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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Nyquist theorem is the cardinal principle of modern day digital communication 

systems.  The ground-breaking theory postulates that to reconstruct any signal 

accurately and unambiguously it has to be sampled at rate that is twice the highest 

frequency component of the signal. This criterion put strict constraints in higher 

frequency spectrum sensing. Images and videos have highly redundant contents 

that can be compressed using compression algorithms. The success of 

compression algorithms led to the question, why sample at twice the rate when 

during compression most of it will simply be discarded? This question was finally 

answered by scientists in the form of introduction of new technique for sensing, 

called the Compressive Sensing(CS) in 2006.  Compressive Sensing, since its 

introduction has seen massive research in various areas of application including 

image and videos sensing at a rate much lower than the dictates of Nyquist criteria. 

In this novel technique, compression and sensing is done in a single step.  Single 

step Compression and sensing plays vital role in terms of saving storage space 

and reduction of transmission time. Another benefit of the technique is its 

independent reconstruction algorithms that facilitate signal processing, image or 

video reconstruction at the receiver side independent of the time of sensing.  

Like the Nyquist that relies on knowledge of highest frequency component, the 

compressive sensing theory rests on the assumption that the signal is either itself 
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sparse or is sparse in another transform basis like the Discrete Cosine or the 

Fourier etc. 

Signal reconstruction in compressive sensing is governed by two conditions: 

Sparsity is the first condition which requires the signal to be sparse in some 

domain. Incoherence is the second condition which is applied through the 

Restricted Isometric Property (RIP) [1][2]. 

Generally, Compressive sensing takes weighted linear combination of samples 

also called compressive measurements in a basis different from the basis in which 

the signal is known to be sparse. Emmanuel Candès et al, showed that number of 

the compressive measurements can be small and still contain nearly all the useful 

information required to reconstruct the image. The task of reconstructing the image 

into requisite domain requires solving a system of underdetermined linear 

equations.  It is because the number of compressive measurements is smaller than 

the number of pixels in the full image. The restriction that the initial signal is sparse, 

enables solution of the underdetermined system. Sparsity is achieved by 

minimizing the number of nonzero components of the solution. The 𝑙0-norm was 

defined as the function counting the number of non-zero components of a vector 

by Donoho, Candès et al.  However, it was also proved by them that for many 

problems 𝑙1-norm is equivalent to the  𝑙0-norm. A linear program is thus a much 

easier and efficient way to determine 𝑙1-norm, compared with 𝑙0-norm, for which 

efficient solution methods already exist. Over the years many algorithms like Basis 

Pursuits have been developed that are faster than linear programming and also 

preserve sparsity even in noisy environment.  
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Sampling under the Nyquist differs from CS in three important aspects. First of all, 

it considers infinite length and continuous-time signals as compared with CS, that 

is based on mathematical theory for computing vectors having finite dimensions in 

ℝ𝑛 . Second, instead of using time based sampling of the signal as in case of 

Nyquist, inner products between the signal and more general test functions is used 

to obtain measurements in the CS systems. Lastly, the methods of signal recovery 

differentiate the two paradigms. Nyquist protocol employs sinc interpolation for 

signal recovery based on a linear process with little computation and has a simple 

interpretation. In CS, however, signal recovery is typically achieved using highly 

nonlinear methods. 

The applications of Compressive Sensing in image and signal processing are 

immense.  Apart from image processing the technique is a major contender for the 

future 5G telecommunication networks. 

Compressive sensing has been successfully applied to still images, medical 

imaging, and sensors networks, however, its application in video sensing is still 

under intensive research. 

1.2. Motivation of Research 

This research is intended to develop a novel algorithm for compressively 

sensing videos by modelling them as linear dynamical systems. The two of the 

major factors that are the motivation behind this research are success of 

compression algorithms and characterization of dynamic textures as linear 

dynamical systems. Firstly, the sensing videos compressively is motivated by the 

success of video compression algorithms that indicate that videos are high 
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redundant. Compressively sensing video in a single step implies that sensing and 

compression can be done in a single step significantly reducing the amount of data. 

It can thus lead to compelling new camera or sensors design, especially in 

domains where sensing is inherently costly like the far infrared. Secondly, dynamic 

textures, activity, and video clustering have been successfully modelled as Linear 

Dynamical Systems (LDSs). It notably reduces the number of required parameters 

to be estimated by offering low dimensional representations for otherwise high-

dimensional videos, thus reducing the amount of data that is needed to be sensed. 

LDSs characterise the video signal as combination of time-varying and time-

invariant parameters. Its addresses the ephemeral nature of videos to a large 

extent due to its generative nature that provides a prior for the evaluation of the 

video in both forward and reverse time. The combination of the two techniques 

thus results into an effective compressive sensing video protocol that addresses 

both ephemeral and compressive nature of video signals.  

1.3. Problem Statement 

Presently, there are many compressive video sensing techniques that have 

tried to address the fundamental problems being faced by videos sensed through 

Spatial Multiplexing Cameras (SMC). First, ephemeral nature, i.e., scene changes 

with each compressive measurement. Second, dimensionality of videos is much 

higher as compared to static images. In case of SPCs it gets more complex as it 

has only one sensor. This imperative dimension is missing from almost all 

approaches for CS-based video recovery so far. The proposed methods, 

appropriate for general scenes, consider scenes as time-invariant series of frames 
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(i.e. video) instead of continuously changing scenes. Some are designed 

specifically for time-varying periodic scenes and few exploit optical flows in CS 

architecture based TMCs. Multi-scale sensing and sensing secluded pieces of 

each frame rely on static models and ignore time –varying nature of videos. The 

purpose is to define a frame work for CS videos that can address the ephemeral 

nature of video.  

1.4. Objectives of Research 

This research inteds to review existing literature of the research work already 

accomplished on compressive sensing of videos and  then to propose a novel 

protocol  for compressively sensing videos modelled as linear dynamical 

system(LDS).  It intends to evaluate its performance like Compression Ratio (CR), 

reduction in measurment rate compared with Nyquist rate, noise robustness as 

reconstruction SNR against similar i.e.SMC based CS video algorithms. 

1.5. Organization of Thesis Document 

The thesis comprises of five chapters. Chapter 1 introduces the subject, its 

novelty, importance, some research background, and motivations of research. It 

also concisely states the problem and clearly mentions scopes of research.  

Chapter 2 deals with the brief literature review of current research in the field of 

Compressive Sensing, its applications in image and video sensing and 

reconstruction, video compressive sensing methodologies and linear dynamical 

systems.  

Chapter 3 discusses the modalities of compressively sensing videos by modelling 

them as linear dynamical systems. 
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Experimental results and simulation results based on the proposed algorithm are 

presented in chapter 4 along with the analyses and performance comparison with 

another CS video algorithm. The thesis is concluded in chapter 5 with 

recommendation for future direction of work. 

1.6. Notations used in the thesis: 

Matrices, vectors and scaler quantities are denoted by boldface italic 

uppercase, boldface italic lowercase and normal italic letters respectively. [𝒛]𝒕 

represent the value of 𝒛  at time t. Φ, Ψ are the measurement matrix and 

sparsifying matrix respectively. ℝ represents set of real numbers.  In [ℝ] 𝑀×𝑁 here 

MxN is the order of the matrix having elements from real numbers. K is a number 

of non-zero elements in a sparse vector. Estimated values are indicated by 

accentuation [𝑧̂]. The superscript and subscript [. ]𝐻
𝑇  indicate transpose and Hankel 

matrix parameter. ‖. ‖𝑝 represents the  𝑙𝑝 − 𝑛𝑜𝑟𝑚. 
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CHAPTER 2 

COMPRESSIVE SENSING(CS) AND LINEAR DYNAMICAL SYSTEMS 

2.1 Fundamentals of CS 

It is considered imperative to introduce fundamental terminologies and the 

principles of the CS as well as Linear Dynamical Systems before their application 

in this work. The important terms as defined in the ‘Introduction to Compressed 

Sensing’ are reproduced below for effective comprehension of the subject [3]. 

‘Sparse Signal. A signal of length 𝑛  that can be represented by 𝑘 ≪ 𝑛 , non-zero 

coefficients. 

𝒍𝒑-norm. ‘The norm is defined for 𝑝 ∈ [1, ∝] as follows: 

‖𝑥‖𝑝 = {
         (∑ |𝑥𝑖|

𝑝)𝑛
𝑖=1

1

𝑝 ,                  𝑝 ∈ [1,∞)

    max
𝑖=1,2,..,𝑛

|𝑥𝑖| ,                     𝑝 = ∞
                    

 

Basis. A set {𝝓𝑖}𝑖=1
𝑛  is called a basis for set of real numbers ℝ𝑛if the vectors in the 

set span ℝ𝑛 and are linearly independent.  This implies that each vector in the 

space has a unique representation as a linear combination of these basis vectors. 

For any 𝑥 ∈ ℝ𝑛, there exist unique coefficients {𝑐𝑖}𝑖=1
𝑛  such that  

𝑥 = ∑ 𝒄𝑖𝝓𝑖
𝑛
𝑖=1                                                  (2.2) 

Orthonormal Basis.  It is an important special case of a basis defined as a set of 

vectors {𝝓𝒊}𝑖=1
𝑛  satisfing the following: 

〈𝝓𝒊, 𝝓𝑗〉 =  {
1,          𝑖 = 𝑗
0,          𝑖 ≠ 𝑗

 

(2.1) 

(2.3) 
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It has the advantage that the coefficients 𝒄  can be easily calculated as  

𝒄𝑖 = ⟨𝑥,𝝓𝒊⟩, 𝑜𝑟     𝒄 =  𝜱𝑇𝑥                                  (2.4) 

Where 𝒄  is length n vector with entries 𝒄𝑖  and  𝜱  denote the n x n matrix with 

columns given by 𝝓𝑖 . 

Frame. It is defined as sets of possibly linearly dependent vectors. Frame is a set 

of vectors {𝝓𝑖}𝑖=1
𝑛  in ℝ𝑑 , 𝑑 < 𝑛 corresponding to a matrix 𝚽 ∈ ℝ𝑑×𝑛 , such that for 

all vectors 𝒙 ∈ ℝ𝑑 , 

𝑨 ‖𝒙‖2
2  ≤  ‖𝚽𝑇𝒙‖2

2 ≤ 𝑩 ‖𝒙‖2
2                            (2.5) 

with 0 < 𝑨 ≤ 𝑩 <∝. 

p-Flat.  The series of geometrical objects, point, line, plane and space from the 

three-dimensional Euclidian geometry are extended and termed as 0-flat, 1-flat,  

2-flat, 3-flat respectively and extended upto N-flats. These are boundary less 

regions determined by 1, 2, 3, 4,…N+1 linearly independent points. A p-Flat is 

determined by p+1 linearly independent points, and every q-Flat, with q<p, which 

is determined by q+1 of these points, lies entirely within the p-Flat. 

Ambient Space. It is defined as an N-Flat containing the considered p-flat and  

q-flat as proper subset. i.e. p and q are less than N. 

General Position. A set of M-points in N-dimensional ambient space is in general 

position if no sub-collection of, at most, N points are linearly dependent i.e. iff any 

p+2 of them do not lie on a p-Flat. 

Null Space.  It is the space of a matrix A that consist of all vectors z such that their 

product is zero or null.  
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𝒩(𝑨) = {𝒛 ∶ 𝑨𝒛 = 0}                                                        (2.6) 

Solution Space. The solution space set of M-linear equations with N variables 

SLE(M,N) is represented by the intersection of all M-hyperplanes ((N-1)-Flats, 

which are solution spaces of particular linear equations) in the N-dimensional 

ambient space. 

Spark of the Matrix. The spark of a given matrix A is the smallest number of 

columns of A that are linearly dependent. 

Null Space Property. A matrix A satisfies the null space property (NSP) of order 

k if there exists a constant C>0 such that  

‖ℎ𝛬‖2   ≤ 𝐶 
‖ℎ𝛬𝑐‖1

√𝑘
   ,  

holds for all ℎ ∈  𝒩(𝑨) and for all Λ such that |𝛬| ≤ 𝑘. 

Restricted Isometric Property (RIP).  A matrix A satisfies the restricted isometric 

property (RIP) of order k if there exists  𝛿𝑘 ∈ (0,1) such that  

(1 − 𝛿𝑘) ‖𝒙‖2
2   ≤  ‖𝑨𝒙‖2

2  ≤ (1 + 𝛿𝑘) ‖𝒙‖2
2  

holds for all 𝒙 ∈  𝛴𝑘. It means that if a matrix A satisfies the RIP of order 2k, then 

it approximately preserves the distance between any pair of k-sparse vectors. 

Coherence.  The coherence of matrix A, μA is the largest absolute inner product 

between any two columns 𝒂𝒊, 𝒂𝒋 of A: 

𝜇(𝐴) = max
1≤𝑖<𝑗≤𝑛

|〈𝒂𝒊,𝒂𝒋〉|

‖𝒂𝒊‖2‖𝒂𝑗‖2
 .’ 

These definitions will help the reader understand the dynamics of mathematics 

involved in compressive sensing.  The whole procedure from sensing to 

(2.7) 

(2.8) 

(2.9) 
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reconstructions along with all variables and budgets has been summarised in the 

following figure adopted from the ULM course material on CS [4]. 

 

 

Figure 2-1 Mathematical overview of CS 

showing sensing and reconstruction 

processes. 

2.2 Compressive Sensing 

CS states that a signal of the form 𝒂 ∈ ℝ𝑵 can be linearly measured at much 

smaller sampling rate in the form, 

b = Φ 𝒂 + ε ,                                                         (2.10) 
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and can be successfully recovered.  Here Φ ∈ ℝ 𝑀×𝑁 represents the measurement 

matrix, ε is the measurement noise and M < N [1,2]. The linear system of the form 

𝒃  =  Φ 𝒂  is under-determined and is poorly conditioned to estimate 𝒂 from the 

measurements b. However, CS postulates that signal 𝒔 is sparse in a sparsifying 

basis Ψ that is signal 𝒂 defined as 𝒂 = Ψ 𝒔,  has K non-zero components at the 

maximum. Hence, if the matrix ΦΨ satisfies the restricted isometry property (RIP) 

then the signal 𝒂 can be precisely reconstructed from M = O (K log (N/K)) 

measurements [5]. Matrix ΦΨ satisfies the RIP when Ψ is an orthonormal basis 

and the elements of the matrix Φ are i.i.d. samples from a sub-Gaussian 

distribution.  Finally, the solution of the convex optimization problem of the form as 

in (2) can recover the signal 𝒂 from b. 

min ‖𝒔‖1   |  ‖b - ΦΨ𝒔 ‖2  ≤ 𝒆.                                (2.11) 

Here 𝒆 is an upper bound on the measurement noise ε.  The solution to (2.11) with 

high probability is the required K-sparse solution. CS protocol has also 

demonstrated that the sorted coefficients of the  𝒔 swiftly degenerate according to 

a power-law in compressible signal [6].  Multiple algorithms exist that can solve 

(2.11) e.g. [1,7]. Sparse approximation problems are also efficiently handled by 

greedy algorithms like Orthogonal Matching Pursuits (OMP) [8] and CoSAMP [9]. 

A variation, model based CoSAMP, exploits fast convergence, computational 

efficiency and simplicity of structural constraints like block sparsity [10].   

2.3 Status of research in CS 

Nyquist rate demands sensing of features at twofold the specific frequency.  

However, Compressive Sensing (CS) facilitates reconstruction of signals, sparse 
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in some basis, at a far lower sampling rate then the Nyquist criteria [1,2]. Nyquist 

only takes into account the band-limitedness whereas CS exploits the structure 

based on sparsity. This Nyquist feature results into costly sensors/camera designs 

in non-visible spectrum.  This research addresses sensing of videos through CS.  

Videos are highly redundant as is evident from the success of compression 

algorithms.  Exploitation of compression and sensing in single step can lead to 

innovative sensor designs especially in infrared and beyond.  It can considerably 

cut down sensed data and decrease costs. Sensors based on CS theory are 

already in place. Spatial Multiplexing Cameras (SMC) boost spatial resolution 

optically such as the single-pixel camera (SPC) [11] and the flexible voxels camera 

[12].  Temporal Multiplexing Cameras (TMCs) boost temporal, resolution optically 

like the P2C2 camera [13].  Interested readers may see Survey of compressive 

video sensing [14] for details of sensors based on CS architecture. Replacing full-

frame sensor with far fewer optical sensors in non-visible wavelengths scene 

acquisition is highly beneficial. 

SMCs measure scenes many times successively for accurate sensing.  The 

approach delivers encouraging results for SPC and still images [11].  However, it 

delivers poorly for videos acquisition.  Video CS by SMCs faces two major 

challenges; First, ephemeral nature, i.e., scene changes with each compressive 

measurement. Second, dimensionality of videos is much higher as compared to 

static images. In case of SPCs it gets more complex as it has only one sensor. 

This imperative dimension is missing from almost all approaches for CS-based 

video recovery (e.g., [15–19]). The proposed methods, appropriate for general 
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scenes, consider scenes as time-invariant series of frames (i.e. video) instead of 

continuously changing scenes. A noticeable exception is proposed in [20], 

however, it is designed specifically for time-varying periodic scenes. CS-MUVI [21] 

proposes sensing and recovery protocol based on optical flows. 

Similarly, CS architecture based TMCs exploit motion estimates 

[13,19,22,23] however, suffer a fundamental problem of ‘Chicken-and-egg’ [21].  

Multi-scale sensing [14] and sensing secluded pieces of each frame [19] rely on 

static models and ignore time –varying nature of videos.  A Non-linear sensing 

architecture that optimizes system performance is suggested in [24].  

Sankaranarayanan et al in [25] proposed specialized dual-scale sensing DSS 

matrix for robust initial scene estimates of lower spatial resolution videos sensed 

through SMC. 

An approach to tackle the challenges is to model videos as a parametric 

problem. A parametric model like Linear Dynamical Systems (LDS) that fits most 

classes of the videos simplifies video reconstruction to parameter estimation.  CS 

protocol for videos modeled as LDS is inspired by successful and extensive linear 

modeling of dynamic textures [26,27,28].  High dimension videos can be 

represented in much lower dimensions as LDS, hence reducing parameters to be 

estimated and in turn the sensing data.  LDS characterizes the videos as a mix of 

dynamic/time varying and static/ time-invariant parameters. It also propagates a 

prior for progression of video in both forward and reverse time. This allows us to 

address the ephemeral nature of videos to a high degree. 
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2.4 Video modelling as linear dynamical systems 

One of the important class of parametric modeling of time-series is Linear 

Dynamical Systems (LDS). Space-Time signals like traffic scenes [26], dynamic 

textures [27], video inpainting and human activity [29], and multi camera tracking 

[30] have widely been successfully realized as LDS. Application of LDS for precise 

modeling in computer vision problems is also presented as survey in [31]. This 

modelling of videos as time -indexed series of images will be exploited in this work. 

Most approaches fit an LDS model to videos by first estimating lower-dimensional 

embedded observations through principal component analyses (PCA) and then 

learning state transition by capturing time-varying dynamics of video.  Expectation-

Maximization (EM) [26], N4SID [32] and PCA-ID [33] are most prevalent 

algorithms. The EM algorithm treats this as maximum likelihood estimation of 

parameters that optimizes likelihood of observations. The N4SID algorithm 

identifies subspace that optimizes solution for model parameters.  PCA-ID 

algorithm assumes that observation matrix and state transition matrix can be 

separately estimated. The model parameters can thus be computed efficiently by 

PCA. First, Space-filters provide estimates of the observation matrix and then 

results are used by time-filters to determine transition matrix [27].  Figure 2-2 

presents an example of LDS and the models that define it. Few frames of six 

flashing LEDs from DynTex dataset [34], along with basis vectors are shown. Black 

pixels show non-negative whereas white denote positive values. Predictability is 

evident from smooth variations of state values. 
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Figure 2-2 Example of LDS and model that 

defines it.  

2.5 Linear Dynamical Systems 

System of linear equations has an important role in modern day technology.  

These systems are immensely employed to model control systems, State 

estimations, observability, single input single output systems(SISO), Multiple input 

multiple output systems (MIMO). A system is said to be linearly dynamical if initial, 

current state or future states can be estimated from a linear relationship [35]. A 

system of one or more variables which evolve in time according to a given rule is 

called a dynamical system. represented by the following system of equations in 

discrete time; 
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𝑋(𝑡 + 𝛥𝑡) = 𝐹(𝑋(𝑡))                                          (2.12) 

𝑋𝑛+1 = 𝐹(𝑋𝑛)                                             (2.13) 

A linear dynamical system is one in which the rule governing the time-evolution of 

the system involves a linear combination of all the variables. e.g. 

𝑑𝑋

𝑑𝑡
= 𝐴𝑋 + 𝐵                                           (2.14) 

2.6 Summary 

This chapter reviews fundamental definitions that help better understand 

the CS concepts.  It also briefly sifts through the currently available literature that 

is relevant to this work.  Various video CS techniques along with the limitations 

have been briefly mentioned.  Similarly, Linear Dynamical Models and their 

applications in successfully modelling the videos have also be briefly touched 

upon. 
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CHAPTER 3 

COMPRESSIVE SENSING VIDEO AS LINEAR DYNAMICAL SYSTEM  

3.1. Compressive sensing video 

This work models video as time-indexed series of images. If 𝒂𝒕 is the still 

image of video at time t then 𝒂𝑇 = { 𝒂1,𝒂2,𝒂3,………𝒂𝑇} is the video from 1 to T. The 

𝒂𝒕  is also defined as ‘video frame’ at time t. The goal is to compressively sense 

𝒃𝑡 = Φ𝑡𝒂𝑡  where  𝒃𝑡 , Φ𝑡 and 𝒂𝑡 are compressive measurements, sensing matrix 

and video frame at time t.  With series of compressive measurements  

 𝒃𝑇 = { 𝒃1,𝒃2,𝒃3,………𝒃𝑇}  it is tried to recover video  𝒂𝑇 = { 𝒂1,𝒂2,𝒂3,………𝒂𝑇}. The 

focus will be SPC [26] since it exploits spatial multiplexing to the fullest but there 

is no temporal multiplexing. Assuming that scene varies slowly with time, SPC 

measures at each instant 𝒃𝑡 = ϕ𝑡
𝑇𝒂𝑡 where  ϕ

𝑡
is a pseudo-random vector.  

Successive measurements are grouped as of same frame of a video. This 

supposition works well if either the motion in scene is slow or respective frame 

measurements are scant in quantity.  SPC architecture is most suitable for  

re-designing cost effective sensors in higher spectrum like near and far infrared. 

3.2. Video modelling as linear dynamical system 

This work models video as time-indexed series of images. LDS model of 

video consists of two steps. As a first step video frames are considered laying close 

to d-dimensional subspace i.e. video frame can be represented as,  

𝒂𝑡 ≈ 𝑪𝒛𝑡,                                                       (3.1) 

at a time t; where 𝒛𝑡 is the state vector at time t and C is subspace basis.  Second 

step is modeled as linear evolution of the form, 
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𝒛𝑡+1 ≈ 𝑺 𝒛𝑡,                                                     (3.2) 

representing the predicted variations of route in d-dimensional subspace. Hence, 

the LDS model equations for video are defined as, 

𝒂𝑡  = 𝑪𝒛𝑡 + 𝜼𝑡         𝜼𝑡 ≈ 𝑵(0, 𝑷),                                    (3.3) 

𝒛𝑡+1 = 𝑺𝒛𝑡  + 𝜼"𝑡       𝜼"𝑡 ≈ 𝑵(0,𝑸).                                  (3.4) 

Here,  𝒛𝑡 ∈  ℝ
𝑑, in state-space dimension d, is the state vector at time t, C ∈  ℝ𝑁×𝑑 

is the observation matrix, S ∈  ℝ𝑑×𝑑 is the state transition matrix and 𝒂𝑡 ∈  ℝ
𝑁  is 

the observed measurements vector. Here,  d ≪ N for videos considered in this 

work, and  𝜼𝑡 , 𝜼"𝑡 are Gaussian noise vectors with zero mean and P, Q covariance 

matrices belonging to ℝ𝑁×𝑁 𝑎𝑛𝑑 ℝ𝑑×𝑑 respectively. Gaussian noise is assumed for 

simplicity and better results with dynamic textures [27]. 

The matrix pair (C,S) defines parametric model of video LDS.  The unique 

choices of C and sate-sequence  𝒛1:𝑇  in state-space are only possible in 

𝑑 × 𝑑 linear transformation. Thus, any invertible matrix D defining LDS outlined 

by (C,S), of the order 𝑑 × 𝑑  with sate sequence  𝒛1:𝑇  corresponds to LDS stated 

by (CD, D-1SD) with state sequence 

D-1𝒛1:𝑇= {D-1𝒛1,  D
-1𝒛2 , D-1𝒛3,……, D-1𝒛𝑇}.                             (3.5) 

Most approaches fit an LDS model to videos by first estimating lower-

dimensional embedded observations through principal component analyses (PCA) 

and then learning S by capturing time-varying dynamics of 𝒂𝑇.  Expectation-

Maximization (EM), N4SID and PCA-ID are most prevalent algorithms. The EM 

algorithm treats this as maximum likelihood estimation of parameters that 

optimizes likelihood of observations. The N4SID algorithm identifies subspace that 
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optimizes solution for model parameters.  PCA-ID algorithm assumes that 

observation matrix C and state transition matrix S can be separately estimated. 

The model parameters can thus be computed efficiently by PCA. First, Space-

filters provide estimates of the observation matrix C and then results are used by 

time-filters to determine transition matrix S [27]. 

3.3. LDS-VCS Architecture 

Linear Dynamical System-Video Compressive Sensing (LDS-VCS) protocol 

is proposed in this work. This protocol is presented here and it is implementable 

on single pixel camera (SPC) for videos modelled as LDS. It intends to capture the 

model parameters C and 𝒛1:𝑇 subject to compressive measurements of the form 

𝒃𝑡 = Φ𝑡𝒂𝑡= Φ𝑡C z𝑡,                                              (3.6) 

where C is static observation matrix of the LDS, Φ𝑡  is the sensing matrix, and 

𝒂𝑡  𝑎𝑛𝑑 z𝑡 are corresponding video frames and states at time t.  The compressive 

measurements 𝒃1:𝑇 are thus stated in bilinear terms of unknown parameters C and 

 z1:𝑇. Convex optimization techniques are typically unable to handle bilinear 

unknowns, hence a two-step sensing technique is proposed called LDS-VCS.  The 

protocol is designed for compressively sensing and correspondingly recovering the 

LDS. 

3.3.1. Measurement Model 

LDS-VCS model is summarized below: At time t, two sets of measurements 

are made: 

𝒃𝑡 = (
𝒃𝑡̌
𝒃𝑡̃
)=[

𝜱𝑡̌

𝜱𝑡̃

] 𝒂𝑡= Φ𝑡𝒂𝑡.                                 3.7) 
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Here 𝒃𝒕̌ ∈ ℝ𝑀̌ and 𝒃𝒕̃ ∈  ℝ
𝑀̃ so that measurements of every frame are M =  𝑀̌ + 𝑀̃.  

In fact SPC takes only one measurement at t, but for slowly changing videos 

grouping of successive measurements is done to make multiple measurements. It 

holds true when sampling rate of SPC is higher compared to M.  Two discreet 

parts; the time-invariant  Φ𝑡̌  and time variant  Φ𝑡̃ together make up measurement 

matrix in (5). We represent common measurements as 𝒃𝑡̌ and innovative as 𝒃𝑡̃ . A 

two-step approach is used to find LDS parameters. First using common 

measurements 𝒃1:𝑇̌ , state sequence will be estimated and then the sequence 

along with innovative measurements will be employed for recovery of observation 

matrix C. 

3.3.2. State Sequence Estimation 

State sequence 𝒛̌1:𝑇 is recovered through time-invariant part of the 

measurement matrix, 𝒃̌1:𝑇 .  The basic preposition is that if 𝒂1:𝑇 generates 

observations of LDS with system matrices [C,S] then the measurement 𝒃̌1:𝑇 is the 

observation of LDS with system matrices [𝜱̌𝑪, 𝑺 ] .  State sequence estimation is 

only possible from observations of LDS if LDS is observable [36], hence LDS 

parameterized by [𝜱̌𝑪, 𝑺] must also be observable.  This simplifies the problem 

from state sequence estimation to system identification that can be resolved by 

Singular Value Decomposition, (SVD) method of a block Hankel matrix of the 

following from, 

𝑯(𝒃̌1:𝑇,𝑑 )
=

[
 
 
 
 𝒃̌1 𝒃̌2 ⋯

𝒃̌2 ⋰ ⋰
⋮ ⋰ ⋰

⋯ 𝒃̌𝑇−𝑑+1
𝒃̌𝑇−𝑑+2

𝒃̌𝑑 ⋯ ⋯ 𝒃̌𝑇−1 𝒃̌𝑇]
 
 
 
 

.                                   (3.8) 
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The state sequence estimates are calculated by [ 𝒛̌1:𝑇 ] = 𝑺𝑯𝑽𝑯
𝑇  given that 

 SVD{𝑯(𝒃̌1:𝑇,𝑑 )
}= 𝑼𝑯 𝑺𝑯 𝑽𝑯

𝑇 .  

It is possible to estimate state sequence in all cases of number of measurements 

taken at time t within dimension d where 𝑀̌  > 𝑑 𝑎𝑛𝑑 𝑀̌  < 𝑑.  It is true even when 

𝑀̌  < 1 [37]. 

3.3.3. Observation Matrix estimates  

The relationship between observation matrix C and innovation or time-

variant measurements is linear i.e.   𝒃̃𝒕 = 𝝓̃𝒕𝑪𝒛̂𝒕. With state sequence already 

estimated  𝒛̂𝟏:𝑻 𝑎𝑛𝑑 𝑪  as time-invariant, innovative measurements can be accrued 

to recreate a stable C.  Innovative measurements 𝑀̃ required for each frame are 

thus reduced substantially.  This results in less error that is caused by motion 

blurring.  The C can be recovered using state sequence  𝒛̂𝟏:𝑻 estimates using 

convex problem as follows 

𝒎𝒊𝒏∑  ‖ 𝜳𝑻𝒄𝑖‖1 | ∀𝑡 ‖𝒃𝑡 −𝜱𝑡𝑪𝒛̂𝑡 ‖2 ≤
𝒅

𝑖=1
 𝒆                        (3.9) 

The ith column of C is represented as 𝒄𝒊 and Ψ is sparsifying basis for columns of 

C.  The state sequence estimates generate structured sparsity pattern in support 

of C.  This structured sparsity is exploited in proposed recovery algorithm. All 

compressive measurements 𝒃𝑡 of each frame of the video or image are used since 

innovative and common measurements are both linear.  Matrix C is linear in 

compressive measurements and 𝑙1 or 𝑙2 optimization methods can recover C. 

However, it is a matrix of order N x d.  Thus, common measurements alone are 

not enough unless 𝑀̃ is large. The block diagram of LDS-VCS is shown in  

figure 3-1. 
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Figure 3-1 LDS-VCS protocol Block diagram 

3.3.4. Structured Sparsity for C 

Each video frame like video or image is sparse in some transform basis like 

Wavelet or Discrete Cosine Transform (DCT).  Since C is basis of video frames, 

columns of C are compressible in similar transform basis. Additionally, the columns 

are also the principal components capturing the dominant motion pattern when 

spatially correlated.  Therefore, it is assumed that columns of C are compressible 

in DCT /Wavelet domain. The C can be estimated by considering the convex 

problem of the type formed in equation (3.9). 

There is possibility here that video is not sparse in transform basis. This can be 

handled using dictionary learning [38] provided training data is available. In case 

of non-availability of training data 𝑙2 − 𝑛𝑜𝑟𝑚 based approach can be used. 

The vague LDS definition and use of SVD in estimating state sequence adds 

ambiguity and renders (3.9) convex problem ineffective to recover C.  It introduces 

ambiguity in the form [𝒛̂1:𝑇] ≈ 𝑳−1[𝒛1:𝑇]. Here L is an invertible matrix of the order 

dxd. Consequently, the LDS leads us to  𝑪̂ = CL, a linearly transformed C.  Now if 

 

 

 

 

 

𝒂 1:𝑇 

Fig. 2  LDS-VCS protocol Block Diagram. 

𝒃̌1:𝑇 
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the columns of C are K-sparse in 𝜳 with support $𝐤, its columns are dK-sparse 

with similar support. The overall sparsity of 𝑪̂ increases to 𝑑2𝐾. The apparent 

increase in sparsity is mitigated by the fact that columns of C have identical 

support. Hence that is exploitable for recovery of C [39]. With 𝒛̂1:𝑇 available we can 

calculate matrix C by solving  𝒍𝟐 − 𝒍𝟏 mixed-norm optimization convex problem that 

enhances group sparsity as follows. 

𝒎𝒊𝒏∑ ‖ 𝒘𝑖‖2 | 𝑪 = 𝜳𝑾,∀𝑡, ‖𝒃𝑡 −𝜱𝑡𝑪𝒛̂𝑡 ‖2 ≤
𝑁
𝑖=1  𝒆.                 (3.10) 

The matrix 𝑾 = 𝜳𝑇𝑪 has 𝒘𝑖 as the ith row of W and 𝜳 is the sparsifying basis of 

columns in C. SPG-L1 [7] and model based CoSAMP [10] are some algorithms to 

solve 𝒍𝟐 − 𝒍𝟏 problems efficiently. Algorithm-LDS_VCS_𝐶̂ provides pseudocode 

that uses union of sub-space model to group rows of 𝑾 = 𝜳𝑻𝑪 into single sub-

space to recover observation matrix C on the lines of (3.10). 

A simple rule for recovery of C is that total compressive measurements should be  

𝑀̃ = 4 𝑑𝐾 𝑙𝑜𝑔 (
𝑁

𝐾
).                                                   (3.11) 

Estimation of C over period of T instant implies that we have 𝑀̃𝑇  time-variant 

compressive measurements. 

∴ 𝑀̃𝑇 = 4 𝑑𝐾 𝑙𝑜𝑔 (
𝑁

𝐾
)                                                    (3.12) 

⇒ 𝑀̃ = 4
𝑑𝐾

𝑇
𝑙𝑜𝑔 (

𝑁

𝐾
),                                                   (3.13) 

assuming T= τ𝑓𝛿 where 𝑓𝛿 is sampling rate of SPC and τ is duration of video to be 

sensed then, 

𝑀̃ = 4
𝑑𝐾

τ𝑓𝛿
𝑙𝑜𝑔 (

𝑁

𝐾
),                                                          (3.14) 
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i.e. number of measurements are inversely proportional to the sampling rate of the 

SPC for stable recovery of C.  LDS-VCS protocol thus has highly supportive 

conditions. 

3.3.5. LDS with mean 

Linear dynamical scenes are better modelled generally over static background in 

the form: 

𝒂𝑡 = 𝑪𝒛𝑡 + 𝝁.                                                      (3.15) 

Algorithm LDS_VCS can be modified with two little changes to incorporate the 

mean.  Firstly, the SVD on the Hankel matrix 𝑯(𝒃̌1:𝑇,𝑑𝑔𝑢𝑒𝑠𝑠 )
 can be modified in such 

a way so that each row sums to zero to estimate state sequence 𝒛̂1:𝑇.  Here the 

assumption is made that compressive measurement of μ, 𝜱̌𝝁  is sample mean of 

𝒛̌1:𝑇 . Secondly, given that μ and C can have different support i.e. they may not 

necessarily have similar support, the optimization problem takes the following 

form; 

𝑚𝑖𝑛 ‖𝜳𝑇𝝁‖1 +∑ ‖ 𝒘𝑖‖2 | 𝑪 = 𝜳𝑾,∀𝑡, ‖𝒃̃𝑡 − 𝜱̃𝑡(𝝁 + 𝑪𝒛̂𝑡)‖2 ≤
𝑁

𝑖=1
 𝒆.        (3.16) 

The model based CoSAMP algorithm defined in LDS-VCS can be modified to 

incorporate the μ term, the mean. Additionally, the sparsity of mean is also required 

to be defined a priori as 𝐾𝝁 = ‖𝜳𝑇𝝁‖0. 

The pseudocode for the algorithm LDS-VCS for estimation of 𝑪̂  is given in figure 

3-2: 
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𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚  𝐿𝐷𝑆 − 𝑉𝐶𝑆 − 𝑪̂ 

𝑪̂ {𝜳, 𝐾, 𝒃𝑡, 𝒛̂𝑡, 𝜱𝑡 , 𝑡 = 1…… . . 𝑇} 

Notation:  

Support of K largest elements of vector = $(vec, K) 

Submatrix of X with rows indexed by Λ and all columns = 𝑋|𝛬, 

Submatrix of X with columns indexed by Λ and all rows = 𝑋|,   𝛬 

Initialization 

     ∀𝑡, 𝜷𝑡 ← 𝜱𝑡𝜳  

     ∀𝑡, 𝒗𝑡 ← 0 ∈ ℝ𝑀  

     𝛬𝑜𝑙𝑑 ← 𝝓  

While do (till stop conditions satisfied) 

       𝑹 = ∑ 𝜷𝑡
𝑇𝒗𝑡𝑡 𝒛̂𝑡

𝑇           % Calculate signal proxy% 

       𝑘 ∈ [1, . . , 𝑁], 𝒓(𝑘) = ∑ 𝑹2𝑑
𝑖=1 (𝑘, 𝑖)  %Calculate energy in each row% 

       𝛬 ← 𝛬𝑜𝑙𝑑 ∪ $(𝒓; 2𝐾)        % identify support and merge% 

      Find 𝑿 ∈ ℝ|𝛬|×𝑑 that maximize 

       ∑ ‖𝑡 𝒃𝑡 − (𝜷𝑡)| ,𝛬𝑿𝒛̂𝑡 ‖2         % Estimate Least squares% 

      𝒀|𝛬,  ← 𝑿, 𝒀|𝛬, ← 0 

      𝑘 ∈ [1, . . , 𝑁], 𝒚(𝑘) = ∑ 𝒀2𝑑
𝑖=1 (𝑘, 𝑖)     % Find support % 

     𝛬 ← $(𝒚;𝐾), 𝑺|𝛬, ← 𝑩|𝛬, , 𝑺|𝛬, ← 0   

      𝑪̂ = 𝜳𝑺                       % re-form new estimates of C% 

     ∀𝑡, 𝒗𝑡 ← 𝒃𝑡 ← 𝜷𝑡𝑺𝒛̂𝑡     % update residue% 

     𝛬𝑜𝑙𝑑 ← 𝛬 

End 

 

Figure 3-2  Pseudo-code for the proposed Algorithm 
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CHAPTER 4 

SIMMULATION AND RESULTS 

4.1. Simulation environment 

The simulation results for modelling of videos as LDS and their recovery 

using the proposed algorithm as described in LDS-VCS-𝐶̂, is presented.  

Simulations on multiple aspects including compression ratio, recovery time and 

noise robustness (reconstruction SNR) were performed. Reduction in 

measurements rate viz-a-viz Nyquist rate was termed as compression ratio 

represented as 𝑁/𝑀. Another parameter was the reconstruction SNR of videos. 

The SNR was defined on the basis of ground truth video 𝒂𝟏:𝑻 and recovered video 

𝒂 𝟏:𝑻 in dBs as  

10 𝑙𝑜𝑔10 (
∑ ‖ 𝒂𝑡
𝑇
𝑡=1 ‖2

2

∑ ‖ 𝒂𝑡
𝑇
𝑡=1 − 𝒂 𝑡‖2

2 ).                                                    (4.1) 

The test simulations were run on videos available in ‘DynTex’ dataset [34].  It is 

because dynamical systems are better modelled on the static background. All 

videos were LDS modeled as explained in chapter 3 for all simulations. Permuted 

noiselets [20] having fast scalable implementation were used for measurement 

matrices. The 2D DCT basis was used for sparsifying columns of C whereas 2D 

wavelets basis were employed as the sparsifying basis for the mean. Algorithm 

LDS_VCS was used for these results as sparsity of the columns of C was well 

controlled by it. Equation (3.11) was referred to for choices of other values. The 

protocol was simulated on laptop with a Core-i5 @ 2.5 GHz processor and 4 GB 

RAM.  MATLAB version R2015A was employed with no paralleling. LDS_VCS is 
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compared with frame-by frame CS (FCS) that employs conventional CS methods 

to recover each frame of video separately. 

4.2. Resolution and Reconstruction time 

Recovery of dynamic texture, ‘64cae10’ video of the DynTex [34] dataset is 

depicted in figure 4.1.  The video comprises of 560 frames. The reconstruction is 

done with fixed compression ratio of x20 or  𝑁/𝑀 = 20 and with 𝑑 = 50. The figure 

also reflects the SNR of reconstructed frames along with time taken to recover the 

video. It is evident from 4.1 (b) to (e) that reconstruction performance increases 

with increasing spatial resolution. As the compression ratio is kept fixed, 

improvement is due to increasing number of compressive measurements at higher 

resolution. Large number of measurements however, need an SPC with higher 

rate of sampling. Further, the time taken to compute the higher resolutions videos 

also increases with increasing spatial resolution  
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Figure 4-1 (a-e) Video ‘64cae10’ reconstructed 

at different resolutions with fixed compression 

ratio 

 

(a) 

(b) 

(c) 

(d) 

(e) 
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The figure 4-1 (a) shows two of the ground truth frames from the video ‘64cae10’.  

Subsequently 4-1 (b) to (e) represent reconstruction of the same frames with 

increasing spatial resolution.  The resolution in 4-1 (b) is 32x32, whereas in (c) it 

is increased to 64x64, (d) is a frame of 128x128 and (e) depicts a reconstructed 

frame of resolution 256x256.  The reconstruction SNR increases with increasing 

frame resolution from 10.11 dBs to 20 dBs to 22.06 dBs and finally 22.12 dBs from 

(b) to (e) respectively.  The table 4-1 summarizes the information. 

 

Table 4-1  Summary of Resolution and Reconstruction Time 

Figure Label Resolution Comp X 

N/M 

Recon SNR 

(dBs) 

Recon Time 

(Sec) 

4-1 (a) Ground Truth  

4-1 (b) 32 x 32 X20 10.11 26.5 

4-1 (c) 64 x 64 X20 20.00 51.8 

4-1 (d) 128 x 128 X20 22.06 290 

4-1 (e) 256 x 256 X20 22.12 1582 

 

The reconstruction of another DynTex Dataset is reproduced in figure 4-2 

along with the details of reconstruction parameters, the resulting 

reconstruction SNR and the reconstruction time taken by the simulation.  
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Figure 4-2 (a-c) Reconstructions with fixed compression ratio 

and varying resolution of ‘64ba910’ 

(a) 

(b) 

(c) 
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Figure 4-2 (d-e) Reconstructions with fixed compression ratio and 

 increasing resolution for ‘64ba910’ 

 

Reconstruction of DynTex dataset ‘64ba910’ with a fixed compression ratio are 

shown in figure 4-2 (a-e). The video has 250 frames and is reconstructed with a 

compression ratio of 20x for all the recovered videos as shown in figure 4-2.  

However, the resolution of each image varies from 32x32 to 256 x 256.  The d was 

kept fixed at 30.  The various reconstruction SNRs for increasing resolution are 

(d) 

(e) 
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listed in table 4-2.  It is evident from the table 4-2 that the reconstruction 

performance SNR improves with enhancement in the resolution. This is because 

the increase in the number of compressive measurements. Hence, recovery of 

videos at higher resolutions are dependent on the faster sampling rate of the single 

pixel camera. It is also evident that the increasing spatial resolution increases the 

time taken to compute the reconstructed video. 

 

Table 4-2 Reconstruction SNR at different 

Compression Ratios for figure 4-2. 

 

Figure Label Resolution Comp X 

N/M 

Recon SNR 

(dBs) 

Recon Time 

(Sec) 

4-2 (a). 256x256 Ground Truth  

4-2 (b). 256x256 20x 31.544 99 

4-2 (c). 128x128 20x 31.262 28 

4-2 (d). 64x64 20x 25.006 19 

4-2 (e) 32x32 20x 20.830 16 

 

 

4.3. Reconstruction with different compression ratios 

The reconstruction of a video, ‘64ce310’, 6-blinking LED lights is 

reproduced as figure 4-3.  The referred number in commas is the name of the video 

as it appears in the DynTex dataset.  Reconstruction results of the single dynamic 

textured video at different spatial resolutions and compression ratios are 
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enunciated. The d for the reconstruction was 7 and the 𝑀̌ was 3d. Whereas the 𝑀̃ 

was chosen such that 𝑁/ 𝑀̌ + 𝑀̃  preserves the desired compression ratio. 

 

 

Figure 4-3 Video reconstruction ‘64ce310’ with 

different compression ratios 

It is clearly evident that finer details are well preserved for resolution of 

256x256 pixels despite compression ratio of 100x. The values of the compression 

ratio, spatial resolution and the reconstruction SNR are tabulated below in Table 

4-3 for various labels in figure-4-3.  Reconstruction SNR decreases with increasing 

compression ratio for same input resolution. 

 

 

 

 

b 

c 

d 

e 

a 
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Table 4-3 Reconstruction SNR at different resolutions for figure 4-3. 

 

Figure Label  Resolution Comp X Rec SNR 

4-2 (a). 128x128 Ground Truth  

4-2 (b). 128x128 20x 22.7 

4-2 (c). 128x128 50x 18.6 

4-2 (d). 128x128 100x 16.3 

4-2 (e). 256x256 100x 16.0 

 

Another, result of video reconstruction with fixed resolution and increasing 

compression ratio demonstrates the effectiveness of the proposed algorithm. 

Figure 4-4 (a-e) reproduces the results of simulation for the reconstruction of 

DynTex data set ‘ 64cc610’. 

 

 

Figure 4-4 (a) Reconstruction SNR at different compression ratios 

of ‘64cc610’. 

(a) 
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Figure 4-4 (b-d) Reconstruction SNR at different compression ratios 

of ‘64cc610’. 

(b) 

(c) 

(d) 
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Figure 4-4 (e) Various compressed reconstructions of ‘64cc610’’ 

 

The figure 4-4 reproduces various reconstructed frames of the DynTex ‘64cc610’ 

video.  The d for the reconstruction was 10 whereas the value of the 𝑀̌ was 

selected as 3d. The value of the 𝑀̃ was selected so that  𝑁/ 𝑀̌ + 𝑀̃  maintains the 

compression ratio as desired.  The reconstructed results well preserve the details 

even at a compression ratio of 100x for the resolution of 256x256. A decrease in 

reconstruction SNR is observed with an increase in compression ratio while 

keeping the video resolution constant i.e. at 128x128. However, the increased 

resolution enhances the reconstruction SNR b almost 10 dBs when the resolution 

is enhanced from 128x128 to 256 x256.  This is because of the fact that more 

sparse measurements are available with increasing resolution.  The detailed data 

is tabulated in table 4-4. 

 

 

 

(e) 
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Table 4-4 Reconstruction SNR at different 

Compression Ratios for figure 4-4. 

 
 

Figure Label  Resolution Comp X Rec SNR 

4-4 (a). 128x128 Ground Truth  

4-4 (b). 256x256 100x 29.346 

4-4 (c). 128x128 100x 17.535 

4-4 (d). 128x128 50x 30.644 

4-4 (e) 128x128 20x 31.932 

 

4.4. Robustness to noise and reconstruction SNR 

It is important to evaluate the resilience of protocol to noise. The input 

SNR in dBs is defined here as; 

Input SNR=10 𝑙𝑜𝑔10 [
(∑‖𝑎𝑡 ‖2

2)

(𝑇𝜎2)
],                                             (4.2) 

where 𝜎2 is the variance of the noise. State space estimates for various values of 

common measurements 𝑀̌ and different SNRs were analyzed. For cases where 

 𝑀̌ ≥ 1 with 𝑑 = 10 and T= 500 frames the reconstruction SNR is high even for 

small values of 𝑀̌ and low SNR. The system matrices and the state sequence were 

generated randomly for each Monte-Carlo run. Reconstruction SNR vs common 

measurements M per frame is plotted in figure-4.4. Each curve indicates different 

level of measurement noise against specific input SNR.  Figure is shown on next 

page. 
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Figure 4-5 Reconstruction SNR Vs Common 

Measurement, accuracy of state sequence estimates. 

Similarly, for cases where 𝑀̌ < 1 the simulation results are encouraging as the 

Hankel matrix as envisaged in equation (3.8) is constructed for different missing 

measurements. Reconstruction SNR of Hankel matrix is depicted in figure 4-5 

against number of missing measurements.  The plot suggests that Hankel matrix 

can be reliably reconstructed even if 80 percent measurements are missing. 
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Figure 4-6 Reconstruction accuracy of Hankel matrix. 

4.5. Comparison with Frame to Frame CS (FCS) protocol 

Another video reconstruction of a dynamic texture ‘6ammj00’ from the 

DynTex dataset is shown in figure 4-6. The video is of 128X128 pixel resolution. It 

is a fire texture of length 250 frames. Here the compression is N/M =234. Frame-

to-frame CS recovery (FCS) is completely infeasible at such high level of 

compression. However, the LDS-VCS protocol still effectively recovered the video. 

The comparatively smaller dynamic component of the scene: i.e. d =20 allowed 

successful reconstruction of video even from limited measurements.  LDS-VCS 

thus depicts a very high SNR of 22.08 dBs as compared to SNR of only 11.75 dBs 

for FCS for the recovered videos in figure 4-6.  The reconstruction was performed 

with d = 20 and K= 30. The figure shows sampling of frames of the (a) Ground 
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truth video, (b) LDS-VCS reconstruction, and (c) frame-to-frame (FCS) 

reconstruction. 

 

Figure 4-7 (a-c) Reconstruction of ‘’6ammj00’ DynTex video 

using LDS-VCS and FCS: Comparison. (a) Ground Truth (b) LDS-

VCS reconstruction (c) FCS reconstruction 

 

 

 

 

 

  

a 

b 

c 



  47 

CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5. Conclusion 

The work evaluates a protocol for compressive video sensing of LDSs 

based models of dynamic textures. The effectiveness of protocol using predictive 

models is compared with frame by frame CS. It is a conclusion from above results 

that LDS-VCS performs better in terms of reconstruction SNR when compared with 

frame by frame CS. The protocol enables stable video reconstructions at very low 

measurement rates for videos modelled as LDS. It estimates state sequence of 

corresponding video even when number of common measurements are less than 

1. 

The thesis presents results of simulations, however, in real world such 

results are a challenge to achieve. Here, only SPC imaging architecture was 

considered.  Amount of motion in the video and sampling rate of SPC limit 

desirable compression and resolution results. The idea of ‘frame-rate’ is not 

applicable in real-life scenes. However, frame rate of SPC is important and is 

determined by amount of motion in video. The fast motion is not captured precisely 

and there is motion blur in fast changing images. The sampling rate of SPC at a 

desired compression ratio is dependent on the values of K, d and 𝜏 as in equation 

(3.14). The sampling rate will thus need to increase linearly with N to maintain 

similar compression level. 

In existing technology, the sensing process is independent of recovery methods. 

Random matrix-based CS measurement techniques also exhibit similar capability. 
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Any development in recovery methods hence does not affect the sensing part i.e. 

camera.  The protocol presented in this work however, deviates from this property 

as it translates bi-linear system model created through LDSs modelling to the two-

step measurement process.  The property can however be utilised to develop new 

cost-effective sensors in near and far infra-red range on the principle described in 

this work. 
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APPENDIX 

MATLAB CODE FOR DEMO.m 

clear all 

close all 

 

addpath('functions') 

addpath('utility') 

addpath('cosamp'); 

 

mycolon = @(x) x(:); 

 

 

siz = [256 256]/2; %Spatial resolution 

Comp = 40; %Compression 

d = 20;  %d = LDS state dimension. Reduce this as Comp is increased. 

solver = 1; %1 - Cosamp, 0 - Basis pursuit-group sparsity 

hank_param = 1; % Used in forming hankel matrix. This is the number of blocks in the 

hankel matrix 

 

 

%This variable selects the sparsity basis 

% (spSelect == 1)  %sparsity in a wavelet basis 

% (spSelect == 2) %sparsity in a identity basis 

% (spSelect == 3) %sparisty in a DCT basis 

% (spSelect == 4) %sparisty of mean in wavelet, rest in DCT 

% (spSelect == 5) %sparsity of mean in wavelet, rest in identity 

spSelect = 4; 

 

fname = 'dyntex/6amg500'; 

ydata = loadDyntexDataset(fname, siz); 

 

[yrec, c0, Xhat, snr, psnr] = run_cslds(ydata, spSelect, Comp, d, hank_param, solver); 

 

ydata = reshape(ydata, size(ydata, 1), size(ydata, 2), 1, size(ydata, 3)); 

 

figure(1) 

subplot 121 

montage(ydata(:,:,:,1:30:end)); 

title('Ground truth'); 

subplot 122 

montage(yrec(:,:,:, 1:30:end)); 

title('Recovered video'); 

 

figure(2) 

subplot 211 

montage(reshape(c0*diag(1./(1e-10+max(c0)+max(-c0))), siz(1), siz(2),1,[]), [-1 1]/2); 

colormap jet 

axis image; axis off 

title('Observation matrix'); 

subplot 212 
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plot(Xhat') 

title('state transition') 

Obtaining compressive menasurements 

Estimating state sequence 

                                          

***************************************** 

**  DWT Extension Mode: Periodization  ** 

***************************************** 

                                          

Iter: 0001. Err: 0.10325. Diff: 13364 

 

lsqr_iter = 

 

    40 

 

Iter: 0002. Err: 0.04736. Diff: 8050 

Iter: 0003. Err: 0.04386. Diff: 4156 

Iter: 0004. Err: 0.04177. Diff: 2307 

Iter: 0005. Err: 0.04176. Diff: 600 

Iter: 0006. Err: 0.04219. Diff: 361 

Iter: 0007. Err: 0.04207. Diff: 354 

Iter: 0008. Err: 0.04207. Diff: 244 

Iter: 0009. Err: 0.04186. Diff: 149 

Iter: 0010. Err: 0.04181. Diff: 166 

Final results.  

 Compression = 40 x  

 Reconstruction SNR = 26.433 dB  

 Peak SNR =  33.762 dB 

 

 

Figure A-1 . Reconstructed result for Dyntex ‘6amg500’ 
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Figure A-2  Correspondix Observation and State transition 
Matrices for ‘6amg500’  
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LDS-VCS MATLAB CODE 

function [yrec, c0, Xhat, snr, psnr] = run_cslds(ydata, spSelect, Comp, d, hank_param, 

solver) 

%%%%%Simulate LDS-VCS on a video 

%%%%% Look at "Compressive Acquisition of Linear Dynamical Systems" Thesis 

%%%%% submitted to MCS, NUST 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Input 

%    ydata --- 3D video cube. 

%    spSelect --- Sparsity basis for the observation matrix 

%                 (spSelect == 1)  %sparsity in a wavelet basis 

%                 (spSelect == 2) %sparsity in a identity basis 

%                 (spSelect == 3) %sparisty in a DCT basis 

%                 (spSelect == 4) %sparisty of mean in wavelet, rest in DCT 

%                 (spSelect == 5) %sparsity of mean in wavelet, rest in identity 

%    Comp  --- Compression factor. 

%    d     --- LDS state space dimension 

%    solver --- 1 or 0 

%              1 -- uses cosamp code in 'cosamp' folder 

%              0 -- uses spg_bpdn (needs spgl1 package) 

% 

% Output 

%    yrec ---- reconstructed video 

%    c0    --- estimated observation matrix 

%    Xhat  --- Estiamted state sequence 

%    snr, psnr --- SNR and Peak SNR 

% 

% 

 

addpath('functions') 

addpath('utility') 

addpath('cosamp'); 

 

mycolon = @(x) x(:); 

 

%loading dataset 

siz = [ size(ydata, 1) size(ydata, 2)]; 

N = prod(siz); 

T = size(ydata, 3); 

 

 

 

M = floor(N/Comp); 

Mhat = 3*d;    %Feel free to change this 

Mtilde = M - Mhat; 

if (Mtilde < 0) 

    Mhat = floor(M/2); 

    Mtilde = M - Mhat; 

end 

 

%%Get Compressive measurements 

%I am using noiselets for speed 
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%Noiselt code is in "utility" folder 

idx2 = randperm(N); %column permutation 

idx = zeros(M, T); 

for kk=1:T 

    tmp = randperm(N); 

    idx(:, kk) = tmp(1:M); 

end 

 

%this next step ensures that we obtain "common" measurements for each frame 

idx(1:Mhat, :) = idx(1:Mhat,1)*ones(1, T); 

 

%Obtain compressive measurements 

disp('Obtaining compressive menasurements'); 

z = zeros(M, T); 

for kk=1:T 

    z(:, kk) = Aoperator_noiselet( mycolon(ydata(:, :, kk)), idx(:, kk), idx2); 

end 

 

 

%%%%%%% 

% CSLDS Starts here 

%%%%%%%%%%%%%%%%%%%%%%% 

%GET STATE SEQUENCE 

disp('Estimating state sequence'); 

%We use a simple version of the Hankel matrix here (just the top block). 

zhat = z(1:Mhat, :); 

 

if (spSelect >= 4) 

    zhat = zhat - mean(zhat, 2)*ones(1, T); %Subtracting mean 

end 

 

hankmat = formHankelMatrix( zhat, hank_param); 

[Uz, Sz, Vz] = svd(hankmat); 

dhat = d; %Can use heuristics here 

Xhat = (Sz(1:dhat, 1:dhat))*Vz(:, 1:dhat)'; 

Xhat = [ Xhat Xhat(:, end)*ones(1, hank_param-1) ]; 

 

if (spSelect >= 4) 

    Xhat = [ ones(1, T); Xhat]; %The ones(1, T) incorporates the mean term 

    dhat = dhat + 1; 

end 

 

%GET OBSERVATION MATRIX 

wave.name = 'db4'; 

wave.level = 5; 

dwtmode('per'); 

[tmp, wave.Cbook] = wavedec2(randn(siz), wave.level, wave.name); 

 

%Function handles for the nosielet operator 

funMeas = @(Cvar) ANoiselet_Cmat(Cvar, idx, idx2, Xhat, N, dhat); 

funMeasTr = @(zVar)  ATNoiselet_Cmat(zVar, idx, idx2, Xhat, N, dhat); 

 

if (spSelect == 1)  %sparsity in a wavelet basis 

    funSparse = @(Svar) COperator_wavelet(Svar, wave, N, dhat, siz); 
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    funSparseTr = @(Cvar) CTOperator_wavelet(Cvar, wave, N, dhat, siz); 

end 

if (spSelect == 2) %sparsity in a identity basis 

    funSparse = @(x) x(:); 

    funSparseTr = @(x) x(:); 

end 

if (spSelect == 3) %sparisty in a DCT basis 

    funSparse = @(Svar) COperator_dct(Svar, N, dhat, siz); 

    funSparseTr = @(Cvar) CTOperator_dct(Cvar, N, dhat, siz); 

end 

if (spSelect == 4) %sparisty of mean in wavelet, rest in DCT 

    funSparse = @(Svar) COperator_wavelet_dct(Svar, wave, N, dhat, siz); 

    funSparseTr = @(Cvar) CTOperator_wavelet_dct(Cvar, wave, N, dhat, siz); 

end 

if (spSelect == 5) %sparsity of mean in wavelet, rest in identity 

    funSparse = @(Svar) COperator_wavelet_identity(Svar, wave, N, dhat, siz); 

    funSparseTr = @(Cvar) CTOperator_wavelet_identity(Cvar, wave, N, dhat, siz); 

end 

 

%form compound measurement operator 

A = @(x) funMeas(funSparse(x)); 

At = @(x) funSparseTr(funMeasTr(x)); 

 

Kmax = floor((M*T - Mhat*T)/(5*d)); %Feel free to change this 

K1 = min(2*Kmax, prod(siz)); %Sparsity of mean 

K2 = min(prod(siz), floor(Kmax*2/3)); %sparsity of the rest 

 

MaxIter = 10; %A small value is usally good enough 

tol = 1e-3; 

 

if (solver) 

    if (spSelect >= 4) 

        grp = [N dhat-1]; %this tells the cosamp code on the grouping pattern of the 

structured sparisty 

        s0 = Cosamp_mean_cslds(z(:), A, At, K1, K2, grp, MaxIter, tol, 'cgs'); 

    else 

        grp = [N dhat]; %this tells the cosamp code on the grouping pattern of the 

structured sparisty 

        s0 = Cosamp_groupsparsity(z(:), A, At, Kmax, grp, MaxIter, tol, 'cgs'); 

    end 

else 

    fSPG = @(x, mode) spg_wrapper(x, mode, A, At); 

    opt = spgSetParms; opt.iterations = 300; 

    opt.verbosity = 1; 

    groups = [ (1:prod(siz))' (prod(siz)+(1:prod(siz))')*ones(1, d)]; 

    [s0,r,g,info] = spg_group( fSPG, z(:), groups, norm(z(:))/100, opt ); 

end 

 

c0 = funSparse(s0); 

c0 = reshape(c0, [N dhat]); 

 

yrec = c0*Xhat; 

 

snr = -20*log10( norm(yrec(:) - ydata(:))/norm(ydata(:))); 
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psnr = -20*log10( norm(yrec(:) - ydata(:))/(sqrt(length(yrec(:)))*max(abs(ydata(:))))); 

 

 

disp(sprintf('Final results. \n Compression = %d x \n Reconstruction SNR = %3.3f dB ', 

Comp, -20*log10( norm(yrec(:) - ydata(:))/norm(ydata(:))))) 

disp(sprintf(' Peak SNR = % 3.3f dB',-20*log10( norm(yrec(:) - 

ydata(:))/(sqrt(length(yrec(:)))*max(abs(ydata(:))))))) 

 

 

ydata = reshape(ydata, siz(1), siz(2), 1,  []); 

yrec = reshape(yrec, siz(2), siz(2), 1, []); 

  



  57 

GROUP SPARSITY BASED CoSAMP 

function sCosamp = Cosamp_groupsparsity(b, A, At, K, grp, MaxIter, tol, method) 

%%%%%% 

% solves b = A(sCosamp) using a model-based cosamp algorithm 

% 

% b - observation vector 

% A, At - forward/adjoint in a functional form. Includes sparsifying operator 

% K1 - sparsity of the mean 

% K2 - sparsity of the remainder 

% grp - [N d] where N = number of pixels, d = LDS state dim (doesnt include 

%        mean term) 

% MaxIter - max number of cosamp iterations 

% tol - stopping criterion on normalized residue 

% method - for solving least sqyares problem below. use 'cgs' for conj 

%          gradient, 'lsqr' for least sqyare 

 

M = length(b); 

N = length(At(b)); 

 

y = b; 

iter = 0; 

S_old = []; 

S_tilde_old = []; 

lsqr_iter = 100; 

 

 

while ((iter < MaxIter) & (norm(y)/norm(b) > tol)) 

    iter = iter + 1; 

 

    %Support discovery 

    r = At(y); 

    r_model = signalToModel(r, grp); 

    [tmp, idx_m] = sort(r_model, 'descend'); 

    idx_m = idx_m(1:K); 

 

    idx = modelToSupp(idx_m, grp); 

 

    S_tilde = [S_old; idx(:) ]; 

 

 

    %Least Squares over S_tilde 

    if (strcmp(method, 'lsqr')) 

        funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N); 

        [a, flag] = lsqr(funcA, b, 1e-3, lsqr_iter); 

    end 

    if (strcmp(method, 'cgs')) 

        funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N); 

        funcB = @(x) funcA(funcA(x, 'notransp'), 'transp'); 

        [a , flag] = cgs(funcB, funcA(b, 'transp'), 1e-3, lsqr_iter); 

    end 

    if (flag == 1) 

        lsqr_iter = lsqr_iter*2 
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    end 

    stmp = zeros(N, 1); stmp(S_tilde) = a; 

    r_model = signalToModel(stmp, grp); 

 

    [tmp, idx_m] = sort(r_model, 'descend'); 

    idx_m = idx_m(1:K); 

 

    idx = modelToSupp(idx_m, grp); 

 

    s0 = zeros(N, 1); s0(idx) = stmp(idx); 

    y = b - A(s0); 

 

    err = norm(y)/norm(b); 

    disp(sprintf('Iter: %04d. Err: %2.5f. Diff: %d', iter, err, length(setdiff(idx, 

S_old)))); 

 

    if length(setdiff(idx, S_old)) < length(S_old)/50 

        disp('Converged'); 

        break; 

    end 

 

 

 

    S_old = idx; 

    S_tilde_old = S_tilde; 

 

 

end 

sCosamp = s0; 

 

function y = AHandle(x, t, A, At, Supp, N) 

if strcmp(t,'transp') 

    s = At(x); 

    y = s(Supp); 

elseif strcmp(t,'notransp') 

    s = zeros(N, 1); 

    s(Supp) = x; 

    y = A(s); 

end 

 

 

function y = signalToModel(x, grp) 

    x = x.^2; 

    x = reshape(x, grp); 

    y = sum(x, 2); 

 

function y = modelToSupp(x, grp) 

 

    x1 = x(:)*ones(1, grp(2)); 

    x2 = ones(length(x(:)),1)*(0:grp(2)-1); 

    y = x1+grp(1)*x2; 

    y = y(:);  
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CoSAMP MODEL BASED ALGORITHM-2 

function sCosamp = Cosamp_mean_cslds(b, A, At, K1, K2, grp, MaxIter, tol, method) 

%%%%%% 

% solves b = A(sCosamp) using a model-based cosamp algorithm 

% 

% b - observation vector 

% A, At - forward/adjoint in a functional form. Includes sparsifying operator 

% K1 - sparsity of the mean 

% K2 - sparsity of the remainder 

% grp - [N d] where N = number of pixels, d = LDS state dim (doesnt include 

%        mean term) 

% MaxIter - max number of cosamp iterations 

% tol - stopping criterion on normalized residue 

% method - for solving least sqyares problem below. use 'cgs' for conj 

%          gradient, 'lsqr' for least sqyare 

 

 

M = length(b); 

N = length(At(b)); 

 

 

y = b; 

iter = 0; 

S_old = []; 

S_tilde_old = []; 

lsqr_iter = 20; 

 

while ((iter < MaxIter) & (norm(y)/norm(b) > tol)) 

    iter = iter + 1; 

 

    %Support discovery 

    r = At(y); 

    r1 = r(1:grp(1)); r2 = r(grp(1)+1:end); 

 

    [tmp, idx1] = sort(abs(r1), 'descend'); 

    idx1 = idx1(1:K1); 

 

    r_model = signalToModel(r2, grp); 

    [tmp, idx_m] = sort(r_model, 'descend'); 

    idx_m = idx_m(1:K2); 

    idx2 = modelToSupp(idx_m, grp); 

 

    idx = [idx1(:); idx2(:)]; 

    S_tilde = [S_old; idx(:) ]; 

 

 

    %Least Squares over S_tilde 

    if (strcmp(method, 'lsqr')) 

        funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N); 

        [a, flag] = lsqr(funcA, b, 1e-3, lsqr_iter); 

    end 

    if (strcmp(method, 'cgs')) 
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        funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N); 

        funcB = @(x) funcA(funcA(x, 'notransp'), 'transp'); 

        [a , flag] = cgs(funcB, funcA(b, 'transp'), 1e-3, lsqr_iter); 

    end 

    if (flag == 1) 

        lsqr_iter = lsqr_iter*2 

    end 

 

    stmp = zeros(N, 1); stmp(S_tilde) = a; 

 

    stmp1 = stmp(1:grp(1)); stmp2 = stmp(grp(1)+1:end); 

 

    [tmp, idx1] = sort(abs(stmp1), 'descend'); 

    idx1 = idx1(1:K1); 

 

    r_model = signalToModel(stmp2, grp); 

 

    [tmp, idx_m] = sort(r_model, 'descend'); 

    idx_m = idx_m(1:K2); 

    idx2 = modelToSupp(idx_m, grp); 

 

    idx = [idx1(:); idx2(:)]; 

    s0 = zeros(N, 1); s0(idx) = stmp(idx); 

    y = b - A(s0); 

 

    err = norm(y)/norm(b); 

    %disp(sprintf('Iter: %04d. Err: %2.5f. Diff: %d', iter, err, length(setdiff(idx, 

S_old)))); 

    disp(sprintf('Iter: %04d. Err: %2.5f. Diff: %d', iter, err, length(setdiff(idx, 

S_old)))); 

    if length(setdiff(idx, S_old)) < length(S_old)/100 

        disp('Converged'); 

        break; 

    end 

 

 

    S_old = idx; 

    S_tilde_old = S_tilde; 

 

 

end 

sCosamp = s0; 

 

function y = AHandle(x, t, A, At, Supp, N) 

if strcmp(t,'transp') 

    s = At(x); 

    y = s(Supp); 

elseif strcmp(t,'notransp') 

    s = zeros(N, 1); 

    s(Supp) = x; 

    y = A(s); 

end 
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function y = signalToModel(x, grp) 

    x = x.^2; 

    x = reshape(x, grp(1), []); 

    y = sum(x, 2); 

 

function y = modelToSupp(x, grp) 

 

    x1 = x(:)*ones(1, grp(2)); 

    x2 = ones(length(x(:)),1)*(1:grp(2)); 

    y = x1+grp(1)*x2; 

    y = y(:); 
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LOAD DYNTEX DATA FROM FILE 

function ydata = loadDyntexDataset(fname, siz) 

 

 

fdir = dir([ fname '/*.jpg']); 

 

ydata = zeros(siz(1), siz(2), length(fdir)); 

for kk=1:length(fdir) 

    img = imread( [fname '/' fdir(kk).name ]); 

    img = double(img)/255; 

    img = mean(img, 3); 

 

    img = img(15+(1:256), 50+(1:256)); 

    img = imresize(img, siz, 'bilinear'); 

 

    ydata(:,:, kk) = img; 

end 

Published with MATLAB® R2015a 

  

http://www.mathworks.com/products/matlab
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