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ABSTRACT

Stream ciphers are known to have less complex hardware design and are generally faster than

the block ciphers. Their employment is necessitated in systems where buffering is limited and

bits must be processed immediately upon arrival or when data comes in unknown lengths like in

wireless communication.

Till the advent of algebraic attacks on stream ciphers, a decade and a half ago, linear feedback shift

register (LFSR) based stream ciphers were quite common due to their efficient implementation.

However, later years saw a host of new stream ciphers based on nonlinear feedback shift registers

(NLFSR), which were highly resistant against traditional algebraic cryptanalysis. At present the

success of algebraic attacks against stream ciphers is only limited to lightweight stream ciphers

or reduced variants of popular stream ciphers.

Side Channel Analysis (SCA) being an implementation attack, requires access to the hardware

implementation of the target stream cipher to capture side channel leakages associated with inter-

nal processing. However to find exact secret key or internal state, a handsome quantity of leakage

information is needed. In contrast to algebraic attacks, research work on SCA against stream

ciphers has been less frequent but more successful.

Combining two cryptanalysis techniques can pay dividends not only in the form of achieving

better attack complexities and facilitating exploitation of new vulnerabilities, but also lowering

the effect of individual weaknesses of attack techniques. Algebraic attacks and SCA can both

be strong candidates for such combination. Rather they are already being applied against block

ciphers in unison for quite some time now. However no published work as of this writing can be

found on combining algebraic cryptanalysis and SCA against stream ciphers.

In this work we propose to combine algebraic attacks with SCA, on stream ciphers, in a manner

that reduces overall attack complexity/ difficulty as compared to isolated application of the two



constituent attacks. This combination attack, termed as Algebraic Side Channel Attack (ASCA),

utilize whatever side channel leakage is available from the target stream cipher’s implementation

in limited time exposure and converts it into algebraic equations. These SCA equations are added

into the system of multivariate polynomial equations obtained from algebraic attack technique.

Union of these equation sets, can then be resolved through any mathematical method/ tool, to find

the unknown variables, i.e., either secret key or internal state of the stream cipher.

Stream ciphers of today, which mostly rely on nonlinearity by design to make them extremely

immune to algebraic cryptanalysis, can also fall prey to ASCA. To demonstrate this, we success-

fully attack Crypto-1, Bivium-B, Trivium and Grain stream ciphers using our proposed technique

in 0.158, 11.531, 21.54 and 28.25 seconds respectively.
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Chapter 1

INTRODUCTION

1.1 Introduction

This chapters deals with the basic terminologies and concepts which are necessary to understand

further work presented in the thesis. A brief overview of stream ciphers, their design, common

types and major categories of attacks against them are concisely discussed. Being overall intro-

ductory chapter of thesis, it also defines the scope of problem at hand, our intended objectives

while undergoing this research and how the content of this thesis is organised into various chap-

ters.

1.2 Stream Ciphers

Stream ciphers generate a keystream of a reasonably long period which XORs with plaintext bit

by bit to generate ciphertext. Same plaintext if encrypted again would transform into different

ciphertext generally, due to the randomness of keystream. However, keystream is repeated after

a period of time. Stream ciphers are known to be faster and less complex in implementation as

compared to block ciphers.

1.3 Design of Stream Ciphers

Stream ciphers have two major parts i.e. state update function and output function. During op-

eration the state of the stream cipher is changing with time. The output function generates the

keystream bits whose values are dependent upon the prevailing internal state. The keystream bits
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Figure 1.1: Types of Stream Ciphers [1]

are XORed with the plaintext to produce ciphertext which is transmitted and same keystream bits

are then XORed with the ciphertext at the receiving end to produce plaintext. Whole process of

encryption and decryption occurs bit by bit serially. The initial state of the cipher can be gen-

erated by a key setup process through a secret key. Same secret key can be used with different

initialization vector (IV) and the process is called resynchronization.

A synchronous stream cipher generates the keystream independent of plaintext and ciphertext

because it needs synchronization between sender and receiver. Whereas a self-synchronizing

or asynchronous stream cipher generates the keystream which is dependent on key and a few

previous ciphertext bits. Figure 1.1 illustrates the difference between synchronous and self-

synchronizing stream ciphers.

The security of stream cipher based encryption lies in the randomness of the keystream. Claude

Shannon termed one-time pad (OTP) as perfectly secure because its key was as long as the mes-
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sage and it never repeated [3]. Real world stream ciphers do not have infinitely long periods but

they should have sufficiently long period. A proven method for having sufficiently long period

is to design stream ciphers based on linear feedback shift registers (LFSR) with update function

based on primitive polynomial. The problem associated with linearity has to be tackled by some

means such as irregular clocking. Better and popular approach is to design stream ciphers based

on nonlinear feedback shift registers (NLFSR).

1.4 Cryptanalysis of Stream Ciphers

Design of any cipher takes care of the prevalent cryptanalysis techniques. Similarly new attack

techniques are also introduced while keeping in view the existing ones. Therefore it is necessary to

have a cursory glance on the cryptanalysis techniques already introduced against stream ciphers,

before getting deeper into our topic.

Few important attacks of generic nature on the stream ciphers are brute force attack, divide and

conquer attack, time-memory-data trade-off attack, resynchronization attack and distinguishing

attack etc. Brute force attack is also known as exhaustive key search. It can be an attack of most

fundamental nature against any cipher, where the key is searched through applying all possible

values in the keyspace. Therefore, while designing a cipher, key length is kept as per the dic-

tates of prevalent computing power and security of the system. Divide and conquer attack is a

well known technique to resolve complex problem and is equally applicable to ciphers. Shannon

concept of adding confusion and diffusion [3], can act as a counter measure against this attack

strategy. A stream cipher may well be prone to divide and conquer attack, when a portion of its

state is updated independently of other components [4], e.g stream cipher based on T-function

[5]. In Time-memory-data trade-off attack [6], for numerous different states, keystream chunks

are calculated beforehand and placed in a repository. Fragments of actual keystream are compared
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with the stored chunks for similarity to reach to the state of the cipher. Resynchronization attacks

are directed at the setup of stream cipher through key and IV. Key/IV setup based on linear func-

tion has proved to be highly vulnerable. To guard against resynchronization attack, there should

be sufficient confusion and diffusion incorporated into the key/IV setup [4]. In a distinguishing

attack against stream cipher, its keystream is proved to be biased rather than being a random

sequence. Bias in the keystream can be exploited to recover the plaintext.

LFSR based stream ciphers are very popular because of their simple and efficient design. These

stream ciphers have been subjected to numerous kind of attacks. Berlkamp-Massey algorithm [7],

can find the linear complexity of a sequence. This can be effectively used to reach at the state

of LFSR based stream cipher through sufficient number of captured keystream bits. Correlation

attacks exploit the correlation between the LFSR bits and the bits of keystream [8]. These attacks

were further improved and renamed as fast correlation attacks in [9]. A lot of research work

was carried out on these attacks and many refinements were published in later years. Filter and

combiner functions with least possible correlation between input and output bits can be used to

safeguard against efficacy of fast correlation attacks [4]. Algebraic attacks are employed to trans-

form stream ciphers into a system of multivariate equations, which is mathematically resolved to

find out the internal state or secret key. Algebraic attack, being constituent of ASCA, is further

explained in chapter 3.

Side Channel Analysis (SCA) is yet another potent threat against stream ciphers. These attacks are

directed against the implementation of a cipher in hardware, regardless of its algorithmic strength/

weakness. Even ciphers considered immune to other cryptanalysis attacks in theory can fall prey

to side channel attacks when implemented due to side channel leakage. Side channel leakage in-

formation from the hardware implementation can be of various forms such as power consumption

4



or timing variations in performing different operations 3.2. SCA being part of ASCA is explained

in more detail in chapter 3. Other than passive SCA which does not make any contact with the im-

plementation device, active SCA, also known as fault injection attack, forces a malfunction into

the operation of the device through over-clocking, subjecting it to high temperature etc., while

capturing side channel leakage.

1.5 Background

Algebraic cryptanalysis against stream ciphers has lost its vitality. Though it is highly success-

ful against LFSR based stream ciphers, but modern stream ciphers which are based on nonlinear

update functions are no more troubled by algebraic attacks. Due to built-in nonlinearity, the solv-

ing of multivariate quadratic polynomial (MQ) problem associated with such stream ciphers is

computationally infeasible. SCA against stream ciphers, though not very common, but is still

viable. Side channel leakage from the implementation of ciphers can be related with their internal

processing to reveal useful information. Any amount of captured side channel information, may

not be good enough for a full fledged SCA, can be converted into algebraic equations and aug-

ment already obtained system of equations through algebraic attack. This would reduce overall

complexity of MQ problem.

1.6 Problem Statement

While keeping the computational infeasibility of algebraic attacks against stream ciphers based

on nonlinear update functions and high probability of capturing some (if not much) useful side

channel leakage from cipher’s implementation, the idea of adding partial side channel leakage

information into multivariate equations, acquired from algebraic transformation of target stream

cipher, seems quite promising. This leads to the problem statement of our research work as quoted
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below:-

Can complexity of MQ problem generated from Algebraic Cryptanalysis against

Stream Ciphers, be reduced by adding only partial Side Channel Leakage informa-

tion?

1.7 Objectives

The research work presented in thesis has been carried out with following objectives in mind:-

• Reviewing ASCA on block ciphers.

• Proposing novel idea of ASCA on stream ciphers and devising a generic attack methodol-

ogy.

• Presenting concept of ASCA on stream ciphers by the help of its application on a simple

hypothetical cipher.

• Applying ASCA on a comparatively simple but real world stream cipher as proof of con-

cept. We chose Crypto-1 stream cipher.

• Demonstrating the efficiency of ASCA by applying it on Trivium and Grain stream ciphers.

• Preparation of software simulation for target stream ciphers as mentioned above for exper-

imentation/ application of ASCA.

• Exploring available automated tools and picking relevant ones for obtaining results effi-

ciently. Grain-of-salt for transforming stream ciphers into CNF clauses and CryptoMin-

iSAT 5.0 for satisfiability/ assignment of Boolean satisfiability (SAT) problem, were used

for this work.
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1.8 Organisation

For ease of readership and better comprehension, this thesis is organised in logical segmentations

as under.

Chapter 1 in the first half touches very basics of stream cipher design and cryptanalytic techniques

employed against them and then in other half, prepared the reader for upcoming work by defining

scope of research, listing intended objectives and giving organization of the thesis.

Chapter 2 reviews research work on ASCA against block ciphers which is pertinent to understand

application of ASCA against stream ciphers. Initial research paper which introduced ASCA on

block ciphers is reviewed. A strong form of SCA, called template attacks, is also elucidated while

referring to the introductory research work on these attacks. Moreover examples of ASCA on

small S-boxes are explained step by step.

Our proposed concept of ASCA on stream ciphers is explained in chapter 3. A generic attack

methodology is presented to mount ASCA on any stream cipher. The same methodology is ap-

plied against a hypothetical stream cipher. Then in a bid to test our attack methodology, a simple

real world cipher based on a nonlinear combiner function, Crypto-1, is subjected to ASCA as

proof of concept.

In chapter 4 two popular stream ciphers Trivium and Grain are chosen for mounting ASCA against

them. Both of these ciphers are selected for the reason that they have never been successfully

attacked employing pure algebraic attack technique. Therefore work/ experimentation presented

in this chapter acts as a litmus test for our proposed attack.

Lastly in chapter 5 a concise analysis of the whole work is presented statistically along with

concluding remarks and future work possibilities.
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1.9 Conclusion

This chapter presented a brief introduction to the thesis as a whole. Firstly a short background

theory to the research work is discussed as a preface to the main work. Secondly the problem

statement and objectives are highlighted which form the basis of this research. Lastly, a bird-eye

view of complete work divided into various chapters is appended.
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Chapter 2

RELATED WORK

2.1 Introduction

The work undertaken in this thesis can be related to research work on ASCA on block ciphers.

Therefore in this chapter the concept of combining algebraic and side channel attacks on block

ciphers is reviewed with special emphasis on first attack of its kind on PRESENT cipher. More-

over this chapter also presents a brief review of template-like SCA, which is a strong form of

SCA, useful in mounting ASCA. ASCA can be understood as an advance form of algebraic at-

tack which also uses partial side channel information from the target cipher’s implementation,

thereby reducing the overall complexity of solving. Towards the end this chapter also includes

step-by-step examples of application of ASCA on small S-boxes.

2.2 Diminishing Success of Algebraic Cryptanalysis

Algebraic attacks first transform the target cipher into a system of multivariate equations in an

offline phase. Then in an online phase this multivariate quadratic equation (MQ) problem is lin-

earised and resolved through some mathematical technique, such as relinearisation [10], extended

linearisation [11], sparse extended linearisation [12], Groebner bases [13] or SAT solving, to

find the unknown key.

Mathematically, any system of linear equations can be solved correctly if number of equations are

more than unknowns. Such system of equations is called overdefined. Coefficient matrices of a
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system of linear equations may have many zero elements. Matrices obtained after removing zero

elements are called sparse matrices. Complexities of solving sparse systems is further reduced as

compared to the starting set of equations. Though ciphers can be transformed into set of overde-

fined and sparse system of equations but still due to huge number of equations and unknowns, it is

extremely difficult to resolve MQ problem or SAT problem through pure algebraic cryptanalysis

technique. As a result success of algebraic attacks is mostly limited to either lightweight ciphers

or reduced variants of popular ciphers.

Figure 2.1: PRESENT Block Cipher [2]

2.3 Advent of ASCA on Block Ciphers

Algebraic Side Channel Attack (ASCA) against block ciphers was introduced in 2009 by Renauld

and Standaert [14]. They proposed to incorporate partial side channel leakage information from

a cipher’s implementation into the system of equations obtained through algebraic attack. Tradi-

tional differential power analysis aims to recover all target bits, whereas SCA part in ASCA aims
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at simpler targets, like knowledge of hamming weights or hamming distances at specific points of

cipher’s implementation, in few (often only one) trace measurements.

To demonstrate their novel idea, authors applied ASCA against PRESENT block cipher.

PRESENT cipher (fig 2.1) [2], is based on substitution-permutation network, comprising 31

rounds, with 64-bit block size and 80/ 128-bit key. In each round of PRESENT, 64-bit block is

passed through 16 4x4 Sboxes in parallel. Firstly, authors subjected PRESENT cipher to a tra-

ditional algebraic attack, where it was transformed into a system of 40,000 algebraic equations

comprising 7,000 variables and 50,000 monomials. Then this algebraic problem was converted

Figure 2.2: Side Channel Leakage Points - PRESENT

into a SAT problem, by representing all algebraic equations in conjunctive normal form (CNF).

Secondly, authors got hold of a PRESENT implementation in a PIC 16F877 8-bit micro-controller

which leaks power traces with strong correlation to hamming weights of data being manipulated.

They employed Baysian template attack technique to obtain hamming weight of data commuting

on bus, in a single or few trace measurements, as explained by Chari et al. in [15]. Template

attacks work on an assumption that the adversary possesses a replica of a device on which target

cipher is implemented and adversary can derive noise characterization of the said cipher precisely.

By modelling noise, all available information can be fully extracted in a single measurement sam-

ple. Template attacks are further explained in section 2.4 ahead.
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Figure 2.3: Hamming Weights of 496 bytes acquired through SCA - PRESENT

Authors selected the input and output bits of all the S-boxes for their partial SCA on PRESENT

(fig 2.2). For a complete 31 round PRESENT, with 16 S-boxes in each round, hamming weights

of a total of 496 bytes were acquired (fig 2.3). As per authors, all these hamming weights were

recovered in a single encryption step with probability 0.9932. Thirdly, the additional information

obtained through partial side channel attack was added into the SAT problem as CNF clauses.

Consequently, authors were able to solve the SAT problem with 100% success rate, in about 2.5

seconds for a full PRESENT cipher.

2.4 Template Attacks

Template attacks were introduced by Chari et.al. in their iconic research paper in 2002 [15].

These attacks were coined as strongest form of SCA because of their success without the need for

continued access of the cipher’s implementation. There are two main peculiarities of these SCA

attacks:-
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• Instead of trying to eliminate noise in the captured power traces, it models noise to extract

useful information.

• Only one or few captured power traces, from actual implementation device, are enough.

• Adversary possesses a device identical to the actual implementation device.

Figure 2.4: Template Attacks

To start with the attack (fig 2.4), adversary acquires a programmable replica of the actual device

hosting the target cipher. Though this assumption may seem impractical but it must be noted

that use of standardized microcontrollers is quite common and its not difficult to find out which

particular microcontroller is being made use of. The replica experimental device is used not only

for capturing power traces of all key combinations, but also the associated noise characterization

of the leaked signals precisely. This captured information against each key combination, called

template, is recorded during the experimentation or offline phase.

Next the adversary needs access to the actual device for capture of a single or few power traces.

This can be called online phase of template attacks. This actual trace is compared with the
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recorded samples or templates to find a match. In this way the key is found out. Practically,

a large key may be attacked through an extend and prune strategy to go step by step towards the

complete key.

2.5 ASCA on Block Ciphers - Trivial Examples

In this section we explain the concept of ASCA on block ciphers with trivial examples. A 2x2

S-box and then a 3x3 S-box is subjected to ASCA in detail. S-box, being nonlinear part of

block ciphers, is highly resistant to lone algebraic attacks because it transforms into high degree

equations. Therefore application of ASCA on simple S-boxes can prove its efficacy.

Input Output
x0 x1 y0 y1
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

Table 2.1: Truth Table - 2x2 S-box in Example-1 Figure 2.5: A 2x2 S-box

2.5.1 ASCA on 2x2 S-box

A 2x2 S-box is displayed in fig 2.5 and its truth table is shown in table 2.1. Step by step

explanation of ASCA on this S-box is given below:-

• 2-degree monomials are obtained from input and output variables of S-box.

• A matrix ordered M ∗ 2n is generated as shown in table 2.2 where M is equal to number

of monomials and n is equal to number of input bits of S-box.
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Table 2.2: M ∗ 2n Matrix for 2x2 S-Box in Example-1
Monomial IO-1 IO-2 IO-3 IO-4

1 1 1 1 1
x0 0 0 1 1
x1 0 1 0 1
y0 0 1 1 0
y1 1 0 1 0
x0.y0 0 0 1 0
x0.y1 0 0 1 0
x1.y0 0 1 0 0
x1.y1 0 0 0 0

• Above matrix is transformed into a row-echlon matrix. Number of zero rows give the num-

ber of equations for this particular S-box. Following equations are obtained resultantly:-

1 + x0 + y1 + x0y0 + x1y0 = 0

x0 + x0y0 + x1 + x1y0 = 0

y0 + x0y0 + x1y0 = 0

x0y0 + x0y1 = 0

x1y1 = 0

• More equations are added through partial side channel information captured from imple-

mentation of the cipher, as demonstrated in ensuing points.

• Suppose attacker captures power leakage at the input and output of this S-box and is able to

find corresponding hamming weights as HW (input) = 1 and HW (output) = 2 as shown

in fig 2.6.

• Hamming weight information obtained as above is also converted into equations:

– For HW (input) = 1 : x0x1 = 0, x0 ⊕ x1 = 1

– For HW (output) = 2 : y0 = y1 = 1
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Figure 2.6: Capturing Hamming Weight Leakage - Example-1

• When all equations from algebraic attack and SCA are added together, they can be trivially

solved to give values to unknown: x0 = 0, x1 = 1, x2 = 0, y0 = 0, y1 = 0, y2 = 0

Input Output
x0 x1 x2 y0 y1 y2
0 0 0 1 0 1
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 0 0 1

Table 2.3: Truth Table - 3x3 S-box in Example-2 Figure 2.7: A 3x3 S-box

2.5.2 ASCA on 3x3 S-box

A 3x3 S-box is displayed in fig 2.7 and its truth table is shown in table 2.3. For mounting an

ASCA, S-box is transformed into algebraic equations through traditional algebraic attack tech-

nique and then some more algebraic equations are obtained from side channel leakage informa-

tion. The steps are briefly explained below:-

• 2-degree monomials are obtained from input and output variables of S-box.
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• A matrix ordered M ∗ 2n is generated as shown in table 2.4 where M is equal to number

of monomials and n is equal to number of input bits of S-box.

Table 2.4: M ∗ 2n Matrix for 3x3 S-Box in Example-2
Monomial IO-1 IO-2 IO-3 IO-4 IO-5 IO-6 IO-7 IO-8

1 1 1 1 1 1 1 1 1
x0 0 0 0 0 1 1 1 1
x1 0 0 1 1 0 0 1 1
x2 0 1 0 1 0 1 0 1
y0 1 0 0 1 1 0 1 0
y1 0 1 0 0 1 1 1 0
y2 1 1 0 0 1 0 0 1
x0.y0 0 0 0 0 1 0 1 0
x0.y1 0 0 0 0 1 1 1 0
x0.y2 0 0 0 0 1 0 0 1
x1.y0 0 0 0 1 0 0 1 0
x1.y1 0 0 0 0 0 0 1 0
x1.y2 0 0 0 0 0 0 0 1
x2.y0 0 0 0 1 0 0 0 0
x2.y1 0 1 0 0 0 1 0 0
x2.y2 0 1 0 0 0 0 0 1

• Above matrix is transformed into a row-echlon matrix. Number of zero rows give the num-

ber of equations for this particular S-box. Following equations are obtained resultantly:-

x2y2 + y1 + x0 = 0

x2y1 + x0y0 + y1 = 0

x2y0 + x1y1 + x1y0 = 0

x1y2 + x0y1 + x0 = 0

x1y1 + x0y2 + x0y1 + x0y0 + x0 = 0

x1y0 + y2 + y1 + y0 + x0 = 0

x0y2 + y2 + y0 + x2 + x0 = 0

x0y0 + y2 + x1 + x0 + 1 = 0
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• For an isolated algebraic attack, above mentioned equations are to be solved by any ap-

propriate mathematical technique to find unknown variables. For real world ciphers this

is an enormous task. Here for ASCA, more equations are added into this through partial

side channel information captured from implementation of the cipher, as demonstrated in

ensuing points.

• Suppose attacker captures power leakage at the input and output of this S-box and is able to

find corresponding hamming weights as HW (input) = 1 and HW (output) = 0 as shown

in fig 2.8.

Figure 2.8: Capturing Hamming Weight Leakage - Example-2

• Hamming weight information obtained as above is also converted into equations:

– For HW (input) = 1 : x0x1 = x0x2 = x1x3 = 0 and x0 ⊕ x1 ⊕ x2 = 1

– For HW (output) = 0 : y0 = y1 = y2 = 0

• When all equations from algebraic attack and SCA are added together, they can be trivially

solved to give values to unknown: x0 = 1, x1 = 0, y0 = 1, y1 = 1
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2.6 Present Status of ASCA on Block Ciphers

From 2009 onwards, ASCA against block ciphers drew significant interest of researchers [16],

[17], [18], [19], [20], [21], [22], [23]. ASCA revamped traditional algebraic cryptanalysis

on block ciphers, whose successes were confined to toy ciphers and round-reduced variants of

popular ciphers.

From 2009 onwards, ASCA against block ciphers drew significant interest of researchers, espe-

cially in the direction of its error-tolerance. In [16], authors applied ASCA on AES and high-

lighted that most of the notions that exist for PRESENT cipher can be noted against unprotected

implementation of AES on 8-bit micro-controller. They recovered AES key after observing a sin-

gle encryption operation through ASCA. In [17], authors emphasized that errors in side channel

information to be incorporated in ASCA, makes the SAT problem unsatisfiable, therefore they

recommended to use pseudo Boolean optimizers (PBOPT) instead of SAT solvers for ASCA in

presence of errors. Optimizers also take into account some additional logical constraints while

solving. Another error tolerant technique to deal with inaccurate side channel measurements in

ASCA, known as multiple deductions-based ASCA (MDASCA) was introduced in [18]. In [19],

authors presented a fresh notion of algebraic immunity for designing ASCA resistant S-boxes.

Authors in [20] presented an improved ASCA on AES. In [21], in addition to comparing opti-

mizers and solvers in terms of robustness and speed, authors proposed to look for leakage models

other than hamming weight for applying ASCA. In yet another ASCA on AES, using optimizer,

authors in [22] established error rate threshold that can be tolerated. They claimed to recover AES

key in 10 hours in presence of 20% error rate from 100 measurements on the average. In [24]

authors attacked AES key in a template attack combined with ASCA in exceedingly restricted

access to implementation device. Further work on error tolerant ASCA in [25] used constraint
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programming compiler called BEE (Ben-Gurion University Equi-propagation Encoder.) Authors

in [26], while attacking AES, added side channel information along with measurement noise

into equation set obtained through algebraic attack and solved it as pseudo Boolean optimization

instance.

2.7 Conclusion

In this chapter a succinct view of ASCA on block cipher is given. Introductory paper on ASCA by

Renauld et. al [14] has been briefly reviewed. A strong form of SCA, template attacks, has also

been reviewed, as the concept of template attacks is central to the ASCA methodology. Moreover

to build a thorough understanding of how ASCA works, trivial examples of its application onto

2x2 and 3x3 S-boxes have been explained.
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Chapter 3

PROPOSING ASCA ON STREAM CIPHERS

3.1 Introduction

We have observed in the previous chapter that algebraic and side channel attacks are successfully

being applied on block ciphers in combination since 2009. On stream ciphers, both these attacks

are being applied in isolation as yet. Algebraic attacks against stream ciphers with nonlinear

update are not computationally feasible. The complexity of algebraic attacks can be considerably

reduced by adding partial information from SCA as the system of equations is made further over-

defined. In this chapter, we explain our proposition that algebraic and side channel attacks can be

mounted on stream ciphers in unison. A generic attack methodology for the proposed attack is

discussed and then applied against a hypothetical stream cipher with nonlinear combiner function.

As a proof of concept ASCA is applied on Crypto-1 Stream Cipher in the end.

Figure 3.1: Algebraic Attack

3.2 Algebraic Attacks on Stream Ciphers

LFSR based stream ciphers can also be conveniently transformed into set of algebraic equations

relating the state bits and the keystream bits as shown in fig 3.1. This set of over-defined equa-
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tions can be solved through methods like Linearization, relinearization [10], extended lineariza-

tion [11], sparse extended linearization [12], Groebner bases [13] and Boolean satisfiability (SAT)

solving etc. Algebraic attacks against LFSR based stream ciphers received a lot of attention after

their successful application against Toyocrypt [27] and LILI 128 [28].

Figure 3.2: Side Channel Leakage from Cryptographic Device during Operation

3.3 SCA on Stream Ciphers

SCA is an implementation attack, which extracts information about secret key or internal states

of stream ciphers from side channel leakage (fig 3.2). For capturing any type of side channel

leakage, knowledge of the algorithm is not required at all, however for better consumption of that

information it can pay dividends. In the ensuing paragraphs we have briefly discussed various

types/forms of passive side channel attacks with reference to stream ciphers.

3.3.1 Timing Analysis

Timing analysis is kind of passive SCA where relation of timing variations in completing various

operations is established with the data being processed. It was introduced in [29] by Kocher in
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1996.

3.3.2 Power Analysis

Cryptographic devices consume static (data-independent) and dynamic (data dependent) power

as under [30]:

Pavg = Pleakage + Pswitching + Pshort−circuit

where Pleakage is static part and Pswitching + Pshort−circuit is dynamic part.

For power analysis, only dynamic part, being related to the data processing, is of interest to the

adversary. The static part remains constant and carries no information.

Before moving on to the types of power analysis, let us have a bird-eye view of power models.

3.3.2.1 Power Models

Power models help us describe and understand the relation of processed data with the power

consumption. Hamming weight and hamming distance models are two common models which

are also important with regards to deeper understanding of this thesis.

• Hamming weight model: In this model a relationship between hamming weight of the

processed data is established with the power consumption.

• Hamming distance model: This models tends to relate power consumption with the number

of transitions i.e. 0 → 1 and 1 → 0. Shift registers are generally implemented through

flip-flops. When state of a flip-flop remains same, power consumed is only static. On the

other hand when state of flip-flop is changed the power consumption increases.
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3.3.2.2 Simple Power Analysis (SPA)

In SPA, only few (or just one) power traces are captured to extract useful information. Knowledge

of algorithm is normally utilized for making SPA a success.

3.3.2.3 Differential Power Analysis (DPA)

DPA makes use of a large number of power traces to reach at the key. Normally DPA is attempted

under a known plaintext or known ciphertext scenario. Large number of traces make it possible

to extract information under noisy conditions as well.

3.3.3 Template Attacks

Template-like attack is a very strong variant of SCA, which has been amply covered in chapter 2

while reviewing iconic paper of Chari et. al. [15].

3.4 Motivation

While taking a lead from successful work on ASCA against block ciphers, we got motivation for

proposing ASCA against stream ciphers due to following reasons:

• Firstly, that lone algebraic attacks are not much successful against popular stream ciphers

of today and

• Secondly that there exists sufficient vulnerability of stream ciphers to SCA, which can be

efficiently utilized for ASCA.

So the items above logically lead us to the proposal of combining algebraic cryptanalysis with

SCA to bring a stronger form of attack onto stream ciphers as shown in fig 3.3, known as ASCA,
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Figure 3.3: Problem Statement Manifest

which has been a proven success against block ciphers.

Further explanation of the a/m points is appended in ensuing paragraphs.

3.4.1 Limited Success of Algebraic Attacks against Stream Ciphers

Traditional algebraic attacks against popular stream ciphers are computationally as complex as

those against block ciphers. Algebraic attacks on stream ciphers, introduced by Courtois and

Meier in 2003 [31], attempt to solve a system of multivariate polynomial equations, obtained

from relation of internal state bits and few output stream bits. This leads to efficient retrieval

of internal state bits or secret key subsequently, in case of low degree equations. Courtois also

proved that there existed low degree annihilator functions of Boolean function f() and 1 + f(),

thereby reducing overall complexity of algebraic attack. Therefore, lot of research was made in

algebraic attacks against stream ciphers in that era [32], [33], [34], [28], [12]. However, later,

nonlinearity in the construction of stream ciphers by employing NLFSRs or nonlinear combiner

functions became a common feature thereby greatly increasing the degree of generated equations

and decreasing the computational feasibility of algebraic attacks against them. Therefore stream
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Table 3.1: Susceptibility of eSTREAM Ciphers towards SCA
Cipher Exploitable

Timing Vul-
nerability

Exploitable
Conditional
Branching

Exploitable
HW Leak-
age of Data

Exploitable
DPA Vul-
nerability

DPA Attack
Complexity

CryptMT No No Yes Yes Medium
Dragon Yes No Yes Yes Low
HC May be No Yes Yes Low
LEX Yes May be Yes Yes Low
NLS Yes No Yes Yes High
Rabbit No No Yes Yes Medium
Salsa20 No No Yes Yes Low
SOSEMANUK May be No Yes Yes Low
Decim May be Yes Yes Yes High
F-FCSR No No Yes Yes Medium
Grain No No Yes Yes Medium
MICKEY Yes Yes Yes Yes Medium
Moustique No No Yes Yes Medium
Trivium No No Yes Yes Medium

ciphers like Sfinks [35] and WG [36] based on LFSRs were dropped in 2nd and 3rd phase

of Project eSTREAM [37] respectively. NFLSR based stream ciphers proved to be highly re-

sistant to algebraic attacks because the degree of underlying algebraic equations increased with

each clocking of registers, for instance, after about 80 equations of Gain-1 stream cipher obtained

through algebraic attack, the degree of equations rose to as high as 160 [38]. Moreover clock

controlled ciphers such as A5/1 also possessed impressive resistance against algebraic cryptanal-

ysis [39]. Successful attacks against modern stream ciphers, therefore resort to guessing few bits

and in some cases specific guessed bits lead to better results [40], [41].

3.4.2 Susceptibility of Stream Ciphers towards SCA

Side channel attacks, though, have not been as common as algebraic attacks against stream ci-

phers [42], [43], yet have been more successful. In [42] and [44] authors have mounted a

successful DPA against both Trivium and Grain. In [15], authors demonstrated the concept of
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template-attack by successfully applying it against RC4 stream cipher. In [45], Benedikt Gier-

lichs et al. have comprehensively evaluated the susceptibility of eSTREAM ciphers towards SCA

while taking into account conventional implementation techniques, leakage models and previous

attacks. Their results have been displayed in a summary in table 3.1 . Partial SCA, as part of

ASCA, is easier than a full fledged side channel attack as it targets any (maximum possible) leak-

age information in few (minimum possible) rounds. Whereas a wholesome side channel attack

aims to recover all unknowns exactly by itself. Obviously, for ASCA to be successful, leakage

information must be exploited judiciously.

3.5 Proposed Attack Methodology

Sequence of steps of ASCA on stream ciphers can be summarized with the help of a flow chart as

shown in fig 3.4. A brief introduction to the underlying concept can also be studied in [46].

3.5.1 Algebraic Attack

Algebraic attack generally has offline and online phases of execution. In offline phase, target

stream cipher is transformed into a system of multivariate equations, whereas in online phase,

adversary needs sufficient output stream bits, depending upon the unknown variables, to solve

algebraic equations. Normally stream ciphers have an initialization phase during which no output

bit is generated. Mostly algebraic attacks target complete internal state bits and then reach at the

secret key by back tracking. However secret key before initialization can also be targeted. In the

former case, number of unknowns would be more but equations would be of less degree whereas

in the latter case equations would be of higher degree with less unknowns.

For solving multivariate equations many tools employing SAT solving, Groebner bases etc. can

be found. For this research, we rely on SAT solving. For SAT solving, the MQ problem has to
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Figure 3.4: Proposed Attack Flow Chart

be converted to a SAT problem. SAT problem consists of clauses of conjunctive normal form

(CNF) instead of algebraic equations. We make use of an open source software tool grain-of-

salt developed by Mate Soos [47], which transforms target stream ciphers directly into CNF

clauses. A basic tutorial on grain-of-salt is given at appendix A. System of multivariate algebraic

equations can also be converted manually to SAT problem [48]. Later for finding the unknown

variables, CNF clauses are input to an advance SAT solver, known as CryptoMiniSAT 5.0 in

our experimentation. Installation and basic usage guide on CryptoMiniSAT 5.0 can be found at
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appendix B.

3.5.2 Partial SCA

SCA attacks implementation of ciphers by exploiting leakage of power, electromagnetic radia-

tions, execution time, photonic emissions etc. Timing analysis [29] is possible if relation between

execution time of algorithm and its internal states exists. Cipher might be susceptible to timing

attack if its algorithm has some conditional branch instructions or table look ups. In case of power

analysis, hamming weight or hamming distance information is captured from the leaked power

traces. Algorithmic noise due to hardware implementation can also be very helpful to attacker.

Simple Power Analysis (SPA) [49] takes advantage of relation between instant power consump-

tion and internal states in one or few power traces. DPA [49] exploits the difference in power

consumption due to variation in the data being processed with same key. Though practically it

may not be possible to restart the running of stream cipher, researchers have used scenarios where

frequent resynchronization is needed [50]. In template attacks [15], adversary acquires exact

replica of the encryption device which executes the stream cipher. This is a reasonable assump-

tion as standard micro-controllers are used quite often for this purpose. In first phase, using this

identical device, separate templates of typical signal are captured and recorded including asso-

ciated noise against all possible key values. From actual device, a single leakage trace is thus

required to match with recorded template to reach exact key. Instead of performing this classifica-

tion process on entire key space extend and prune strategy is recommended to be used iteratively.

Issues related to template attacks have been discussed in detail in [51]. Observing leakage pattern

of the cipher’s implementation, selecting leakage points where extraction of maximum useful in-

formation is possible in minimum requirement of access to the cipher’s implementation and time

are also important part of SCA.
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For ASCA, side channel information obtained in SCA is transformed into algebraic equations. In

this process some unknowns might even be resolved because of leakage information. Conversion

of side channel information into usable clauses/ equations is further discussed while demonstrat-

ing ASCA on various stream ciphers in upcoming sections and in next chapter.

In this work, a theoretical approach has been adopted, where appropriate leakage points from

software implementation of the target stream cipher have been selected and exact side channel

leakage information has been extracted. SAT solving is used for finding the unknown variables,

therefore, CNF clauses have been formed against partial side channel leakage information.

3.5.3 Solving Combined Information

In ASCA, the multivariate equations obtained from both the phases are combined together as one

system of equations, which is then solved to obtain the internal state bits or secret key bits. In

this work, the CNF clauses from both phases are combined together to form one CNF file for the

input of SAT solver. CryptoMiniSat-5.0 has been employed for satisfiability and assignment to

unknown variables.

There may be a case where in spite of adding side channel information, the overall system of

equations/ clauses is not solved in reasonable time (a threshold of 3600 seconds was kept for

this work.) In such a scenario, more information from SCA may be extracted or even algebraic

attack part may also be revisited. Incorrect side channel information would make the system of

equations/ clauses unresolvable.
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Figure 3.5: A Hypothetical Stream Cipher

3.6 ASCA on Stream Ciphers - A Trivial Example

Here we explain the application of our proposed attack on a simple hypothetical stream cipher

(fig 3.5) based on linear feedback shift registers (LFSRs) and a nonlinear combiner function, to

demonstrate the methodology. With the knowledge of first few bits of the output stream, adver-

sary formulates few multivariate equations by traditional algebraic attack. Then we assume that

adversary is able to get exact hamming weights at the input of combiner function f(). Lastly

adversary adds the information from both phases to resolve the MQ problem, thereby reaching at

internal state bits.

3.6.1 Algebraic Attack Phase

Adversary acquires seven bits of output stream as 1100111. The degree of combiner function f()

is 3. Following 2-degree annihilator functions of f() are calculated:

• g1() = 1 + z + x+ xz.

• g2() = 1 + y + z + yz.
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• g3() = x+ y + xz + yz.

• There is no annihilator of 1 + f().

Next, following equations can be calculated at first seven clocks, involving unknown state bits

and known output bits, from g()’s and f():

• Equations against g1():

– At t=0: 1 + z1 + x1 + x1z1 = 0

– At t=1: 1 + z2 + x2 + x2z2 = 0

– At t=4: 1 + z5 + x5 + x5z5 = 0

– At t=5: 1 + z6 + x6 + x6z6 = 0

– At t=6: 1 + z7 + x7 + x7z7 = 0

• Equations against g2():

– At t=0: 1 + y1 + z1 + y1z1 = 0

– At t=1: 1 + y2 + z2 + y2z2 = 0

– At t=4: 1 + y5 + z5 + y5z5 = 0

– At t=5: 1 + y6 + z6 + y6z6 = 0

– At t=6: 1 + y7 + z7 + y7z7 = 0

• Equations against g3():

– At t=0: x1 + y1 + x1z1 + y1z1 = 0

– At t=1: x2 + y2 + x2z2 + y2z2 = 0
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– At t=4: x5 + y5 + x5z5 + y5z5 = 0

– At t=5: x6 + y6 + x6z6 + y6z6 = 0

– At t=6: x7 + y7 + x7z7 + y7z7 = 0

• Equations against f():

– At t=0: x1y1z1 + x1y1 + z1 = 1

– At t=1: x2y2z2 + x2y2 + z2 = 1

– At t=2: x3y3z3 + x3y3 + z3 = 0

– At t=3: x4y4z4 + x4y4 + z4 = 0

– At t=4: x5y5z5 + x5y5 + z5 = 1

– At t=5: x6y6z6 + x6y6 + z6 = 1

– At t=6: x7y7z7 + x7y7 + z7 = 1

3.6.2 SCA Phase

Through side channel attack adversary finds out hamming weights (HW) at the input of function

f() as follows:

• At t = 0, HW = 3: x1 = y1 = z1 = 1

• At t = 1, HW = 2: x2y2z2 = 0

• At t = 2, HW = 1: x3y3 = y3z3 = x3z3 = x3y3z3 = 0

• At t = 3, HW = 1: x4y4 = y4z4 = x4z4 = x4y4z4 = 0

• At t = 4, HW = 1: x5y5 = y5z5 = x5z5 = x5y5z5 = 0
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• At t = 5, HW = 2: x6y6z6 = 0

• At t = 6, HW = 3: x7 = y7 = z7 = x7y7 = x7z7 = y7z7 = x7y7z7 = 1

3.6.3 Combining Equations from both Phases and Solving

• Combining equations at t=0 from both phases: x1 = y1 = z1 = 1

• Combining equations at t=1 from both phases: we are unable to find any value.

• Combining equations at t=2 from both phases: z3 = 0

• Combining equations at t=3 from both phases: z4 = 0

• Combining equations at t=4 from both phases: 1+z5+x5 = 0, 1+y5+z5 = 0, x5+y5 = 0

• Either x5 = y5 = 1, z5 = 0 Or x5 = y5 = 0, z5 = 1 But as HW = 1: x5 = y5 = 0 and

z5 = 1 is correct.

• Combining equations at t=5 from both phases: we are unable to find any value.

• Combining equations at t=6 from both phases: x7 = y7 = z7 = 1

• From LFSR-1 equation x4 = x1 + x2 and already calculated Xs(x1 = 1, x5 = 0, x7 = 1):

x2 = x3 = 0

• From LFSR-2 equation y5 = y1 + y3 and already calculated Ys(y1 = 1, y5 = 0, y7 = 1):

y3 = 1

• From LFSR-3 equation z6 = z1+z2 and already calculated Zs (z1 = 1, z3 = 0, z4 = 0, z5 =

1, z7 = 1): z2 = 1
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Initial states of LFSR-1&3 are completely known however for LFSR-2, y2 and y4 are unknown

yet. As adversary knows the hamming weights at first seven clocks, so y2 and y4 is calculated as

follows:

• At t = 1, x2 = 0, y2 =?, z2 = 1 and HW = 2 therefore y2 = 1

• At t = 3, x4 = x1 + x2 = 1, z4 = 0 and HW = 1 therefore y4 = 0

Therefore, all the internal state bits are now known. Same methodology as in this example attack

can be applied on real stream ciphers based as well, except the difference that the solving will

have to be carried out with some mathematical tool.

3.7 ASCA on Crypto-1 - Proof of Concept

Figure 3.6: Structure of Crypto-1 Stream Cipher

3.7.1 Description of Crypto-1 Stream Cipher

Crypto-1 is a lightweight stream cipher which has been widely used ticketing and wireless access

control systems [52]. It has a simple design and comprises nonlinear functions, therefore it has
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been selected as first target as proof of concept. Crypto-1 stream cipher as shown in fig 3.6 [53],

consists of a single 48-bit LFSR which is initialized with a 48-bit key. Then five sets of 4-bits

each from LFSR are fed into five 3-degree nonlinear functions (f0, f1, .., f4). If the input bits to

these function are denoted by a, b, c, d then the functions are:

f0 = f3 = a⊕ b⊕ b.a⊕ c.a⊕ c.b⊕ d.a⊕ d.c⊕ d.c.a⊕ d.c.b

f1 = f2 = f4 = b.a⊕ c⊕ c.a⊕ c.b⊕ c.b.a⊕ d.a⊕ d.b⊕ d.c.a⊕ d.c.b

The output of these five functions is fed to a 4-degree nonlinear final filter function which gener-

ates the key stream:

f0 ⊕ f2.f0 ⊕ f3.f0 ⊕ f3.f1.f0 ⊕ f3.f2.f1 ⊕ f4 ⊕ f4.f0 ⊕ f4.f1.f0 ⊕ f4.f2.f1.f0 ⊕ f4.f3 ⊕

f4.f3.f0 ⊕ f4.f3.f1 ⊕ f4.f3.f2.f1

Though Crypto-1 has already been broken through algebraic attack in 200 seconds on a PC in

[53], but it has been chosen here being an easy first target for demonstrating as to how partial side

channel information based on hamming weight leakage model can improve the solving time in

ASCA as compared to algebraic attacks.

3.7.2 Algebraic Attack - Offline Phase

In the offline phase, algebraic attack was launched on the cipher making use of 50 random samples

of 50-bit output stream using grain-of-salt tool. On a Linux VM furnished with 2 processors and

2.8 GB memory, on the average, it took 509.017 seconds and 26.807 MBs of memory to solve

SAT problem comprising 24636 CNF clauses and correctly assign values to the unknown variable

by CryptoMiniSat 5.0.
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3.7.3 SCA - Online Phase

For online phase, a template-like SCA is simulated as in [14], extracting hamming weight leakage

at the inputs of filter functions f0, f1, f2, f3, f4 and final filter function. Algebraic equations can

be obtained from hamming weight information following procedure given in [19], however, here,

this information is directly converted to CNF clauses as needed by the SAT solver. For example,

for four inputs of function f0 at time t, if hamming weight HW (t) = k, then product of any k+1

or more bits will always be zero. Here value of k can be 0, 1, 2, 3, 4 (i.e. |k| = 5). Possible CNF

clauses for various values of k, where variables 1, 2, 3 and 4 are used for input bits to the function

f0, are displayed in table 3.2.

Table 3.2: Converting HW(t) into CNF Clauses
HW(t) Implication CNF Clauses
k=0 all bits are

zero
−1 0, −2 0, −3 0, −4 0

k=1 OR of any
two or more
bits is one

−1 − 2 0, −1 − 3 0, −1 − 4 0, −2 − 3 0,
−2 −4 0, −3 −4 0, −1 −2 −3 0, −1 −2 −4 0,
−1−3−4 0, −2−3−4 0, −1−2−3−4 0, 1 2 3 4 0

k=2 OR of any
three or
more bits is
one

1 2 3 0, 1 2 4 0, 1 3 4 0, 2 3 4 0, 1 2 3 4 0,
− 1 − 2 − 3 0, −1 − 2 − 4 0, −1 − 3 − 4 0,
− 2 − 3 − 4 0, −1 − 2 − 3 − 4 0

k=3 OR of any
four or more
bits is one

1 2 0, 1 3 0, 1 4 0, 2 3 0, 2 4 0, 3 4 0,
1 2 3 0, 1 2 4 0, 1 3 4 0, 2 3 4 0,
1 2 3 4 0, −1 − 2 − 3 − 4 0

k=4 all bits are
one

1 0, 2 0, 3 0, 4 0,

3.7.4 Solving Combined Information and Results

Over a thousand CNF clauses thus acquired from SCA are added into those obtained from alge-

braic attack and combined CNF file is input to CryptoMiniSAT 5.0 for satisfiability/ assignment.

Experimental results of ASCA against same 50 random samples of 50-bit output stream on same

machine as used for algebraic attack, took 0.158 seconds and 6.204 MBs of memory, on the av-
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Figure 3.7: A Comparison of Algebraic Attack and ASCA on Crypto-1 Stream Cipher

erage, to complete the attack successfully. A comparison drawn between ASCA and algebraic

attack on Crypto-1 stream cipher in the light of above solving, in fig 3.7 clearly indicates former’s

efficiency.

3.8 Conclusion

This chapter discusses that by augmenting algebraic attacks on stream ciphers with partial side

channel leakage information from the hardware implementation of the cipher, resolution of MQ

problem can be simplified. An attack methodology in this regard has been presented coupled

with a trivial example-attack on a hypothetical stream cipher. In the example, equations obtained

from pure algebraic technique have all internal states of LFSRs as unknowns. The additional

information coming from SCA is also converted to algebraic equations. When these additional

equations are added it becomes easier to resolve the system.

At the culmination of the chapter, newly proposed ASCA methodology is tested against a real

world stream cipher, Crypto-1, as a proof of concept. In this attack, the system of multivariate

equations is converted to CNF clauses and resolved as a SAT problem with the help of Crypto-
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MiniSAT 5.0, an advanced SAT solver. Better efficiency of ASCA as compared to lone algebraic

attacks has been proven. Though even lone algebraic attack against Crypto-1 in the past was a

success, but ASCA has been able to break the cipher in much less time as demonstrated. Main ad-

vantage with ASCA is the additional side channel leakage information, which makes the system

of equations furthermore over-defined.
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Chapter 4

ASCA ON TRIVIUM AND GRAIN

4.1 Introduction

Concept of ASCA against stream ciphers has been amply explained in the previous chapters and

it has been applied against a real world stream cipher Crypto-1 in chapter 3. However Crypto-1

stream cipher has already been successfully attacked through lone algebraic attack. In this chapter,

effort is made to apply ASCA against such stream ciphers which are intractable when attacked

using pure algebraic cryptanalysis.

4.2 ASCA on Bivium-B and Trivium

First stream cipher chosen for testing ASCA efficacy is Trivium. No published work on successful

algebraic attack against full Trivium cipher. It would be interesting to see how Trivium can be

attacked with ASCA technique. Bivium-B is a reduced variant of Trivium, which is also subjected

to ASCA along side Trivium, though Bivium-B is not intractable when subjected to algebraic

attack.

4.2.1 Description of Trivium Stream Cipher

Trivium stream cipher [54], has an internal state of 288 bits comprising three nonlinear registers

of 93, 84 and 111 bits as illustrated in fig 4.1. For initialization the cipher is clocked 4 ∗ 288

times, after 80 bit secret key is loaded into first register, 80 bit IV is loaded into second register

and rest all states are loaded with zeros except ones in last three bits of third register. Output
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Figure 4.1: Structure of Bivium-B and Trivium Stream Ciphers

stream is produced from a linear output function which combines six internal state bits. Trivium

pseudocode is given as algorithm 1.

4.2.2 Best Known Algebraic Attack on Trivium

Algebraic attacks on Trivium in [55], [48], [56], [57], [58], [59] and [60] target complete

internal state bits instead of key. The best overall time and data complexity was found to be 242.5

and 212 respectively on an average computer in [55] that targeted a round-reduced variant of

Trivium of 625 rounds.

4.2.3 Description of Bivium-B Stream Cipher

Bivium-B stream cipher, a reduced variant of Trivium (fig 4.1), has an internal state of 177 bits

comprising two nonlinear registers of 93 and 84 bits which are initialized with 80 bit secret key
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Algorithm 1: Trivium Pseudocode

1 for i← 1 to N do
2 t1 ← s66 ⊕ s93;
3 t2 ← s162 ⊕ s177;
4 t3 ← s243 ⊕ s288;
5 zi ← t1 ⊕ t2 ⊕ t3;
6 t1 ← t1 ⊕ s91.s92 ⊕ s171;
7 t2 ← t2 ⊕ s175.s176 ⊕ s264;
8 t3 ← t3 ⊕ s286.s287 ⊕ s69;
9 (s1, s2, ..., s93)← (t3, s1, ..., s92);

10 (s94, s95, ..., s177)← (t1, s94, ..., s176);
11 (s178, s179, ..., s288)← (t2, s178, ..., s287);
12 end

and 80 bit IV respectively with zeros at remaining states. The cipher is clocked 4 ∗ 177 times

before producing the output stream from a linear output function which combines 4 bits out of

177 internal states [56]. Pseudocode of Bivium-B is given as algorithm 2.

Algorithm 2: Bivium-B Pseudocode

1 for i← 1 to N do
2 t1 ← s66 ⊕ s93;
3 t2 ← s162 ⊕ s177;
4 zi ← t1 ⊕ t2;
5 t1 ← t1 ⊕ s91.s92 ⊕ s171;
6 t2 ← t2 ⊕ s175.s176 ⊕ s69;
7 (s1, s2, ..., s93)← (t2, s1, ..., s92);
8 (s94, s95, ..., s177)← (t1, s94, ..., s176);
9 end

4.2.4 Best Known Algebraic Attack on Bivium-B

In [47] Soos M. have claimed to break Bivium-B in an approximated 236.5 seconds using a Xeon

E5345@2.33GHz computer with the help of grain-of-salt tool to generate CNF clauses from pure

algebraic attack and solving them using CryptoMiniSat [61]. This is the most efficient algebraic

attack against Bivium-B as per our knowledge.
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4.2.5 Attack Modalities and Results

Our ASCA on Bivium-B/ Trivium targets 80 bit secret key instead of complete state of cipher after

initialization, while capturing 80 output bits. The success of ASCA on Bivium-B/ Trivium stream

cipher or for that matter any other cipher is largely dependent upon availability of leakage point

in the hardware implementation of the cipher so that maximum possible side channel information

could be extracted in minimum exposure. By looking at the design of both ciphers, there seems no

worthwhile benefit of a side channel extraction similar to that employed against Crypto-1 cipher

as above. One may attempt to capture hamming weight of registers at each round in a template-

like attack and convert them into algebraic equations or CNF clauses but due to bigger size of

registers, entropy of hamming weights would be very high [62]. Therefore equations based on

hamming weights of registers would not reduce the overall complexity of ASCA to a greater

extent. In [45] authors accessed susceptibility of Trivium towards SCA and concluded that its

power consumption can be easily described using hamming distance model. They also highlighted

that there is almost no possibility of recovering internal states after initialization phase, as the key

is later spread into all registers, so useful side channel information can only be extracted in the

initialization phase. Due to same inherent structure, this is also applicable to Bivium-B. Moreover

authors suggested that a DPA can be mounted while focusing on the input s94 of second register.

The contents of this flip-flop after each round are given by following equation from pseudocode

(line 8 for Bivium-B and line 10 for Trivium as above):

s94(i+ 1) = s66(i)⊕ s91(i).s92(i)⊕ s93(i)⊕ s171(i)

As we choose to subject Bivium-B and Trivium to a known IV attack, therefore only unknown on

the right hand side of above mentioned equation is s66(i) which is equal to 66th bit of secret key in

round 1. In a DPA, two hypothetical power consumptions of second register using both values (0
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and 1) for s94, can help in determining its correct value with correlation coefficient. Consequently,

an additional equation or few CNF clauses from SCA are obtained which can augment the system

of equations or CNF clauses obtained through classic algebraic attack.

For next round s94 will assume new value but rest all bits of second register are known so one can

continue with DPA in a similar fashion and put in correct values for s94 in subsequent equations

of next rounds. How many values of s94 or how many round-equations are needed? We aim

at involving all 80 secret key bits in these equations and for that proceeding till round 66 is

enough, for both Bivium-B and Trivium. Resultantly equations based on following expressions

are acquired, either equal to 1 or 0 depending upon the value of s94 as per DPA outcome:

Round 1: k66 ⊕ 0 ∗ 0⊕ 0⊕ iv78

Round 2: k65 ⊕ 0 ∗ 0⊕ 0⊕ iv77

.

.

.

Round 11: k56 ⊕ 0 ∗ 0⊕ 0⊕ iv68

Round 12: k55 ⊕ k80 ∗ 0⊕ 0⊕ iv67

Round 13: k54 ⊕ k79 ∗ k80 ⊕ 0⊕ iv66

Round 14: k53 ⊕ k78 ∗ k79 ⊕ k80 ⊕ iv65

Round 15: k52 ⊕ k77 ∗ k78 ⊕ k79 ⊕ iv64

.

44



.

.

Round 64: k3 ⊕ k28 ∗ k29 ⊕ k30 ⊕ iv15

Round 65: k2 ⊕ k27 ∗ k28 ⊕ k29 ⊕ iv14

Round 66: k1 ⊕ k26 ∗ k27 ⊕ k28 ⊕ iv13

Figure 4.2: ASCA Results against Bivium-B and Trivium Stream Ciphers

Though for SCA part only equations from first 66 rounds were utilized, but for the algebraic attack

part there is a need to include complete initialization phase (4 ∗ 177 rounds in case of Bivium-B

and 4 ∗ 288 rounds in case of Trivium), other than 80 additional rounds for 80 output bits. This is

done in order to employ variables introduced for initial state bits in the new equations expressing

relation of output bits with the state bits. Including initialization phase in the algebraic attack has

a disadvantage of dealing with high degree equations but at the same time has an advantage of

targeting less unknown variables of only secret key bits as compared to that of complete state bits.

In ASCA, since leakage information is obtained at initialization phase, therefore this has to be

included in algebraic attack phase as well.
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Lastly the CNF clauses obtained so far from both algebraic and SCA phases are combined together

as input it to CryptoMiniSat 5.0 for satisfiability/ assignment.

Table 4.1: ASCA Results against Bivium-B and Trivium
Bivium-B Trivium

Solving Time Range (sec) # of Samples Solving Time Range (sec) # of Samples
t < 5 12 t < 10 5
5 ≤ t < 10 13 10 ≤ t < 20 15
10 ≤ t < 15 10 20 ≤ t < 30 25
15 ≤ t < 20 8 30 ≤ t < 40 3
20 ≤ t < 25 7 40 ≤ t < 50 2

The results of ASCA against both Bivium-B and Trivium, on a Linux machine, with Intel Core i3

CPU M350 @2.27GHz and 6 GB memory, are summarized in fig 4.2 and table 4.1. Targeting 80

bit secret key, on 50 random samples each making use of 80 output stream bits, on the average,

it took 11.531 and 21.54 seconds along with 12.007 and 15.186 MBs of memory to complete the

attack successfully on Bivium-B and Trivium respectfully.

Trivium stream cipher has been regarded as highly resistant to algebraic attacks due to the compu-

tational infeasibility to solve its associated MQ problem. However, here, Trivium’s multivariate

equations converted into SAT problem were solved in slightly over 21 seconds. Thanks to partial

side channel leakage information extracted from a correlation DPA. The said side channel infor-

mation was also converted into CNF clauses so as to simplify the overall SAT problem, thereby

making the attack a success.

4.3 ASCA on Grain

Another popular stream cipher Grain is chosen for mounting ASCA in this section. Grain is

considered to be extremely resistant to algebraic attacks. Full round Grain has never been suc-

cessfully attacked through algebraic technique. On the other hand, research work highlighting
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high algebraic immunity of Grain against algebraic attacks exists in literature. Grain’s nonlinear

update function results into increasing degree of equations with each clock, when transformed into

algebraic equations. A successful ASCA is demonstrated against Grain in ensuing paragraphs.

Figure 4.3: Structure of Grain Stream Cipher

4.3.1 Description of Grain Stream Cipher

Grain v1 cipher [63], illustrated in fig 4.3, consists of an 80-bit NLFSR (denoted as s with state

bits s0, s1, ..., s79) and an 80-bit LFSR (denoted as b with state bits b0, b1, ..., b79) which are loaded

with the 80-bit secret key and 64-bit IV plus remaining 1’s, respectively. Output hi of a 3-degree

nonlinear function H, which gets 5 input bits from both registers, is XORed with a linear function

σi to generate output stream zi. During initialization phase, which lasts for 160 rounds, δ = 1 so

that no output stream is generated and zi is XORed with the feedback functions of both registers.

Following equations govern the working of the cipher:

• Feedback functions of s and b:

s80 = b0 ⊕ gi ⊕ zi.δ
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b80 = fi ⊕ zi.δ

• 6-degree Nonlinear function gi:

s62 ⊕ s60 ⊕ s52 ⊕ s45 ⊕ s37 ⊕ s33 ⊕ s28 ⊕ s21 ⊕ s14 ⊕ s9 ⊕ s0 ⊕ s63s60 ⊕ s37s33

⊕ s15s9 ⊕ s60s52s45 ⊕ s33s28s21 ⊕ s63s45s28s9 ⊕ s60s52s37s33 ⊕ s63s60s21s15 ⊕

s63s60s52s45s37 ⊕ s33s28s21s15s9 ⊕ s52s45s37s33s28s21

• Linear function fi:

b62 ⊕ b51 ⊕ b38 ⊕ b23 ⊕ b13 ⊕ b0

• Linear function σi:

s1 ⊕ s2 ⊕ s4 ⊕ s10 ⊕ s31 ⊕ s43 ⊕ s56

• 3-degree Nonlinear function hi:

b25 ⊕ s63 ⊕ b3b64 ⊕ b46b64 ⊕ b64s63 ⊕ b3b25b46 ⊕ b3b46b64 ⊕ b3b46s63 ⊕ b25b46s63

⊕ b46b64s63

• Output stream zi:

σi ⊕ hi

4.3.2 Best Known Algebraic Attack on Grain v1

There haven’t been much work/ success on algebraic cryptanalysis of Grain v1 in the past. Though

Grain v1 has been subjected to other attacks like in [64], [65], [66] but only one instance of pure

algebraic attack against Grain v1 is published in [41], claiming to solve equations of Grain v1 in

280.70 seconds, using Groebner bases technique.
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4.3.3 Unsuccessful Attempt

Similar to attacks on other ciphers in previous sections, Grain v1 is converted into CNF clauses

by the help of grain-of-salt tool [47], using 80 output stream bits. Initialization phase consisting

of 160 rounds is included in the attack, as we intended targeting the secret key directly instead of

targeting complete 160 state bits.

In [45] authors mentioned that Grain v1 is susceptible to SPA in case of bit-serialized implemen-

tations, by measuring hamming distances of key bits subsequently after resetting to a defined state

at key setup. Whereas in [42], Fischer et al. mounted a successful DPA with chosen IV while

attacking the key setup process thereby learning the key bits iteratively. Authors in [45] also

mentioned that a DPA could possibly be mounted specifically before or after the output function

based on hamming distance model.

In this work, in a known IV scenario, new incoming bit of LFSR in each round was targeted,

under the fact that all 80 bits of the LFSR b are known initially at round 0. A correlation DPA can

measure the value of new bit in each subsequent round by the help of all known bits of LFSR in

the previous round as follows:

• From the equations given above it can be observed that in round 1, b80 would equal:

b62 ⊕ b51 ⊕ b38 ⊕ b23 ⊕ b13 ⊕ b0 ⊕ s1 ⊕ s2 ⊕ s4 ⊕ s10 ⊕ s31 ⊕ s43 ⊕ s56 ⊕ b25 ⊕ s63

⊕ b3b64 ⊕ b46b64 ⊕ b64s63 ⊕ b3b25b46 ⊕ b3b46b64 ⊕ b3b46s63 ⊕ b25b46s63 ⊕ b46b64s63

• Here all bits coming from LFSR with suffix b are known from previous round, therefore

value of b80 becomes:

s1 ⊕ s2 ⊕ s4 ⊕ s10 ⊕ s31 ⊕ s43 ⊕ s56 ⊕ s63 ⊕ b64s63 ⊕ b3b46s63 ⊕ b25b46s63 ⊕

b46b64s63 ⊕ k1
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• Further b80 can be simplified as:

s1 ⊕ s2 ⊕ s4 ⊕ s10 ⊕ s31 ⊕ s43 ⊕ s56 ⊕ s63.k2 ⊕ k1

• If the value of b80 is measured as b through correlation DPA, then one of the two possible

equations can be obtained for each round during the initialization phase as under:

– For k2 = 1: s1 ⊕ s2 ⊕ s4 ⊕ s10 ⊕ s31 ⊕ s43 ⊕ s56 ⊕ s63 = b⊕ k1

– For k2 = 0: s1 ⊕ s2 ⊕ s4 ⊕ s10 ⊕ s31 ⊕ s43 ⊕ s56 = b⊕ k1

• After the initialization phase, the value of b80 is only determined from bits of LFSR as un-

der:

b62 ⊕ b51 ⊕ b38 ⊕ b23 ⊕ b13 ⊕ b0

Therefore side channel equations targeting b80 would only be useful till the end of initial-

ization phase.

160 equations thus obtained through SCA were added into CNF clauses already obtained. How-

ever none of the 50 samples resulted into a satisfiable solution within our time limit (3600 sec-

onds.)

4.3.4 Successful Attack and Results

In the second attempt we only modified the SCA part to capture the leakage at the input of function

hi and achieved success. This susceptibility of Grain v1 was also pointed out by authors in [45],

though no practical SCA on Grain v1 exploiting this leakage has been published so far. We

propose a template-like SCA [15], at the input of hi using hamming weight leakage model.

Similar technique was applied in [14] by authors while applying ASCA against PRESENT block

cipher, when they captured hamming weight leakage at the input and output of its S-boxes through

template attacks.
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Input bits at function hi during various rounds are:

Round 1: b3, b25, b46, b64, s63

Round 2: b4, b26, b47, b65, s64

Round 3: b5, b27, b48, b66, s65

... and so on

Figure 4.4: ASCA Results against Grain v1 Stream Cipher

Table 4.2: ASCA Results against Grain v1
Solving Time Range (sec) # of Samples Memory Usage (MBs) # of Samples
10 ≤ t < 20 12 10 ≤ m < 15 21
20 ≤ t < 30 21 15 ≤ m < 20 18
30 ≤ t < 40 9 20 ≤ m < 25 5
40 ≤ t < 50 7 25 ≤ m < 30 2
50 ≤ t < 60 1 30 ≤ m < 35 4

Hamming weight information of these bits can either be converted to algebraic equations as ex-

plained [19] or directly to CNF cluases as explained in Section 4. Here it was directly converted

into CNF clauses and added to already obtained CNF clauses from algebraic attack. This time

CryptoMiniSAT 5.0 was able give satisfiability/ assignment, on the average, in 28.25 seconds
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using 17.26 MBs of memory, for 50 samples, on same machine as used for Trivium above. A

summary of results is displayed in fig 4.4 and table 4.2.

Grain family of ciphers are an excellent implementation of stream ciphers based on nonlinear

update. In spite of high degree multivariate polynomial equations leading to towering resistance

against algebraic cryptanalysis, it was successfully broken by ASCA as shown above. In the first

attempt which could not prove successful, partial side channel information through a simulated

correlation DPA was not good enough to simplify the solving. Therefore, in second attempt which

proved successful, a different side channel leakage information based on hamming weight leakage

model through template-like attacks did the trick. This demonstration also highlighted that in case

of unsuccessful solving, attacker might choose to revisit any of the constituent attack as explained

earlier in fig. 3.4 in chapter 3.

4.4 Conclusion

This chapter proved that ASCA can be highly effective as compared to lone algebraic attack. This

was demonstrated by targeting Trivium and Grain stream ciphers which have never been success-

fully negotiated by traditional algebraic cryptanalysis. Another important aspect of ASCA is that

of repeating SCA part with changed leakage points, in case of unsuccessful or computationally

infeasible solving, as experienced while attacking Grain.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Introduction

In this chapter, the proposed idea of combining algebraic and side channel attacks on stream

ciphers is summed up. Mainly the application of ASCA against Crypto-1, Bivium-B, Trivium

and Grain v1 stream ciphers, which has been explained in earlier chapters 3 and 4 is concisely

analysed. Moreover, few counter measures against the potent threat of ASCA are listed before

concluding and mentioning future work possibilities.

5.2 Analysis of Attack Results

For implementation of ASCA, algebraic structure of equations as well as leakage information

of a cipher plays an important role. SCA and algebraic attacks against Trivium and Grain can

be found in literature. We have given an efficient combination of both thus greatly reducing the

attack time complexity for both ciphers. Table 5.1 and 5.2 summarize results of our experiments

on Crypto-1, Bivium-B, Trivium and Grain v1 with a comparison with full-blown SCA and lone

algebraic attacks respectively.

Table 5.1 highlights that only limited side channel information was extracted for attacked stream

ciphers. Traditional SCA targets complete key bits, demanding continued access to the implemen-

tation device to acquire more number of power traces. However partial SCA as part of ASCA,

needs limited access to the hardware device, only for acquiring single or few traces, as it has an

53



Table 5.1: Comparison of Full SCA and Partial SCA

Cipher Full SCA Reference Partial SCA (this work)
Leakage
points

Leakage model /
Attack Type

CNF
clauses

Crypto-
1

Nil Input
of filter
functions

Hamming weight,
Template attack,
Single trace

1234 (av-
erage)

Bivium-
B

Nil 1st
NLFSR

Known IV, Correla-
tion DPA targeting
1st NLFSR

66 XOR
clauses

Trivium Correlation DPA, Ham-
ming distance model, 550
traces [44];
CPA, Resynchronization
phase, chosen IV, 256
traces [67];
Chosen IV, DPA, Resyn-
chronization phase, theoreti-
cal [42]

1st
NLFSR

Known IV, Correla-
tion DPA targeting
1st NLFSR

66 XOR
clauses

Grain
v1

Correlation DPA, Hamming
distance model, 2600
traces [44];
Chosen IV, DPA, 256 traces
per IV [42]

LFSR Known IV, Correla-
tion DPA targeting
LFSR

160 XOR
clauses

Input of
function
hi

Hamming weight,
Template attack,
Single trace

240 XOR
clauses
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easier target, i.e., few relations translating into algebraic equations or CNF clauses. These sup-

porting equations or clauses make the system of equations/ clauses obtained through algebraic

attack, further overdefined and thus simplified.

Table 5.2: Comparison of Lone Algebraic Attacks and ASCA

Cipher
Best
Known
Algebraic
Attack
(seconds)

ASCA (this work)

Known
Output
bits

Init.
Phase In-
cluded?

Combined CNF: # of
Var, Average # of (Alge-
braic+SCA clauses)

Solving
Time
(seconds)

Crypto-
1

200 [52] 50 No 1541, 24636 + 1234 0.158

Bivium-
B

236.5 [47] 80 Yes 3006, 5282 + 66 XOR 11.531

Trivium 242.5, 625
round-
reduced
version [55]

80 Yes 6975, 12640 + 66 XOR 21.54

Grain
v1 280.7 [41]

80 Yes 4549, 16490 + 160 XOR >3600

80 Yes 4549, 16490 + 240 XOR 28.25

Table 5.2 elucidates the reduction in complexity of solving, when only few CNF clauses (or

algebraic equations) are added into those obtained from lone algebraic attack. The information

coming from partial SCA reinforces the algebraic attack to bring down overall attack (ASCA)

complexity many times.

5.3 Countermeasures against ASCA

While looking to protect the stream ciphers against ASCA, one has to go deeper into the under-

standing of constituent attack techniques. Algebraic cryptanalysis and SCA both have been under

constant attention of researchers independently as well. The extent to which a stream cipher is

resistant to both these attacks individually can give an idea of its resistance against ASCA. Pre-
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sumably, resistance to ASCA should be close to the lesser of the resistance to the constituent

attacks. In the light of our work presented in this thesis and related research work on ASCA

against block ciphers, some counter measures which can make the stream ciphers more resistant

against this attack technique, are summed up in ensuing paragraphs.

5.3.1 Countermeasures against SCA

To guard against SCA, the relation between data processing and associated leakage should be

randomized or the leakage should be suppressed altogether. Overall such countermeasures can be

divided into two types, i.e. algorithm dependent and algorithm independent countermeasures [43].

5.3.1.1 Hardware Oriented Countermeasures

Algorithm independent countermeasures, as the name suggests, are incorporated in the hardware

implementation of the cipher:-

• Reducing signal to noise ratio (SNR) by the help of specially designed logic styles sup-

pressing side channel leakage [68]. This would force the attacker to get more number of

samples, thereby making the SCA difficult. However use of leakage resistant logic styles

leads to almost double sized circuitry and power consumption.

• SNR can also be reduced by generating random noise by adding noisy components [69].

This technique is especially useful in case of lightweight ciphers.

• In ASCA, the partial side channel information can come from anywhere within the cipher

implementation. For example, we observed in chapter 3 that in case of Crypto-1 stream

cipher, hamming weight leakages were captured at the input of all filter and combiner func-

tions. However, the hamming weight information can be rendered almost useless, if the
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size of data against which hamming weight is known, is too big. For instance, if we know

hamming weight of a 48 bit register at a particular clock cycle as 35, the algebraic equations

or CNF clauses obtained from this hamming weight, as explained in table 3.2, would be too

many. Therefore employment of large sized data buses, bigger feed back shift registers,

combiner functions with more number of input/ output would make the task of attacker

difficult.

5.3.1.2 Software Oriented Countermeasures

These are algorithm dependent countermeasures which are essentially incorporated into the soft-

ware code of the cipher. Random values are inserted into the code to hide the intermediate values.

This is also called masking or blinding. On the other hand, it may be noted that ASCA exploits

leakage of any cycle in the implementation [70]. So additional cycles due to insertion of random

values to implement masking might decrease the resistance against algebraic cryptanalysis.

5.3.1.3 Additional Countermeasures against Template Attacks

In case of template-like SCA [15], where a single power trace obtained from actual device is good

enough for the attacker, all the countermeasures aimed at reducing the number of samples are not

viable. However countermeasures to incorporate randomization in computation can mitigate the

attack somehow. Template attacks rely on the assumption of possession of a replica device by

the adversary. This assumption itself is a weakness of template-like SCA, as admitted by authors

proposing the technique [15]. Therefore making use of uncommon micro-controllers might also

limit the threat of template attacks.
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5.3.2 Countermeasures against Algebraic Cryptanalysis

To ascertain as to how much a cipher is resistant against algebraic cryptanalysis, concept of al-

gebraic immunity comes handy. Stream ciphers based on high degree Boolean functions result

into complex MQ problem when subjected to algebraic attack. It must be noted that annihila-

tor functions of lower degree against a high degree Boolean function can also be found by the

attacker. The algebraic immunity of a stream cipher is equal to the degree of lowest annihilator

function. Higher the value of algebraic immunity, higher would be the resistance of that stream

cipher against algebraic attack. Courtois et. al. in [28] gave the concept of algebraic immunity

and annihilator functions as under:-

The algebraic immunity AI(f) of a Boolean function f() with n variables is the

lowest degree of any non null function g(), called annihilator of f(). Annihilator g()

of f() can be defined as a function where f() ∗ g() = 0 or (1 + f) ∗ g() = 0.

For block ciphers a rule of thumb with regards to algebraic attack complexity can be found

at [12]:-

W.F ∼= Γ ω[(Block Size).(Number of Rounds)2]ωdt/re (5.1)

Where

Γ = (t/s)dt/re = Real s-box contribution in algebraic cryptanalysis complexity

t = # of monomials in equations of S-box

r = # of equations obtained from s-box

s = # of inputs of s-box

ω = Complexity of Gaussian Elimination = 2.37
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In [19], authors redefined the concept of algebraic immunity under the threat of ASCA against

block ciphers. They incorporated the extent of side channel leakage from s-boxes into the value

of algebraic immunity.

5.4 Future Work

This research work proposes to apply ASCA against stream ciphers for the very first time. Re-

search work on ASCA against block ciphers is under way since 2009. ASCA on block ciphers has

become a reasonably mature form of attack and is considered extremely potent threat to crypto-

systems. The refinements in ASCA against block ciphers such as its enhanced error tolerance and

efficient solving are equally valid for ASCA against stream ciphers. Therefore further research

and experimentation in these two areas with regards to stream ciphers is an obvious lead from our

work.

Every new attack gives rise to newer safeguards. ASCA against stream ciphers and even against

block ciphers, keeping in view its success probability, also invites cryptographers to incorporate

countermeasures against it. Therefore, work on safeguarding against ASCA against both block

and stream ciphers is yet another open area for research.

5.5 Summing-up of Work

The thesis proposes ASCA against stream ciphers. ASCA is being applied against block ciphers

for the last 8 years. Combination of algebraic and side channel attacks in ASCA has the effect

of overcoming weaknesses of both attacks. Pure algebraic attacks are computationally infeasible

if the cipher’s transformation to algebraic equations leads to a complex MQ problem. Pure SCA

requires continued access to the cipher and high amount of leakage. On the other hand, ASCA

banks on best of both attacks. Algebraic attack phase in ASCA does not try to resolve the key
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by solving on its own, till the time it is augmented by some more equations/ clauses coming

from partial SCA. SCA phase does not target complete key, rather it captures maximum possible

leakage in minimum traces, converts it into equations/ clauses and provides them to algebraic

counterpart. Based on this concept, a generic attack methodology was presented in chapter 3.

To demonstrate the efficacy of ASCA on stream ciphers, it was applied against Crypto-1, Bivium-

B, Trivium and Grain v1 stream ciphers in chapters 3 and 4 respectively. It can been seen that in

application of ASCA, the information coming from SCA can be quite small and can be obtained

in few samples. This is unlike traditional SCAs where complete key is targeted with little or no

knowledge of algorithm. Central to success of ASCA is selection/ availability of leakage points

in the implementation of stream cipher and then judicious utilization of side channel leakage

information into MQ problem or SAT problem developed from algebraic attack. This necessitates

thorough knowledge of algorithm of target cipher.

The results of experimentation performed in the process of this thesis, were summed up in ta-

bles 5.1 and 5.2. The results statistically presented the proof to our proposition that only partial

side channel leakage information from cipher’s implementation can prove sufficient to efficiently

resolve the MQ problem generated through traditional algebraic attack technique. Lastly, few

possible countermeasures to curtail the application of ASCA were discussed.

5.6 Conclusion

This chapter sums up the results of ASCA on various stream ciphers as demonstrated during the

course of thesis. It also elucidates some known countermeasures against both the constituent

attacks of ASCA. Future research directions are also discussed before finally summing up the

thesis.
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Appendix A

GRAIN OF SALT

A.1 Description

Grain of Salt (GoS) is an automated tool developed by Mate Soos [47] which can transform shift

register based stream cipher into conjunctive normal form (CNF) clauses. For algebraic attacks, a

stream cipher has to be transformed into algebraic equations and then this system of multivariate

equations is solved through any mathematical method. For standard SAT solver-based attacks,

these algebraic equations are to be converted into CNF clauses, as the input to SAT solvers is in

the form of CNF clauses. Converting algebraic equations manually into CNF clauses is a very

tedious task. GoS can do this conversion automatically.

A.2 Input to GoS

For GoS to get into action and generate CNF clauses for a stream cipher, the cipher’s description

has to be fed to it in the form of a standardized format. The format includes separate configu-

ration files for overall stream cipher’s design/ construction, filter functions and combiner/ output

functions. Therefore, description files for the target stream cipher has to be prepared first and then

fed to GoS. GoS then generates CNF file as output.

A.2.1 Main Configuration File

The main configuration file for the target stream cipher contains information such as number and

size of shift registers, whether registers are linear or nonlinear during initialization and normal
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Figure A.1: Grain of Salt (GoS) - Working

functioning, number of filter functions, number of rounds in the initialization phase, which state

bits are loaded with IV and which state bits are loaded with 1’s.

A.2.2 Feedback Register(s) Configuration File(s)

Separate configuration files for all the feedback registers are to be prepared containing the alge-

braic expression of feedback functions during initialization phase (if any) and normal working of

the cipher.

A.2.3 Filter(s) and Combiner/ Output Functions

Similarly configuration files for all filter functions and combiner/ output functions are to be pre-

pared. These files contain the expression for the respective functions.
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A.3 Installation Guide

Source code of GoS is available for download at https://github.com/msoos/

grainofsalt under GNU General Public Licence. To compile and install GoS following

steps are needed:-

• Install Linux operating system.

• Install Cmake. Cmake can be freely downloaded at https://cmake.org/

download/ and it can be installed by following instructions at https://cmake.

org/install/.

• Download Bignum library from https://gmplib.org/ and install it with develop-

ment headers as per instructions provided.

• Download Boost library from http://www.boost.org/ and install it with develop-

ment headers as per instructions provided.

• Download zlib library from http://zlib.net/ and install it with development headers

as per instructions provided.

• After above mentioned installations, issue following commands in sequence:-

– cd build

– cmake ../

– make
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A.4 Usage

GoS has a variety of features to analyse stream ciphers. Details of important features can be found

in [47] and their usage commands along with various options can be listed through the tool itself

by issuing ./grainofsalt –help as shown in table A.1

Table A.1: Grain of Salt (GoS) - Commands

Options Description
-h [ –help ] produce help message
–crypto arg cryptographic function to simulate. Must have a directory that contains

all functions where the binary is executed
–outputs arg set number of output bits produced
–karnaugh arg set number of monomials after which karnaugh-table is not used (for

pure XOR-s it is never used). Default is 0, i.e. by default karnaugh is
not used

–xorcut arg set maximum length after which the XOR is cut into at least 2 pieces.
Default is 7

–noextmonomials if set, extended monomials will not be used
–init arg possible values: yes/no. Controls whether the initialisation phase of the

ciphers are activated
–base-shift arg Controls the base shifting. Can only be used to control reference state

variables
–deterBits arg Set thie many of the variables that have been determined to be ’best bits’

to use when generating the cipher
–genDeterBits arg Generate the given number of deterministic bits through a greedy ran-

domised algorithm. NOTE: if the file has already been generated, it will
be removed!

–probBits arg Set this many reference state variables randomly
–xorclauses Use XOR clauses as per CryptoMiniSat (xors will not be cut)
–seed arg Seed can be given to generate different CNFs with different runs of the

executable. Default is 0
–debug If set, all CNF-s will be Satisfiable, since the help bits given will all be

correct
–num arg The number of problem instances to generate. Default is 1
–stats Print statistics to directory ’stats’
–verbose Print verbose messages. E.g. functions used, bits set,etc.
–cnfDir arg Put generated CNF files into this directory. By default, it is ’satfiles’
–linearize If set, linearizeable shift registers will be linearized, i.e. its feedback

function will be calculated from the same set of reference state bits.
Default is not to do this.

–permutateVars If set, variables will be permutated in the generated CNF
–permutateClauses If set, clauses will be permutated in teh generated CNF(s)
–nopropagate If set, facts will not be propagated at the ANF level. Expect slower

solving.

For example following command can be used to generate 50 CNF files including XOR clauses,
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against target stream cipher, which is defined through description files placed in a directory named

grain, with a pre-requisite that 80 output stream bits are known and initialization phase of the

cipher is included:-

. / g r a i n o f s a l t −−c r y p t o g r a i n −−o u t p u t s 80 −− i n i t yes −−num 50

−−x o r c l a u s e s

• –crypto grain option means that the target stream cipher’s description will be picked up

from directory grain.

• –outputs 80 option means that 80 bits of output stream are known.

• –init yes means that initialization phase of the target cipher will be included in the algebraic

attack. Therefore corresponding CNF files will include clauses from initialization phase.

• –num 50 option means that 50 CNF files against as many different input sets will be gen-

erated.

• –xorclauses implies that XOR clauses will be included in the CNF files. This is useful only

if the SAT solver being used can handle XOR clauses.
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Appendix B

CRYPTOMINISAT 5.0

B.1 Description

CryptoMiniSAT 5.0 is a SAT solver, developed by Mate Soos [61]. Like other SAT solvers,

it takes CNF clauses or file in DIMACS1 format and returns either satisfiability/ assignment to

variables or unsatisfiability. As an exception, CryptoMiniSAT 5.0 can also take XOR clauses as

input.

B.2 Installation Guide

Source code of CryptoMiniSAT 5.0 can be downloaded from https://github.com/

msoos/cryptominisat under MIT licence. The code needs to be compiled on Linux op-

erating system as per the accompanying instructions. Cmake and boost library should be installed

before compilation. For building/ installing following sequence of action should be followed:-

• Extract the downloaded zip file containing source code.

• Move into the extracted directory.

• Issue command cmake.

• Issue command make.

• Issue command make install as super user.

1http://www.satcompetition.org/2009/format-benchmarks2009.html
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• Issue command ldconfig as super user.

B.3 Usage

Typical usage of CryptoMiniSAT 5.0 is depicted in fig B.1. The input CNF file contains 3 vari-

ables ’1’, ’2’, ’3’ and 3 clauses. When this CNF file is fed to CryptoMiniSAT 5.0 with following

command:-

c r y p t o m i n i s a t 5 f i l e n a m e . c n f

The solver processes the CNF clauses and in this case returns that the expression is satisfiable

with assignment to variables.

Figure B.1: CryptoMiniSAT - Working
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