ................................................ 53 

5.2 Comparison with older techniques ............................................................... 53 

5.3 Proposed algorithm: ..................................................................................... 55 

5.3.1 Simulation results: ........................................................................... 56 

5.3.2 Video frame De-noising: .................................................................. 58 

C h a p t e r 6 ..........................................................................................................62 



ix  

  

6.1 Conclusion ..................................................................................................... 62 

6.2 Future Work .................................................................................................. 62 

References ...............................................................................................................64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x  

  

List of Figures 
 

Figure: 2.1 Example of a stationary signal with two frequency components ........ 10 

Figure: 2.2 FT (X(f)) of signal ................................................................................ 11 

Figure: 2.3 The signal x(t) = sin(2π50t) + sin(2π120t) ........................................... 12 

Figure: 2.4 (a) The Morlet mother wavelet (ψ(t)) ................................................. 15 

Figure: 2.4 (b) The mexican hat mother wavelet (φ(t)) ........................................ 15 

Figure: 2.5 CWT Interpretation of a Square Signal ............................................... 16 

Figure: 2.6 The Haar wavelets .............................................................................. 16 

Figure: 2.7 The signal f(x) = tan(sin(x)) − sin(tan(x)) with 12 samples ................... 17 

Figure: 2.8 (a) The signal x2(1 −x)4 cos32πx ........................................................... 18 

Figure: 2.8 (b) Haar Transform 1 Level ................................................................. 18 

Figure: 2.8 (c) Haar Transform 2 Levels ................................................................ 19 

Figure: 2.9 1- Dimensional Discrete Wavelet Transform analysis or decomposition 

tree ...................................................................................................................... 20 

Figure: 2.10 2-Dimensional Discrete Wavelet Transform decomposition or analysis 

tree ...................................................................................................................... 20 

Figure: 2.11 1-D DWT synthesis or reconstruction tree ........................................ 21 

Figure: 2.12 .......................................................................................................... 22 

Figure:2.13 using the DWT for Barbara ................................................................ 24 

Figure: 2.14 Analysis or decomposition hierarchy for 2-Dimensional DWT .......... 25 

Figure: 2.15 The Daubechies wavelets ................................................................. 28 

Figure 2.16 Two octaves of the Daubechies transform of a signal ....................... 28 

Figure 2.17 Two octaves of the Daubechies 64 filter coefficient transform of a 

signal ................................................................................................................... 30 

Figure: 2.17 (b) Daubechies 64 filter coefficient transform 1 Level ...................... 30 

Figure: 2.17 (c) Daubechies 64 filter coefficient transform 2 Levels ..................... 31 

Figure 3.1:  HMT .................................................................................................. 37 

Fig 3.2 Vector coefficient K1 in video sequence ................................................... 38 

Fig 4.1: General outline ....................................................................................... 41 

Fig 4.2: Test Salesman frame and Blurred frame ................................................. 44 

Figure 4.3: System Model for establishing the Kalman Filtering Equations. ........ 47 

Fig 4.4: Block diagram of soft coring technique [6] .............................................. 49 

Fig 4.5: Wiener filter Mean Square Error with noise variance Fig 4.6 Results for 

different window sizes ......................................................................................... 50 

file:///C:/Users/uwx410439/Downloads/Thesis%20final.docx%23_Toc476838318


xi  

  

Fig 4.7: Comparing Kalman and Wiener filters .................................................... 51 

Fig 4.8: Conventional nonlinear filtering techniques ............................................ 52 

Figure: 5-1 Comparison of CPSNR performance in video frames .......................... 54 

Figure: 5-2 Comparison of CPSNR performance in de-noised video frame of 

“Garden” .............................................................................................................. 55 

Figure 5-3: Noisy and De-noised image results for standard video frames with 

different 𝜎𝑛 .......................................................................................................... 58 

Figure 5-4: Noisy and De-noised image results for standard video frames with 

different 𝜎𝑛 .......................................................................................................... 59 

Figure 5-5: Noisy and De-noised image results for standard video frames with 

different 𝜎𝑛 .......................................................................................................... 59 

Figure 5-6: Noisy and De-noised image results for standard video frames with 

different 𝜎𝑛 .......................................................................................................... 60 

Figure 5-7: Noisy and De-noised image results for local video frames with different 

𝜎𝑛 ......................................................................................................................... 60 

Figure 5-8: Noisy and De-noised image results for local video frames with 𝜎𝑛 = 

0.05 ...................................................................................................................... 61 

Figure 5-9: Noisy and De-noised image results for local video frames with 𝜎𝑛 = 

0.05 ...................................................................................................................... 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii  

  

 

List of Tables 
 

Table 3.1 Two states average inter-frame correlations ............................................39 

Table 3.2 wavelet coefficients of video “FOREMAN” ...........................................40 

Table 5-1: PSNR (dB) results for images corrupted with 𝜎 = 0.05 .........................56 

Table 5-2: PSNR (dB) results for images corrupted with 𝜎 = 0.1 ...........................57 

Table 5-3: PSNR (dB) results for images corrupted with 𝜎 = 0.2 ...........................57 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1  

  

 

 

C h a p t e r 1  

Introduction  
    

Digital image processing has a broad spectrum of applications, and it has 

rapidly evolving fields with many theoretical as well as technological breakthroughs 

during the last decades. Generally speaking, there have been mainly two trends in 

the image processing research: one leads to the fundamental image representation 

and modeling techniques, and the other heads a variety of image processing 

applications. The two topics are so closely related and have greatly been stimulated 

by each other. Both of them benefit from the widespread use of computers with 

powerful computational capability, and the development of human life science, 

multimedia, and Internet technologies.  

Edge preservation property of wavelet based frame de-noising has achieved 

a remarkable popularity in the last ten years. Through wavelet transform video 

frame can be divided into a sub band of lower frequency and multi scale high 

frequencies coefficients. Smooth areas correspond to small coefficients in high 

frequency sub band, while edges contain larger coefficients. Based on the states of 

wavelet coefficients which are small or large, edge preservation can be attained 

through different de-noising rules [1] – [4]. By using inter- scale [4] correlations, 

frame de-noising can considerably be enhanced. Frame resolution and improvement 

are major difficulties in image processing. Improvement of degraded frame through 

prior knowledge of degradation rule is the main purpose of restoration, while 

extraction of better video frame than original one is the main purpose of 

enhancement [1]. 

The principle purpose of restoration is to improve a corrupted image with the 

help of past information utilization regarding degradation rule while the goal of 

enhancement is to obtain a better image than the original one for a specific purpose 
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[1]. In brief, restoration is an objective process and enhancement is a subjective one. 

In both cases, image de-noising, sometimes called noise removal, plays an important 

role. De-noising is the procedure which removes the existing noise in an image and 

minimizes the loss of information in a clean image.  

A problem that involves the estimation of clean images with the help of 

information obtained from conducting noisy observation is referred to as image de-

noising. Wavelet transform can be regarded as an instrument that is used for 

processing of signals or images on statistical basis. Applications that includes 

prediction, synthesis, filtering, compression, classification, detection, estimation in 

real time could exploit the natural settings offered by the wavelet domain. When the 

statistical approach that is based on wavelets is adopted, the coefficients are 

regarded as arbitrary realizations and hence the distribution of theirs could be 

estimated with the models of probability [2][3]. The extraordinary characteristics 

that wavelet transforms possess resulted in the emergence of powerful methods of 

image/signal processing that only involves the wavelet coefficients to through basic 

scalar transformations. With the help of such new models, sophistication has been 

brought into the techniques of processing. These techniques cooperate with the 

nonlinear processing to give much higher performance than the existing methods of 

processing that are wavelet based. 

1.1 Past research in the relevant area 
 

A wide range of applications are based on the signal processing that is carried out 

statistically. De-noising based on wavelets and Hidden Markov tree model use all possible 

values of scaling coefficients.  

Wavelet based de-noising decompose the image into multiscale coefficients 

of high and low frequency components. For video, it is extended to each video 

frame separately and then taking averages of all frames. 
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1.2 Thesis Statement/Synopsis 
 

The wavelet coefficients in statistical processing of signals based on the 

wavelet, are modeled either as jointly or statistically independent Gaussian. Time 

consumption with these models impose constraints on their employment for real 

time applications such as Signal detection, signal compression, signal estimation, 

signal classification and De-noising of signals. 

The main objective of this work is the development of a structure for vector 

estimating of the coefficients of wavelet, so that de-noising could be applied in a 

video signal. The vector tree model of Hidden Markov is deployed for pursuing the 

basic goal in the process. The resultant framework is capable of enabling the concise 

modeling of the wavelet coefficients collectively. Furthermore, the probability 

density functions could be obtained as a collection of two Gaussian distributions 

with zero mean. 

1.3 Objective  

The primary objective is to develop a model for video de-noising based on 

vector estimation of wavelet coefficients. This framework will allow extension of 

scalar model of HMT to vector HMT, which will estimate coefficients jointly over 

all the quad-tree. Maximization algorithm for efficient expectation has been applied 

in this model for the estimation of parameters. 

1.4 Methodology used  
  

Two steps are involved in this thesis.  

• The development of a wavelet domain model constitutes the first step  

The step is started by focusing on the achievement of primary 

characteristics for wavelet transform. For acquiring the secondary 

properties, the extension of framework is carried out by utilizing the 

vector estimation of wavelet coefficients. 
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• The algorithm’s development is contained by the second stage, which is 

performed via vector estimation of wavelet coefficients for achieving the 

signals de-noising. 

  

1.5 Benefits  
  

 The efficiency lies in the complexity of computation 

 The reduced complexity in computation in the framework being proposed is likely 

to result in the efficiency for:  

 De-noising of Signal  

 Compression of Signal  

 Estimation of Signal  

 Detection of signals 

 Classification of Signal  

   

1.6 Application areas 
  

A widespread use of this practice could be found in the areas of:  

• Interpretation and processing of spoken words in the signal processing of speech 

• Widely used in imaging systems and Image Processing in digital cameras or 

computers 

• Processing of videos for interpretation of pictures in motion 

• The processing of signals obtained from sensors array 

• For signal processing of audio on the signals that represents sound, for instance 

music or speech signals  

• Also, use in Control Systems  

• It also has application in Wireless Communications for instance: in equalization, 

filtering, demodulation and waveform generation. 

• Also, used in the extraction of features from signals such as speech or image 

recognition  

• For compression of Image, Video or Audio signals 
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1.7 Thesis outline   
  

The following chapters are included in this thesis: 

  

Chapter 1  

 Basics of the topic are introduced in this chapter along with the scope, objective 

and problem statement of this work. 

  

Chapter 2:  

  

In the second chapter, wavelet transform and wavelet basis are going to be 

introduced. Essential understanding of the methods deployed in the statistical 

signal processing along with its significance has to be given in this chapter.  

 

Chapter 3  

     

The third chapter provides the description of vector estimation of wavelet 

coefficients used for video processing and de-noising. The framework of models 

along with the associated calculations is explained in this chapter.  

  

Chapter 4 

  

 The older filtering techniques that help in achieving the de-noising of signals and 

their comparison with our proposed technique are discussed in this chapter. 

  

             Chapter 5 

    

The results of experiment and simulations that aimed at achieving the de-noising 

of videos are included in this chapter. 

 

Chapter 6 

  

In the light of previous chapter conclusions will be drawn in this chapter to 

provide recommendations on the future work. 
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CHAPTER 2:   

INTRODUCTION TO WAVELETS 
 

 

  

2.1. Wavelet 

Disturbances in the form of periodic oscillations that goes through propagation is time 

and space, that mostly involves the transfer of energy along with it, is termed as a wave. 

Confinement and concentration of waves in space or time that becomes better suited for transient 

signal’s analysis could be referred to as wavelets. Hence, it is mostly referred to as a confined 

variation of sound in one dimension or confinement of details varying within a two-dimensional 

image. So, wavelets could be utilized for numerous signal processing tasks, for instance image or 

sound enhancement, noise removal, edges detection and compression of signals. It could be 

considered as a mathematical function which could be used for the division of data with 

continuous time signals into three components of frequency. These are followings: - 

• Rapidly changing parts of signal are of high frequency  

• Low frequency slowly varying piece.  

• The remaining part that remains unchanged has 0 frequency 

The crucial notion in wavelets is examination in accordance with gage. A simplest method of 

imagining scale would include the use of piano’s analogy. While talking about wavelets, 

representation in time-scale is usually referred to instead of representations in time-frequency. 

There exists a function ψ for each wavelet, which is termed as mother wavelet that could be 

represented as  

 
 Ψi,j(x) = √2iψ(2ix − j), i,j = 0,±1,... 

 

The title of “mother wavelet” is given to it due to the type of function that it has to 

perform. Mother wavelet serves as a prototype that results in the generation of functions that 

further have to be utilized in the process of transformation. It has several levels of offspring 

signals such as children, grandchildren and so on. The original signal’s size is the only thing that 
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constraints mother signals as it is allowed to produce only n number of generations for every 

signal with 2n number of samples. 

 

A scaling function φ(x) which is also referred to father wavelet sometimes exists for any 

mother ψ(x). Translations and dilations of are denoted as φi,j. Translation could be located for the 

interval as it is examined for the signal shift. Hence, scale is the contraction or dilation. For 

instance, the figure 3.6 (a) and 3.6 (b) illustrate the mother wavelet ψ and scaling wavelet φ 

respectively. Apart from this, the below mentioned equation described in detail the single 

dimensional wavelet transform. 

Wf(a,b) = Z f(t)ψ(at + b)dt 

2.2. Applications of wavelet 
 

Fourier analysis had been performing well in particular cases for a very long time, yet 

there always had a need existing for more suitable functions as compared to sine and cosine.  

The information obtained from physical phenomena had mostly been containing sharp spikes 

that couldn’t be precisely analyzed with the help of sine and cosine basis. Non-local nature and 

its stretching to infinity had been indicated by the definition. Hence, when it comes to the 

approximation of choppy signals, the performance of Fourier transform is very insufficient. More 

compressive discussion of this will be conducted in the section 3.2 of the next chapter.  

This is the requirement in the development of a number of applications from real-world. 

Therefore, wavelet theory is utilized for developing a number of disciplines. These are the 

following examples: -  

– In Image Processing compression standards of JPEG 2000 have been there for a very 

long time. Compression standards for fingerprints in the Federal Bureau of Investigation 

(FBI) of US also find the use if wavelet theory [5] [6] 

– Earthquake Prediction is made by using wavelet theory in Seismic Geology 

– Solar Cycle Complexity, Determination of Coronal Plasma, Tidal Tails Around Stellar 

Systems are the areas of Astrophysics and Astronomy that could make use of the wavelet 

theory. 
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– Central England Temperature, Tropical Convection, The El Nin˜o Southern Oscillation 

(ENSO) [8] are the areas where wavelet theory finds its applications in geophysics [7-

10].  

– Ship Roll,Tide Forecasting, Underwater Sonar are the areas where ocean engineering can 

find the applications of wavelet theory 

– Detecting Edges of Filopodia is an example of Human vision application [11-12] 

 

The wavelets’ tendency for analyzing the information in time-frequency domain 

illustrates that all of these applications would need the implementation of wavelet theory to them. 

Therefore, wavelet transform fulfills the needs where Fourier transform would not be successful. 

 

2.3 Fourier Transform 
 

In the area of signal processing, an innovative and leading edge influence has been 

experienced with the development of wavelet. A signals’ transformation is merely another form 

of its illustration. The content of information contained in a signal remains the same. The 

representation of a Fourier transform in the form of cosine signals could be taken as a simplest 

example.  Hence the similarities and dissimilarities are explained in the next chapter with great 

details.  

Fourier Transform (FT) has been well established method of providing frequency domain 

representation of a signal. Joseph Fourier (French mathematician) claimed that complex periodic 

exponential functions could be used for showing any periodic function as their infinite sum. 

 Therefore, Fourier Transform revealed extent to which each signal has the contribution 

from different frequencies. Theoretically speaking, Fourier transform when compared with the 

wavelet transforms, sine and cosine wave could be considered analogous to the parent wavelet 

due to the fact that basis functions of Fourier transform are the sine waves of varying frequencies 

phases and amplitudes. Fourier transform is defined as follow: 
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Here f= frequency, t= time domain and X (f) denotes the representation of signal in frequency 

domain. It should be noted that the signal that is desired to be decomposed into its frequency 

components in continuous spectrum is represented as x(t).  

Fourier transform is referred to as Discrete Fourier transform when is required to meet the need 

of operating on sampled and distinct values of finite duration signal. Xk is computed from xn by 

the Discrete Fourier transform. Its equation is written as follow: 

 

Phase and amplitude for various sine components from the xn which is the input signals is 

represented by Xk   the complex number. The Fourier analysis of discrete time functions in time 

domain is a DFT transform. Algorithms of Fast Fourier transform is utilized for the 

determination of values for Discrete Fourier transform that is a very economical, fast and 

efficient algorithm for carrying out the required calculations of DFT along with its inverse. 

A signal going through resolution into its frequency elements could also be constituted 

back from the constituent elements into its original form by making use of FT equation which 

could be expressed as follow: 

 

X(f) could be used for the determination of signal’s amplitude. Phase of the signal represented by 

is represented in the e’s superscript part as iφ(f). Hence, exponential term could be represented 

by a combination of a cos and a sine term, where the cosine of 2πft refers to the real and its sine 

refers to the imaginary part. Equation for Inverse of Discrete Fourier Transform is expressed as 

follow: 

 

The Inverse Discrete Fourier Transform represents the computation of as summation of N 

number of products between DFT coefficients Xk and sinusoidal terms. k/N is the per cycle 

frequency.  

In a nut shell, whether it’s discrete or not, FT remains an infinite distended cosine terms’ 

combination each of which shows the presence of certain frequency along with its contribution to 

the original signal. For each of the frequencies, there exists possibilities as follow: 
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• If for any values of frequencies, the integration gives out a zero result, the 

frequencies do not exist as components in the signal. 

• If the integration for certain frequencies comes out to be very small value as 

compared to others, then the contribution to signal from such ‘f’ is very minor. 

• Similarly, if the integration result is a very large value, the spectral portion of the 

signal is very prominent at those frequencies. 

Since, in the equation of transformation, the integral is taken over time, the left side of the 

equation is function of ‘f’. Hence, it calculates the integral for all values of ‘f’ one by one. 

Now, note that the integration in the transformation equation is over time. The left-hand side is a 

function of frequency. Therefore, the integral is calculated for every value of f. 

In the following figure equation of   x(t) = sin(2π50t) + sin(2π120t) is represented in the 

form of plot. If we examine this equation, we would see that it has two frequency components 

such as 120 and 50 Hz. Since at a certain time instant, this signal has frequencies of 120 and 50 

Hz, it could be referred to as a stationary signal.  

 

 

Figure: 2.1 Example of a stationary signal with two frequency components 
 

The Fourier transform of above signal is shown in the figure 2.2. In this figure the 

approximated value of frequency is shown to be 125Hz at maximum that should have 

theoretically approaching to infinity. However, the two maximum points have been agreeing on 

the distinction of frequency components. 
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Figure: 2.2 FT (X(f)) of signal  

Identical signal  has been shown in the fig 2.3 with the 

addition of chirp into previous signal. The frequencies of this signal are similar to those of the 

previous one but it lacks the periodicity as the previous one. Occurrences of these frequencies at 

different instances can be observed here. When a Fourier transform is applied on this new signal 

with addition of Chirp, it appears to be very identical to that of 2.1. Time and frequency domain 

analysis for these two identical signals is very important. As, the frequency components could 

see at varying positions in the time domain, the information in time domain makes the two of 

them less identical. It could be observed in a very straight forward manner yet it also could be 

seen that FT may fail to differentiate between the two signals due to the sameness of their 

frequency components despite the need for the signs to be aided. Fourier transform would 

perceive both of the signals to be similar due to the recurrence of the same signal constituents. 

Hence, it could be stated that Fourier transform is inadequate to account for the non-stationary 

signals as it is incapable of flying to capture such signals that may be varying in their spectra in 

long term. If the interest of analysis lies merely in the understanding of frequency components 

the Fourier transform tool may be the desired instrument for utilization. 
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Figure: 2.3 The signal x(t) = sin(2π50t) + sin(2π120t) 

 

2.3.1 Comparison between Wavelet and Fourier 

Fourier and Wavelet transform share a number of characteristics along with variations. 

Both of the algorithms DWT and FFT are linear ones. For each n sample signal, both of these 

transforms decompose it into log2 n segments of bits for varying lengths. 

There are some similarities between the FT and the WT. Both the fast Fourier transform 

(FFT) and the discrete wavelet transform (DWT) are linear algorithms. For a signal with n 

samples, each transform decomposes a signal into bits that hold numerous for different lengths. 

An example of discrete wavelet transform could be used for elaborating this, in which upon 

application to the signal, fragmentation is resulted into details and approximation of the signal 

where each part is half of the original signal. There are two important parts associated with the 

proper illustration are held by the signal subjected to the Fast Fourier transform, the recent one of 

which possess greater coverage over the Nyquist frequencies. 

A distinctive characteristic of WT lies in its ability of varying window. Basis functions 

with longer length provide in depth analysis of frequencies. For the discontinuities of signals, the 

short basis is more appropriate. Such comprehensiveness is provided by the WTs. 

In a nutshell, there are several disadvantages associated with the Fourier Transform: 

• It has to offer a wider illustration and doesn’t show local information 

• Majority of the naturally existing signals do not simply contain sinusoidal 

combination 
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• The applicability of FT is limited to LTI systems and stationary signals 

• Performance of FT is very poor for changes with time in frequencies  

• The compact support that WT can offer is missing in Fourier series. Due to the 

compactness of interval, both of end points are contained in it. For instance, usually 

the interval is written in the form of square brackets to show compactness. 

Hence, the wavelets are more appropriate for time-varying signals along with the transient ones 

and their energy is concentrated in time. Transient signals that are having finite duration are non-

stationary in nature and any natural phenomena would include signals like these. Concentration 

of human sensory systems in transient could be found in several examples such as heartbeat ECG 

patterns having abnormal electrocardiogram, a part of sentence being spoken and an edgy instant 

in an image. So, WT fits to the majority of applications due to its ability of handling real life 

signals that are time varying. 

 

2.3.2 Rationale behind Wavelets 

A number of fundamental explanations could be behind the utilization of wavelets. There 

could be varying number of reasons among varying nature of applications for choosing wavelet 

over other instruments. For instance, some of WT may be performing in such a wat that they 

divide signals into components that are significance in space and time meanwhile keeping the 

contribution low. Such characteristic of wavelet makes it to be significant in applications that 

involve data compression, edge detection and noise removal.  

Usually wavelets are useful in exploiting the signals for more information that may not 

be readily obtainable from the raw signals. Meanwhile, a signal’s transform just remains another 

form of its representation. No changes in the signals content being presented are made by a 

transform. 

Wavelets are appropriate waves for transient signals’ analysis in localized manner with 

their energies concentrated in space and time. For instance, wavelets are utilized for performing 

the forecasting of tides. As the oceans ripples are transient in nature, wavelet has been chosen to 

the appropriate choice. 

Images are efficiently broken down into details and approximation with the help of 

wavelets for watermarking. Lower and higher resolution bandwidths could be separated in an 
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effective manner for embedding water marks into the bands in such a way that they become 

barely visible to human sight. 

 

Embedded information into image could be analyzed in terms of its time-frequency 

content with the aid of multiresolution. Its interpretation may be questioned at this point. Hence, 

the details are made available to the algorithm of water marking. For hiding the water mark from 

human sight, exploitation of multiresolution could be approached. The details could be used for 

concealing the information. The information being hidden is supposed to have robustness as 

approximated information has lesser likelihood of getting an impact from the modification of 

image, for instance from the addition of noise or compression. Decomposition of complex 

patterns and information into constituent forms is the ability possessed by wavelet transform. It 

also keeps track of its record. 

       Hence, WT finds its implementation in various other applications too. Lossless 

construction during which the original data could be retained without having to keep the image 

watermark’s original copy could be accomplished by the utilization of wavelets in signal 

processing. 

 

2.4 Types of Wavelet 
 

For overcoming the problem of resolution continuous WT had been developed. CWT is 

utilized for dividing the functions that are continuous time into wavelet. The process of 

implementation is same as that of SFTF. Hence, in place of multiplying it with a window 

function, it is multiplied with a mother wavelet. The CWT for a square continuous signal with τ 

as its translational value is expressed as follow: 

 

S represents scale, ψ(t) represents mother wavelet and * denotes the complex conjugate 

operation. The fundamental aim of the “mother wavelet is to produce function source for 

generating “daughter wavelets” that have gone through simple scaling and translation of the 

parent signals. Meanwhile the inverse CWT could be utilized for the generation of original signal 

x(t) as follow: 
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There are two important examples of CWT like Mexican hat and Morlet wavelet that are 

presented in the 2.4 (a) and (b). It’s the shape of mother wavelet that gives its name to the 

Mexican Hat wavelet. 

 

Figure: 2.4 (a) The Morlet mother wavelet (ψ(t)) 

 

 

Figure: 2.4 (b) The mexican hat mother wavelet (φ(t)) 
 

No functions of scaling as the mother wavelet are present in these continuous wavelet 

transforms. Hence CWT is resulted when set of functions that mother wavelet generates 

convolve with the input sequence. FFT could be used for the computation of convolution. A 

function of real value is obtained as an outcomes Xw (a,b), meanwhile mother wavelet remains in 

the complex form. A CWT is transformed into complex form by the mother wavelet. The 

function of CWT is clearly illustrated in the fig 2.4. |Xw(a,b)|2 shows its power spectrum. 
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Figure: 2.5 CWT Interpretation of a Square Signal 

(a) Haar CWT Interpretation of Square Signal (b) Morlet CWT Interpretation of Square Signal 

 

2.5 Haar Wavelet 
 

In 1910, the idea of wavelets was introduced by Alfred Haar in his thesis but he did not use 

the name of wavelets. A Haar wavelet has resemblance with the step function and has 

discontinuity in it as depicted in the fig 2.6. 

 

 

Figure: 2.6 The Haar wavelets 

 (a) The Haar mother wavelet (ψ(t)) (b) The Haar scaling wavelet (φ(t)) 
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An interval of a signal says (0,1) can be divided into sub intervals for example (0,1/2) and 

(1/2,1). The division of intervals is aided by two functions. Such intervals could also be further 

subdivided by evenly division of portions such as ) and (  1). For a large 

sized signal, even separation between intervals could be introduced over and over again. A 

particular scale or resolution is represented by each iteration. The function of mother wavelet for 

Haar is expressed as: 

 

 0 otherwise, 

          In the fig 2.7, a certain number of samples ‘n’ has been taken after every π/5 period and 

boxes in the figure is used for indicating it. The original signal is represented by line which is 

dashed and the samples have been taken from an overall interval of (−π to 6π/5). 

A discrete signal is decomposed by the Haar transform into two sub-signals, each of 

which possess ½ of the original signal’s length. One half shows the original signal is being 

approximated whereas the other half shows change or detail ‘d’ in spectrum. Frequency 

components makes the frequency spectrum of a signal. 

 

         

                      Figure: 2.7 The signal f(x) = tan(sin(x)) − sin(tan(x)) with 12 samples 
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Average and difference is performed by Haar transform on every set of details and 

approximation when are being produced. After that a shift of two values takes place in the 

algorithm and evaluation of other difference and average is applied on the pair. 

It is shown in the figure that g(x) produces almost 1024 values of sample and the insert 

the graph over (0,1). In the given scenario, time is corresponded on the horizontal axis and 

amplitude is represented alongside the vertical one. It could be noted that the values along time 

axis have been dilated and shifted by half after staying up precise between 0 and .5. 

 

 

Figure: 2.8 (a) The signal x2(1 −x)4 cos32πx 
 

 

 

Figure: 2.8 (b) Haar Transform 1 Level 
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Figure: 2.8 (c) Haar Transform 2 Levels 

 

 

It is shown in the figure 2.8 that for noise, ridding signals and compacting signals make 

use of Haar transform. The embedding of water mark into least visible portion is important in the 

watermarking applications. A spatial dimension may be assumed to be along the horizontal axis 

meanwhile the vertical scale may be showing the measuring intensity for every location sound. 

Then again, the similar kind of function could be representing the intensity of light in 

photographs. Haar transform of the function is shown in the fig 2.8 (b). Hence mathematical 

representation cam often leads to expressing varying signals along with their reconstruction and 

decomposition being applied to different kind of situations. For generating approximation, the 

following equation is followed: 

 

 is utilized. For computation of detail ‘d’ 

 

for  is utilized. Hence, approximation and detail signals as shown in the expressions 

above, are produced by Haar wavelet each of which is half of the original signal. One of them is 

the sum and other is difference of two adjacent values in the original signal divided each by ‘2’ 

and then multiplied by the square root of ‘2’. 

 s = {4, −2,3,7} which is a simple signal can go through Haar transform and gives out following: 
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Previously obtained a and d are used to get: 

 

 

Which provides us the perfect reconstruction of signal as: 

 s = {4, −2,3,7}. 

 

 

 

Figure: 2.9 1- Dimensional Discrete Wavelet Transform analysis or decomposition tree 

 

 

 

Figure: 2.10 2-Dimensional Discrete Wavelet Transform decomposition or analysis tree 
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2.5.1 Reconstruction 

Discrete wavelet transform could be utilized for the decomposition as well as analysis of 

the signals. Moreover, no piece of information is subjected to loss in the whole process. Hence 

the components that have gone through transform are very likely to reassemble at the end of 

process for generating the original signal out of them. Such opposite phenomena of 

decomposition are referred to as synthesis or reconstruction of the original signal. The filters of 

finite impulse responses are utilized in this process and relation between them is kept so that a 

criterion of perfection is met at reconstruction. Aliasing is efficiently removed by such filters and 

the need to scale is eliminated along with it. To embed water marks, such criteria proves to be 

very important in meeting the required criteria’s. The ability to have perfect reconstruction at the 

end is needed to be possessed in this application so that reconstruction of signals could be 

followed. 

Resemblance exist between the original and approximation part. The addition of content 

in high frequency leads to the actual starting point. Such operation is known as Inverse DWT and 

shown in the figure as follow: 

 

 

Figure: 2.11 1-D DWT synthesis or reconstruction tree 
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Figure: 2.12 

 

Thus, the input vector got transformed into . Four vector basis can be used 

for the reconstruction of the original 2-Dimensional DWT tree vector input of reconstruction or 

synthesis. 

 

 Addition of receiving vectors s = {4, −2,3,7} 

 

Haar wavelets’ concept for a given simple can be extended for n instances of information. 

Wavelet basis in the simple most for ate ( ) and ). They can be utilized for the 

determination of single level Haar and signals that would scale. 

There are a number of leading advantages possessed by the Haar transform. For instance, 

they are simpler, faster and efficient in terms of memory because it doesn’t make use of 

temporary memory for its calculations. Furthermore, with Haar transform the exact signal 

without loss of any content in it could be reconstructed through the inverse of Haar transform and 

the losslessness needed for certain kind of applications becomes available owing to the 

characteristics of Haar transform in the signal processing. 
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2.5.2 2-Dimesional Wavelet Transform 

Extension of the one-dimensional wavelet transform into two dimensional wavelets is 

easy to perform. Examples of two dimensional signals may include geographical measurements, 

scatter plots and photograph. The two-dimensional data would require to be operating on the 

input matrix and not just an input vector. For the transformation of input matrix for two-

dimensional signal, the 1-dimensional transform has to be applied on each row. After taking the 

resultant value, the transform of 1-D type is also applied on the columns of matrix. Hence a final 

transformed form of matrix could be obtained with the help of 1-D transform. Such 

transformation finds its application in the area of image compression. 

The rows of matrix can be filtered for carrying out 2-D transform to obtain two halves 

sized of the original signal’s sub images. The heights remain same to the original but the width 

varies for the sub signals. The filtering of the sub images is then performed by making them pass 

through high and low pass filter alongside the columns. Such process leads to the generation of 

further sub images and hence eventually results in the four total sub images of the original signal. 

So, the process is known as analysis or decomposition. The resulted images are labeled from 

octave which is an iteration being named of the Discrete wavelet transform as diagonal HH, 

vertical horizontal HL, horizontal LH and approximation details LL in accordance with the filters 

that have been generating each of these sub images. 

Two-dimensional DWT decomposition of signal is shown in the fig. 2.13. The upper left 

side of the image represents the approximation that is similar to the original one whereas the rest 

of three portions are showing the detail portion. 
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                                      Figure:2.13 using the DWT for Barbara 
  

For doing the two-dimensional WT, separable method could be followed such as by 

applying the transform separately for horizontal and vertical configuration. For the 

accomplishment of single dimensional Discrete Wavelet transform, single dimensional signal is 

broken in to two parts each of which is made to pass through each of high pass and low pass 

filter. Each of these filters corresponds to wavelet function and scaling function respectively. 

Filtering is one of the fundamental signal processing phenomena that convolves the single 

dimensional signal’s input sequence with a set of its coefficients. The following expression 

shows two sequences being convolved: 

. 

 

Summation and multiplication could be utilized for carrying out these computations. An image is 

separated by Discrete Wavelet transform into its four sub images as discussed before. HL 

indicates that HP filter has been utilized along the rows whereas LP filter along the column. It 

has been shown in the fig 3.10. For representing the LP g is used in the figure whereas h is used 

for the HP filter. In addition to this, the details have been illustrated in the fig.2,13. Hence, the 

HP and LP filters for WT certainly decomposes the signal into rapidly varying, discontinue HP 

and same LP sub signals.  

The slowly varying signal’s characteristics are possessed by the channel with LP filter. 

Meanwhile the quickly varying portion is kept in the HP part of the channel. So, it is possible to 
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embed the watermarks of higher energy into regions that are subjected lesser to visibility by 

human sight. For instance, in the current situation, HH, HL and LH are high resolution bands of 

frequencies. The watermark could be made more robust by embedding into these regions while 

keeping the impact on quality to a very low or negligible level. 

A question may arise here challenging the fact that image being approximated and 

recursive application of DWT for multiple times could be followed or not. Multiresolution 

involves the process of considering LL of one LL and by making this sub image to go through 

other construction of filter analysis. This could be iterated over and over again with LL. Each 

octaves detail is 1/4th of the previous one. This is illustrated in the following figure. 

 

 

Figure: 2.14 Analysis or decomposition hierarchy for 2-Dimensional DWT 
 

Discrete wavelet transform is an analysis at multi-scales that can be utilized for aiding the 

algorithm of water marking. The initial calculation is utilized as image ‘seed’ for recursive 

application of Discrete wavelet transform for as many times as needed to explore all the desired 

areas. 

Two dimensional wavelets are needed in the image processing application.  Therefore, 

this hurdle scales down for the two-dimensional filter’s designing. 

Separable filters are one of the classes that are capable of getting designed in accordance 

with their single dimensional equivalents. These are usually used for facilitating the explanations 

associated with the process. Alternatively, the filters of non-separable class provide the similar 

outcomes. Hence, the multiresolution analysis theories along with wavelets could be subjected to 

higher dimension generalization. In reality, the typical wavelet or 2-D scaling function choice is 

resulted from the product of two 1-D functions. 
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On the other hand, the non-separable filters give the same results. Therefore, the theories 

of multiresolution analysis and wavelets can be generalized to higher dimensions. In practice the 

typical choice for a two-dimensional scaling function or wavelet is a product of two one-

dimensional functions such as φ(x,y) = φ(x)φ(y). The following form is assumed for the dilation: 

φ(x,y) = 2Xh(k,l)φ(2x − k,2y − l) 

k,l 

As the dilation equation is satisfied by both of φ(x) and φ(y), wavelets could be 

constructed in an analogous manner. Yet, in place of single wavelet function, there would be now 

three of them. 

φ(I)(x,y) = φ(x)ψ(y) 

φ(II)(x,y) = ψ(y)φ(x) φ(III)(x,y) = ψ(y)ψ(x) 

The conforming equations of dilation can be expressed as: 

. 

φ(I)(x,y) = 2Xg(I)(k,l)φ(2x − k,2y − l) 

k,l 

φ(II)(x,y) = 2Xg(II)(k,l)φ(2x − k,2y − l) 

k,l 

φ(III)(x,y) = 2Xg(III)(k,l)φ(2x − k,2y − l) 

k,l 

here g(III)(k,l) = g(k)g(l) , g(II)(k,l) = g(k)h(l), and g(I)(k,l) = h(k)g(l) 

It should be noted that the principals followed by the single dimensional wavelets are 

retained in the world of two dimensional wavelets. For instance, the values of lower frequencies 

are retained by the details, when the high frequency values are contained in the approximation 

image. The summation of all rows or columns energies give rise to the energy of two-

dimensional image. After the application of WT along all rows, the energy of original image is 
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retained by each row to 2nd octave. The next octaves also retain the same amount of energy and 

the energy is retained throughout the process. 

2.6  Families of Wavelets 
 

We have option to choose wavelet while using the discrete wavelet transform. Change 

could be brought into wavelet by bringing changes in the filter coefficients. Therefore, this 

research is focused on the discovery of the most appropriate ways of choosing the family of 

wavelets when approaching the use of Discrete wavelet transform in watermarking application. 

 A significant amount of contribution has been experienced by the area of wavelets from 

Daubechies. Details and approximation are produced differently by wavelets and scaling signals 

in Daubechies WT. The figure 2.15 has shown the four coefficient Daubechies mother wavelet 

and scaling wavelet. Four values of single dimension signals are contained by the scaling filters 

of Daubechie: 

 

The wavelet values for these single dimension signals are: 

 

Here β1 = α4, β2 = −α3, β3 = α2, and β4 = −α1.  

Scaling filters for Daubechies also possess the property of having energy equal to 1, just as 

the scaling filters of Haar: α1
2+α2

2+α3
2+α4

2 = 1 and the √2 shows up again with α1+α2+α3+α4 = 

√2. For the Daubechies wavelet filters, as with the Haar filters, β1
2 + β2

2 + β3
2 + β4

2 = 1, β1 + β2 + 

β3 + β4 = 0.  
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Figure: 2.15 The Daubechies wavelets 

(a) The Daubechies mother wavelet (ψ(t)) (b) The Daubechies scaling wavelet (φ(t)) 

 

2 octaves of the signal have been shown in the fig 2.16 for the same signal that was 

shown in fig 2.8(a). 

Figure 2.16 shows two octaves of the same original signal as we have seen figure 2.8(a). 

Successive inclusion of high pass and low pass more values have also been observed for the 

other type of Daubechies wavelets. The filter coefficients can offer longer support to the 

Daubechies wavelets.  This support may be two times as that of Haar wavelet. By comparing the 

figures 2.16, 2.17 and 2.8, the comparison of Haar and Daubechies wavelets could be made. 

 

 

Figure 2.16 Two octaves of the Daubechies transform of a signal 

 

 

Figure 2.16(a) The signal x2(1 −x)4 cos32πx 
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Figure 2.16(b) Daubechies Transform 1 Level 

 

 

 

Figure: 2.16 (c) Daubechies Transform 2 Levels 
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Figure 2.17 Two octaves of the Daubechies 64 filter coefficient transform of a signal 

 

Figure: 2.17 (a) The signal x2(1 −x)4 cos32πx 

 

 

 

 

Figure: 2.17 (b) Daubechies 64 filter coefficient transform 1 Level 
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     Figure: 2.17 (c) Daubechies 64 filter coefficient transform 2 Levels 

 

Another wavelet family of interest is known as Coiflets which is created from family of   

Daubechies wavelets. It is named after its inventor Coifman who designed it for retaining the 

close matching between the original signal and its approximation. 

A wavelets mother pair (ψ and ψ′) along with the pair of scaling wavelets φ and φ′) is 

utilized in Biorthogonal wavelets. The reconstruction and decomposition are allowed by each of 

these two. So, enabling the possibility of reconstruction for the resulting wavelets while 

eliminating the necessity of orthogonality. 
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CHAPTER 3 

Estimation of vectors 
 

3.1 Introduction 
 

For video, de-noising detail wavelet coefficients have correlation among them as indicated by, 

following table 3.2. HH, HL and LH, are diagonal, horizontal and vertical sub bands of detail 

wavelet coefficients correspondingly. A technique which is called multivariate estimation, is 

applied on local neighborhood vector wavelet coefficients to build a de-noiser which is capable 

to exploit both types of correlations. 

An existing model which is Gaussian Scale mixtures model assumes that each wavelet 

coefficient neighboring vector is jointly Gaussian. For each possible value of coefficients for 

scaling, neighboring vectors are used to compute conditional probabilities. Least square 

estimator for Bayesian could be obtained by weighing the scaling coefficients’ conditional 

probabilities estimated by the integration of Linear MMSE. 

We extended the concept of scaler HMT based de-noising to vector wavelet HMT [13,14]. It has 

close similarities to Scalar GSM based de-noising with binary coefficients of   scaling. But a 

slight variance exists in the estimation of scaling coefficients’ posterior probabilities. 

Approaches based of GSM type systems, makes independent estimation for every vector in 

wavelet whereas Hidden model tree approach estimates collectively over all coefficients of quad 

tree wavelet. Moreover, model based on GSM undertakes that correlation matrix for signal is 

supposed to remain same for different scaling coefficients with varying values. But HMT model 

gives the advantage of allowing covariance matrix modelled on the basis of state independence. 

HMT based wavelet de-noising approach treats wavelet coefficients detail, as the pdfs are 

modeled by random variables models their probability density function as a Gaussian 

distributions combination with zero mean corresponds to Large and small states as L and S: 

𝑝(𝑥) = 𝑝(𝑆)𝑁(0, 𝜎𝑥|𝑠
2 ) + 𝑝(𝐿)𝑁(0, 𝜎𝑥|𝐿

2 ) 
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p(L) and p(S) are prior state probabilities, whereas variance in the two states are represented by  

𝜎𝑥|𝑠
2  and 𝜎𝑥|𝐿

2 . 

If x is the coefficient of wavelet and the noisy version x᷉ is: 

       x᷉ = 𝑥 + n  

The noise component is supposed to be Gaussian with a mean of zero which has 𝜎𝑛
2 variance, 

and x᷉ is conditioned Gaussian with zero mean and 𝜎𝑥|𝑞
2 + 𝜎𝑛

2.mean estimate for the two terms is 

linear when conditioned as follow: 

                                                                   𝐸(𝑥|x᷉, q) =
𝜎𝑥|𝑞

𝜎𝑥|𝑞
2 +𝜎𝑛

2  x᷉                  (3.1) 

Signal and noise are supposed to have no correlation between them. Through chain rule of when 

x᷉ is provided, for x the conditional mean could be acquired as follow 

                                                                x᷉ = E(x| x᷉) = ∑ p(q| x᷉)
𝜎𝑥|𝑞

2

𝜎𝑥|𝑞
2 +𝜎𝑛

2              (3.2) 

By making assumptions about the independent states, p (q| x᷉) could be predicted. Yet, with the 

addition of correlations at inter scale level into the prediction can provide good results in terms 

of de-noising. For the determination of conditioned state probabilities standard algorithm 

working in the upward-downward manner could be utilized. 

3.1.1 Upward-Downward algorithm 

Upward-downward algorithm is used to estimate hidden state variable probabilities. 

In upward step, propagation is carried out in upward way along the tree while in downward step, 

propagation is down the tree. 

Three parameters’ groups are required by this algorithm. 

1- The preceding probabilities of state p(C) and p(S)  

2- Conditional variances σx|S
2  and σx|L

2  

3- State transition matrix parent child p(qi|qj) 
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Crouse et al. proposed an algorithm for the estimation of these groups of parameters for each 

scale which is called Expectation maximization (EM) algorithm. 

For exploiting any possible correlation existing in the sequences of vide the Scalar estimation 

can be subjected to extension. The neighboring elements may be same scale coefficients or can 

have the similar positions in neighbor scales. 

3.2 Maximization of Expectation algorithm 
  

The algorithm of Expectation maximization is a general mechanism for approximately 

obtaining maximum a posteriori (MAP) or maximum likelihood for predicting the characteristics 

of distribution that underlies in the given set of data for making up for the missing values.  

Hidden Markov Model HMM could be one such example where hidden variables are not 

observed and we can say that some data is missing. Another example is in a Mixture model 

where expectation maximization algorithm could be applied. A number of concealed variables 

are existing in these models and Expectation Maximization algorithm is a way to tackle such 

problem of missing information or concealed variables. EM has the special characteristic that it 

exploits the structure of particular types of problems. Usually the probability of all the data that 

is observed (even hidden data), it emerges from the exponential function’s family and hence, the 

Expectation Maximization is therefore applicable.  

Algorithm of expectation maximization has two fundamental areas of applications. The 

first one involves the scenario when there are missing values in the data because of the 

constraints imposed by the process of observations. The second area of application is 

encountered when the optimization of likelihood function becomes inflexible in terms of 

analysis. However, when assumptions could facilitate the estimation of likelihood function, the 

hidden parameters can be subjected to assumptions. In the community of pattern recognition 

computations, the additional hidden values estimation may find its applications. 

 

3.2.1 Introduction  

In statistical Signal Processing, EM algorithm is an iterative scheme to discover the 

maximum likelihood. It could also be referred to as maximization of MAP estimation within the 
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models of statistics, meanwhile the reliance of models lie in the variables that cannot be observed 

and are latent. The iterations of expectation maximization algorithm keep on alternating between 

the step of expectations E and the step of maximization M. The expectation step formulates the 

functions for the likelihood by exploiting the predictions made for the varying parameters 

whereas the step of maximization of the estimated log likelihood in the first step. The estimation 

of parameters is further utilized for the distribution determination associated with the latent 

variables in E step. 

For finding maximum likelihood or maximum a posteriori (MAP) estimates of 

parameters in statistical models, where the model depends on unobserved latent variables. The 

EM iteration alternates between performing an expectation (E) step, which creates a function for 

the expectation of the log-likelihood evaluated using the current estimate for the parameters, and 

maximization (M) step, which computes parameters maximizing the expected log-likelihood 

found on the Estep. These parameter estimates are then used to determine the distribution of the 

latent variables in the next E step.  

3.2.2 Mathematical Investigation  

Applicability of Expectation maximization algorithms exist for such models that are 

having some data missing or latent variables such as Hidden Markov Model. There is some 

observable data available for the model which is represented as   Xn = (x ,…., xᵢ). Xn is the data 

that is desired for modeling. 

Model exists in terms of random variables X and Z that have a certain joint distribution  for 

some unknown parameters  Θ. This  belongs typically to the exponential family and that’s 

where Expectation Maximization algorithm really becomes prominent. Maximization of the 

marginal probabilities such as that of Xᵢ is the intended goal of this work. Due to the Z being 

latent variables, maximization of probabilities cannot be accomplished:  

                                                   (3.3)  

 Problem is encountered in the maximization of probabilities that is also presented in the 

equation 3.4. Due to the summation over RV Z, it produces multimodal data which shows the 

possibility of maxima being more than a single one. Moreover, when the mathematical 

examination if equation is carried out such as taking derivative, it ends up to an analytical 
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expression that is nearly impossible to get a solution for.  These issues can be resolved by using 

the EM algorithm.   

  

                                                                (3.4)  

  

EM algorithm addresses this issue by iteratively improving the estimate of parameter . It 

iteratively computes the E and M steps shown as follows. Alternating between the E and M steps 

till convergence leads to a unique maximum.  

  

E-Step:                             Q                     (3.5)  

  

  

M-Step:                                                                     (3.6)  

 

3.3 HMT of Wavelet Coefficients  

As discussed earlier, HMT models are used to capture the mutual wavelet coefficient 

dependences through modeling of statistical properties of wavelet coefficients. Markovian 

dependencies tie together the hidden states assigned to the coefficients rather than their values, 

which are thus treated as independent of all variables given the hidden state. Owing to the 

secondary properties of wavelet, HMT deals with coefficients as;  

• For matching the opposite nature of wavelet coefficients to the Gaussian distribution, each 

coefficient’s marginal probability density function is modelled by the Hidden Markov tree as 

GM density with states that are hidden regardless of the size of coefficients. 

• For capturing the level of dependence among various coefficients of wavelet, Hidden Markov 

tree utilizes a tree of probabilities. 
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The important features of the distribution of wavelet coefficients like persistence and clustering 

is also considerable for the modelling of statistics addition to marginal statistics of DWT that are 

captured by IMM. Hence, a Hidden Markov tree model was developed for the wavelet domain in 

which the nodes are connecting on vertical scales with the Markov chains (fig 4-6). Hidden 

Markov tree is a GMM with multiple dimensions that implements the Markov chains with 

structures of tree form over the scales for capturing the dependency that exists between various 

wavelet coefficient scales. 

The Hidden Markov tree has been applied in the processing of images whereas HMT has a 

framework of quad-tree that is described in 3 DWT sub-bands individually. 

                                          

Figure 3.1:  HMT  

 

The neighborhood in the proposed model gets restricted to 3 color constituents (RGB) its gray 

scaled version with neighboring frames as 2K, which leaves us with  𝑀 = 6𝑘 + 3 

IF the corrupted version of x is  x᷉ =  x +  n, the zero-mean noise with Gaussian 

distribution is the reason behind corruption. If the state of xi is si  , s is vector including 

every state of coefficients in x. 
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Fig 3.2 Vector coefficient K1 in video sequence 

 

As signal vector and its noisy form are provisionally Gaussian, given the x᷉ and s being its linear 

function,  the minimum mean squared error (MMSE) estimation of x is provided as . 

         

Where∑n and  ∑x|s are the noise covariance and conditional signal matrices respectively. 

Mean estimate of x conditioned by a given x᷉ is 

 

Where p(s|x᷉) is conditional probability of state s given x᷉. Since the number of summation 

increases exponentially with the vector size K, estimation is difficult to compute. 

We assume all coefficients in same state which is q, to avoid complexity and we are using 

following estimator               

 

GSM based approach [15] has similar assumption, where components have same scaling 

coefficients.  

 

3.4 VECTOR HIDDEN MARKOV TREE 
 

Scalar Hidden Markov tree uses downward upward algorithm [3] for estimating conditional 

probability of p(q|x).in scalar HMT, the prior state probabilities p(q), parent-child conditional 

variances q, and state transition matrix p(qi|qj) are worked in algorithm named as upward-

downward. 
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Conditional pdfs of scalar are defined by conditional variances as 

                            𝑝(𝑥|𝑞) =
1

√2𝜋𝜎𝑥|𝑞
2

𝐸𝑥𝑃(−
𝑥2

2𝜎𝑥|𝑞
2 )                                                                      (3.10) 

 

Table 3.1 Two states average inter-frame correlations 

  S  L  

Scale k&k+1  k&k+2 k&k+1 k&k+2  

1 

2 

3 

4 

5 

0294 

0.628 

0.851 

0.952 

0.983 

 0.058 

0.338 

0.677 

0.879 

0.949 

0.546 

0.753 

0.924 

0.976 

0.993 

0.039 

0.334 

0.751 

0.921 

0.977 

 

 

Unknown parameters are estimated by using algorithm of EM [3] and through collection of 

predefined general factors [4]. 

Algorithm of Upward-downward approach is stretched to vector x by putting 𝜎𝑥|𝑞
2 for ∑x|q.. 

Vector conditional probability density function is given as  

                                   𝑝(𝑥|𝑞) =  
1

√(2𝜋)𝑀 det ∑ 𝑥|𝑞

ⅇ𝑥𝑝(−
𝑥𝑇∑𝑥|𝑞𝑥

2
)           (3.11) 

One of the most straightforward way of estimating unknown parameters is to extend algorithm of 

EM [3] to higher dimension. For avoiding iterations scalar model is extended to vector. The 

disadvantage of this approach the modelling of characteristic variability of correlations existing 

between frames. The example of video "FOREMAN" in which the horizontal motion results in 

greater correlation between the frames in the LH sub-bands that is different from the HH and HL 

sub-bands, which is presented in table 3.2. The vertical motions in the video results in greater 

correlations between the frames in sub-band HL. 
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Table 3.2 wavelet coefficients of video “FOREMAN” 

Scale 

Frame k & k+l Frame k & k+2 

LH           HL       HH LH              HL           HH 

1 
2 
3 
4 

5 

0.781 
0.904 

0.972 
0.992 
0.998 

0.462 
0.708 
0.913 
0.974 
0.993 

0.387 
0.645 
0.882 
0.962 
0.989 

0.437 
0.710 
0.912 
0.974 
0.993 

-0.147      
0.197 
0.711 
0.909 
0.974 

-0.168 
0.097 
0.628 
0.879 
0.963 

 

We have proposed the utilization of correlation matrix for computation of conditioned state 

probability. We have updated conditional signal covariance matrices by using following equation 
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C h a p t e r 4 

 

4.1 Spatio-Temporal filtering  
 

Motion blur or additive noise often results in the corruption of video signals. So, it is desired that 

the de-noising of signal is performed for removing the impact of noise that has corrupted the 

signal. It is very common that the noise is modelled as a random process with Gaussian 

distribution which has no dependence on the original signal. For the adequate de-noising of 

signals under such circumstances, techniques of statistical signal processing are utilized. For 

processing the noise corrupted signals of video, we have implemented the filtering process by 

Wiener filters. These are the most appropriate filters for the task as they can provide the 

minimization of mean square error between the recovered and original signal. The video signal 

has also been modeled as HMM and Kalman filter has been implemented for proceeding with the 

removal of noise. Lastly, by comparing these methods with the traditional techniques of 

nonlinear filtering such as soft coring and median filtering. The following is the basic outline of 

this dissertation:  

 

 

 

Fig 4.1: General outline  
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4.1.1 Wiener Filter 
 

The restoring mechanism for De-convolving such as by acquiring knowledge of image being 

blur for certain type of filter, the process of inverse filtering can recover the images. Regardless 

of the restoring properties, inverse filter is likely to affect by additive noise. The method of 

single degradation per instant, provides the ability of developing algorithm of restoration for 

every degradation and merge them in simple manner. An optimal tradeoff is executed by the 

Wiener filtering between smoothing of noise and inverse filtering. The additive noise is removed 

by it and whereas the blurring is inverted in parallel of noise removal. 

The mean square error characteristics of Wiener filtering makes it an optimal choice for filtering. 

Simply speaking it keeps mean square error minimized in the process of de-noising and inverse 

filtering. It offers the original signal’s linear estimate. The modeling finds its roots in the 

stochastic background. The principal of orthogonality gives the Fourier domain illustration of 

Wiener filter: 

 

The blurring filter is represented by    and  are respectively power 

spectra and additive noise of the original signal. It is evident from the analysis that two parts of 

Wiener filter are there one of which aims at smoothing of noise (LP) and the other one is focused 

on the inverse filtering (HP). 

4.1.2 Implementation: 

For practically carrying out the implementation of Wiener Filter, the original video frame’s 

power spectra along with the addition of noise has to be estimated first. For the additive noise to 

be white noise variance of noise is supposed to be equivalent to the power spectrum. There are a 

number of methods available for the power spectrum estimation of the video signal. A 
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periodogram is the method of conduction direct estimate from observations as: 

 

 

Y(k,l)  is the observation’s Discrete Fourier transform. Such an estimation has the benefits of 

easy implementation without concerning about the inverse filter being singular. Following is an 

expression of another cascades implementation of the similar kind: 

 

That is simply resulted from the fact   By making use of the periodogram 

estimator, power spectrum which is denoted as  can be estimated. This results in the 

estimation of noise smoothing and inverse filtering cascade implementation: 

 

The drawback of such an implementation lies in the singularity of inverse filtering as the use of 

inverse filtering is generalized. It is also suggested often that estimation of original image’s 

power spectrum can be based on a model as . 

 

4.1.3 Results from experimentation 

For presenting the Wiener filter in restoration of frame 256x256 standard of salesman video 

frame is being utilized. Low pass filter is used for blurring the frame. 
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Then put the variance of AWGN as 100 in the blurred frame. The application of Wiener filter is 

followed by the inverse filtering and noise smoothing in cascaded implementation. Frames have 

been enlisted along with the PSNRs as follow. The visual performance of frames being restored 

has shown improvements in the process. 

   

Standard Salesman video 

frame 

PSNR = Infinity 

Blurred Salesman frame  

PSNR = 23.2993 

Restored Salesman frame  

PSNR = 19.1447 

 

                           Fig 4.2: Test Salesman frame and Blurred frame 

 

4.2 Kalman Filter  

Considering X(n) and Y(n) as random processes: 

 

Nn   and Wn are independent random processes with Gaussian distributions. 

Equation 4 is an obvious representation of a Markov process whereas the equation 5 shows an 

HMM process. 

The probability of X n being conditioned by Y n, p (  X n | Y n   )  is needed for estimating the value 

of random variable X from the observations made on Y. Recursion algorithm of forward nature 

is needed for accomplishment of such estimation goals.   
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For the sake of application to the video signals the two previous equations such as (6) and (7) 

have been subjected to particular definition of parameters. Wn represents random process of 

Gaussian distribution, X n shows the current and X n-1 shows the previous value of pixel. Noisy 

observation is represented by Yn in the equation. The assumption of Kalman Filter about the 

independent Gaussian process are held by this model: 

X n = X n−1 +Wn                                 (6)                  

Yn = X n + Nn                                     (7)  

where σn
2 is the noise variance about whom assumption is made to be known and the process w 

has a variance of σw
2. The estimation of W’s variance begins with the pixel values’ mean 

estimation in the previous frames’ μn−1 matching blocks and frames that surrounds the present 

frame denoted as μn and in the previous frame. Estimation of σw
2 results in σˆ

w
2 = (μn −μn−1)

2.  

As W attempts for capturing the variations existing between the successive frames’ pixels, the 

estimate of σw
2   becomes a reasonable one. Furthermore, the initialization of β0 to variance and 

mean as β0
(0) and β0

(1) is made for the initial frame. 

Also, we initialize β0
(0) and β 0

(1) to the mean and variance of X 0 which we estimate from the first 

frame. The most appropriate X n estimate results as E (Xn | Y n  ) provided conditional probability 

of p(Xn | Y n ). It should be noted that E (Xn | Y n  ) is αn
(0) . Section five presents the results of 

simulation. 

During the recording process noise, has been added to the video. The problem is significant 

when the analog signal converted into a digital one. The undesirable feature not only lies in the 

affected quality of video but also in the degraded performance of overall system of processing. 

A Kalman filter approach based on spatiotemporal setting has been approached in the previous 

literature to de-noise the video [1]. A three-dimensional AR model would be needed in such an 

approach. Results had been shown along with the parameters associated with the estimations 

conducted by this model from the original sequence of video that had no noise added to it. 

Furthermore, at every pixel, the state vector dimensionality has been observed to be very high. 

So, the amount of required storage and computations has been increased for processing of at 

individual frames. 
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Adaptive filter with linear MMSE was proposed in [2] for the compensation of temporal 

motions. A vigorous algorithm has been proposed by Fogel [3] that is used here in the estimation 

of motion. The approach of denoising that has been adopted is similar to that of Kaun [16] which 

aims at providing the adaptive filtering with linear MMSE. The algorithm for estimation of 

motion appears to have higher costs of computation, eight values, four vectors would require 

storage for every pixel along with the storage exhaustion by frames. 

Filter with weighted averaging working in adapted fashion was proposed in [4]. The reliance of 

this approach is centered on the idea the pixels’ averaging in spatiotemporal environment is 

likely to provide better estimation about the intensities of the pixels remaining nearly the same. 

When a certain pixel’s intensity exceeds the chosen threshold, it is implicated that it is an outlier 

because it has been affected by the noise and doesn’t contribute to the averaging. The rest of 

pixels have been averaged to see their deviations from the existing values of pixel. Such a 

scheme appears to be very appropriate for the lower SNRs and when the content is subjected to 

abrupt variations. 

Similarly, in the work of [17] a wide-ranging evaluation of techniques for the de-noising of video 

signals has been presented. 

The scheme proposed in our work spatial and temporal are performed separately first and then 

are integrated together. By utilizing the single dimensional Kalman filter, exploitation of 

temporal redundancy is performed. The intensity value of each pixel which is a scalar one, is 

provided by the states of Kalman filter at every pixel. By using the information of previous and 

current states, a novel method of estimating noise state variances in adaptive manner without 

having to restore the cleaner original frames is presented. Pixel block in integer is simply utilized 

here: 
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                                         xn-l = 1n—l  

Figure 4.3: System Model for establishing the Kalman Filtering Equations. 

 

The spatial redundancy is exploited using the adaptive edge preserving Wiener filter proposed by 

Kuan [16]. Simple averaging has been utilized for combining the two estimations so that final 

frame in de-noised form could be obtained. 

 These two estimates are then combined using simple averaging to get the final denoised frame. 

Parting of temporal and spatial processing, simple block matching for scalar state and motion 

estimation Kalman filter brings fast computational abilities to the scheme. Moreover, only the 2 

values per pixel and the previous frame are needed for storage that reduces the storage 

requirements of processing. 

Signal to noise ratio performance of our scheme for the foreman, Trevor and Susie sequences is 

comparable to the results in [1, 2, 4] at much less computational and memory requirements. 

4.2.1 Temporal Kalman Filtering 

 

The system is presented by the fig 1. Discrete time instances at which the frame of videos is 

reaching, have been denoted by ‘n’. If a pointed object’ s motion has to be tracked as indicated 

by * in the fig. 

The concentration of this object in the current (original) frame in is denoted by xn and in the 

earlier frame in—I is denoted by xn —1. Ideally xn = Xn—l but because of occurrence of error 

or because of variations in radiance we have xn - xn-l + Un (1) 

where Un denotes the error, or advance in xn compared to xn -1, We shall call Un as noise of 

motion and it is modeled as Gaussian and independent from one-pixel location to another and 

also liberated in time. The computation of statistics and motion trajectory of Un are going to be 

discovered sooner in this research. 
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Original information about the intensity is usually affected and corrupted by the noise present 

during the video processing and hence our observation of the intensity xn is given by 

  (2) 

Where Vn denotes the noise that is undesired and intended to be removed. Modeling of VD also 

involves the Gaussian RV with zero mean and is independent of Un and AWGN in time and 

space. It could be noted that we can set (1) and (2) at all locations of pixels one by one in the 

present. 

Due to various reasons, such as variations in illuminations, errors occurring in the estimation of 

motion and so on, the emergence of motion noise may take place. The intensity changes have 

been seen in the first equation as represented by the motion noise. In the absence of access to the 

original frames, we can estimate the variance of Un for alleviating the recording noise affects as 

(pn — where = mean (Bn) is the maximum likelihood estimate of xn assuming all xn are same in 

block Bn. 

After which under certain conditions (Pn — 2 is most appropriate estimate of var (Un). Once the 

system of ours has been defined completely, the equations of Kalman filter are applied to make 

estimation of xn. By making use of the earlier frame’s de-noised version, further improvements 

could be made. The motion vector for present frame can be calculated from the earlier one’s de-

noised version. 

4.3  Nonlinear Filtering Techniques  

  

4.3.1 Median Filtering   
 

A nonlinear technique of filtering in which all pixels get replaced by the pixel values 

median.  

Similarly, the neighborhood choice in the Winer Filter’s application also becomes 

significant for the signal processing to be successful. The experiment has been 

conducted on varying types of neighbors to show the results being compared. 
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4.3.2 Soft Coring   
 

Application of filtering techniques of non-linear nature to one frame is referred by the 

Soft coring in [17]. It is exploited in this technique that AWGN is basically possessing 

higher frequency with comparatively low amplitudes. The following figure represents 

the typical block diagram of soft coring. Furthermore, the typical curve α is also 

shown. 

   

 
  

The signal f (x, y) is made to pass through LP filter in the beginning for obtaining 

fl (x, y). Then this acquired signal is subtracted from the original one so that HP 

signal is also acquired. The higher value of HP signal of fh (x, y) would demand 

the preservation of an edge whose existence is conformed. Meanwhile, if the low 

values appear for high pass signal, noise could be expected in the flat background 

that will now be desired to be eliminated. These two filtered signals can 

eventually be used for the reconstruction of original signal again. 

 

A routine of soft coring has so far been implemented on each frame on individual 

basis. However, it is safe to say that the designing of α () which a nonlinear 

function has been made in heuristic manner. The factors in this design of ours 

have shown good working for some of noise additions and did not perform well 

for the other values. 

  

  

  

  

  

  

  

  

  

Fig 4.4: Block diagram of soft coring technique [6] 
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4.3.3 Results and Discussion 

     Fig 4.5: Wiener filter Mean Square Error with noise variance Fig 4.6 Results for 

different window sizes 

 

 

All of the proposed algorithms were tested on the selected standard video of “Foreman”. The 

pixel values that have been normalized lies between 1 and 0 with the addition of variances and 

0.1 and 0,001. At first, we have implemented the Wiener Filtering as demonstrated in the third 

section with 3 varying neighbors. At first the window size has been chosen to be 3 by 3. The 

mean square error values have been presented in the other figure as noise variance function. In 

the figure number 5, the changes that take place between the window sizing’s to 5x5 from 3x3 

are accounted for.   

 

It is evident from the figures that by using the neighborhood of spatial-temporal for filtering, 

better results could be obtained as compared to the neighborhood with block matching. The use 

of information from three instead of two frames makes it possible. Furthermore, as there is only 

content with slow motion in the video, matching did not bring improvements in the performance 

in substantial way. It is believed by us that block matching must be doing better in the presence 

of high motions in the video content as neighborhood in spatial-temporal orientation are likely to 

have less accuracy when compared with the block matching. 
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It can be ducted from the fig 5 that results have been worsened with the increased window size 

which probably is due to the fact that filter is fundamentally a low pass filter. With the increased 

size of window, the Low pass effect has also increased and hence the blur effect on the image 

has enhanced with it. 

The Kalman filter results are plotted in the Fig 4.7. Comparison with Wiener is also made:   

 

 
 σ   

                                                   Fig 4.7: Comparing Kalman and Wiener filters  

 

It could be seen here that Kalman would perform bad in the low noise settings when compare 

with the Wiener filtering. But when the variances of noise are large, the two of them appears to 

have resemblance in their performances. Despite having a good noise removing job, the Kalman 

filter has shown sensitivity towards block matching, which is why the resulting video illustrated 

some blocking artifacts. By introduction of blocks of smaller size or interpolating the points, 

such problems could be eliminated. 

Furthermore, we also have utilized the nonlinear techniques of conventional filtering in our work 

such as soft coring and the median filtering. The results of mean square error have been shown in 

the fig.7 along with the Wiener filter results. 
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0.008   0  

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1   σ2

 σ2 

                               Fig 4.8: Conventional nonlinear filtering techniques  

 

We have observed that for the regime of low noise, performance of soft coring is much better 

which becomes deteriorating with the increased variances in noise. As mentioned earlier, such 

characteristics have an association with the non-linear functions’ parameters that have been 

selected and utilized in this experiment. It has been observed that performance of Wiener 

filtering at most of the levels has been better as compared to the median filter, However, it can 

also be said that the outperforming Wiener was not that significant and its results could be 

compared with those of median filtering. Such observations are very important as despite the 

linear estimation utilization, the performance has still managed to remain better than the 

traditional non-linear filtering mechanism. 

At last we have compared the best possible accomplished results with all of the filtering 

techniques such as soft coring, Method 2 median filtering, Method 2 Kalman filtering and 

Wiener filtering. 
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C h a p t e r 5 

Experiments and Results 
 

Motivation behind progress of VEWC is fundamental WT’s properties and, theoretical as 

well as pragmatic evidence supported by the different characteristics of technique have been 

explored. Though real testing of our technique is determined by image de-noising 

applications of it. 

We compared the performance of our technique for video frame de-noising to other wavelet 

de-noising methods and filtering techniques. We have shown that our new structure offers 

important improvement in various well-studied standard problems. 

VEWC is also appropriate in signal detection and classifications. 

For performance evaluation of the proposed de-noising technique, experiments were 

conducted on the set of videos as shown in following tables 5.1-5.3, evaluation metric was 

CPSNR, a parameter that performs MSE measurements of the de-noised frames and is 

shown by following equation  

                          CPSNR=-10log10(1/3∑c ∈{R,G,B}MSEc)  

5.1. Role of signal covariance matrix estimation 
 

By using the limits in [18], the matrix for correlation computation is constrained between 

two states that may not be satisfactorily precise for de-noising dedications. We gave a new 

method, by updating the matrix using [19], before applying MMSE vector estimator [5]. As 

shown in following tables, such upgrading can bring improvements in the performance of 

CPSNR by 0.3 to 0.8 decibels. After few iterations improvement in performance will be less 

than 0.08db with eighty percent more cost on computation. 

5.2 Comparison with older techniques 
 

Table 5.1-5.3 compare the de-noising CPSNR performance between Wiener 3 filtering, 

CWDT, Kalman filtering, Median filtering and proposed vector estimation of wavelet 
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coefficients. As shown in tables Proposed technique improves CPSNR by 3-5 dB as 

compared to older techniques. Following figure is showing consistent behavior in all video 

frames. 

  

(a) MOBIL                                                                      (b)  FOREMAN 

Figure: 5-1 Comparison of CPSNR performance in video frames 

 

Another technique which is Kokaram’s approach, we compared our result with that, but 

performance of VEWC gives a gain of more than 7 dB while other one gave gain of 4 db. 

We applied VEWC approach and other approaches to one frame of “GARDEN”, VEWC 

de-noising preserved flower field edges better than other ones. 

 

       

(a) Original                                                                                                 (b) noisy 
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(c) wiener 3       (d) CWDT 

 

(e) VEWC 

Figure: 5-2 Comparison of CPSNR performance in de-noised video frame of “Garden” 

 

5.3 Proposed algorithm: 
 

Proposed algorithm consists of following steps 

1- Vector construction by joining the coefficients of wavelet at present T frame with 

the 2K neighboring frames. 

2- Estimation of the signal correlation matrix [18] is applied to each sub band and 

universal model for “𝜎2
x|q” for the computation of signal covariance matrix “∑x|q” as 

per [20] 

3- Utilize “∑x|q”in algorithm named as upward-downward for the estimation of state 

probabilities that are conditional “(Px|q)” 

4- On the basis of updated “(Px|q)”, covariance matrices “∑x|q” should be updated as in 

[19] 
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5- Then apply that estimated parameter to MMSE estimator [5] in vector form, for de-

noising wavelet coefficient of frame “F”. 

 

 

5.3.1 Simulation results:  

We have applied VEWC to extracted video frames for standard videos like foreman, 

salesman and tennis (256 x256) with adjustable different variances. Three different 

variances are used in different approaches. Following experimental setting are being 

used Wiener filtering is used we have used CDWT Kalman filtering Median filter in 

the end our proposed VEWC technique. The PSNR of all images is compared with 

different de-noising algorithms. Comparison is done on the basis of different 

variances of Gaussian noise. Tables are showing their results. 

               Table 5-1: PSNR (dB) results for images corrupted with 𝜎 = 0.05  

Frame 

(256x256)  

 

Techniques for De-noising   

 

 

Weiner3 
 

CDWT  

 

Kalman 
Median 

Filter 

 

VEWC 

Foreman  26.2  23.0  26.3  26.7  32.62  

Salesman  26.1  22.7  26.3  26.4  30.4  

Tennis  21.3  21.8  25.3  25.0  29.4  
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Table 5-2: PSNR (dB) results for images corrupted with 𝜎 = 0.1  

Frame 

(256x256)  

 

Techniques for De-noising   

 

Weiner3 

CDWT  

 
Kalman 

Median 

Filter 

VEWC 

Foreman 20.9  20.7  23.5  23.7  28.4  

Salesman  20.8  20.4  22.2  22.3  26.9  

Tennis 21.3  21.8  22.3  22.1  26.5  

  

                        Table 5-3: PSNR (dB) results for images corrupted with 𝜎 = 0.2 

Frame 

(256x256)  

 

Techniques for De-noising   

 

Weiner3 

CDWT  

 
Kalman  Median filter  

VEWC  

Foreman 18.2  20.6  21.7  22.5  22.02  

salesman  15.8  18.4  19.8  21.4  23.3  

Tennis  18.6  20.8  21.8  22.6  24.4  
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          As it is clear from the tables above, VEWC performs better in most cases as 

compared to other techniques. 

   

5.3.2 Video frame De-noising:  

To calculate and analyze our proposed algorithm, we compared our results with 

older techniques which are used for video de-noising. PSNR is the key factor which is the 

basis of comparison of de-noised video frames. Table 5-1, 5-2 and 5-3 are showing 

measured PSNR values for different 𝜎𝑛. Different de-noising filters are used to characterized 

the results and comparison is carried out with the original results of the paper. The 

algorithm is applied on both standard video frames and other images of dimensions 

256x256.Results are shown in following figures. 

      

                      

                      PSNR of noisy image is 24.427dB                  PSNR of de-noised image is 28.388dB 

Figure 5-3: Noisy and De-noised image results for standard video frames with different 𝜎𝑛 
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         PSNR of noisy image is 14.018dB                                       PSNR of de-noised image is 22.0275dB 

Figure 5-4: Noisy and De-noised image results for standard video frames with different 𝜎𝑛 

       

         PSNR of noisy image is 26.0251dB                        PSNR of de-noised image is 30.5965dB 

Figure 5-5: Noisy and De-noised image results for standard video frames with different 𝜎𝑛 
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     PSNR of noisy image is 26.0281dB                                   PSNR of de-noised image is 29.6678dB 

Figure 5-6: Noisy and De-noised image results for standard video frames with different 𝜎𝑛 

We have also applied our algorithm on some local video frames of our institute. Results are 

shown in following three frames at different 𝜎𝑛.   

 

PSNR of noisy image is 26.0302dB                                          PSNR of de-noised image is 28.2638dB 

Figure 5-7: Noisy and De-noised image results for local video frames with different 𝜎𝑛  
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             PSNR of noisy image is 26.0059dB                                                   PSNR of de-noised image is 30.1046dB 

  Figure 5-8: Noisy and De-noised image results for local video frames with 𝜎𝑛 = 0.05                                          
 

   

      

PSNR of noisy image is 26.0455dB                                      PSNR of de-noised image is 28.9792dB 

 

Figure 5-9: Noisy and De-noised image results for local video frames with 𝜎𝑛 = 0.05 
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C h a p t e r 6  

  

6.1 Conclusion  
  

In this thesis, video de-noising using Vector estimation of wavelet coefficients is 

debated. The initial portion of the thesis was dedicated to provide introduction to wavelets 

in general way. Vector estimation of Hidden Markov Tree model was also explored with 

their mathematical modeling so that essential understanding for the dissertation could be 

developed. The HMT model has been explored in detail alongside its significance in the 

signal processing. 

The later part of the thesis, included various techniques for video de-noising are 

discussed and their comparison with the proposed technique is being carried out. Vector 

estimation provided techniques that can offer better performance as compared to the other 

techniques from the same domain of signal processing. 

By manipulating inter-frame correlations of a video sequence, de-noising 

performance can be made better. A novel approach of de-noising that finds its roots in the 

HMT vector extension [3] for the coefficients of wavelets has been proposed in this thesis. 

The use of term Vector illustrated the collection of wavelet coefficients in the neighborhood 

of the frame. 

By approximating inter-frame correlations right from the noisy video data, Elastic 

sub band and time-based alterations are accomplished. It is suggested by the results that the 

methods of de-noising that are proposed and wavelet coefficient’s vector estimation 

outperforms the currently available methods not only in terms of the noise reduction but 

also in terms of quality. The edges are preserved by VEWC de-noising. 

6.2 Future Work  
 

Although our proposed approach gives encouraging de-noising results, we believe 

that there is more room for improvement. This approach can be applied to high quality 

video. For example, a technique can also be developed that contain functions which are 
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more articulate, having better association with neighboring coefficients. Moreover, 

technique should also be doing a better representation of hierarchical dependence among the 

various levels of wavelet decomposition. 

This approach can also be extended to multi-dimensional video de-noising. Since 

the model developed and the training algorithm apply to quad and higher dimensional trees 

that would be helpful in video Modeling for higher dimensions.  

HM models do not only have the applicability to data in the form of wavelets but 

also can be utilized for modeling data from other multidimensional transforms and further 

signal representations.  

At last, for the better accomplishment of performances, the proposed technique 

could be combined with other techniques and the combination must also be aiming at 

reducing the systems’ complexity in terms of the computations that it would need to 

perform. 
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