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ABSTRACT

Derivation of a mathematical system is a critical parameter for analysis, design and simula-

tion of a dynamic system. While deriving from physical systems large higher order complex

models are obtained. These models are represented by partial differential equations, odinary

differential equations. For simplification and ease in solution of these models, reduced order

models are required that approximates with the original system as closely as possible. Con-

siderable amount of research has been done on different features of model order reduction.

Existing techniques have the drawbacks of lacking properties like stability, passivity, large

approximation with error and lack of apriori error bounds etc. This thesis includes frequency

limited Gramians based model order reduction techniques for standard continous and dis-

crete time systems . The proposed techniques produce easily computable error bounds and

comparable approximation error. Numerical problems are also illustrated to exhibit the com-

patibility and effictievness of the proposed techniques to the existing ones. Some of practical

applications of MOR are

• Fabrication industries

• Missiles analysis and launching

• Industrial real time applications
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Overveiw

Each physical framework can be spoken to as numerical model. Demonstrating of physical

systems into scientific model produce complex higher order models. These higher order

models produce complex differential condition that are hard to analyze, design , mimic and

store, and take much memory for capacity. To address these issues, a strategy is required

to bring down the computational cost by reducing the order of the system that contains the

basic parameters like input, output parameters stability and lower approximation error of

original systems. The required outcome can be acheived by a procedure called Model order

Reduction (MOR). MOR contributes an essential part in control theory analysis and design.

Balanced truncation (BT)

The most as often as possible utilized MOR method is Balanced truncation (BT) [1] that

holds stability in reduce order models (ROMs). In BT [1], controlability and observibility

Gramians are altered into an system that is internally balanced. The slightest controllable

and minimum obsersvable states are truncated to get ROMs. This makes the estimation error

smaller in utilizing BT [1] system, which is viewed as a decent execution of ROMs. Other

than BT, other such plans, for example, Hankel ideal estimate [2], Pade apprximation [3] ,

Krylov technique [4] and so on are valuable for limiting MOR disadvantages. For higher

frequencies BT is a decent option as it creates good results; At lower frequencies adjusted

particular annoyance guess (BPSA) is utilized for better execution. The ROMs acquired

through the BSPA [5] are stable and balanced.

Frequency Weighted model Order Reduction

In MOR the approximation error between original and ROM is required to be small for

all frequencies, in a few situations this error is more essential over a specific interval of

frequency instead of whole frequencies. The case for this situation when ROMs are utilized
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are the input control plan. This gives utilizing frequency weights in MOR strategy, otherwise

called weighted model reduction (FWMR) issue. Give a stable continous system G(s) =

C(sI − A)−1B +D, Vi(s) = Cvi(sI − Avi)−1Bvi +Dvi is the steady state system, and the

steady yield weighting system Wo(s) = Cwo(sI − Awo)
−1Bwo + Dwo where A,B,C,D,

with output, input and weightings. Avi, Bvi, Cvi, Dvi, Awo, Bwo, Cwo, Dwo are nth, pth, qth

arrange separately that is least acknowledgment , the fundamental point is to locate a steady

ROMGrr(s) = Crr(sI−Arr)−1Drr+Drr where Arr, Brr, Crr, Drr becomes a rrth arrange

(rr < n) negligible acknowledgment, in that case ‖Wo(s)(G(s) − Grr(s))Vi(s)‖∞ should

be as little as would be prudent. This is known as two sided FWMR issue. On the off chance

that the weighting is one sided, the issue is known as uneven FWMR, where the point is to

discover a ROM Grr(s), therefore ‖(G(s) − Grr(s))Vi(s)‖∞ (in case of input weighting)

and ‖Wo(s)(G(s)−Grr(s))‖∞ (in case of output weighting) should be as little as could be

expected under the circumstances. Enns [6] hypothesize this issue by acquainting frequency

weights with the BT [1] to present frequency weights. These weights change the are helpful

for the recurrence of the MOR error, input weights, output weights or both sided weights

might be utilized as a part of Enns system [6]. Be that as it may, for uneven weights, stability

of ROMs is ensured yet for two sided sided weighting case, stability is not guanranteed. To

conquer this shakiness issue of two sided weighting, a few modifications to enns system [6]

have been proposed [7]- [11].

To conquer Enns method [6] disadvantages, Lin and Chiu [8] has proposed an alternate

procedure that guarantees stability when two sided weightings are available. In any case,

their strategy has a confinement that can work just when entirely appropriate weighting

capacity is utilized as a part of and no pole, zero cancelation happens while shaping the

augumented system. These shortcomings of Lin and Chui [8] method were later adjusted by

Sreeram et al [12] and Varga and Anderson [10], where [12] summed up [8] to incorporate

weights, while [10] holds the dependability of the system notwithstanding when shaft zero

cancelation happen. Varga and Anderson [10] produces an indistinguishable outcomes from

Enns [6] particularly in controller decrease applications. So far controller reduction issue, if

Enns system [6] produces unstable ROMs, so does by Varga and Anderson [10] method.

Wang et al’s method [13] has likewise solve the stability issue of Enns [6], which not

just give stable ROMs within the sight of two sided weightings additionally inferred error
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bound. The approximation error of Wang et al method [13] was later enhanced by Varga and

Anderson [10] as pointed out by Sreeram [9]. This system and its adjustment by Varga and

Anderson [10] are acknowledgment free. This implies for a similar unique system , diverse

models can be gotten from various acknowledge

Frequency limited model reduction Problem

Gawronski and Juang (GJ) [14] presented interval based model reduction technique (FLMR)

in this case there are no unequivocally predefined frequency weightings, rather categorical

estimation frequency intervals is considered [ω1, ω2] without struction of information and

yield weightings by recurrence space portrayal of Gramians. in this system, Gramians are

characterized for a fancied recurrence interims. Notwithstanding it can likewise yield in-

secure ROMs for stable unique system (like Enns strategy [6]). In addition , there are no

error bounds . Spurred by [13] . Gugercin and Antoulas [15] has changed Gawronski and

Juang system to give ROMs. Roused from Varga and Anderson [10] change to wang et

al’s procedure [13]), Ghafoor and Sreeram [16] exhibited another alteration to Gawronski

and Juang [14] system to give stable ROMs. Both methods [16], [18] carries frequency re-

sponse error bound to satisfy rank conditions. However, like [10], [13] these methods are

additionally realization dependant.

The FWMR with given weightings and FLMR without predefined weightings gets to be

distinctly identical as demonstrated [18].

Gawronski and Juang [14] has additionally presented an idea of time restricted Gramians

based model reduction (TLMR). Tragically, TLMR likewise does not have the security of

ROMs and does not have frequency response error bound. Summed up descriptor systems

are valuable and discover their nearness in various applications which incorporate semidis-

cretization of fractional differential conditions, multibody elements with requirements, elec-

trical circuit recreation and small scale electro-mechanical framework.

1.2 Problem Summary

Existing FWMR, FLMR systems may yeild unsteady ROMs, and yield more estimation

error.
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1.3 Summary of contributions

Different FWMR, FLMR and TLMR procedures [19]- [21] for standard and summed up state

space representatin for both continous and discrete time are proposed which dependably

yield stable ROMs, have effortlessly calculatable approximation error and generally yield

less error bound.

1.4 Contributions

The summary of the thesis are condensed as,

• The systems are proposed which guarantee the stability of ROM.

• Proposed techniques deliver less approximation error when contrasted with existing

stability preserving techniques.

1.5 Thesis Outline

This thesis is separated into four parts:

• Chapter 1: In this chapter, outline of existing MOR procedures in writing is portrayed.

• Chapter 2: This chapter incorporates all the current FLMOR methods for continous

time systems and afterward given examinations existing procedure are given.

• Chapter 3: This chapter incorporates all the current FLMOR strategies for discrete

time systems.

• Chapter 4: Future works and Conclusion are presented in this section
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Chapter 2

Frequency Limited Gramians based Model Reduction Technique with

Error Bounds for Continous Time Systems

In this chapter, a new FLMOR technique is proposed. The technique addresses stability

problem of GJ [14] and yeild better approximation error and carries error bound also. More-

over, it does not cause a similar effect on all eigen values. IG [17] tackled the issue by having

the same effect on all eigenvalues by subtracting the smallest value from all the eigenvalues.

2.1 Preliminaries

Let a nth order stable system G(s) = C(sI − A)−1B + D since A ∈ Rn×n, B ∈ Rn×n,

C ∈ Rp×n, D ∈ Rp×m where inputs and outputs are defined as m and p respectively. A

MOR problem is to find

Grr(s) = C1(sI − A11)
−1B1 +D1 (2.1)

which proximates the original system (in the frequency range [ω1, ω1], 0 ≤ ω1 ≤ ω2),

in that case A11 ∈ Rr×r, B1 ∈ Rr×m, C1 ∈ Rp×r, D1 ∈ Rp×m, r < n. Let Pi and

Qo are controlability and observibility Gramians respectively, satisfy following Lyapunov

equations:

Pi =
1

2π

∫ π

−π
(jωI − A)−1BBT (−jωI − AT )−1Dω

Qo =
1

2π

∫ π

−π
(−jωI − AT )−1CTC(jωI − A)−1Dω

Let Pi and Qo are controlability and observibility Gramians separately, fulfill taking after

continous time Lyapunov conditions

APi + PiA
T +BBT = 0

ATQo +QoA+ CTC = 0
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Gawronski and Juang’s technique (GJ)

GJ introduced the frequency limited controllability PiGJ
= Pi(w2)−Pi(w1) and observabil-

ity QoGJ
= Qo(w2)−Qo(w1) Gramians satisfying :

APiGJ
+ ATPiGJ

+XGJ = 0

ATQoGJ
+QoGJ

AQo + YGJ = 0

where

XGJ = (E(w2)− E(w1))BB
T +BBT (E∗(w2)− E∗(w1))

YGJ = (E(w2)− E(w1))C
TC +T C(E∗(w2)− E∗(w1))

E(w) =
j

2π
ln((jωI + A)(−jωI + A)−1)

XGJ = U

 S1 0

0 S2

UT , YGJ = V

 R1 0

0 R2

V T

S1 = diag(si1, si2, · · · , sil), S2 = diag(sil+1, sil+2, · · · , sin),

R1 = diag(ri1, ri2, · · · , rik), R2 = diag(rik+1, rik+2, · · · , rin). l ≤ n and k ≤ n are the

number of positive eigenvalues of XGJ and YGJ respectively.

Remark 1 For approximation, multiple frequency intervals can be considered. For exam-

ple, for two intervals [ω1, ω2] and [ω3, ω4] , ω1 < ω2, ω3 < ω4, the matrices XWZ and YWZ

may becomes indefinite and stability of ROM is not gauranteed. Therefore the ROM got by

GJ are not gauranteed stable.

Gugercin and Antoulas’s technique (GA) [15]

The stability issue of GJ [14] was highlighted by GA [15]. GA introduced the frequency

limited controllability PiGA
= Pi(w2)−Pi(w1) and observability QoGA

= Qo(w2)−Qo(w1)

Gramians satisfying the following lyaponav equations :

APiGA
+ ATPiGA

+XGA = 0

ATQoGA
+QoGA

A+ YGA = 0

Let

T Tc QoGJ
Tc = T − c−1PiGJ

T−Tc = diag{σ1, σ2, . . . , σn}

6



To transform the original model to ROMs, Tc is a transformation matrix where σh ≥

σh+1, h = 1, 2, . . . , n − 1 and T is a contragredient matrix used to transform the origi-

nal system realization. Calculation of ROMs are done by segregating the transformed re-

aliation. BGA = UGA|SGA|
1
2 and CGA = |RGA|

1
2V T

GA′, respectively . The expressions

UGA, SGA, VGA and RGA, where RGA = diag(ri1, ri2, ..., rin), RGA = diagri1, ri2, ..., rin

|si1| ≥ |si2| ≥ · · · |sin| ≥ 0 and |si1| ≥ |si2| ≥ · · · |sin| ≥ 0. Calculation of ROMs are

carried out by segregating the transformed realization.

Remark 2 In this case XGJ ≤ BGAB
T
GA ≥ 0, YGJ ≤ CT

GACGA ≥ 0, PiGA > 0andQoGA >

0, the minimality of A,BGA, CGA is guaranteed. Moreover this technique additionally yields

frequency response error bounds

Ghafoor and Sreeram technique (GS)

Ghafoor and Sreeram (GS) [16] likewise addresses the stability issue of Gawronski and

Juang [14] method. GS introduced the frequency limited controllability PiGS
= Pi(w2) −

Pi(w1) and observability QoGS
= Qo(w2)−Qo(w1) Gramians satisfying :

APiGS
+ ATPiGS

+XGS = 0

AQT
oQoGS

+QoGS
A+ YGS = 0

Let

T Tc QoGS
Tc = T−1c PiGS

T−Tc = diag{σ1, σ2, . . . , σn}

Transformation of original system is carried out by contragredient matrix Tc where σj ≥

σj+1, j = 1, 2, . . . , n − 1. Calculation of ROMs is done by segregating the transformed

realization. BGS = UGS1|SGS1|
1
2 and CGS = |RGS1|

1
2V T

GS1
, respectively,

XGJ =
[
UGS1 UGS2

] SGS1 0

0 SGS2

 UT
GS1

UT
GS2


YGJ =

[
VGS1 VGS2

] RGS1 0

0 RGS2

 V T
GS1

V T
GS2
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where SGS1 0

0 SGS2

 = diag{si1, si2, ..., sin},

 RGS1 0

0 RGS2

 = diag{ri1, ri2, ri3, ..., rin}, si1 ≥

si2 ≥ si3 ≥ ... ≥ sin, ri1 ≥ ri2 ≥ r3 ≥ ... ≥ rn, SGS1 = diag{s1, s2, s3, ..., se}, RGS1 =

diag{ri1, ri2, ri3, ..., rie}, si1 ≥ si2 ≥ si3 ≥ ... ≥ sie ≥ 0, ri1 ≥ ri2 ≥ ri3 ≥ ... ≥ rie ≥

0. Note that, the realization {A,BGS2 , CGS2 , D} is minimal and stable. The reduced system

is calculated by transforming and segregating the tranformed system realization. Since the

realization (A,BGS2 , CGS2 , D) is negligible, the stability of the reduced system is ensured.

The expression for error bound also appears in [23].

2.1.1 Imran and Ghafoor (IG)

In GA technique [15] , the symmteric matrices XGJ and YGJ are guaranteed positive defi-

nite/semipositive definite respectively by taking the square root of absolutes values estima-

tions of the eigenvalues by eigen value decomposition of symmetric XGJ and YGJ . This

occasionally prompts to a substantial change in some eigen values and may not impact other

eigen values. Then again , Ghafoor and Sreeram [16] guarantees positive definitness of

the matrices XGJ and YGJ by effecting just positive eigenvalues and by replacing negative

eigenvalues with zeros. This system likewise doesnot have comparative impact on all eigen-

values. In IG [17] was proposed where exertion is to similarly affect all eigenvalues of

uncertain matrices XGJ and YGJ . The ROMs got are ensured to be stable . Additionally,

it has error bounds and enhanced frequency response error. Take new controlability PiIG

and Observability QoIG Gramians respectively, are calculated by resolving the following

Lyaponav equations:

PiIGAIG + ATPiIG +XIG = 0

ATQoIG +QoIGA+ YIG = 0

The matrices BIG and CIG are new fictitious input and output matrices respectively de-

8



fined as :

BIG =

 UIG(SIG − sinI)1/2 for sin < 0

UIGS
1/2
IG for sin ≥ 0

CIG =

 (RIG − rinI)1/2V T
IG for rn < 0

R
1/2
IG V

T
IG for rin ≥ 0.

The terms UIG, SIG, VIG, and RIG are solved as XWZ = UIGSIGU
T
IG and YWZ =

VIGRIGV
T
IG, where SIG = diag(si1, si2, si3, · · · , sin), RIG = diag(ri1, ri2, ri3, · · · , rin),

si1 ≥ si2 ≥ · · · ≥ sin, and ri1 ≥ ri2 ≥ · · · ≥ rin.

A consideration is made that to transform a original system a transformation matrix T is

obtained as

T Tc QoIGT = T−1c PiIGT
−T
c = diag(σ1, σ2, σ3, · · · , σn)

Calculation of ROMs is carried out by segregating the transformed realization where σh ≥

σh+1, h = 1, 2, 3, . . . , n− 1, σl > σl+1.

Remark 3 Since XGJ ≤ BIGB
T
IG, YGJ ≤ CT

IGCIG, BIGB
T
IG ≥ 0, CT

IGCIG ≥ 0, PiIG > 0

and QoIG > 0. Therefore, the realization (A,BIG, CIG) is minimal. In addition to , the

ROMs are guaranteed stable.

Theorem 1 in IG [17] technique holds the following derivation of error bound provided

that the following rank conditions rank [BIG B] = rank [BIG] and rank

 CIG

C

 =

rank [CIG] (which follows from [23]) are satisfied

‖G(s)(s)Grr(s)‖∞ ≤ 2‖LIG‖‖KIG‖
n∑

h=l+1

σh

where

LIG =

 CVIG(RIG − rinI)−1/2 for rin < 0

CVIGR
−1/2
IG for rin ≥ 0

KIG =

 (SIG − sinI)−1/2UT
IGb for sin < 0

S
−1/2
IG UT

IGb for sin ≥ 0

9



Proof: Since rank [BIG B] = rank [BIG] and rank

 CIG

C

 = rank [CIG], the relation-

ships B = BIGKIG and C = LIGCIG hold. By partitioning BIG =

w BIG1

BIG2

 , CIG =

[
CIG1 CIG2

]
and substituting B1 = BIG1KIG, C1 = LIGCIG1 respectively produces

‖G(s)−Grr(s)‖∞ = ‖C(sI−A)−1B−C1(zI−A11)
−1B1‖∞

= ‖LIGCIG(sI −A)−1BIGKIG

−LIGCIG1(sI −A11)
−1BIG1KIG‖∞

= ‖LIG(CIG(sI −A)−1BIG

−CIG1(sI −A11)
−1BIG1)KIG‖∞

= ‖LIG‖‖(CIG(sI −A)−1BIG

−CIG1(sI −A11)
−1BIG1)‖∞‖KIG‖

If {A11, BIG1 , CIG1} is ROM obtained by segregating a balanced realization {A,BIG, CIG},

we have [2, 11]

‖(CIG(sI −A)−1BIG−CIG1(sI −A11)
−1BIG1)‖∞≤2

n∑
h=l+1

σh.

Therefore,

‖G(s)−Grr(s)‖∞ ≤ 2‖LIG‖‖KIG‖
n∑

h=l+1

σh

Remark 4 In this case scenario when symmetric matrices XGJ ≥ 0 and YGJ ≥ 0, then

PiGJ
= PiIG and QoWZ

= QoIG . Otherwise PiGJ
< PiIG and QoWZ

< QoIG . In addition ,

Hankel singular values satisfies: (λj[PiGJ
QoWZ

])1/2 ≤ (λj[PiIGQoIG ])
1/2.

Remark 5 When XWZ � 0 and yYWZ � 0, then

XIG = BIGB
T
IG = XGJ − snI

YIG = CTIGCIG = YGJ − rnI

PiIG = PiGJ + Piad

QoIG = QoGJ +Qoad

10



A(PiGJ +Piad)A
T−(PiGJ +Piad)+(XGJ−snI)=0, for sn < 0

AT(QoGJ +Qoad)A−(QoGJ +Qoad)+(YGJ−rnI)=0, for rn < 0

APiadA
T − Piad − snI = 0, for sn < 0

ATQoadA−Qoad − rnI = 0, for rn < 0

Remark 6 When the matrices are symmetric XGJ ≥ 0 and YGJ ≥ 0, therefore PiGJ
= PiIG

and QoGJ
= QoIG . Otherwise PiGJ

< PiIG and QoGJ
< QoIG . In addition, Hankel singular

values satisfies: (λj[PiGJ
QoGJ

])1/2 ≤ (λj[PiIGQoIG ])
1/2.

2.2 Proposed Technique FLBT Continous Case

GA [15] addressed the stability issue by obtaining the square root of the absolute values of

eigenvalues of the matricesXGJ and YGJ . Whereas in GS [16] technique symmetric matrices

are made certain to be positive definite by truncating the negative values. IG [17] tackled

the issue by having the same effect on all eigenvalues by subtracting the smallest value from

all the eigenvalues. The proposed techniques have the target to produce less approximation

error in comparison to the existing stability ensuring frequency limited interval based MOR

methods. This has been done in the first proposed the technique by subtracting the smallest

negative value from S2 andR2 respectively. In the second proposed technique the subsequent

eigenvalue is subtracted from the previous eigenvalue of respective XGJ and YGJ matrices.

New controlability PiJi and observability QoJi
Gramians are:

APiJi + ATPiJi +BJiB
T
Ji

= 0

ATQoJi
+QoJi

+ CT
Ji
CJi = 0

11



where BJi ∈ {BJ1 ;BJ2}and CJi ∈ {CJ1 ;CJ2}

BJ1 =


U

 S1 0

0 S2 − sinI(n−l)∗(n−l)

1/2

for sin < 0

U(S1)
1/2 for sin ≥ 0

BJ2 =

 U(Ŝ)1/2 for sin < 0

U(S1)
1/2 for sin ≥ 0

CJ1 =



 R1 0

0 R2 − rinI(n−k)∗(n−k)

1/2

V T for rin < 0

(R1)
1/2V T for rin ≥ 0

CJ2 =

 (R̂)1/2V T for rin < 0

(R1)
1/2V T for rin ≥ 0.

where i = 1, 2; ŝ1 = s1, ŝ1+q = s1+q−1 − s1+q, r̂1 = r1, r̂1+t = r1+t−1 − r1+t, Ŝ =

diag(ŝ1, ŝ2, · · · , ŝn), R̂ = diag(r̂1, r̂2, · · · , r̂n), q = 1, 2, · · · , n− 1 and t = 1, 2, · · · , n− 1.

Let a transformationed TJi is obtained as

T TJiQoJi
TJi = T−1Ji

PiJiT
−T
Ji

= diag(σ1, σ2, · · · , σn)

CalcuLation of ROMs is carried out by segregating the transformation of original realization

, since σh ≥ σh+1, j = 1, 2, 3, . . . , n− 1.

Remark 7 In this case XGJ ≤ BJiB
T
Ji

, YGJ ≤ CT
Ji
CJi , BJiB

T
Ji
≥ 0, CT

Ji
CJi ≥ 0, PiJi > 0

and QoJi
] > 0. Therefore, (A,BJi , CJi) is minimal and ROMs are stable.

Theorem 2 Let rank [BJi B] = rank [BJi ] and rank

 CJi

C

 = rank [CJi ] (which based

on results in [16] are satisfied),

‖G(s)−Grr(s)‖∞ ≤ 2‖LJi‖‖KJi‖
n∑

j=l+1

σj

12



where LJi ∈ {LJ1 ;LJ2} and KJi ∈ {KJ1 ;KJ2}

LJ1 =


CV

 R1 0

0 R2 − rinI(n−k)∗(n−k)

1/2

for rin < 0

CV (R1)
1/2 for rin ≥ 0

LJ2 =

 CV (R̂)−1/2 for rin < 0

CV (R1)
−1/2 for rin ≥ 0

KJ1 =



 S1 0

0 S2 − sinI(n−l)∗(n−l)

−1/2 UT b for sin < 0

(S1)
1/2UT b for sin ≥ 0

KJ2 =

 (Ŝ)−1/2UT b for sin < 0

(S1)
−1/2UT b for sin ≥ 0

Proof: The relationships B = BJiKJi and C = LJiCJi hold due to rank conditions. By

segregating BJi =

 BJi1

BJi2

 , CJi =
 CJi1 CJi2

w



and replacing B1 = BJi1KJi , C1 = LJiCJi1 respectively produces

‖C(sI −A)−1C1(sI −A11)
−1b1‖∞

= ‖LJiCJi(sI−A)−1BJiKJi−LJiCJi1(sI−A11)
−1BJi1KJi‖∞

= ‖LJi(CJi(sI −A)−1BJi − CJi1(sI −A11)
−1BJi1)KJi‖∞

= LJi‖‖(CJi(sI−A)−1BJi−CJi1(sI−A11)
−1BJi1)‖∞‖KJi‖

If {A11, BJi1 , CJi1} is ROM obtained by segregating a balanced realization {A,BJi , BJi},

then

‖(CJi(sI −B)−1BJi−CJi1(sI −A11)
−1BJi1)‖∞ ≤ 2

n∑
j=l+1

σj .

‖G(s)−Grr(s)‖∞ ≤ 2‖LJi‖‖KJi‖
n∑

j=l+1

σj

13



2.3 Numerical Examples

Example 1: Take into consideration a 12th order analogue chebyshev type 1 bandpass filter

with passband ripple of 15 dB with the following transfer function representation:

G(s) =

−5.329e−15s11 + 1.137e−13s10 − 4.434e−12s9−

1.368e−9s7 + 88.24s6 − 2.161e−7s5 − 9.537e−7s4−

1.669e−5s3 − 0.0003052s2 − 0.0005112s− 0.01367

s12 + 0.5788s11 + 937.7s10 + 450.9s9+

3.605e5s8 + 1.379e5s7 + 7.269e7s6 + 2.068e7s5+

8.11e9s4 + 1.522e9s3 + 4.747e11s2 + 4.395e10s+ 1.139e1

Fig 2.1 and 2.2 illustrates the ummagnified and magnified veiw respectively of the plot of

approximation error of 3rd ROM obtained by the techniques GJ [14], GA [15], GS [16],

IG [17], Proposed technique I and Proposed technique II , in the aspired frequency range

[w1, w2] = [47, 65]rad/s.

Figure 2.1: σ[G(s)−Grr(s)] in the interval [47, 65]rad/s

14



Figure 2.2: σ[G(s)−Grr(s)] in the interval [47, 65]rad/s magnified veiw

Example 2: Take into consideration a 8th order stable system elliptic bandpass filter with

a lower passband frequency of 9 Hz and a higher passband frequency of 25 Hz, with a

passband ripple of 0.2 dB, a stopband attenuation of 75 represented by transfer function:

G(s) =

s8 + 24.5s7 + 1458s6 + 2.28e4s5 + 5.943e5s4+

5.131e6s3 + 7.38e7s2 + 2.791e8s+ 2.563e9

0.0001778s8 + 2.487e−14s7 + 7.532s6+

2.183e−11s5 + 4.205e4s4 − 5.588e−9s3+

3.813e5s2 − 6.557e−7s+ 4.558e5

Fig 2.3 and 2.4 illustrates the ummagnified and magnified veiw respectively of the plot of

approximation error of 3rd ROM obtained by the techniques GJ [14], GA [15], GS [16],

IG [17], Proposed technique I and Proposed technique II, in the aspired frequency interval

[w1, w2] = [40, 52]rad/s.

Example 3: Take into consideration a stable 6th order system with the following transfer

15



Figure 2.3: σ[G(s)−Grr(s)] in the interval [w1, w2] = [40, 52]rad/s

Figure 2.4: σ[G(s)−Grr(s)] in the interval [w1, w2] = [40, 52]rad/s magnified view
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function:

G(s) =
−s6 − 0.3295s5 − 32.97s4 − 3.609s3 − 180.6s2 − 3.566s− 119.1

1.665e− 015s5 + 2.118s4 + 0.2481s3 + 24.83s2 + 0.906s+ 45.36

Fig 2.5 and Fig 2.6 illustrates the un magnified and magnified veiw respectively of the error

plot of 3rd ROM obtained by the techniques GJ [14], GA [15], GS [16], IG [17], Proposed

technique I and Proposed technique II , in the frequency interval [w1, w2] = [23, 28]rad/s

Figure 2.5: σ[G(s)−Grr(s)] in the interval [23, 28]rad/s

Example 4: Take into consideration a linear time invariant stable 6th order system with

the transfer function representation mentioned:

G(s) =
−44.1s3 + 334s2 + 1034s+ 390

s6 + 20s5 + 155s4 + 586s3 + 1115s2 + 1034s+ 390

Fig 2.7and Fig 2.8 illustrates the unmagnified and magnified veiw respectively of the error

plot of 2nd ROM obtained by the techniques GJ [14], GA [15], GS [16], IG [17], Proposed

technique I and II , in the aspired frequency interval [w1, w2] = [17, 37]rad/s

Example 5: Take into consideration a linear time invariant stable 6th order system with the

following transfer function representation

G(s) =
s3 + 2s2 + s+ 1

s6 + 3s5 + 10s4 + 20s3 + 15s2 + 13s+ 1

17



Figure 2.6: σ[G(s)−Grr(s)] in the interval [23, 28]rad/s
magnified view

Figure 2.7: σ[G(s)−Grr(s)] in the interval [w1, w2] = [17, 37]rad/s
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Figure 2.8: σ[G(s)−Grr(s)] in the interval [w1, w2] = [17, 37]rad/s

Fig 2.9 and Fig 2.10 illustrates the unmagnified and magnified veiw respectively of the error

plot of 3rd ROM obtained by the techniques GJ [14], GA [15], GS [16], IG [17], Proposed

technique I and II, in the aspired frequency interval [w1, w2] = [12, 27]rad/s
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Figure 2.9: σ[G(s)−Grr(s)] in the interval [w1, w2] = [12, 27]rad/s

Figure 2.10: σ[G(s)−Grr(s)] in the interval [w1, w2] = [12, 27]rad/s
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Chapter 3

Frequency Limited Gramians based Model Reduction Technique with

Error Bounds for Discrete Time systems

MOR is a method for approximating original system with a reduced order model ROM for

ease in simulation, analysis and design of complex systems/filters. Balance truncation [1] is

a common and useful scheme to get stable ROM for stable original system. Moreover the

scheme also has error bounds.

Enns [6] extended the work of balance truncation technique to introduce frequency weight-

ings. It may use single sided (input/output) and double sided weights and yeilds stable ROM

when use only single side weights whereas with double sided weights, ROMs are not guar-

anteed to be stable. To overcome the problem of Enns [6], many other techniques are given

in literature. Wang and Zilouchian [22] proposed a frequency limited technique without ex-

plicit weights. It can yield unstable ROM with no error bound. To overcome the problem

of Wang and Zilouchians [22], Ghafoor and Sreeram [23] proposed two methods to guaran-

tee the stability of ROM. In first algorithm of [23], synthetic input and output matrices are

created by taking the absolute of the eigenvalues of some input and output related matrices.

This was to ensure the positive/semipositive definiteness of input and ouput related matri-

ces. For the same purpose, in the second algorithms of [23], the negative eigenvalues of

the related matrices was truncated. Imran and Ghafoor [19] proposed a technique to ensure

positive/semipositive definiteness of some input and output related matrices by subtracting

the largest negative eigenvalue from related input and output matrices . The work in [19]

and [23] guarantees stability of ROM and carry error bounds. Two new techniques has been

proposed, to improve the approximation error compared with the existing stable techniques

and stability condition criteria is ensured and also has frequency response error bounds.

3.1 Preliminaries

Consider an nth order stable discrete systemGz(z) = C(zI−A)−1B+D whereA ∈ Rn×n,

B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, the input m and output p respectively. A MOR problem
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is to find

Grr(z) = C1(sI − A11)
−1B1 +D1 (3.1)

which proximates the original system (in the frequency range [ω1, ω1], 0 ≤ ω1 ≤ ω2), So

A11 ∈ Rr×r, b1 ∈ Rr×m, C1 ∈ Rp×r, D1 ∈ Rp×m, rr < n. Let P and Q are controlability

and observibility gramians respectively, satisfy following continous Lyapunov equations

P =
1

2π

∫ π

−π
(ejωI − A)−1BBT (e−jωI − AT )−1dω

Q =
1

2π

∫ π

−π
(e−jωI − AT )−1CTC(ejωI − A)−1dω

Let P and Q are controlability and observibility Gramians respectively, satisfy following

continous time Lyapunov equations

APAT + PAT +BBT = 0

ATQ+QA+ CTC = 0

Wang and Zilouchian [22]

Wang and Zilouchain introduced the discrete frequency limited controllability PWZ =

PC(w2)− PC(w1) and observability QWZ = QO(w2)−QO(w1) Gramians satisfying :

APWZA
T − PWZ +XWZ = 0

ATQWZA−QWZ + YWZ = 0

where

XWZ = BBTFH + FBBT

YWZ = CTCF + FHCTC

F = −ω2− ω1
4π

+
1

2π
∈σω (ejωI − A)−1dω

Let

T TziQGJTzi = T−1zi PGJT
−T
zi = diag{σ1, σ2, . . . , σn}
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Transformaton of orignal system is carried out by a transformation matrix T which is con-

tragredient in nature , in which σh ≥ σh+1, j = 1, 2, . . . , n − 1. Calculation of ROMs is

carried out by segregating the realization which has been transformed.

Remark 8 Frequency of multiple intervals can be considered for approximation. For exam-

ple , for two intervals [ω1, ω2] and [ω3, ω4] , ω1 < ω2, ω3 < ω4, the matrices XWZ and YWZ

may becomes indefinite sometimes indefinite and stability of ROM is not gauranteed .

Ghafoor and Sreeram Algorithm I [23]

The instability issue of Wang and zilouchian [22] was solved by Ghafoor and Sreeram

algorithm I and II [23]. GSI introduced the frequency limited controllability PGSI
=

PC(w2)− PC(w1) and observability QGSI
= Qo(w2)−Qo(w1) Gramians satisfying :

APGSI
AT − PGSI

+XGSI
= 0

ATQGSI
A−QGSI

A+ YGSI
= 0

Let

T TziQGSI
Tzi = T−1PGSI

T−Tzi = diag{σ1, σ2, . . . , σn}

Transformaton of original system is carried out by a transformation matrix T which is con-

tragredient in nature, in which σj ≥ σj+1, j = 1, 2, . . . , n − 1. Calculation of ROMs is

carried out by segregating the realization which has been transformed. BGSI
= UGSI

|SGSI
| 12

and CGSI
= |RGSI

| 12V T
GSI

, respectively . since the expressions UGSI
,SGSI

, VGSI
and RGSI

,

whereRGSI
= diag(r1, r2, ..., rn),RGSI

= diagri1, ri2, ..., rin, |si1| ≥ |si2| ≥ · · · |sin| ≥ 0

and |si1| ≥ |si2| ≥ · · · |sin| ≥ 0. Calculation of ROMs is carried out by segregating the

realization which has been transformed.

Remark 9 SinceXWZ ≤ BGSI
BT
GSI
≥ 0, YWZ ≤ CT

GSI
CGSI

≥ 0, PGA > andQGSI
> 0,

the minimality of A,BGSI
, CGSI

is guaranteed. This technique also has frequency response

error bounds

Ghafoor and Sreeram technique Algorithm II [23]

Ghafoor and Sreeram II [23] also addresses the instability problem of Wang and Zilouchain

[22] technique . GS II introduced the frequency limited controllability PGSII = Pc(w2) −
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Pc(w1) and observability QGSII = Qo(w2)−Qo(w1) Gramians satisfying :

APGSIIA
T − PGSII +XGSII = 0

ATQGSIIA−QGSII + YGSII = 0

Let

T TziQGSIITzi = T−1PGSIIT
−T
zi = diag{σ1, σ2, . . . , σn}

where σj ≥ σj+1, j = 1, 2, . . . , n − 1 and T is a contragredient matrix used to trans-

form the original system realization. The ROMs are derived by segregating the transformed

realization.BGSII = UGSII1|SGSII1 |
1
2 and CGSII = |RGSII1|

1
2V T

GSII1
′, respectively .

XWZ =
[
UGSII1 UGSII2

] SGSII1 0

0 SGSII2

 UT
GSII1

UT
GSII2


YWZ =

[
VGSII1 VGSII2

] RGSII1 0

0 RGSII2

 V T
GSII1

V T
GSII2


where SGSII1 0

0 SGSII2

 = diag{si1, si2, ..., sin}, RGSII1 0

0 RGSII2

 = diag{ri1, ri2, ri3, ..., rin},

si1 ≥ si2 ≥ si3 ≥ ... ≥ sin, ri1 ≥ ri2 ≥ r3 ≥ ... ≥ rn, SGSII1 =

diag{si1, si2, si3, ..., sie}, RGSII1 = diag{ri1, ri2, ri3, ..., rie}, s1 ≥ s2 ≥ s3 ≥ ... ≥

se ≥ 0, ri1 ≥ ri2 ≥ ri3 ≥ ... ≥ rie ≥ 0. Note that, the realization {A,BGSII2 , CGSII2 , D}

is minimal and stable. The reduced system is calculated by transforming and partitioning the

transformed system realization. Since the realization (A,BGSII2 , CGSII2 , D) is minimal, the

ROM is guaranteed to be stable. The error bound expression also appears in [23].

3.1.1 Imran and Ghafoor [19]

In the technique presented by Ghafoor and Sreeram I [23], the symmteric matrices XWZ and

YWZ have certainity of positive/semipositive definite by calculating the square root of mod

of the eigenvalues got by Eigen value decomposition (EVD). This sometimes generates to

a huge change in only negative eigen entries and doesnot effect other eigen entries. On the
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contrary , Ghafoor and Sreeram II [23] made certain the positive definitness of the matrices

XWZ and YWZ by taking only positive eigenvalues and replacing negative eigenvalues with

zeros. The drawback of this technique technique also have the non-similar effect by only

affecting the negative eigenvalues. In Imran and Ghafoor (IM) technique mdifications has

been done to create changes on all entries of eigenvalues of matrices XWZ and YWZ . Sta-

bility is made certain in ROMs. Besides, it gets frequency response error bound and better

frequency response error. Consider new controlability PIGd
and ObsevabilityQIGd

Gramians

respectively, by solving the following Lyaponav equations:

APIGd
AT + PIGd

+XIGd
= 0

ATQIGd
A+QIGd

+ YIGd
= 0

The matrices BIGd
and CIGd

are new input fictitious input and output fictitious matrices

respectively defined as :

BIGd
=

 UIGd
SIGd

− snI)1/2 for sn < 0

UIGd
S
1/2
IGd

for sn ≥ 0

CIGd
=

 (RIGd
− rnI)1/2V T

IGd
for rn < 0

R
1/2
IGd

V T
IGd

for rn ≥ 0.

The terms UIGd
, SIGd

, VIGd
, and RIGd

are calculated as XWZ = UIGd
SIGd

UT
IGd

and YWZ = VIGd
RIGd

V T
IGd

, where SIGd
= diag(si1, si2, si3, · · · , sn), RIGd

=

diag(ri1, ri2, ri3, · · · , rn), si1 ≥ si2 ≥ · · · ≥ sin, and ri1 ≥ ri2 ≥ · · · ≥ rin. Calcu-

lation of ROMs is carried out by segregating the realization which has been transformed. T

is a contragredient matrix used to transform the original system realization.

T TziQIGd
Tzi = T−1PIGd

T−Tzi = diag(σ1, σ2, σ3, · · · , σn)

where σh ≥ σh+1, h = 1, 2, 3, . . . , n− 1, σl > σl+1. Calculation of ROMs is carried out by

segregating the realization which has been transformed.

Remark 10 In this case XWZ ≤ BT
IGd

, YWZ ≤ CT
IGd

CIGd
, BIGd

BT
IGd
≥ 0, CT

IGd
CIGd

≥ 0,

PIGd
> 0 and QIGd

> 0. To make the minimum realization (A,BIGd
, CIGd

) . In addition,

the stability of ROMs is ensured to be stable.
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Theorem 3 The error bound for the following proposed technique has the rank conditions

rank [BIGd
B] = rank [BIGd

] and rank

 CIGd

C

 = rank [CIGd
] (which follows from

[23]) are satisfied

‖E(z)− El(z)‖∞ ≤ 2‖LIG‖‖KIG‖
n∑

h=l+1

σh

where

LIGd
=

 CVIGd
(RIGd

− rinI)−1/2 for rin < 0

CVIG)dR
−1/2
IGd

for rin ≥ 0

KIGd
=

 (SIGd
− sinI)−1/2UT

IGd
B for sin < 0

S
−1/2
IGd

UT
IGd

B for sin ≥ 0

Proof: As rank [BIGd
B] = rank [BIGd

] and rank

 CIGd

C

 = rank [CIGd
], the

relationships B = BIGd
KIGd

and C = LIGd
CIGd

hold. By partitioning BIGd
= BIGd1

BIGd2

 , CIGd
=

[
CIGd1

CIGd2

]
and substituting B1 = BIGd1

KIGd
, C1 =

LIGd
CIGd1

respectively yields

‖G(z)−Grr(z)‖∞ = ‖C(zI−A)−1B−C1(zI−A11)
−1B1‖∞

= ‖LIGd
CIGd

(zI −A)−1BIGd
KIGd

−LIGd
CIGd1

(zI −A11)
−1BIGd1

KIGd
‖∞

= ‖LIGd
(CIGd

(zI −A)−1BIGd

−CIGd1
(zI −A11)

−1BIGd1
)KIGd

‖∞

= ‖LIGd
‖‖(CIGd

(zI −A)−1BIGd1
(zI −A11)

−1BIGd1
)‖∞‖KIGd

‖

The ROM {A11, BIGd1
, CIGd1

} is calculated by segregating a balanced realization

{A,BIGd
, CIGd

}, we have [11, 2]

‖(CIGd
(zI −A)−1BIGd

−CIGd1
(zI −A11)

−1BIGd1
)‖∞≤2

n∑
h=l+1

σh.
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Therefore,

‖G(z)−Grr(z)‖∞ ≤ 2‖LIGd
‖‖KIGd

‖
n∑

h=l+1

σh

Remark 11 when symmetric matrices XWZ ≥ 0 and YWZ ≥ 0, then PWZ = PIGd
and

QWZ = QIGd
. Otherwise PWZ < PIG and QWZ < QIG. In addition, Hankel singular

values satisfies: (λh[PGJQWZ ])
1/2 ≤ (λh[PIGQIG])

1/2.

Remark 12 When XWZ � 0 and YWZ � 0, then

XIGd
= BIGd

BT
IGd

= XGJ − sinI

YIGd
= CTIGd

CIGd
= YGJ − rinI

PIGd
= PWZ + Pad

QIGd
= QWZ +Qad

A(PWZ+Pad)A
T−(PWZ+Pad)+(XWZ−sinI)=0, for sn < 0

AT(QGJ+Qad)A−(QWZ+Qad)+(YWZ− !rinI)=0, for rin < 0

APadA
T − Pad − sinI = 0, for sin < 0

ATQadA−Qad − rinI = 0, for rin < 0

Remark 13 when symmetric matrices XWZ ≥ 0 and YWZ ≥ 0, then PWZ = PIGd
and

QWZd
= QIGd

. Otherwise PWZ < PIGd
and QWZd

< QIGd
. In addition to, Hankel singular

values satisfies: (λh[PWZQWZ ])
1/2 ≤ (λh[PIGd

QIGd
])1/2.

3.2 Proposed Techniques Discrete Time Case

Ghafoor and Sreeram Algorithm I [23] solved the issue by figuring the square root of the

absolute estimations of eigenvalues of the matrices XWZ and YWZ . Though in Ghafoor and

Sreeram Algorithm II [23] procedure symmetric matrices are made sure to be positive defi-

nite by truncating the negative entities. IG [19] handled the issue by having a similar impact

on all eigenvalues by subtracting the smallest entry from every one eigenvalues. The pro-

posed procedures have the objective to deliver less estimation error contrasted with the prior

stablitity guranteed frequency limited MOR methods. This has been done in the initially
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proposed strategy by subtracting the smallest negative an entry from S2 and R2 individually.

In the second proposed procedure the ensuing eigenvalue is subtracted from the past eigen-

value of particular XWZ and YWZ matrices. New controlability Pfi and observability Qfi

Gramians are:

APfi + ATPfi +BfiB
T
fi

= 0

ATQfi +Qfi + CT
fi
Cfi = 0

where Bfi ∈ {Bf1 ;Bf2}and Cfi ∈ {Cf1 ;Cf2}

Bf1 =


U

 S1 0

0 S2 − sinI(n−l)∗(n−l)

1/2

for sin < 0

U(S1)
1/2 for sin ≥ 0

Bf2 =

 U(Ŝ)1/2 for sin < 0

U(S1)
1/2 for sin ≥ 0

Cf1 =



 R1 0

0 R2 − rinI(n−k)∗(n−k)

1/2

V T for rin < 0

(R1)
1/2V T for rin ≥ 0

Cf2 =

 (R̂)1/2V T for rin < 0

(R1)
1/2V T for rin ≥ 0.

where i = 1, 2; ŝ1 = s1, ŝ1+q = s1+q−1 − s1+q, r̂1 = r1, r̂1+t = r1+t−1 − r1+t, Ŝ =

diag(ŝ1, ŝ2, · · · , ŝn), R̂ = diag(r̂1, r̂2, · · · , r̂n), q = 1, 2, · · · , n− 1 and t = 1, 2, · · · , n− 1.

Let a transformationed Tfi is obtained as

T TfiQfiTfi = T−1fi
PfiT

−T
fi

= diag(σ1, σ2, · · · , σn)

since σj ≥ σj+1, j = 1, 2, 3, . . . , n− 1. The realization that is transformed is segregated to

get ROMs as matrices.

Remark 14 As XGJ ≤ BfiB
T
fi

, YGJ ≤ CT
fi
Cfi , BfiB

T
fi
≥ 0, CT

fi
Cfi ≥ 0, Pfi > 0 and

Qfi > 0. Therefore, (A,Bfi , Cfi) is minimal and stability of ROMs is preserved.

Theorem 4 Consider rank [Bfi B] = rank [Bfi ] and rank

 Cfi

C

 = rank [Cfi ] (which
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based on results in [23] are satisfied),

‖G(z)−Grr(z)‖∞ ≤ 2‖LFi
‖‖KFi

‖
n∑

j=l+1

σj

where Lfi ∈ {Lf1 ;Lf2} and Kfi ∈ {Kf1 ;Kf2}

Lf1 =


CV

 R1 0

0 R2 − rinI(n−k)∗(n−k)

1/2

for rin < 0

CV (R1)
1/2 for rin ≥ 0

Lf2 =

 CV (R̂)−1/2 for rin < 0

CV (R1)
−1/2 for rin ≥ 0

Kf1 =



 S1 0

0 S2 − sinI(n−l)∗(n−l)

−1/2 UTB for sin < 0

(S1)
1/2UTB for sin ≥ 0

Kf2 =

 (Ŝ)−1/2UTB for sin < 0

(S1)
−1/2UTB for sin ≥ 0

Proof: The relationships B = BfiKfi and C = LfiCfi hold due to rank conditions. By

partitioning Bfi =

 Bfi1

Bfi2

 , Cfi = [
Cfi1 Cfi2

]

and substituting B1 = Bfi1Kfi , C1 = LfiCfi1 respectively yields

‖C(zI −A)−1C1(zI −A11)
−1B1‖∞

= ‖LfiCfi(zI−A)
−1BfiKfi−LfiCfi1(zI−A11)

−1Bfi1Kfi‖∞

= ‖Lfi(Cfi(zI −A)
−1Bfi − Cfi1(zI −A11)

−1Bfi1)Kfi‖∞

= ‖Lfi‖‖(Cfi(zI−A)
−1Bfi−Cfi1(zI−A11)

−1Bfi1)‖∞‖KFi‖

The ROM {A11, Bfi1 , Cfi1} is obtained by segregating a balanced realization {A,BFi
, CFi
}

, then

‖(Cfi(zI −A)
−1Bfi−Cfi1(zI −A11)

−1Bfi1)‖∞ ≤ 2

n∑
h=l+1

σh.
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‖G(z)−Grr(z)‖∞ ≤ 2‖Lfi‖‖Kfi‖
n∑

j=l+1

σj

Example 1: Let a 4th order stable LTI discrete time system illustrated by

A =


0.2650 −.6974 0.2011 −0.2819

1 0 0 0

0 1 0 0

0 0 1 0


, B =


1

0

0

0


,

C =
[
2.1463 −0.3652 0.1734 −0.2591

]
, D = 1

Figure 3.1 and Figure 3.2 shows the full range and close-up veiw of the approximation

error plot of the techniques Wang Zilouchain [22], Ghafoor and Sreeram I and II [23], Imran

and Ghafoors [19] and Proposed techniques respectively, in the desired frequency interval

[w1, w2] = [0.1, 0.18]rad/s. The results show that proposed techniques are producing the

least approximation error among all the stable techniques.

Figure 3.1: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.1, .18]rad/s

Example 2: Let a 6th order Elliptic band-pass 0.4π − 0.6π filter having 30 dB stop band

attenuation and 0.1 dB pass band ripple, having following transfer function
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Figure 3.2: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.1, .18]rad/s

A =



0.0000 −1.6293 0.0000 −1.1809 0.0000 −0.3045

1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0

0 0 0 0 1.0000 0


, B =



1

0

0

0

0

0


,

C =
[
0.0000 −0.1665 0.0000 −0.0250 0.0000 −0.0889

]
, D = 0.0681

Figure 3.3 and Figure 3.4 shows the and full range close-up veiw of the plot of approxi-
mation error of the techniques Wang Zilouchain [22] , Ghafoor and Sreeram I and II [23],
Imran and Ghafoors [19] and Proposed techniques respectively, in the desired frequency
range [w1, w2] = [.75, .86]rad/s. The results show that proposed techniques are producing
the least approxmation error among all the stable techniques.

Example 3: Consider a stable 12th order butter-worth band-pass 0.72π − 0.8π filter, having
following transfer function
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Figure 3.3: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.75, .86]rad/s

Figure 3.4: G(z)Grr(z) in the frequency range [1, 2] = [.75, .86]rad/s
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A =



−8.10 −32.43 −83.53 −153.31 −210.40 −220.98 −178.85 −110.79 −51.31 −16.93 −3.59 −0.37

1.0000 0 0 0 0 0 0 0 0 0 0 0

0 1.0000 0 0 0 0 0 0 0 0 0 0

0 0 1.0000 0 0 0 0 0 0 0 0 0

0 0 0 1.0000 0 0 0 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1.0000 0 0

0 0 0 0 0 0 0 0 0 0 1.0000 0



,

B =
[

1 0 0 0 0 0 0 0 0 0 0 0
]′

,

C =
[

−0.0202 −0.0960 −0.2086 −0.3454 −0.5254 −0.6018 −0.4466 −0.2392 −0.1281 −0.0573 −0.0090 0.0016
]
,

D = 2.4972e

Figure 3.5 and Figure 3.6 shows the full range and close-up veiw of the plot of approxi-

Figure 3.5: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.14, .29]rad/s

mation error of the techniques Wang Zilouchain [22] , Ghafoor and Sreeram I and II [23],

Imran and Ghafoors [19] and Proposed techniques respectively, in the desired frequency

range [w1, w2] = [.14, .29]rad/s. The results show that proposed techniques are producing

the least approxmation error among all the stable techniques.
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Figure 3.6: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.14, .29]rad/s

Example 4: Let a 6th order stable discrete time system illustrated by

A =



1.4637 −2.2838 2.0587 −1.4467 0.6746 −0.1825

1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 1.0000 0 0

0 0 0 0 1.0000 0


, B =



1

0

0

0

0

0


,

C =
[
0.0799 0.1351 0.2388 0.1370 0.0776 −0.0011

]
, D = 0.0107

Figure 3.7 and Figure 3.8 shows the full range andclose-up veiw of the plot of approxi-

mation error of the techniques Wang Zilouchain [22], Ghafoor and Sreeram I and II [23],

Imran and Ghafoors [19] and Proposed techniques respectively, in the desired frequency

range [w1, w2] = [.58, .69] r
a
d/s. The results show that proposed techniques are producing

the least approximation error among all the stable existing techniques.
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Figure 3.7: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.58, .69]rad/s

Figure 3.8: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.58, .69]rad/s
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Example 5: Take into Consideration a 6th order stable discrete time system illustrated by

the mentioned state space functions below:

A =



1.5 −2.3 2.1 −1.5 0.69 −0.2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


, B =



1

0

0

0

0

0


,

C =
[
0.08 0.14 0.24 0.14 0.72 0.086

]
, D = 0.011

Figure 3.9 and Figure 3.10 shows the full range and close-up veiw of the plot of approx-
imation error of the techniques Wang Zilouchain [22], Ghafoor and Sreeram I and II [23],
Imran and Ghafoors [19] and Proposed techniques respectively, in the desired frequency
range [w1, w2] = [.65, .79]rad/s. The results show that proposed techniques is producing
the least approxmation error among all the stable techniques.

Figure 3.9: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.65, .79]rad/s

Example 6: Consider a 10th order chebychev band-pass 0.4π− 0.7π filter type 1 having 0.3
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Figure 3.10: (G(z)Grr(z)) in the frequency range [ω1, ω2] = [.65, .79]rad/s

dB ripple in the pass band, having following transfer function.

A =



−1.3764 −3.6204 −3.6144 −5.5490 −4.0723 −4.3847 −2.2284 −1.7660 −0.4954 −0.2827

1.0000 0 0 0 0 0 0 0 0 0

0 1.000 0 0 0 0 0 0 0 0

0 0 1.0000 0 0 0 0 0 0 0

0 0 0 1.0000 0 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0 0

0 0 0 0 0 1.0000 0 0 0 0

0 0 0 0 0 0 1.0000 0 0 0

0 0 0 0 0 0 0 1.0000 0 0

0 0 0 0 0 0 0 0 1.0000 0



, B =



1

0

0

0

0

0

0

0

0

0



,

C =
[

−0.0044 −0.0273 −0.0115 0.0141 −0.0129 −0.0456 −0.0071 0.0103 −0.0016 −0.0041
]
, D = 0.0032

Figure 3.11 and Figure 3.12 shows the full range and close-up veiw of the approximation

error plot of the techniques Wang Zilouchain [22], Ghafoor and Sreeram I and II [23],Imran

and Ghafoors [19] and Proposed techniques respectively, in the desired frequency range

[w1, w2] = [.75, .85]rad/s. The results showing that proposed technique is producing the

least approxmation error among all the stable techniques.
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Figure 3.11: (G(z)Grr(z)) in the frequency interval [ω1, ω2] = [.75, .85]rad/s

Figure 3.12: (G(z)Grr(z)) in the frequency interval [ω1, ω2] = [.75, .85]rad/s
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Table 3.1: Poles location of the reduced order systems

Techniques Example 2 Example 4
Wang and
Zilouchian’s
technique [22]

−0.4361 ,4.7463 1.0716

Proposed tech-
nique 1

0.2971± 0.8249i 0.1425

Proposed tech-
nique 2

0.2991± 0.8748i 0.2332
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Chapter 4

Conclusions and Suggestions for Future Prospects

4.1 Conclusion

FMLR techniques are proposed in this thesis for linear continous and dis-

crete time systems. In chapter 2, existing techniques of FLMR and Proposed

techniques are discussed for linear continous time systems.

In chapter 3, existing techniques of FLMR and Proposed techniques are dis-

cussed for linear discrete time systems.

The proposed techniques mostly yield better approximation error in compari-

son to GA , GS and IG in the aspired frequency interval. ROMs are guranteed

to be stable and has error bounds. Numerical examples are also presented.

4.2 Future Directions

As lots of work has been done in this field, some improvements are needed

in this area,that are given below:

• Existing techniques like wang et al’s, Varga and Anderson, Gugercin

and Antoulas, Ghafoor and Sreeram and Imran and Ghafoor and pro-

posed techniques are dependant on realization, where original system

realization produces lower approximation error and tight error bounds

needs attention.

• It is discussed in this research work in detail that satisfaction of Lya-

punov equation stability norm is not a requisite to bear stable ROMs.

Therefore, an domain for new FLMR techniques can be developed for
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futur prospects .

• Error based on norm and error bound derivations are not fit for FLMR

techniques, whereas in a interval based frequency limited interval ap-

proximation error is important. So, as a effective future direction an

error that is approoximated and expressions for error bound equations

in interval based frequency limited can be calculated.

• Cost effectiveness of the techniques that are proposed can be improvised

by adopting other useful measures and effective expressions.

• FLMR techniques are not relavent for non-linear systems. So, in future

FLMR techniques with some suitable improvisations may be applied in

non-linear problem.
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