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CHAPTER 1 

INTRODUCTION 

 

This chapter concentrates on recent trends in statistical image processing 

arena mainly image modelling and signal processing. Both these trends have 

huge applications in fast transmission of accurate and reliable information 

(image, audio and video). The real world signals are random in nature and 

they cannot be modelled by traditional Fourier transform techniques due to 

their time-varying limitations. To counter these spatial domain problems, 

wavelet transform recognized itself as better tool for statistical signal 

processing [1]. Wavelet transform performs a variety of tasks on real time 

signals such as signal estimation, detection, synthesis and most importantly 

compression [2]. 

In the field of medical image processing, two main challenges that occur are; 

image enhancement and image reconstruction. Image enhancement deals 

with getting a better quality image than original image. Image reconstruction 

handles refinement of corrupt image and obtains noise free image by using 

previous observations. In both scenarios, a clean image for medical 

diagnostic purposes is obtained by using image denoising. Image denoising is 

the mechanism of removing noise artefacts from desired image while keeping 

key attributes of image. 

Wavelet based image denoising algorithms are emerged as powerful tools to 

obtain noise suppressed images. These wavelet based techniques perform 

scalar transforms on individual wavelet coefficients by exploiting inter-scale 

dependencies among wavelet coefficients. The objective of this thesis is to 
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develop a wavelet based denoising scheme using Hidden Markov Model 

(HMM) that will capture the non-Gaussian statistics of wavelet coefficients by 

using intrinsic characteristics of wavelet transform. 

1.1. Existing Research Techniques 

Medical images are produced by techniques such as Magnetic Resonance 

Imaging (MRI), X-ray, Computed Tomography (CT) and Ultrasounds. These 

images can be corrupted by noise during acquisition or transmission. 

Denoising of medical images especially ultrasounds and CT scans that are 

corrupted by non-Gaussian noise is a very difficult task since finer details in a 

medical image enclosing diagnostic information should not be destroyed 

during noise suppression. Current wavelet based denoising models exploits 

primary properties of wavelet transform that are; locality, compression and 

multiresolution. These models treats wavelet coefficients as statistically 

independent or jointly Gaussian [3]. For signal estimation, research 

techniques mostly revolves around capturing the non-Gaussian 

characteristics of wavelet coefficients and ignores their inter-scale 

dependencies [4]. 

Image processing experts usually lacks the medical expertise to distinguish 

the diagnostically relevant information from denoising results. For instance, in 

case of CT scans, speckle noise may contain useful information for medical 

professionals [5]. Speckle suppression is achieved by enhancing edges of 

image by using curvelet denoising and Wavelet based image fusion [6]. Thus, 

robust and versatile denoising techniques are needed instead of methods that 

are optimal under very specific conditions. This notion of robustness for 

medical images denoising algorithms is proposed in [7]. A wavelet based 
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technique employing maximum a posteriori estimation (MAP) for speckle 

noise reduction in medical images while retaining image boundaries is 

proposed in [6] and [7]. In spatial domain, commonly used medical image 

denoising techniques are Weiner filter, bilateral filter and hybrid median filter 

[8]. In medical diagnosis, ultrasonography is regarded to be one of the most 

powerful medical tools for imaging superficial muscles and ligament tissues. It 

is preferred over other image processing techniques because of its portability, 

versatility and non-invasive nature. But ultrasound images are usually 

corrupted with multiplicative noise known as ‘speckle’ caused by scattering 

phenomenon that degrades major image quality. X-Ray is good for visualizing 

bone fractures and joint spaces. X-Ray images are usually corrupted by 

Poisson distributed noise [9]. Many wavelet based denoising techniques have 

been developed to address noise removal especially speckle suppression in 

case of CT scans. In [7], Pizurica et al. proposed a robust multi-scale wavelet 

technique based on generalized likelihood ratio for speckle removal from 

medical image. For image restoration, Discrete Wavelet Transform (DWT) is 

used because of its sparsity and multiresolution properties [10]. To avoid shift-

sensitivity of DWT, a Dual Tree Complex Daubechies Wavelet Transform 

based denoising technique is proposed in [11]. A wavelet based Hidden 

Markov Model for effective image denoising is developed in [12]. A 

hierarchical Hidden Markov Tree Model (HHMT) for medical image denoising 

that uses contextual Hidden Markov Model to avoid time consuming HMT 

parameters training process is proposed in [13], [14], [15]. In [16], a 

thresholding technique using neighbouring wavelet statistics for medical 

image denoising is proposed. MRI is used for visualizing soft tissues, 
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ligaments and intervertebral discs. For MRI, the complex MRI components are 

usually modeled by additive white-Gaussian noise [17], [18]. 

1.2. Synopsis/Thesis Statement 

The goal of this research is to develop an efficient wavelet based denoising 

technique using Hidden Markov Model for noise corrupted medical images. 

This denoising algorithm uses Probabilistic Graphical Model and exploits quad 

tree structure of multidimensional Gaussian Mixture Models known as Hidden 

Markov Tree (HMT) to capture non-Gaussian statistics and inter-scale 

dependencies of medical images in wavelet domain. 

1.3. Objectives of Research 

The primary objective of this thesis is to develop wavelet based denoising 

algorithm using Hidden Markov Model for 2D medical images. The proposed 

model captures non-Gaussian statistics of wavelet coefficients and their inter-

scale dependencies. The noise distributions of images are represented by 

Probabilistic Graphical Models in wavelet domain. The secondary objective is 

to apply Expectation Maximization (EM) algorithm on Hidden Markov Tree 

model to achieve denoising. 

 

1.4. Applied Research Methodology 

In this thesis, research is carried out in two stages: 

 In first stage, primary properties of wavelet transform are achieved. 

Then secondary properties of wavelet transform are captured using 

Probabilistic Graphical Models. 

 In second stage, an iterative optimization algorithm (EM) combined 

with Hidden Markov Model is used for medical image denoising. 
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1.5. Scope of Research 

Medical image denoising is critical when an image is transmitted to medical 

specialist at remote location for medical diagnosis. An effective denoising 

model is needed so that diagnostically important information embedded in 

medical image don’t get destroyed during denoising process. The proposed 

framework based on Hidden Markov Model reduces computational complexity 

as compared to traditional wavelet based denoising techniques. The proposed 

model can also be used for image compression, synthesis and estimation. 

1.6. Use in Other Areas of Application 

The proposed framework has found its usage in variety of applictions such as; 

 Image compression 

 Video denoising 

 For synthesis of sound in audio signal processing 

 For synthesis of speech in speech signal processing 

 In image processing for features extraction 

1.7. Organization of Thesis 

The thesis consists of following chapters; 

 Chapter 1 gives introduction of thesis topic, research background, 

problem statement, used research methodology, scope and objectives 

of proposed work. 

 In Chapter 2 provides literature review of Discrete Wavelet Transform 

(DWT) and image decomposition carried out by DWT. 

 Chapter 3 explains Hidden Markov Models, their properties, 

characteristics and implementation. 
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 Chapter 4 provides in depth analysis of proposed denoising framework 

for medical images. 

 Chapter 5 gives experimental results based on the proposed denoising 

framework and evaluation of its performance by using real world 

medical images. 

 Chapter 6 points out future work and give thesis conclusion. 

  



  7 

CHAPTER 2 

DISCRETE WAVELET TRANSFORM 

 

2.1 Introduction of Discrete Wavelet Transform 

 

Fourier transform represents random signals that are stochastic in nature 

either in time domain or in frequency domain. Fourier transform is localized in 

frequency but does not give any space or time information of the statistical 

signal. The widowing method of Fourier transform known as short time Fourier 

transforms (STFT) is a trade-off between localization of frequency and time. 

Failure of Fourier transform in spatial domain has given rise to the wavelet 

transform. Wavelets works perfectly for time varying signals. Wavelets are 

specific group of functions that are used to analyse given signal in both time 

and frequency domains. Mallat in [19] proposed that a family of wavelets can 

be constructed using mother wavelet on specific criterion that makes wavelet 

transform very favourable for handling non-stationary signals. The main 

advantage of wavelet transform is that it performs analysis of signal at various 

scales of resolution attributing to phenomenon multiresolution that makes 

wavelet transform very useful tool for image processing applications. 

Discrete Wavelet Transform (DWT) is based on the concept of subband 

coding. DWT is a fast variant of wavelet transform in terms of computations. 

DWT based decomposition techniques were proposed in 1976. DWT uses 

different digital filtering schemes to represent the signal in wavelet domain 

that have different scales for signal analysis. DWT has vast applications such 

as image segmentation, compression, denoising, edge detection and pattern 
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recognition in image processing field [20]. The compact nature of DWT makes 

it computationally efficient. 

 

2.2 DWT Multiresolution Analysis 

 

Discrete Wavelet Transform (DWT) is preferred over other wavelet transforms 

because it keeps temporal details of stochastic signal alongside providing 

amplitude and frequency of said signal. DWT is usually expressed as; 

 

𝜓𝑚,𝑛(𝑡) = 𝑙0
−
𝑚
2𝜓(𝑙0

−𝑚𝑡 − 𝑠𝑓0),     𝑚, 𝑛 ∈ ℤ                                  (2.1) 

 

Where l and s are two random signals discretised in time domain as; 

𝑙 = 𝑙0
𝑚, 𝑚 ∈ ℤ                                                                                     (2.2) 

𝑠 = 𝑛𝑙0𝑠0
𝑚, 𝑚 ∈ ℤ                                                                             (2.3) 

 

Where m and n denote scale and translation statistics of DWT. The DWT of 

function 𝑓(𝑡) becomes: 

𝑓(𝑡) =∑∑𝜔𝑓
𝑛𝑚

(𝑚, 𝑛)Ψ𝑚,𝑛(𝑡)                                     (2.4) 

 

Multi resolution theory presents a stochastic technique for generation of 

wavelets. MRA works by approximating function 𝑓(𝑡) at different levels of 

resolution. Consider two basic functions; the scaling function 𝜑(𝑡) and a 

mother wavelet 𝛼(𝑡). The corresponding scaled and translated versions of 



  9 

scaling function are given by (2.5). For definite values of m, the relevant set of 

scaling function 𝜑(𝑡) and 𝛼(𝑡) are orthonormal.  

 

𝜑𝑚,𝑛(𝑡) = 2
−
𝑚
2𝜑(2−𝑚𝑡 − 𝑛)                                                (2.5) 

 

MRA finds wavelet functions by exploiting hierarchical nature of increasing 

resolutions of scaling functions. By linear combining scaling function with its 

translations, MRA achieve a set of functions to represent any stochastic signal 

[21]. 

 

𝑓(𝑡) =∑𝛼𝑛
𝑛

𝜑𝑚,𝑛(𝑡), 𝑓(𝑡)𝜖𝑉𝑚                                             (2.6) 

 

2.2.1 Signal Decimation using DWT 

 

DWT is analysed by using a cascade of high and low pass filters. DWT carries 

out decomposition by taking advantage of the property that it connects 

continuous time multiresolution to discrete time filters [22]. In figure 2.1, a 

random signal 𝑓(𝑛) is passed through analysis filter bank consisting of  ℎ𝑜[𝑛] 

and ℎ1[𝑛], that is used to break the input signal 𝑓(𝑛) into two half-length 

subbands ℎ𝑙𝑝[𝑛] and ℎℎ𝑝[𝑛]. Analysis filter ℎ𝑜[𝑛] is a low pass filter having 

output subband 𝑓𝑙𝑝[𝑛], that is known as approximation of 𝑓(𝑛). The output of 

high pass filter ℎ1[𝑛] denoted by 𝑓ℎ𝑝[𝑛], is known as detail part of 𝑓(𝑛). Each 

subband is decimated by a factor of two so that the output data coincides with 
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original signal. The decimation and filtering scheme continues till best signal 

levels are achieved.  

 

 

Figure 2-1 Wavelet decomposition using filter banks (1-level)  

 

2.2.2 Signal Reconstruction using DWT 

 

To perform synthesis on signal, it is up sampled by a factor of 2 by inserting 

zeros between consecutive samples. Reconstruction is opposite of decimation 

process. Approximation 𝑓𝑙𝑝[𝑛] and detail 𝑓ℎ𝑝[𝑛] coefficients are passed 

through synthesis filters 𝑔𝑜[𝑛] and 𝑔1[𝑛] separately and then combined 

together to re-construct the best possible replica 𝑓′(𝑛) of original signal. 

The objective of MRA based subband decomposition is to select ℎ𝑜[𝑛], ℎ1[𝑛], 

𝑔𝑜[𝑛] and 𝑔1[𝑛] such that 𝑓[𝑛]́ = 𝑓[𝑛].That is; by using DWT, reconstructed 

image is best possible copy of original image. 

In subband decimation theory, synthesis filters are regarded as modulated 

versions of analysis filters [22]. In order to obtain best restoration, the impulse 

responses of the synthesis and analysis filters have to satisfy conditions; 
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𝑔0[𝑛] = (−1)
𝑛ℎ1[𝑛]                                                                                    (2.7) 

 

𝑔1[𝑛] = (−1)
𝑛+1ℎ0[𝑛]                                                                                 (2.8) 

 

MRA based DWT decomposition can be extended to two dimensional 2D 

medical images by processing rows in one dimension followed by columns 

processing in other dimension as discussed in the next section. 

 

2.3 DWT Image Decomposition 

 

The compact property of DWT dictates that most of the diagnostic information 

embedded in medical image is concentrated onto few wavelet coefficients 

with large magnitudes. Using this compact property, diagnostic details of CT 

scan can be captured from those large wavelet coefficients which is useful for 

image restoration. Discrete Wavelet transform (DWT) of a signal is computed 

by using a cascade of low and high pass filters with a subsampling by a factor 

of 2. For images, 2D DWT is implemented by using 1D DWT along the rows 

of the image first and then on columns of the image. DWT decomposes the 

2D image into four subbands as shown in figure 2.2. The LL band carries of 

approximation coefficients, LH band contains horizontal details, HL band 

contains vertical details whereas HH band carries diagonal details of image. 

Usually, most of the important information is concentrated in LL subband of 

highest level. DWT alleviates the noise artefacts such as speckles by using its 

overlapping nature. 
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Figure 2-2 Image decomposition of 2D CT scan of brain using DWT (2 levels) 

                                                    

 

DWT decomposition of image 𝑐(𝑡) having dimensions (𝑁𝑋𝑀) and (𝑠𝑐𝑎𝑙𝑒𝑠 =

𝑅) is given by; 

 

𝑐(𝑡) = ∑ 𝜇𝑅.𝑖∅𝑅,𝑖
𝐿𝐿 (𝑡)

𝑖𝜖𝑍2

+∑∑∑𝜔𝑖
𝑏

𝑖𝜖𝑍2

𝜓𝑟,𝑖
𝑏 (𝑡)

𝑅

𝑟=1𝑏𝜖𝛽

    (2.9) 

 

Where ∅𝐿𝐿 represents scaling function for image. Image decomposition can 

be achieved by extending 1D Discrete Wavelet Transform to 2D (two 

dimensions) conditioned on fact that image should be separable. To perform 

image decomposition, one 2D scaling function 𝜑(𝑎, 𝑏) and three 2D mother 

wavelets 𝜓1(𝑎, 𝑏), 𝜓2(𝑎, 𝑏) and 𝜓3(𝑎, 𝑏) are required. Every wavelet function 

LL2 HL2  

HL1 

 

LH2 HH2 

 

LH1 

 

 

HH1 
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is computed by assuming that is the product of two separable 1D scaling 

functions and mother wavelets. 

 

𝜑(𝑎, 𝑏) = 𝜑(𝑎)𝜑(𝑏)                                                                          (2.10) 

𝜓1(𝑎, 𝑏) = 𝜓(𝑎)𝜑(𝑏)                                                                        (2.11) 

𝜓2(𝑎, 𝑏) = 𝜑(𝑎)𝜓(𝑏)                                                                        (2.12) 

𝜓3(𝑎, 𝑏) = 𝜓(𝑎)𝜓(𝑏)                                                                        (2.13) 

 

Equation (2.10) computes approximation coefficients whereas equation 

(2.11), (2.12) and (2.13) find directional details of wavelet coefficients along 

horizontal, vertical and diagonal directions of medical image respectively. 

Extension of 2D wavelet from 1D wavelet for image decomposition is 

determined by equations (2.14) and (2.15). 

 

𝜑𝑟,𝑚,𝑛(𝑎, 𝑏) = 2
𝑟
2⁄ 𝜓(2𝑟𝑎 −𝑚, 2𝑟𝑏 − 𝑛)                                    (2.14) 

 

𝜓𝑟,𝑚,𝑛
𝑖 (𝑎, 𝑏) = 2

𝑟
2⁄ 𝜓𝑟(2𝑟𝑎 −𝑚, 2𝑟𝑏 − 𝑛)                                  (2.15) 

 

Where parameter 𝑖 = 1,2,3 identifies the directions (horizontal, vertical and 

diagonal) of wavelet coefficients. DWT decomposition of image 𝑐(𝑎, 𝑏) can be 

found by modifying equation (2.9).  

 

𝑊𝜑(𝑟0,𝑚, 𝑛) =
1

√𝑀𝑁
∑ ∑𝑓(𝑎, 𝑏)

𝑁−1

𝐵=0

𝑀−1

𝐴=0

𝜑𝑟0,𝑚,𝑛(𝑎, 𝑏)                    (2.16) 
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𝑊𝜓
𝑖 (𝑟,𝑚, 𝑛) =

1

√𝑀𝑁
∑ ∑𝑓(𝑎, 𝑏)

𝑁−1

𝐵=0

𝑀−1

𝐴=0

𝑊𝑖,𝑚,𝑛
𝑟 (𝑎, 𝑏)                     (2.17) 

 

Where  𝑟0 is an arbitrary starting wavelet scale and 𝑊𝜑(𝑟0, 𝑚, 𝑛) imposes 

approximation for image 𝑐(𝑎, 𝑏) at scale 𝑟0. The coefficients of 𝑊𝜓
𝑖 (𝑟,𝑚, 𝑛) 

computes horizontal, vertical and diagonal directional details using scales 𝑟 ≥

 𝑟0. Standard approximations are 𝑟0 = 0, 𝑁 = 𝑀 = 2𝑟 for 𝑟 = 1,2,3… , 𝑟 − 1 and 

𝑚 = 𝑛 =  0,1,2,… , 2𝑟−1 . 

The inverse 2D Discrete Wavelet Transform is performed as; 

 

𝑓(𝑎, 𝑏)

=
1

√𝑀𝑁
∑ ∑𝑊𝜑(𝑟0,𝑚, 𝑛)𝜑𝑟0,𝑚,𝑛(𝑎, 𝑏)

𝑁−1

𝐵=0

𝑀−1

𝐴=0

+
1

√𝑀𝑁
∑ ∑ ∑∑𝑊𝜓

𝑖 (𝑟,𝑚, 𝑛)

𝑛𝑚

∝

𝑅=𝑅0𝑖=𝐻,𝑉,𝐷

 𝜓𝑟,𝑚,𝑛
𝑖 (𝑎, 𝑏)                                               (2.18) 

                  

 

The real image decomposition of CT scan of brain using matlab wavelet 

package is shown in figure 2.3. It decomposes real medical image using 3-

levels. 
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Figure 2-3 Three level image decomposition of 2D CT scan of brain using 

DWT 

 

2.4 Wavelet Families 

 

Wavelet transform becomes more efficient by using most suitable type of 

mother wavelet for particular application. In wavelet analysis, selection of 

suitable parent wavelet is very important because parent wavelet generates 

wavelet functions by using scaling and translations. Figure 2.4 depicts psi 

distribution of different wavelet families. 

 

                                                     

                                                                       (a) 
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                                                    (b) 

  

 

                                                                 (c) 

Figure 2-4 Different Wavelet Families (a) Haar (b) Daubechies (c) Symlets 

 

 

Wavelet packages Haar, Daubechies and Symlets usually provide compact 

orthogonal wavelets. Best restoration of image is possible by using these 

techniques. Other wavelet families such as Demyer, Morlet and Mexican Hat 

follow symmetrical distributions. The choice of selecting a particular wavelet 

family is dependent on psi distribution of a wavelet scaling function and their 

capability to analyse image effectively in different image processing 

applications. 
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CHAPTER 3 

HIDDEN MARKOV MODEL 

 

3.1. Introduction to Markov Models 

 

Hidden Markov Model (HMM) is powerful tool for statistical signal processing. 

HMM stochastically models a system that has unobserved states also known 

as hidden states. HMM can be graphically represented by Bayesian network 

or Probabilistic Graphical Models (PGM) as discussed in next sections. HMM 

has found vast applications in image modeling, speech recognition and data 

tagging [23]. 

Markovian models perform stochastic signal processing by using two 

mechanisms namely Markov Chain Models and Hidden Markov Models. In 

most simple Markov Chain Models, unobserved state is directly visible to user 

so model is only characterized by single parameter; state transition 

probabilities matrix. In Hidden Markov Model, desired state is not visible and 

only hidden state output based on state is available for stochastic modeling. 

Each state has Gaussian probability distribution over possible outputs. 

Computation of probability distribution for each and every state is impractical 

approach for data modeling. Hidden Markov Model based PGM are used to 

solve this problem. 

Hidden Markov Model is regarded as generalization of output mixture models 

known as Gaussian Mixture Models (GMM) [24].  Latent variables are used to 

determine the type of mixture component to be selected for each and every 

observation. HMM links latent variables by using Markovian process instead 
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of leaving them statistically independent. In Markov chain models, the 

particular state of given random process and its associated probability of 

existing in another state at next instant only depends on current state of 

process. But the state of random process is hidden in case of HMM. The 

latent state is linked with one of other probability distributions that is known to 

observer. Hidden Markov Model is characterized by parameters given in table 

3.1. The complete Markov random process is defined as; 

 

𝑀 = {𝐸, 𝐹, 𝜋}                                                               (3.1) 

 

Parameters Description 

D Length of sequence observed 

S Number of states in Markov Model 

O  Number of Observations 

𝑄 = (𝑞1, 𝑞2, … . 𝑞𝑁) Observed States 

𝑉 = (𝑣1, 𝑣2, … . 𝑣𝑀) Set of possible Observations 

𝐸 = {𝑒𝑖𝑗} State Transition Probability matrix 

𝐹 = {𝑓𝑖(𝑘)} Output Symbols Probability Matrix 

𝜋𝑖 Initial State Vector Distribution 

 

Table 3-1 Characteristic Parameters of Hidden Markov Process 

 

3.2. Basic Components of Markov Models 

 

Hidden Markov Model uses particular algorithms and assumptions to perform 

effectively. 
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3.2.1 Bayes Rule combined with Markov Assumption 

 

Bayes rule combined with Markov assumption (Markov Model Order =1) is an 

excellent computational tool for stochastic systems. It is used to determine 

state transition probability matrix and observation symbols probabilities. The 

state transition probabilities are represented as; 

 

𝑃 (𝑆𝑚
𝑥
→𝑂𝑘𝑆𝑚+1) = 𝑃(𝑂𝑚|𝑆𝑚)𝑃(𝑆𝑚+1|𝑆𝑚)                 (3.2) 

 

The probability of transitioning from state 𝑆𝑚 to 𝑆𝑚+1 conditioned on symbol 

𝑂𝑚 is given in equation (3.2). The probabilities of observed symbol are 

defined by; 

 

𝑃(𝑂𝑚) =∑𝑃(𝑂𝑚, 𝑆𝑚)

𝑚

                                                (3.3) 

 

By using Bayes chain rule on equation (3.3), we get; 

 

𝑃(𝑂𝑚) = 𝑃(𝑂1)𝑃(𝑂2|𝑂1)𝑃(𝑂3|𝑂2, 𝑂1)⋯⋯⋯⋯𝑃(𝑂𝑚|𝑂𝑚−1, 𝑂𝑚−2, ⋯𝑂1)       (3.4) 

 

The probability distribution given by equation (3.4), is computationally 

inefficient in terms of observing them in probability distribution table. 

Equation (3.5) uses the concept of marginalization where a new variable R 

known as margin variable, is linked with observation symbols parameter O by 
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acquiring all possible outcomes of Markov process and perform summation on 

them. 

 

𝑃(𝑂𝑚) =∑𝑃(𝑂𝑚, 𝑆𝑚)

𝑟

                                        (3.5) 

 

𝑃(𝑂𝑚) =∑𝑃(𝑆𝑚)𝑃(𝑂𝑚|𝑆𝑚)                             (3.6)

𝑟

 

 

3.3. Fundamental Probability Rules for Markov Models 

 

Bayes Chain Rule combined with marginalization property provides the 

computational ability of estimating Maximum Likelihood. The guiding 

probability rules for efficient modelling of Markov processes are discussed in 

next sections. 

 

3.3.1 Bayes Chain Rule 

 

By applying Bayes rule on long input chains, we can easily decompose them 

into computationally feasible scalar products. 

 

𝑃(𝑇1, 𝑇2⋯⋯𝑇𝑚) = 𝑃(𝑇1)𝑃(𝑇2|𝑇1)𝑃(𝑇3|𝑇2, 𝑇1)⋯⋯𝑃(𝑇𝑚|𝑇𝑚−1, 𝑇𝑚−2, ⋯𝑇1)    (3.7) 
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3.3.2 Marginalization Property 

 

The concept of marginalization provides the ability to represent any event ‘T’ 

as summation of all sub events of Markov random process as shown in 

equation (3.8). 

 

𝑃(𝑇) =∑𝑃(𝑇, 𝑋1, 𝑋2,⋯⋯𝑋𝑚)

𝑚

                                         (3.8) 

 
 
3.4 Fundamental Properties of Hidden Markov Models 

 

Hidden Markov Model (HMM) is developed on basis of two characteristic 

properties of Markovian processes as discussed in next sections. 

 
 

3.4.1 Limited Horizon Property of Hidden Markov Model 

 

This property dictates that a current state n is statistically independent of 

transitioning from state 1 to (𝑛 −𝑚 + 1) , given past state z.  

 

𝑃(𝑇𝑧 = 𝑛|𝑇𝑧−1, 𝑇𝑧−2⋯𝑇1) = 𝑃(𝑇𝑧 = 𝑛|𝑇𝑧−1, 𝑇𝑧−2⋯𝑇𝑧−𝑚)             (3.9) 

 

Equation (3.9) is conditioned on fact that beyond M states which comes 

before 𝑧𝑡ℎ state, every other state can be ignored. This rule is known as 

Limited Horizon or window property of 𝑚 order Markovian process. 
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3.4.2 Time Invariance Property of Hidden Markov Model 
 

 

This property dictates that statistical dependence of current state on last state 

can be analysed over complete sequence for Markov processes. It is 

simplified as; conditional probability of current state is time invariant and it 

does not vary from position to position for given sequence 𝑇. 

 

𝑃(𝑇𝑧 = 𝑛|𝑇𝑧−1 = 𝑥) = 𝑃(𝑇2 = 𝑛|𝑇1 = 𝑥) = 𝑃(𝑇𝑚 = 𝑛|𝑇𝑚−1 = 𝑥)        (3.10) 

 

3.5 Implementation of Hidden Markov Model 

 

Hidden Markov Model (HMM) faces three fundamental problems during its 

implementation. In this section, effective algorithms have been devised to 

counter these problems. 

 

3.5.1 Likelihood Sequence Problem 

 

Assume a Hidden Markov Model (HMM) is defined by equation (3.1), 

observation sequence is given by 𝑂,  then it is required to find  likelihood of 

observed sequence 𝑃(𝑂|𝑀) of given model. 

 

3.5.2 Determination of State Sequence Probability 

 

For given HMM denoted by 𝑀, it is necessary to determine highest probability 

state sequence conditioned on observation sequence, that is to find 

unobserved states hiding in HMM. 
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3.5.3 Re-estimation Problem of Hidden Markov Model 
 

It identifies the problem of computing state transition probabilities conditioned 

on output observation sequence probability for given HMM denoted by 𝑀. 

HMM wants to fit the observational data perfectly by re-estimating model 

parameters. 

 

3.6 Solution to Implementation Problems of Hidden Markov Model 

 

The implementation problems of Hidden Markov Model can be solved by 

using techniques mentioned in next sections. 

 

3.6.1 Forward Probability Algorithm for Implementation Problem 1 

 

Forward probability is defined as probability of being present in current state 

𝑆𝑖 after transitioning through states 𝑂1, 𝑂2, 𝑂3⋯𝑂𝑚 shown in equation (3.11). 

 

𝐹(𝑚, 𝑖) = 𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚⋯ , 𝑆𝑖)                               (3.11) 

 

𝑃(𝑂) = 𝑃(𝑂1, 𝑂2, 𝑂3⋯𝑂𝑚)                                                  (3.12) 

 

By using concept of marginalization, observed sequence probability 𝑃(𝑂) for 𝐿 

number of states is computed in equation (3.12). 

 

𝑃(𝑂) = ∑ 𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚⋯ , 𝑆𝑝) 

𝑀

𝑚=1

               (3.13) 
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Setting 𝑆𝑝 to be final state that is achieved after transitioning through all the 

observation sequences, summation of final forward probability of observed 

sequence and corresponding state will give probability 𝑃(𝑂) by using rule of 

marginalization. 

 

𝑃(𝑂) = ∑𝐹(𝑚, 𝑝)                                                (3.14)

𝐿

𝑝=1

 

 

In order to calculate forward probability 𝐹(𝑚, 𝑝) of complete observed 

sequence, a concise Markov model is developed in figure 3.1 using state 

transitions and respective observation probabilities. It starts from state 𝑆1, 

transitions to next state 𝑆2 that can be one of  the unobserved states. It can 

transition to any state such that 𝑆𝑝 → 𝑆𝑞 observed on sequence 𝑂𝑚. 

The state transition probability of being in state 𝑆1 is defined by; 

 

𝐹(𝑚, 𝑖) =  𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚, 𝑆𝑖)                                      (3.15) 

 

By using the concept of marginalization, probability of observed sequence 

𝑃(𝑂) is found by; 

 

𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚) =∑𝐹(𝑚, 𝑖)

𝐿

𝑖−1

                                   (3.16) 
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Figure 3-1 Forward Probability Algorithm  

 

 

In order to perform transition from state 𝑆𝑝 to state 𝑆𝑥, we use; 

 

𝐹(𝑚, 𝑥) =  𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚)                                         (3.17) 

 

𝐹(𝑚, 𝑥) =  𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚, 𝑆𝑞)                                   (3.18) 

 

𝐹(𝑚, 𝑥) =  𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚−1, 𝑂𝑚, 𝑆𝑥)                       (3.19) 

S1 

S
2
 

S
i
 

S
L
 

O1 

S
1
 

S
2
 

S
i
 

S
L
 

S
1
 

S
2
 

S
x
 

S
L
 

S
1
 

S
2
 

S
i
 

S
L
 

Om O
m+1

 O
p
 



  26 

𝐹(𝑚, 𝑥) = ∑𝑃(𝑂1, 𝑂2, 𝑂3⋯⋯𝑂𝑚−1, 𝑆𝑝, 𝑂𝑚, 𝑆𝑥)

𝐿

𝑝=1

           (3.20) 

 

By using Bayes chain rule on equation (3.20), recursive form of forward 

probability function is finally computed. 

 

𝐹(𝑚, 𝑥) = ∑𝑃(𝑂1, 𝑂𝑚−1, 𝑆𝑝, 𝑂𝑚, 𝑆𝑥) 

𝐿

𝑝=1

                               (3.23) 

 

𝐹(𝑚, 𝑥) = ∑𝑃(𝑂1, 𝑂𝑚−1, 𝑆𝑝)𝑃(𝑂𝑚, 𝑆𝑥|𝑂𝑚−1, 𝑆𝑝)

𝐿

𝑝=1

        (3.22) 

 

𝐹(𝑚, 𝑥) = ∑𝐹(𝑚 − 1, 𝑥). 𝑃(𝑂𝑚, 𝑆𝑥|𝑆𝑝)

𝐿

𝑝=1

                         (3.23) 

 

𝐹(𝑚, 𝑥) = ∑𝐹(𝑚 − 1, 𝑥). 𝑃 (𝑆𝑝
𝑂𝑚
→ 𝑆𝑥)

𝐿

𝑝=1

                           (3.24) 

 

𝐹(𝑚, 𝑥) = ∑𝐹(𝑚 − 1, 𝑥)

𝐿

𝑝=1

                                                    (3.25) 

 

The generalized form for computing 𝐹(𝑚, 𝑥) is; 

 

𝑇𝑚 = ∑ 𝑇𝑚−1

𝐿

𝑚=1

                                                               (3.26) 
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The boundary condition imposed on observed sequence for forward algorithm 

is given by; 

 

𝐹(0, 𝑥) = 𝑃(𝑥)                                                                (3.27) 

 

Where 𝑃(𝑥) is forward probability of being in state 𝑆𝑥 after transitioning from 

state 𝑆𝑝. Computation of forward probability is very easy because forward 

algorithm makes it linear time operation. 

 

3.6.2 Backward Probability Algorithm for Implementation Problem 2 

 

Backward probability algorithm is used to determine highest probability state 

sequence conditioned on observed sequence [25]. Backward probability is 

computed by observing sequences in backward order 𝑂𝑚, 𝑂𝑚+1, 𝑂𝑚+2⋯⋯𝑂𝑥 

based on initial state 𝑆𝑖, where 𝑡 is length of observed symbol. 

 

𝐵(𝑚, 𝑝) = 𝑃(𝑂𝑚, 𝑂𝑚+1, 𝑂𝑚+2⋯⋯𝑂𝑡|𝑆𝑝)                      (3.28) 

 

Again by using marginalization rule on observed sequence; that is introducing 

margin variable 𝑆𝑝, we will isolate observed symbol 𝑂𝑚 to make this process a 

linear time computation as shown in following equations. 

 

𝐵(𝑚, 𝑝) = 𝑃(𝑂𝑚+1, 𝑂𝑚+2⋯⋯𝑂𝑡, 𝑂𝑚, 𝑆𝑥|𝑆𝑝)                      (3.29) 
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𝐵(𝑚, 𝑝) = ∑𝑃(𝑂𝑚, 𝑆𝑥|𝑆𝑝). 𝑃(𝑂𝑚+1, 𝑂𝑚+2⋯⋯𝑂𝑡|𝑂𝑚, 𝑆𝑥|𝑆𝑝)

𝐿

𝑥=1

               (3.30) 

 

𝐵(𝑚, 𝑝) = ∑𝑃(𝑂𝑚⋯ , 𝑆𝑥|𝑆𝑝). 𝑃(𝑂𝑚+1, 𝑂𝑚+2⋯⋯ ,𝑂𝑡|𝑆𝑥)

𝐿

𝑥=1

                      (3.31) 

 

𝐵(𝑚, 𝑝) = ∑𝐵

𝐿

𝑥=1

(𝑚 + 1, 𝑥). 𝑃(𝑆𝑝 → 𝑆𝑥)                                (3.32) 

 

For a given observed sequence and respective state, if an end location is set 

at 𝑚𝑡ℎ place, then forward probability can be determined up to any position in 

symbol sequence and backward probability from that location to the end of 

observation sequence [29]. The HMM is said to be in final state after it 

observed the last symbol in observation sequence stream. The boundary 

condition of backward algorithm is imposed on transition from 𝑆𝑖 to 𝑆𝑓𝑖𝑛𝑎𝑙 over 

observed sequence 𝑂𝑚 as (𝑆𝑖
𝑂𝑚
→ 𝑆𝑓𝑖𝑛𝑎𝑙). 
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CHAPTER 4 

IMAGE DENOISING USING HIDDEN MARKOV MODEL 

 

4.1    Introduction of Proposed Denoising Framework 

 

In this research work, a denoising algorithm for medical images is developed 

in wavelet domain using Hidden Markov Model. The proposed technique uses 

Discrete Wavelet Transform (DWT) for image decomposition and takes 

advantage of its hierarchical relationships between different subbands [22]. 

The non-Gaussian statistics of wavelet coefficients are modeled using 

Probabilistic Graphical Models. Multidimensional Gaussian Mixture Models 

(GMM) known as Hidden Markov Tree (HMT) model [26], are used to 

determine inter-scale dependencies among wavelet coefficients. Proposed 

framework models the wavelet coefficients using Probabilistic Graphical 

Models. HMT model combined with Expectation Algorithm (EM) is used for 

image denoising. EM is an iterative algorithm that converges HMT model 

parameters vector [27]. 

In this chapter concepts of Probabilistic Graphical Models, Gaussian Mixture 

Models and Expectation Maximization Algorithm for Hidden Markov Tree 

(HMT) model are discussed in detail. Block Diagram of proposed framework is 

shown in figure 4.1. Discrete Wavelet Transform (DWT) is used for 

decomposition of given medical image. DWT decomposition is explained 

extensively in chapter 2. Probabilistic Graphical Models are used for 

modelling of wavelet coefficients of decomposed medical images. EM 

algorithm is for adjusting observational data according to Hidden Markov 
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Model parameters. The proposed framework can also be used for 

compression and detection of medical images. 

 

 

 

Figure 4-1 Proposed Wavelet Based Denoising Scheme for CT scan of brain 

using Hidden Markov Model 

 

 

4.2    Image Modelling Using Wavelet Transform 

 

Images are modelled by using Probabilistic Graphical Models based on 

assumption that images and their wavelet coefficients are stochastic in nature. 

Existing wavelet based denoising techniques considers wavelet coefficients 

as statistically independent or jointly Gaussian [28]. The proposed denoising 

framework assumes wavelet coefficients to be non-Gaussian in nature. The 

goal of framework is to construct wavelet based probabilistic model that 

DWT 
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captures inter-scale statistical dependencies and non-Gaussian statistics of 

wavelet coefficients. The idea behind this assumption of non-Gaussian nature 

lies in primary and secondary properties of wavelet transform that are 

discussed in next section. 

 

4.2.1 Wavelet Transform Properties for Image Modelling 

 

The primary properties of wavelet transform are used in many applications 

that are stochastic in nature including image estimation, detection and 

classification using different scales [29]. The primary and secondary 

properties of DWT are defined as; 

Locality: Wavelet coefficients are localized in time and frequency at same 

time that allows them to adjust wide range of various components of given 

wavelet. 

Multiresolution: This property generates a set of wavelet scaling functions 

for statistical signal processing by allowing wavelet transform to capture long 

and short duration signal components. 

Compression: The sparsity of wavelet transform of medical images is very 

large due to formation of unconditional bases for wavelet scaling functions 

[22]. 

The secondary properties of wavelet transform are used to determine non-

Gaussian statistics of wavelet coefficients. 

Clustering: It dictates that inter-scale dependencies among wavelet 

coefficients can be computed by adjusting magnitudes of certain wavelet with 

respective to magnitudes of adjacent wavelets. 
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Persistence: It states that dependencies of wavelet coefficients can be 

propagated across scales vertically. 

  

4.3    Gaussian Mixture Models for Image Modelling 

 

The wavelet coefficients of real-world medical images are characterized by 

peaky marginal densities at zeroes and heavy-tail non-Gaussian densities 

[30]. Gaussian Mixture Model (GMM) is used to model distributions of these 

wavelet coefficients by using large number of mixture components. GMM 

increments complexity of model in order to improve flexibility of image 

modelling. For medical images, probability density function (pdf) of each 

wavelet coefficient 𝑤𝑖 is approximated by Gaussian Mixture Model (GMM). To 

each wavelet coefficient 𝑤𝑖, we associate a discrete set of Hidden state 𝑆𝑖 with 

it, that takes on values 𝑚 = 𝑆, 𝐿 with probability mass function  𝑃(𝑆𝑖  =  𝑚). 

Conditioned on 𝑆𝑖 =  𝑚, 𝑤𝑖 is Gaussian with mean 𝜇𝑖,𝑚 and variance 𝜎𝑖,𝑚
2 . The 

overall probability density function is given by; 

 

    𝑓(𝑤) =  ∑ 𝑃(𝑆𝑖 = 𝑚)
𝑀
𝑚=1 𝑓(𝑤𝑖  |𝑆𝑖  =  𝑚)                (4.1) 

 

The 𝑓(𝑤𝑖 |𝑆𝑖 =  𝑚) is conditional pmf given by;  

 

    𝑓(𝑤𝑖|𝑆𝑖 =  𝑚)  = 
1

𝜎𝑖,𝑚√2𝜋
exp (−

(𝑏−𝜇𝑖,𝑚)
2

2𝜎𝑖,𝑚
2 )                 (4.2)                                     

                

 𝑃(𝑆𝑖 = 𝑆) + 𝑃(𝑆𝑖 = 𝐿) = 1                                            (4.3)                                                        
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Due to stochastic nature of hidden state variable 𝑆𝑖, wavelet coefficient 

becomes Gaussian 𝑆𝑖 =  𝑚. The dependencies of wavelet coefficients are 

usually captured by three models namely inter-scale, intra-scale and hybrid of 

inter and intra-scale statistical models [31]. These models work on the 

assumption of independence of wavelet coefficients. The simplest GMM that 

is used for modelling of sub-events from an overall event without needing to 

know that given observed sequence belongs to which sub-event, is known as 

Independent Mixture Model (IM) [32].  

   

4.4    Hidden Markov Tree Model 

 

Hidden Markov Tree (HMT) Model is the name given to a multidimensional 

Gaussian Mixture Model (GMM). HMT satisfies clustering property of wavelet 

transform by determining the non-Gaussian statistics of wavelet coefficients. 

HMT links magnitude of each wavelet coefficient |𝑤𝑖| with an unobserved 

(latent) state variable 𝑆𝑖. The compression property of wavelet transform 

dictates that a few number of wavelet coefficients with large magnitudes hold 

maximum information about medical image. Whereas smaller magnitude 

wavelet coefficients hold little amount of diagnostically relevant details about 

medical image but they are present in large numbers. Above notion guides us 

to the development of simple statistical model with only two states. One state 

is ‘high’ which represents large magnitudes and other state is ‘low’ which 

denotes smaller magnitudes of wavelet coefficients. This model is very useful 

for estimation purposes due to its computational simplicity. 
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The persistence property of wavelet coefficients dictates that inter-scale 

dependencies among wavelet coefficients can be computed when Gaussian 

Mixture Model (GMM) applies Markov Chain mechanism across scales of 

wavelet coefficients. The wavelet coefficients scales are considered tree 

structured because magnitude of wavelet coefficients is only dependent on 

respective magnitude of their parents only. This notion summarizes that only 

magnitude of parent coefficient is sufficient for determination of probability of 

child wavelet coefficients to be considered as ‘high’ or ‘low’. Wavelet-based 

HMT is developed in [32] by linking vertical connections of hidden states. 

To summarize Hidden Markov Tree (HMT) model, it captures the non-

Gaussian statistics of wavelet coefficients by establishing links between the 

hidden state of each wavelet coefficient and its four children known as inter-

scale dependencies. Using links to identify dependencies, HMT model takes 

the form of quad-tree structure as shown in figure 4.2 where each white node 

represents a hidden state whereas adjacent black node represents complex 

wavelet coefficient associated with hidden state. Each hidden state variable is 

considered as parent that make links to its four child wavelet coefficients. The 

overall HMT model consists of an HMT for each of the three Discrete Wavelet 

Transform (DWT) subbands. 
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Figure 4-2 Wavelet based HMT model 

 

 

Gaussian Mixture Model (GMM) is used to capture the non-Gaussian 

densities of wavelet coefficients. HMT is a multidimensional Gaussian Mixture 

Model (GMM). HMT models the wavelet coefficients as random variables 

having probability density function (pdf) as a mixture of zero mean Gaussian 

distributions by using a hidden state to denote large and small wavelet 

coefficient magnitudes [26]. HMT uses Probabilistic Graphical Model that finds 

Markovian dependencies between hidden states of two neighbouring scales 

[27]. Thus, due to persistence across scales, state transition probability matrix 

𝑋𝑡 denotes parent-child 𝑠𝑡𝑎𝑡𝑒 → 𝑡𝑜 → 𝑠𝑡𝑎𝑡𝑒 links between hidden states as; 

 

𝑋𝑡 = [
𝑝𝑡
𝑎→𝑎 𝑝𝑡

𝑎→𝑏

𝑝𝑡
𝑏→𝑎 𝑝𝑡

𝑏→𝑏]                                                       (4.4) 
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Where 𝑝𝑡
𝑎→𝑎′ indicates given 𝑎′ being the hidden state of parent coefficient, 

the child coefficient is in hidden state a. HMT model is characterized by 

parameters such as 𝑃(𝑆𝑖 =  𝑚) pmf of root node 𝑆1, 𝑋𝑡 state transition 

probability matrix, mean 𝜇𝑖,𝑚 and variance 𝜎𝑖,𝑚
2  of wavelet coefficient 

𝑤𝑖 conditioned on 𝑆𝑖 =  𝑚. All these parameters are grouped together in the 

form of vector 𝜃. However, each wavelet coefficient has different variances 

and state transition probabilities which leads to greater complexity in HMT 

model. This computational complexity can be reduced by a method known as 

tying within scale [15]. HMT is used for image analysis in image processing 

applications in [28]. 

 

The proposed Hidden Markov Tree (HMT) model combined with EM algorithm 

performs medical image denoising by satisfying secondary properties of 

wavelet transform. Expectation Maximization algorithm is explained in detail in 

next section. 

 

4.6  Expectation Maximization Algorithm for Hidden Markov Tree Model     

 

Expectation Maximization algorithm is an iterative scheme defined for finding 

maximum likelihood estimation of parameters associated with certain 

distribution that has missing data (unobserved states). Hidden Markov Model 

(HMM) is an ideal candidate for utilization of EM algorithm because it is 

characterized by missing variables known as latent or hidden variables. EM 

algorithm finds its usage in exploiting graphical structures associated with 

different type of distributions [33]. Usually, all the missing data is defined in 
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context of probability distribution and it follows exponential progression, so 

EM is best candidate for handling such scenarios. 

 

4.5    Implementation of Expectation Maximization Algorithm    

 

Expectation Maximization (EM) algorithm has two functions. One is to perform 

estimation on data distribution that has some incomplete values due to 

observational restraints. Second function is to perform optimization of 

maximum likelihood estimation for given data distribution that have 

unobserved states (hidden variables) as evident in table 4-1. 

 

 

EM Algorithm 

 

1) Initialize HMT parameters vector 𝜃𝑙  . 

Set iteration counter 𝑙 = 0 

2) E-step: Calculate joint probability mass function 

𝑃(𝑆|𝑤, 𝜃𝑙) for estimation 𝐸𝑆[𝑙𝑛𝑓(𝑤, 𝑆|𝜃) |𝑤, 𝜃𝑙]  

3) M-step: Find maximum value by setting 

𝜃𝑙+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃. 𝐸𝑆[𝑙𝑛𝑓(𝑤, 𝑆|𝜃) |𝑤, 𝜃𝑙] 

4) Set 𝑙 = 𝑙 + 1 and perform above steps until 𝜃𝑙 

converges. 

 

Table 4-1 Expectation Maximization Algorithm Implementation 
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EM technique switches between E and M steps. Expectation (E) step is used 

for estimating log-likelihood function by generating expectation function. 

Maximization (M) step re-estimates HMT parameters by maximizing computed 

log-likelihood expectation function in E-step. This iterative process continues 

until parameters of Hidden Markov Tree (HMT) model are converged as 

shown in figure 4-3. The properties of EM algorithm for Hidden Markov Model 

are discussed in next section.   
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Figure 4-3 Flowchart of EM Algorithm for Hidden Markov Tree Model 

    

Initialize HMT parameters 
vector 𝜃𝑙  . 
Set iteration counter 𝑙 = 0 

 

Input 

E-step: Calculate joint probability mass 
function 𝑃(𝑆|𝑤, 𝜃𝑙) for estimation 

𝐸𝑆[𝑙𝑛𝑓(𝑤, 𝑆|𝜃) |𝑤, 𝜃𝑙] 

      M-step: Find maximum value by setting 
𝜃𝑙+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃. 𝐸𝑆[𝑙𝑛 𝑓(𝑤, 𝑆|𝜃) |𝑤, 𝜃𝑙] 

 

Set 𝑙 = 𝑙 + 1 

Does EM 

Algorithm 

converges? 

Output 

If YES 

If NO, repeat 
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4.6    Properties of Expectation Maximization Algorithm 

 

Expectation Maximization (EM) algorithm has many statistically important 

properties that makes it attractive for Gaussian Mixture Models. EM algorithm 

has low computational complexity because it does not require to set a certain 

algorithm learning rate. This property makes EM algorithm useful to handle 

probabilistic graphical models and solve problems involving convergence. 

Sometimes, this algorithm is considered slightly slow relative to other 

optimization techniques but for large distributions involving mixture models, 

this drawback can be ignored. Newton’s Gradient method [17] for 

convergence purposes perform extremely poor for statistically dependent 

mixture components. Thus, EM algorithm works very well under worst case 

scenarios and provide certain safety net. 

Expectation Maximization algorithm is at its best when maximum likelihood 

function belongs to exponential family. E-step computes summation of all 

expected values of wavelet coefficient’s distribution statistics, whereas M-step 

maximizes expected log-likelihood function. EM scheme usually computes 

maximum a posteriori (MAP) estimates to perform iterative optimization. 

 

4.7    Expectation Maximization utilizing Gaussian Mixture Models    

 

Expectation Maximization algorithm for Gaussian Mixture Models (GMM) can 

be formulated by assigning Hidden Markov Tree (HMT) model parameters 

vector 𝜃, the statistics of wavelet transform such as vector 𝛼, means 𝜇𝑚 and 
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co-variances 𝑣𝑚. Assume 𝑃(𝑎, 𝑏) is an exponential family and its relationship 

with wavelet statistics given by equation (4.6). 

 

𝜃 = (𝛼, {𝜇𝑚}, 𝑣𝑚)                                                           (4.5) 

 

𝑃(𝑎, 𝑏) = ∏𝛼𝑚𝑁(𝑎|𝜇𝑚, 𝑣𝑚)
𝑧𝑚

𝑘

𝑚=1

                              (4.6) 

  

4.9.1   Expectation Step of Expectation Maximization Algorithm 

 

Function  𝑇(𝜃, 𝜃𝑚) is used for estimation of log-likelihood function. To achieve 

simplicity, estimation is performed by finding expectation of 𝜃𝑚−1 to solve for 

𝜃𝑚 with respect to conditional probability distribution of state variable A given 

B. 

 

 𝑇(𝜃, 𝜃𝑚) = 𝐸𝐴|𝐵,𝜃𝑚[ln 𝑓(𝜃; 𝐴, 𝐵)]                              (4.7) 

 

For a sequence of random variables 𝐴 = (𝑎1𝑎2,⋯⋯ , 𝑎𝑛) and hidden state 

variables 𝐵 = (𝑏1𝑏2,⋯⋯ , 𝑏𝑛), then relevant statistics of wavelet coefficients 

are found by; 

 

𝑃(𝑎1𝑎2, ⋯⋯ , 𝑎𝑛, 𝑏1𝑏2, ⋯⋯ , 𝑏𝑛) =∏𝑃𝜃(𝑎𝑖𝑏𝑖)

𝑛

𝑖=1

       (4.8) 

 



  42 

4.9.2   Maximization Step of Expectation Maximization Algorithm 

 

In M-step, optimization is achieved by finding 𝜃𝑙 that maximizes quantity given 

by; 

𝜃𝑙+1 = 𝑎𝑟𝑔𝜃𝑚𝑎𝑥 𝑇(𝜃, 𝜃𝑙)                                    (4.9) 

 

The EM algorithm will go back to E-step, if 𝜃𝑙 does not converge. 

 

4.9.3   Mathematical Analysis of Expectation Maximization Algorithm 

 

Mathematically, the goal of EM algorithm is to maximize the incomplete log-

likelihood function ln 𝑓(𝑤|𝜃) where w is incomplete training data. The statistics 

𝑆𝑡 of HMT model that are sufficient to determine the expected value for 

random variable U and hidden state variable H are defined by following 

relation; 

 

𝐸𝜃𝑜(𝑆𝑡(𝑈,𝐻)|𝑈 = 𝑢)) = 𝐸𝜃𝑆𝑡(𝑈, 𝐻)                                   (4.10) 

  

In M-step, the maximization of conditional probability mass function of hidden 

state 𝑆𝑖 is given by; 

 

𝑝(𝑆 = 𝑚|𝑢, 𝜃′) =
𝑃(𝑆𝑜 = 𝑚)g(u; 0, 𝜎𝑖,𝑚

2 )

∑ 𝑝(𝑆𝑜 = 𝑙)
1
𝑙=0 g(u; 0, 𝜎𝑖,𝑙

2 )
                   (4.11) 
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The noise free medical image 𝑢𝑖 is obtained by equation; 

 

𝑢𝑖 = 𝐸[𝑢|𝑢
′, 𝜃] =∑𝑃[(𝑆0 = 𝑚)|𝑢

′, 𝜃]

𝑛

𝜎𝑖,𝑚
2

𝜎𝑛
2 + 𝜎𝑖,𝑚

2 𝑢′          (4.12) 

  

Thus, E-step and M-steps are iterated till convergence of Hidden Markov Tree 

(HMT) model parameters vector 𝜃𝑙 is achieved. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

In this research work, wavelet based denoising of medical images using 

Hidden Markov Model is carried out on real medical images taken from [34]. 

The performance of denoising framework is evaluated by using different type 

of wavelet families in terms of peak signal to noise ratio (PSNR) and visual 

quality of image. 

This chapter consists of simulation results of proposed denoising framework 

tested on various medical images using Matlab version R2012b. Steps 

involving in implementation of developed denoising framework are discussed 

in detail in next section. 

 

5.1    Implementation Steps of Proposed Framework 

 

The denoising of medical images is achieved by following steps; 

 

1. Read the medical image (256x256) by Matlab. 

2. Corrupt the medical images by adding Gaussian noise (AWGN) of 

known variances 𝜎 = 10,20, 30 to them. 

3. Perform decomposition of medical images using different types of 

wavelet families (set decomposition up to 3 levels). 

4. Initialize HMT model parameters vector 𝜃 for every subband. 

5. Estimate HMT model parameters vector 𝜃 by using Expectation 

Maximization (EM) algorithm. E-step will compute expectation of log-
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likelihood function using initial HMT model parameters vector. M-step 

maximizes estimated log-likelihood function. 

6. Check for convergence of HMT model parameters vector 𝜃. 

7. Apply IDWT to get denoised medical image.                                                      

 

5.2    Objective Analysis of Proposed Denoising Framework 

 

The proposed novel denoising scheme is applied on various medical images 

including MRI (coronal, sagittal views) and CT scan of human brain. Each 

medical image is 2D grayscale having dimensions (256x256). We have 

corrupted each medical image with Gaussian noise of known variance (𝜎𝑛 =

10,20,30 db). The noisy medical image is decomposed into 3 levels by using 

variety of wavelet families (Haar, Daubechies, Symlets, Bior, Rbio, Coiflet 

etc). Twenty wavelet packages are applied with proposed denoising algorithm 

to perform comparison of our technique at different wavelet types and find out 

which wavelet family works better with our novel denoising framework in 

terms of PSNR ( in db) and visual quality of image as presented in table 5-1. 

The compression of medical images is also performed by using the 

mechanism developed in [14]. 
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Figure 5-1 Denoising of CT scan of brain by proposed model (a) Original CT 

scan (b) Noise corrupted CT scan (c) Denoised CT scan 

(a) 

(b) 

(c) 
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Figure 5-2 Denoising of MRI scan of brain by proposed model (a) Original 

MRI scan (b) Noise corrupted MRI scan (c) Denoised MRI scan 

(a) 

(b) 

(c) 
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Image Wavelet 

Type 

(3 

Levels) 

Variance 𝜎𝑛 

10 20 30 

PSNR Compression 

Ratio 

PSNR Compression 

Ratio 

PSNR Compressio

n Ratio 

 

 

 

 

 

 

MRI  

 

of  

 

Brain 

Haar 32.07 65.52% 31.02 66.24% 30.22 67.23% 

Sym2 33.52 63.26% 32.76 65.03% 31.42 66.02% 

Sym3 32.98 61.78% 32.42 63.21% 31.04 64.43% 

Sym4 34.14 61.92% 33.23 62.79% 32.08 64.12% 

Sym6 32.13 62.02% 31.82 62.89% 30.89 63.34% 

Sym8 31.97 61.87% 31.49 62.76% 30.56 63.25% 

Db1 32.15 65.50% 31.06 66.26% 30.19 67.22% 

Db2 33.12 63.19% 32.45 65.03% 31.12 66.04% 

Db3 32.58 61.68% 31.95 63.13% 30.91 64.52% 

Db4 32.35 60.08% 31.26 61.23% 30.95 62.42% 

Db6 31.63 61.91% 31.28 62.73% 30.14 63.28% 

Db8 32.01 62.82% 31.49 63.56% 30.25 64.47% 

Coif1 32.19 62.44% 31.78 63.28% 30.87 64.32% 

Coif2 32.62 61.76% 31.79 62.64% 30.47 63.18% 

Coif3 32.13 60.15% 31.01 61.38% 30.16 62.54% 

Coif4 32.69 60.37% 31.78 61.59% 31.32 62.76% 

Bior1 32.07 65.52% 31.02 66.24% 30.22 67.23% 

Bior2 32.65 66.68% 31.77 67.41% 31.46 68.34% 

Bior3 33.95 66.46% 32.92 67.27% 31.96 68.08% 

Bior4 37.05 59.95% 35.91 60.17% 34.44 61.34% 

Rbio1 31.01 72.31% 30.68 73.18% 29.34 74.25% 

Rbio2 30.01 76.22% 28.93 77.13% 27.63 78.06% 

Dmey 32.12 61.87% 31.04 62.75% 30.78 64.08% 

 

Table 5-1 Performance Measures of Proposed Denoising Scheme for MRI 

scan using different Wavelet Families 
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Image Wavelet 

Type 

(3 

Levels) 

Variance 𝜎𝑛 

10 20 30 

PSNR Compression 

Ratio 

PSNR Compression 

Ratio 

PSNR Compressio

n Ratio 

 

 

 

 

 

 

CT 

 

Scan 

 

of  

 

Brain 

Haar 30.08 67.52% 29.02 68.24% 28.22 69.13% 

Sym2 31.82 66.36% 30.76 67.03% 29.42 68.12% 

Sym3 32.03 63.98% 30.42 65.21% 28.04 66.43% 

Sym4 32.54 63.92% 31.23 64.89% 28.08 66.22% 

Sym6 30.37 64.01% 29.82 64.96% 28.79 65.34% 

Sym8 30.87 62.67% 29.51 64.76% 28.56 65.25% 

Db1 30.25 67.54% 29.06 68.26% 28.19 69.24% 

Db2 31.12 65.69% 30.45 67.13% 29.12 68.04% 

Db3 30.54 63.48% 29.85 65.13% 28.91 66.52% 

Db4 30.35 62.04% 29.26 63.65% 28.82 64.42% 

Db6 30.53 63.93% 29.38 64.78% 28.24 65.36% 

Db8 30.03 64.80% 29.37 65.51% 28.02 66.47% 

Coif1 30.29 64.34% 29.88 65.28% 28.76 66.35% 

Coif2 30.52 63.82% 29.79 64.54% 28.57 65.18% 

Coif3 30.43 61.15% 29.01 63.38% 38.26 64.44% 

Coif4 31.01 62.49% 30.08 63.57% 29.32 64.68% 

Bior1 30.17 67.53% 29.04 68.14% 28.23 69.21% 

Bior2 30.68 68.62% 29.79 69.44% 29.16 70.14% 

Bior3 31.92 68.56% 30.93 69.17% 29.96 70.01% 

Bior4 35.15 61.91% 33.83 62.15% 32.44 63.34% 

Rbio1 29.03 74.32% 28.78 75.28% 27.14 76.25% 

Rbio2 28.02 78.15% 26.85 79.27% 25.68 80.12% 

Dmey 30.12 63.77% 29.14 64.72% 28.78 66.16% 

 

Table 5-2 Performance Measures of Proposed Denoising Scheme for MRI 

scan using different Wavelet Families 
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The calculated PSNR values of MRI scan of brain using different wavelet 

families as shown in table 5.1, indicates that ‘Bior4’ gives best result both in 

terms of PSNR and visual quality. On the other hand, ‘Rbio2’ gives lowest 

PSNR value and image is more distorted. These results conclude that when 

we are required best possible denoised image through our proposed wavelet 

based denoising algorithm, then it is best to decompose medical image using 

‘Bior4’ wavelet family. 

The preservation of diagnostic details in medical image after denoising is very 

critical. Thus, performance of our novel denoising framework is evaluated by 

using different wavelet packages to achieve best denoising of CT scan and 

MRI of brain as shown in table 5.2.   

The graphical results of proposed denoising scheme are shown in figure 5.1 

and 5.2. 

The compression of CT scan and MRI image of brain is performed by 

employing wavelet based compression technique using Hidden Markov Model 

proposed in [14]. Results of compression is shown in figure 5-3. 
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Figure 5-3 Results of compression performed on CT scan and MRI scan of 

brain by proposed model (a) Original CT scan (b) Compressed CT scan (c) 

Original MRI scan (d) Compressed MRI scan 

 

 

5.3    Subjective Analysis of Proposed Denoising Framework 

 

The method of mean opinion score (MOS) is used for subjective analysis to 

determine image quality. This technique refers to the averaged value of the 

opinions taken from the users (doctors). This method scores the quality of the 

(a) (b) 

(c) (d) 
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image from 1 (worse) to 5 (excellent). Table 5.3 shows different classes of 

MOS ranging from 1 to 5. We have performed MOS analysis on CT scan of 

brain that is tested through our denoising framework using different wavelet 

families in order to determine whether diagnostic details embedded in medical 

image are preserved after denoising. Figure 5.4, shows the results taken from 

a group of doctors and then averaged over the total number of observations. 

The graph shows that visual quality of CT scan using our proposed denoising 

method is diagnostically comparable to that of original CT scan for wavelet 

family ‘Bior4’. 

 

 

 

   

Figure 5-4 Mean Opinion Score for denoised CT scan using different wavelet 

families 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1   Conclusion 

 

In this work, wavelet based HMM is developed that empolys Gaussian Mixture 

Models (GMM) and 2D DWT. The proposed technique uses DWT for image 

decomposition and takes advantage of its hierarchical relationships between 

different subbands. The non-Gaussian statistics of wavelet coefficients are 

modeled using Probabilistic Graphical Models. Multidimensional GMMs 

known as Hidden Markov Tree (HMT) model, are used to determine inter-

scale dependencies among wavelet coefficients. Proposed framework models 

the wavelet coefficients using Probabilistic Graphical Models. HMT model 

combined with EM is used for image denoising. EM is an iterative algorithm 

that converges HMT model parameters vector. This denoising scheme is 

applied on MRI and CT scans and their performance is compared by using 

different wavelet families. Results of proposed technique are shown in terms 

of PSNR and image quality. 

 

6.2   Future Work 

 
The proposed denoising scheme can be extended to multidimensional Hidden 

Markov Tree (HMT) models due to their quad-tree structures among wavelet 

coefficients. HMT can be used for modelling of 3D medical images. 

Hidden Markov Model developed in this framework can also be used for 

analysis of transforms other than wavelet using higher dimensions. 
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The proposed wavelet based framework using HMM can also be used for 

video denoising. This framework can also handle noise distributions other 

than Gaussian such as Poisson noise occurred in X-rays. Thus, this model 

can be modified for denoising of Poisson corrupted X-rays and MRI scans. 
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