
 1

TABLE OF CONTENTS

Chapter 1 .. 6

INTRODUCTION ... 6

1.1. Background ... 6

1.2. Motivation of Research .. 8

1.3. Problem Statement .. 9

1.4. Objectives of Research ... 10

1.5. Organization of Thesis Document ... 10

1.6. Notations used in the thesis: ... 11

Chapter 2 .. 13

Compressive sensing(CS) and linear dynamical systems....................... 13

2.1 Fundamentals of CS .. 13

2.2 Compressive Sensing .. 16

2.3 Status of research in CS .. 17

2.4 Video modelling as linear dynamical systems 20

2.5 Linear Dynamical Systems .. 21

2.6 Summary ... 22

Chapter 3 .. 23

Compressive Sensing Video as Linear Dynamical System 23

3.1. Compressive sensing video ... 23

3.2. Video modelling as linear dynamical system 23

3.3. LDS-VCS Architecture ... 25

3.3.1. Measurement Model .. 25

3.3.2. State Sequence Estimation ... 26

 2

3.3.3. Observation Matrix estimates .. 27

3.3.4. Structured Sparsity for C ... 28

3.3.5. LDS with mean .. 30

Chapter 4 .. 32

Simmulation and results ... 32

4.1. Simulation environment ... 32

4.2. Resolution and Reconstruction time .. 33

4.3. Reconstruction with different compression ratios 38

4.4. Robustness to noise and reconstruction SNR 43

4.5. Comparison with Frame to Frame CS (FCS) protocol 45

Chapter 5 .. 47

Conclusion and Future Work .. 47

5. Conclusion ... 47

APPENDIX .. 50

REFERENCES .. 64

 3

LIST OF TABLES

Table Number Page

4-1: Summary of Resolution and Reconstruction Time .. 35

4-2 Reconstruction SNR at different Compression Ratios for figure 4-2. 38

4-3 Reconstruction SNR at different resolutions for figure 4-3. 40

4-4 Reconstruction SNR at different Compression Ratios for figure 4-4. 43

 4

LIST OF FIGURES

Figure Number Page

2-1: Mathematical overview of CS showing sensing and reconstruction

processes.. 15

2-2: Example of LDS and model that defines it... 18

3-1: LDS-VCS protocol Block diagram ... 23

3-2: Pesudo-code for the proposed Algorithm ..

4-1: Video ‘64cae10’ reconstructed at different resolutions with fixed

compression ratio ... 34

4-2: Reconstructions with fixed compression ratio and increasing resolution for

‘64ba910’ .. 36

4-3: Video reconstruction ‘64ce310’ with different compression ratios 39

4-4 Reconstruction SNR at different compression ratios of ‘64cc610’ 40

4-5: Reconstruction SNR Vs Common Measurement, accuracy of state

 sequence estimates ... 44

4-6: Reconstruction accuracy of Hankel matrix .. 45

4 7: (a-c) Reconstruction of ‘’6ammj00’ DynTex video using LDS-VCS

 and FCS: Comparison. (a) Ground Truth (b) LDS-VCS reconstruction

(c) FCS reconstruction .. 46

A-1: Reconstructed result for Dyntex ‘6amg500’ ... 51

A-2: Correspondix Observation and State transition Matrices

for ‘6amg500’ ... 52

 5

LIST OF ACRONYMS

Acronym Meaning

CS Compressive Sensing

LDS Linear Dynamical Systems

2D Two Dimensional

SNR Signal to Noise Ratio

SPC Single Pixel Camera

SMC Spatial Multiplexing Camera

TMC Temporal Multiplexing Camera

P2C2 Programable Pixel Compressive Camera

OMP Orthogonal Matching Pursuit

CoSAMP Compressive Sampling Matching Pursuit

N4SID Subspace State Space System Identification

PCA Principal Component Analysis

LED Light Emitting Diode

DynTex Dynamic Texture

DCT Discrete Cosine Transform

SVD Singular Value Decomposition

i.i.d Independent Identically distributed

 6

CHAPTER 1

INTRODUCTION

1.1. Background

Nyquist theorem is the cardinal principle of modern day digital communication

systems. The ground-breaking theory postulates that to reconstruct any signal

accurately and unambiguously it has to be sampled at rate that is twice the highest

frequency component of the signal. This criterion put strict constraints in higher

frequency spectrum sensing. Images and videos have highly redundant contents

that can be compressed using compression algorithms. The success of

compression algorithms led to the question, why sample at twice the rate when

during compression most of it will simply be discarded? This question was finally

answered by scientists in the form of introduction of new technique for sensing,

called the Compressive Sensing(CS) in 2006. Compressive Sensing, since its

introduction has seen massive research in various areas of application including

image and videos sensing at a rate much lower than the dictates of Nyquist criteria.

In this novel technique, compression and sensing is done in a single step. Single

step Compression and sensing plays vital role in terms of saving storage space

and reduction of transmission time. Another benefit of the technique is its

independent reconstruction algorithms that facilitate signal processing, image or

video reconstruction at the receiver side independent of the time of sensing.

Like the Nyquist that relies on knowledge of highest frequency component, the

compressive sensing theory rests on the assumption that the signal is either itself

 7

sparse or is sparse in another transform basis like the Discrete Cosine or the

Fourier etc.

Signal reconstruction in compressive sensing is governed by two conditions:

Sparsity is the first condition which requires the signal to be sparse in some

domain. Incoherence is the second condition which is applied through the

Restricted Isometric Property (RIP) [1][2].

Generally, Compressive sensing takes weighted linear combination of samples

also called compressive measurements in a basis different from the basis in which

the signal is known to be sparse. Emmanuel Candès et al, showed that number of

the compressive measurements can be small and still contain nearly all the useful

information required to reconstruct the image. The task of reconstructing the image

into requisite domain requires solving a system of underdetermined linear

equations. It is because the number of compressive measurements is smaller than

the number of pixels in the full image. The restriction that the initial signal is sparse,

enables solution of the underdetermined system. Sparsity is achieved by

minimizing the number of nonzero components of the solution. The 𝑙0-norm was

defined as the function counting the number of non-zero components of a vector

by Donoho, Candès et al. However, it was also proved by them that for many

problems 𝑙1-norm is equivalent to the 𝑙0-norm. A linear program is thus a much

easier and efficient way to determine 𝑙1-norm, compared with 𝑙0-norm, for which

efficient solution methods already exist. Over the years many algorithms like Basis

Pursuits have been developed that are faster than linear programming and also

preserve sparsity even in noisy environment.

 8

Sampling under the Nyquist differs from CS in three important aspects. First of all,

it considers infinite length and continuous-time signals as compared with CS, that

is based on mathematical theory for computing vectors having finite dimensions in

ℝ𝑛 . Second, instead of using time based sampling of the signal as in case of

Nyquist, inner products between the signal and more general test functions is used

to obtain measurements in the CS systems. Lastly, the methods of signal recovery

differentiate the two paradigms. Nyquist protocol employs sinc interpolation for

signal recovery based on a linear process with little computation and has a simple

interpretation. In CS, however, signal recovery is typically achieved using highly

nonlinear methods.

The applications of Compressive Sensing in image and signal processing are

immense. Apart from image processing the technique is a major contender for the

future 5G telecommunication networks.

Compressive sensing has been successfully applied to still images, medical

imaging, and sensors networks, however, its application in video sensing is still

under intensive research.

1.2. Motivation of Research

This research is intended to develop a novel algorithm for compressively

sensing videos by modelling them as linear dynamical systems. The two of the

major factors that are the motivation behind this research are success of

compression algorithms and characterization of dynamic textures as linear

dynamical systems. Firstly, the sensing videos compressively is motivated by the

success of video compression algorithms that indicate that videos are high

 9

redundant. Compressively sensing video in a single step implies that sensing and

compression can be done in a single step significantly reducing the amount of data.

It can thus lead to compelling new camera or sensors design, especially in

domains where sensing is inherently costly like the far infrared. Secondly, dynamic

textures, activity, and video clustering have been successfully modelled as Linear

Dynamical Systems (LDSs). It notably reduces the number of required parameters

to be estimated by offering low dimensional representations for otherwise high-

dimensional videos, thus reducing the amount of data that is needed to be sensed.

LDSs characterise the video signal as combination of time-varying and time-

invariant parameters. Its addresses the ephemeral nature of videos to a large

extent due to its generative nature that provides a prior for the evaluation of the

video in both forward and reverse time. The combination of the two techniques

thus results into an effective compressive sensing video protocol that addresses

both ephemeral and compressive nature of video signals.

1.3. Problem Statement

Presently, there are many compressive video sensing techniques that have

tried to address the fundamental problems being faced by videos sensed through

Spatial Multiplexing Cameras (SMC). First, ephemeral nature, i.e., scene changes

with each compressive measurement. Second, dimensionality of videos is much

higher as compared to static images. In case of SPCs it gets more complex as it

has only one sensor. This imperative dimension is missing from almost all

approaches for CS-based video recovery so far. The proposed methods,

appropriate for general scenes, consider scenes as time-invariant series of frames

 10

(i.e. video) instead of continuously changing scenes. Some are designed

specifically for time-varying periodic scenes and few exploit optical flows in CS

architecture based TMCs. Multi-scale sensing and sensing secluded pieces of

each frame rely on static models and ignore time –varying nature of videos. The

purpose is to define a frame work for CS videos that can address the ephemeral

nature of video.

1.4. Objectives of Research

This research inteds to review existing literature of the research work already

accomplished on compressive sensing of videos and then to propose a novel

protocol for compressively sensing videos modelled as linear dynamical

system(LDS). It intends to evaluate its performance like Compression Ratio (CR),

reduction in measurment rate compared with Nyquist rate, noise robustness as

reconstruction SNR against similar i.e.SMC based CS video algorithms.

1.5. Organization of Thesis Document

The thesis comprises of five chapters. Chapter 1 introduces the subject, its

novelty, importance, some research background, and motivations of research. It

also concisely states the problem and clearly mentions scopes of research.

Chapter 2 deals with the brief literature review of current research in the field of

Compressive Sensing, its applications in image and video sensing and

reconstruction, video compressive sensing methodologies and linear dynamical

systems.

Chapter 3 discusses the modalities of compressively sensing videos by modelling

them as linear dynamical systems.

 11

Experimental results and simulation results based on the proposed algorithm are

presented in chapter 4 along with the analyses and performance comparison with

another CS video algorithm. The thesis is concluded in chapter 5 with

recommendation for future direction of work.

1.6. Notations used in the thesis:

Matrices, vectors and scaler quantities are denoted by boldface italic

uppercase, boldface italic lowercase and normal italic letters respectively. [𝒛]𝒕

represent the value of 𝒛 at time t. Φ, Ψ are the measurement matrix and

sparsifying matrix respectively. ℝ represents set of real numbers. In [ℝ] 𝑀×𝑁 here

MxN is the order of the matrix having elements from real numbers. K is a number

of non-zero elements in a sparse vector. Estimated values are indicated by

accentuation [�̂�]. The superscript and subscript [.]𝐻
𝑇 indicate transpose and Hankel

matrix parameter. ‖. ‖𝑝 represents the 𝑙𝑝 − 𝑛𝑜𝑟𝑚.

 12

LITERATURE REVIEW

 13

CHAPTER 2

COMPRESSIVE SENSING(CS) AND LINEAR DYNAMICAL SYSTEMS

2.1 Fundamentals of CS

It is considered imperative to introduce fundamental terminologies and the

principles of the CS as well as Linear Dynamical Systems before their application

in this work. The important terms as defined in the ‘Introduction to Compressed

Sensing’ are reproduced below for effective comprehension of the subject [3].

‘Sparse Signal. A signal of length 𝑛 that can be represented by 𝑘 ≪ 𝑛 , non-zero

coefficients.

𝒍𝒑-norm. ‘The norm is defined for 𝑝 ∈ [1, ∝] as follows:

‖𝑥‖𝑝 = {
 (∑ |𝑥𝑖|

𝑝)𝑛
𝑖=1

1

𝑝 , 𝑝 ∈ [1,∞)

 max
𝑖=1,2,..,𝑛

|𝑥𝑖| , 𝑝 = ∞

Basis. A set {𝝓𝑖}𝑖=1
𝑛 is called a basis for set of real numbers ℝ𝑛if the vectors in the

set span ℝ𝑛 and are linearly independent. This implies that each vector in the

space has a unique representation as a linear combination of these basis vectors.

For any 𝑥 ∈ ℝ𝑛, there exist unique coefficients {𝑐𝑖}𝑖=1
𝑛 such that

𝑥 = ∑ 𝒄𝑖𝝓𝑖
𝑛
𝑖=1 (2.2)

Orthonormal Basis. It is an important special case of a basis defined as a set of

vectors {𝝓𝒊}𝑖=1
𝑛 satisfing the following:

〈𝝓𝒊, 𝝓𝑗〉 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

(2.1)

(2.3)

 14

It has the advantage that the coefficients 𝒄 can be easily calculated as

𝒄𝑖 = ⟨𝑥,𝝓𝒊⟩, 𝑜𝑟 𝒄 = 𝜱𝑇𝑥 (2.4)

Where 𝒄 is length n vector with entries 𝒄𝑖 and 𝜱 denote the n x n matrix with

columns given by 𝝓𝑖 .

Frame. It is defined as sets of possibly linearly dependent vectors. Frame is a set

of vectors {𝝓𝑖}𝑖=1
𝑛 in ℝ𝑑 , 𝑑 < 𝑛 corresponding to a matrix 𝚽 ∈ ℝ𝑑×𝑛 , such that for

all vectors 𝒙 ∈ ℝ𝑑 ,

𝑨 ‖𝒙‖2
2 ≤ ‖𝚽𝑇𝒙‖2

2 ≤ 𝑩 ‖𝒙‖2
2 (2.5)

with 0 < 𝑨 ≤ 𝑩 <∝.

p-Flat. The series of geometrical objects, point, line, plane and space from the

three-dimensional Euclidian geometry are extended and termed as 0-flat, 1-flat,

2-flat, 3-flat respectively and extended upto N-flats. These are boundary less

regions determined by 1, 2, 3, 4,…N+1 linearly independent points. A p-Flat is

determined by p+1 linearly independent points, and every q-Flat, with q<p, which

is determined by q+1 of these points, lies entirely within the p-Flat.

Ambient Space. It is defined as an N-Flat containing the considered p-flat and

q-flat as proper subset. i.e. p and q are less than N.

General Position. A set of M-points in N-dimensional ambient space is in general

position if no sub-collection of, at most, N points are linearly dependent i.e. iff any

p+2 of them do not lie on a p-Flat.

Null Space. It is the space of a matrix A that consist of all vectors z such that their

product is zero or null.

 15

𝒩(𝑨) = {𝒛 ∶ 𝑨𝒛 = 0} (2.6)

Solution Space. The solution space set of M-linear equations with N variables

SLE(M,N) is represented by the intersection of all M-hyperplanes ((N-1)-Flats,

which are solution spaces of particular linear equations) in the N-dimensional

ambient space.

Spark of the Matrix. The spark of a given matrix A is the smallest number of

columns of A that are linearly dependent.

Null Space Property. A matrix A satisfies the null space property (NSP) of order

k if there exists a constant C>0 such that

‖ℎ𝛬‖2 ≤ 𝐶
‖ℎ𝛬𝑐‖1

√𝑘
 ,

holds for all ℎ ∈ 𝒩(𝑨) and for all Λ such that |𝛬| ≤ 𝑘.

Restricted Isometric Property (RIP). A matrix A satisfies the restricted isometric

property (RIP) of order k if there exists 𝛿𝑘 ∈ (0,1) such that

(1 − 𝛿𝑘) ‖𝒙‖2
2 ≤ ‖𝑨𝒙‖2

2 ≤ (1 + 𝛿𝑘) ‖𝒙‖2
2

holds for all 𝒙 ∈ 𝛴𝑘. It means that if a matrix A satisfies the RIP of order 2k, then

it approximately preserves the distance between any pair of k-sparse vectors.

Coherence. The coherence of matrix A, μA is the largest absolute inner product

between any two columns 𝒂𝒊, 𝒂𝒋 of A:

𝜇(𝐴) = max
1≤𝑖<𝑗≤𝑛

|〈𝒂𝒊,𝒂𝒋〉|

‖𝒂𝒊‖2‖𝒂𝑗‖2
 .’

These definitions will help the reader understand the dynamics of mathematics

involved in compressive sensing. The whole procedure from sensing to

(2.7)

(2.8)

(2.9)

 16

reconstructions along with all variables and budgets has been summarised in the

following figure adopted from the ULM course material on CS [4].

Figure 2-1 Mathematical overview of CS

showing sensing and reconstruction

processes.

2.2 Compressive Sensing

CS states that a signal of the form 𝒂 ∈ ℝ𝑵 can be linearly measured at much

smaller sampling rate in the form,

b = Φ 𝒂 + ε , (2.10)

 17

and can be successfully recovered. Here Φ ∈ ℝ 𝑀×𝑁 represents the measurement

matrix, ε is the measurement noise and M < N [1,2]. The linear system of the form

𝒃 = Φ 𝒂 is under-determined and is poorly conditioned to estimate 𝒂 from the

measurements b. However, CS postulates that signal 𝒔 is sparse in a sparsifying

basis Ψ that is signal 𝒂 defined as 𝒂 = Ψ 𝒔, has K non-zero components at the

maximum. Hence, if the matrix ΦΨ satisfies the restricted isometry property (RIP)

then the signal 𝒂 can be precisely reconstructed from M = O (K log (N/K))

measurements [5]. Matrix ΦΨ satisfies the RIP when Ψ is an orthonormal basis

and the elements of the matrix Φ are i.i.d. samples from a sub-Gaussian

distribution. Finally, the solution of the convex optimization problem of the form as

in (2) can recover the signal 𝒂 from b.

min ‖𝒔‖1 | ‖b - ΦΨ𝒔 ‖2 ≤ 𝒆. (2.11)

Here 𝒆 is an upper bound on the measurement noise ε. The solution to (2.11) with

high probability is the required K-sparse solution. CS protocol has also

demonstrated that the sorted coefficients of the 𝒔 swiftly degenerate according to

a power-law in compressible signal [6]. Multiple algorithms exist that can solve

(2.11) e.g. [1,7]. Sparse approximation problems are also efficiently handled by

greedy algorithms like Orthogonal Matching Pursuits (OMP) [8] and CoSAMP [9].

A variation, model based CoSAMP, exploits fast convergence, computational

efficiency and simplicity of structural constraints like block sparsity [10].

2.3 Status of research in CS

Nyquist rate demands sensing of features at twofold the specific frequency.

However, Compressive Sensing (CS) facilitates reconstruction of signals, sparse

 18

in some basis, at a far lower sampling rate then the Nyquist criteria [1,2]. Nyquist

only takes into account the band-limitedness whereas CS exploits the structure

based on sparsity. This Nyquist feature results into costly sensors/camera designs

in non-visible spectrum. This research addresses sensing of videos through CS.

Videos are highly redundant as is evident from the success of compression

algorithms. Exploitation of compression and sensing in single step can lead to

innovative sensor designs especially in infrared and beyond. It can considerably

cut down sensed data and decrease costs. Sensors based on CS theory are

already in place. Spatial Multiplexing Cameras (SMC) boost spatial resolution

optically such as the single-pixel camera (SPC) [11] and the flexible voxels camera

[12]. Temporal Multiplexing Cameras (TMCs) boost temporal, resolution optically

like the P2C2 camera [13]. Interested readers may see Survey of compressive

video sensing [14] for details of sensors based on CS architecture. Replacing full-

frame sensor with far fewer optical sensors in non-visible wavelengths scene

acquisition is highly beneficial.

SMCs measure scenes many times successively for accurate sensing. The

approach delivers encouraging results for SPC and still images [11]. However, it

delivers poorly for videos acquisition. Video CS by SMCs faces two major

challenges; First, ephemeral nature, i.e., scene changes with each compressive

measurement. Second, dimensionality of videos is much higher as compared to

static images. In case of SPCs it gets more complex as it has only one sensor.

This imperative dimension is missing from almost all approaches for CS-based

video recovery (e.g., [15–19]). The proposed methods, appropriate for general

 19

scenes, consider scenes as time-invariant series of frames (i.e. video) instead of

continuously changing scenes. A noticeable exception is proposed in [20],

however, it is designed specifically for time-varying periodic scenes. CS-MUVI [21]

proposes sensing and recovery protocol based on optical flows.

Similarly, CS architecture based TMCs exploit motion estimates

[13,19,22,23] however, suffer a fundamental problem of ‘Chicken-and-egg’ [21].

Multi-scale sensing [14] and sensing secluded pieces of each frame [19] rely on

static models and ignore time –varying nature of videos. A Non-linear sensing

architecture that optimizes system performance is suggested in [24].

Sankaranarayanan et al in [25] proposed specialized dual-scale sensing DSS

matrix for robust initial scene estimates of lower spatial resolution videos sensed

through SMC.

An approach to tackle the challenges is to model videos as a parametric

problem. A parametric model like Linear Dynamical Systems (LDS) that fits most

classes of the videos simplifies video reconstruction to parameter estimation. CS

protocol for videos modeled as LDS is inspired by successful and extensive linear

modeling of dynamic textures [26,27,28]. High dimension videos can be

represented in much lower dimensions as LDS, hence reducing parameters to be

estimated and in turn the sensing data. LDS characterizes the videos as a mix of

dynamic/time varying and static/ time-invariant parameters. It also propagates a

prior for progression of video in both forward and reverse time. This allows us to

address the ephemeral nature of videos to a high degree.

 20

2.4 Video modelling as linear dynamical systems

One of the important class of parametric modeling of time-series is Linear

Dynamical Systems (LDS). Space-Time signals like traffic scenes [26], dynamic

textures [27], video inpainting and human activity [29], and multi camera tracking

[30] have widely been successfully realized as LDS. Application of LDS for precise

modeling in computer vision problems is also presented as survey in [31]. This

modelling of videos as time -indexed series of images will be exploited in this work.

Most approaches fit an LDS model to videos by first estimating lower-dimensional

embedded observations through principal component analyses (PCA) and then

learning state transition by capturing time-varying dynamics of video. Expectation-

Maximization (EM) [26], N4SID [32] and PCA-ID [33] are most prevalent

algorithms. The EM algorithm treats this as maximum likelihood estimation of

parameters that optimizes likelihood of observations. The N4SID algorithm

identifies subspace that optimizes solution for model parameters. PCA-ID

algorithm assumes that observation matrix and state transition matrix can be

separately estimated. The model parameters can thus be computed efficiently by

PCA. First, Space-filters provide estimates of the observation matrix and then

results are used by time-filters to determine transition matrix [27]. Figure 2-2

presents an example of LDS and the models that define it. Few frames of six

flashing LEDs from DynTex dataset [34], along with basis vectors are shown. Black

pixels show non-negative whereas white denote positive values. Predictability is

evident from smooth variations of state values.

 21

Figure 2-2 Example of LDS and model that

defines it.

2.5 Linear Dynamical Systems

System of linear equations has an important role in modern day technology.

These systems are immensely employed to model control systems, State

estimations, observability, single input single output systems(SISO), Multiple input

multiple output systems (MIMO). A system is said to be linearly dynamical if initial,

current state or future states can be estimated from a linear relationship [35]. A

system of one or more variables which evolve in time according to a given rule is

called a dynamical system. represented by the following system of equations in

discrete time;

 22

𝑋(𝑡 + 𝛥𝑡) = 𝐹(𝑋(𝑡)) (2.12)

𝑋𝑛+1 = 𝐹(𝑋𝑛) (2.13)

A linear dynamical system is one in which the rule governing the time-evolution of

the system involves a linear combination of all the variables. e.g.

𝑑𝑋

𝑑𝑡
= 𝐴𝑋 + 𝐵 (2.14)

2.6 Summary

This chapter reviews fundamental definitions that help better understand

the CS concepts. It also briefly sifts through the currently available literature that

is relevant to this work. Various video CS techniques along with the limitations

have been briefly mentioned. Similarly, Linear Dynamical Models and their

applications in successfully modelling the videos have also be briefly touched

upon.

 23

CHAPTER 3

COMPRESSIVE SENSING VIDEO AS LINEAR DYNAMICAL SYSTEM

3.1. Compressive sensing video

This work models video as time-indexed series of images. If 𝒂𝒕 is the still

image of video at time t then 𝒂𝑇 = { 𝒂1,𝒂2,𝒂3,………𝒂𝑇} is the video from 1 to T. The

𝒂𝒕 is also defined as ‘video frame’ at time t. The goal is to compressively sense

𝒃𝑡 = Φ𝑡𝒂𝑡 where 𝒃𝑡 , Φ𝑡 and 𝒂𝑡 are compressive measurements, sensing matrix

and video frame at time t. With series of compressive measurements

 𝒃𝑇 = { 𝒃1,𝒃2,𝒃3,………𝒃𝑇} it is tried to recover video 𝒂𝑇 = { 𝒂1,𝒂2,𝒂3,………𝒂𝑇}. The

focus will be SPC [26] since it exploits spatial multiplexing to the fullest but there

is no temporal multiplexing. Assuming that scene varies slowly with time, SPC

measures at each instant 𝒃𝑡 = ϕ𝑡
𝑇𝒂𝑡 where ϕ

𝑡
is a pseudo-random vector.

Successive measurements are grouped as of same frame of a video. This

supposition works well if either the motion in scene is slow or respective frame

measurements are scant in quantity. SPC architecture is most suitable for

re-designing cost effective sensors in higher spectrum like near and far infrared.

3.2. Video modelling as linear dynamical system

This work models video as time-indexed series of images. LDS model of

video consists of two steps. As a first step video frames are considered laying close

to d-dimensional subspace i.e. video frame can be represented as,

𝒂𝑡 ≈ 𝑪𝒛𝑡, (3.1)

at a time t; where 𝒛𝑡 is the state vector at time t and C is subspace basis. Second

step is modeled as linear evolution of the form,

 24

𝒛𝑡+1 ≈ 𝑺 𝒛𝑡, (3.2)

representing the predicted variations of route in d-dimensional subspace. Hence,

the LDS model equations for video are defined as,

𝒂𝑡 = 𝑪𝒛𝑡 + 𝜼𝑡 𝜼𝑡 ≈ 𝑵(0, 𝑷), (3.3)

𝒛𝑡+1 = 𝑺𝒛𝑡 + 𝜼"𝑡 𝜼"𝑡 ≈ 𝑵(0,𝑸). (3.4)

Here, 𝒛𝑡 ∈ ℝ
𝑑, in state-space dimension d, is the state vector at time t, C ∈ ℝ𝑁×𝑑

is the observation matrix, S ∈ ℝ𝑑×𝑑 is the state transition matrix and 𝒂𝑡 ∈ ℝ
𝑁 is

the observed measurements vector. Here, d ≪ N for videos considered in this

work, and 𝜼𝑡 , 𝜼"𝑡 are Gaussian noise vectors with zero mean and P, Q covariance

matrices belonging to ℝ𝑁×𝑁 𝑎𝑛𝑑 ℝ𝑑×𝑑 respectively. Gaussian noise is assumed for

simplicity and better results with dynamic textures [27].

The matrix pair (C,S) defines parametric model of video LDS. The unique

choices of C and sate-sequence 𝒛1:𝑇 in state-space are only possible in

𝑑 × 𝑑 linear transformation. Thus, any invertible matrix D defining LDS outlined

by (C,S), of the order 𝑑 × 𝑑 with sate sequence 𝒛1:𝑇 corresponds to LDS stated

by (CD, D-1SD) with state sequence

D-1𝒛1:𝑇= {D-1𝒛1, D
-1𝒛2 , D-1𝒛3,……, D-1𝒛𝑇}. (3.5)

Most approaches fit an LDS model to videos by first estimating lower-

dimensional embedded observations through principal component analyses (PCA)

and then learning S by capturing time-varying dynamics of 𝒂𝑇. Expectation-

Maximization (EM), N4SID and PCA-ID are most prevalent algorithms. The EM

algorithm treats this as maximum likelihood estimation of parameters that

optimizes likelihood of observations. The N4SID algorithm identifies subspace that

 25

optimizes solution for model parameters. PCA-ID algorithm assumes that

observation matrix C and state transition matrix S can be separately estimated.

The model parameters can thus be computed efficiently by PCA. First, Space-

filters provide estimates of the observation matrix C and then results are used by

time-filters to determine transition matrix S [27].

3.3. LDS-VCS Architecture

Linear Dynamical System-Video Compressive Sensing (LDS-VCS) protocol

is proposed in this work. This protocol is presented here and it is implementable

on single pixel camera (SPC) for videos modelled as LDS. It intends to capture the

model parameters C and 𝒛1:𝑇 subject to compressive measurements of the form

𝒃𝑡 = Φ𝑡𝒂𝑡= Φ𝑡C z𝑡, (3.6)

where C is static observation matrix of the LDS, Φ𝑡 is the sensing matrix, and

𝒂𝑡 𝑎𝑛𝑑 z𝑡 are corresponding video frames and states at time t. The compressive

measurements 𝒃1:𝑇 are thus stated in bilinear terms of unknown parameters C and

 z1:𝑇. Convex optimization techniques are typically unable to handle bilinear

unknowns, hence a two-step sensing technique is proposed called LDS-VCS. The

protocol is designed for compressively sensing and correspondingly recovering the

LDS.

3.3.1. Measurement Model

LDS-VCS model is summarized below: At time t, two sets of measurements

are made:

𝒃𝑡 = (
𝒃�̌�
𝒃�̃�
)=[

𝜱�̌�

𝜱�̃�

] 𝒂𝑡= Φ𝑡𝒂𝑡. 3.7)

 26

Here 𝒃�̌� ∈ ℝ�̌� and 𝒃�̃� ∈ ℝ
�̃� so that measurements of every frame are M = �̌� + �̃�.

In fact SPC takes only one measurement at t, but for slowly changing videos

grouping of successive measurements is done to make multiple measurements. It

holds true when sampling rate of SPC is higher compared to M. Two discreet

parts; the time-invariant Φ�̌� and time variant Φ�̃� together make up measurement

matrix in (5). We represent common measurements as 𝒃�̌� and innovative as 𝒃�̃� . A

two-step approach is used to find LDS parameters. First using common

measurements 𝒃1:�̌� , state sequence will be estimated and then the sequence

along with innovative measurements will be employed for recovery of observation

matrix C.

3.3.2. State Sequence Estimation

State sequence �̌�1:𝑇 is recovered through time-invariant part of the

measurement matrix, �̌�1:𝑇 . The basic preposition is that if 𝒂1:𝑇 generates

observations of LDS with system matrices [C,S] then the measurement �̌�1:𝑇 is the

observation of LDS with system matrices [�̌�𝑪, 𝑺] . State sequence estimation is

only possible from observations of LDS if LDS is observable [36], hence LDS

parameterized by [�̌�𝑪, 𝑺] must also be observable. This simplifies the problem

from state sequence estimation to system identification that can be resolved by

Singular Value Decomposition, (SVD) method of a block Hankel matrix of the

following from,

𝑯(�̌�1:𝑇,𝑑)
=

[

 �̌�1 �̌�2 ⋯

�̌�2 ⋰ ⋰
⋮ ⋰ ⋰

⋯ �̌�𝑇−𝑑+1
�̌�𝑇−𝑑+2

�̌�𝑑 ⋯ ⋯ �̌�𝑇−1 �̌�𝑇]

. (3.8)

 27

The state sequence estimates are calculated by [�̌�1:𝑇] = 𝑺𝑯𝑽𝑯
𝑇 given that

 SVD{𝑯(�̌�1:𝑇,𝑑)
}= 𝑼𝑯 𝑺𝑯 𝑽𝑯

𝑇 .

It is possible to estimate state sequence in all cases of number of measurements

taken at time t within dimension d where �̌� > 𝑑 𝑎𝑛𝑑 �̌� < 𝑑. It is true even when

�̌� < 1 [37].

3.3.3. Observation Matrix estimates

The relationship between observation matrix C and innovation or time-

variant measurements is linear i.e. �̃�𝒕 = �̃�𝒕𝑪�̂�𝒕. With state sequence already

estimated �̂�𝟏:𝑻 𝑎𝑛𝑑 𝑪 as time-invariant, innovative measurements can be accrued

to recreate a stable C. Innovative measurements �̃� required for each frame are

thus reduced substantially. This results in less error that is caused by motion

blurring. The C can be recovered using state sequence �̂�𝟏:𝑻 estimates using

convex problem as follows

𝒎𝒊𝒏∑ ‖ 𝜳𝑻𝒄𝑖‖1 | ∀𝑡 ‖𝒃𝑡 −𝜱𝑡𝑪�̂�𝑡 ‖2 ≤
𝒅

𝑖=1
 𝒆 (3.9)

The ith column of C is represented as 𝒄𝒊 and Ψ is sparsifying basis for columns of

C. The state sequence estimates generate structured sparsity pattern in support

of C. This structured sparsity is exploited in proposed recovery algorithm. All

compressive measurements 𝒃𝑡 of each frame of the video or image are used since

innovative and common measurements are both linear. Matrix C is linear in

compressive measurements and 𝑙1 or 𝑙2 optimization methods can recover C.

However, it is a matrix of order N x d. Thus, common measurements alone are

not enough unless �̃� is large. The block diagram of LDS-VCS is shown in

figure 3-1.

 28

Figure 3-1 LDS-VCS protocol Block diagram

3.3.4. Structured Sparsity for C

Each video frame like video or image is sparse in some transform basis like

Wavelet or Discrete Cosine Transform (DCT). Since C is basis of video frames,

columns of C are compressible in similar transform basis. Additionally, the columns

are also the principal components capturing the dominant motion pattern when

spatially correlated. Therefore, it is assumed that columns of C are compressible

in DCT /Wavelet domain. The C can be estimated by considering the convex

problem of the type formed in equation (3.9).

There is possibility here that video is not sparse in transform basis. This can be

handled using dictionary learning [38] provided training data is available. In case

of non-availability of training data 𝑙2 − 𝑛𝑜𝑟𝑚 based approach can be used.

The vague LDS definition and use of SVD in estimating state sequence adds

ambiguity and renders (3.9) convex problem ineffective to recover C. It introduces

ambiguity in the form [�̂�1:𝑇] ≈ 𝑳−1[𝒛1:𝑇]. Here L is an invertible matrix of the order

dxd. Consequently, the LDS leads us to �̂� = CL, a linearly transformed C. Now if

𝒂 1:𝑇

Fig. 2 LDS-VCS protocol Block Diagram.

�̌�1:𝑇

 29

the columns of C are K-sparse in 𝜳 with support $𝐤, its columns are dK-sparse

with similar support. The overall sparsity of �̂� increases to 𝑑2𝐾. The apparent

increase in sparsity is mitigated by the fact that columns of C have identical

support. Hence that is exploitable for recovery of C [39]. With �̂�1:𝑇 available we can

calculate matrix C by solving 𝒍𝟐 − 𝒍𝟏 mixed-norm optimization convex problem that

enhances group sparsity as follows.

𝒎𝒊𝒏∑ ‖ 𝒘𝑖‖2 | 𝑪 = 𝜳𝑾,∀𝑡, ‖𝒃𝑡 −𝜱𝑡𝑪�̂�𝑡 ‖2 ≤
𝑁
𝑖=1 𝒆. (3.10)

The matrix 𝑾 = 𝜳𝑇𝑪 has 𝒘𝑖 as the ith row of W and 𝜳 is the sparsifying basis of

columns in C. SPG-L1 [7] and model based CoSAMP [10] are some algorithms to

solve 𝒍𝟐 − 𝒍𝟏 problems efficiently. Algorithm-LDS_VCS_�̂� provides pseudocode

that uses union of sub-space model to group rows of 𝑾 = 𝜳𝑻𝑪 into single sub-

space to recover observation matrix C on the lines of (3.10).

A simple rule for recovery of C is that total compressive measurements should be

�̃� = 4 𝑑𝐾 𝑙𝑜𝑔 (
𝑁

𝐾
). (3.11)

Estimation of C over period of T instant implies that we have �̃�𝑇 time-variant

compressive measurements.

∴ �̃�𝑇 = 4 𝑑𝐾 𝑙𝑜𝑔 (
𝑁

𝐾
) (3.12)

⇒ �̃� = 4
𝑑𝐾

𝑇
𝑙𝑜𝑔 (

𝑁

𝐾
), (3.13)

assuming T= τ𝑓𝛿 where 𝑓𝛿 is sampling rate of SPC and τ is duration of video to be

sensed then,

�̃� = 4
𝑑𝐾

τ𝑓𝛿
𝑙𝑜𝑔 (

𝑁

𝐾
), (3.14)

 30

i.e. number of measurements are inversely proportional to the sampling rate of the

SPC for stable recovery of C. LDS-VCS protocol thus has highly supportive

conditions.

3.3.5. LDS with mean

Linear dynamical scenes are better modelled generally over static background in

the form:

𝒂𝑡 = 𝑪𝒛𝑡 + 𝝁. (3.15)

Algorithm LDS_VCS can be modified with two little changes to incorporate the

mean. Firstly, the SVD on the Hankel matrix 𝑯(�̌�1:𝑇,𝑑𝑔𝑢𝑒𝑠𝑠)
 can be modified in such

a way so that each row sums to zero to estimate state sequence �̂�1:𝑇. Here the

assumption is made that compressive measurement of μ, �̌�𝝁 is sample mean of

�̌�1:𝑇 . Secondly, given that μ and C can have different support i.e. they may not

necessarily have similar support, the optimization problem takes the following

form;

𝑚𝑖𝑛 ‖𝜳𝑇𝝁‖1 +∑ ‖ 𝒘𝑖‖2 | 𝑪 = 𝜳𝑾,∀𝑡, ‖�̃�𝑡 − �̃�𝑡(𝝁 + 𝑪�̂�𝑡)‖2 ≤
𝑁

𝑖=1
 𝒆. (3.16)

The model based CoSAMP algorithm defined in LDS-VCS can be modified to

incorporate the μ term, the mean. Additionally, the sparsity of mean is also required

to be defined a priori as 𝐾𝝁 = ‖𝜳𝑇𝝁‖0.

The pseudocode for the algorithm LDS-VCS for estimation of �̂� is given in figure

3-2:

 31

𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐿𝐷𝑆 − 𝑉𝐶𝑆 − �̂�

�̂� {𝜳, 𝐾, 𝒃𝑡, �̂�𝑡, 𝜱𝑡 , 𝑡 = 1…… . . 𝑇}

Notation:

Support of K largest elements of vector = $(vec, K)

Submatrix of X with rows indexed by Λ and all columns = 𝑋|𝛬,

Submatrix of X with columns indexed by Λ and all rows = 𝑋|, 𝛬

Initialization

 ∀𝑡, 𝜷𝑡 ← 𝜱𝑡𝜳

 ∀𝑡, 𝒗𝑡 ← 0 ∈ ℝ𝑀

 𝛬𝑜𝑙𝑑 ← 𝝓

While do (till stop conditions satisfied)

 𝑹 = ∑ 𝜷𝑡
𝑇𝒗𝑡𝑡 �̂�𝑡

𝑇 % Calculate signal proxy%

 𝑘 ∈ [1, . . , 𝑁], 𝒓(𝑘) = ∑ 𝑹2𝑑
𝑖=1 (𝑘, 𝑖) %Calculate energy in each row%

 𝛬 ← 𝛬𝑜𝑙𝑑 ∪ $(𝒓; 2𝐾) % identify support and merge%

 Find 𝑿 ∈ ℝ|𝛬|×𝑑 that maximize

 ∑ ‖𝑡 𝒃𝑡 − (𝜷𝑡)| ,𝛬𝑿�̂�𝑡 ‖2 % Estimate Least squares%

 𝒀|𝛬, ← 𝑿, 𝒀|𝛬, ← 0

 𝑘 ∈ [1, . . , 𝑁], 𝒚(𝑘) = ∑ 𝒀2𝑑
𝑖=1 (𝑘, 𝑖) % Find support %

 𝛬 ← $(𝒚;𝐾), 𝑺|𝛬, ← 𝑩|𝛬, , 𝑺|𝛬, ← 0

 �̂� = 𝜳𝑺 % re-form new estimates of C%

 ∀𝑡, 𝒗𝑡 ← 𝒃𝑡 ← 𝜷𝑡𝑺�̂�𝑡 % update residue%

 𝛬𝑜𝑙𝑑 ← 𝛬

End

Figure 3-2 Pseudo-code for the proposed Algorithm

 32

CHAPTER 4

SIMMULATION AND RESULTS

4.1. Simulation environment

The simulation results for modelling of videos as LDS and their recovery

using the proposed algorithm as described in LDS-VCS-�̂�, is presented.

Simulations on multiple aspects including compression ratio, recovery time and

noise robustness (reconstruction SNR) were performed. Reduction in

measurements rate viz-a-viz Nyquist rate was termed as compression ratio

represented as 𝑁/𝑀. Another parameter was the reconstruction SNR of videos.

The SNR was defined on the basis of ground truth video 𝒂𝟏:𝑻 and recovered video

𝒂 𝟏:𝑻 in dBs as

10 𝑙𝑜𝑔10 (
∑ ‖ 𝒂𝑡
𝑇
𝑡=1 ‖2

2

∑ ‖ 𝒂𝑡
𝑇
𝑡=1 − 𝒂 𝑡‖2

2). (4.1)

The test simulations were run on videos available in ‘DynTex’ dataset [34]. It is

because dynamical systems are better modelled on the static background. All

videos were LDS modeled as explained in chapter 3 for all simulations. Permuted

noiselets [20] having fast scalable implementation were used for measurement

matrices. The 2D DCT basis was used for sparsifying columns of C whereas 2D

wavelets basis were employed as the sparsifying basis for the mean. Algorithm

LDS_VCS was used for these results as sparsity of the columns of C was well

controlled by it. Equation (3.11) was referred to for choices of other values. The

protocol was simulated on laptop with a Core-i5 @ 2.5 GHz processor and 4 GB

RAM. MATLAB version R2015A was employed with no paralleling. LDS_VCS is

 33

compared with frame-by frame CS (FCS) that employs conventional CS methods

to recover each frame of video separately.

4.2. Resolution and Reconstruction time

Recovery of dynamic texture, ‘64cae10’ video of the DynTex [34] dataset is

depicted in figure 4.1. The video comprises of 560 frames. The reconstruction is

done with fixed compression ratio of x20 or 𝑁/𝑀 = 20 and with 𝑑 = 50. The figure

also reflects the SNR of reconstructed frames along with time taken to recover the

video. It is evident from 4.1 (b) to (e) that reconstruction performance increases

with increasing spatial resolution. As the compression ratio is kept fixed,

improvement is due to increasing number of compressive measurements at higher

resolution. Large number of measurements however, need an SPC with higher

rate of sampling. Further, the time taken to compute the higher resolutions videos

also increases with increasing spatial resolution

 34

Figure 4-1 (a-e) Video ‘64cae10’ reconstructed

at different resolutions with fixed compression

ratio

(a)

(b)

(c)

(d)

(e)

 35

The figure 4-1 (a) shows two of the ground truth frames from the video ‘64cae10’.

Subsequently 4-1 (b) to (e) represent reconstruction of the same frames with

increasing spatial resolution. The resolution in 4-1 (b) is 32x32, whereas in (c) it

is increased to 64x64, (d) is a frame of 128x128 and (e) depicts a reconstructed

frame of resolution 256x256. The reconstruction SNR increases with increasing

frame resolution from 10.11 dBs to 20 dBs to 22.06 dBs and finally 22.12 dBs from

(b) to (e) respectively. The table 4-1 summarizes the information.

Table 4-1 Summary of Resolution and Reconstruction Time

Figure Label Resolution Comp X

N/M

Recon SNR

(dBs)

Recon Time

(Sec)

4-1 (a) Ground Truth

4-1 (b) 32 x 32 X20 10.11 26.5

4-1 (c) 64 x 64 X20 20.00 51.8

4-1 (d) 128 x 128 X20 22.06 290

4-1 (e) 256 x 256 X20 22.12 1582

The reconstruction of another DynTex Dataset is reproduced in figure 4-2

along with the details of reconstruction parameters, the resulting

reconstruction SNR and the reconstruction time taken by the simulation.

 36

Figure 4-2 (a-c) Reconstructions with fixed compression ratio

and varying resolution of ‘64ba910’

(a)

(b)

(c)

 37

Figure 4-2 (d-e) Reconstructions with fixed compression ratio and

 increasing resolution for ‘64ba910’

Reconstruction of DynTex dataset ‘64ba910’ with a fixed compression ratio are

shown in figure 4-2 (a-e). The video has 250 frames and is reconstructed with a

compression ratio of 20x for all the recovered videos as shown in figure 4-2.

However, the resolution of each image varies from 32x32 to 256 x 256. The d was

kept fixed at 30. The various reconstruction SNRs for increasing resolution are

(d)

(e)

 38

listed in table 4-2. It is evident from the table 4-2 that the reconstruction

performance SNR improves with enhancement in the resolution. This is because

the increase in the number of compressive measurements. Hence, recovery of

videos at higher resolutions are dependent on the faster sampling rate of the single

pixel camera. It is also evident that the increasing spatial resolution increases the

time taken to compute the reconstructed video.

Table 4-2 Reconstruction SNR at different

Compression Ratios for figure 4-2.

Figure Label Resolution Comp X

N/M

Recon SNR

(dBs)

Recon Time

(Sec)

4-2 (a). 256x256 Ground Truth

4-2 (b). 256x256 20x 31.544 99

4-2 (c). 128x128 20x 31.262 28

4-2 (d). 64x64 20x 25.006 19

4-2 (e) 32x32 20x 20.830 16

4.3. Reconstruction with different compression ratios

The reconstruction of a video, ‘64ce310’, 6-blinking LED lights is

reproduced as figure 4-3. The referred number in commas is the name of the video

as it appears in the DynTex dataset. Reconstruction results of the single dynamic

textured video at different spatial resolutions and compression ratios are

 39

enunciated. The d for the reconstruction was 7 and the �̌� was 3d. Whereas the �̃�

was chosen such that 𝑁/ �̌� + �̃� preserves the desired compression ratio.

Figure 4-3 Video reconstruction ‘64ce310’ with

different compression ratios

It is clearly evident that finer details are well preserved for resolution of

256x256 pixels despite compression ratio of 100x. The values of the compression

ratio, spatial resolution and the reconstruction SNR are tabulated below in Table

4-3 for various labels in figure-4-3. Reconstruction SNR decreases with increasing

compression ratio for same input resolution.

b

c

d

e

a

 40

Table 4-3 Reconstruction SNR at different resolutions for figure 4-3.

Figure Label Resolution Comp X Rec SNR

4-2 (a). 128x128 Ground Truth

4-2 (b). 128x128 20x 22.7

4-2 (c). 128x128 50x 18.6

4-2 (d). 128x128 100x 16.3

4-2 (e). 256x256 100x 16.0

Another, result of video reconstruction with fixed resolution and increasing

compression ratio demonstrates the effectiveness of the proposed algorithm.

Figure 4-4 (a-e) reproduces the results of simulation for the reconstruction of

DynTex data set ‘ 64cc610’.

Figure 4-4 (a) Reconstruction SNR at different compression ratios

of ‘64cc610’.

(a)

 41

Figure 4-4 (b-d) Reconstruction SNR at different compression ratios

of ‘64cc610’.

(b)

(c)

(d)

 42

Figure 4-4 (e) Various compressed reconstructions of ‘64cc610’’

The figure 4-4 reproduces various reconstructed frames of the DynTex ‘64cc610’

video. The d for the reconstruction was 10 whereas the value of the �̌� was

selected as 3d. The value of the �̃� was selected so that 𝑁/ �̌� + �̃� maintains the

compression ratio as desired. The reconstructed results well preserve the details

even at a compression ratio of 100x for the resolution of 256x256. A decrease in

reconstruction SNR is observed with an increase in compression ratio while

keeping the video resolution constant i.e. at 128x128. However, the increased

resolution enhances the reconstruction SNR b almost 10 dBs when the resolution

is enhanced from 128x128 to 256 x256. This is because of the fact that more

sparse measurements are available with increasing resolution. The detailed data

is tabulated in table 4-4.

(e)

 43

Table 4-4 Reconstruction SNR at different

Compression Ratios for figure 4-4.

Figure Label Resolution Comp X Rec SNR

4-4 (a). 128x128 Ground Truth

4-4 (b). 256x256 100x 29.346

4-4 (c). 128x128 100x 17.535

4-4 (d). 128x128 50x 30.644

4-4 (e) 128x128 20x 31.932

4.4. Robustness to noise and reconstruction SNR

It is important to evaluate the resilience of protocol to noise. The input

SNR in dBs is defined here as;

Input SNR=10 𝑙𝑜𝑔10 [
(∑‖𝑎𝑡 ‖2

2)

(𝑇𝜎2)
], (4.2)

where 𝜎2 is the variance of the noise. State space estimates for various values of

common measurements �̌� and different SNRs were analyzed. For cases where

 �̌� ≥ 1 with 𝑑 = 10 and T= 500 frames the reconstruction SNR is high even for

small values of �̌� and low SNR. The system matrices and the state sequence were

generated randomly for each Monte-Carlo run. Reconstruction SNR vs common

measurements M per frame is plotted in figure-4.4. Each curve indicates different

level of measurement noise against specific input SNR. Figure is shown on next

page.

 44

Figure 4-5 Reconstruction SNR Vs Common

Measurement, accuracy of state sequence estimates.

Similarly, for cases where �̌� < 1 the simulation results are encouraging as the

Hankel matrix as envisaged in equation (3.8) is constructed for different missing

measurements. Reconstruction SNR of Hankel matrix is depicted in figure 4-5

against number of missing measurements. The plot suggests that Hankel matrix

can be reliably reconstructed even if 80 percent measurements are missing.

 45

Figure 4-6 Reconstruction accuracy of Hankel matrix.

4.5. Comparison with Frame to Frame CS (FCS) protocol

Another video reconstruction of a dynamic texture ‘6ammj00’ from the

DynTex dataset is shown in figure 4-6. The video is of 128X128 pixel resolution. It

is a fire texture of length 250 frames. Here the compression is N/M =234. Frame-

to-frame CS recovery (FCS) is completely infeasible at such high level of

compression. However, the LDS-VCS protocol still effectively recovered the video.

The comparatively smaller dynamic component of the scene: i.e. d =20 allowed

successful reconstruction of video even from limited measurements. LDS-VCS

thus depicts a very high SNR of 22.08 dBs as compared to SNR of only 11.75 dBs

for FCS for the recovered videos in figure 4-6. The reconstruction was performed

with d = 20 and K= 30. The figure shows sampling of frames of the (a) Ground

 46

truth video, (b) LDS-VCS reconstruction, and (c) frame-to-frame (FCS)

reconstruction.

Figure 4-7 (a-c) Reconstruction of ‘’6ammj00’ DynTex video

using LDS-VCS and FCS: Comparison. (a) Ground Truth (b) LDS-

VCS reconstruction (c) FCS reconstruction

a

b

c

 47

CHAPTER 5

CONCLUSION AND FUTURE WORK

5. Conclusion

The work evaluates a protocol for compressive video sensing of LDSs

based models of dynamic textures. The effectiveness of protocol using predictive

models is compared with frame by frame CS. It is a conclusion from above results

that LDS-VCS performs better in terms of reconstruction SNR when compared with

frame by frame CS. The protocol enables stable video reconstructions at very low

measurement rates for videos modelled as LDS. It estimates state sequence of

corresponding video even when number of common measurements are less than

1.

The thesis presents results of simulations, however, in real world such

results are a challenge to achieve. Here, only SPC imaging architecture was

considered. Amount of motion in the video and sampling rate of SPC limit

desirable compression and resolution results. The idea of ‘frame-rate’ is not

applicable in real-life scenes. However, frame rate of SPC is important and is

determined by amount of motion in video. The fast motion is not captured precisely

and there is motion blur in fast changing images. The sampling rate of SPC at a

desired compression ratio is dependent on the values of K, d and 𝜏 as in equation

(3.14). The sampling rate will thus need to increase linearly with N to maintain

similar compression level.

In existing technology, the sensing process is independent of recovery methods.

Random matrix-based CS measurement techniques also exhibit similar capability.

 48

Any development in recovery methods hence does not affect the sensing part i.e.

camera. The protocol presented in this work however, deviates from this property

as it translates bi-linear system model created through LDSs modelling to the two-

step measurement process. The property can however be utilised to develop new

cost-effective sensors in near and far infra-red range on the principle described in

this work.

 49

APPENDIX

 50

APPENDIX

MATLAB CODE FOR DEMO.m

clear all

close all

addpath('functions')

addpath('utility')

addpath('cosamp');

mycolon = @(x) x(:);

siz = [256 256]/2; %Spatial resolution

Comp = 40; %Compression

d = 20; %d = LDS state dimension. Reduce this as Comp is increased.

solver = 1; %1 - Cosamp, 0 - Basis pursuit-group sparsity

hank_param = 1; % Used in forming hankel matrix. This is the number of blocks in the

hankel matrix

%This variable selects the sparsity basis

% (spSelect == 1) %sparsity in a wavelet basis

% (spSelect == 2) %sparsity in a identity basis

% (spSelect == 3) %sparisty in a DCT basis

% (spSelect == 4) %sparisty of mean in wavelet, rest in DCT

% (spSelect == 5) %sparsity of mean in wavelet, rest in identity

spSelect = 4;

fname = 'dyntex/6amg500';

ydata = loadDyntexDataset(fname, siz);

[yrec, c0, Xhat, snr, psnr] = run_cslds(ydata, spSelect, Comp, d, hank_param, solver);

ydata = reshape(ydata, size(ydata, 1), size(ydata, 2), 1, size(ydata, 3));

figure(1)

subplot 121

montage(ydata(:,:,:,1:30:end));

title('Ground truth');

subplot 122

montage(yrec(:,:,:, 1:30:end));

title('Recovered video');

figure(2)

subplot 211

montage(reshape(c0*diag(1./(1e-10+max(c0)+max(-c0))), siz(1), siz(2),1,[]), [-1 1]/2);

colormap jet

axis image; axis off

title('Observation matrix');

subplot 212

 51

plot(Xhat')

title('state transition')

Obtaining compressive menasurements

Estimating state sequence

** DWT Extension Mode: Periodization **

Iter: 0001. Err: 0.10325. Diff: 13364

lsqr_iter =

 40

Iter: 0002. Err: 0.04736. Diff: 8050

Iter: 0003. Err: 0.04386. Diff: 4156

Iter: 0004. Err: 0.04177. Diff: 2307

Iter: 0005. Err: 0.04176. Diff: 600

Iter: 0006. Err: 0.04219. Diff: 361

Iter: 0007. Err: 0.04207. Diff: 354

Iter: 0008. Err: 0.04207. Diff: 244

Iter: 0009. Err: 0.04186. Diff: 149

Iter: 0010. Err: 0.04181. Diff: 166

Final results.

 Compression = 40 x

 Reconstruction SNR = 26.433 dB

 Peak SNR = 33.762 dB

Figure A-1 . Reconstructed result for Dyntex ‘6amg500’

 52

Figure A-2 Correspondix Observation and State transition
Matrices for ‘6amg500’

 53

LDS-VCS MATLAB CODE

function [yrec, c0, Xhat, snr, psnr] = run_cslds(ydata, spSelect, Comp, d, hank_param,

solver)

%%%%%Simulate LDS-VCS on a video

%%%%% Look at "Compressive Acquisition of Linear Dynamical Systems" Thesis

%%%%% submitted to MCS, NUST

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input

% ydata --- 3D video cube.

% spSelect --- Sparsity basis for the observation matrix

% (spSelect == 1) %sparsity in a wavelet basis

% (spSelect == 2) %sparsity in a identity basis

% (spSelect == 3) %sparisty in a DCT basis

% (spSelect == 4) %sparisty of mean in wavelet, rest in DCT

% (spSelect == 5) %sparsity of mean in wavelet, rest in identity

% Comp --- Compression factor.

% d --- LDS state space dimension

% solver --- 1 or 0

% 1 -- uses cosamp code in 'cosamp' folder

% 0 -- uses spg_bpdn (needs spgl1 package)

%

% Output

% yrec ---- reconstructed video

% c0 --- estimated observation matrix

% Xhat --- Estiamted state sequence

% snr, psnr --- SNR and Peak SNR

%

%

addpath('functions')

addpath('utility')

addpath('cosamp');

mycolon = @(x) x(:);

%loading dataset

siz = [size(ydata, 1) size(ydata, 2)];

N = prod(siz);

T = size(ydata, 3);

M = floor(N/Comp);

Mhat = 3*d; %Feel free to change this

Mtilde = M - Mhat;

if (Mtilde < 0)

 Mhat = floor(M/2);

 Mtilde = M - Mhat;

end

%%Get Compressive measurements

%I am using noiselets for speed

 54

%Noiselt code is in "utility" folder

idx2 = randperm(N); %column permutation

idx = zeros(M, T);

for kk=1:T

 tmp = randperm(N);

 idx(:, kk) = tmp(1:M);

end

%this next step ensures that we obtain "common" measurements for each frame

idx(1:Mhat, :) = idx(1:Mhat,1)*ones(1, T);

%Obtain compressive measurements

disp('Obtaining compressive menasurements');

z = zeros(M, T);

for kk=1:T

 z(:, kk) = Aoperator_noiselet(mycolon(ydata(:, :, kk)), idx(:, kk), idx2);

end

%%%%%%%

% CSLDS Starts here

%%%%%%%%%%%%%%%%%%%%%%%

%GET STATE SEQUENCE

disp('Estimating state sequence');

%We use a simple version of the Hankel matrix here (just the top block).

zhat = z(1:Mhat, :);

if (spSelect >= 4)

 zhat = zhat - mean(zhat, 2)*ones(1, T); %Subtracting mean

end

hankmat = formHankelMatrix(zhat, hank_param);

[Uz, Sz, Vz] = svd(hankmat);

dhat = d; %Can use heuristics here

Xhat = (Sz(1:dhat, 1:dhat))*Vz(:, 1:dhat)';

Xhat = [Xhat Xhat(:, end)*ones(1, hank_param-1)];

if (spSelect >= 4)

 Xhat = [ones(1, T); Xhat]; %The ones(1, T) incorporates the mean term

 dhat = dhat + 1;

end

%GET OBSERVATION MATRIX

wave.name = 'db4';

wave.level = 5;

dwtmode('per');

[tmp, wave.Cbook] = wavedec2(randn(siz), wave.level, wave.name);

%Function handles for the nosielet operator

funMeas = @(Cvar) ANoiselet_Cmat(Cvar, idx, idx2, Xhat, N, dhat);

funMeasTr = @(zVar) ATNoiselet_Cmat(zVar, idx, idx2, Xhat, N, dhat);

if (spSelect == 1) %sparsity in a wavelet basis

 funSparse = @(Svar) COperator_wavelet(Svar, wave, N, dhat, siz);

 55

 funSparseTr = @(Cvar) CTOperator_wavelet(Cvar, wave, N, dhat, siz);

end

if (spSelect == 2) %sparsity in a identity basis

 funSparse = @(x) x(:);

 funSparseTr = @(x) x(:);

end

if (spSelect == 3) %sparisty in a DCT basis

 funSparse = @(Svar) COperator_dct(Svar, N, dhat, siz);

 funSparseTr = @(Cvar) CTOperator_dct(Cvar, N, dhat, siz);

end

if (spSelect == 4) %sparisty of mean in wavelet, rest in DCT

 funSparse = @(Svar) COperator_wavelet_dct(Svar, wave, N, dhat, siz);

 funSparseTr = @(Cvar) CTOperator_wavelet_dct(Cvar, wave, N, dhat, siz);

end

if (spSelect == 5) %sparsity of mean in wavelet, rest in identity

 funSparse = @(Svar) COperator_wavelet_identity(Svar, wave, N, dhat, siz);

 funSparseTr = @(Cvar) CTOperator_wavelet_identity(Cvar, wave, N, dhat, siz);

end

%form compound measurement operator

A = @(x) funMeas(funSparse(x));

At = @(x) funSparseTr(funMeasTr(x));

Kmax = floor((M*T - Mhat*T)/(5*d)); %Feel free to change this

K1 = min(2*Kmax, prod(siz)); %Sparsity of mean

K2 = min(prod(siz), floor(Kmax*2/3)); %sparsity of the rest

MaxIter = 10; %A small value is usally good enough

tol = 1e-3;

if (solver)

 if (spSelect >= 4)

 grp = [N dhat-1]; %this tells the cosamp code on the grouping pattern of the

structured sparisty

 s0 = Cosamp_mean_cslds(z(:), A, At, K1, K2, grp, MaxIter, tol, 'cgs');

 else

 grp = [N dhat]; %this tells the cosamp code on the grouping pattern of the

structured sparisty

 s0 = Cosamp_groupsparsity(z(:), A, At, Kmax, grp, MaxIter, tol, 'cgs');

 end

else

 fSPG = @(x, mode) spg_wrapper(x, mode, A, At);

 opt = spgSetParms; opt.iterations = 300;

 opt.verbosity = 1;

 groups = [(1:prod(siz))' (prod(siz)+(1:prod(siz))')*ones(1, d)];

 [s0,r,g,info] = spg_group(fSPG, z(:), groups, norm(z(:))/100, opt);

end

c0 = funSparse(s0);

c0 = reshape(c0, [N dhat]);

yrec = c0*Xhat;

snr = -20*log10(norm(yrec(:) - ydata(:))/norm(ydata(:)));

 56

psnr = -20*log10(norm(yrec(:) - ydata(:))/(sqrt(length(yrec(:)))*max(abs(ydata(:)))));

disp(sprintf('Final results. \n Compression = %d x \n Reconstruction SNR = %3.3f dB ',

Comp, -20*log10(norm(yrec(:) - ydata(:))/norm(ydata(:)))))

disp(sprintf(' Peak SNR = % 3.3f dB',-20*log10(norm(yrec(:) -

ydata(:))/(sqrt(length(yrec(:)))*max(abs(ydata(:)))))))

ydata = reshape(ydata, siz(1), siz(2), 1, []);

yrec = reshape(yrec, siz(2), siz(2), 1, []);

 57

GROUP SPARSITY BASED CoSAMP

function sCosamp = Cosamp_groupsparsity(b, A, At, K, grp, MaxIter, tol, method)

%%%%%%

% solves b = A(sCosamp) using a model-based cosamp algorithm

%

% b - observation vector

% A, At - forward/adjoint in a functional form. Includes sparsifying operator

% K1 - sparsity of the mean

% K2 - sparsity of the remainder

% grp - [N d] where N = number of pixels, d = LDS state dim (doesnt include

% mean term)

% MaxIter - max number of cosamp iterations

% tol - stopping criterion on normalized residue

% method - for solving least sqyares problem below. use 'cgs' for conj

% gradient, 'lsqr' for least sqyare

M = length(b);

N = length(At(b));

y = b;

iter = 0;

S_old = [];

S_tilde_old = [];

lsqr_iter = 100;

while ((iter < MaxIter) & (norm(y)/norm(b) > tol))

 iter = iter + 1;

 %Support discovery

 r = At(y);

 r_model = signalToModel(r, grp);

 [tmp, idx_m] = sort(r_model, 'descend');

 idx_m = idx_m(1:K);

 idx = modelToSupp(idx_m, grp);

 S_tilde = [S_old; idx(:)];

 %Least Squares over S_tilde

 if (strcmp(method, 'lsqr'))

 funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N);

 [a, flag] = lsqr(funcA, b, 1e-3, lsqr_iter);

 end

 if (strcmp(method, 'cgs'))

 funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N);

 funcB = @(x) funcA(funcA(x, 'notransp'), 'transp');

 [a , flag] = cgs(funcB, funcA(b, 'transp'), 1e-3, lsqr_iter);

 end

 if (flag == 1)

 lsqr_iter = lsqr_iter*2

 58

 end

 stmp = zeros(N, 1); stmp(S_tilde) = a;

 r_model = signalToModel(stmp, grp);

 [tmp, idx_m] = sort(r_model, 'descend');

 idx_m = idx_m(1:K);

 idx = modelToSupp(idx_m, grp);

 s0 = zeros(N, 1); s0(idx) = stmp(idx);

 y = b - A(s0);

 err = norm(y)/norm(b);

 disp(sprintf('Iter: %04d. Err: %2.5f. Diff: %d', iter, err, length(setdiff(idx,

S_old))));

 if length(setdiff(idx, S_old)) < length(S_old)/50

 disp('Converged');

 break;

 end

 S_old = idx;

 S_tilde_old = S_tilde;

end

sCosamp = s0;

function y = AHandle(x, t, A, At, Supp, N)

if strcmp(t,'transp')

 s = At(x);

 y = s(Supp);

elseif strcmp(t,'notransp')

 s = zeros(N, 1);

 s(Supp) = x;

 y = A(s);

end

function y = signalToModel(x, grp)

 x = x.^2;

 x = reshape(x, grp);

 y = sum(x, 2);

function y = modelToSupp(x, grp)

 x1 = x(:)*ones(1, grp(2));

 x2 = ones(length(x(:)),1)*(0:grp(2)-1);

 y = x1+grp(1)*x2;

 y = y(:);

 59

CoSAMP MODEL BASED ALGORITHM-2

function sCosamp = Cosamp_mean_cslds(b, A, At, K1, K2, grp, MaxIter, tol, method)

%%%%%%

% solves b = A(sCosamp) using a model-based cosamp algorithm

%

% b - observation vector

% A, At - forward/adjoint in a functional form. Includes sparsifying operator

% K1 - sparsity of the mean

% K2 - sparsity of the remainder

% grp - [N d] where N = number of pixels, d = LDS state dim (doesnt include

% mean term)

% MaxIter - max number of cosamp iterations

% tol - stopping criterion on normalized residue

% method - for solving least sqyares problem below. use 'cgs' for conj

% gradient, 'lsqr' for least sqyare

M = length(b);

N = length(At(b));

y = b;

iter = 0;

S_old = [];

S_tilde_old = [];

lsqr_iter = 20;

while ((iter < MaxIter) & (norm(y)/norm(b) > tol))

 iter = iter + 1;

 %Support discovery

 r = At(y);

 r1 = r(1:grp(1)); r2 = r(grp(1)+1:end);

 [tmp, idx1] = sort(abs(r1), 'descend');

 idx1 = idx1(1:K1);

 r_model = signalToModel(r2, grp);

 [tmp, idx_m] = sort(r_model, 'descend');

 idx_m = idx_m(1:K2);

 idx2 = modelToSupp(idx_m, grp);

 idx = [idx1(:); idx2(:)];

 S_tilde = [S_old; idx(:)];

 %Least Squares over S_tilde

 if (strcmp(method, 'lsqr'))

 funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N);

 [a, flag] = lsqr(funcA, b, 1e-3, lsqr_iter);

 end

 if (strcmp(method, 'cgs'))

 60

 funcA = @(x,t) AHandle(x, t, A, At, S_tilde, N);

 funcB = @(x) funcA(funcA(x, 'notransp'), 'transp');

 [a , flag] = cgs(funcB, funcA(b, 'transp'), 1e-3, lsqr_iter);

 end

 if (flag == 1)

 lsqr_iter = lsqr_iter*2

 end

 stmp = zeros(N, 1); stmp(S_tilde) = a;

 stmp1 = stmp(1:grp(1)); stmp2 = stmp(grp(1)+1:end);

 [tmp, idx1] = sort(abs(stmp1), 'descend');

 idx1 = idx1(1:K1);

 r_model = signalToModel(stmp2, grp);

 [tmp, idx_m] = sort(r_model, 'descend');

 idx_m = idx_m(1:K2);

 idx2 = modelToSupp(idx_m, grp);

 idx = [idx1(:); idx2(:)];

 s0 = zeros(N, 1); s0(idx) = stmp(idx);

 y = b - A(s0);

 err = norm(y)/norm(b);

 %disp(sprintf('Iter: %04d. Err: %2.5f. Diff: %d', iter, err, length(setdiff(idx,

S_old))));

 disp(sprintf('Iter: %04d. Err: %2.5f. Diff: %d', iter, err, length(setdiff(idx,

S_old))));

 if length(setdiff(idx, S_old)) < length(S_old)/100

 disp('Converged');

 break;

 end

 S_old = idx;

 S_tilde_old = S_tilde;

end

sCosamp = s0;

function y = AHandle(x, t, A, At, Supp, N)

if strcmp(t,'transp')

 s = At(x);

 y = s(Supp);

elseif strcmp(t,'notransp')

 s = zeros(N, 1);

 s(Supp) = x;

 y = A(s);

end

 61

function y = signalToModel(x, grp)

 x = x.^2;

 x = reshape(x, grp(1), []);

 y = sum(x, 2);

function y = modelToSupp(x, grp)

 x1 = x(:)*ones(1, grp(2));

 x2 = ones(length(x(:)),1)*(1:grp(2));

 y = x1+grp(1)*x2;

 y = y(:);

 62

LOAD DYNTEX DATA FROM FILE

function ydata = loadDyntexDataset(fname, siz)

fdir = dir([fname '/*.jpg']);

ydata = zeros(siz(1), siz(2), length(fdir));

for kk=1:length(fdir)

 img = imread([fname '/' fdir(kk).name]);

 img = double(img)/255;

 img = mean(img, 3);

 img = img(15+(1:256), 50+(1:256));

 img = imresize(img, siz, 'bilinear');

 ydata(:,:, kk) = img;

end

Published with MATLAB® R2015a

http://www.mathworks.com/products/matlab

 63

REFERENCES

 64

REFERENCES

[1] E. J. Candes, J. Romberg, and T. Tao, ‘Robust uncertainty principles:
Exact signal reconstruction from highly in-complete frequency
information,’ IEEE Trans. Inf. Theory, vol. 52, pp. 489–509, Feb. 2006.

[2] D. L. Donoho, ‘Compressed sensing,’ IEEE Trans. Inf. Theory, vol. 52,
pp. 1289–1306, Apr. 2006.

[3] M.A. Davenport, et al., Introduction to Compressed Sensing. Preprint 93.1
(2011): 2 Available:
 http://www.dfg-spp1324.de/download/preprints/preprint093.pdf

[4] D. E. Lazich, (2014, 23 April). Compressed Sensing- Efficient Information
Acquisition. Available:
 http://www.uni-ulm.de/in/nt/teaching/lectures/summer-2014/nt-cs.html

[5] R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, ‘A simple proof
of the restricted isometry property for random matrices’, Constr. Approx.,
28 (2008), pp. 253–263.

[6] J. Haupt and R. Nowak, ‘Signal reconstruction from noisy random
projections’, IEEE Trans. Inf. Theory, 52 (2006), pp. 4036–4048.

[7] E. van den Berg and M. P. Friedlander, ‘Probing the pareto frontier for
basis pursuit solutions’, SIAM J. Scientific Comp., 31 (2008), pp. 890–
912.

[8] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, ‘Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition’, in Asilomar Conf. Signals Sys. Comp., Nov. 1993.

[9] D. Needell and J. A. Tropp, Cosamp: ‘Iterative signal recovery from
incomplete and inaccurate samples’, Appl. Comp. Harm. Anal., 26 (2009),
pp. 301–321.

[10] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, ‘Model-based
compressive sensing’, IEEE Trans. Inf. Theory, 56 (2010), pp. 1982–
2001.

 65

[11] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,”
IEEE Signal Process. Mag., vol. 25, pp. 83–91, Mar. 2008.

[12] M. Gupta, A. Agrawal, A. Veeraraghavan, and S. Narasimhan, “Flexible
voxels for motion-aware videography,” in Euro. Conf. Comp. Vision,
(Crete, Greece), Sep. 2010.

[13] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable
pixel compressive camera for high speed imaging,” in IEEE Conf. Comp.
Vision and Pattern Recog, (Colorado Springs, CO, USA), June 2011.

[14] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan, C. Studer, A.
Veeraraghavan, and M. B. Wakin, “Compressive video sensing:
Algorithms, architectures, and applications” IEEE Signal Process. Mag.,
vol. 34, pp. 52–66, Jan. 2017.

[15] J. Y. Park and M. B. Wakin, “A multiscale framework for compressive
sensing of video,” in Pict. Coding Symp., (Chicago, IL, USA), May 2009.

[16] A. C. Sankaranarayanan, P. Turaga, R. Baraniuk, and R. Chellappa,
“Compressive acquisition of dynamic scenes,” in Euro. Conf. Comp.
Vision, (Crete, Greece), Sep. 2010.

[17] N. Vaswani, “Kalman filtered compressed sensing,” in IEEE Conf. Image
Process., (San Diego, CA, USA), Oct. 2008.

[18] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D.
Takhar, K. F. Kelly, and R. G. Baraniuk, “Compressive imaging for video
representation and coding,” in Pict. Coding Symp., (Beijing, China), Apr.
2006.

[19] S. Mun and J. E. Fowler, “Residual reconstruction for block- based
compressed sensing of video,” in Data Comp. Conf., (Snowbird, UT,
USA), Apr. 2011.

[20] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strobing
photography: Compressive sensing of high speed periodic events,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 33, pp. 671–686, Apr. 2011.

 66

[21] A. C. Sankaranarayanan, C. Studer, R. G. Baraniuk, “CS-MUVI: Video
compressive sensing for spatial multiplexing cameras,” in proceedings of
IEEE Intl. Conf. Comp. Photography, (Seattle, WA, USA) ICCP-2012,
DOI:10.1109/ICCPhot.2012.6215212

[22] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a
single coded exposure photograph using a learned over-complete
dictionary,” in IEEE Intl. Conf. Comp. Vision, (Barcelona, Spain), Nov.
2011.

[23] D. Mahajan, F. C. Huang, W. Matusik, R. Ramamoorthi, and P.
Belhumeur, “Moving gradients: A path-based method for plausible image
interpolation,” ACM Trans. Graph., vol. 28, pp. 1–42, Aug. 2009

[24] A. Mousavi, A. Patel, and R. G. Baraniuk, “A deep learning approach to
structured signal recovery,” in Proc. 53rd Annu. Allerton Conf.
Communication, Control, and Computing, Monticello, IL, 2015.

[25] A. C. Sankaranarayanan, L. Xu, C. Studer, Y. Li, K. F. Kelly, and R. G.
Baraniuk, ‘Video compressive sensing for spatial multiplexing cameras
using motion-flow models’, SIAM J. Imag. Sci., vol. 8, no. 3, pp. 1489–
1518, 2015

[26] A. B. Chan and N. Vasconcelos, ‘Probabilistic kernels for the classification
of auto-regressive visual processes’, in IEEE Conf. Comp. Vision and
Pattern Recog, June 2005.

[27] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, ‘Dynamic textures’, Intl.
J. Comp. Vision, 51 (2003), pp. 91–109.

[28] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, ‘Dynamic texture
recognition’, in IEEE Conf. Comp. Vision and Pattern Recog, Dec. 2001.

[29] T. Ding, M. Sznaier, and O. I. Camps, ‘A rank minimization approach to
video inpainting’, in IEEE Intl. Conf. Comp. Vision, 2007

[30] M. Ayazoglu, B. Li, C. Dicle, M. Sznaier, and O. I. Camps, ‘Dynamic
subspace-based coordinated multicamera tracking’, in IEEE Intl. Conf.
Comp. Vision, 2011

 67

[31] M. Sznaier, ‘Compressive information extraction: A dynamical systems
approach, in System Identification’, vol. 16, 2012, pp. 1559–1568

[32] P. Van Overschee and B. De Moor, ‘N4SID: Subspace algorithms for the
identification of combined deterministic-stochastic systems’, Automatica,
30 (1994), pp. 75–93.

[33] S. Soatto, G. Doretto, and Y. N. Wu, ‘Dynamic textures’, in IEEE Intl. Conf.
Comp. Vision, July 2001

[34] R. Peteri, S. Fazekas, and M.J. Huiskes, ‘DynTex: A comprehensive
database of dynamic textures’, Pattern Recog. Letters, 31 (2010), pp.
1627–1632.

[35] K. Shah, (2017, May). Introduction to linear Dynamical Systems.
Available: http://ee263.stanford.edu/lectures.html

[36] R. W. Brockett, ‘Finite Dimensional Linear Systems’, Wiley, 1970.

[37] A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk,
‘Compressive Acquisition of Linear Dynamical Systems’, SIAM J. Imaging
Sci. 6-4 (2013), pp. 2109-2133.

[38] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T. W. Lee, and T.
J. Sejnowski, ‘Dictionary learning algorithms for sparse representation’,
Neural Comp., 15 (2003), pp. 349–396

[39] M. F. Duarte, M. B. Wakin, D. Baron, S. Sarvotham, and R. G. Baraniuk,
‘Measurement bounds for sparse signal ensembles via graphical models’,
IEEE Trans. Inf. Theory, 59 (2013), pp. 4280–4289

