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ABSTRACT 

                 Images are very good information carriers but they depart from their original condition 

during transmission. They are corrupted by different kinds of noises during communication and 

transmission. All the images need to be de-noised before processing. The aim is to de-noise an 

image such that minimum amount of information is lost and maximum amount of noise is reduced. 

For de-noising different kind of techniques is applied i.e. linear, non-linear, adaptive and non-

adaptive techniques are observed. Soft thresholding, hard thresholding, universal thresholding 

(Visu shrink) are used but the performance is not still good. De-noising through two dimensional 

discrete wavelet transform is three step process: wavelet decomposition, wavelet thresholding and 

wavelet reconstruction. The discrete wavelet transform gives the sparse representation of the image 

which is very best for the optimal threshold value selection. We used statistical based thresholding 

methods for de-noising which shows improved results than existing techniques. 

The goal of this research is to compare the performance of different statistical based thresholding 

techniques. The results of using these wavelet bases are compared on the basis of peak signal to 

noise ratio and mean square error. The research shows that use of bi orthogonal wavelets bases is 

better than orthogonal wavelet bases. We used bi-orthogonal wavelets version 6.8 improved the 

results by statistical thresholding methods.  
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Chapter 1                       Introduction  

1.1 Background 

A very large portion of digital image processing is devoted to image de-noising and image 

compression. Applied engineers don’t believe that images received will not contain noise. Image 

are corrupted by noise. The de-noising of images is a big problem in digital image processing. The 

de-noising is the removal of degradation or blurring introduced in images during communication 

[1]. Blurring and visual artifacts comes from different kind of noise and also due to the imperfect 

image formation such as relative motion of camera and the original scene [2]. 

Wavelet theory has great application in digital image processing. Wavelets are developed by 

Morlet and Grossman. The relationship between wavelets and filter banks is developed by French 

researchers Meyer, Mallat and Cohen [3], this theory is now used in most of technical work. The 

main application of wavelet transform is image or signal compression and de-noising. In image 

de-noising and compression wavelet transform is successful because to de-noise and compress an 

image it needs the sparse representation of the image which is best done by wavelet transform. 

Wavelet theory is ensured by the separation of signal and noise component of different discrete 

wavelet transform (DWT) [4]. Filtering the coefficients, most of the noisy coefficient is dropped. 

Each method of de-noising using wavelets is passed through the following three prototypal steps: 

computing the DWT of the image to be de-noised (wavelet decomposition), filtering/thresholding 

the decomposed image, corresponding inverse wavelet transform. 

The Daubechies [5] work is useful for those who have limited knowledge of wavelets and 

mathematics. Wavelet transform is very useful and interesting tool for investigating images. 

Wavelet transform overcome the limitation of Fourier transform. Fourier transform shows the 

signal only in time domain or in frequency domain. It only shows the global information of the 

signal. A mother wavelet whose mean is zero have all its energy in time domain and is well 

observed by time varying signals. Scaling and wavelets function are basis function in wavelet 

transforms. Mallat [6] multi resolution representation theory allowed researchers to create their 

own family of wavelets on the specific criteria. The usefulness of DWT over other transformation 

is because it shows time frequency localization. 



12 
 

For Image de-noising we need to know about the degradation process in order to develop an 

algorithm to improve the quality and minimize the noise in image. When we have a model of the 

degradation process, we can use the inverse process to bring back the image into its original 

position. This type of restoration is used in the spacecraft to recoup for degradation and remove 

the artifacts in telescope of the optical system. Image de-noising has great application in the fields 

of astronomy where resolution is very bad, and in medical imaging which quality of the images to 

diagnose the patient, and in forensic science where useful photographs are extremely bad and needs 

high quality photographic evidences [7]. 

Now consider a two dimensional (2D) gray scale image which can be represented by f(x,y) an 

array of data where (x,y) is the pixel coordinates. The pixel intensity is the value on a gray scale 

level from 0-255. Binary images are represented with a value of 0 for black and 1 for white is the 

simple form of digital image. This form of images are very useful in study of image processing 

and computer vision and pattern recognition. The images used in the thesis for experimentation 

purpose are gray scale images which have no color information and only shows the brightness of 

the image on gray scale (0-255) 0 is black image and 255 is white image and values between 1-

254 have different intensity levels. These are also called intensity images. 

Color images are three band monochrome images in which each band is different color RGB, Red 

Green and Blue are three different bands. All other colors are made from the combination of these 

three color bands. These are also called RGB images and are 24 bits/pixel images while the binary 

images are 1 bit/pixel. 

1.2 Research motivation 

Image de-noising and compression is very important task in digital image processing and computer 

vision. Digital images are used in different kind of application i.e Satellite images, Radar Images, 

Medical images, images used in forensic evidence. All these images when processed are dealt by 

different equipment which induces different kind of noise in it. Before the images are processed 

by system it need to be de-noised. The de-noising process eliminates noise form images such that 

minimum amount of information is lost and maximum amount of noise is reduced. If Gaussian 

noise[8] of variance 10 is added to a grayscale image the peak signal to noise ratio (PSNR) is 

reduced to about 10%. It need to improve the PSNR and minimize mean square error (MSE).  
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1.3  Problem formulation and thesis layout 

The basic idea behind this thesis is the approximation of the uncorrupted image from a distorted 

and noisy images, this process is also called de-noising. Image de-noising is done by different kind 

of techniques to restore the original image from noise contaminated image. Selecting a best 

applicable technique plays major role in image de-noising. For example the techniques that are 

developed for satellite images will enhance minor details and will be according to satellite images. 

So these techniques will not be suitable for medical images. In this thesis a study is done on 

different kind of techniques that are already used for image de-noising and compression. State of 

art technique are globally and locally threshold techniques in which local dependent thresholding 

gives best result. There are two types of techniques used for de-noising process in wavelets 

thresholding. Adaptive [9] and non-adaptive techniques are used. Which shows very poor 

performance in image de-noising. Blurring are visual artifacts are the main disadvantages of the 

state of art techniques. In this thesis two methods are used for image de-noising that are statistically 

dependent. The threshold value is obtained from data driven method. Finding best threshold value 

will enhance the result of de-noised image. 

Image de-noising is a three step process, a linear wavelet transform, non-linear thresholding, linear 

inverse wavelet transform. 

        

Noisy image  o/p    

 

Figure 1.1 Image de-noising three step process  

In figure 1.1 wavelet decomposition is to decompose the input noisy image. We can decompose 

the image up to ‘L’ levels. The wavelet decomposition gives us details and approximation of the 

input image. The details shows us vertical, horizontal and diagonal details. The approximation 

details shows the original image coefficients which should not be threshold during thresholding 

section. The details are thresholding during the threshold section and then reconstruction of the 

image wavelets occurs which reconstructs the image and gives us the estimated image or de-noised 

image.  

Wavelet 

decomposition 
Wavelet 

thresholding 
Wavelet 

reconstruction 
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Chapter 2                    Wavelets analysis   

2 Wavelet definition 

The name “Wavelets” is referred to oscillatory evanescent wave time-circumscribed elongate, 

which has the competency to describe the time-frequency plane, with atoms of different time 

fortifies (see in fig 2.1). Generally, wavelets are purposefully crafted to have categorical properties 

that make them utilizable for signal processing. They represent a felicitous implement for the 

analysis of non-stationary or transient phenomena. In mathematics wavelets are those functions 

whose value over the period is zero and is defined in a finite time interval [10, 11]. In wavelets the 

data is converted into different frequencies and every frequency represents similar resolution and 

scale. 

                                                      

                                                           Figure 2.1 Mother wavelet w(t) 

2.1 Wavelet characteristics 

Wavelet is used to extract information from many kinds of data including EEG signals, Audio signals and 

Digital images etc. The wavelet ψ is a function with finite limits and average value of zero. The formula 

for this wavelet is: 

                                       ∫ 𝜓 (𝑡) 𝑑𝑡 =  0
∞

−∞
                                       (2.1) 

In order to get more extensible information about time and frequency a wavelet family can be 

constructed by a function of ψ(t)  known as Mother Wavelet. Daughter wavelets can formed from 
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mother wavelets with a scaling factor and translation factor ψu,s(t) here ψ(t) is translation factor and s 

is dilation factor with scale s. 

                                        ψu,s(t) =  
1

√u
 ψ [

t−s

u
] ;   u, s ϵ R1 and u > 0                            (2.2)      

2.2 Wavelet analysis  

 Wavelets analysis is the decomposition of the images to different levels. It is performed to by the 

projection of the signal over wavelet function. It is multiplication and integration process. 

                                          < 𝑥(𝑡)ψu,s(t) >=∫ 𝑥(𝑡) 𝜓𝑢, 𝑠 (𝑡)𝑑(𝑡)                                   (2.3) 

We can use different scales and translations of mother wavelet depending on the shape and 

characteristics of signal. The singularity of the wavelet permit us to use willingly different scales 

and translations or to change the size of the function or window to make it compatible with 

resultant resolution in time and frequency domain. We will note the abrupt changes occur in the 

original image in high resolution time domain and we do that by contracted the mother wavelet. 

Conversely for high resolution in frequency domain we use a dilated version of the mother wavelet. 

2.3 Wavelet history 

The first wavelet was introduced in 1909 by Haar. In 1946 Denis Gabor, introduced Gabor 

transform, which is used in wavelet analysis, a family of functions that can be used for generating 

new functions or new wavelet family. In 1975 George Zweig, discovered continues wavelet 

transform. Morlet[7] while doing his research observed that small scales of high frequency is most 

useful for finding fine details for closely-spaced layers. Grossman, recognized some more ideas in 

Morlet research on coherent quantum science. In 1982 Grossman and Morlet formulated continues 

wavelet transform (CWT). Meyer know the importance of this mathematical tool and discovered 

his own theory in collaboration with Ingrid Duabechies[5], founder of Orthogonal wavelets and 

Stephen Mallat,[7] founder of filter bank implementation with Discrete Wavelets Transform 

(DWT). 

2.4 Evolution of wavelet transform 
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The evolution of the wavelet transform comes from the Fourier transform (FT). The wavelet is 

actually an extension to the limitation of Fourier transform (FT). In Fourier transform bases 

functions are sine and cosine sinusoids and are predictable while in wavelet transform (WT) the 

bases functions are symmetric and unpredictable. The whole story of how Fourier transform is 

made and how wavelet transform overcome the limitation of Fourier transform is discussed in 

following topics. 

2.5 Fourier transform 

Joseph Fourier, a French mathematician and physicist proved that any periodic function can be 

decomposed into small parts of sine and cosine waves or complex functions. Further in half century 

non periodic waves were discussed. The reconstruction and decomposition of the signals into 

complex exponential function into different frequencies are following: 

                                       for any real value of ξ              (2.4) 

                                     for any real value of x.               (2.5) 

In the above equations shows the Fourier transform of signal x in time domain while f(x) shows 

the inverse transform and x is in time domain while ξ in frequency domain (in hertz). We can do 

the computation of Fourier transform over all time. The scaling property of fourier transform states 

that if we have scaled version of  

                                                        fs (x) =  f (sx)      (2.6) 

then, it corresponds to                    (ξ)= 1/|s|  f(x)     (2.7) 

We can observe from the above equations that if we decrease the time spread then FT is dilated. If 

we increase the time spread FT is concentrated. It mean that if we get the time localization we lost 

frequency localization. Now if we project the signals on complex exponentials we get a good 

frequency localization. The no time localization is the main disadvantage of Fourier transform 

makes it unsuitable for many of the application. 

https://en.wikipedia.org/wiki/Xi_(letter)
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            Figure 2.2 Fourier transform of sinusoid 

2.6 Short-time fourier transform 

Short time Fourier transform (STFT) is Fourier related term states that Fourier transform of longer 

signal over time is converted into short segments. The Fourier transform (FT) of each segment is 

computed in order to see how the frequency content changes for each segment of time. This basic 

idea was introduced by Gabor in 1946. Further in 1977 the interpretation of STFT with filter banks 

by Allen. Now how we actually apply STFT to signal. To compute STFT we will pass the original 

signal by a translating window of small size and then apply Fourier transform to the signal, the 

result can be mathematically written as: 

                 (2.8) 

Here w(t) is window function mostly known is Hann or Gaussian window centered at zero, x(t) is 

the signal to be analyzed. The above equation is used by sliding a window in time domain on the 

original signal or passing by a filter in frequency domain. The window function will be of same 

size in the whole process. 

Depending on the time localization of the signal we can use any width of window which is more 

suitable to our application but we get poor frequency localization 

2.7 Wavelet transform 

In the above two methods we find the limitation of these two methods now keeping in mind the 

limitation of Fourier transform (FT) and short time Fourier transform (STFT) which is poor time 

localization and frequency localization represented in exponential form. Grossman and Morlet [5] 



19 
 

in 1984 formulated continues wavelet transform which decomposes the original signal into 

translated and dilated version of the original signal. The main advantage of the wavelet transform 

(WT) over other methods is multiresolution analysis (MRA), having different frequencies in 

different scales and time. Most of the signals have small frequency for long time duration and large 

frequency for small duration of time. Wavelet transform do the same work for all signals analysis. 

           If we consider x is member of L2(R) and for analysis we use mother wavelet ψ. We can 

write the signal in scaled and translated version. So we can write the equation in the following 

form: 

                                                          (2.9)   

By looking to the above equation we conclude that wavelet transform is the convolution of the 

original signal and the wavelet to be derived. 

2.8 Comparative visualization 

In this topic we will visually see the graphs of the three transforms which we have discussed above. 

The graph of fourier transform is given in the figure (2.2) which shows very good frequency 

localization but non existing time localization. 

                                                   

                             Figure 2.3 Time-frequency localization of Fourier transform 

 In figure 2.3 Short time Fourier transform time frequency localization is shown. It is based on 

Heisenberg uncertainty principle which shows time frequency localization is limited. One can do 

time frequency localization up to some extent. This lead to the fact that time-frequency boxes 

(rectangles) will be of same length. This localization is better up to some extent.  
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                           Figure 2.4 Time-frequency localization of short-time fourier transform 

In the figure 2.4 a much better time-frequency localization is shown. For low frequencies large 

time interval is needed and for large frequencies small time interval is used. Because of this 

particular approach wavelet transform is used and is more suitable for most of the signals. 

                                                     

                          Figure 2.5 Time-frequency localization of wavelet transform 

2.9 Perfect reconstruction of the filter bank  

Wavelets analysis and synthesis shows that how wavelets decomposes and reconstructs a signal or 

image. Wavelets decomposes a 1-dimensional (1D) signal into two parts high frequency 

component and low frequency component. Passing the signal low pass filter (LPF) retains low 

frequency component and rejects high frequency component while retains high frequency 

component by passing it into high pass filter (HPF). The result contains two parts a high frequency 

component and a low frequency component.  

The following figure shows how the analysis and reconstruction of filter bank works. 
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         Figure 2.6 One dimensional, one level perfect reconstruction filter bank 

in the above diagram the input signal X (z) is passed from two filters i.e. H0(z) and G0(z) which 

are low pass and high pass filter respectively. The signal is further passed from down sampling. 

These down sampling will give us sparse representation of the signal. This is the first level 

decomposition. If we want to go into further level of decomposition we can up to N level. We call 

every level a sub-band. We can decompose it into N sub-bands. Here in this case we decomposed 

the signal into one level decomposition. The signal is further passed from up sampling and passed 

from their respective filters i.e. H1(z) andG1(z). These signals are further added with each other 

to get the output signal X (z) with d sec delay. 

The analysis introduces aliasing in the signal even though the sampling rate is preserved. The 

analysis part induces phase and magnitude distortion in the signal. The reconstruction part or the 

synthesis filter aims to reduce the aliasing and distortion in the signal. The following relation is 

used for the perfect reconstruction of the signal. 

                                          G0(z) H0(z)   +  G1(z) H1(z)  =    2                        (2.10) 

 

                                          G0(z) H0(−z)  +  G1(z) H1(−z) = 0                                            (2.11) 

 

 

 

X(z) 

𝐻0(𝑧)      2     2 𝐻1(𝑧) 

𝐺0(𝑧)      2 
 2 
 𝐺1(𝑧) 

X(z)  𝒛−𝒅 

Low pass 

High pass 

analysis synthesis 
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2.10 Classification of wavelets 

There is different relation for analysis and reconstruction of orthogonal and bi-orthogonal [13] 

wavelet basis. Depending on the different properties of theses basis they are classified into two 

main categories. 

a) Orthogonal basis 

b) Bi-orthogonal basis 

2.11 Features of orthogonal wavelet filter banks 

Orthogonal basis are non-symmetric and same in length. They have real coefficient values. In this 

case following relation between analysis and synthesis exist. 

                                                             H1(z) = H0(z−1)                                                   (2.12) 

                                                            G1(z) = G0(z−1)                                                            (2.13) 

Following filters exist between high and low pass filters with N being filters length 

                                                           Go(z) = −z−N H(−z−1)                                                 (2.14) 

So we can say that we can easily reconstructs the signal with only one filter equation. The regular 

structure of the filters makes it easier to implement. 

2.12 Features of bi-orthogonal wavelet filter banks 

The coefficient values of bi-Orthogonal filters are either real numbers or integers. The following 

condition must be satisfied: 

G0(z) = H1(−z)                                                   (2.15) 

G1(z) = −H0(z−1)                                                 (2.16) 

There are two filters that represents orthogonal filter bank H0(z)  and H1(z). Filters with linear 

phase are needed for orthogonal basis. The values of low pass filter will be symmetric wile that 

for the other filter the coefficient values may be symmetric or may be not symmetric. 
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2.13 Wavelets transform 

There are two kind of wavelet transform. Continues wavelet transform and DWT. Both of them 

are discussed following with details. 

2.13.1 Continues wavelet transform 

In Fourier transform, we represent Fourier analysis mathematically as: 

F(w)  = ∫ f(t)e−jωt∞

−∞
dt                                       (2.17) 

In the above equation the exponential contains the superposition of real and complex values. Now 

in the continues wavelet transform is mathematically written as: 

C (Scale , position)  = ∫ f(t) ψ (Scale , position , t)
∞

−∞
dt             (2.18) 

Continues wavelet transform is the result of multiplying a signal f (t) with mother waveletψ(t). 

Different scales of this mother wavelet can be obtained by the basic formula of the mother wavelet 

bases. The projection of the signal with mother wavelet can give us different scales. The formula 

is given below: 

ψa,b(t) =  
1

√a
 ψ [

t−b

a
] ;   a, b ϵ R1 and a > 0                             (2.19) 

Here in the above equation ‘a’ is scaling factor while ‘b’ is translation factor. The resulting 

ψa,b(t) is the translated and scaled version of the mother wavelet. 

The basic formula for the continues wavelet transform is: 

Wf(a, b) =  ∫ x(t)
∞

−∞
 ψa,b(t)  dt                                          (2.20) 

Inverse wavelet transform 

The decomposed structure of the continues wavelet transform will be reconstructed by inverse 

wavelet transform. The inverse wavelet transform is mathematically defined as: 

x(t) =  
1

C
  ∫ ∫ Wf(a, b)

∞

−∞
 ψa,b(t)  db 

da

a2

∞

0
                                (2.21) 

 

Where C = ∫
|ψ|2

ω

∞

−∞
 dω <  ∞     (2.22) 

In the above equation two condition must be satisfied for wavelet transform basis. First, to avoid 

singularity in eq. 2.22 the integral must be finite with a mean value of zero. Mathematically we 

can write as follows: 
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                                                             ∫ ψ(t) dt =   0   
∞

−∞
                                                     (2.23)    

This property is known as admissibility property. 

The second main requirement is the mother wavelet will have finite energy. 

                                                 ∫ |ψ(t)|2 dt =    ∞  
∞

−∞
                                                (2.24) 

2.13.2 Discrete wavelet transform 

1D DWT 

The analysis of 1D orthogonal wavelet transform for any signal that belongs to L2(R) is 

mathematically represented as: 

aj,k =  ∫ x(t)2
j

2⁄   ϕ (2j t −  k) dt        bj,k =      ∫ x(t)2
j

2⁄   ψ (2j t −  k) dt        (2.25) 

The synthesis equation for inverse discrete wavelet transform (IDWT) is given below. 

x(t) = 2
N

2⁄ ∑ aN,k  ϕ (2Nt − k)k  + ∑ 2
j

2⁄  ∑ bj,k ψ (2j t − k)k
M−1
j=N                   (2.26) 

ϕ(t) Represents scaling function of the orthogonal wavelet while aj,k   represents coefficient value. 

ψ(t) Represents wavelet function, bj,k represents coefficient value for translation. 

The analysis equation for the bi-orthogonal basis are  

ãj,k =  ∫ x(t)2
j

2⁄   ϕ̃ (2jt −  k) dt        b̃j,k =      ∫ x(t)2
j

2⁄   ψ̃ (2jt −  k) dt           (2.27) 

The synthesis equation for the bi-orthogonal basis are 

X (t) = 2
N

2⁄ ∑ ãN,k  ϕ (2Nt − k)k  +  ∑ 2
j

2⁄  ∑ b̃j,k ψ (2j t − k)k
M−1
j=N                   (2.28) 

In bi-orthogonal basis ϕ(t) represents the scaling function, aj,k represents coefficient value for the 

input signal or image X (t).  ψ(t) Represents wavelet function, bj,k represents coefficient value for 

wavelet basis.  

In DWT ‘j’ is the scaling function and ‘k’ is the translation of the wavelet. N is the number of 

levels which we want to decompose and reconstructs the one dimensional (1D) signal. 

2D Discrete Wavelet Transform 

As we know that images are the 2D form of 1-D signals. 2D signals are formed by a series of 1D 

signals. The 2D data is first passed through one dimensional wavelet transform along rows and 

then it is passed through one dimensional (1D) wavelet transform along columns during analysis 

section of wavelet transform. The following figure shows DWT and IDWT. 
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Figure 2.7 One level filter bank for computation of 2-D DWT. 

When an image is passed through 2D basis function, transform coefficients are received. The result 

of multiplication of two one dimensional (1D) basis function are achieved. So far we have four 

section received in equation 2.29 

ϕ (u, v) =  ϕ(u) ϕ(v) 

ψ1 (u, v) =  ψ(u) ϕ(v) 

ψ2 (u, v) =  ϕ(u) ψ(v) 

         ψ3 (u, v)  =  ψ(u) ψ(v)                                       (2.29) 

ϕ (u, v) Scaling function for all images. Wavelet function for images are  ψ1 (u, v), ψ2 (u, v) 

and ψ3 (u, v). After passing through these basis functions coefficients are achieved. As a result, 

four sub-band are achieved which are as follows: 

1. LL sub-band is course approximation 

2. LH sub-band contains vertical details 

3. HL sub-band contains horizontal details 

4. HH sub-band contains diagonal details 
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 Figure 2.8. Output of 2-D decomposition up to one level. 
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Chapter 3       Statistical wavelet thresholding   

techniques  

3 Introduction 

Various research work has been done on wavelet image de-noising and thresholding shows that 

wavelet transform is very best for image de-noising and compression. The basic problem in 

wavelet image de-noising and compression is to find the optimal threshold value. Because of the 

compaction property of wavelet which shows small number of large coefficient and large number 

of small coefficients. The small coefficient values also contain noisy coefficients values. The 

purpose is to remove the noisy coefficient values to large extent without the loss of useful 

information. To remove these small noisy coefficient values a threshold values is calculated. All 

the values below the threshold value are set to zero are above the threshold are kept. For removing 

noisy small coefficient values a lot of methods were observed. All these methods are discussed 

below along with our statistical method used for image de-noising.  

 

Image de-noising is a three step process which is very simply explained by the figure 3.1. The first 

step consist of wavelet decomposition, the second step is wavelet thresholding, while the third step 

is wavelet reconstruction. 

 

        

Noisy image  o/p    

 

                         

                                    Figure 3.1 a three step de-noising process. 

 

In figure 3.1 wavelet decomposition is to decompose the input noisy image. We can decompose 

the image up to ‘L’ levels. The wavelet decomposition gives us details and approximation of the 

input image. The details shows us vertical, horizontal and diagonal details. The approximation 

details shows the original image coefficients which should not be thresholded during thresholding 

Wavelet 

decomposition 
Wavelet 

thresholding 

Wavelet 

reconstruction 
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section. The details are thresholding during the thresholded section and then reconstruction of the 

image wavelets occurs which reconstructs the image and gives us the estimated image or de-noised 

image.  

3.1 Estimation and de-noising: 

De-noising is actually the process of estimation. We can define the problem set of de-noising in 

the following expression. Suppose that 𝑌𝑗,𝑘  is the wavelet coefficient of the noisy signal ‘B’ of 

length ‘L’ and 𝑋𝑗,𝑘  is the coefficient of the original image without noise. We write the equation in 

the following manner. 

                         𝑌𝑗,𝑘  =  𝑋𝑗,𝑘  +  𝑁𝑗,𝑘         (3.1) 

𝑁𝑗,𝑘 is the noise with Gaussian distribution N(0, sigma). Our goal is find the output image x to 

estimate the image and suppress the noise for every level and position. We will minimize the risk 

of difference between input image and output image. 

For de-noising and compression different techniques have been implemented. Wavelet 

thresholding techniques are being wieldy used for image de-noising. There are universal 

thresholding (UT) invented by [12] Dohono and Johnstone. After it Visu shrink method was 

implemented for thresholding. After this method an adaptive technique for image de-noising was 

implemented which is SURE shrink. All these methods are discussed below in the details. 

3.2 Threshold approaches 

Before we represent our work it should be noted that some thresholding methods exist for finding 

the value of threshold (lambda). There are two kind of methods soft thresholding and hard 

thresholding.  

Hard thresholding kills the coefficient value that is smaller than the threshold value and leaves the 

coefficients that are larger than threshold value while Soft thresholding shrinks the coefficient 

values towards threshold. Mathematically these techniques can represented as:  

 

 



30 
 

The hard thresholding operator is defined as 

                            D(U, λ)          =     {
U for all |U| >  λ} 

0 otherwise          }  
                                                                            (3.2) 

                    

The soft thresholding operator on the other hand is defined as 

                           D(U, λ) =  sgn(U) ∗  max(0, |U|  −  λ )         (3.3) 

3.3 Universal thresholding: 

In the wavelet de-noising literature the universal thresholding is the most widely used one. It is 

globally approached and can be formulated as follows: 

                                              𝜆𝑇 =  𝜎 √2𝑙𝑜𝑔𝑁        (3.4) 

Where N is the size of the image and 𝜎 is noise variance. The 𝜆𝑇 must above the max level but not 

too large. Also too much large coefficients may not be averted. Also with increase in N Length the 

threshold also increases due to Gaussian distribution. 

Universal thresholding does not require prior information exactly like the Bayesian thresholding. 

For smooth data like dohono it may be applied easily and conveniently.  

When the size of the input signal is so large that it approaches to infinity the universal thresholding 

is the best candidate in that scenario.  Also it is a good approach for statistical smoothness whose 

asymptotic behavior is better the MSE. 

This approach is too much fast and easy. Its implementation is straight forward, however when 

implemented on an image it produce a de-noised image which lost enough information. 

3.4 Statistical thresholding in wavelets: 

3.4.1 Method 1: 

 

          In this method we find the mean of each detail sub-band ‘µ’. The σ𝑦  is the variance of the 

degraded image which can be find by robust median estimator  
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                                     σ
𝑦

2
= [median(|each sub − band|)/0.6745]  (3.7) 

The noisy coefficients are very small and the signal coefficient are very large contains the 

useful information of the image. After the decomposition of the image to N level. The 

coefficients of the detail sub bands are stored an array. The values that are greater than 

2σ𝑦,  3σ𝑦 are dropped and the other values are kept. i.e 

                                                     y >  2σ𝑦,  3σ𝑦; x = 2σ𝑦        (3.8) 

Else y = y 

Finding the noise variance σ𝑛 and threshold value, finally add the value with mean ‘µ’ 

                                                                      𝑡 = σ𝑛
2/σ𝑠

2  (3.9) 

3.4.2 Method 2: 

The Statistical Thresholding method is effective for images including Gaussian noise. The 

observation model is expressed as follows: 

                                                      Y = X + N        (3.10) 

Here Y is the wavelet transform of the degraded image, X is the wavelet transform of the 

original image, and V denotes the wavelet transform of the noise components following the 

Gaussian distribution N (0, σ𝑛
2). Here, since X and V are mutually independent, the 

variances σ𝑦
2, σ𝑥

2 and σ𝑛
2 of y, x and n are given by 

                                                   σ𝑦
2 = σ𝑥

2+ σ𝑛
2     (3.11) 

It has been shown that the noise variance can be estimated from the first decomposition level 

diagonal sub-band HH1 by the robust and accurate median estimator [4]. 

                                             σ
𝑛

2
= [median (|each sub-band|)/0.6745]    (3.12) 

The variance of the sub-band of degraded image can be estimated as: 

                                                         σ𝑦
2 = 1/𝑀 ∑ (𝐴𝑀

𝑚=1 𝑚)2      (3.13) 

where Am are the wavelet coefficients of sub-band under consideration, M is the total 

number of wavelet coefficient in that sub-band. The statistical thresholding technique 

performs soft thresholding, with adaptive data driven, sub-band and level dependent near 
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optimal threshold given by: 

                   T    =        {
   σ𝑛

2

   σ𝑥
2                      𝑖𝑓 σ𝑛

2
>  σ𝑦

2
 

max(𝐴𝑚)                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (3.14) 
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  Chapter 4               Results and simulations 

4 Introduction 

This chapter discusses about the implementation of the hard thresholding, soft thresholding, visu 

shrink, Statistical method 1 and statistical method 2. The results of all the methods is compared 

with statistical method 1 and statistical method 2 algorithm. 

            It is very essential to compare the input image with the output image. We take the input 

image and we add different variances of noise with it. The noisy image is subjected to wavelet 

transform decomposition after passing through this it is passed to wavelet thresholding and after 

reconstructing transformation we get a de-noised image. Now to find the performance of every 

method we take some parameters to check which thresholding methods out performs the other 

thresholding methods. PSNR is used to measure the distortion. 

 PSNR = 10  log 1010   (
(max(f(m,n)))

2

MSE
)   (4.1) 

In the above equation f(m, n) shows the input image. We are dealing here with gray scale images. 

So we have 

(max(f(m, n))) = 255     (4.2) 

The other parameter used is MSE, it checks the error between original image and output image or 

the de-noised image. We can describe it mathematically as the difference between original image 

and estimated image.  

MSE = ∑
f(m,n)− f̃(m,n)

M x NMN      (4.3) 

In the above equation f̃(m, n) is the de-noised image or the estimated image or reconstructed 

image. 

The other parameter we have used for psycho-visual comparison is structural similarity index 

(SSIM) which shows the image quality comparison between the original image and the estimated 

image. This method has recently been developed for images quality comparison. We can 
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mathematically write the formula of SSIM is the measure between two images X and Y of common 

size N x N is: 

                               𝑆𝑆𝐼𝑀(𝑋, 𝑌) =
(2𝜇𝑥𝜇𝑦 +𝐶1)  (2𝜎𝑥𝑦+𝐶2)

(μ𝑥 +μ𝑦  + C1) (σ𝑥 + σ𝑦 +C2)
        (4.4) 

Here  

𝜇𝑥 is the average of x 

𝜇𝑦 is the average of y 

σ𝑥 is the variance of x 

σ𝑦 is the variance of y 

𝜎𝑥𝑦  is the covariance of xy 

C1 and C2 are constants 

 Mean opinion score (MOS) is used to check the human view about the visual quality of images. 

Every user will look to the image and shows his view about the image from unacceptable to 

excellent in form of numbering form 1 (worst) to 5 (bad). The table is shown below. 

Table 4.1 Mean opinion score (MOS) 

 

The existing statistical techniques uses statistical parameters for threshold value selection. The 

existing techniques uses different wavelet bases for that bi-orthogonal wavelet is version 6.8 has 

much better results that other wavelet bases. So in our simulations we have used wavelet bases 

bior6.8. 

 

MOS QUALITY 

1 Unacceptable 

2 Poor 

3 Fair 

4 Good 

5 Excellent 
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4.1 Test images 

For evaluation of our methods five natural test images are used. These five images are shown in 

the following figure. 

                      

(a) Lena      (b) Barbara 

                      

(c) House      (d) MCS Library 



37 
 

 

(e) Cameraman 

Figure 4.1 five natural test images 

4.2 Visual quality: 

MOS is used to check the visual performance of all the thresholding methods. We need to show 

the images of every techniques. Following are the figures of five test images. These images show 

the performance of all thresholding techniques. 

 

Figure 4.2 MOS for five images on five thresholding techniques. 

0

1

2

3

4

5

Lena House Barbara MCSLibrary Cameraman

Soft WT

Hard WT

Visu

Statistical
Method 1

Statistical
Method 2
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4.2.1 Lena 

                     

                                 (a)                                                                         (b) 

                  

                               (c)                                                                        (d)          

                 

                                (e)                                                                      (f) 
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                               (g) 

Figure 4.3 (a) A clean Lena image (512 x 512)  (b) noisy image with variance σ =  20  (c) De-noised image 

by soft thresholding (d) De-noised image by hard thresholding (e) De-noised image by Visu Shrink (f) De-

noised image by Statistical method 1 (g) De-noised image by statistical method 2 

4.2.2 MCS Library 

             

(a)                                                                                  (b) 

        

               (c)                                                                         (d) 
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                                    (e)                                                                     (f) 

 

 

                                       (g)                                              

Figure 4.4 shows an image of MCS library 512 x 512 de-noised by various methods with noise variance 

of 20. 

In the above figures an image of our college library is taken as a test image. in the above figure 

section (a) shows an original image and (b) shows noisy image with a variance of sigma equal to 

20 section (c) shows a de-noised image by soft thresholding section (d) shows a de-noised image 

by hard thresholding section (e) shows a de-noised image by visu shrink method section (f) shows 

de-noised image by statistical method 1 section (f) shows de-noised image by statistical method 2 
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4.2.3 Barbara: 

 

                            (a)                                                                        (b) 

 

                               (c)                                                           (d) 

 

                                  (e)               (f) 
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   (g) 

Figure 4.5 shows an image of Barbara 512 x 512 de-noised by various methods with noise variance of 25. 

In the above figures Barbara is taken as a test image. in the above figure section (a) shows an 

original image and (b) shows noisy image with a variance of sigma equal to 25 section (c) shows 

a de-noised image by soft thresholding section (d) shows a de-noised image by hard thresholding 

section (e) shows a de-noised image by visu shrink method section (f) shows de-noised image by 

statistical method 1 section (f) shows de-noised image by statistical method 2 

4.2.4 House: 

 

  (a)      (b) 
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          (c)      (d) 

            

  (e)              (f) 

 

           (g) 

Figure 4.6 shows an image of House 512 x 512 de-noised by various methods with noise variance of 20. 
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In the above figures House is taken as a test image. in the above figure section (a) shows an original 

image and (b) shows noisy image with a variance of sigma equal to 20 section (c) shows a de-

noised image by soft thresholding section (d) shows a de-noised image by hard thresholding 

section (e) shows a de-noised image by visu shrink method section (f) shows de-noised image by 

statistical method 1 section (f) shows de-noised image by statistical method 2 

4.2.5 Cameraman: 

 

         (a)               (b) 

 

   (c)      (d) 
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   (e)      (f) 

Figure 4.7 shows an image of Cameraman 512 x 512 de-noised by various methods with noise variance of 

20. 

In the above figures Cameraman is taken as a test image. in the above figure section (a) shows an 

original image and (b) shows noisy image with a variance of sigma equal to 20 section (c) shows 

a de-noised image by soft thresholding section (d) shows a de-noised image by hard thresholding 

section (e) shows a de-noised image by visu shrink method section (f) shows de-noised image by 

statistical method 1 section (f) shows de-noised image by statistical method 2 

4.3 SSIM: 

4.3.1 Lena: 

 

(a) Soft Thresholding. SSIM value is 0.7195.    (b) Hard Thresholding. SSIM value is 0.7619. 
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(c) Visu Shrink SSIM value is 0.7644 (d) Statistical Method 1 SSIM value is 0.7608 

 

(e) Statistical Method 2 SSIM value is 0.7585. 

Figure 4.8 SSIM map and values for the image Lena de-noised with noise variance sigma = 20 
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4.3.2 Barbara: 

 

(a) Soft Thresholding SSIM value is 0.5467  (b) Hard Thresholding SSIM value is .6006 

 

(c) Visu Shrink SSIM value is 0.6206 (d) Statistical Thresholding SSIM value is 0.6777 
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(e) Statistical method 2 SSIM value is 0.6850 

Figure 4.9 SSIM map and values for the image Barbara de-noised with noise variance sigma = 20 

4.3.3 House: 

 

(a) Soft thresholding SSIM value is 0.7258 (b) Hard thresholding SSIM value is 0.7563 
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(c) Visu Shrink SSIM value is 0.7573 (d) Statistical method 1 SSIM value is 0.7116 

 

(e) Statistical method 2 SSIM value is 0.7194 

Figure 4.10 SSIM map and values for the image House de-noised with noise variance sigma = 20 



50 
 

4.3.4 MCS Library: 

         

(a) Soft thresholding SSIM value is 0.5072 (b) Hard thresholding SSIM value is 0.5503 

 

(c) Visu shrink SSIM value is 0.5627  (d) Statistical method SSIM value is 0.6142 

 

(e) Statistical method 2 SSIM value is 0.6181 

Figure 4.11 SSIM map and values for the image MCS Library de-noised with noise variance 

sigma=20 
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4.3.5 Cameraman: 

 

(a) Soft thresholding SSIM value is 0.6646 (b) Hard thresholding SSIM value is 0.7128 

 

(c) Visu shrink SSIM value is 0.7182        (d) Statistical thresholding method 1 SSIM value 0.6643 

 

(e) Statistical thresholding SSIM value is 0.6673 

Figure 4.12 SSIM map and values for the image Lena de-noised with noise variance sigma = 20 
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4.4 Threshold values for each sub-band for image MCS 

library: 

This section discusses the threshold values for each level for both the thresholding methods from 

level one to level five for each sub-band details i.e. for HH, HL and LH. The threshold value 

decreases as the decomposition level increases for image MCS library we have find the following 

threshold values. 

Table 4.1 Threshold values for image MCS Library for each detail sub-band from level one to 

level five for statistical thresholding method 1. 

 

 

 

 

 

 

 

 

 

Table 4.2 threshold values for image MCS Library from level one to level five by statistical 

thresholding method 2 

   

 

   

 

 

 

 

Scale HH LH HL 

1(Finest) 88.5173 37.4301 44.2574 

2 24.7179 14.7820 21.2625 

3 10.9920 5.8531 9.2425 

4 5.1413 2.3776 3.1231 

5(coarsest) 2.7454 1.1358 1.6891 

Scale HH HL LH 

1 240.7110 36.6272  44.4087 

2 24.4503 14.7553 20.7946 

3 10.8098 5.8190 9.2413 

4 5.0202 2.3329 3.0196 
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The histograms for these decomposition levels is given below for every level and every sub-band. 

The horizontal, vertical and diagonal details for every level is given below. The histograms for 

every level is also given below as we go in decomposition level the image is going more blurred 

because for reducing the size of the image by N/2 x N/2.  

 

Figure 4.13 shows the original image of MCS Library 

 

5 2.6864 1.0784 1.7289 
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                     Figure 4.14 shows histogram of original image MCS Library  
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 Figure 4.15 shows the histogram of horizontal details  
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 Figure shows 4.16 vertical details of image MCS Library from level 1 to 5 
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Figure 4.17 shows diagonal details histogram for image MCS Library from level 1 to 5 

4.5 Graph of PSNR vs noise variance: 

Figure shows the graph of PSNR values versus noise variance sigma = 20 for the image Lena. The 

image is passed from the five techniques i.e. Soft thresholding, hard thresholding, Visu shrink, 

statistical thresholding method 1 and statistical thresholding method 2. The graph of noisy image 

is shown which is improved to some extent by soft thresholding. The hard thresholding has higher 

values for PSNR than soft thresholding. Visu shrink has improved the PSNR values to more than 

hard thresholding. The statistical thresholding method 1 crossed the values of PSNR of all 
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techniques. The statistical method 2 has top values than all techniques.

 

Figure 4.18 PSNR vs noise variance of image Lena for all thresholding techniques 

4.6 Graph of MSE vs noise variance: 

The objective is to minimize MSE versus different noise variance. The following graph shows 

MSE of noisy image. In order to compare results MSE of all techniques is compared with that of 

noisy image. The graph shows that how better each techniques performs. 
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Figure 4.19 Plot of MSE vs noise variance for different techniques 

4.7 PSNR and MSE values for all images 

4.7.1 PSNR values for different images and different noise level: 

The following table describes the PSNR of three images i.e Lena, Barbara and house. The noise 

variance is taken for sigma values of 15,20,25,30 and 35. These images are passed from different 

techniques i.e. the typical soft thresholding, hard thresholding, VISU shrink and statistical 

thresholding method 1 and statistical thresholding method 2. 

First of all the input image Lena 512 x 512 is passed from wavelet decomposition and after hen it 

is passed by different thresholding techniques for noise variance sigma=20 the image is passed by 

Soft Thresholding, Hard thresholding, Visu shrink, statistical method 1 and statistical method 2. 

The visual quality shows that statistical method 1 and statistical method 2 are the best methods for 

thresholding. 
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 Table 4.3 Shows the PSNR values for Images Lena, House, Barbara for noise variance σ = 

15,20,25,30,35 by soft, hard, Visu shrink, Proposed method 1, proposed method 2. 

Input image Noise 

variance 

sigma 

Noisy 

image 

Soft 

thresholding 

Hard 

thresholding 

Visu 

shrink  

Statsitaical 

method 1 

Statistical 

method 2 

Lena 15 24.67 26.46 28.87 28.77 31.22 31.57 
House  15 24.67 26.25 28.77 29.09 29.86 30.97 
Barbara 15 24.67 22.74 24.50 25.52 28.30 28.73 
MCS library 15 24.96 24.97 24.97 24.39 26.79 21.72 
Cameraman 15 24.90 23.36 25.90 26.30 27.86 28.76 

Lena 20 22.19 25.57 27.79 27.90 29.94 30.13 
House  20 22.19 25.31 27.72 27.83 28.77 29.49 
Barbara 20 22.19 22.18 23.51 24.13 26.92 27.25 
MCS library 20 22.54 22.53 23.02 23.37 25.47 25.79 
Cameraman 20 22.40 22.34 24.74 25.13 26.58 27.12 

Lena 25 20.25 24.75 26.93 27.04 28.93 29.16 
House  25 20.25 24.50 26.80 26.90 27.87  28.38 
Barbara 25 20.25 21.73 22.97 23.29 25.86  26.08 
MCS library 25 20.67 21.19 22.51 22.64 24.46  24.74 
Cameraman 25 20.34 21.67 23.86 24.50 25.47 26.00 

Lena 30 18.73 24.18 26.22 26.33 28.19 28.39 
House  30 18.73 23.89 25.98 26.17 27.16  27.72 
Barbara 30 18.73 21.37 22.57 22.69 25.10  25.23 
MCS library 30 19.21 21.13 22.08 22.05 23.72  23.97 
Cameraman 30 19.08 20.68 23.08 23.94 24.56 24.94 

Lena 35 17.46 23.79 25.63 25.65 27.48   27.56 
House  35 17.46 23.34 25.49 25.52 26.57   27.21 
Barbara 35 17.46 21.09 22.20 22.29 24.32   24.52 
MCS library 35 18.00 20.45 21.72 21.54 23.11   23.97 
Cameraman 35 17.80 20.55 22.50 23.15 23.80 24.26 
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4.7.2 MSE values for different images and different noise level: 

Simulation results of Lena, house and Barbara image for soft thresholding, hard thresholding, visu 

shrink, proposed method 1 and proposed method 2 for different noise variances are given below.  

Table 4.4 Shows the MSE values for Images Lena, House, Barbara for noise variance σ = 

15,20,25,30,35 by soft, hard, Visu shrink, Proposed method 1, proposed method 2. 

Input image Noise 

variance 

Noisy 

image 

Soft 

thresholding 

Hard 

thresholding 

Visu 

shrink 

Statistical 

method 1 

Statistical 

method 2 

        

Lena 15 223.12 146.58 84.20 86.14 49.04 45.23 
House 15 221.85 153.90 86.22 80.07 67.05 51.97 
Barbara 15 221.73 345.60 230.40 182.40 96.15 87.10 
MCS Library 15 388.14 206.88 207.92 236.55 136.12 121.06 
Cameraman 15 209.10 299.77 166.76 134.23 106.22 86.45 

Lena 20 396.02 180.03 107.93 105.23 65.83 65.83 
House 20 392.27 191.36 109.73 107.02 86.21 86.21 

Barbara 20 391.77 393.60 284.35 251.21 131.87 122.23 
MCS Library 20 447.06 362.45 324.09 299.05 184.46 171.21 
Cameraman 20 369.67 373.7 217.87 185.45 142.84 126.10 
Lena 25 613.03 217.41 131.63 128.29 83.01 78.84 
House 25 614.87 230.64 135.59 132.56 106.18 94.30 
Barbara 25 601.20 436.40 327.76 304.50 168.38 159.99 
MCS Library 25 552.55 493.59 364.46 353.79 232.82 218.12 
Cameraman 25 566.15 442.17 266.94 202.54 184.26 163.06 
Lena 30 870.42 248.11 155.11 151.37 98.61 94.11 
House 30 885.18 265.48 164.00 156.98 125.01 109.74 
Barbara 30 846.92 474.26 359.81 349.90 200.63 194.99 
MCS Library 30 775.55 533.23 402.35 405.41 275.58 260.11 

Cameraman 30 811.99 500.83 319.72 294.01 227.09 208.22 

Lena 35 1166 271.51 177.69 176.89 115.98 113.85 
House 35 1169 301.23 183.28 182.20 143.09 123.39 
Barbara 35 1138 505.08 391.09 383.23 240.10 229.35 
MCS Library 35 1031 585.66 437.21 455.70 317.19 305.34 
Cameraman 35 1075 572.87 365.10 304.26 270.46 243.38 
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5 Chapter 5 Conclusion and future work 

In this thesis digital image de-noising using statistical based thresholding has been discussed. In 

the first part of the thesis, we have discussed introduction to wavelet transform. Then after we 

introduced some important features of DWT. Then the previously used thresholding techniques 

has been discussed with literature review. 

In the latter part we proposed two different thresholding schemes that are based on the statistical 

properties of the input data. In the first approach statistical based thresholding scheme the image 

is passed by decomposition and after that we have applied this scheme on sub-band of the image. 

The advantage of this method is that it is much more adaptive towards the image coefficient values. 

The second statistical approach has improved the values more from the first statistical thresholding 

method. This method shows fairly satisfying results in both visual and numerical aspect. The 

statistical thresholding methods have better PSNR, MSE and visual quality than other techniques. 

These methods also shows better SSIM mean value and map. 

Although our proposed methods has improved the results gives encouraging results, but we believe 

there is some space for further improvements to achieve more high results for example it is need 

that a hybrid thresholding scheme to be applied in image de-noising as a thresholding function, 

which is more coherent, improve the relation of neighbor dependency and representing better 

hierarchal dependency between the multiple decomposition levels.    
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APPENDIX 

Matlab Code:  

clear; 
clc; 
clear all;  
close all; 
display('           '); 
display('           '); 

  
display('           '); 
display('               SOME EXPERIMENTS ON IMAGE DENOISING USING WAVELETS 

'); 

  
display('           '); 
display('           '); 
display('         RAJA RAO           '); 

  
display('           '); 
display('           '); 

  
display('select the image'); 

  
display('           1:lena.png'); 
display('           2:barbara.png'); 
display('           3:mcslib.png'); 
display('           4:house.png'); 
display('           5:JF17.png'); 
display('           6:cameraman.jpg'); 
display('           '); 
display('           7:hyderabad.png'); 
display('           8:friendgray.jpg'); 
display('           '); 

  

  
ss1=input('enter your choice:   '); 
switch ss1 
    case 1 
       f=imread('lena.png'); 
       %f=imread('babu.jpg'); 
    case 2 
        f=imread('barbara.png'); 
    case 3 
        f=imread('mcslib.png'); 
    case 4 
        f=imread('house.png'); 
        case 5 
        f=imread('JF17.png'); 
    case 6 
        f=imread('cameraman.jpg'); 
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    case 7 
        f=imread('hyderabad512.png'); 
    case 8 
        f=imread('friendgray.jpg');                
end 

  
% subplot(2,2,1), imshow(f);title('original image'); 

  
display('enter the type of noise:'); 
display('    1    for salt & pepper'); 
display('    2    for gaussian');     
display('    3    for poisson'); 
display('    4    for speckle'); 

  
ud=input('enter the value:'); 

  
switch ud 
    case 1 
        display('enter the % of noise(Ex:0.2)'); 
        ud1=input('pls enter:     '); 
        g=imnoise(f,'salt & pepper',ud1); 
    case 2 

     

     
%f=imread('peppers256.png'); 
%subplot(2,2,1),imshow(f); 
display('enter the noise varience:  '); 
sig=input('enter between 10 to 50:   '); 

  
va =(sig/256)^2; 
g=imnoise(f,'gaussian',0,va); 
    case 3 
       % display('enter the % of noise(Ex:0.2)'); 
        %ud1=input('pls enter:     '); 
        g=imnoise(f,'poisson'); 
        case 4 
        display('enter the varience of noise(Ex:0.02)'); 
        ud1=input('pls enter:     '); 
        g=imnoise(f,'speckle',ud1); 

     

     
end 
%g=imnoise(f,'salt & pepper',01); 
% subplot(2,2,2),imshow(g);title('noisy image'); 
figure, imagesc(g);colormap(gray); 

  
%[ca,ch,cv,cd] = dwt2(g,'db2'); 
%c=[ca ch;cv cd]; 
%subplot(2,2,3),imshow(uint8(c)); 

  
x=g; 
% Use wdencmp for image de-noising.  
% find default values (see ddencmp).  
[thr,sorh,keepapp] = ddencmp('den','wv',x); 
display(''); 
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display('select wavelet'); 
display('enter 1 for haar wavelet'); 
display('enter 2 for db2 wavelet'); 
display('enter 3 for db4 wavelet'); 
display('enter 4 for sym wavelet'); 
display('enter 5 for sym wavelet'); 
display('enter 6 for bior1.1 wavelet'); 
display('enter 7 for bior6.8 wavelet'); 
display('enter 8 for mexh wavelet'); 
display('enter 9 for coif  wavelet'); 
display('enter 10 for meyr wavelet'); 
display('enter 11 for morl wavelet'); 
display('enter 12 for  rbio wavelet'); 
display('press any key to quit'); 
display(''); 

  
ww=input('enter your choice:    '); 
switch ww 
    case 1 
        wv='haar'; 
    case 2 
        wv='db2'; 
    case 3 
        wv='db4' ;  
    case 4 
        wv='sym2' 
    case 5 
        wv='sym4'; 
    case 6 
        wv='bior1.1'; 
    case 7 
       wv='bior6.8';  
    case 8 
        wv='mexh'; 
    case 9 
        wv='coif5'; 
    case 10 
        wv='dmey'; 
    case 11 
        wv='mor1'; 
    case 12  
        wv='jpeg9.7'; 
    otherwise  
        quit; 
end 
display(''); 
display('enter 1 for soft thresholding'); 
display('enter 2 for hard thresholding'); 
display('enter 3 for bayes soft thresholding'); 
sorh=input('sorh:   '); 

  
display('enter the level of decomposition'); 
level=input(' enter 1 or 2 :    '); 

  
switch sorh 
    case 1 
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        sorh='s'; 
        xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp); 
    case 2 
        sorh='h'; 
        xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp); 
    case 3 
        %%%%%%%%%%%%%%%%%%%%% 
       % clear all; 
%close all; 
%clc; 

  
%Denoising using Bayes soft thresholding 

  
%Note: Figure window 1 displays the original image, fig 2 the noisy img 
%fig 3 denoised img by bayes soft thresholding 

  

  
%Reading the image  
%pic=imread('elaine','png'); 
pic=f; 
%figure, imagesc(pic);colormap(gray); 

  
%Define the Noise Variance and adding Gaussian noise 
%While using 'imnoise' the pixel values(0 to 255) are converted to double in 

the range 0 to 1 
%So variance also has to be suitably converted 
% sig=15; 
% V =(sig/256)^2; 
npic=g; 
%npic=imnoise(pic,'gaussian',0,V); 
%figure, imagesc(npic);colormap(gray); 

  
%Define the type of wavelet(filterbank) used and the number of scales in the 

wavelet decomp 
filtertype=wv; 
levels=level; 

  
%Doing the wavelet decomposition 
[C,S]=wavedec2(npic,levels,filtertype); 

  
st=(S(1,1)^2)+1; 
bayesC=[C(1:st-1),zeros(1,length(st:1:length(C)))]; 
var=length(C)-S(size(S,1)-1,1)^2+1; 

  
% Calculating sigmahat 
sigmahat=median(abs(C(var:length(C))))/0.6745; 

% xthr=C; 
% sigma=sqrt(var) 
%  aa =  find(xthr>=2*sigma); 
%  xthr(aa) = 2*sigma; 
%   C=xthr;      
%      

  
thr1=zeros(3,size(S,1)-2); 
for jj=2:size(S,1)-1 
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    %for the H detail coefficients 
    coefh=C(st:st+S(jj,1)^2-1); 
    thr=bayes(coefh,sigmahat); 
    thr1(1,jj-1)=thr 
    bayesC(st:st+S(jj,1)^2-1)=sthresh(coefh,thr); 
    st=st+S(jj,1)^2; 

     
    % for the V detail coefficients 
    coefv=C(st:st+S(jj,1)^2-1); 
    thr=bayes(coefv,sigmahat); 
    thr1(2,jj-1)=thr 
    bayesC(st:st+S(jj,1)^2-1)=sthresh(coefv,thr); 
    st=st+S(jj,1)^2; 

      
    %for Diag detail coefficients  
    coefd=C(st:st+S(jj,1)^2-1); 
    thr=bayes(coefd,sigmahat); 
    thr1(3,jj-1)=thr 
    bayesC(st:st+S(jj,1)^2-1)=sthresh(coefd,thr); 
    st=st+S(jj,1)^2; 
end 

  

  
%Reconstructing the image from the Bayes-thresholded wavelet coefficients 
bayespic=waverec2(bayesC,S,filtertype); 
xd=bayespic; 
%Displaying the Bayes-denoised image 
figure, imagesc(uint8(xd));colormap(gray); 
display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 

2000'); 

  
display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 

2000'); 
display('Adaptive Wavelet Thresholding for Image Denoising and Compression'); 
display('S. Grace Chang, Student Member, IEEE, Bin Yu, Senior Member, IEEE, 

and Martin Vetterli, Fellow, IEEE'); 

  

  

         
        %%%%%%%%%%%%%%%%%%%%%%%%%% 

         

         
end 

  

  

  
%sorh=sorh; 
% de-noise image using global thresholding option.  

  

  
%f=imread('peppers256.png'); 
[c,s]=wavefast(g,level,wv); 
% subplot(2,2,3),wave2gray(c,s,8);title('decomposed structure'); 
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figure, imagesc(xd);colormap(gray); 

  

  
% subplot(2,2,4),xd=uint8(xd); 
% imshow(xd);title('denoised image'); 
%subplot(2,2,4),sub=f-xd; 
%sub=abs(1.2*sub); 
%imshow(im2uint8(sub));title('difference image'); 
ff=im2double(f);xdd=im2double(xd); 
% figure, imshow(xd); 
display('      '); 
display('      '); 
display('      '); 
% snr=wpsnr(ff,xdd) 
%  
% display('      '); 
% display('      '); 
% mse=compare11(f,xd) 
% noisy=im2double(g); 
% SNR_NOISY_IMAGE=wpsnr(ff,noisy) 
[MSE PSNR]=Calc_MSE_PSNR(f,xd) 
[MSE PSNR]=Calc_MSE_PSNR(f,g) 
%%  
[ssimval, ssimmap] = ssim(f,xd); 

   
fprintf('The SSIM value is %0.4f.\n',ssimval); 

   
figure, imshow(ssimmap,[]); 
title(sprintf('ssim Index Map - Mean ssim Value is %0.4f',ssimval)); 

 

Visu Shrink  

 
clear all; 
close all; 
clc; 

  
%Implementing Visu Shrink- 
%Denoising using universal threshold with both hard and soft thresholding 

  
%Note: Figure window 1 displays the original image, fig 2 the noisy img 
%fig 3 denoised img by hard thresholding, fig 4 denoised by soft thresholding 

  

  
%Reading the image  
pic=imread('house.png'); 

  
figure, imagesc(pic);colormap(gray); 
% subplot(2,2,1), imshow(pic);title('original image'); 

  
%Define the Noise Variance and adding Gaussian noise 
%While using 'imnoise' the pixel values(0 to 255) are converted to double in 

the range 0 to 1 
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%So variance also has to be suitably converted 
sig=20; 
V=(sig/256)^2; 

  
npic=imnoise(pic,'gaussian',0,V); 
figure, imagesc(npic);colormap(gray); 
% subplot(2,2,2),imshow(npic);title('noisy image'); 

  
%Define the type of wavelet(filterbank) used and the number of scales in the 

wavelet decomp 
filtertype='bior6.8'; 
levels=5; 

  
%Doing the wavelet decomposition 
[C,S]=wavedec2(npic,levels,filtertype); 
% subplot(2,2,3),wave2gray(C,S,8);title('decomposed structure'); 

  
% Define the threshold(universal threshold) 
M=size(pic,1)^2; 
UT=sig*sqrt(2*log(M)); 

  

  
%%  

  

  
%Hard thresholding 
%Doing the hard thresholding-threshold only detail coefficients!! 
hardC=[C(1:S(1,1)^2), hthresh(C(S(1,1)^2+1:length(C)),UT)]; 

  
%Reconstructing the image from the hard-thresholded wavelet coefficients 
newpich=waverec2(hardC,S,filtertype); 

  
%Displaying the hard-denoised image 
figure, imagesc(newpich);colormap(gray); 
% subplot(2,2,4),newpich=uint8(newpich); 
figure, imagesc(newpich);colormap(gray); 

  

  
%Soft thresholding 
softC=[C(1:S(1,1)^2), sthresh(C(S(1,1)^2+1:length(C)),UT)]; 

  
%Reconstructing the image from the soft-thresholded wavelet coefficients 
newpics=waverec2(softC,S,filtertype); 

  
%Displaying the soft-denoised image 
% figure, imagesc(newpics);colormap(gray); 

  
% Estimate the denoising effcet (i.e. computing MSE and PSNR) 
[MSE, PSNR] = Calc_MSE_PSNR(pic,newpich) 
%%  
[ssimval, ssimmap] = ssim(pic,newpich); 

   
fprintf('The SSIM value is %0.4f.\n',ssimval); 
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figure, imshow(ssimmap,[]); 
title(sprintf('ssim Index Map - Mean ssim Value is %0.4f',ssimval)); 

  

 

 


